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We focus on the uniqueness problem of a 3D transonic shock solution in
a conic nozzle when the variable end pressure in the diverging part of the
nozzle lies in an appropriate scope. By establishing the monotonicity of
the position of shock surface relative to the end pressure, we remove the
nonphysical assumptions on the transonic shock past a fixed point made in
previous studies and further obtain uniqueness.

1. Introduction and the main results

We study the uniqueness of a 3D transonic shock in a conic nozzle when the vari-
able end pressure of the diverging part lies in an appropriate scope. The transonic
shock problem in a nozzle is a fundamental one in fluid dynamics and has been
extensively studied by many authors under various assumptions, for example, that
either the transonic flow is quasi-one-dimensional or that the transonic shock goes
through some fixed point in advance; see [Liu 1982; Embid et al. 1984; Chen
et al. 2007; Chen 2008; Chen and Yuan 2008; Xin and Yin 2008a; 2008b; Xin
et al. 2009] and so on. However, Courant and Friedrichs [1948, p. 386] indicated
that transonic shock in a nozzle can be formulated as follows: Given appropriately
large end pressure p,(x), if the upstream flow is still supersonic behind the throat
of the three-dimensional de Laval nozzle, then at a certain place in the diverging
part of the nozzle, a shock front intervenes and the gas is compressed and slowed
down to subsonic speed. The position and the strength of the shock front are
automatically adjusted so that the end pressure at the exit becomes p.(x). This
statement indicates that the position of the transonic shock should be completely

This research is supported part by NSFC grant numbers 10931007, 11025105, 11001122 and Doc-

toral Program Foundation of the Ministry of Education of China grant number 20090091110005,

the Zheng Ge Ru Foundation, Hong Kong RGC earmarked research grants CUHK4028/04P,

CUHK4040/06P, CUHK 4042/08P and the RGC Central Allocation Grant CA05/06.SCO1. Yin is

the corresponding author.

MSC2010: 35L70, 35L65, 35L67, 35L70, 76N15.

Keywords: steady Euler system, transonic shock, first-order elliptic system, index of Hilbert
problem, maximum principle of weak solutions.

129



130 JUN LI, ZHOUPING XIN AND HUICHENG YIN

free. More importantly, the assumption of shock going through some fixed point in
advance will lead in general to the transonic shock problem not being well-posed
[Xin and Yin 2008a; Xin et al. 2009]. On the other hand, Courant and Friedrichs
[1948, pp. 372, 375] pointed out that it is a question of great importance to know
under what circumstances a steady flow involving shocks is uniquely determined
and stable by the boundary conditions and by the conditions at the entrance, and
when further conditions at the exit are appropriate. Motivated by these two basic
problems, in this paper, we will establish the uniqueness result on a 3D transonic
shock solution for the 3D Euler system when the variable end pressure p.(x) of the
conic part of the nozzle lies in an appropriate scope without the assumption that
the shock goes through a fixed point in advance. The existence of a 3D transonic
shock solution under suitable restrictions on the end pressures was given in [Li
et al. 2010].

We will consider only the isentropic gas for simplicity. By a slight modification,
our discussions also apply to the nonisentropic case. The steady isentropic Euler
system in three-dimensional spaces is

div(pu) =0,

divi(pou @u)+Vp =0,
where u = (u1, ua, us), p and P are the velocity, density and pressure, respectively.
Moreover, the pressure function P = P(p) is smooth with P’'(p) > 0 for p > 0,

and c(p) = +/ P’'(p) is called the local sound speed.
For ideal polytropic gases, the equation of state is given by

(1-1)

P =Ap”,

where A and y are positive constants and 1 <y < 3.

It will be assumed that the nozzle wall T" is C*%-regular for Xo — 1 < r =
\/x12+x22+x32 < Xo+ 1, where X > 1 is a fixed constant and o € (0, 1), and
the wall T" consists of two curved surfaces I1; and IT,, where IT; includes the
converging part of the nozzle and I1; is the conic diverging part of the nozzle (see
figure). More precisely, the equation of IT; is represented by x22 + x% = xl2 tan’
with x; > 0 and X¢ < r < Xo+ 1, where 0 < 6y < /2 is sufficiently small. For

supersonic subsonic
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simplicity, we suppose that the C**-smooth supersonic incoming flow

(/Oo_(x)» Ml_’()(x), uz_,o(x)s uio(x))
is symmetric near r = X, where

Uy (r)x;

Py (x) = py (r) and ul._’o(x) = fori=1,2,3

(this assumption can be easily realized by the hyperbolicity of the supersonic in-
coming flow and the symmetry of the nozzle wall for Xg <r < Xo+ 1).

Denote the equation of the possible multidimensional shock ¥ in the nozzle by
x1 = n(x, x3) and the flow field behind the shock by

(pF (), uf (x), u3 (x), u3 (x)).

Then the Rankine—Hugoniot conditions on ¥ are

[ou1] — 02n(x2, x3)[pus] — 930 (x2, x3)[pusl

k]

0
(12 [P 4 put] — don(xa, x3)[puiua] — d31(x2, x3)[puuz] = 0
0
0

’

[pu1us] — 321 (x2, X3)[ P + pu3] — d31(x2, x3)[ pusut3]

’

[puius] — d2n(x2, x3)[puaus] — 331 (x2, x3)[ P + pu3]

In addition, P (x) should satisfy the physical entropy condition (see [Courant and
Friedrichs 1948])

(1-3) PT(x)> P (x) onx;=n(x,x3).
On the exit of the nozzle, we place the end pressure condition
(1-4) PH(x)=P.+¢ePy(x2,x3) onr=Xo+1,
where ¢ > 0 is sufficiently small and
Py(x2, x3) € C**{(x2, x3) : x5 + x5 < (X0 + 1)*sin® fp).

The positive constant P, stands for the end pressure when a symmetric shock lies
at the position r = rg with ry € (Xo, Xo + 1) and the supersonic incoming flow
admits the state (o, (r), U, (r)). For detailed information on P,, see Theorem A.1
in Appendix A.

The flow is assumed to be tangent to the nozzle wall I', thus,
(1-5) xju T2 — xoud —x3uf =0 on x3 +x3 = x7 tan® 6.
Finally, X¢ and 6, are assumed to satisfy

(1-6) Xofo=1 and % <60 < o,
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where 19 > 0 is a suitably small constant. This assumption means that the nozzle
wall I is close to the cylindrical surface x% + x32 =1for Xg<r<Xo+1.

Theorem 1.1 (uniqueness). Under the assumptions above and

_ Uy (Xo) v+l
Moo= oy "V

then for large X and 0 < & < 1/ X2, Equation (1-1) with the boundary conditions
(1-2)—(1-5) has no more than one solution

(PH(x), uf (x), u3 (x), uf (x); n(x2, x3))
with the following estimates:

1) n(xz,x3) € C*%(S), where S = {(x2, x3) : (n(x2, x3), X2, X3) € X} is the pro-
Jjection of the shock surface ¥ on the x,x3-plane. Moreover, there exists a
constant Co > 0 (depending only on a and the supersonic incoming flow)
such that

17 (x2, x3) = V'rg — x5 = X3 | oo (57 < CoXo,
1 Vy03 (02, x3) = Vg = 23 = x3) | ¢35y < Coe.

(ii) Let

Qy ={(x1, x2,x3) :n(x2, x3) < x1 < \/(Xo+ 1)2 —x% —x32, x%+x32 < x12 tan’ 6p}.

The solution (P (x), ufr(x), u;r(x), u;r(x)) € CS""(S_2+) satisfies
[(P*(x), uf (x), u3 (x), ui (x)) — (130+(V)7 iy o(x), iy o (x), i3 5 ()l c3egg,) < Coe,

where
4 _ 7t Xi -
U o(x) =Uy (r)7 fori=1,2,3

and (130+ (r), UJ (r)) is the extension of the subsonic part of the background
solution (PO+ r), UJ (r)) in Q4 (given in more detail in Theorem A.1 and
Remark A.2).

Remark 1.1. The solution is required to have C>* regularity in Theorem 1.1.
This is plausible, as in to [Li et al. 2009], since such a C 3.« smooth solution can
be obtained as in [Li et al. 2010] under suitable assumptions on the compatibility
conditions of the variable end pressure. It will be also shown that the position of
the shock depends on the given end pressure monotonically. This will be given
more precisely in Proposition 2.2. In addition, the order Xye in the bound on

2 2 2
(e, x3) = Vg =2 = 2l s,
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comes essentially from the relation between the shock position and the end pressure
(see (4-8)). As pointed out in [Li et al. 2009], this actually means that the shock
position will move with order X¢O(¢) when the end pressure changes in order
O(g) in (1-4).

Remark 1.2. The uniqueness result in [Xin and Yin 2008b] needs the key assump-
tion that the transonic shock goes through a fixed point which is determined by
the resulting ordinary differential equation in the case of the symmetric solutions.
Using a completely different method, we remove this assumption.

Remark 1.3. If the transonic shock lies in a converging part of the symmetric
nozzle, then a similar result to Theorem 1.1 still holds true. However, as shown
in [Xin and Yin 2008b], an unsteady symmetric transonic shock is structurally
unstable in a global-in-time sense when it lies in the symmetric converging part of
the nozzle.

Remark 1.4. In Theorem 1.1, we assume that the regularity of the transonic shock
surface is higher than that of the transonic shock solution (p*, uf, u; , u3+). The
necessity of this assumption is plausible, in view of the existence result in [Li et al.
2010] under the condition of axisymmetric exit pressure. The assumption is also
natural, as it comes up in the existence and stability theory of multidimensional
shocks in [Majda 1983a; 1983b].

The steady transonic problem has been studied in great detail; see [Courant
and Friedrichs 1948; Liu 1982; Gilbarg and Trudinger 1983; Embid et al. 1984;
Morawetz 1994; Cani¢ et al. 2000; Kuz’min 2002; Zheng 2003; 2006; Chen et al.
2007; Chen 2008; Chen and Yuan 2008; Xin and Yin 2008a; 2008b; Xin et al. 2009;
Li et al. 2010] and the references therein. However, most known results deal with
2D problems or 3D problems with special symmetries, or make additional a priori
assumptions on shock positions. In this paper, we consider the uniqueness problem
for general exit pressure and without stringent conditions on shock locations.

Next we comment on the proofs of the main results. Compared with previous
studies, one of the main difficulties is the uncertainty of the shock position. As
in the 2-dimensional case [Li et al. 2009], we overcome this difficulty by deriving
the monotonic dependence of the shock position on the end pressure along the
nozzle wall. Although the strategy here is somewhat similar to [Li et al. 2009],
much more delicate and technical a priori estimates are needed to overcome some
essential difficulties occurring in the 3-dimensional case. In particular, more com-
plicated and careful analysis is needed for the estimates on the difference of two
possible pressures P*, Pt and the suitable regularity arguments of the difference
of two possible velocities (u}L, u;, u;r), (ﬁf, ft;’, IZ;'_) in the x, and x3 directions.
The pressure difference solves a second-order elliptic equation, while the velocity
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differences satisfy hyperbolic equations. Thus it would be plausible that the regu-
larities of the velocity difference are lower than that of the pressure difference. This
leads to the difficulty in deriving the C3*-regularity of the difference of the shock
surfaces. Our key observation to overcome this difficulty is that the difference
(u;r — L?;“) for i = 2, 3 satisfies a first-order elliptic system with respect to the
variables x; and x3 in the interior of subsonic domain 2. Combining this with the
transport equations for the velocity differences, we can obtain the C>*-estimate
of the velocity difference in the full variable x in €24. This will yield the same
regularities of the differences of the pressure and velocity simultaneously.

The rest of the paper is organized as follows. In Section 2, we reformulate the
problem (1-1) with the boundary conditions (1-2)—(1-5) by suitable decomposi-
tions. To this end, first we transform the nozzle wall I, into a cylindrical surface
y% + y32 = 1 and give a suitable decomposition on the velocity u™ = (uf“, u;r , u;r).
Then we decompose the resulting 4 x 4 three-dimensional Euler system (1-1) into a
second-order elliptic equation on the density p* with mixed boundary conditions
and three first-order equations on the velocity components U, U2+ and U;r by
making use of Bernoulli’s law. Furthermore, by an analysis of the R-H condi-
tions (1-2) and the first equation in (1-1), we can show that (U +, U;r ) is gov-
erned by the Cauchy—Riemann system on the shock surface (see (2-9)—(2-10)). In
Section 3, by use of the decomposition techniques in Section 2, we can establish
some a priori estimates on the derivatives of the difference (Y1, Y, Y3, Y4, Y5) of
two possible solutions (U, U2+, U3+, pt, &) and (VT V;, V3+, g™, &). In this
process, we especially observe that Y, and Y3 also satisfy a first-order elliptic
system with a parameter y; in the interior of the nozzle so that one can obtain
the same regularity of (Y2, ¥3) as the pressure difference Y4 and the suitable C>*-
estimates (see Lemma 3.5). With Bernoulli’s law, this gives the analogous estimate
on the gradients of Y; in Lemma 3.6. In Section 4, based on the estimates given
in Section 3, we can determine the position of the shock surface and complete the
proof of the uniqueness result in Theorem 1.1. Finally, for the reader’s convenience,
descriptions of the background solution illustrated in [Xin and Yin 2008b] are given
in Appendix A. Some useful computations and estimates are given in Appendix B.

In the remainder of the paper, we will use the following conventions: O(¢) and
O (1) mean that there exists a constant C; > 0, independent of X and &, such that

[0@)llcre <Cie and [[OD)]cre < C,

respectively. O(1/X(') for m > 0 means that there exists a generic constant C; > 0
independent of X and ¢ such that

1o/X)lcre = C2/ Xy

Also we set T = tan 6.
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2. Reformulation in terms of radial and angular velocities

In this section, we first decompose the velocity u = (u}, u3, uy) as (U;", U, U5,
where U 1+ is the radial velocity and U, F and U, + are the angular velocities. Then
we reformulate the nonlinear problem ( 1-1) With (1-2)—(1-5) to obtain a second-
order elliptic equation on p* and a coupled system on U, U;r and the first-order
equation on U 1+ . The relations between (p™, U1+ ) and (U, U;r ) on the shock X
will also be derived.

Due to the symmetry of the nozzle in the diverging part, it is convenient to
introduce a coordinate transformation where t = tan 6.

yi= \/xlz—i-x%—i-x%,

Xi .
yi:_ls l:2’3a
X117

2-D

and a decomposition of (u1 , u2 s U3 )

Ul —ytUs — y3tUy

+
I/l1 = >
1+ (y; +yPt
(2-2) L 2TU A+ (4 5THU — yays? Uy
2 o 9

L+ (3 +y5)72

= TUT = oyt Uy 4 (L4 33T Uy
3 1 + (y2 + y )1—2 '

The transformation (2-1) changes the domain
Q={(x1,x2,x3): Xo < Vxlz—i-x%—l—x% <Xo+1, x%—l—x% < x12t2}

and

Q. = {(r1, %2, x3) (2, x3) < x1 <V (Xo+1)? —x2 —x2, 23 +x2 < x272

into the domains

w=1{(1,y2,y3): Xo<y1 < Xo+1,y3+y; <1}

and
wr ={(y1, y2,¥3) 1 E(2, ¥3) < y1 < Xo+ 1,93 +y3 < 1},

respectively. Here y; = £(y», y3) stands for the equation of the shock surface ¥ in
the new coordinates y = (yi, y2, ¥3).
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To simplify notation, set

1
y1~/1+(y2+y3)r

1
_ ) Dy = 3y
@ VI+03

V1+ (3 +ypT?

nt

Dy =

D; = By, i=2,3.

i

Then for any C! solution, a direct but tedious computation yields that (1-1) takes
the form

U Dipt + Uy Dap™ 4 U5 D3p™*
+ o (D1U + DU + D3UY) = £,
pTU DU + p* U DU + p*US DU
+(14+ 03 +yD72) (D1t = f,
ptU DIUS + ptUS D2US + ptUS D3US
+ (142N Dot + vyt (p)Dsp* = f,

Q-4)

ptU DU + p*US DU + p* U DU
+323722 (0 Dap™ + (141212 (p ) D3p* = fi,

and on the shock position y; = &£(y3, y3), Equation (1-2) becomes

it
1+ (2 +yHr2

[oU1] — 9,,§[pUz] — 0,,6[pU3] =0

nt

————[pUf + (1 + (3 + yD) ) P]
T+ 03+ P

—0y,&[pU1U2] — 0y,E[pU1U3] =0

(2-5) Nt

N [pUUs] - 3,E[pUZ + (1 + Y212 P]
1+ (2 +yHe2 ! S

— 3y, E[pUsUs + y2y37% Pl =

nt

e [pU U3] — 8,,E[pUs U3 + y2y3 7> P]
1+ (33 +y)r2 %

—3y,E[pUs + (1 +yitH Pl =
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where

fi==2p"Do(U}" = y2tU;" = y3tUy"),

fo=p*Do(Uf (tU; + 337U + U + (U5’

(2-6) < + (3tUy — ytUH?),
f3=—p*Do(Uf Uy =yt (U;)* — y31US UY),

fo=—=p*Do(U[ U = yUf UF - y322(U)?).
Meanwhile, (1-5) is changed into
(2-7) »U; +y3U05 =0 onyl+y:=1.

Since the transformation (2-1) between the coordinate systems (xi, X2, x3) and
(y1, ¥2, ¥3) preserves the C*2 norm, from now on, we will use (y1, y2,¥3) to
discuss our problem instead of (xi, x5, x3). In addition, we will neglect the “+”
superscripts for notational simplification.

The third and the fourth equalities in (2-5) give

A A
(2-8) 0y,E(y2, y3) = A_?’ 3y, & (y2, y3) = A_?’

where
A1 = p((1+y2THUZ = 2329372 0o Us + (14 Y37 UZ) + [PI(1+ (3 + ¥ T2,

E(2, y3)TpUi
Ay = %(Uz +y37°Usy — yay3T°Us),
1 + (y2 + y3)T

E(2, y3)tpUi
Az = = (—yay3r Vs + Us + y37°U3).
I+ +y3)7

It follows from the compatibility condition

8y3(8y2$) = 3yz(3y35)
that
(29)  (By,dy, + 8y, Uz — (Dy,EDy, +dy,) U
— HO(yZv y3, P, U2» U3a S’ Vyz,y_spa V}‘z,y3U27 Vyz,y3U3’ vyz,y_ag)

on yi =§(y2, y3),
where for large Xo,

Hy = O(|Us* + |U31?) + O(IV,. 450 1?)
+ O(|Vy,.y, Uo%) + O(|Vy,,ys Us|) + 0(|Vy2,y3§|2)
+ 0(1/X0) (Ua] +1U3| + Yy, s 01 41V, 3 Ul + [V, 3 Us| + [V, 1, ED).
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The concrete expression of Hy is given in Lemma B.1 in Appendix B.
In addition, the first equation in (2-4) can be rewritten as

1
(2-10) DU + D3U; = ;(fl —pD Uy —U1D1p — U D2p — U3 D3p).

It is clear that for small |V, ,.&|, Equations (2-9) and (2-10) consist of a first-order
elliptic system for (U, Us) on the shock surface y; = &£(yz, y3).

Next we determine the equations of U;, U3 in w4 and their boundary conditions.
By the third and fourth equations of (2-4) and (2-9), (U,, Us) satisfies
pU1D\Uy + pU, DU, + pUs D3 U,

+ (14312 (0) Dap + y2y3t2c*(p) D3p = f,

pU1D\Us + pUp, D2Us + pU3z D3Us3

2-11)
+ 1233722 (p) Dap + (1 + y3tH)c*(p) D3p = fa,

(0y;§ 0y, +0y,)Us — (9,8 0y, +0y,)Us = Hy on y1 =&(y2, y3),

»Us+y3U3=0 ony;+yi=L
Next, U; can be obtained from the equation

(2-12)  (pU1 D1+ pUz D2+ pU3 D3)
(Ulz + U3 + Ui + (y31Us — y21Us)?
2(14 (¥ +y)1?)

+h(p)> =0

with

Finally, we determine the equation and the boundary conditions for the den-
sity p. By (2-7) and the third and the fourth equations in (2-4), the corresponding
boundary condition of p on y% + y32 =1is

p(Us +U3)

2 2
_— on + = 1
(1 +12)c2(p) 72773

(2-13) Y20y, 0 + y39y,0 =
We now derive a Dirichlet boundary condition for p on the shock X. Substituting
the expression (2-8) into the first two equations of (2-5) yields on X

o) Gi(p, U) =[pUi1A; — [pUslAz — [pU3]A3 =0,
G2(p, U) =[P + pUP1A| — [pU Us]A; — [pUU31A; =0,
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with

A=Ay,

Ay = pU (U + y372Us — y2y37°U3),

Az = pUy(=y2y372Us + Us + y312Us3).

In terms of (2-1), the background solution

(P (x), ui o(x), uy o (X), u3 (X))

in Appendix A is changed into

2-15)  (Py(y). Ut o). Uz o). Uz o)

= (P (y1), V1+ (3 +y) UG (), 0,0).

Then by Remarks A.1 and A.2 of Appendix A and a direct computation, there
exists a constant C > 0 such that

d*PE
(2-16) ¢ Fo ) +|08 UF o] < k k=1,2,3,4,
dy
0
c
(2-17) 195,07 0|+ |95,U7 ()] < -
O

Therefore, due to (2-16), (2-14) and the implicit function theorem, a direct com-
putation yields on X

(2-18) (U1 — U ((ro), p — by (r0))

=(21.8)(U3, U3, Py — Py (ro). Uy o — Uy o(ro)),
where g; satisfies
(2-19) g =(0@e)+ 0(1/Xp)(0(U2) + OU3) + O (& —ry)).

Equation (2-19) implies that on the shock surface, the influence of U, and U3 on
U —-U fo(i’o) and pT — ,5:{ (ro) can be almost “neglected”.

Additionally, as in [Xin and Yin 2008b, Section 5], one can combined equations
(2-4) in the form

D (the second equation) + D, (the third equation) + D3 (the fourth equation)
— D1 (U x the first equation) — D, (U, x the first equation)
— D3 (U; x the first equation) 4+ (D Uy + DU, 4+ D3 Us) f1,

obtaining a second-order equation on p with mixed boundary value conditions (by
(2-18), (2-13) and (1-4)) as follows:
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Di(((0) = U + 63+ D72 (0) Do
—U1UyDop — U1U3D3P)

+ Do = Ui UaD1p + (2(p) = U + 32722 (0) Dap
+ (ny3tc*(p) — U2U3)D3,0)

+ D3 (= U1 UsD1p + (y2y372(p) = UaUs) Dap
+(cX(0) — U + 322 () Dsp)

=H(y2, 3,0, U,Vp,VU) inwy,

(2-20)  ;

p— Py (o) =& on y; = &(y2, ¥3),
p(U3 + U3) .
20y, 0 + Y30y, 0 = ———5——— ony;,+y3=1,
T e 23
P(p) = P, +Po(y2, y3) ony; = Xo+1,

where f’o(yz, y3) is the function Py(x;, x3) under the transformation (2-1) and

H\(y2, y3, 0, U, Vp,VU)
= Di(pU1) DUy + D1 (pUy1) D3Us — D1 (pUz) DUy — Dy (pUs) D3 U,

+ D2(pU2) D1Uy + D2(pUz) D3Us — D2(pUr) D1Us — Do (pUs) D3Us

+ D3(pU3) DUy + D3(pUs) DUz — D3(pUy) D1Us — D3(pUz) Do Us

+ pUi([D1, D2]Uz + D1, D3]Us) + pUx([D2, D11Uy + [ D2, D5]Us3)
+pUs([D3, D1]1U; + [ D3, D12]U»)
+D (pDO(U1 (321Us + y31Us) + (1 + 21 U2 — 2929572 UsUs + (1 + y2 22 U2
+2U1(Uy — y2tUz — ysts)))
+ Dy (pDo(U U — y21U3 — y31UU3)) + D3(p Do(U 1 Us — y21UsUs — y3TU3)),

where [Di, Dj] = D,'Dj — DJ'D,'.
Therefore, we only need to prove the next result to show Theorem 1.1.

Theorem 2.1. Let the assumptions of Theorem 1.1 hold. Then the problem (2-9)—
(2-12), (2-18) and (2-20) has no more than one solution

(P, Ui(»), U2(y), Us(y); §(y2, ¥3)

with the following estimates.
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(1) E(ya, y3) € C**(B,(0)) with B;(0) a unit circle centered at (0, 0), and there
exists a constant C > 0 (depending on o and the supersonic incoming flow)
such that

1§ (y2, ¥3) = roll oo B0y < C X081V, 35 (E(2, ¥3) —70) | 030770 = CE-
) Ifor ={(1, y2,¥3) (2, y3) <y1 < Xo+ 1, y3 +y] < 1}, then

(P(y), Ui(y), U2 (y), Us(y)) € C**(@y)

satisfies

||(P()’)’ U] (y)’ UZ(y)v U3()’)) - (PJ()’IL ﬁio()’)’ 07 0)”C31“(M) = Ce.

To prove Theorem 2.1, as in [Xin and Yin 2008b], we first reduce the free
boundary problem (2-9)—(2-12), (2-18) and (2-20) into a fixed boundary problem
by the transformation

o= — &2, »3)
(2-21) Xo+1—§(y2, y3)
Zi =Yi i=2,3.

Under (2-21), the region w. is changed into

(2-22) Ei={(z1,22,23):0<z1 < 1,25 +23 < 1}.
Correspondingly,
1
Dy = ,
(5(z2. 23) +21(Xo+ 1 — £(22. 23))) V1 + (23 + 23)T°
1 1
D1 = aZl’
V14 (3 +23)7? Xo+1-8(22, 23)
(2-23) i
o V14 (3 +23)1°
" (G2 ) a(Xo+ 1 —£(z2, 23))T
o (z1 —1)0z;§ 0. +o,), i=23.
Xo+1—£&(z2,23)

In next section, we will establish some basic estimates on the problem (2-9)—(2-12),
(2-18) and (2-20) in the coordinate z = (zy, 22, 23), Which are crucial in the proof
of Theorem 2.1.

A further by-product of the analysis for Theorems 1.1 and 2.1 is estimates on
the location of the shock and its monotonic dependence on the end pressure.
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Proposition 2.2. Let the assumptions of Theorem 1.1 hold. Suppose the problem
(2-4) with (2-5), (2-7) has two C>* solutions

(0, U1, Uz, Us; §1(y2, ¥3)) and (g, Vi, Va2, V3; 62(y2, ¥3))

which satisfy the exit pressure conditions
P +¢&(Po(x2, x3) +Co,1) and P+ e(Po(x2, x3) + Co,2)

atr = Xo+ 1, respectively, and which admit the estimates in Theorem 2.1, with the
two constants satisfying Co.1 < Co.2. Then

(2-24) E1(y2, y3) > &2, y3)-

3. A priori estimates

In this section, we will derive some elementary estimates on the difference of two
possible solutions to the problem (2-9)—(2-12), (2-18) and (2-20). Based on these
estimates, we can show the monotonicity of the end pressure on the position of the
shock along the nozzle wall. Assume that the problem (2-9)-(2-12), (2-18) and
(2-20) has two solutions (p, Uy, Uz, Us; §1(22, z3)) and (g, Vi, V2, V3; §2(22, 23)),
which satisfy the assumptions in Theorem 2.1. Denote by Q = P(q) the pres-
sure for the density ¢. In addition, (Dg, D1, D, D3) and (Dg, D1, Dy, D3) satisfy
(2-23) with (g, V1. V2, V3; §2(22, 23)) instead of (p, Uy, U, Us; (22, 23)) in the
(Do, Dy, D2, D3) case.
Set
(Yi, Ya)(z1, 22, 23)
= (Ui, p)(§1(22, 23) +21(Xo + 1 = &1(22, 23)), 22, 23)
= (Vi, 9)(62(z2, z3) + 21(Xo + 1 —62(22, 23)), 22, 23), i =1,2,3,

Ys5(z2, 23) = §1(22, 23) — §2(22, 23).

We estimate the derivatives of Y; fori =1, 2, 3, 4, 5 in a series of lemmas.

Lemma 3.1. Under the assumptions of Theorem 2.1, the following estimates hold.:
Dy — Do = 0(1/X{)Ys,
(3-1) | Di—Di=0()Ysd,,,
D; — D; = 0(e)Ysd;, + 0(1)d, Y59, + O(1/X0)Ys5d,,, i=2,3.
Proof. We estimate Dy — D, only since the other terms can be treated analogously.
By (2-23), one has
Ys

D, — Dy =
T (Kot 1=, 29) (Kol —Ea (22, 2V I+ (@207

811’
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where
| e I
(Xo+1=£1(22, 23) (Xo+1=82(22, )V 1+ (3 +23) 2 l 1
This immediately implies D; — D = O(1)Ys0,,. O
Lemma 3.2 (estimates of V., ..Ys). Under the assumptions of Theorem 2.1, we
have

(3-2)  [1(8;,Ys, 85, ¥5) |2 < Cell(Y1, (6X3) ' Yo, (eX3) ™' V3, Yy, Y5) [l o

C
+ X—%IIsz,z,3 (eY1, eXgY9)ll cre
C
+Cll 0 Y2, 05, 13) e + 55119z Y2, 05, ¥3) e
0

Remark 3.1. It follows from (3-2) that the term ||(9;,Y5, 0;,Y5) | c2.« is controlled
mainly by [13;, Yallcre + 12, Y3l ot

Proof of Lemma 3.2. Equation (2-8) yields

A A
02,61(22, 23) = A_? 02,61(22, 23) = A_?

A A
0u62(22,23) = =2, 0:362(22, 23) = =3

A A

2205, Y5 +230.,Ys=0 on I,

where Ai fori =1, 2, 3 has a similar expression to A; with (g, V1, V2, V3; £2(22, 23))
instead of (p, Uy, U,, Us; (22, 23)), and [ denotes the circle {z:z; =0, z%—{—z% =1}.
This shows that on z; =0,
05, Y5 = 0(e) - (Y1, Ya, X5 ' ¥5) + O()Y2 + O (1/XD) Y3,
(3-3) 3.,Y5 = 0(e) - (Y1, Y4, X5 ' Y5) + O(1/XD) Y2 + O(1)Ys3,
220, Y5 +230;,Y5 =0 onl/,

From this, one can obtain a first-order elliptic system on (9,,Ys, d;,Y5) as
812 (azz YS) + 813 (8Z3 Y5) - Fl on 7; = O’
(3-4) 02,(02,Y5) — 0;,(9;,Ys) =0 onz; =0,
2205, Y5 +Z33Z3Y5 =0 onl,
with
Fi = 0(e)- (1. Ya. X' Ys5)
+0(1/X3) - (Y2, Y3, 3., Y2, 8, ¥3) + 0(1)d,, Y2 + O(1)d,, Y3
+0(&) - (0,Y1, 8, Ya, X' 05, Y5, 85, Y1, 85, Ve, X '8, Vs).
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It follows from the Hilbert problem for first-order elliptic systems with index —2
that (see [Bers 1950; 1951; Vekua 1952])

(3-5) €9z, Y5, 0, Y5) |l c2e < Cl[Fillcte.
This yields (3-2). O

Lemma 3.3 (estimates of d;,Y; for i =1, 2, 3, 4). Under the assumptions of The-
orem 2.1, we have the following estimates:

(3-6) 109z, Y1, 0z Ya)ll o1
C ~1 -1
< X_”(Yl’ Xy Y2, Xy Y3, Ya, Y5l o1
0

+C8”(812Y17 azzY3v 812Y47 812Y57 az_;Ylv az3Y27 813Y47 az3Y5)”C1~°‘
+C||(8Z2Y27 az3Y3)||C1~017
3-7) 10, Y2, 0, V3l 1w
< Cel|(Y1, (eX0) ' Ya, (6X0) ' V3, Ya, ¥5) [l o1
+ Cs||(812Y1, 812Y2, 812Y3, 313 Y1, az3 Ys, az3 Y3)|lcre

C
+ X_”(aZzYS’ 03 Ys) |l cre + Cl1(82, Y, 05 Ya) [l c1oar
0
(3-8) (32 Y1, 02 Y)llca

C
< X—(Z)H(Yl, XoY2, X0Y3, Y4, Y5) | cre

+ Cell(3z, Y1, 05, Y3, 0, Y1, 0., Y2) [l cle
C
+ X_||(822Y57 0.,Ys5,0;,Y2, 0, Y3) |l cre + Cl1(0, Y4, 0, Ya) | o1
0

Remark 3.2. Equations (3-6) and (3-7) imply the terms ||(d;, Y7, 9;,Y4)||c1.« and
|(0;, Y2, 0;,Y3) || c1« are controlled mainly by

C
X—OIIYslcha +C(19, Y2l cre + 1105 V3l cre)  and  C(10;, Yyl cre + 11025 Yall c1e),

respectively. In fact, (C/Xg)||Y5]|c1e is not a “good” term (see Remark 4.1). To
overcome this difficulty and for more applications (see Remark 3.4), we must treat
the term ||(82 Y1, 02 Y4)|lc« instead of ||(3, Y1, 9z, Y4) [ cra. Fortunately, the term
(82 Y1, 02 Y4) ||« can be controlled mainly by

C C
2 1¥slcte. X 10z, Y2, 8z, Y3)llcre and  C[(8;,Y4, 0z5Ya) || cres
0

which are all “good” (roughly speaking, a “good” term can be directly absorbed
by the left hand side in the related a priori estimates).



MONOTONICITY AND UNIQUENESS OF A 3D TRANSONIC SHOCK SOLUTION 145

Proof of Lemma 3.3. 1t follows from (2-4), Lemma 3.1 and the assumptions in
Theorem 2.1 that 9,,Y; for i =1, 2, 3, 4 satisfy

00, Y1+ U0, Y,
=0(1/Xo)- (Y1, Xy ' Y2, X' V3, Ya, Y5) + O(1) - (3, Y2, 3, Y3)
+0(8) - (8, Y, 8, V3, 8., Ya, 8, Vs, 3., Vs, Vs, £, Ys),
U8, Y1+ (14 (23 +23) ) (p)d,, Yy
=0(1/Xo) (Y1, X' Y2, X5 ' Y3, Ya, Ys)
+0(e) - (ed;, Y1, 8, Y1, 3, Y1, Xg ' 0, Vs, X519, Ys),
3., Y2 =0(e) - (Y1, (eX0) "' Y2, Y3, Yu, ¥s)
+ O0(e) - (€0, Y2, 8, Ya, 3, Y2, 8., Ya, (eX3) ', Ya)
+ 0(1/X0)(3:, Y5, X520, Y5) + O (1), Ya,
0:,Ys = 0(e) - (Y1, Y2, (eXo) ™' Y3, Yy, Y5)
+ 0(8) - (8d;, Y3, 8, Ya, 3., Y3, (eX3) '8, Ya, 3., Y3)
+0(1/Xo) - (Xy29,,Y5, 8., Ys) + O(1)d., Y.

(3-9)

So a direct computation yields (3-6) and (3-7).
From the expressions of 9., Y and 0., Y4 obtained by solving the first and second
equations in (3-9), one has again fori =1, 4,
(3-10)  82Yi = 0(1/X3)- (Y1, Y2, Y3, Ya)
+0(1/X0) - (3, Y1, X', Ya, X319, Y3, 0, Ya, Ys)
+0,,(0(e) - (3., Y2, 3., Y3, 0., Y1, 0-, Y4, 0., Y5, 0, Y1, 0,,Ya, 0., Ys))
+ O0(1/X5) - (3,2, 9,Y3) + O(1) - (32, Y2, 82 . Y3).
Equation (3-8) follows from (3-10) and a direct computation. O
Next, we estimate V,, ..¥> and V, .. Y3.
Lemma 3.4 (estimates of Y»(0, z», z3) and Y3(0, 22, z3)). Under the assumptions
of Theorem 2.1, we have
(3-11)  1(¥2(0, 22, 23), ¥3(0, 22, 23) | 2. (B 3, (0
= I X5 o X5 Y5 Y X e
+Cel|(3;, Y1, 82, Ya, 0, V3, 8, Ya) [l 1
@118 Yo 0 Y1 0 Yo lere 5 10 Yo, 8 )t

Remark 3.3. It follows from (3-11) that ||(Y>(0, z2, z3), Y3(0, 22, 23)) ||C2,a(§31(0))
is controlled mainly by (C/X3)||Ys||c1« and C||(9;,Y1, 0;, Y4, 0:, Y1, 02, Ya) [l cra
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Proof of Lemma 3.4. From (2-9)—(2-10), the assumptions in Theorem 2.1, and a
direct computation, it follows that on z; =0,
3, Ys — 3,3 = F,
(3-12) 3,Y) +0,,Y3 = F;,
2Y2+2z3¥3=0 on Z%-I—Z% =1,
with
Fy=0(e)- (Y1, Ya, Xy 'Y5) + O(1/X5) - (Y2, Y3)
+ 0() (3, Y1, (X3) ™', Y2, €3, Y3, 8, Ya, X' 0,,Y5)
+0(e) - (0,,Y1, (eX3) 0., Y2, (eX3)'0,,Y3, 0., Ya, 0., Ys)
+ 0(e)(ed, Y1, 8, Ya, X320, Y3, £0;, Va),
F3=0(1/Xo)- (Y1, X, ' Y2, Xy ' Y3, Y4, ¥5)
+0(&) - (3,,Ya, 8, Y3, 8, Y4, 3, Ys, 3., Y4, 3, Y5)
+0()-(d;,Y1,0,,Ys),

where F3 is given in Lemma B.2 of Appendix B.
As in (3-5), one can obtain from (3-12) that

(3-13) [1(Y2(0, z2, z3), Y3(0, z2, Z3))||c2,a(1§31(0)) < C||(Fz, F3)”C1‘”(§Bl(0))'

On the other hand, due to the second equation and the boundary condition in (3-12),

/ F3dS=/ (8Z2Y2+8Z3Y3)dszf (z2Y2+2z3Y3)dl =0 onz; =0.
Bi(0) B1(0) 9B1(0)

Since F3 € CL¥(Q), it follows from the integral mean value theorem that there

exists a point (zo%, z3%*) such that

F3(0, z2%, z3%) = 0.
This implies

1 F3(0, 22, 23) lcre < C|Vy, 25 F3(0, 22, 23) [l co.

Combining this with (3-13) and a direct computation yields

1(Y2(0, z2, z3), ¥3(0, z2, ZS))HCZ,W(EBI(()))
o (11X 720 X 1 Vi o)

< —|lY, X, Yo, X —
= X, | (11 Xo Y2, X Y3, Ya, XOYS e
+Cel[(9;, Y1, 0;, Y2, 0;, Y3, 0, Ya) [l cro + C (92,1, 02, Ya, 02511, 025 Ya) [t

C
+ X_ ” (822 Y5v 323 YS) ”Cl*"‘a
0

which completes the proof of Lemma 3.4. U
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Using Lemmas 3.3-3.4 and Lemma B.3 in Appendix B, we can estimate V, ., Y>
and V,, ., Y3 as follows:

Lemma 3.5 (estimates of d;,Y>, 0.,Y> and 9,, Y3, 0;,Y3). Under the assumptions of
Theorem 2.1, 0.,Y>, 0;,Y> and 9,Y3, 0., Y3 satisfy

(3-14)  11(8;,Y2, 82,12, 0,13, 02, 3) [l cre
C _
< X_O(”(Yl’ Ya, Y3, Ya, X5 ' Y5)lcre + 1102, ¥s, 32, Y5) || o2 )
+C||(822Y17 812Y49 8Z3YIa 813Y4)”C1’°"

Remark 3.4. Thanks to (3-8), the right hand side of (3-14) can be controlled by
the “good” term (C/X%)lIYs |lcr.«. This can be seen in (3-16) and (3-17) below.

Proof of Lemma 3.5. This lemma is proved by the characteristic method.
Under the coordinate z = (z1, 22, z3), the characteristics curves

(zé(s; 2), zé(s; z)) and (z%(s; 2), z%(s; 2))
of the first-order differential operators
UiD|+UyDy+U3D;s and  V,D; 4 VoD, + V3 Ds,
respectively, through the point z = (z1, 22, z3), can be defined as

dz)(s:2)  Ui(&1(z3,23) +sXo+ 1 —&1(23, 23)), 22, 23)
ds (E1(z), 2 +s(Xo+ 1= &1(2), 21)) At

1 . ;
Zl(Zl’Z)=Zlv l=2737

dzi(s:2)  Vi(€(23, 23) +5(Xo+ 1 — £2(23, 23)), 23, 23)
ds (52(23. 23) + s (Xo + 1 — £2(23. 23))) Aot

20, . i
Zl(Zl’Z)=Zlv l=2737

where

1 Ui
Ay = Xot1—£ (2] ] ( 2.2 12,2
o+ 51(12’ Z3) 1+(Zz) T +(Z3) T
(s = 1)02,61(23, 2 Uz + (s — 1)3,61(23, Zé)U3>
(61(z3, 23) +5(Xo + 1 = 1(z3, 23)))7 ’

and A, can be defined similarly by replacing (§;, Uy, U,, Us) with (&, Vi, V,, Va).
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Denote by z3(0; z) = B1, 23(0; 2) = B and z2(0; 2) = By, 23(0; 2) = f. Then
fori =2,3,
z.l(s;z)=/s Ui (612}, 23) + 1 (Xo+ 1 — £1(23. 23)). 23, 23)
l o (512, 2) +1(Xo+ 1 —&1(2), 23)) AT
o /Z‘ Ui (§1(23, 23) +1(Xo+ 1 — £1(23. 23)). 23, 23)
o (GG DD X+ 1 - &1 ) AT

Similarly, zl.z(s, z) and z; have the same expressions with (8;_1, &1, V;) replaced by

(Bi—1, &, Vi).

From this, we can obtain immediately that for i = 2, 3,

dt + Bi_1,

dt+ Bi—1.

1Bi—1 — zillc2e = CllUillc2e,  N|Bi—1 —zillc2e = ClIVillc2a.

Next define I!(s; z) = (z% — z%)(s; z) and [%(s; 2) = (zé — z%)(s; z). Then by direct
computation,

dl'(s; z)

_ (Y 12y (s
1 = 0@ (15 2)

+ 0(8) : (Yla Y3’ YS? 8822Y5’ 8823Y5)(S9 Z%? Z;,)
+0()Ya(s, 23, 23),
1'0;2)=g1—B1, 'z1:2) =0,

and similarly for I12(s; 2).
Therefore

1M 2w + 181 — Billcoe
< C||Yallc2a + Ce||(Y1, Y3, Ys, £0-,Y5, £0., Y5)|| c2a

12| 2. + 12 — B2l 2
< C|IY3llc2a + Cel|(Y1, Y2, Y5, €0, Y5, €0, Y5) || c2.0

(3-15)

By Lemma B.2 in Appendix B, (Y2, Y3) satisfies
822Y2+8Z3Y3=F3 in £,
(3-16) aZ3Y2—312Y3 :F4 in E+,
2Y2+2723Y3=0 OHZ§+Z§=1,

where F3 and Fj are given in Lemma B.2.
A direct computation yields

0, F3 = 0(1)(8?1 Y1, 8?1 Y4) 4 some “good” terms,

(3-17) .
V.,.z; F3 consists of “good” terms.
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Therefore, it follows from Lemma B.3 of Appendix B and Lemmas 3.3-3.4 that

||(822Y27 8Z3Y27 aZZY?M 8Z3Y3)”C1’°‘
3
< c(Z 192, Yillcre + IV F3llcre + ||F4||cm)
i=2

C _
= % (100 Y2, Y3, Y, Xg ¥s) v 41102, Vs, 02, Y5) o)
+ Cl[(0;, Y1, 05, Ya, 0:,Y1, 055 Ya) || 1o,
which completes the proof of Lemma 3.5. O

Lemma 3.6 (estimates of 9.,Y;, 9;,Y1). Under the assumptions of Theorem 2.1,
Y, satisfies

(3-18) 110, Y1, 0z YD)l cre

C
< P”(SYI, Y5, Y3, Y4, Ys,0;,Ya, X00,,Y5, X00;,Y5) | c2e
0
+ C[(3;,Y4, 0;5Ya) [ ¢t

Proof. Applying the characteristic method to (2-12) as in the proof of Lemma 3.5,
we arrive at

Yi=0(1/X})-(",1*)+0() - (Y, Y3)

+O0(M)Ys+O0()- (Y1, Ya, Y3, Y2)(0, B1(2), B2(2))-
It follows from (2-18) that on z; =0,
(3-19) Yi=0(@) (Y2, YV3)+0(1/XyYs, i=1,4.

By the assumptions of Theorem 2.1 and Equations (2-16)—(2-17), a direct compu-
tation yields
(3-20) 9,1y
=0, (0(1/X3)-(I', 1))+ 0(e)- (Y2, Y3)+0(e)-(Y2, ¥3)(0, B1(2), B2(2)))
+O0/XPYa+ 0(1/X3) - (Y1, Y4)(0, Bi1(2), B2 (2)) + O (1), Y4
+0(1) - (8, Y1, 9, Y0, B1(2), 2(2)), i =2.3,

and on z; =0,
(3-21) a,Y;

=3,,(0(e)- (Y2, Y3)) +0(1/X)Ys+O(1/X0)d, Y5, i=2,3, j=1,4.
So, combining (3-20) and (3-21) with (3-14) and (3-15) yields (3-18). U
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Lemmas 3.2-3.6 essentially convert the estimates on || V;, ., Y5l c2«, |V Y1 c1e,
V. (Y2, Y3)|lc1e and |9z, Y4| o1« into an estimate on ||V, .. Ya|lc1e, SO We now
focus on of ||V;, ., Y4l c1.«. First, we derive from (2-20) some second-order ellip-
tic equations with corresponding boundary conditions for z,9.,Ys + z39,,Y4 and
230, Y4 — 220;,Y4. This will enable one to obtain their C 1 boundary estimates
on the nozzle wall by the theory of second-order elliptic equations with mixed
boundary conditions (in this process, one cannot obtain the global C'* estimates
directly in the whole domain due to the appearance of a singularity in the equation
for 229, Y4 + 230, Y4; see (3-24)). This and a simple computation yield the C'*
estimates of d.,Y4 and d,,Y4 on the boundary z% + z% = 1. Subsequently, we can
use the second-order elliptic equations and the corresponding boundary conditions
for d;,Y4 and 0., Y4 to obtain ||(9;,Ys, 9;,Y4) ||~ and further Cl¢ estimates.

Lemma 3.7 (estimates of 9;,Y4, 0;,Y4). Under the assumptions of Theorem 2.1,
0., Y4, and 9., Y4 satisfy

C _
(3-22) 11(8:,Y4, 0, Ya) Il o1 SX—OII(Y1, Y2, Y3, Ya, X5 ' V5) |l cre
C
+ X_O”(aZlYla 812Y27 823Y37 8Z1Y4, azzYSv aZ3Y5)”C2*"‘
+C8||(821Y27 8Z1Y39 aZ3Y25 822Y3)”C1’°"

Remark 3.5. By (3-22), the norm ||(9;,Y4, 0;,Y4)|lc1« has been controlled by
“good” terms, in particular, (C/X3)||Y5 lcte.

Proof of Lemma 3.7. 1t follows from (2-20), (3-19), Lemma 3.1 and a direct com-
putation that

Di((c¥(p) = UH D Ya+ A (p) (302 + 237 D1 Ya
— U Uy DrYy — U U3 D3Yy)

+ E(—Ul Uy D1 Y4+ (2 (p) — U22)13/2Y4 +Z§TZCZ(P)13;Y4
—UyUsD3Y4+ ZzZ3T202(p)D3Y4)

+ 53(—U1 Us DYy — UyUs DaYs 4 22237 °¢(p) D2 Yy

3-23 ~ ~
S +((p) — UD DaYs + 3723 (p) D3 Ya)
— Hy(Y, VY) in E.,
Ya=0@E)Y,+0(@E)Ys+0(1/Xp)Ys on z; =0,
Y4 =0 onzg = 1,

220, Y4+ 230, Ys = 0(©)2 + 0(©) Y3+ 0¥y onZ+23=1,



MONOTONICITY AND UNIQUENESS OF A 3D TRANSONIC SHOCK SOLUTION 151
with

Hy(Y,VY)
=D (0(1/Xo) - (Y1, Xy ' Yo, X' V3, Ya))
+ Dy (0(e/X0) - (Y1, 67 Ya, Xy '¥3, XoYa, Ys, £, Vs, (eX3)'0,,5))
+ D3(0(e/Xo) - (Y1, X7 Ya, 6713, XoYa, Y5, (6X2) ™10, Y5, 67'0,,Ys))
+O(1/Xo) - (Y1, Xy 2 Y, X2 Y3, e¥a, X' ¥s)
+0(1/X5) - (eX50,, Y1, 8, Ya, 8, Y3, £X50,, Ya)
+ 0(e) - (3, Y1, (eX0) '3, Y5, 3, Y3, 3, Vs, 3., Ys)
+0(e) - (3, Y1, 3, Yo, (eXy 1), Y3, 82, Ya, 9, Y5),

where we use the formula of H; on page 140 and the assumptions in Theorem 2.1.
Next, define

M| = ZgaZZY4 + z3813Y4 and M, = Z3812Y4 — Zgaz3 Y4
Applying z,0,, + z39;, to the first three equalities of (3-23) yields

D1 ((¢2(p) — U D1 My + 2 (p)(237% + 2313 Dy M
— U Uy DyMy — U U3 D3 My

+ Do — U1U> D1 My + (¢ (p) — U3) DM,
+2372¢%(p) DaM| — UsUs D3 M + 22237%¢2(p) D3 M

M M M M
+0(1)Z2 1 +23M> 0(1)23 1— Z; 2)
22+Z3 Z2+Z3

+ D3 — U Us D\ M| — UaU3 DyM,

(3-24) + 2223722 (p) Da My + (¢*(p)—U3Z) D3 M) + 237%c%(p) D3 M,
M1+ z73M. 23M) — 2o M
+ 0(1)M+0(1)M)
22+Z3 2+

= (220z, +230;,) 2 (Y, VY) + H3(Y, VY)  in E,

== 0(8) ° (Y27 Y37 azzYZa aZ3Y27 aZQY3v aZ3Y3)
+0(1/X0)(Xy ' Vs, 05, Y5, 02, Y5) onz; =0,

M; =0 onz; =1,

= 0(e) - (Yo, Y, eY4) onzi+z3=1,
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where

Hs(Y, VY)
=0(1/X3)-(Ys, 3,5, 3,,Ys)+ O (1/X3)d,, (O (1)d,, YatO(e)d,, Ya+ O ()3, Ys)
+(0(£)d;, + 0(1/X5)3,) (0 ()3, Ya+ O(1)d, Ys + O(1/X3)d,, Ys)
+(0(&);, + 0(1/X5)3,) (0(e)d, Ya + O(1/X3)d, Ya + O(1)d,, Ys)
+0(1)d, (0(1/X3)d;, Yo+ O(e)d;,Ya+ O(£)d,, Ya)
+(0(&)d;, + 0(1)3,,)(0(e)d, Ya + O(1/X3)d, Ya + O(1/X)d.,Ys)
+(0(£)d;, + 0(1)3,,)(0(e)d;, Ya+ O(1/X3)d, Ya + O(1/X3)d,,Ya),

and the singular terms

M M M, —7oM
22My +z23M> and 0(1)23 1 —22M>

o(l)
3+23 B+

in (3-24) arise essentially from the computation
(2202, + 230:,) (D2(c? () D2Ys) + D3(c*(p) D3Yy))
= (0(e)d;, + O(1/X})d,,)(0(e)d,, Ya + O(1)d,Y4)
+(0(£)d;, + 0(1/X5)3.,) (0 ()3, Y4+ O(1)3,,Ys)
+(0(£)d;, + 0(1)3,)(0(e)d;, Ya+ O(1/X3)d,, Ya))
+(0(£)d;, + 0(1)3;,)(0(e)d;, Ya+ O(1/X3)d,, Ya))
+ D((p) DaMy = 2¢% ()0, Ya) + D3 (c*(p) D3Mi — 22 (p)d:,Ys)
= (0()d,, + 0(1/X3)3,,)(0(£)d,, Ya+ O(1)d,,Y4)
+(0(£)d;, + 0(1/X5)3,) (0 ()3, Y4+ O(1)d,,Ys)
+(0(£)d;, + 0(1)3,)(0(e)3, Ya+ O(1/X3)d,, Ya))
+(0(©);, + 0(1)3,)(0()d;, Ya+ O(1/X5)9; Ya))

~ ~ My +z3M>
+mﬁ%wmwom—7—rﬁ
5+ 23

~ ~ 3My — 20 M
+D3<cz(p)D3M1 = 0(1)%).
25+ 23
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The factors

<2 and 3
z% + z% z% + z%

in the second-order elliptic Equation (3-24) have a strong singularity on z%—{—z% =0.
Thus it is difficult to use the standard theory on second-order elliptic equations to
derive directly the global C'® estimate on M; in E . To overcome this difficulty,
we first establish the boundary C'* estimate of M;. In fact, the compatibility
conditions on the intersection curve between the shock surface ¥ and the nozzle
wall IT> (see [Xin and Yin 2008b, Appendix B]) as well as the natural compatibility
conditions on the intersection curve between the end r = Xg + 1 and I, due
to the C>% regularity assumption of the solution have the following implication:
From the estimates on the boundary of the second-order elliptic equations with the
divergence form and the Dirichlet boundary values on the cornered domain (see
[Azzam 1980; 1981; Lieberman 1986; 1988]), we have

(3-25) IMillcragee)
< C(IIM1llz> + M2l ce + | Hallce + | H3 || e
M1z =ollcre + 1M1 2422 llcre)
< C(I1(0:,Ys,0.Ya) [ Lo + [ M2l cre) + Cel[ (825 Y2,0;,Y3) [ c1.e
+ X£0||(Y1, Yé, 1/3,)(011/5,3Z1Y1,X0IaZlYZ,xOlaél Y3,0,,Y,0,,Y3) || ¢l
+ X_0||(Y4’ 0z, Ya,0:,Y4,0;,Ya)|lcre + X—OII(BzzYs,BQYs)IIcm,

where the subdomain Eg of E contains the nozzle wall {z:0<z; <1, z%-i—z% =1}.
Similar analysis gives a second-order elliptic equation for M, with suitable
boundary conditions. In fact, by the fourth equality in (3-23), one has

(Z2azz +Z38Z3)M2
= 0(8) : (Y27 Y3a 8Y4’ 822Y2, 8Z3Y2, 822Y39 8Z3Y3? SMZ) on Z% +Z§ =1.

Note that

(230z, — 220:,) (Da(c*(p) DaYa) + D3(c*(p) D3Yy))
= (0(e)d,, + 0(1/X§)d,,)(0(8)d., Ya+ O(1)3.,Y4)
+(0(&)d;, + 0(1/X5)3.)(0(e)d,, Y + O(1)d., Ys)
+ (02, + 0(1)d,)(0(e) - (9, Y4, 0,Y4))
+ Da(c*(p) DaMy) + D3(c*(p) D3 Mp).
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Then we can show that M» solves

Di((*(p) = UD D1 Ma + 2 (p) (2372 + 230%) D1 M,
—U,U, Dy My — Uy U3D3M2)

+ Do (~U1U> Dy My + (¢X(p) — U3 Do M,
+ Z%TZC2(,0)D2M2 —UyUs D3 M,
+2223T2€2(P)53M2)

+ D3(—U\Us Dy My — UyUs Dy M,
+ 2223722 (0) DaMy + (¢*(p) — U2) D3 M,

(3-26) +231%¢*(0) D3 Ms)
= (230, — 220,3) Ha(Y, VY) + H3(Y, VY) in Ey,
M2 = 0(8) : (YZa Y3a 822Y2’ 8Z3Y2’ 822Y37 aZxY:‘;)
+0(1/Xo) - (Xy Y5, 8, Y5, 3., Ys) onzy =0,
M, =0 onz =1,
(2207, +230;;,) M>
= 0(e)

(Y2, Y3, €Ya, 0, Y2, 0, Y2, 0, Y3, 0, V3, eMa)  onz3+23 =1,

where I-’E(Y, VY) has the same property as H3(Y, VY) in (3-24).
Since the equation in (3-26) has no singular terms, a global C Le estimate of M,
in E, can easily be given as

(3-27)  |IMa2llcra
< C(IHzllce + 11 H3llca + | M2z, =0l 1.
+ [[(z20., +Z38z3)M2|z%+Z§=1 ”C"‘)

C _
= 3 LYo, Y3, Yo X )
C - _
+X_OI|(aZ| YleO 1811 Y27X() 18Z] Y378Z2 Y278Z3 Y37 aZ] Y47 822Y43823 Y4)||Cl,a

C
+ Cell(9,Y2, 05, Y3)ll cre + X—OII((’izzYs,az3 Y5)ll c2e-

Next, we treat the bounds of ||d;,Y4| L~ and ||d;,Y4] L in (3-25).
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As with (3-24), the first three equations of (3-23) imply that d., Y4 satisfies

Di((c*(p) — U Dy (8, Ya) + (p) (2372 + 237>) D1 (3, Ya)
— U\U>D5(d.,Y4) — U U3 D3(3:, V)

+ Dy (~U U D1 (8., Ya) + (¢*(p) — UP) D1 (8., Ya) + 2372 (p) D2 (3, Ya)
— UsUs D5(8,,Ya) + 222372 (0) D30, Ya) )
(3-28) { + Ds(—=U1UsD;(8,,Ys) — UsUsDa (3, Ys) + 22237 () D23, Ys)
+(c*(p) — U D3(8,Ya) + 2372*(0) D3 (8., V)
=0, Hy(Y, VY) + Hy(Y, VY) in E,,

3, Ya=0(e) - (Ya,Y3,0,Y2,9,,Y3) + O(1/Xo) - (X' V5,0, Y5)  onz; =0,

0,Y4=0 onz; =1,

where ﬁ3(Y, VY) has the same property as H3(Y, VY) in (3-24).

By the maximum principle for second-order elliptic equations of divergence
form with the Dirichlet boundary condition [Gilbarg and Trudinger 1983, Theorem
8.16], we have

(3-29) |8z, Yal L
< C (192, Yaley=oll o + 192, Yalzy =i 1o + 102, Yal 2y 2l
+ | Hallce + || Hsll o).

Since M| = O(¢g) - (Yo, Y3,€Y4) on z% + z% =1, a simple computation yields

102, Yalloe < 1Ml 2y 2oy llioe +11M2] 24 2y Ml

= Cel|(Y2, Y3, eYd) |1 + ClIM2| c1e-

(3-30)

Substituting (3-30), (3-25), (3-27) and the boundary value conditions of (3-28) into
(3-29) gives

C -
(3-31) 10, Y4l < X—Oll(Yl, Y, Y3, Y4, X5 'Y5) |1

C
+ X_O(”(BZIYI’ 8Z2Y29 aZ3Y37 821Y47 8Z2Y4’ aZ3Y4)||C1-O‘
+ 1182, Y5, 83 Ys5) [l c2.0)
+C8||(821Y2’ 821Y39 823Y25 822Y3)”C1*0“
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Similarly,

C -1
(3-32) 10 Y4l = X—OII(Yl, Y2, Y3, Y4, Xy Y5)llcre

+ X%(n(am Y1, 0, Y2, 85, Y3, 9z, Ya, 0z, Ya, 05, Ya) || e
+ 11(82, Y5, 82, Ys5) | c2.0)
+ Ce||(9;, Y2, 0;, Y3, 0, Y2, 0, Y3) |l ca
So far, we have shown that the “large” term |[|(9;,Y4, 0;,Y4) ||z + ||[M2]|c1e in
the right hand side of (3-25) can be controlled by the “good” terms in (3-27) and

(3-31)—(3-32). This means that || M, ||C1,¢,(§E3) has the same estimate as in (3-31)—
(3-32). Namely,

(3-33) (10, 0, Y3) | cresipo)

C —1
S X_O”(Yl’ YZs Y3’ Y47 X() YS)HC""

C
+ X_O(”(BZIYI’ 812Y29 8Z3Y3a 8Z1Y47 822Y47 8Z3Y4)”C1""
+ 110z, Y5, 925 Ys) [l 2. )
+C8||(811Y2’ 811Y3’ az3Y2s azgY3)”C1v’1-

From this and the equations on 9,,Y4 and 9,,Y4 (see (3-28)), one has

||(822Y47 8Z3Y4)”Cl,o¢
< C(I13z, Yay 3, Ya) 2o + 132, Ya, 8, Ya) o+ ll oo + | Hallce + | Hall o)

C -1
< X_on(Yl’ Y2, Y3, Y4, Xy Y5)|cre

C
+ X—O(Il(az] Y1, 0,2, 0., Y3, 9;, Ya, 02, Ya, 02, Y | cre + 110, Ys, 02, Y5) || o2 )
+ C8||(azl Y27 aZl Y37 az3 Y21 azgY?a)”Clv’l'

This completes the proof of Lemma 3.7. (]

Remark 3.6. We now explain the importance of deriving the C>%-regularity es-
timates on Y4 and (Y, Y2, Y3) simultaneously. The crucial estimate in (3-14)
which bounds |[|(9,,Y2, 0;,Y2, 0;,Y3, 3;,Y3)||c1e in terms of [|[(VY], VY4)| o1« and
1(3;,Ys, 0., Y5)|| c2.« follows from the key observation that though the system (2-11)
is hyperbolic, the lower-dimensional first-order system (3-16) is elliptic. Indeed,
without (3-16), the standard characteristic method for (2-11) gives only that (Y5, Y3)
has the same C'* regularity as (0;,Y4, 0;,Y4) € C'*. In this case, one can es-
timate |[(0;,Y2, 0;,Y2, 0;,Y3, 0;,Y3)||ce in terms of the right hand side of (3-14)
by the proof of Lemma 3.5. Then, from the proof of (3-6), one can estimate
|(0;, Y1, 0z, Ya)||ce which gives an estimate of ||(Y2, ¥3)| c1« on z; = 0 using the
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proof of (3-11). Together with boundary condition on z; = 0 in (3-28), this yields
the desired estimate on ||(d,, Y4, 3;;Y4)||c«. However, neither C estimates on
(VYy, VY, VY3, VY4) nor C** estimates on V.,.23 Y5 can be obtained in this way.

Remark 3.7. We have established a priori estimates for the gradients of solutions
instead of solutions themselves. Trying to derive a priori estimates on a solution
directly would give from (3-9) that

10z, Yallcre < C1l[(9z,Y2, 0;,Y3) || c1.« + positive terms with “good” coefficients,
while (3-12) yields
1(0;,Y2, 0, Y3) | cre < C2||0;, Yallcre + positive terms with “good” coefficients.

However, it seems extremely difficult to get precise estimates on Cy and C3 so that
Ci-C, < 1. Thus the direct estimate cannot yield useful information on d;, Y4, 9,,Y>
and 9, Y3.

4. Proofs of Theorem 1.1 and Proposition 2.2

Due to the equivalence between Theorem 1.1 and Theorem 2.1, it suffices to prove
Theorem 2.1 only.

To this end, we first show that &£ (0, 1) =&,(0, 1) by contradiction. Without loss
of generality, assume that

(4-1) £1(0, 1) < £(0, 1).
We will show the corresponding end pressures are different, contradicting (1-4).
Lemma 4.1. For gy < l/Xg in Theorem 2.1, one has

10z, Y1, 9z, Ya) |l cre < C[Y4(0, 0, D],

C
”(amYZv 821Y3)||C1*"‘ = XO|Y4(07 Ov l)lv
5 3

- C
D 210z Yillere < - 1¥4(0,0, D

i=1 j=2

(4-2)

Remark 4.1. Thanks to the appearance of the term (1/ Xé) | Y5]|cre in the right
hand sides of (3-11), (3-14), (3-18) and (3-22), we can obtain the desired esti-
mates (4-2), which will be the key in deriving the monotonicity of shock posi-
tion on the end pressure and further obtaining the uniqueness result. Indeed, if
the dominant term on the right hand sides of (3-11), (3-14), (3-18) and (3-22) is
(1/X0)|1 Y5l cre, then Lemma B.4 implies that Y5(0, 1) ~ X¢Y4(0, 0, 1) and the
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third estimate in (4-7) becomes

3 5
C
(02, Y2, 02, ¥3) [l 1w + 22 E 1 19, Yjllcre < X_0|Y5(0’ Dl.
i=2 j=

In this case, by Equation (4-11) below, one can only show that 9, Y= O(1/X¢)Ys.
Thus, Equation (4-13) becomes 9, Y4 = O(1)Y4, which yields no useful informa-
tion on Y4. It is then unclear how to proceed to obtain the monotonic dependence
of the shock position on the end pressure.

Proof of Lemma 4. 1. By the estimates in Lemmas 3.2-3.7 and a direct computation,

5
C
1@ Y1, 0 Yol ere < 5= 3 Iillene

i=1

||(8Z1 Y29 811 Y3)||C1£¥

(4_3) ) 3 4 C 4
-1
+2_2 18 Yjllcre = X—O(Z I¥illcre + Xg ||Y5||c1~a),
i=2 j=1 i=1
c 4
102, Y5, 02, Ys5) [l c2r < X—O(Z Yillcro +X0_1||Y5||clﬂ)-
i=l1
Note that
) 1(Y1, Ya)llcree < CA(Y, Ya)(0,0, DI+ IV (Y1, Ya)llera),

[Y5llcre = C(1Y5(0, D]+ VY5l c2).

The nonslip condition (2-7) implies that z,Y> +2z3Y3 =0 on z% +z% =1 and further
Y2(z1, 1,0) =Y3(z1,0,1) =0, so

(4-5) (Y2, Y3)lcre = ClIV(Y2, Y3)|c1a.

In addition, at the point (0, 0, 1), Equation (3-19) implies

C
(4-6)  [Y1(0,0, D]+ ¥4(0,0, )| < X_0|Y5(0’ DI+ Ce(|[Yz2lL + Y3l ).
Substituting (4-4)—(4-6) into (4-3) yields

C
1Y1(0, 0, D]+ 1¥4(0, 0, D[ + Xo[Y2(0, 0, D] < X—OIYs(O, DI,

C
(4-7) 19z Yillcre + 110z, Yallcre < X—OIYS(O, DI,

305
C
€9z, Y2, 3, ¥3) |l cre + E E 19z Yjllcre < —X2|Y5(0, DI
i=2 j=1 0
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In addition, by Lemma B .4,
(4-8) 1Y5(0, DI = CXo[Y4(0, 0, D]
Combining (4-8) with (4-7) yields Lemma 4.1. (]

Lemma 4.2. Suppose that (4-1) and the assumptions in Theorem 2.1 hold. If
pg (ro) > 2pqy (o), then

(4-9) Y4(0,0, 1) > 0.
Proof. Lemma B.4 implies that Y4(0, 0, 1) and Y5(0, 1) satisfy
Yy =aoYs+ O(1/X{)Ys,

where ag < 0 and a9 = O (1/Xy).
Thus by (4-1), we have Y4(0,0, 1) > 0. O

Remark 4.2. If M (Xo) > / (2r+1 —1)/y, then by [Li et al. 2009, Lemma 5.1],
we can show that pJ (ro) > 2p, (ro) in Lemma 4.2.

Based on Lemmas 4.1 and 4.2, we can now prove Theorem 2.1.

Proof of Theorem 2.1. 1t follows from (2-4) and a direct computation that

UiD\Ys+pDY,
=0(1/Xo)- (Y1, Xy' Y2, X' V3, Ya) + a1 Y5
+0(8) - (8;,Ya, 8, Y3, 83, Ya, 8., Ya, 3, Vs, 8., Ya, 3, Y5)
(4-10) +0(1) - (3, Y2, 8, Y3),
pU\D1Y1 +c*(p) D1,
=0(1/Xo)- (Y1, X, V2, eXoV3, Y4) +ar s
+0(e) - (e, Y1, (X210, Yy, 0, Y1, X' 0, Y5, 9, Y1, Xg ' 0, Y5),

where, abbreviating &1 (z2, z3) by &1 and &>(z2, z3) by &,

a = — 8Z1(/0U1)
V1I4+ @+ 2 Xo+1—EDXo+1-£&)
n 2(1 —z1)pU;
VIi+@B+EB)E +aXo+1-E))E+z1(Xo+ 1 — &)
+ O0(e/Xo),
c(p)d;, p + pU13;, Uy
a) =

V+ @2 Ko+ 1 —E)(Xo+1—6)
+0(1/X}),
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It follows from (4-10) that
@-11) 3, Ys=a@)Ys+O0(1/Xo)- (Y1, X' Ya, Xy ' V3, Ya) + O(1)(3,, Y2, 3, Y3)
+0(e) - (€0,,Y1, 8, Y2, 8., Y3, (eX3) ™!
X 8ZIY4, 812Y1, 812Y4’ 812Y57 313Y1, 3Z3Y4, 3Z3Y5),
where, again abbreviating &;(z2, z3) by & and &,(z2, z3) by &,
() = Xo+1—&)V1+ (23 +23)7°
(4-12) cX(p) — U}

___ e
Xo+1-§

(ar —a1Uy)

~ 2(Xo+1-8)(1 —2)pU7}
((p) —UDE+21(Xo+1—E))E+21(Xo+ 1 - &)
+0(1/X),
It should be pointed out here that the “good” coefficient O (1/X %) in the term of
0;, Y4 on the right hand side of (4-11) can be derived from (2-17), the assumptions

on the solutions, and ¢ < 1/ X% in Theorem 2.1.
In addition, under the assumptions of Theorem 2.1, one has

32,0 = 0y py (ro) + O(e),
c(p) — U = A (pg (r0)) — (UL (ro)* + 0(1/X3),
which yields
d,0>0, c*p)—Ul>0.

Hence, it follows from (4-12) that a(z) is a negative function in subsonic domain.
In addition, (4-1) implies Y5(0,1) < 0. So a(z)Y5(0, 1) is always nonnegative
along the line (z1, 0, 1). Thus along the line (z1, 0, 1), by Lemma 4.1, (4-11) can
be reduced into

aZ] Y4 Z b(Z)Y4(O’ Oa 1)7
Y4(0,0,1) > 0,
where ||b(z)||L~ < O(1/Xp). This yields

(4-13)

(4-14) Y4(z1,0,1) > C1Y4(0,0,1) >0

for some constant C; > 0, which contradicts the end pressure condition (1-4), so
contradicts (4-1). Thus Y5(0,0, 1) =0.
So by Lemma 4.1,
YiI=Y,=Y3=Y,=Y5=0.

This completes the proof of Theorem 2.1 and thus of Theorem 1.1. ]
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Proof of Proposition 2.2. 1t follows from the assumptions in Proposition 2.2 that
CO,l < CO,Q and Y4(1, 22, Z3) < 0.
We claim that

(4-15) Ys5(0, 1) > 0.

Otherwise, if Y5(0, 1) < 0, then (4-13)—~(4-14) imply Co1 > Cop . If Y5(0, 1) =0,
then Y4(0,0,1) = 0 by Lemma B.4 and further Y4 = 0 by Lemma 4.1, hence
Co,1 = Cp 2. Both cases contradict that Cp ; < Cp 2.

Since Y5 = ¥5(0, 1) + O(1)0,,Y5 + O(1)9,,Y5, the third equality in (4-7) gives

(4-16) Y5(z2,23) = Y5(0, 1) + O(I/X(Z))Y5(O, ).

Combining (4-16) and (4-15) yields Ys5(z2, z3) > 0 which implies &;(y;, y3) >
§(y2, y3)- O

Appendix A: Analysis of the background solution

Under the assumptions given in Section 1, we describe the transonic solution of
the problem (1-1) with (1-2)—(1-5) when the end pressure is a given suitable con-
stant P,. Such a solution is called the background solution and can be obtained
by solving the related ordinary differential equations. In fact, the analysis of this
background solution was given in [Courant and Friedrichs 1948, Section 147];
see also [Xin and Yin 2008b, Section 2]. For the reader’s convenience and the
requirements of our computations in this paper, we state the main facts here.

Theorem A.1 (existence of a transonic shock for the constant end pressure). For
the 3D nozzle and the supersonic incoming flow given in Section 1, there exist two
constant pressures Py and P with Py < P,, determined by the incoming flow and
the nozzle, such that if the end pressure P, € (Py, Py), then the system (1-1) has a
symmetric transonic shock solution,

(Py (r), u;o(x), uio(x), u;o(x)) forr <ry,

(POJF(”), Mfo(X), MZO(X), u;o(x)) forr > rg,

where ufo = U(;—in/rfori =1,2,3and (Poi(r), Uét (r)) is C**-smooth. Moreover,
the position r = ro with Xo < ro < Xo + 1 and the strength of the shock are
determined by P,.

Proof. See [Xin and Yin 2008b, Section 2]. O

Remark A.1. By (1-6) and the analysis of [Xin and Yin 2008b, Theorem A, Sec-

tion 2], there exists a constant C > 0 independent of X such that for ro <r < Xg+1,

d* Uy (r)| |d* Py (r)
drk drk

(P,uy, uz,u3) =

. C

=~ k=1,2,3.
XO
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Remark A.2. It follows from (2-1) that we can obtain an extension (,(36r (r), 0; (r)
of (p0+(r), U0+(r)) for r € (Xg, Xo + 1) and large Xy.
Appendix B

We first give a detailed computation for Hy in (2-9), and then derive a first-order
elliptic system on (U,, U3) in the interior of the nozzle. Next, we discuss the reg-
ularity problem of solutions to a class of first-order elliptic system which includes
a parameter. Finally, we derive a relation between Y4(0, 0, 1) and Y5(0, 1) used in
Lemmas 4.1 and 4.2.

Lemma B.1. In (2-9), the function Hy admits the estimate
Hy = O(|Us* + |Us1) + O(|Vy,.y501%)
+ O(IVy, 3 Ua ) + OV, 5, Us ) + O(IVy,. 1,6 )
+ O(I/XO)(|U2| + |U3| + |Vy2,y3p| + |vy2,y3 U2| + |vy2,y3U3| + |Vy2,y3’i:|)'

Proof. It follows from

dy, <i—?(§()’2, y3), ¥2, Y3)> = 8y2<i_?(§()’2a y3), Y2, ys))

that
Ar0y. A1 — A30y, A
(B-1) By Ay — By, Ay = ——2 2
Ay
Since
ylprl 2.2
0 Az=—((8 £0y, 4+ 0y,)Us + y577(0,,E0y, + 0y,) Un
3 1+(y§+y32)_52 ¥35 91 3 23 35 91 y3 i i
= 1233 Oy 0y, + 0y Us +205720; = 127203 )
0y;6TpUy +E71(0y,59y, + 9y;)(pUy) 2.2 2
- - Uy +y51°U, — U
102100 U2+ y37°Us = y2y37°U3)
2y1)’3f3/0U1 2 2 2
— U, +yit°U; — °U3),
(1+(y§+y§)12)2( 2+ Y377 Us — y2y377°U3)
ylprl 2.2
3, A =—((a 3y, +9,,)Us + y212(0,,60,, + 0y, ) U-
223 1+(y§+y32)‘52 126 Oy, U3 T Y 12§ 9y, /U3

— Va3 T2 (B, Ey, + By, Us + 27,7205 — y3r2U2)

ayzgerl + 57(3y2§3y1 +9y,)(pU1)
L+ (3 +y)7°

(Us +y312Us — yay372Us)

21273 pUs

2.2 2
T UGy T U T,
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021 = p(201 + 33T U2 (03,8 0y, +8y,)Uz = 292337 U (0,60, + 03,)Us
— 2923572 U2(0,,80, +00,)Us + 21+ 33T)Us (0,60, +9,,)Us )
+ 1+ 05 +9DTI@),€0y, 4 y,) P14+ 2y27°[P]
+(@y,6 0y, +8y,)p (1 +33THU; = 2y2y37°UaUs + (1 + y37°)U5)
+ pRy27*U3 —2y37° U2 U3),
By, A1 = p (201 + V3T U By, 0y, + 5y Uz = 232372 Us (D5 0y, + 030U
— 2y y3 72U (B, £y, + ) Us +2(1 + y2T2)Us (3, £0,, + 3y3)U3)
+ (14 03 + 3D TH(By3Edy, + Byy) P14 2y37°[P]
+ (y,E8y, +3,,)p((1 4+ yITHUF — 2323372 U2 Us + (1 + y32)U3)
+pQ2y37?U3 = 2372 UaUs),

substituting these expressions into (B-1) yields

(aYSSB)’l + ayz)UZ - (8),253” + ayz)U3
= Hy(y2, y3, p, U2, U3, &, Vyz,yyo’ Vyz,y3 U>, V,\'z,m Us, V,Vzv}‘3$)’

where

Hy= O (02> +1U3 1) + O(1V,, 3, 01) + O(1V,, 3, Ua ) + OV, 1, Us) + O (1Y, 1,6 )
+ 01/ X0)(|U2] + |Us| + Vy,.p501 + | Vyy 03 Ual + |V, s Us| + [V, 16 ).
This completes the proof of Lemma B.1. U
Lemma B.2. Under the assumptions of Theorem 2.1, we have
0,Y2+0,Y3=F inEy,
0, Y2 —0,Y3=Fy inEy,
2Yr+23¥3=0 onzs+zi=1,
with
Fy=0(1/Xo)- (Y1, Xy 'Y, X; Y3, Y4, ¥5)
+ 0(&) - (3;, Y, 8, V3, 85, V4, 85, Y5, 8,3 Ya, 3., Ys)
+0(1)- (3, Y1, 8, Ya),
Fy=0()-(I', 1)+ O(1) - (3,2, 05, Y3)(0, B1(2), B2(2))
+O0(1/Xo) - (eY1, X2 Ya, Xy Y3, €Yy, Xy Y5)
+0(&) - (3, Y1, 8, Ya, 8, V1, 3, Y1)
+O0(1/X3) - (3., Y2, 8, Y3, 8, V2, X0d,,Y3, 8, Y4, X0, Y5,
X0, Ya, 3, V3, 8, Y4, 8, Y5),

where I' and B; for i = 1,2 are defined as in Lemma 3.5.
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Proof. By the first and the second equations in (2-11) we obtain
(B-2)  (p)((1 423t (1 + 31 — 2222t Dap
= (1+23t%)(oU; D Uz + pUs DyUy + pU3 D3 Us)
— 20237%(pU1 D1 Us + pUs DrUs + pUs D3Us3)
+ pDo((1+ 23T Us — 22237°U3)(Uy — 221U — 227 U3)
(B-3)  A(p)((1+237°) (1 +231%) — 232377 ) Dap
= (1+ 23t (pU D\Us + pUy D2Us + pUs D3 Us)
— 20237%(pU1 D1Up + pUs DrUs + pU3 D3Us)
+ pDo((1 4+ 23tH)Us — 222372 Ua) (Uy — 22tUs — 22T U3).
Applying 9y, to (B-2) and 9y, to (B-3), and then subtracting them results in
(B-4)  (pU1 D1+ pUs Dy + pU3D3)(3:,Uz — 9:,Us + O ()0, Uz + O (£)d,Us3)
+ (pU1 Dy 4 pUs D, + ,0U3D3)(Z2Z3T23z2 Uy — 257%3,Us
+ 231%0,,Us — 2223720, Us)
= Hy(z,U, p, VU, Vp),
where
Hy(z, p, U, Vp, VU) = O(1U2* +|Us ") + O(IVU ) + O(IVp[?)
+ 0 /Xo+¢&)(|U2| +|Us| + Vol +|VU]).
Finally, due to the first equation in (2-4) and (B-4), a direct computation implies
812Y2 +813Y3 =F; in E.,
3Z3Y2 — 8Z2Y3 = F4 in E+,
22Y24+23¥Y3=0 on z%—l—z% =1,
and F; for i = 3, 4 has the same properties as stated in Lemma B.2. ([
Lemma B.3. Assume that the problem
Oouy + 03uz = fi1(xy, x2,x3) in Q= {(x1, x2,x3) : [0, 1] x B1(0)},
d3uy — doup = fo(x1, x2, x3) in Q = {(x1, x2, x3) : [0, 1] x B1(0)},
(B-5) O1uy = f3(x1, x2,x3) in Q2 ={(xy, x2, x3) : [0, 1] x B1(0)},
Oruz = faxy, x2,x3) in Q2 ={(xy, x2, x3) : [0, 1] x B1(0)},
xouy +x3uy =0 on I = {(x1, x2, x3) : [0, 1] x 3 B1(0)}
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has a C**(Q2) solution (uy, us), where fi € Ccl*(Q) fori=1,2,3,4. Then

3 2 4
(B-6) D logujllcre < C(IIVfl leay + ||fl~||cl,a(9)).
i=2

i=2 j=1
Proof. Set £1 = {(0, x2, x3) : x3 +x3 < 1} and X5 = {(1, x2, x3) : x3 +x3 < 1}.
First, we assert

2 4

(B-7) Y o lujllcracsy +lujllczeqy < C Y M fillcreg, J=1.2.
i=1 k=1

Indeed, it follows from (B-5) that on X; fori =1, 2,
Oouy + d3uz = f1(i — 1, x2,x3) 1in By(0),
d3uyp — duy = fo(i — 1, x2,x3) 1in B1(0),
Xoui +xur =0 on ;.

Thus, by the solution of the index —2 Hilbert problem in [Bers 1950; 1951; Vekua
1952],

(B-8) Nuillcre(sy + lluzllcresy < Cll fillcrecs)y + 1 f2llcresy), i=1,2.

For notational convenience, set w; = xpu| + x3uy and wy = x3uy — xXpu].
Equation (B-5) implies that w; and w; satisfy the following the second-order
elliptic equations, respectively:

(0F + 05 + 0 w1 = 01 (x2.f2 + x3.f4)
(B-9) + 02(x2 f1 — x3 f2) + 03(x2 f2 +x3f3) in €2,
w; =0 onT,

(87 + 05 + 03)w2 = 91 (3 f3 — X2 f4)
(B-10) + 02 (x2f2+x3f1) —3(x2f1 —x3f2) in K,
(2202 +x303)wa = f2 onT.

For the problem (B-9), it follows from [Gilbarg and Trudinger 1983, Theorem 3.7,
Theorem 6.6] that

2 4
(B-11) lwill 2y < C(Z lwillcrocs,) + Y 115 ||C1.a<g>)-

i=1 j=1

For (B-10), the compatibility conditions at corners and C>* estimates of solutions
to second-order elliptic equations with mixed boundary conditions in [Xin et al.
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2009, Lemma A] imply that

2 4
(B-12) lwall 2o < C(Z lwallcaecsy + > 1 £ ||c1.a(g>).

i=1 j=1

Transforming w; and wy back to u; and u, via

XW1 + X3W2 X3W| — X W2
M =—> 3 and wup, = —— >
Xy +Xx3 Xy +x3

gives

(B-13)  luillc2ery + luzllcrer)

< C(llwy ||C2,a(g’z) + ||w2||c2.a(§))

i=1

2 4
< C(Z(le lezacsy) + lwallcracsy) + ||f,||cl,a<9)>.
j=1

This, together with (B-5), yields (B-7).
Next, we derive the second-order elliptic equations on 1 and u;. By (B-5),

OF +05 +0Du1 =01 fs+02fi+03f2 inQ,
OF + 03 + 0D us =01 fu— o fa+03fi inQ.
Thus,

(B-14)  [lu; ||c2,a(§2) + ||u2||c2,a(§)

2 4
< C(Z et jllc2acsy + Nujllczaqey + D 1L fi ||C1.a(g>)-

i=1 i=1

Substituting (B-7) into (B-14) yields

4
(B-15) 1l e + 12l 2@y < € D I filloregy-

i=1
For each x; € [0, 1], from the first and the fifth equations in (B-5) it follows that

Si(x1, x2, x3) dxp dx3 :/ (xouy + x3u2) dl =0,

B (0) 9B (0)

so by fi € C1*(Q) and the integral mean value theorem, there exists some point
(x3(x1), x3(x1)) € B1(0) such that

fi(xr, x5 (x1), x5 (x1)) = 0.
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This implies
(B-16) | fill e < CIV filleo -
Substituting (B-16) into (B-15) yields (B-6). [l
Lemma B.4. Under the assumptions of Lemma 4.2, at the point (0, 0, 1),
Yy =ao¥s+ O(1/X5)Ys, Ys=0(Xo)Ys,
where ag < 0 and ag = O(1/Xy).

Proof. In the coordinate (yi, y2, ¥3), the background solution (,ogt(yl), Ugt(yl))
satisfies (see Appendix A),

dpy (1) 2(My (y))*py (1)
dyr (1= (MyOo))?
B17) AUy () _ 2U3E(11> ’
dyi yi(l— (M5 (y1)?)
dMy (y1) My (y)Q+(y — DMy ()
dyr (=M
where Ui( :
+ o W1
Mo OV =C0E G

denote the Mach numbers of supersonic coming flow and subsonic flow, respec-
tively.
By (B-17) and (2-16)—(2-17),
My (y1) = My (Xo) + O(1/Xo),
(B-18) Py (V1) = py (Xo) + O(1/Xo),
Ui o) = Uy (Xo0) + O(1/Xo).
In addition, it follows from (2-5) that at the point z = (0, 0, 1),
oY1+ ViYy
= (py (€10, U4 (5:1(0,1),0,1) = py (52(0, 1)Uy (62(0, 1), 0, 1))
+O0E)Y 1+ 02+ 03+ 0(e*)Ya+ O(e)Ys,
pUi+ VDY + VY, + (1 + 1) (DY,
= ((pg (U)*)(&1(0,1),0, 1) — (py (Ug)*) (&0, 1), 0, 1))
+ 1+ 1) (Py (5100, D) — Py (60, 1)) +0(e)Y, + O(e) Y2+ O(e)Y3
+ 0@+ 0(7)Ys.
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Using this and a direct computation gives
(B-19) ((147°)c*(p) — Ui (£1(0,1),0, DV (5(0,1),0, 1)) Yy
= (14+7°)(Py (€10, 1)) — Py (£2(0, 1))
+ (py (Uy)P)(E1(0, 1), 0, 1) — (py (Uy)*)(€2(0, 1),0, 1)
- (((/JO_UO_)(&(O, 1),0,1) = (py Uy ) (5200, 1), 0, 1))
x (U1(£1(0,1),0, 1) 4+ V1(6(0, 1), 0, 1)))
+ 0(M)Y1 + 0(e)Ya+ 0(e)Y3+ O(eH) Y4+ O(e*)Ys.

Since
d(py (NUy (r)  2py (NU, (r)
dr - r ’
d(py (NWy (M) + Py (1)) 2py (N(Uy (r)?
dr T r ’
we have

(B-20)  (1+7)(Py (51(0, 1) — Py (£(0, 1))
+ (g UHHEN0,1),0, 1) = (95 (Uy)*) (&0, 1), 0, 1)
~ (g U & 0, 1),0. D) = (57 U7) &0, 1), 0, 1)
x (U1(&(0, 1),0, 1) + V1 (£(0, 1), 0, 1)))

_ 200 ®T )

Y5(0, 1)
205 (E)US (€
+ 220 8% ) (17 6,0,1),0, 1) + Vi(&:00. 1), 0, 1) ¥5(0, 1)

(B-21)  ((1+73)*(p) —UiV1)Ys

_ _2(pguo—>(§)(
£

Uy ) — (Ui (£1(0, 1)) + V1 (£2(0, 1))))Y5
+O0(ENY 4+ 0()Y2+ 0()Y3+ O(*) Yy + 0(e)) Vs,

where p and § are the values derived by the mean value theorem on the functions
P(p) — P(g) and G(§1(0, 1)) — G(62(0, 1)) with

G(y) =1 +7*) Py (y) + (py Uy)*) (31,0, 1)
— (09 Up )1, 0, D(U1(£1(0, 1), 0, 1) 4 V1(52(0, 1), 0, 1)),

respectively.
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Substituting (B-19)—(B-20) into (B-18) yields

(B-22) ((1+73)c*(p) —UiVi)Ya
_ _2(ng0‘)(§)< (py Uy )(€1(0, 1))
: p(E1(0, 1)
n (py Uy )(52(0, 1)))>Y
q(£(0, 1))
+0@EDY 40 )Y+ 0E)Y3+ 0(e) Yy + O()Ys.

Mﬂ@—(

Due to the assumptions in Theorem 2.1, we have

p(&1(0, 1) = po" (ro) + O (e),
q(52(0, 1)) = po " (ro) + O(e),
Py 6i(0, 1)) = py (ro) +O(e), i=1,2.

Then for ,00+ (ro) > 2p, (ro) and small &,

p (100, 1)) > 2p, (610, 1)),
q(52(0, 1)) > 2p, (62(0, 1)).

(B-23)

Moreover,
Uy (€)= Uy (€100, 1))+ O(1/X0) (610, 1) — &),
Uy (€)= Uy (£2(0, 1)) + O(1/X0)(52(0, 1) — &),
p=pE10, D)+ 00)Ys,
Vi=U+0)Y,.
So (B-22) becomes

(B-24) ((1+1H*(p(&1(0, 1)) — UP)Ys
_wﬂ5x®<

Uy (610, D)) + Uy (62(0, 1))

B (Z(po‘ Up)E10. 1)) | 200y Uy )0, 1))>)Y
p(§1(0, 1)) q(&2(0, 1)) ’
+0(EHY+ 02+ 0(e)Y3+ 0(e) Yy + O(1/X3)Ys.

By (4-4), (4-6) and (B-23)—(B-24), we obtain that at the point (0, 0, 1)
Yi=aoYs+O0(1/X)Ys and Ys= O(Xo)Ys,

where ag < 0 and ap = O(1/Xp), which completes the proof of Lemma B.4. [
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