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We prove that open Gromov–Witten invariants for semi-Fano toric mani-
folds of the form X = P(KY ⊕ OY ), where Y is a toric Fano manifold, are
equal to certain 1-pointed closed Gromov–Witten invariants of X . As ap-
plications, we compute the mirror superpotentials for these manifolds. In
particular, this gives a simple proof for the formula of the mirror superpo-
tential for the Hirzebruch surface F2.

1. Introduction

Let X be a compact complex n-dimensional toric manifold equipped with a toric
Kähler structureω. Let L be a Lagrangian torus fiber of the moment map associated
to (X, ω). Fukaya, Oh, Ohta and Ono define open Gromov–Witten invariants for
(X, L) as follows (see [Fukaya et al. 2010a]). Let β ∈ π2(X, L) be a relative
homotopy class with Maslov index µ(β) = 2. Let M1(L , β) be the moduli space
of holomorphic disks in X with boundaries lying in L and with one boundary
marked point representing the class β. A compactification of M1(L , β) is given
by the moduli space M1(L , β) of stable maps from genus 0 bordered Riemann
surfaces (6, ∂6) to (X, L) with one boundary marked point representing the class
β. As shown in their monumental work [Fukaya et al. 2009] by the same authors,
M1(L , β) is a Kuranishi space with real virtual dimension n. By Corollary 11.5
in [Fukaya et al. 2010a], there exists a virtual fundamental n-cycle [M1(L , β)]vir.
The pushforward of this cycle by the evaluation map ev : M1(L , β)→ L at the
boundary marked point then gives

cβ = ev∗
(
[M1(L , β)]vir)

∈ Hn(L ,Q)∼=Q.

By Lemma 11.7 in the same reference, the homology class cβ is independent of the
perturbation data (transversal multisections) used to define [M1(L , β)]vir. Hence,
cβ is an open Gromov–Witten invariant for (X, L).
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Let Y be an (n−1)-dimensional toric Fano manifold. Consider the P1-bundle
X = P(KY⊕ OY ) over Y , where KY denotes the anticanonical bundle of Y . Then
X is an n-dimensional toric manifold which is semi-Fano, i.e., the anticanonical
bundle K−1

X is nef. Let h ∈ H2(X,Z) be the fiber class. Let α ∈ H2(X,Z) be an
effective class with c1(α)=c1(X)·α=0. Consider the moduli space M0,1(X, h+α)
of genus-0 stable maps to X with one marked point representing the class h+α.1 By
[Fukaya and Ono 1999], M0,1(X, h+α) is a Kuranishi space with complex virtual
dimension n. The pushforward of the virtual fundamental cycle [M0,1(X, h+α)]vir

by the evaluation map ev :M0,1(X, h+α)→ X gives a 1-pointed closed Gromov–
Witten invariant of X :

GWX,h+α
0,1

(
[pt]

)
= ev∗

(
[M0,1(X, h+α)]vir)

∈ H2n(X,Q)∼=Q,

where [pt] denotes the Poincaré dual of a point in X .
Now let ι0 : Y ↪→ X be the closed embedding of Y as the zero section of KY .

The image is a toric prime divisor D0 = ι0(Y ) ⊂ X . As above, we equip X with
a toric Kähler structure ω and fix a Lagrangian torus fiber L in X . Corresponding
to D0 is a relative homotopy class β0 ∈ π2(X, L). More precisely, β0 ∈ π2(X, L)
is the class such that Di · β0 = δi0 for any toric prime divisor Di in X . The main
result of this paper is the following formula.

Theorem 1.1. For the P1-bundle X = P(KY⊕ OY ) over a toric Fano manifold Y
and for any effective class α ∈ H2(X,Z) with c1(α)= 0, we have

cβ0+α = GWX,h+α
0,1

(
[pt]

)
.

Note that β0 + α ∈ π2(X, L) is a Maslov index two class since c1(α) = 0.
We will prove this formula in Section 4 by comparing the Kuranishi structures of
M1(L , β0+α) and M0,1(X, h+α).

We can apply this formula to study mirror symmetry. Recall that the mirror of a
compact toric n-fold X is given by a Landau–Ginzburg model (X∨,W ) consisting
of a bounded domain X∨ ⊂ (C∗)n and a holomorphic function W : X∨→C called
the mirror superpotential. In [Fukaya et al. 2010a] (see also [Cho and Oh 2006;
Auroux 2007; 2009; Chan and Leung 2010a; 2010b]), it is shown that the mirror
superpotential can be expressed as a power series whose coefficients are the open
Gromov–Witten invariants defined above. However, when X is non-Fano, these
invariants are in general very hard to compute. The only known examples are the
mirror superpotentials for the Hirzebruch surfaces F2 and F3, first computed in
[Auroux 2009] using degeneration methods and wall-crossing formulas. Fukaya,
Oh, Ohta and Ono gave a different proof for the F2 case in [Fukaya et al. 2010b].

1In M0,1, subscript 0 and 1 denote the genus and number of marked points respectively.
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As an immediate application of our formula, we can express the mirror super-
potential of X =P(KY⊕OY ) in terms of 1-point closed Gromov–Witten invariants
(see Theorem 5.2). In particular, since F2=P(KP1⊕OP1) and its Gromov–Witten
invariants are easy to compute as it is symplectomorphic to P1

× P1, this gives
a very simple proof of the formula for the mirror superpotential of F2. See the
example in Section 5. Our formula has since then been applied to study mirror
symmetry for various classes of toric manifolds. See [Lau et al. 2011; 2010; Chan
et al. 2010; Chan and Lau 2010] more details.

The rest of this paper is organized as follows. In Section 2, we briefly review Ku-
ranishi spaces and recall the results that we need in this paper. In Section 3, we es-
tablish several preliminary results concerning the toric manifolds X =P(KY⊕OY ).
In Section 4 we prove our formula by a direct comparison of Kuranishi structures.
In Section 5, we discuss applications of our formula to mirror symmetry.

2. Kuranishi structures

In this section, we briefly review the theory of Kuranishi spaces and recall some
of their properties for later use. We follow Appendix A1 in the book [Fukaya et al.
2009]. See also Section 3 in [Fukaya and Ono 1999].

Let M be a compact metrizable space.

Definition 2.1 [Fukaya et al. 2009, Definitions A1.1, A1.3, A1.5]. A Kuranishi
structure on M of (real) virtual dimension d consists of the following data:

(1) For each point σ ∈M,
(1.1) A smooth manifold Vσ (with boundary or corners) and a finite group 0σ

acting smoothly and effectively on Vσ .
(1.2) A real vector space Eσ on which 0σ has a linear representation and such

that dim Vσ − dim Eσ = d.
(1.3) A 0σ -equivariant smooth map sσ : Vσ → Eσ .
(1.4) A homeomorphism ψσ from s−1

σ (0)/0σ onto a neighborhood of σ in M.

(2) For each σ ∈M and for each τ ∈ Im ψσ ,
(2.1) A 0τ -invariant open subset Vστ ⊂ Vτ containing ψ−1

τ (τ ).2

(2.2) A homomorphism hστ : 0τ → 0σ .
(2.3) An hστ -equivariant embedding ϕστ : Vστ → Vσ and an injective hστ -

equivariant bundle map ϕ̂στ : Eτ × Vστ → Eσ × Vσ covering ϕστ .

Moreover, these data should satisfy the following conditions:

(i) ϕ̂στ ◦ sτ = sσ ◦ϕστ .3

2Here and in C2 below, we regard ψτ as a map from s−1
τ (0) to M by composing with the quotient

map Vτ → Vτ /0τ .
3Here and after, we also regard sσ as a section sσ : Vσ → Eσ × Vσ .
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(ii) ψτ = ψσ ◦ϕστ .

(iii) If ξ ∈ ψτ (s−1
τ (0)∩ Vστ/0τ ) then, in a sufficiently small neighborhood of ξ ,

ϕστ ◦ϕτξ = ϕσξ and ϕ̂στ ◦ ϕ̂τξ = ϕ̂σξ .

The spaces Eσ are called obstruction spaces (or obstruction bundles), the maps
{sσ : Vσ → Eσ } are called Kuranishi maps, and (Vσ , Eσ , 0σ , sσ , ψσ ) is called a
Kuranishi neighborhood of σ ∈M.

To define virtual fundamental chains, we need Kuranishi spaces with extra struc-
tures.

Definition 2.2 [Fukaya et al. 2009, Definitions A1.14, A1.17]. A Kuranishi space
is said to have a tangent bundle if the differential of sσ in the direction of the normal
bundle induces a bundle isomorphism

(2-1) dsσ :
ϕ∗στT Vσ

T Vστ
∼=

Eσ × Vστ
ϕ̂στ (Eτ × Vστ )

as 0τ -equivariant bundles on Vστ .
For a Kuranishi space with tangent bundle, an orientation consists of trivializa-

tions of
∧top E∗σ ⊗

∧top T Vσ compatible with the isomorphisms (2-1).

We will not give the precise definition of multisections here. See Definitions
A1.19, A1.21 in [Fukaya et al. 2009] for details. Roughly speaking, a multisection
s is a system of multivalued perturbations {s ′σ : Vσ → Eσ } of the Kuranishi maps
{sσ :Vσ→ Eσ } satisfying certain compatibility conditions. For a Kuranishi space M

with tangent bundle, there exist (a family of) multisections s which are transversal
to 0 (Theorem A1.23 in [Fukaya et al. 2009]). Furthermore, suppose that M is
oriented. Let ev :M→ Y be a strongly smooth map to a smooth manifold Y , i.e.,
a family of 0σ -invariant smooth maps {evσ : Vσ → Y } such that evσ ◦ϕστ = evτ
on Vστ . Then, using these transversal multisections, one can define the virtual
fundamental chain ev∗([M]vir) as a Q-singular chain in Y (Definition A1.28 in
[Fukaya et al. 2009]).

We will also need the notion of fiber products of Kuranishi spaces. See Appendix
A1.2 in [Fukaya et al. 2009] for more details. As before, let ev : M→ Y be a
strongly smooth map from a Kuranishi space M to a smooth manifold Y . Suppose
that ev is weakly submersive, i.e., each evσ : Vσ → Y is a submersion. Let W be
another manifold and g :W → Y be a smooth map. Consider the fiber product

Z=M×Y W =
{
(σ, p) ∈M×W : ev(σ )= q(p)

}
.

Definition 2.3 [Fukaya et al. 2009, Definition A1.37]. Let (σ, p) ∈ Z and let
(Vσ , Eσ , 0σ , sσ , ψσ ) be a Kuranishi neighborhood of σ ∈M. We set

V(σ,p) =
{
(τ, q) ∈ Vσ ×W : evσ (τ )= g(q)

}
.
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Then V(σ,p) is a smooth manifold since evσ is a submersion. We also set E(σ,p) =
Eσ , 0(σ,p) = 0σ and define s(σ,p), ψ(σ,p) in the obvious way. This defines a Ku-
ranishi neighborhood of (σ, p) ∈ Z, and they glue together to give a Kuranishi
structure on Z.

Lemma 2.4 [Fukaya et al. 2009, Lemma A1.39]. If the Kuranishi space M has a
tangent bundle, so does the Kuranishi structure on Z. If the Kuranishi structure on
M and the manifolds Y , W are all oriented, so is the Kuranishi structure on Z.

Let êv :Z→W be the projection map. We remark that this is a strongly smooth
map. The following lemma is crucial to the proof of our main result.

Lemma 2.5 [Fukaya et al. 2009, Lemma A1.43]. Suppose that Y and W are ori-
ented and compact without boundary, and ∂M=∅. Then we have

PD
(
êv∗([Z]vir)

)
= g∗

(
PD
(
ev∗([M]vir)

))
,

where PD denotes Poincaré dual.

3. A class of semi-Fano toric manifolds

Let Y be an (n−1)-dimensional toric Fano manifold. Denote by KY its canonical
line bundle. Consider the P1-bundle X = P(KY⊕ OY ) over Y . In this section, we
shall establish some elementary properties of the toric manifold X which will be
of use later.

Let e1, . . . , en be the standard basis of a rank n lattice N ∼= Zn , and let

N ′ =
{
v =

n∑
j=1
v j e j ∈ N

∣∣∣ vn
= 0

}
∼= Zn−1.

Let NR = N ⊗Z R and N ′R = N ′⊗Z R. Without loss of generality, we can choose
the primitive generators of the 1-dimensional cones of the fan 1 in NR defining X
to be

v0 = en, v1 = w1+ en, . . . , vm = wm + en, vm+1 =−en,

where w1, . . . , wm ∈ N ′ are the primitive generators of the 1-dimensional cones of
a fan 1′ in N ′R defining Y .

Lemma 3.1. Let h ∈ H2(X,Z) be the fiber class of the P1-bundle X =P(KY⊕OY ).
Let ι0 : Y ↪→ X = P(KY⊕OY ) be the closed embedding which maps Y to the zero
section of KY . ι0 induces an embedding ι0∗ : H2(Y,Z) ↪→ H2(X,Z). Then we have

H eff
2 (X,Z) ∼= Z

≥0h ⊕ ι0∗H eff
2 (Y,Z).

Here, superscript “eff” refers to effective classes. Moreover, we have c1(h) = 2
and c1(α) = 0 for any α ∈ ι0∗H eff

2 (Y,Z). In particular, X is semi-Fano, i.e., the
anticanonical bundle K−1

X is nef.



280 KWOKWAI CHAN

Proof. Recall that a subset P={vi1, . . . , vi p}⊂ {v0, . . . , vm+1} is called a primitive
collection if for each 1 ≤ k ≤ p, the elements of P \ {xik } generate a (p − 1)-
dimensional cone in 1 but P itself does not generate a cone in 1; see [Batyrev
1991]. The focus σ(P) of P is the cone in 1 of the smallest dimension which
contains vi1 + · · · + vi p . Let v j1, . . . , v jq be the generators of σ(P). Then there
exists positive integers n1, . . . , nq such that

vi1 + · · ·+ vi p = n1v j1 + · · ·+ nqv jq .

This is known as a primitive relation. Recall that the homology group H2(X,Z) is
given by the kernel of the surjective map Zd

→ N , Ei 7→ vi , where {E1, . . . , Ed}

is the standard basis of Zd . Also, the effective cone H eff
2 (X,Z) is generated by

primitive relations.
In our case, P0 := {v0, vm+1} is obviously a primitive collection for 1. The

primitive relation v0+ vm+1 = 0 corresponds to the fiber class h of the P1-bundle
X→ Y . It is obvious that we have c1(h)= c1(X) · h = 2.

By Proposition 4.1 in [Batyrev 1991], we have P∩P0=∅ for any other primitive
collection P 6=P0. Suppose that P 6=P0 is a primitive collection consisting of the
elements vi1 = wi1 + en, . . . , vi p = wi p + en , where 1 ≤ i1 < . . . < i p ≤ m. Then
P′ := {wi1, . . . , wi p} is obviously a primitive collection for the fan 1′ defining Y .
Now, let w j1, . . . , w jq be the generators of the focus σ(P′) of P′. The primitive
relation for 1′ is given by

(3-1) wi1 + · · ·+wi p = n1w j1 + · · ·+ nqw jq ,

for some n1, . . . , nq ∈ Z>0. Let γ ∈ H eff
2 (Y,Z) be the corresponding effective

class. Since Y is Fano, we have p−n1− . . .−nq = c1(Y ) ·γ > 0. In terms of the
vi ’s, (3-1) becomes a primitive relation

vi1 + · · ·+ vi p = n1v j1 + · · ·+ nqv jq + (p− n1− . . .− nq)v0

for1. This corresponds to the class α := ι0∗(γ )∈H eff
2 (X,Z), whose Chern number

is given by c1(α)= p− n1− . . .− nq − (p− n1− . . .− nq)= 0. �

As usual, denote by D0, D1, . . . , Dm, Dm+1 the toric prime divisors correspond-
ing to the primitive generators v0, v1, . . . , vm, vm+1 respectively. Note that D0 =

ι0(Y ).

Lemma 3.2. Let ϕ : P1
→ X be a nonconstant holomorphic map from P1 to X.

(1) Suppose that [ϕ(P1)] = h + α ∈ H2(X,Z) for some α ∈ ι0∗H eff
2 (Y,Z). Then

ϕ(P1) is contained in one of the toric prime divisors D0, D1, . . . , Dm .

(2) Suppose that [ϕ(P1)] = α ∈ ι0∗H eff
2 (Y,Z). Then ϕ(P1) is contained in the

toric prime divisor D0.
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Proof. Suppose that ϕ :P1
→ X is a nonconstant holomorphic map with class h+α

for some α ∈ ι0∗H eff
2 (Y,Z). From the proof of the above lemma, we know that the

class h+α corresponds to the primitive relation(
1−

m∑
i=1

ai

)
v0+

m∑
i=1

aivi + vm+1 = 0.

Moreover, we have
∑m

i=1 ai ≥ 1, and if
∑m

i=1 ai = 1, then there exists 1 ≤ i ≤ m
such that ai <0. Hence there exists 0≤ i ≤m such that Di ·ϕ(P

1)= Di ·(h+α)<0.
This implies that ϕ(P1) is contained in Di . This proves (1). (2) can be proved in
the same way. �

4. Proof of Theorem 1.1

We equip X = P(KY ⊕ OY ) with a toric Kähler structure ω. Let L ⊂ X be a
Lagrangian torus fiber of the associated moment map. For i = 0, 1, . . . ,m,m+1,
let βi ∈ π2(X, L) be the relative homotopy class such that D j · βi = δi j . Then
each βi is a Maslov index two class with ∂βi = vi , where ∂ : π2(X, L)→ π1(L) is
the boundary map, and π2(X, L) is generated by β0, β1, . . . , βm, βm+1. Moreover,
each βi is represented by a family of holomorphic disks ϕi : (D2, ∂D2)→ (X, L).
Here, D2

= {z ∈ C : |z| ≤ 1} is the unit disk.
Fix a nonzero effective class α∈H eff

2 (X,Z)with c1(α)=0. Let M1(L , β0+α) be
the moduli space of stable maps from genus 0 bordered Riemann surfaces to (X, L)
with one boundary marked point representing the class β0+α. To simplify notation,
we denote M1(L , β0 + α) by ML . Similarly, we denote by MX the moduli space
M0,1(X, h + α) of genus 0 stable maps to X with one marked point representing
the class h+α. We have evaluation maps4

ev :ML
→ L and ev :MX

→ X.

By [Fukaya et al. 2009], both ML and MX are oriented Kuranishi spaces with
tangent bundles, and the evaluation maps are both strongly smooth and weakly
submersive. The real virtual dimensions of ML and MX are n and 2n respectively.
Moreover, since µ(β0+ α) = 2, we have ∂ML

= ∅ by Corollary 11.5 in [Fukaya
et al. 2010a]. It is also well-known that MX has no boundary. Hence, they define
virtual fundamental cycles

ev∗
(
[ML
]
vir)
∈ Hn(L ,Q) and ev∗

(
[MX
]
vir)
∈ H2n(X,Q).

Fix a point p ∈ L ⊂ X . Let ι : {p} ↪→ L (resp. ι : {p} ↪→ X ) be the inclusion of
the point p. We can then apply the construction in Definition 2.3 and Lemma 2.4

4By a slight abuse of notation, we use ev to denote both evaluation maps. It should clear from the
context which one we are referring to.
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to give oriented Kuranishi structures with tangent bundles on the spaces:

ML
p :=ML

×L {p}, MX
p :=MX

×X {p}.

Both have real virtual dimension 0. Let êv : ML
p → {p}, êv : MX

p → {p} be the
induced (constant) maps. Then we have virtual fundamental cycles

êv∗
(
[ML

p ]
vir), êv∗

(
[MX

p ]
vir)
∈ H0({p},Q)∼=Q.

Now Lemma 2.5 says that

Proposition 4.1. We have

PD
(
êv∗
(
[ML

p ]
vir))
= ι∗ PD

(
ev∗
(
[ML
]
vir)),

PD
(
êv∗
(
[MX

p ]
vir))
= ι∗ PD

(
ev∗
(
[MX
]
vir))

in H 0({p},Q)∼=Q.

Therefore, to prove Theorem 1.1, it suffices to show that ML
p and MX

p have the
same Kuranishi structures.

To do this, we first show that ML
p can naturally be identified with MX

p as a set.
Let us recall the following results proved in [Cho and Oh 2006], which holds for
general toric manifolds.

Theorem 4.2 ([Cho and Oh 2006, Theorem 5.2]; see also [Fukaya et al. 2010a,
Theorem 11.1]). Let (X, ω) be a toric Kähler manifold and L be a Lagrangian
torus fiber of its moment map. Let D1, . . . , Dd be all the toric prime divisors in X
and β1, . . . , βd ∈π2(X, L) be the relative homotopy classes such that D j ·βi = δi j .

(1) If ϕ : (D2, ∂D2)→ (X, L) is a holomorphic map from a disk representing a
Maslov index two class β ∈ π2(X, L), then β = βi for some i ∈ {1, . . . , d}.

(2) For i = 1, . . . , d, let M1(L , βi ) be the moduli space of stable maps from genus
0 bordered Riemann surfaces to (X, L) with one boundary marked point rep-
resenting the class βi . Then the evaluation map ev : M1(L , βi )→ L is an
orientation preserving diffeomorphism. In particular, for any p ∈ L and any
i ∈ {1, . . . , d}, there is a unique (up to automorphisms of the domain) genus
0 bordered stable map whose boundary passes through p and whose domain
is a disk which represents the class βi .

Now, let σ L
= ((6L , z), ϕ) represent a point in ML

p . This consists of a genus 0
bordered Riemann surface 6L with a boundary marked point z ∈ ∂6L and a stable
map ϕ : (6L , ∂6L)→ (X, L) such that ϕ(z)= p.

Proposition 4.3. 6L can be decomposed as 6L
= 6L

0 ∪61, where 6L
0 = D2 is

a disk and 61 is a genus 0 nodal curve, such that the restrictions ϕ0 := ϕ|6L
0

and
ϕ1 := ϕ|61 represent the classes β0 and α respectively.
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Proof. The Maslov index of β0 + α is µ(β0 + α) = 2 since c1(α) = 0. By
Theorem 4.2 (1), there does not exist any nonconstant holomorphic map from a disk
to (X, L)with class β0+α, so6L must be singular. Decompose6L into irreducible
components. Let ϕ j : (D2, ∂D2)→ (X, L) and ϕk :P

1
→ X be the restriction of ϕ

to the disk and sphere components respectively. Then β0+α=
∑

j [ϕ j ]+
∑

k[ϕk].
Notice that, by the proof of Lemma 3.1, any α ∈ H2(X,Z) with c1(α)= 0 cannot
be expressed as a Z-linear combination of βi ’s with positive coefficients. Hence,
there must be only one disk component in 6. Therefore, we can decompose 6
into 6L

0 ∪61, where 6L
0 = D2 is a disk and 61 is a genus 0 nodal curve (i.e., a

tree of P1’s). Now, the restriction ϕ0 := ϕ|6L
0

is a nonconstant holomorphic map
from (D2, ∂D2) to (X, L). By Theorem 4.2 (1) again, the class of ϕ0 must be β0.
Hence ϕ1 := ϕ|61 represents α. �

Proposition 4.4. There exists a unique holomorphic map

ϕm+1 : (D2, ∂D2)→ (X, L)

representing the class βm+1 such that its boundary ∂ϕm+1 := ϕm+1|∂D2 is exactly
given by ∂ϕ0 := ϕ0|∂D2 with the opposite orientation, where ϕ0 is the map obtained
in Proposition 4.3

Proof. Let ϕm+1 : (D2, ∂D2)→ (X, L) be a holomorphic map representing the class
βm+1 such that p∈ϕ(∂D2). By Theorem 4.2 (2), there exists one and only one such
map up to automorphisms of D2. Consider the moduli space M0,1(X, h) of genus
0 stable maps to X with one marked point which represent the fiber class h. Since
X→Y is a P1-bundle, the evaluation map ev :M0,1(X, h)→ X is an isomorphism.
Hence, there exists a unique (up to automorphisms of the domain) holomorphic
map φ : P1

→ X representing the class h which passes through p ∈ L ⊂ X .
The image of this map is the fiber C p ∼= P1 of X → Y which contains p. Now,
the intersection C p ∩ L ∼= S1 splits the fiber C p into two disks. This gives two
holomorphic maps ϕ′0 : (D

2, ∂D2) → (X, L) and ϕ′m+1 : (D
2, ∂D2) → (X, L)

with classes β0 and βm+1 respectively. By Theorem 4.2 (2), they must be the same
as ϕ0, ϕm+1 up to automorphisms of D2. Hence, by composing ϕm+1 with an
automorphism of D2, which is uniquely determined by ϕ0, we get the desired
unique holomorphic map representing the class βm+1. �

By Proposition 4.4, we can glue the maps ϕ : (6L , ∂6L)→ (X, L) and ϕm+1 :

(D2, ∂D2) → (X, L) together to give a holomorphic map ϕ′ : 6 → X which
represents the class β0+ βm+1+ α = h + α, where 6 is the union of 6L and D2

with their boundaries identified in the obvious way. It is easy to see that this map
is stable. Hence, σ X

:= ((6, z), ϕ′) represents a point in MX
= M0,1(X, h + α)

and we have ev(σ )= p. This defines a map

j :ML
p →MX

p , [σ
L
] 7→ [σ X

].
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This is well-defined: Any automorphism of σ L
= ((6L , z), ϕ) acts trivially on the

component6L
0 because ϕ is nonconstant on this component. So any representative

of [σ L
] is mapped to the same isomorphism class in MX

p . We need to show that j
is bijective.

Let σ X
= ((6, z), ϕ) be representing a point in MX

p . This consists of a genus 0
nodal curve 6 with a marked point z ∈6 and a stable map ϕ :6→ X representing
the class h+α such that ϕ(z)= p. The following is an analog of Proposition 4.3.

Proposition 4.5. 6 can be decomposed as 6 = 60 ∪61, where 60 ∼= P1 is irre-
ducible, such that the restrictions ϕ0 := ϕ|60 and ϕ1 := ϕ|61 represent the classes
h and α respectively.

Proof. By Lemma 3.2 (1), there does not exist any nonconstant holomorphic map
from P1 to X representing the class h + α whose image is not contained entirely
in the toric divisors. Hence, 6 must be singular. Decompose 6 into components
6 =

⋃
a6a , where each 6a ∼= P1 is irreducible. Then we have∑

a
[ϕ(6a)] = h+α.

Since h is primitive, there exists a0 such that ϕ(6a0)= h+α′ and
∑

a 6=a0
[ϕ(6a)]=

α′′ for some α′, α′′ ∈ ι0∗H eff
2 (Y,Z)⊂ H eff

2 (X,Z) with α= α′+α′′. By Lemma 3.1,
we have c1(α

′)= c1(α
′′)= 0. Then, by Lemma 3.2 (2), the images of

⋃
a 6=a0

6a is
contained entirely in the zero section D0. So the image of 6a0 must be intersecting
with L at p. Applying Lemma 3.2 (1) again, we see that α′ must be zero. The
result follows. �

Note that ϕ0 is a nonconstant holomorphic map from P1 to X whose image
contains p. Arguing as in the proof of Proposition 4.4, we see that the image of ϕ0

is the fiber C p of the P1-bundle X → Y which contains p, and ϕ0(P
1)∩ L = S1.

We can then split60∼=P1 into two disks60=6
′

0∪6
′′

0
∼= D2

∪D2, and split ϕ0 into
two holomorphic maps ϕ′0 : (6

′

0, ∂6
′

0)→ (X, L) and ϕ′m+1 : (6
′′

0 , ∂6
′′

0 )→ (X, L)
which represent the classes β0 and βm+1 respectively. Now, let 6L

:=6′0∪61 and
ϕ′ := ϕ|6L . Then ϕ′ : (6L , ∂6L)→ (X, L) is a genus 0 bordered stable map such
that ϕ(∂6L) contains p, and σ L

:= ((6L , z), ϕ′) represents a point in ML
p . By

our constructions, j ([σ L
]) = [σ X

]. This defines a map j−1
: MX

p → ML
p . Again,

since any automorphism of σ X
= ((6, z), ϕ) acts trivially on the component 60,

the map j−1 is well-defined. It is obvious that this is the inverse map of j . Hence,
j is a bijective map.

Proposition 4.6. Under the bijective map j :ML
p →MX

p , the Kuranishi structures
on ML

p and MX
p can be naturally identified.

Proof. We shall first briefly recall the constructions of Kuranishi neighborhoods
from [Fukaya and Ono 1999] and [Fukaya et al. 2009].
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We begin with ML
p . Let σ L

= ((6L , z), ϕ) be representing a point in ML
p . By

Proposition 4.3, we can decompose 6L into irreducible components 6L
= 60 ∪

61∪ . . .∪6k , where 60= D2 is a disk and 61, . . . , 6k are copies of P1, such that
the restrictions of ϕ to60 and

⋃k
a=16a represent the classes β0 and α respectively.

For each a = 0, 1, . . . , k, let W 1,p
(
6a;ϕ

∗(T X); L
)

be the space of sections v
of ϕ∗(T X) of W 1,p class such that the restriction of v to ∂6a lies in ϕ∗(T L), and
W 0,p

(
6a;ϕ

∗(T X)⊗
∧0,1) be the space of sections of ϕ∗(T X)⊗

∧0,1 of W 0,p

class. Note that L does not play a role in the definition of W 1,p
(
6a;ϕ

∗(T X); L
)

for a = 1, . . . , k. Then, let W 1,p
(
6L
;ϕ∗(T X); L

)
be the subspace of

k⊕
a=0

W 1,p
(
6a;ϕ

∗(T X); L
)

consisting of elements

{u = (ua)} ∈
k⊕

a=0
W 1,p

(
6a;ϕ

∗(T X); L
)

such that for any singular point w ∈6L which is the intersection of two irreducible
components 6a and 6b, we have ua(w)= ub(w). Also let

W 0,p(6L
;ϕ∗(T X)⊗

∧0,1)
=

k⊕
a=0

W 0,p
(
6a;ϕ

∗(T X)⊗
∧0,1)

.

Consider the linearization of the Cauchy–Riemann operator ∂̄:

Dϕ ∂̄ :W 1,p(6L
;ϕ∗(T X); L

)
→W 0,p(6L

;ϕ∗(T X)⊗
∧0,1)

.

This is a Fredholm operator by ellipticity.
To construct the obstruction space, choose open subsets Wa of6a whose closure

is disjoint from the boundary of each of 6a and from the singular and marked
points. Then, for each a = 0, 1, . . . , k, by the unique continuation theorem, we
can choose a finite dimensional subset Ea of C∞0 (Wa;ϕ

∗(T X)) such that

Im Dϕ ∂̄ +
k⊕

a=0
Ea =W 0,p

(
6L
;ϕ∗(T X)⊗

∧0,1)
.

We also choose
⊕k

a=0 Ea to be invariant under the group 0σ L of automorphisms
of σ L . We set Eσ L =

⊕k
a=0 Ea .

Let

5 :W 0,p(6L
;ϕ∗(T X)⊗

∧0,1)
→W 0,p(6L

;ϕ∗(T X)⊗
∧0,1)

/Eσ L

be the projection map. Let Vmap,σ L be the kernel of the operator5◦Dϕ ∂̄ . Now, con-
sider the automorphism group Aut(6L , z) of the marked bordered Riemann surface
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(6L , z). The group Aut(6L , z) may not be finite since some components may be
unstable. However, we can naturally embed the Lie algebra Lie(Aut(6L , z)) into
Vmap,σ L . Take its L2 orthogonal complement (with respect to a certain metric).
Then let V ′map,σ L be a small neighborhood of the zero of it.

On the other hand, let Vdeform,σ L be a small neighborhood of the origin in the
space of first order deformations of the stable components of (6L , z). Also let
Vresolve,σ L be a small neighborhood of the origin in the space

⊕
w(Tw6a⊗Tw6b),

where the sum is over singular points w ∈ 6L
\ 60 and 6a , 6b are the two

components such that 6a ∩ 6b = {w}. There is a family of marked semistable
bordered Riemann surfaces {(6L

ζ , z) : ζ ∈ Vdeform,σ L ×Vresolve,σ L } over the product
Vdeform,σ L ×Vresolve,σ L . We remark that, since we do not deform the singular point
in 60, each 6L

ζ is singular and can be decomposed as 6L
ζ =60 ∪6

′

ζ .
Let V ′

σ L = V ′map,σ L × Vdeform,σ L × Vresolve,σ L . By the proof of Proposition 12.23
in [Fukaya and Ono 1999], there exist a 0σ L -equivariant smooth map

sσ L : V ′
σ L → Eσ L

and a family of smooth maps

ϕu,ζ : (6
L
ζ , ∂6

L
ζ )→ (X, L)

for (u, ζ ) ∈ V ′
σ L such that ∂̄ϕu,ζ = sσ L (u, ζ ). Now we set Vσ L = {(u, ζ ) ∈ V ′

σ L :

ϕu,ζ (z) = p}. By abuse of notation, denote the restriction of sσ L to Vσ L also by
sσ L . Then by [Fukaya and Ono 1999], there is a map ψσ L mapping s−1

σ L (0)/0σ L

onto a neighborhood of [σ L
] in ML

p . This finishes the review of the construction
of a Kuranishi neighborhood (Vσ L , Eσ L , 0σ L , sσ L , ψσ L ) of [σ L

] ∈ML
p .

For a point in MX
p represented by σ X

= ((6, z), ϕ), using Proposition 4.5,
we decompose 6 into irreducible components 6 = 60 ∪ 61 ∪ . . . ∪ 6k , where
60, 61, . . . , 6k are all copies of P1, such that the restrictions of ϕ to 60 and⋃k

a=16a represent the classes h and α respectively. The construction of a Ku-
ranishi neighborhood (Vσ X , Eσ X , 0σ X , sσ X , ψσ X ) of [σ X

] ∈ MX
p is more or less

the same as above, except that W 1,p(60;ϕ
∗(T X); L) is replaced by the space

W 1,p(60;ϕ
∗(T X)) of sections v of ϕ∗(T X) of class W 1,p.

We can now go back to the proof of the proposition.
Let [σ L

]∈ML
p , [σ X

]∈MX
p be such that j ([σ L

])=[σ X
]. First of all, it is obvious

that the automorphism groups 0σ L and 0σ X are the same. Next, since the moduli
space of maps from (D2, ∂D2) to (X, L) with class β0 is unobstructed, we can
choose E0 = 0 for the obstruction space Eσ L . Similarly, since the moduli space of
maps from P1 to X with class h is unobstructed, we can also choose E0 = 0 for
the obstruction space Eσ X . Hence, the obstruction spaces Eσ L and Eσ X are both
of the form 0⊕ E1⊕ . . .⊕ Ek and can be identified naturally.
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We can identify Vdeform,σ L with Vdeform,σ X since the component60 in6L has no
nontrivial deformations and the component60 in6 is unstable. It is also clear that
we can identify Vresolve,σ L with Vresolve,σ X . Now, let (u= (u0, u1, . . . , uk), ζ )∈Vσ L .
Because E0 = 0, we have Dϕ ∂̄u0 = 0. From the construction of the family of
smooth maps ϕu,ζ : (6

L
ζ , ∂6

L
ζ )→ (X, L), it follows that the restriction of ϕu,ζ to

the component 60 is a holomorphic map with class β0. We also have ϕu,ζ (z)= p.
But there is a unique (up to automorphisms of the domain) holomorphic map from
(D2, ∂D2) to (X, L) with class β0 whose boundary passes through p, which is
given by ϕ|60 . So we must have u0 = 0. By a similar argument, all (u, ζ ) ∈ Vσ X

also have u0 = 0. Therefore, we can naturally identify Vσ L and Vσ X .
Finally, we can identify the families of maps {ϕu,ζ : (6

L
ζ , ∂6

L
ζ ) → (X, L) :

(u, ζ ) ∈ Vσ L } with {ϕu,ζ : 6ζ → X : (u, ζ ) ∈ Vσ X } by the gluing construction that
we used in the definition of the map j . Hence, the maps sσ L and ψσ L can also be
naturally identified with the maps sσ X and ψσ X respectively.

This completes the proof of the proposition. �

Theorem 1.1 now follows from Propositions 4.1 and 4.6.

5. Applications to mirror symmetry

In this section, we apply Theorem 1.1 to study mirror symmetry for the toric mani-
folds X =P(KY⊕OY ). We shall first briefly review the constructions of the mirrors
for toric manifolds, following [Cho and Oh 2006; Auroux 2007; 2009; Fukaya et al.
2010a; 2011; Chan and Leung 2010a; 2010b].

As usual, N ∼= Zn is a rank n lattice, M = Hom(N ,Z) is the dual lattice and
〈 ·, · 〉 : M × N → Z is the dual pairing. Also let NR = N ⊗Z R, MR = M ⊗Z R,
and denote by TN and TM the real tori NR/N and MR/M respectively.

Let X = X1 be an n-dimensional smooth projective toric variety defined by a
fan1 in NR. Let v1, . . . , vd be the primitive generators of the 1-dimensional cones
in 1. We equip X with a toric Kähler structure ω. Let P be the corresponding
moment polytope and µ : X → P be the moment map. P is defined by a set of
inequalities

P = {x ∈ MR | 〈x, vi 〉 ≥ λi for i = 1, . . . , d},

for some λ1, . . . , λd ∈ R. For i = 1, . . . , d, we let li : MR→ R be the affine linear
function defined by li (x)= 〈x, vi 〉− λi .

We are interested in the mirror symmetry for the Kähler manifold X , equipped
with the toric Kähler structure ω and the nowhere zero meromorphic n-form �=

d logw1∧ . . .∧d logwn , where w1, . . . , wn are the standard complex coordinates
on the open dense orbit U = N ⊗Z C∗ ∼= (C∗)n ⊂ X . From the point of view of
[Auroux 2007], we are looking at the mirror symmetry for X relative to the toric
divisor D∞ =

⋃d
i=1 Di = X \U . As before, Di is the toric prime divisor in X
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corresponding to vi . The mirror geometry is given by a Landau–Ginzburg model
(X∨,W ) consisting of a bounded domain X∨⊂ (C∗)n and a holomorphic function
W : X∨→ C called the mirror superpotential.

As discussed in [Auroux 2007; Chan and Leung 2010a; 2010b], the mirror
manifold X∨ can be obtained by dualizing Lagrangian torus fibrations (so-called
T-duality) as follows. Restricting the moment map µ : X → P to the open dense
orbit U ⊂ X gives a torus bundle µ :U→ Int(P), where Int(P) denotes the interior
of the polytope P . In fact this bundle is trivial, so we have U = Int(P)×

√
−1 TN .

The mirror manifold X∨ is given by the total space of the dual torus bundle, i.e.,

X∨ = Int(P)×
√
−1 T∨N = Int(P)×

√
−1 TM .

X∨ comes with a natural Kähler structure. In particular, as a complex mani-
fold, X∨ is biholomorphic to a bounded domain in (C∗)n = MR ×

√
−1 TM . If

y = (y1, . . . , yn) ∈ (R/2πZ)n are the fiber coordinates on TM and the complex
coordinates on (C∗)n are given by z j = exp(−x j −

√
−1 y j ), j = 1, . . . , n, where

x = (x1, . . . , xn) ∈ Int(P), then X∨ ⊂ (C∗)n can be written as

X∨ =
{
(z1, . . . , zn) ∈ (C

∗)n : |eλi zi |< 1, i = 1, . . . , d
}
.

Geometrically, X∨ should be viewed as the moduli space of pairs (L ,∇) con-
sisting of a (special) Lagrangian torus fiber of the moment map µ : X→ P together
with a flat U (1)-connection ∇ on the trivial line bundle C over L . More precisely,
to a point

z =
(
z1 = exp(x1+

√
−1 y1), . . . , z1 = exp(x1+

√
−1 y1)

)
∈ X∨,

we associate the flat U (1)-connection ∇y = d + (
√
−1/2)

∑n
j=1 y j du j on the

trivial line bundle C over the Lagrangian torus L x = µ
−1(x) ∼= TN , where u =

(u1, . . . , un)∈ (R/2πZ)n are the fiber coordinates on TN . This picture is motivated
by the SYZ conjecture for mirror Calabi–Yau manifolds proposed by Strominger,
Yau and Zaslow in [Strominger et al. 1996].

On the other hand, it turns out that the mirror superpotential W : X∨→C acts as
the mirror of the obstruction m0 to the Floer homology of Lagrangian torus fibers
in X .5 As shown in [Fukaya et al. 2009], m0 comes from the virtual counting of
Maslov index two holomorphic disks in X with boundary in the Lagrangian torus
fibers L . This leads to the following expression for W : For β ∈ π2(X, L), we
define a holomorphic function Zβ on X∨ by

Zβ(L ,∇)= exp
(
−

1
2π

∫
β

ω
)

hol∇(∂β).

5Fukaya, Oh, Ohta and Ono call W the potential function and they define it over the Novikov ring∧
0 instead of C; see [Fukaya et al. 2009; 2010a; 2011].
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Then the mirror superpotential W : X∨→C is given by the following holomorphic
function

(5-1) W (L ,∇)=
∑

β∈π2(X,L), µ(β)=2

cβ Zβ(L ,∇),

assuming that the sum converges. See [Cho and Oh 2006; Auroux 2007; 2009;
Fukaya et al. 2010a; 2011] for more details.

For i = 1, . . . , d , let βi ∈ π2(X, L) be the relative homotopy class such that
D j · βi = δi j . Then, by the symplectic area formula of Cho and Oh (Theorem 8.1
in [Cho and Oh 2006]), we have∫

βi

ω = 2πli (x)= 2π(〈x, vi 〉− λi ),

where x ∈ Int(P) is the image of L under the moment map (i.e., L = µ−1(x)).
Hence, for the basic classes βi , the function Zβi is given in local coordinates by

Zβi (L x ,∇y)= exp(−li (x)) exp
(
−
√
−1〈y, vi 〉

)
= eλi zvi ,

where zv denotes the monomial zv
1

1 · · · z
vn

n .
By Theorem 4.2, we have cβi = 1 for i = 1, . . . , d . In particular, when X is Fano

(i.e., the anticanonical bundle K−1
X is ample), β1, . . . , βd ∈ π2(X, L) are the only

Maslov index two classes. Hence, the mirror superpotential is given explicitly by

W = Zβ1 + · · ·+ Zβd = eλ1 zv1 + · · ·+ eλd zvd .

However, in the non-Fano cases, the invariants cβ and hence W are in general
very hard to compute. The only non-Fano examples whose mirror superpotentials
are explicitly computed are the Hirzebruch surfaces F2 and F3, first computed in
[Auroux 2009]. Later, Fukaya, Oh, Ohta and Ono gave a different proof for the F2

case in [Fukaya et al. 2010b].
Let’s go back to our toric manifolds X =P(KY⊕OY ). We want to compute their

mirror superpotentials using Theorem 1.1.

Lemma 5.1. If β ∈ π2(X, L) is a Maslov index two class with cβ 6= 0, then β must
either be one of β1, . . . , βm, βm+1 or of the form β0 + α for some effective class
α ∈ H2(X,Z) with c1(α)= 0.

Proof. First of all, since X is semi-Fano, c1(α) ≥ 0 for any effective class α ∈
H2(X,Z). Hence, if β∈π2(X, L) is a Maslov index two class, then it must be of the
form βi+α for some i = 0, 1, . . . ,m,m+1 and some effective class α ∈ H2(X,Z)

with c1(α) = 0. Let ϕ : (6L , ∂6L) → (X, L) be a stable map from a genus
0 bordered Riemann surface (6L , ∂6L) to (X, L) representing the class βi + α.
Suppose that α 6= 0. Then, by the proof of Proposition 4.3, we can decompose
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6L into 6L
0 ∪ 61, where 6L

0 = D2 is a disk and 61 is a genus 0 nodal curve,
such that the restrictions ϕ0 := ϕ|6L

0
and ϕ1 := ϕ|61 represent the classes βi and

α respectively. However, by Lemma 3.2 (2), the image of ϕ1 must be contained
entirely in the toric prime divisor D0. Since ϕ(6L

0 ) ·D0 = δ0i and the domain of ϕ
is connected, we must have i = 0. Hence cβi+α = 0 unless i = 0 or α = 0. �

Theorem 5.2. For the P1-bundle X = P(KY⊕ OY ) over a toric Fano manifold Y ,
the mirror superpotential W : X∨→ C is given by

W = C Zβ0 + Zβ1 + · · ·+ Zβm + Zβm+1,

where
C = 1 +

∑
α∈H eff

2 (X,Z),
α 6=0, c1(α)=0

GWX,h+α
0,1 ([pt]) qα,

and qα = exp(− 1
2π

∫
α
ω).

Proof. This is a consequence of formula (5-1), Lemma 5.1 and Theorem 1.1. �

Example: The Hirzebruch surface F2. Consider X = F2 = P(KP1 ⊕ OP1). We
choose the primitive generators of the 1-dimensional cones in the fan 1 defining
F2 to be6

v0 = (0,−1), v1 = (1, 0), v2 = (−1,−2), v3 = (0, 1)

in N = Z2. We equip F2 with a toric Kähler structure so that moment polytope P
is given by

P = {(x1, x2) ∈ R2
| x1 ≥ 0, x2 ≥ 0, x2 ≤ t2, x1+ 2x2 ≤ t1+ 2t2},

where t1, t2 > 0. Here is a depiction of the fan 1 defining F2 (left) and its moment
polytope P (right).
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D1

D3
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6This choice of generators is different from the one in Section 3. This does not alter any of our
results. We make this choice just to make our notation consistent with that of [Auroux 2009; Fukaya
et al. 2010b].
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The effective cone H eff
2 (F2,Z) is generated by two primitive relations

v0+ v3 = 0 and v1+ v2− 2v0 = 0.

Let h := (1, 0, 0, 1), α := (−2, 1, 1, 0) ∈ H eff
2 (F2,Z) be the corresponding homol-

ogy classes, which represent the fiber and the base of F2 respectively. Then

t1 =
∫
α

ωX and t2 =
∫

h
ωX .

Let qi = exp(−ti ) for i = 1, 2. We also have c1(h)= 2 and c1(α)= 0.
Now, the mirror manifold X∨ is a bounded domain in (C∗)2. By Theorem 5.2,

the mirror superpotential W : X∨→ C is given by

W = C Zβ0 + Zβ1 + Zβ2 + Zβ3 = C
q2

z2
+ z1+

q1q2
2

z1z2
2
+ z2,

where

C =
∞∑

k=0

GWF2,h+kα
0,1

(
PD[pt]

)
qk

1 ,

and z1, z2 are the standard coordinates on (C∗)2. F2 is symplectomorphic to F0 =

P1
×P1 with induced isomorphism on degree-2 homology given by

H2(F2,Z)→ H2(F0,Z) : α 7→ l1− l2 and h 7→ l2,

where l1, l2 ∈ H2(F0,Z) are the line classes in the two P1 factors. Since Gromov–
Witten invariants are symplectic invariants, the Gromov–Witten invariants of F2

are all equal to those of F0. So we have

GWF2,h+kα
0,1

(
PD[pt]

)
= GWF0,kl1+(1−k)l2

0,1

(
PD[pt]

)
=

{
1, if k = 0 or k = 1;
0, otherwise.

Hence, cβ0+kα = 0 for k ≥ 2 and cβ0+α = cβ0 = 1. We conclude that C = 1+ q1

and the mirror superpotential is given by

W = z1+ z2+
q1q2

2

z1z2
2
+

q2+ q1q2

z2
.

This agrees with the formula in Proposition 3.1 in [Auroux 2007]. �

The formula in Theorem 1.1 has been applied to investigate mirror symmetry for
various classes of toric manifolds. In [Lau et al. 2011], the formula was generalized
and used to compute open Gromov–Witten invariants for toric Calabi–Yau 3-folds.
In [Chan et al. 2010] and [Lau et al. 2010], the formula and its generalization in
[Lau et al. 2011] were used to obtain an enumerative meaning for the (inverse)
mirror maps for toric Calabi–Yau 2- and 3-folds. In particular, this explains why
we always get integral coefficients for the Taylor expansions of these mirror maps.
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In [Chan and Lau 2010], the formula was used to compute mirror superpotentials
for all semi-Fano toric surfaces.
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