
Pacific
Journal of
Mathematics

LAGRANGIAN SUBMANIFOLDS IN COMPLEX PROJECTIVE
SPACE WITH PARALLEL SECOND FUNDAMENTAL FORM

FRANKI DILLEN, HAIZHONG LI, LUC VRANCKEN AND XIANFENG WANG

Volume 255 No. 1 January 2012



PACIFIC JOURNAL OF MATHEMATICS
Vol. 255, No. 1, 2012

LAGRANGIAN SUBMANIFOLDS IN COMPLEX PROJECTIVE
SPACE WITH PARALLEL SECOND FUNDAMENTAL FORM

FRANKI DILLEN, HAIZHONG LI, LUC VRANCKEN AND XIANFENG WANG

From the Riemannian geometric point of view, one of the most fundamen-
tal problems in the study of Lagrangian submanifolds is the classification
of Lagrangian submanifolds with parallel second fundamental form. In
1980’s, H. Naitoh completely classified the Lagrangian submanifolds with
parallel second fundamental form and without Euclidean factor in complex
projective space, by using the theory of Lie groups and symmetric spaces.
He showed that such a submanifold is always locally symmetric and is one
of the symmetric spaces: SO(k + 1)/SO(k) (k ≥ 2), SU(k)/SO(k) (k ≥ 3),
SU(k) (k ≥ 3), SU(2k)/Sp(k) (k ≥ 3), E6/F4.

In this paper, we completely classify the Lagrangian submanifolds in
complex projective space with parallel second fundamental form by an
elementary geometrical method. We prove that such a Lagrangian sub-
manifold is either totally geodesic, or the Calabi product of a point with
a lower-dimensional Lagrangian submanifold with parallel second funda-
mental form, or the Calabi product of two lower-dimensional Lagrangian
submanifolds with parallel second fundamental form, or one of the standard
symmetric spaces: SU(k)/SO(k), SU(k), SU(2k)/Sp(k) (k ≥ 3), E6/F4.

As the arguments are of a local nature, at the same time, due to the
correspondence between C-parallel Lagrangian submanifolds in Sasakian
space forms and parallel Lagrangian submanifolds in complex space forms,
we can also give a complete classification of all C-parallel submanifolds of
S2n+1 equipped with its standard Sasakian structure.

1. Introduction

One of the first studies of Lagrangian submanifolds of complex space forms was
done by Chen and Ogiue [1974]. Since then such submanifolds have been studied
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by many authors and a lot of progress has been made in order to understand them
properly. Notwithstanding, several open problems remain.

One of the first questions asked and solved by Naitoh in a series of papers [1980;
1981a; 1981b; 1982; 1983a] was the classification of the parallel Lagrangian sub-
manifolds of the complex projective space. The classification relies heavily on the
study of symmetric spaces (and Lie groups), and whereas in the irreducible case the
classification is clear, little information is given on how to construct all reducible
examples. In this paper, we use the techniques developed in [Hu et al. 2009; 2011]
in order to obtain a complete and explicit classification of the Lagrangian sub-
manifolds in complex projective space with parallel second fundamental form by
an elementary geometric method. The advantage of this approach is that it also
allows the study of related problems in this area, such as:

(i) Which are the biharmonic parallel submanifolds of the complex projective
space?

(ii) Which are the second order parallel submanifolds (in the sense of Lumiste
[2009])?

(iii) Which are the semiparallel submanifolds?

The main result we show is the following:

Classification theorem. Let M be a Lagrangian submanifold in CPn(4) with con-
stant holomorphic sectional curvature 4. Suppose that M has parallel second
fundamental form, then either M is totally geodesic, or

(i) M is locally the Calabi product of a point with a lower-dimensional La-
grangian submanifold with parallel second fundamental form, or

(ii) M is locally the Calabi product of two lower-dimensional Lagrangian sub-
manifolds with parallel second fundamental form, or

(iii) n = 1
2 k(k+ 1)− 1, k ≥ 3, and M is congruent with SU(k)/SO(k), or

(iv) n = k2
− 1, k ≥ 3, and M is congruent with SU(k), or

(v) n = 2k2
− k− 1, k ≥ 3, and M is congruent with SU(2k)/Sp(k), or

(vi) n = 26 and M is congruent with E6/F4.

The Calabi product is a standard technique [Bolton et al. 2009; Castro et al.
2006; Hu et al. 2008; Li and Wang 2011; Rodriguez Montealegre and Vrancken
2009]. It allows one to construct with one (or two) Lagrangian immersions a new
Lagrangian immersion. It is recalled in detail in Section 4 of the paper.

The paper is organized as follows. In Section 2, we recall the basic formulas
for Lagrangian submanifolds of complex space forms. In Section 3, we give a
construction of an appropriate basis and hence decompose the tangent space into 3
orthogonal distributions D1, which is 1-dimensional, D2 and D3. According to the
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dimension of D2, we have n cases {Cm}1≤m≤n to consider, where m = dim D2+1.
We show that the case {Cn} does not occur. In order to get the components of the
second fundamental form, we define a bilinear map L from D2 × D2 to D3 and
give some properties of L . In Section 4, we introduce for any unit vector v ∈D2 a
linear map Pv : D2→ D2 and study its properties. We use the previous results to
obtain a direct sum decomposition for D2. We prove that there exists an integer k0

and unit vectors v1, . . . , vk0 ∈ D2 such that

D2 = {v1}⊕ Vv1(0)⊕ · · ·⊕ {vk0}⊕ Vvk0
(0),

where Vv j (0) is the eigenspace of Pv j with eigenvalue 0. We remark that we always
mean an orthogonal sum of vector spaces when we speak of a direct sum. We also
find that dim Vv1(0)= · · · = dim Vvk0

(0) and the dimension which we denote by p

can only be equal to 0, 1, 3 or 7 when k0 ≥ 2. Note that up to this point all results
remain valid assuming only that M is semiparallel. We also recall some characteri-
zations of the Calabi product Lagrangian immersions in CPn(4), whose application
gives that M is the Calabi product of a point with a lower-dimensional Lagrangian
submanifold with parallel second fundamental form for case {C1}. In Section 5,
we discuss case {Cm}2≤m≤n−1 with k0 = 1. In Sections 6–9, we consider each of
the four cases: case {Cm}2≤m≤n−1 with k0 ≥ 2 and p= 0, 1, 3, 7 separately and in
each case we obtain a complete classification of the Lagrangian submanifolds in
CPn(4) with parallel second fundamental form. In Section 10, we complete the
proof of the Classification theorem.

2. Preliminaries

In this section, M will always denote an n-dimensional Lagrangian submanifold
of M̄n(4ε), an n-dimensional complex space form with constant holomorphic sec-
tional curvature 4ε. We denote the Levi-Civita connections on M , M̄n(4ε) and
the normal bundle by ∇, D and ∇⊥X respectively. The formulas of Gauss and
Weingarten are given by (see [Chen 1973; 1997a; 1997b; Castro et al. 2006])

DX Y =∇X Y + h(X, Y ) and DXξ =−Aξ X +∇⊥X ξ,

where X and Y are tangent vector fields and ξ is a normal vector field on M .
As M is Lagrangian, we have (see [Chen 2001; 2005; Li and Vrancken 2005])

(2-1) ∇
⊥

X JY = J∇X Y and AJ X Y =−Jh(X, Y )= AJY X,

where h and A denote respectively the second fundamental form and the shape
operator.
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We denote the curvature tensors of ∇ and ∇⊥X by R and R⊥, respectively. The
first and second covariant derivatives of h are defined by

(∇h)(X, Y, Z)=∇⊥X h(Y, Z)− h(∇X Y, Z)− h(∇X Z , Y ),

(∇2h)(X, Y, Z ,W )=∇⊥X ((∇h)(Y, Z ,W ))− (∇h)(∇X Y, Z ,W )

− (∇h)(Y,∇X Z ,W )− (∇h)(Y, Z ,∇X W ),

where X , Y , Z and W are tangent vector fields.
The equations of Gauss, Codazzi and Ricci for a Lagrangian submanifold of

M̄n(4ε) are given by (see [Chen and Ogiue 1974; Chen 1997a; 1997b; 2001])

R(X, Y )Z = ε(〈Y, Z〉X −〈X, Z〉Y )+ [AJ X , AJY ]Z ,(2-2)

(∇h)(X, Y, Z)= (∇h)(Y, X, Z),

R⊥(X, Y )J Z = ε(〈Y, Z〉J X −〈X, Z〉JY )+ J [AJ X , AJY ]Z ,

where X , Y and Z are tangent vector fields. Note that for a Lagrangian submanifold
the equations of Gauss and Ricci are mutually equivalent.

We have the following Ricci identity (see [Montiel and Urbano 1988]):

(2-3) (∇2h)(X, Y, Z ,W )= (∇2h)(Y, X, Z ,W )

+J R(X, Y )AJ Z W − h(R(X, Y )Z ,W )− h(R(X, Y )W, Z),

where X , Y , Z and W are tangent vector fields.
The Lagrangian condition implies that

〈R⊥(X, Y )J Z , J W 〉 = 〈R(X, Y )Z ,W 〉,

〈h(X, Y ), J Z〉 = 〈h(X, Z), JY 〉,

for tangent vector fields X , Y , Z and W .
From now on, we will also assume that M has parallel fundamental form, that

is, in each point p of M , ∇h = 0.
Note that the vanishing of ∇h together with the Ricci identity (2-3) imply that

(2-4) (R(X, Y )h)(Z ,W )

= R⊥(X, Y ) h(Z ,W )− h(R(X, Y )Z ,W )− h(Z , R(X, Y )W )≡ 0,

for tangent vector fields X , Y , Z and W . Lagrangian submanifolds satisfying
the above property are called semiparallel. Using this property, following an idea
first introduced by Ejiri [1981], and since then widely applied and very useful for
solving various problems in submanifold theory, a special orthonormal basis can
be constructed.
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3. The construction of an appropriate orthonormal basis

In this section, we will always assume that M is a Lagrangian submanifold of
M̄n(4ε)with semiparallel second fundamental form, where M̄n(4ε) is an n-dimen-
sional complex space form with constant holomorphic sectional curvature 4ε.

Throughout this section, we fix p ∈ M and let U Mp = {u ∈ Tp M | ‖u‖ = 1}.
Note that totally geodesic submanifolds in symmetric spaces have been classified
completely by Chen and Nagano [1977; 1978], we will assume that p is a non-
totally geodesic point and we define f (u) = 〈h(u, u), Ju〉 for u ∈ U Mp and take
e1 as a vector in which f attains its maximum. The following lemma can be found
in [Li and Vrancken 2005], [Li and Wang 2009] and [Montiel and Urbano 1988].

Lemma 3.1. There exists an orthonormal basis {e1, . . . , en} of Tp M satisfying:

(i) h(e1, ei )= λi Jei for i = 1, . . . , n, where λ1 is the maximum of f .

(ii) λi ≤
1
2λ1 for i = 2, . . . , n, and if λ j =

1
2λ1 for some j , then f (e j )= 0.

Furthermore, by taking X = Z = W = e1, Y = e j for j ≥ 2 in (2-4), by
Lemma 3.1.(i) there exists a unique m with 1≤ m ≤ n such that

(3-1) λ2 = λ3 = · · · = λm =
1
2λ1 and λm+1 = · · · = λn = µ,

where

µ :=
λ1−
√

λ2
1+ 4ε

2
.

We define D2 := span{e2, . . . , em} and D3 := span{em+1, . . . , en}.

Lemma 3.2. The tangent space Tp M can be decomposed as a direct sum of 3
orthogonal vector spaces, that is, Tp M = D1⊕D2⊕D3, where

(i) D1 is a 1-dimensional vector space spanned by the unit tangent vector e1,

(ii) h(e1, v)=
1
2λ1v, for any v ∈ D2,

(iii) h(e1, w)= µw, for any w ∈ D3,

(iv) h(v1, v2)−
1
2λ1〈v1, v2〉Je1 ∈ JD3, for any v1, v2 ∈ D2.

We have n cases {Cm}1≤m≤n as follows:

Case C1 : λ2 = λ3 = · · · = λn = µ.

Case Cn : λ2 = λ3 = · · · = λn =
1
2λ1.

Case Cm : λ2 = · · · = λm =
1
2 λ1 and λm+1 = · · · = λn = µ for 2≤ m ≤ n− 1.

Our aim in the next sections is to describe explicitly the second fundamental
form h when restricted to vectors belonging to D2. In view of Lemma 3.2 this is
trivial in case that m = 1 or m = n. We first state:

Theorem 3.3. Case {Cn} does not occur.
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Proof. Suppose that it did. We use (2-4), and we choose X = e1, Y = v, Z = v
and W = v, with v a unit vector belonging to D2. Taking also into account, from
the previous lemma, that

h(e1, e1)= λ1 Je1, h(e1, v)=
1
2λ1 Jv and h(v, v)= 1

2λ1 Je1,

we find that λ1 = 0. This is a contradiction. �

By applying Theorem 4.12 (see also [Li and Wang 2011, Theorem 1.6]), we
conclude that M is locally the Calabi product of a point with a lower-dimensional
Lagrangian submanifold with parallel second fundamental form for case {C1}. We
will now restrict ourselves in the remainder of this section, as well as in the next
sections, to the case {Cm} when 1 < m < n. Surprisingly enough it is the form of
the second fundamental form restricted to D2 which will play a crucial role and in
some sense completely describe the immersion. For convenience we write

η = 1
2

√
λ2

1+ 4ε

and without loss of generality we may assume that η 6= 0.
By Lemma 3.2 we can introduce a bilinear map L : D2×D2→ D3 by

(3-2) L(v1, v2) := −J
(
h(v1, v2)−

1
2λ1〈v1, v2〉Je1

)
, v1, v2 ∈ D2.

We will now distinguish vectors belonging to the different vector spaces and so
we use the notations v, v j ∈ D2, w,wr ∈ D3.

Lemma 3.4. We have 〈h(D3,D3), JD2〉 = 0. The tensor L is an isotropic tensor
in the sense of O’Neill [1965], that is,

(3-3) 〈L(v, v), L(v, v)〉 = 1
2λ1η‖v‖

2, v ∈ D2.

Linearizing this expression, it follows for arbitrary vectors v1, v2, v3, v4 ∈D2 that

(3-4) 〈L(v1, v2), L(v3, v4)〉+ 〈L(v1, v3), L(v2, v4)〉+ 〈L(v1, v4), L(v2, v3)〉

=
1
2λ1η

(
〈v1, v2〉〈v3, v4〉+ 〈v1, v3〉〈v2, v4〉+ 〈v1, v4〉〈v2, v3〉

)
.

Proof. By taking Z = W = e1 in (2-4) we immediately obtain that for arbitrary
vectors x and y, R(x, y)e1 is an eigenvector of AJe1 with eigenvalue 1

2λ1. So
R(x, y)e1 ∈D2. Moreover taking v ∈D2 and w ∈D3, by the Gauss equation (2-2)
we have

R(v,w)e1 = (µ−
1
2λ1)AJvw =−ηAJvw,

so we have

(3-5) AJvw ∈ D2, for all v ∈ D2, w ∈ D3,

which gives the first claim of the lemma.
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In order to prove the second claim, we use again (2-4), and we choose X = e1,
Y = v1, Z = v2 and W = v3, all belonging to D2. By using (2-2) and the definition
of L , it follows immediately that

(3-6) h(v1, L(v2, v3))+ h(v2, L(v1, v3))+ h(v3, L(v1, v2))

=
1
2λ1η(〈v2, v3〉Jv1+〈v1, v3〉Jv2+〈v1, v2〉Jv3).

Taking the inner product with v4 and using the complete symmetry of the cubic
form completes the proof. �

We now decompose D3 as a direct sum of two orthogonal vector spaces. We
define D31 to be the vector space vect

{
L(D2,D2)

}
generated by vectors L(X, Y )

where X, Y ∈ D2, and D32 as its orthogonal complement in D3. Then by taking
X = e1, Y = v1, Z = v2 and W = w in (2-4) where v1, v2 ∈ D2 and w ∈ D32 and
using the fact that h(v2, w)= 0 we get:

Lemma 3.5. Let v1, v2 ∈ D2 and w ∈ D32. Then

(3-7) h(L(v1, v2), w)= µη〈v1, v2〉Jw.

Similarly, we also have:

Lemma 3.6. Let v1, v2, v3, v4 ∈ D2 and let {u1, . . . , um−1} be an orthonormal
basis of D2, then we have

(3-8) h(L(v1, v2), L(v3, v4))=µ〈L(v1, v2), L(v3, v4)〉Je1+µη〈v1, v2〉JL(v3, v4)

+

m−1∑
i=1

〈L(v1, ui ), L(v3, v4)〉JL(v2, ui )+

m−1∑
i=1

〈L(v2, ui ), L(v3, v4)〉JL(v1, ui ).

Proof. By (2-2), we have for v, ṽ ∈ D2 that

(3-9) R(e1, v)ṽ = (ε+
1
4λ

2
1) 〈v, ṽ〉e1− ηL(v, ṽ)= η2

〈v, ṽ〉e1− ηL(v, ṽ).

Similarly, we have for v ∈ D2 and w ∈ D3 that R(e1, v)w = ηAJvw.

As M is semiparallel, we have from (2-4) that

(3-10) R⊥(e1, v1)h(v2, L(v3, v4))=

h(R(e1, v1)v2, L(v3, v4))+ h(v2, R(e1, v1)L(v3, v4)).

We now compute each of the terms in the above equation separately. Since, by
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Lemma 3.4, h(v j , L(vk, vl)) ∈ JD2, we can write

h(v2, L(v3, v4))=

m−1∑
i=1

〈h(v2, L(v3, v4)), Jui 〉Jui

=

m−1∑
i=1

〈L(v2, ui ), L(v3, v4)〉Jui .

Therefore, we get

R⊥(e1, v1) h(v2, L(v3, v4))=

m−1∑
i=1

〈L(v2, ui ), L(v3, v4)〉R⊥(e1, v1)Jui

= η2
〈L(v1, v2), L(v3, v4)〉Je1− η

m−1∑
i=1

〈L(v2, ui ), L(v3, v4)〉JL(v1, ui ).

Next, as L(v3, v4) ∈ D3, we have

R(e1, v1)L(v3, v4)= ηAJv1 L(v3, v4)= η

m−1∑
i=1

〈L(v1, ui ), L(v3, v4)〉ui .

Hence

h(v2, R(e1, v1)L(v3, v4))= η

m−1∑
i=1

〈L(v1, ui ), L(v3, v4)〉h(v2, ui )

=
λ1

2
η〈L(v1, v2), L(v3, v4)〉Je1+ η

m−1∑
i=1

〈L(v1, ui ), L(v3, v4)〉J L(v2, ui ).

Finally the last term of (3-10) can be computed as follows:

h(R(e1, v1)v2, L(v3, v4))= η
2µ〈v1, v2〉J L(v3, v4)− ηh(L(v1, v2), L(v3, v4)).

Combining all three terms now completes the proof of the lemma. �

We note that Equation (3-8) has very important consequences which will be
used in sequel sections. For example:

Lemma 3.7. Assume that m ≥ 3 and let {u1, . . . , um−1} be an orthonormal basis
of D2, then for p 6= j , we have

(3-11) 0=
(
η(η+ 1

2λ1)− 4〈L(u j , u p), L(u j , u p)〉
)
L(u p, u j )

+

∑
i 6=p

(
〈L(u p, ui ), L(u j , u j )〉− 2〈L(u j , ui ), L(u p, u j ))〉

)
L(u j , ui ).

In particular, if L(u1, u2) 6= 0 and L(u1, ui ) is orthogonal to L(u1, u2) for all
i 6= 2, then

(3-12) 〈L(u1, u2), L(u1, u2)〉 =
1
4η(η+

1
2λ1)=: τ.
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Proof. We use (3-8). Interchanging the couples of indices {1, 2} and {3, 4} we find
the following condition:

(3-13) 0= ηµ
(
〈v1, v2〉L(v3, v4)−〈v3, v4〉L(v1, v2)

)
+

m−1∑
i=1

〈L(v1, ui ), L(v3, v4)〉L(v2, ui )+

m−1∑
i=1

〈L(v2, ui ), L(v3, v4)〉L(v1, ui )

−

m−1∑
i=1

〈L(v3, ui ), L(v1, v2)〉L(v4, ui )−

m−1∑
i=1

〈L(v4, ui ), L(v1, v2)〉L(v3, ui ).

If we take v2 = v3 = v4 = u j and v1 = u p with j and p different, then by using
also the isotropy condition, (3-13) reduces to

0=
(
η(η+ 1

2λ1)− 4〈L(u j , u p), L(u j , u p)〉
)
L(u p, u j )

+

∑
i 6=p

(
〈L(u p, ui ), L(u j , u j )〉− 2〈L(u j , ui ), L(u p, u j ))〉

)
L(u j , ui ).

Finally (3-12) follows by taking j = 1 and p = 2 in the (3-11), and by using
Lemma 3.4. �

4. A map Pv : D2→ D2 for unit vector v ∈ D2 and a decomposition of D2

We now define for any given unit vector v ∈ D2 a linear map Pv : D2→ D2 by

(4-1) Pv ṽ = AJvL(v, ṽ) for ṽ ∈ D2.

It is easily seen that Pv is well defined and a symmetric linear operator satisfying

(4-2) 〈Pv ṽ, v∗〉 = 〈AJvL(v, ṽ), v∗〉 = 〈L(v, ṽ), L(v, v∗)〉 = 〈Pvv∗, ṽ〉

for all ṽ, v∗ ∈ D2. Moreover, we have:

Lemma 4.1. For all unit v ∈ D2, the operator Pv : D2→ D2 has σ = 1
2λ1η as an

eigenvalue with eigenvector v. In the orthogonal complement of {v} the operator
has two eigenvalues, namely τ and 0, where τ is defined in (3-12).

Proof. According to (3-2) and (3-3), we have

〈v, Pvv〉 = 〈L(v, v), L(v, v)〉 = 1
2λ1η,

and if v∗ ⊥ v, then

〈v∗, Pvv〉 = 〈L(v, v∗), L(v, v)〉 = 0.

This implies that Pvv = 1
2λ1η v.

Next, we take an orthonormal basis {ui }
m−1
i=1 of D2 consisting of eigenvectors of

Pv such that Pvui = σi ui for 1≤ i ≤ m− 1, with u1 = v and σ1 =
1
2λ1η. We take
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the inner product of formula (3-11) for j = 1 and any p ≥ 2 with L(v, u p). We
have

(4-3) 〈L(u1, u p), L(u1, u p)〉
(
τ −〈L(u1, u p), L(u1, u p)〉

)
= 0.

Here we have used that

〈L(u1, u p), L(u1, ui )〉 = 〈u p, Pu1ui 〉 = 〈u p, σi ui 〉 = 0 for all i 6= p.

By (4-3), we get either

σp = 〈L(v, u p), L(v, u p)〉 = 0 or σp = 〈L(v, u p), L(v, u p)〉 = τ. �

In the following we denote by Vv(0) and Vv (τ ) the eigenspaces of Pv (in the or-
thogonal complement of {v}) with respect to the eigenvalues 0 and τ , respectively.
Note that in exceptional cases it can happen that τ = σ .

Lemma 4.2. Let u, v ∈ D2 be two unit orthogonal vectors. The following state-
ments are equivalent:

(i) u ∈ Vv(0).

(ii) L(u, v)= 0.

(iii) L(u, u)= L(v, v).

(iv) v ∈ Vu(0).

Moreover any of the previous statements implies that

(v) Pu = Pv on {u, v}⊥.

Proof. As 〈v1, Pvv2〉 = 〈L(v, v1), L(v, v2)〉, the equivalence of (i), (ii) and (iv)
follows immediately. As u and v are orthogonal, the isotropy condition implies
that

〈L(u, u), L(v, v)〉+ 2〈L(u, v), L(u, v)〉 = 1
2λ1η.

Because 〈L(u, u), L(u, u)〉 = 〈L(v, v), L(v, v)〉 = 1
2λ1η, the equivalence of (ii)

and (iii) now follows from the Cauchy–Schwarz inequality.
Now in order to prove (v), we may assume that (i), (ii), (iii) and (iv) are satis-

fied. As the space spanned by {u, v} is invariant by Pu and Pv, also its orthogonal
complement is invariant. By taking v1, v2 in this orthogonal complement and using
the isotropy condition, we find

〈v1, Pvv2〉 = 〈L(v, v1), L(v, v2)〉

= −
1
2〈L(v, v), L(v1, v2)〉+

1
4λ1η〈v1, v2〉

= −
1
2〈L(u, u), L(v1, v2)〉+

1
4λ1η〈v1, v2〉

= 〈L(u, v1), L(u, v2)〉 = 〈v1, Puv2〉. �
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Lemma 4.3. Let v, ṽ ∈ D2 be two unit orthogonal vectors. Then the equality

〈L(v, ṽ), L(v, ṽ)〉 = τ

holds if and only if ṽ ∈ Vv (τ ).
Moreover, if we assume u ∈ Vv(0) and the equality holds, then u ∈ Vṽ (τ ).

Proof. If ṽ ∈ Vv(τ ), then 〈L(v, ṽ), L(v, ṽ)〉 = 〈ṽ, Pv ṽ〉 = τ.
Conversely, if 〈L(v, ṽ), L(v, ṽ)〉 = τ , we can write

ṽ = cos θv0+ sin θv1, |v0| = |v1| = 1,

where v0 ∈ Vv(0) and v1 ∈ Vv(τ ). Then we get

τ = 〈L(v, ṽ), L(v, ṽ)〉 = 〈Pv ṽ, ṽ〉 = cos2 θτ,

which means that sin θ = 0 and ṽ = cos θv1 ∈ Vv(τ ).
Now assume the equality holds. If u∈Vv(0), then as v∈Vv(σ ) and ṽ∈Vv(τ ), we

see that u, v, ṽ are orthonormal vectors. Therefore Pu ṽ= Pv ṽ= τ ṽ by Lemma 4.2,
which means that ṽ ∈ Vu(τ ). Applying the first part of the lemma now shows that
we have u ∈ Vṽ(τ ). �

Lemma 4.4. Let v1, v2, v3 ∈D2 be orthonormal vectors satisfying v1, v2 ∈ Vv3(τ ).
Then for any vector v ∈ D2, we have 〈L(v1, v2), L(v3, v)〉 = 0.

Proof. Using the linearity of the assertion, we may assume that v is an eigenvector
of Pv3 . By Lemma 4.2 we only have to consider the case v 6∈ Vv3(0).

We choose an orthonormal basis {ui }
m−1
i=1 of D2 consisting of eigenvectors of Pv3

such that u1=v1, u2=v2 and u3=v3. We now use (3-13) for p=1, j=2, k= l=3
to obtain

(4-4) 0=−µηL(v1, v2)+

m−1∑
i=1

〈L(v1, ui ), L(v3, v3)〉L(v2, ui )

+

m−1∑
i=1

〈L(v2, ui ), L(v3, v3)〉L(v1, ui )−2
m−1∑
i=1

〈L(v3, ui ), L(v1, v2)〉L(v3, ui ).

Remark that if i = 3 and k = 1, 2, it follows that〈L(vk, ui ), L(v3, v3)〉 = 0, and
if k = 1, 2 and i 6= k, 3, we have that 〈L(vk, ui ), L(v3, v3)〉 = −2〈vk, Pv3ui 〉 = 0.
Using this, together with (3-4) and the assumption we see that (4-4) reduces to

(4-5)
m−1∑
i=1

〈L(v3, ui ), L(v1, v2)〉L(v3, ui )= 0.

Note that we have

〈L(v3, u p), L(v3, uq)〉 = 〈u p, Pv3uq〉 = 0 if p 6= q.
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Thus (4-5) implies that 〈L(v1, v2), L(v3, ui )〉 = 0 for all ui , which immediately
implies that for any vector v ∈ D2, we have 〈L(v1, v2), L(v3, v)〉 = 0. �

Using the above lemmas, we can introduce a direct sum decomposition for D2,
which turns out crucial for our purpose.

Pick any unit vector v1∈D2 and recall that τ = 1
4η(η+

1
2λ1), then by Lemma 4.1,

we have a direct sum decomposition for D2

D2 = {v1}⊕ Vv1(0)⊕ Vv1(τ ),

where here and later on, we denote also by { · } the vector space spanned by its
elements. If Vv1(τ ) 6= {0}, we take an arbitrary unit vector v2 ∈ Vv1(τ ). Then by
Lemma 4.3 we have:

v1 ∈ Vv2(τ ), Vv1(0)⊂ Vv2(τ ) and Vv2(0)⊂ Vv1(τ ).

From this we deduce that

D2 = {v1}⊕ Vv1(0)⊕{v2}⊕ Vv2(0)⊕
(
Vv1(τ )∩ Vv2(τ )

)
.

If Vv1(τ )∩ Vv2(τ ) 6= {0}, we further pick a unit vector v3 ∈ Vv1(τ )∩ Vv2(τ ). Then

D2 = {v3}⊕ Vv3(0)⊕ Vv3(τ ),

and by Lemma 4.3 we have

v1, v2 ∈ Vv3(τ ) and Vv1(0), Vv2(0)⊂ Vv3(τ ).

It follows that

D2 = {v1}⊕ Vv1(0)⊕{v2}⊕ Vv2(0)⊕{v3}⊕ Vv3(0)

⊕
(
Vv1(τ )∩ Vv2(τ )∩ Vv3(τ )

)
.

Considering that dim D2 = m− 1 is finite, we easily obtain by induction:

Proposition 4.5. There exists an integer k0 and unit vectors v1, . . . , vk0 ∈ D2 so

(4-6) D2 = {v1}⊕ Vv1(0)⊕ · · ·⊕ {vk0}⊕ Vvk0
(0).

We denote {vk}⊕Vvk (0) by Vk . In what follows, we will now study the decom-
position (4-6) in more detail.

Lemma 4.6. (i) For any unit vector u1 ∈ {v1}⊕ Vv1(0), we have

{v1}⊕ Vv1(0)= {u1}⊕ Vu1(0).

(ii) For any unit vectors u1, ũ1∈{v1}⊕Vv1(0) and u1⊥ ũ1, we have L(u1, ũ1)=0.
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Proof. (i) We first assume that u1 is orthogonal to v1. As then u1 ∈ Vv1(0), we
have that L(u1, v1)= 0 and v1 ∈ Vu1(0). Also on {u1, v1}

⊥ we have that Pu1 = Pv1 ,
which implies that the orthogonal complement of u1 in Vv1(0) coincides with the
orthogonal complement of v1 in Vu1(0). This completes the proof in this case.

Now we consider the general case. If dim(Vv1(0)) = 0, there is nothing to
prove. If dim(Vv1(0))≥ 2, we can take a vector ũ in that space which is orthogonal
to both u1 and v1. Applying twice the previous result then completes the proof.
If dim(Vv1(0)) = 1, there exists v0 ∈ Vv1(0) such that Vv1(0) = {v0}. Denote
u1 = cos θv1+ sin θv0. By Lemma 4.2, we see that

L(cos θv1+ sin θv0,−sin θv1+ cos θv0)= 0

and hence −sin θv1+ cos θv0 ∈ Vu1(0). Therefore {v1}⊕ Vv1(0) ⊂ {u1}⊕ Vu1(0).
If we do not have the equality, we can find a vector in the second space which is
orthogonal to both v1 and u1. As {v1}⊕Vv1(0)= {x}⊕Vx(0)= {u1}⊕Vu1(0), we
get a contradiction.

In order to prove (ii), we have by (i) that

{v1}⊕ Vv1(0)= {u1}⊕ Vu1(0).

As u1 and ũ1 are orthogonal this implies that ũ1 ∈ Vu1(0). Consequently we see
that L(u1, ũ1)= 0. �

Lemma 4.7. In the decomposition (4-6), if we pick a unit vector u2 ∈ Vv2(0), then
there exists a unique vector u1 ∈ v1 ⊕ Vv1(0) such that L(v1, u2) = L(v2, u1).
Moreover u1 is a unit vector belonging to Vv1(0) and L(v1, v2)=−L(u2, u1).

Proof. Let {ul
1, . . . , ul

pl
} be an orthonormal basis of Vvl (0), 1 ≤ l ≤ k0, such that

u2
1 = u2. Then{

v1, . . . , vk0, u1
1, . . . , u1

p1
, . . . , uk0

1 , . . . , uk0
pk0

}
=: {ũi }1≤i≤m−1

forms an orthonormal basis of D2. Now we use (3-8) with the vectors v2, u2, v1, u1.
As by Lemma 4.2 L(v2, u2)= 0, and by our decomposition v1 ∈ Vv2(τ ), we obtain

0= h(L(v2, u2), L(v1, v2))

= µ〈L(u2, v2), L(v1, v2)〉Je1+

m−1∑
i=1

〈L(v2, ũi ), L(v1, v2)〉JL(u2, ũi )

+

m−1∑
i=1

〈L(u2, ũi ), L(v1, v2)〉JL(v2, ũi )

=

m−1∑
i=1

〈Pv2v1, ũi 〉JL(u2, ũi )+

m−1∑
i=1

〈L(u2, ũi ), L(v1, v2)〉JL(v2, ũi )

= τ JL(u2, v1)+

m−1∑
i=1

〈L(u2, ũi ), L(v1, v2)〉JL(v2, ũi ).
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From this we see that we can put

(4-7) u1 =−
1
τ

m−1∑
i=1

〈L(u2, ũi ), L(v1, v2)〉ũi .

Noting that u2 ∈ Vv1(τ ), and applying Lemma 4.4 and Lemma 4.6, we see that
the above sum is nonzero only if ũi = u2 and ũi = v1 or if ũi ∈ Vv1(0).

If ũi = u2, using Lemma 4.2, we get that

〈L(u2, u2), L(v1, v2)〉 = 〈L(v2, v2), L(v1, v2)〉 = 0,

whereas if ũi = v1, we have that

〈L(u2, v1), L(v1, v2)〉 = 〈u2, Pv1v2〉 = τ 〈u2, v2〉 = 0.

Consequently u1 ∈ Vv1(0).
In order to prove the uniqueness in v1⊕Vv1(0), suppose that ũ1∈v1⊕Vv1(0) such

that L(v1, u2)= L(v2, ũ1). Then we have L(v2, u1− ũ1)= 0, hence by Lemma 4.2
we have u1− ũ1 ∈ Vv2(0). But we also have u1− ũ1 ∈ v1⊕Vv1(0)⊂ Vv2(τ ), so we
must have u1− ũ1 = 0.

To show that vector u1 ∈ Vv1(0) satisfying L(v1, u2)= L(v2, u1)must be of unit
length, we note that as u2 ∈ Vv2(0)⊂ Vv1(τ ) and u1 ∈ Vv1(0)⊂ Vv2(τ ), then

〈L(v1, u2), L(v1, u2)〉 = τ and 〈L(v2, u1), L(v2, u1)〉 = ‖u1‖
2τ.

Hence ‖u1‖
2
= 1 and u1 is a unit vector.

In order to prove L(v1, u2)= L(v2, u1) and L(v1, v2)=−L(u2, u1) are equiv-
alent, we use the isotropic condition (3-4) and the Cauchy–Schwarz inequality.

Suppose now that L(v1, u2)= L(v2, u1). We have v1, u1 ∈ Vv2(τ )= Vu2(τ ) by
Lemma 4.6, so we get 〈L(v1, v2), L(v1, v2)〉 = τ, 〈L(u1, u2), L(u1, u2)〉 = τ . As
the isotropy condition gives

〈L(v1, v2),−L(u1, u2)〉 = 〈L(v1, u2), L(v2, u1)〉 = 〈L(v2, u1), L(v2, u1)〉 = τ,

then by using the Cauchy–Schwarz inequality we get L(v1, v2)=−L(u2, u1). The
other hand side can be proved in a similar way. �

Lemma 4.8. In the decomposition (4-6), we write Vl = {vl}⊕ Vvl (0), 1≤ l ≤ k0.

(1) For any unit vector a ∈ V j ,

(4-8) h(L(a, a), L(a, a))= 1
2λ1µηJe1+ η(µ+ λ1)JL(a, a).
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(2) For any unit vectors a ∈ V j , b ∈ Vl, j 6= l,

h(L(a, a), L(a, b))= 1
2η(µ+ λ1)JL(a, b),(4-9)

h(L(a, a), L(b, b))= 1
2ηµ

2 Je1+ ηµJ (L(a, a)+ L(b, b)),(4-10)

h(L(a, b), L(a, b))= µτ Je1+ τ J (L(a, a)+ L(b, b)).(4-11)

(3) For unit vectors a ∈ V j , b, b′ ∈ Vl, c∈ Vq , d ∈ Vs and j, l, q, s being distinct,
b and b′ being orthogonal,

h(L(a, b), L(a, c))= τ JL(b, c),(4-12)

h(L(a, a), L(b, c))= ηµJL(b, c),(4-13)

h(L(a, b), L(a, b′))= 0,(4-14)

h(L(a, b), L(c, d))= 0.(4-15)

(4) For orthogonal unit vectors a1, a2 ∈ V j and unit vectors b ∈ Vl, c ∈ Vq with
j, l, q being distinct, we have

(4-16) h(L(a1, b), L(a2, c))= τ JL(b, c′),

where c′ ∈ Vq is the unique unit vector satisfying L(a2, c)= L(a1, c′).

Proof. We take an orthonormal basis of D2 in such a way so that it consists of all the
orthonormal basis of V j , 1≤ j ≤ k0. Then the conclusions are direct consequences
of Lemma 3.6. For example, to prove (4-12) we combine Lemma 3.6 with the fact
〈L(a, b), L(a, c)〉= 〈b, Pac〉= τ 〈b, c〉= 0 and the isotropic properties of L . From
(4-12) and Lemmas 4.6 and 4.7 we get (4-16). �

Proposition 4.9. In the decomposition (4-6), if k0 = 1, then dim(Im L) = 1. If
k0 ≥ 2, then dim Vv1(0) = · · · = dim Vvk0

(0). We denote the dimension by p, then
dim D2 = m− 1= k0(p+ 1). Moreover, p can only be equal to 0, 1, 3 or 7.

Proof. When k0 = 1, from Lemma 4.2 and Lemma 4.6 we get that L(v1, v1) is a
basis of Im L , hence dim(Im L) = 1. As a direct consequence of Lemma 4.7, for
any j 6= l, we can define a one to one linear map from Vv j (0) to Vvl (0), which
preserves the length of vectors. Hence Vv j (0) and Vvl (0) are isomorphic and have
the same dimension which we denote by p. To make the following discussion
meaningful, we now assume p≥ 1.

Set Vl = {vl}⊕Vvl (0), 1≤ l ≤ k0. Let {vl, ul
1, . . . , ul

p} be an orthonormal basis
of Vl . For each j = 1, . . . , p, Lemmas 4.6 and 4.7 show that we can define a linear
map T j : V1→ V1 such that the image T j (v) of any unit vector v ∈ V1 satisfies

(4-17) L(v, u2
j )= L(v2,T j (v)).

The linear map T j : V1→ V1 has these fundamental properties:



94 FRANKI DILLEN, HAIZHONG LI, LUC VRANCKEN AND XIANFENG WANG

(P1) 〈T j (v),T j (v)〉 = 〈v, v〉, that is, T j preserves the length of vectors.

(P2) For all v ∈ V1, we have T j (v)⊥ v.

(P3) T2
j =− id.

(P4) For all j 6= l and v ∈ V1, we have 〈T j (v),Tl(v)〉 = 0.

Since (P1) and (P2) can be easily seen from Lemma 4.7 and the definition of
T j , we need only to verify explicitly (P3) and (P4).

For any unit vector v ∈ V1, we have

(4-18) L(v2,T
2
j (v))= L(T j (v), u2

j ).

Using the fact {T j (v)}⊕ VT j (v)(0)= V1 and u2
j ∈ Vv2(0)⊂ VT j (v)(τ ), we have

〈L(T j (v), u2
j ), L(T j (v), u2

j )〉 = 〈L(v2,T j (v)), L(v2,T j (v))〉

= 〈L(v, v2), L(v, v2)〉 = τ.

Since v,T j (v), v2, u2
j are orthonormal vectors, by (3-4), (4-17) and L(v2, u2

j )= 0
we see that

0= 〈L(v,v2),L(T j (v),u2
j )〉+〈L(v,T j (v)),L(v2,u2

j )〉+〈L(v,u
2
j ),L(v2,T j (v))〉

= 〈L(v,v2),L(T j (v),u2
j )〉+〈L(v2,T j (v)),L(v2,T j (v))〉.

Applying (4-12) and the Cauchy–Schwarz inequality we deduce

(4-19) L(T j (v), u2
j )=−L(v, v2).

Combining (4-18) and (4-19), we get L(T2
j (v)+ v, v2)= 0, which implies that

T2
j (v)+ v ∈ Vv2(0). As T2

j (v)+ v ∈ V1 ⊂ Vv2(τ ), it follows that T2
j (v)=−v for a

unit vector v and then by linearity for all v ∈ V1, as claimed by (P3).
To verify (P4), we note that, if j 6= l and T j (v),Tl(v)∈Vv(0), then by definition

L(v2,T j (v))= L(v, u2
j )⊥ L(v, u2

l )= L(v2,Tl(v)).

If we assume Tl(v)= aT j (v)+ x , where x ⊥ T j (v) and x ∈ Vv(0), then

0= 〈L(v2,T j (v)), L(v2,Tl(v))〉

= 〈L(v2,T j (v)), aL(v2,T j (v))+ L(v2, x)〉

= a〈L(v2,T j (v)), L(v2,T j (v))〉 = aτ.

Thus a = 0 and therefore T j (v)⊥ Tl(v), as claimed.
We now look at the unit hypersphere Sp(1) ⊂ V1, properties (P1)–(P4) above

show that at v ∈ Sp(1) one has

TvSp(1)=
{
T1(v), . . . ,Tp(v)

}
.
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Hence, by the properties (P1)–(P4), Sp(1) is parallelizable. Then, according to
Bott and Milnor [1958] and Kervaire [1958], the dimension p can only be equal to
1, 3 or 7. �

From now on we will restrict ourselves to the complex projective case, that
is, we will assume that ε = 1. From Proposition 4.9 we see that, in order to
complete the proof of the Classification theorem, it is sufficient to deal with case
{Cm}2≤m≤n−1 with either k0 = 1 or k0 ≥ 2 and p = 0, 1, 3, 7. In most cases the
classification will reduce to a Calabi product of a point with a lower-dimensional
Lagrangian submanifold with parallel second fundamental form, or a Calabi prod-
uct of two lower-dimensional Lagrangian submanifolds with parallel second funda-
mental form. These are respectively constructed in the following way, see [Bolton
et al. 2009; Castro et al. 2006; Hu et al. 2008; Li and Wang 2011; Rodriguez Mon-
tealegre and Vrancken 2009].

Definition 4.10 [Bolton et al. 2009]. Let ψi : (Mi , gi )→ CPni (4), i = 1, 2, be
two Lagrangian immersions and let γ̃ = (γ̃1, γ̃2) : I → S3(1)⊂ C2 be a Legendre
curve. Then

ψ =5(γ̃1ψ̃1; γ̃2ψ̃2) : I ×M1×M2→ CPn(4)

is a Lagrangian immersion, where n = n1 + n2 + 1, ψ̃i : Mi → S2ni+1(1) are
horizontal lifts of ψi , i = 1, 2, respectively and 5 is the Hopf fibration. We call ψ
a warped product Lagrangian immersion of ψ1 and ψ2. When n1 (or n2) is zero,
we call ψ a warped product Lagrangian immersion of ψ2 (or ψ1) and a point.

Definition 4.11 [Li and Wang 2011]. In Definition 4.10, when

γ̃ (t)=
(
r1ei r2

r1
at
, r2e−i r1

r2
at)
,

where r1, r2, and a are positive constants with r2
1 + r2

2 = 1, we call ψ a Calabi
product Lagrangian immersion of ψ1 and ψ2. When n1 (or n2) is zero, we call ψ
a Calabi product Lagrangian immersion of ψ2 (or ψ1) and a point.

Using the arguments of Bolton et al. [2009], Calabi products were characterized
in Li and Wang [2011]. In particular we recall:

Theorem 4.12 [Li and Wang 2011, Theorem 1.6]. Let ψ : M → CPn(4) be a
Lagrangian immersion. Suppose that M admits orthogonal distributions D1 (of
dimension 1, spanned by a unit vector E1) and D2 (of dimension n−1, spanned by
{E2, . . . , En}), and that there exist local functions λ1, λ2 such that λ1 6= 2λ2 and

(4-20) h(E1, E1)= λ1 J E1 and h(E1, Ei )= λ2 J Ei for i = 2, . . . , n.

Then M has parallel second fundamental form if and only if ψ is locally a Calabi
product Lagrangian immersion of a point and an (n− 1)-dimensional Lagrangian
immersion ψ1 : M1→ CPn−1(4) which has parallel second fundamental form.
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Theorem 4.13 [Li and Wang 2011, Theorem 4.6]. Let ψ : M → CPn(4) be a
Lagrangian immersion. Suppose that M admits three mutually orthogonal distri-
butions D1 (spanned by a unit vector E1), D2, and D3 of dimension 1, n1 and n2

respectively, with 1+ n1 + n2 = n, and that there are three real constants λ1, λ2

and λ3 that satisfy 2λ3 6= λ1 6= 2λ2 6= 2λ3 such that for all Ei ∈ D2, Eα ∈ D3,

(4-21) h(E1, E1)= λ1 J E1, h(E1, Ei )= λ2 J Ei ,

h(E1, Eα)= λ3 J Eα, h(Ei , Eα)= 0.

Then M has parallel second fundamental form if and only if ψ is locally a Calabi
product Lagrangian immersion of two lower-dimensional Lagrangian submani-
folds ψi (i = 1, 2) with parallel second fundamental form.

5. Case {Cm}2≤m≤n−1 with k0 = 1

In this section, we consider the case Cm for 2≤m ≤ n−1 with k0 = 1. In view of
Proposition 4.9 this implies that dim(Im L)= 1.

Theorem 5.1. Let M ⊂ CPn(4) be a Lagrangian submanifold in a complex space
form with constant holomorphic sectional curvature 4. Suppose that M is not
totally geodesic and has parallel second fundamental form, that k0 = 1 and that
1 ≤ dim D2 = m − 1 ≤ n− 2. Then M is locally the Calabi product of two lower-
dimensional Lagrangian submanifolds with parallel second fundamental form or
the Calabi product of a point with a lower-dimensional Lagrangian submanifold
with parallel second fundamental form.

Proof. In view of Lemma 4.2 and Lemma 4.6 we see that there exists a unit vector
w1 ∈ Im L ⊂ D3 such that

(5-1) L(v1, v2)=

√
λ1η

2
〈v1, v2〉w1 =: ρ〈v1, v2〉w1,

for all v1, v2 ∈ D2.
By (4-8) we get

(5-2) h(w1, w1)= µJe1+ (2ρ+µη/ρ)Jw1.

By (3-5) we get the operator AJw1 : D2→ D2 is well defined and self adjoint.
From the definition of L , we get for orthonormal vectors {v1, . . . , vm−1} belonging
to D2 that

h(e1, v j )=
1
2λ1 Jv j , h(w1, v j )=ρ Jv j and h(v j , vk)=

( 1
2λ1 Je1+ρ Jw1

)
δ jk

for 1≤ j, k ≤ m− 1.
From dim(Im L) = 1, we have D31 = {w1}. Denote ñ = n − m − 1, then

dim(D32) = ñ. We choose {w̃1, . . . , w̃ñ} to be an orthonormal basis of D32. Then
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by Lemma 3.4 and Lemma 3.5 we have

(5-3) h(w1, w̃r )=
µη

ρ
J w̃r , 1≤ r ≤ ñ.

Now we define T = αe1+βw1 and T ∗ =−βe1+αw1, where

(5-4) α =
ρ√

ρ2+ η2
and β =

η√
ρ2+ η2

.

Then {T, T ∗, vi |1≤i≤m−1, w̃r |1≤r≤ñ} forms an orthonormal basis of Tp M . By
(5-2), we easily obtain

(5-5) h(T, T )= η1 J T, h(T, u)= η2 Ju and h(T, w̃r )= η3 J w̃r

for 1≤ r ≤ ñ, where η1, η2 and η3 are defined by

(5-6) η1 = α
( 1

2λ1+ η
)
+µ/α, η2 = α

(1
2λ1+ η

)
and η3 = µ/α,

which satisfy the relations η2 6= η3, 2η2 6= η1 6= 2η3 and

(5-7) η1 = η2+ η3 and η2η3 = µ
(
η+ 1

2λ1
)
=−1,

and u ∈ {T ∗, v1, . . . , vm−1}.
From (5-5), we have

(5-8)


T (η1)= 〈(∇h)(T, T, T ), J T 〉 ,

u(η1)= 〈(∇h)(u, T, T ), J T 〉 for u ∈ {T ∗, v1, . . . , vm−1},

w̃r (η1)= 〈(∇h)(w̃r , T, T ), J T 〉 for 1≤ r ≤ ñ,

Since M has parallel second fundamental form, (5-8) implies that η1 is constant
on M . By a similar argument, we can prove that η2 and η3 are also constant on M .

By the Gauss equation (2-2) and Equation (5-5), we have

(5-9) R⊥(u, w̃r ) h(T, T )= η1(η3− η2)J AJuw̃r ,

while on the other hand, from (2-4), we have

(5-10) R⊥(u, w̃r ) h(T, T )= 2(η3− η2) h(T, AJuw̃r ).

Since η3− η2 6= 0, (5-9) and (5-10) imply that

(5-11) h(T, AJuw̃r )=
1
2η1 J AJuw̃r ,

so from (2-1), (5-5) and (5-11) we deduce that h(u, w̃r )= J AJuw̃r = 0.
Now we apply Theorem 4.13 (see also [Li and Wang 2011, Theorem 4.6]) —

or, if ñ = 0, Theorem 4.12 (see also [ibid., Theorem 1.6]) — to conclude that M is
locally the Calabi product of two lower-dimensional Lagrangian submanifolds with
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parallel second fundamental form or the Calabi product of a point with a lower-
dimensional Lagrangian submanifold with parallel second fundamental form. �

6. Case {Cm}2≤m≤n−1 with k0 ≥ 2 and p= 0

Theorem 6.1. Let M ⊂ CPn(4) be a Lagrangian submanifold in a complex space
form with constant holomorphic sectional curvature 4. Suppose that M is not to-
tally geodesic and that M has parallel second fundamental form. Suppose also that
1≤dim D2=m−1≤n−2, and that k0 and p defined in Section 4 satisfy k0≥2 and
p= 0. Then n≥ 1

2 m(m+1)−1. Moreover, if n= 1
2 m(m+1), then M is locally the

Calabi product of a point with a lower-dimensional Lagrangian submanifold with
parallel second fundamental form, and if n ≥ 1

2 m(m+1)+1, then M is locally the
Calabi product of two lower-dimensional Lagrangian submanifolds with parallel
second fundamental form.

For the proof we need some observations and a lemma. Suppose M is not
totally geodesic. In the present situation, the decomposition (4-6) reduces to D2 =

{v1}⊕· · ·⊕{vk0}. Then dim D2=k0=m−1 and {v1, . . . , vk0} forms an orthonormal
basis of D2.

According to Lemma 3.7 and the fact that for j 6= l, v j ∈ Vvl (τ ), we have

〈L(v j , vl), L(v j , vl)〉 = τ, j 6= l,(6-1)

〈L(v j , vl1), L(v j , vl2)〉 = 0, j, l1, l2 distinct,(6-2)

〈L(v j1, v j2), L(v j3, v j4)〉 = 0, j1, j2, j3, j4 distinct.(6-3)

It follows that
{ 1
√
τ

L(v j , vl)
}

1≤ j<l≤k0
consists of 1

2 k0(k0− 1)= 1
2(m− 1)(m− 2)

orthonormal vectors. For {L(v j , v j )}1≤ j≤k0 , we note that

〈L(v j , v j ), L(v j , v j )〉 =
1
2λ1η, 1≤ j ≤ k0,(6-4)

〈L(v j , v j ), L(vl, vl)〉 =
1
2µη, 1≤ j 6= l ≤ k0,(6-5)

〈L(v j , v j ), L(v j , vl)〉 = 0, 1≤ j 6= l ≤ k0,(6-6)

〈L(v j , v j ), L(vl1, vl2)〉 = 0, 1≤ j, l1, l2 distinct and ≤ k0.(6-7)

Then {L j := L(v1, v1)+· · ·+ L(v j , v j )− j L(v j+1, v j+1) | 1≤ j ≤ k0−1} is a set
of k0−1 mutually orthogonal vectors which are all orthogonal to L(v j , vl), j 6= l.
Moreover, we easily have 〈L j , L j 〉 = 2 j ( j + 1)τ 6= 0. Hence

(6-8)
w j =

1
√

2 j ( j+1)τ
L j , 1≤ j ≤ k0− 1= m− 2,

wkl =
1
√
τ

L(vk, vl), 1≤ k < l ≤ k0 = m− 1,

are 1
2(m− 1)(m− 2)+ (m− 2) orthonormal vectors in Im(L)⊂ D3.
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Finally, it is easily known that Tr L = L(v1, v1)+· · ·+L(vk0, vk0) is orthogonal
to the above 1

2(m− 1)(m− 2)+ (m− 2) vectors and satisfies

(6-9) 〈Tr L ,Tr L〉 = 1
2 k0η(λ1+ (k0− 1)µ)=: ρ2,

where ρ ≥ 0. These results imply that

n = 1+ dim D2+ dim D3(6-10)

≥ 1+ (m− 1)+ 1
2(m− 1)(m− 2)+ (m− 2)= 1

2 m(m+ 1)− 1.

Lemma 6.2. We have that Tr L = 0 if and only if n = 1
2 m(m+ 1)− 1.

Proof. Suppose Tr L= 0, we can first prove that D3= Im(L). If not, we can choose
a vector w ∈ D3 which is orthogonal to Im(L), then by (3-7) we get

0= h(Tr L , w)= (m− 1)µηJw,

hence we get w = 0 which is a contraction. So we have

n = 1+ dim D2+ dim D3 = 1+ (m− 1)+ 1
2(m+ 1)(m− 2)= 1

2 m(m+ 1)− 1.

On the other hand, suppose that n = 1
2 m(m + 1)− 1. By Equation (6-10) we get

dim D3 =
1
2(m− 1)(m− 2)+ (m− 2) hence Tr L = 0. �

Proof of Theorem 6.1. We need to consider two cases:

(i) n = 1
2 m(m+ 1).

(ii) n ≥ 1
2 m(m+ 1)+ 1.

We define a unit vector t = 1
ρ

Tr L .
In case (i), the previous results and particularly (6-9) show that

{t, wkl|1≤k<l≤m−1, w j |1≤ j≤m−2}

is an orthonormal basis of Im(L)=D3. By direct calculations with application of
Lemma 3.6, Lemma 4.8 and (6-1)–(6-8), we have:

Lemma 6.3. Under the above assumptions, we have

(6-11)
h(t, e1)= µJ t, h(t, u)= ρ

k0
Ju, h(t, w)= 2ρ

k0
Jw,

h(t, t)= µJe1+

(2ρ
k0
+

k0µη

ρ

)
J t,

where u = vi for 1 ≤ i ≤ k0 = m − 1, and w stands for either w j or wkl , with
1≤ j ≤ k0− 1= m− 2 and 1≤ k < l ≤ k0 = m− 1.
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Put T = αe1+βt and T ∗ =−βe1+αt , where

(6-12) α =
ρ

√

ρ2
+ k2

0η
2

and β =
k0η

√

ρ2
+ k2

0η
2
.

Then {T, T ∗, vi |1≤i≤m−1, w j |1≤ j≤m−2, wkl|1≤k<l≤m−1} is an orthonormal basis of
Tp M . By Lemma 6.3 we easily obtain:

Lemma 6.4. Under the above assumptions, we have

(6-13) h(T, T )= η1 J T and h(T, u)= η2 Ju,

where η1 and η2 are defined by

(6-14) η1 = α
( 1

2λ1+ η
)
+µ/α and η2 = α

( 1
2λ1+ η

)
,

which satisfy the relation

(6-15) η1η2− η
2
2 = µ(

1
2λ1+ η)=−1,

where u stands for one of T ∗, vi , w j , wkl and 1≤ i, k, l ≤ m− 1, 1≤ j ≤ m− 2.

We note that η1 6= 2η2. Otherwise, by definition we have µ/α = α(1
2λ1 + η),

then by using the definition of α, ρ and the fact that η 6= 0 for case {Cm} we get

λ1+ 2η = λ1+
√
λ2

1+ 4= 0,

which cannot happen.
Based on the conclusions of Lemma 6.4, we can apply Theorem 4.12 (see also

Theorem 1.6 in [Li and Wang 2011]) to conclude that in case (i) M is locally the
Calabi product of a point with a lower-dimensional Lagrangian submanifold with
parallel second fundamental form.

In case (ii), we proceed in the same way. We still have that

{t, wkl|1≤k<l≤m−1, w j |1≤ j≤m−2}

is an orthonormal basis of Im(L). But now we no longer have that Im(L) coincides
with D3. Denote ñ = n − 1

2 m(m + 1) and choose w̃1, . . . , w̃ñ in the orthogonal
complement of Im(L) in D3 such that

{t, wkl|1≤k<l≤m−1, w j |1≤ j≤m−2, w̃r |1≤r≤ñ}

is an orthonormal basis of D3. Then, besides (6-11), we further use (3-7) to get

(6-16) h(t, w̃r )=
k0µη

ρ
J w̃r , 1≤ r ≤ ñ.

Now we define T and T ∗ as in case (i). Similarly to Lemma 6.4, we can easily
show:
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Lemma 6.5. For case (ii), we have

(6-17) h(T, T )= η1 J T, h(T, u)= η2 Ju and h(T, w̃r )= η3 J w̃r ,

for 1 ≤ r ≤ ñ. Here η1 and η2 are defined by (6-14) and η3 = µ/α. These satisfy
the relations η2 6= η3, 2η2 6= η1 6= 2η3,

(6-18) η1 = η2+ η3 and η2η3 = µ(η+
1
2λ1)=−1,

where u is one of T ∗, vi , w j , wkl and 1≤ i, k, l ≤ m− 1, 1≤ j ≤ m− 2.

Based on the conclusions of Lemma 6.5, after a similar argument as in the
proof of Theorem 5.1, we can apply Theorem 4.13 (see also [Li and Wang 2011,
Theorem 4.6]) to conclude that in case (ii) M is locally the Calabi product of
two lower-dimensional Lagrangian submanifolds with parallel second fundamental
form. This completes the proof of Theorem 6.1. �

7. Case {Cm}2≤m≤n−1 with k0 ≥ 2 and p= 1

Theorem 7.1. Let M ⊂ CPn(4) be a Lagrangian submanifold in a complex space
form with constant holomorphic sectional curvature 4. Suppose that M is not
totally geodesic and has parallel second fundamental form. Suppose also that
1 ≤ dim D2 = m− 1 ≤ n− 2, and k0 and p defined in Section 4 satisfy k0 ≥ 2 and
p= 1. Then n ≥ 1

4(m+ 1)2− 1. Moreover, if n = 1
4(m+ 1)2, then M is locally the

Calabi product of a point with a lower-dimensional Lagrangian submanifold with
parallel second fundamental form, and if n ≥ 1

4(m+ 1)2+ 1, then M is locally the
Calabi product of two lower-dimensional Lagrangian submanifolds with parallel
second fundamental form.

Lemma 7.2. Suppose dim D2 = m − 1 ≥ 1, k0 ≥ 2 and p = 1. Then from the
decomposition (4-6) there exist unit vectors u j ∈ Vv j (0), 1 ≤ j ≤ k0 =

1
2(m − 1),

such that the orthonormal basis {v1, u1, . . . , vk0, uk0} of D2 satisfies the relations

(7-1) L(v j , ul)=−L(u j , vl) and L(v j , vl)= L(u j , ul)

for 1≤ j, l ≤ k0.

Proof. We have the decomposition (4-6) with dim Vv j (0) = 1, 1 ≤ j ≤ k0. Let
Vv2(0)= {u2}, here u2 is a unit vector.

According to Lemma 4.7, for each j 6= 2, we have a unique unit vector u j in
Vv j (0) satisfying

(7-2) L(v j ,−u2)= L(u j , v2) and L(u j , u2)= L(v j , v2)

for 1≤ j ≤ k0, j 6= 2. The lemma now follows from the following claim. �

Claim 7.3. L(v j , ul) = −L(u j , vl) and L(v j , vl) = L(u j , ul) for 1 ≤ j, l ≤ k0,
j, l 6= 2.
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Proof. For j = l, the fact that u j ∈ Vv j (0) implies L(v j , u j ) = 0. It follows that
L(u j , u j )= L(v j , v j ).

Next, for k0 ≥ 3, we fix j, l 6= 2 such that j 6= l. By Lemma 4.7, there exists a
unique unit vector in Vv j (0), denoted u j (l), such that

(7-3) L(v j , ul)=−L(u j (l), vl).

Since both unit vectors u j and u j (l) are in Vv j (0) and dim Vv j (0)= 1, we have
u j (l)= εu j with ε =±1, which implies that u j (l)− εu j = 0 and

(7-4) L(v j , ul)=−εL(u j , vl) and L(v j , vl)= εL(u j , ul).

By using (7-2) and Lemma 4.8, we find that

h(L(u j , ul), L(v2, u j ))= τ J L(ul, v2)=−τ J L(vl, u2) and

h(L(v j , vl), L(v2, u j ))= h(L(v j , vl),−L(v j , u2))=−τ J L(vl, u2),

which imply

(7-5) 0= h(L(v j , vl)− εL(u j , ul), L(v2, u j ))=−τ(1− ε)J L(vl, u2).

Combining equations (7-4) and (7-5) we get ε = 1, which completes the proof of
the claim. �

Remark 7.4. For p= 1 we have dim D2 = 2k0. Denote

V j = {v j }⊕ Vv j (0)= {v j }⊕ {u j }, 1≤ j ≤ k0.

For each 1≤ j ≤ k0, we define a linear map J0 : V j → V j by setting

J0v j = u j and J0u j =−v j .

Then J0 : D2→ D2 is an almost complex structure and Lemma 7.2 shows that it
satisfies the relations

(7-6) L(J0u, v)=−L(u, J0v) and L(J0u, J0v)= L(u, v)

for all u, v ∈ D2.

Let {v1, u1, . . . , vk0, uk0} be the orthonormal basis of D2 from Lemma 7.2. Com-
bining Lemma 4.4 with the fact that u j , v j ∈ Vvl (τ )= Vul (τ ) for j 6= l, we have

(7-7) 〈L(v j , ul), L(v j , ul)〉 = 〈L(v j , vl), L(v j , vl)〉 = τ,

for j 6= l. Next we get

(7-8) 〈L(u j , vl1), L(u j , vl2)〉 = 〈L(v j , ul1), L(v j , ul2)〉

= 〈L(v j , vl1), L(v j , vl2)〉 = 0,
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for j, l1, l2 distinct. Then

〈L(v j1, v j2), L(v j3, v j4)〉 = 0, j1, j2, j3, j4 distinct,(7-9)

〈L(v j , vl), L(v j1, ul1)〉 = 0, j 6= l and j1 6= l1.(7-10)

Thus { 1
√
τ

L(v j , vl)
}

1≤ j<l≤k0
∪
{ 1
√
τ

L(v j , ul)
}

1≤ j<l≤k0

consists of k0(k0 − 1) = 1
4(m − 1)(m − 3) orthonormal vectors. For the subset

{L(v j , v j )= L(u j , u j )}1≤ j≤k0 , we note that

〈L(v j , v j ), L(v j , v j )〉 = λ1η/2,(7-11)

〈L(v j , v j ), L(vl, vl)〉 = µη/2,(7-12)

〈L(v j , v j ), L(v j , vl)〉 = 〈L(v j , v j ), L(v j , ul)〉 = 0,(7-13)

〈L(v j , v j ), L(vl1, vl2)〉 = 〈L(v j , v j ), L(vl1, ul2)〉 = 0,(7-14)

where 1≤ j 6= l ≤ k0 and 1≤ j, l1, l2 distinct ≤ k0.
As in the previous section, we see that

{L j := L(v1, v1)+ · · ·+ L(v j , v j )− j L(v j+1, v j+1) | 1≤ j ≤ k0− 1}

are k0 − 1 = 1
2(m − 3) mutually orthogonal vectors which are orthogonal to all

L(v j , vl) and L(v j , ul), j 6= l. We also easily have 〈L j , L j 〉 = 2 j ( j + 1)τ 6= 0.
Hence

(7-15)


w j =

1
√

2 j ( j+1)τ L j , 1≤ j ≤ k0− 1= 1
2(m− 3),

wkl =
1
√
τ

L(vk, vl), 1≤ k < l ≤ k0 =
1
2(m− 1),

w′kl =
1
√
τ

L(vk, ul), 1≤ k < l ≤ k0 =
1
2(m− 1),

are 1
4(m+ 1)(m− 3) orthonormal vectors in Im(L)⊂ D3.

Finally, it is easily verified that 1
2 Tr L= L(v1, v1)+· · ·+L(vk0, vk0) is orthogonal

to the above (m+ 1)(m− 3)/4 vectors and satisfies

(7-16) 1
4〈Tr L ,Tr L〉 = 1

2 k0η(λ1+ (k0− 1)µ)=: ρ2, ρ ≥ 0.

Similarly as in the previous section we get that

Lemma 7.5. We have Tr L = 0 if and only if n = 1
4(m+ 1)2− 1.

Proof of Theorem 7.1. We define a unit vector t = 1
2ρTr L . Again we need to

consider two cases.
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(i) n = 1
4(m + 1)2. The previous results show that the set {t, wkl, w

′

kl, w j }, where
we have 1 ≤ k < l ≤ 1

2(m − 1) and 1 ≤ j ≤ 1
2(m − 3), is an orthonormal basis of

Im(L) = D3. By direct calculations applying Lemma 3.6, Lemma 4.8 and (7-7)-
(7-14) we obtain again the expressions of (6-11) for u=vi , ui andw=w j , wkl, w

′

kl
with 1 ≤ i, k, l ≤ 1

2(m − 1) and 1 ≤ j ≤ 1
2(m − 3). Proceeding then in the same

way as before, we can again apply Theorem 4.12 (see also [Li and Wang 2011,
Theorem 1.6]) to conclude that in this case, M is locally the Calabi product of
a point with a lower-dimensional Lagrangian submanifold with parallel second
fundamental form.

(ii) n ≥ 1
4(m + 1)2 + 1. Here we see that {t, wkl, w

′

kl, w j }, where j, k, l are as
before, is still an orthonormal basis of Im(L). But now Im(L) D3. Introduce the
notation

ñ = n− 1
4(m+ 1)2 ≥ 1

and choose w′1, . . . , w
′

ñ in the orthogonal complement of Im(L) in D3, such that

{t, wkl, w
′

kl, w j , w
′

r }

where j, k, l are as before and 1≤ r ≤ ñ, is an orthonormal basis of D3. Then (3-7)
gives that

(7-17) h(t, w′r )=
k0µη

2ρ
Jw′r , 1≤ r ≤ ñ,

and we can again proceed exactly as in the previous section to conclude that in
this case, M is locally the Calabi product of two lower-dimensional Lagrangian
submanifolds with parallel second fundamental form. �

8. Case Cm (2≤ m ≤ n− 1) with k0 ≥ 2 and p= 3

Theorem 8.1. Let M ⊂ CPn(4) be a Lagrangian submanifold in a complex space
form with constant holomorphic sectional curvature 4. Suppose that M is not
totally geodesic and that it has parallel second fundamental form. Suppose also
that 1 ≤ dim D2 = m− 1 ≤ n− 2, and k0 and p defined in Section 4 satisfy k0 ≥ 2
and p= 3. Then n≥ 1

8(m−1)(m+5). If n= 1
8(m−1)(m+5)+1, then M is locally

the Calabi product of a point with a lower-dimensional Lagrangian submanifold
with parallel second fundamental form, and if n ≥ 1

8(m − 1)(m + 5)+ 2, then M
is locally the Calabi product of two lower-dimensional Lagrangian submanifolds
with parallel second fundamental form.

Lemma 8.2. Suppose dim D2 = m − 1 ≥ 1, k0 ≥ 2 and p = 3. Then from the
decomposition (4-6) there exist unit orthogonal vectors

x j , y j , z j ∈ Vv j (0), 1≤ j ≤ k0 =
1
4(m− 1),
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such that the orthonormal basis {v1,x1, y1,z1,...,vk0,xk0, yk0,zk0} of D2 satisfies

(8-1)

L(x j , xl)= L(y j , yl)= L(z j , zl)= L(v j , vl),

L(v j , xl)=−L(x j , vl)=−L(y j , zl)= L(yl, z j ),

L(v j , yl)=−L(y j , vl)=−L(z j , xl)= L(x j , zl),

L(v j , zl)=−L(z j , vl)=−L(x j , yl)= L(xl, y j ),

for all 1≤ j, l ≤ k0.

Proof. We use the decomposition (4-6) with dim Vv j (0)= 3 for 1≤ j ≤ k0.
Denote V j = {v j } ⊕ Vv j (0). First we choose arbitrary orthonormal vectors

x1, y1 ∈ Vv1(0), next by using Lemma 4.6 and Lemma 4.7 we can first find unit
vectors x j , y j ∈ Vv j (0), j ≥ 2 such that

(8-2)
L(x j , x1)= L(y j , y1)= L(v j , v1), L(v j , x1)=−L(x j , v1),

L(v j , y1)=−L(y j , v1), L(x1, y j )=−L(x j , y1).

Next we choose z j , z j
1 such that L(v j , z j

1) = −L(z j , v1) = −L(x j , y1). By using
the Cauchy–Schwarz inequality, we have

(8-3)

L(x j , x1)= L(y j , y1)= L(z j , z j
1)= L(v j , v1),

L(v j , x1)=−L(x j , v1)=−L(y j , z j
1)= L(y1, z j ),

L(v j , y1)=−L(y j , v1)=−L(z j , x1)= L(x j , z j
1),

L(v j , z j
1)=−L(z j , v1)=−L(x j , y1)= L(x1, y j ).

Claim 8.3. For all j ≥ 2, the families {x1, y1, z j
1} and {x j , y j , z j } of (8-3) are

orthonormal bases of Vv1(0) and Vv j (0), respectively.

Proof of claim. In fact, from (8-3) we have

τ 〈z j
1, x1〉 = 〈L(v j , z j

1), L(v j , x1)〉 = 〈L(x j ,−y1), L(x j ,−v1)〉 = τ 〈y1, v1〉 = 0,

τ 〈z j
1, y1〉 = 〈L(v j , z j

1), L(v j , y1)〉 = 〈L(y j ,−x1), L(y j ,−v1)〉 = τ 〈x1, v1〉 = 0,

hence we get {x1, y1, z j
1} is an orthonormal basis of Vv1(0).

For j ≥ 2, from (8-3) we have

τ 〈x j , y j 〉 = 〈L(v1, x j ), L(v1, y j )〉 = 〈L(v j ,−x1), L(v j ,−y1)〉 = τ 〈x1, y1〉 = 0,

similarly, we get 〈x j , z j 〉= 〈x1, z j
1〉= 0 and 〈y j , z j 〉= 〈y1, z j

1〉= 0. This completes
the proof. �

Claim 8.4. The vectors z j
1 and zl

1 of (8-3) are equal for all 2 ≤ j, l ≤ k0. If we
denote this common value by z1, then (8-1) holds.
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Proof of claim. By Claim 8.3, we know that for j 6= l, j, l ≥ 2 we have z j
1 = ε jl zl

1
with ε jl =±1. From Lemma 4.8 and (8-3) we get

(8-4) ε jlτ JL(v j , vl)= h(L(v j , z j
1), L(vl, zl

1))

= h(L(x j , y1), L(xl, y1))= τ JL(x j , xl).

Similarly, we get

(8-5)

ε jl L(v j , vl)= L(y j , yl)= L(z j , zl),

ε jl L(x j , xl)= L(y j , yl)= L(z j , zl)= L(v j , vl).

From (8-4) and (8-5) we get ε jl = 1 and

(8-6) L(v j , vl)= L(x j , xl)= L(y j , yl)= L(z j , zl), j 6= l, j, l ≥ 2.

Let z1 = z2
1 = · · · = zk0

1 , then by (8-3) and Lemma 4.8 we have

(8-7)
τ JL(x j , yl)= h(L(y1, x j ), L(y1, yl))

= h(L(v1, z j ), L(v1, vl))= τ JL(z j , vl).

From (8-6) and (8-7), and by using Lemma 4.6 and Lemma 4.7 we get that (8-1)
holds. �

Combining the above claims completes the proof of the lemma. �

Remark 8.5. Having fixed the orthonormal basis of D2 satisfying (8-1), we can
now define three almost complex structures J1, J2, J3 : D2→D2 such that for all
1≤ j ≤ k0,

(8-8)
J1v j = x j , J2v j = y j , J3v j = z j ,

J1x j =−v j , J2 y j =−v j , J3z j =−v j ,

and furthermore J1, J2 and J3 satisfy

(8-9) J1 ◦ J1 = J2 ◦ J2 = J3 ◦ J3 =− id and J1 J2 =−J2 J1 = J3.

Then we define a quaternionic structure {J1, J2, J3} on D2. It is important to remark
that (8-1) is equivalent to the relations

(8-10) L(Jsu, v)=−L(u, Jsv) and L(Jsu, Jsv)= L(u, v)

for all s = 1, 2, 3 and u, v ∈ D2.

We have m−1= 4k0 and k0 ≥ 2. Let {v1, x1, y1, z1, . . . , vk0, xk0, yk0, zk0} be an
orthonormal basis of D2 as constructed in Lemma 8.2. Applying Lemma 4.4 and
the fact that for j 6= l, v j , x j , y j , z j ∈ Vvl (τ )= Vxl (τ )= Vyl (τ )= Vzl (τ ), we easily
show that
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(8-11) 〈L(v j ,xl),L(v j ,xl)〉 = 〈L(v j ,yl),L(v j ,yl)〉

= 〈L(v j ,zl),L(v j ,zl)〉 = 〈L(v j ,vl),L(v j ,vl)〉 = τ,

for j 6= l. We also get

(8-12) 〈L(x j ,vl1),L(x j ,vl2)〉 = 〈L(v j ,xl1),L(v j ,xl2)〉 = 〈L(y j ,vl1),L(y j ,vl2)〉

= 〈L(v j ,yl1),L(v j ,yl2)〉 = 〈L(z j ,vl1),L(z j ,vl2)〉

= 〈L(v j ,zl1),L(v j ,zl2)〉 = 〈L(v j ,vl1),L(v j ,vl2)〉

= 0,

for j, l1, l2 distinct. Next we get

(8-13) 〈L(vj1,vj2),L(vj3,vj4)〉 = 〈L(vj1,x j2),L(vj3,x j4)〉 = 〈L(vj1,yj2),L(vj3,yj4)〉

= 〈L(vj1,z j2),L(vj3,z j4)〉 = 0,

for j1, j2, j3, j4 distinct, and then

(8-14) 〈L(v j , vl), L(v j1, xl1)〉 = 〈L(v j , vl), L(v j1, yl1)〉

= 〈L(v j , vl), L(v j1, zl1)〉 = 0,

for j 6= l and j1 6= l1.
For {L(v j , v j )= L(x j , x j )= L(y j , y j )= L(z j , z j )}1≤ j≤k0 , we note that

〈L(v j , v j ), L(v j , v j )〉 =
1
2λ1η,(8-15)

〈L(v j , v j ), L(vl, vl)〉 =
n+1

4(n−i)
λ2

1− 2τ = 1
2µη,(8-16)

〈L(v j , v j ), L(v j , vl)〉 = 〈L(v j , v j ), L(v j , ul)〉 = 0,(8-17)

〈L(v j , v j ), L(vl1, vl2)〉 = 〈L(v j , v j ), L(vl1, ul2)〉 = 0,(8-18)

for 1≤ j, l, l1, l2 ≤ k0 distinct. Similarly to the previous section, we deduce that

{L j := L(v1, v1)+ · · ·+ L(v j , v j )− j L(v j+1, v j+1) | 1≤ j ≤ k0− 1}

are k0− 1= 1
4(m− 5) mutually orthogonal vectors which are orthogonal to all of

the vectors L(v j , vl), L(v j , xl), L(v j , yl), and L(v j , zl), where j 6= l. Also, we
have 〈L j , L j 〉 = 2 j ( j + 1)τ 6= 0. Hence the vectors

w j =
1

√
2 j ( j+1)τ

L j , wkl =
1
√
τ

L(vk, vl),

w1
kl =

1
√
τ

L(vk, xl), w2
kl =

1
√
τ

L(vk, yl), w3
kl =

1
√
τ

L(vk, zl),

where 1≤ j ≤ k0 =
1
4(m−1) and 1≤ k < l ≤ k0, comprise 2k0(k0−1)+ k0−1=

1
8(m+ 1)(m− 5) orthonormal vectors in Im(L)⊂ D3.



108 FRANKI DILLEN, HAIZHONG LI, LUC VRANCKEN AND XIANFENG WANG

Finally, from Lemma 8.2, (8-15) and (8-16) it is easily known that the vector

Tr L = 4
(
L(v1, v1)+ · · ·+ L(vk0, vk0)

)
is orthogonal to the above 1

8(m+ 1)(m− 5) vectors and satisfies

(8-19) 1
16〈Tr L ,Tr L〉 = 1

2 k0η(λ1+ (k0− 1)µ)=: ρ2, ρ ≥ 0.

The above results imply that

n = 1+ dim D2+ dim D3 ≥ 1+ (m− 1)+ 1
8(m+ 1)(m− 5)= 1

8(m− 1)(m+ 5).

Lemma 8.6. We have Tr L = 0 if and only if n = 1
8(m− 1)(m+ 5).

Proof of Theorem 8.1. We need to consider two cases:

(i) n = 1
8(m− 1)(m+ 5)+ 1.

(ii) n ≥ 1
8(m− 1)(m+ 5)+ 2.

In case (i), we have that

{t, w j |1≤ j≤(i−5)/4, wkl, w
1
kl, w

2
kl, w

3
kl |1≤k<l≤(i−1)/4

}
is an orthonormal basis of Im(L)=D3. In case (ii), in order to have an orthonormal
basis we still need to add an orthonormal basis of D32.

As in the previous sections, we get that (6-13) in case (i) and (6-17) in case
(ii) are satisfied. Consequently we deduce that in case (i), M is locally the Calabi
product of a point with a lower-dimensional Lagrangian submanifold with parallel
second fundamental form, and in case (ii), we deduce that M is locally the Calabi
product of two lower-dimensional Lagrangian submanifolds with parallel second
fundamental form. This completes the proof. �

9. Case {Cm}2≤m≤n−1 with k0 ≥ 2 and p= 7

Theorem 9.1. Let M ⊂ CPn(4) be a Lagrangian submanifold in a complex space
form with constant holomorphic sectional curvature 4. Suppose that M is not
totally geodesic and has parallel second fundamental form. Suppose also that
1 ≤ dim D2 = m − 1 ≤ n− 2 and k0 and p defined in Section 4 satisfy k0 ≥ 2 and
p = 7. Then k0 = 2 and m = 17, which implies that n ≥ 26. Moreover, if n = 27
we have that M is locally the Calabi product of a point with a lower-dimensional
Lagrangian submanifold with parallel second fundamental form, and if n ≥ 28,
then M is locally the Calabi product of two lower-dimensional Lagrangian sub-
manifolds with parallel second fundamental form.

Lemma 9.2. Suppose dim D2 = m − 1 ≥ 1, k0 ≥ 2 and p = 7. Then from the
decomposition (4-6), if k0 ≥ 2, we can choose an orthonormal basis {x j }1≤ j≤7



LAGRANGIAN SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACE 109

for Vv1(0) and an orthonormal basis {y j }1≤ j≤7 for Vv2(0) so that by identifying
e j (v1)= x j and e j (v2)= y j , we have the relations

(9-1) L(e j (v1), el(v2))=−L(v1, e j el(v2))=−L(ele j (v1), v2),

for 1≤ j, l ≤ 7, where the product is defined by the following multiplication table:

. e1 e2 e3 e4 e5 e6 e7

e1 −id e3 −e2 e5 −e4 −e7 e6

e2 −e3 −id e1 e6 e7 −e4 −e5

e3 e2 −e1 −id e7 −e6 e5 −e4

e4 −e5 −e6 −e7 −id e1 e2 e3

e5 e4 −e7 e6 −e1 −id −e3 e2

e6 e7 e4 −e5 −e2 e3 −id −e1

e7 −e6 e5 e4 −e3 −e2 e1 −id

Proof. Let k0≥2 and suppose we have the decomposition (4-6) with dim Vv j (0)=7
(1≤ j ≤ k0).

Denote V j = {v j } ⊕ Vv j (0). First we choose arbitrary orthonormal vectors
x1, x2 ∈ Vv1(0). Next we can use Lemma 4.6 and Lemma 4.7 to consecutively
find unit vectors y1, y2 ∈ Vv2(0), x3 ∈ Vv1(0) and y3 ∈ Vv2(0) satisfying

L(y1, v1)=−L(x1, v2), L(y2, v1)=−L(x2, v2),(9-2)

L(y1, x2)=−L(v2, x3), L(y3, v1)=−L(x3, v2).(9-3)

Now we pick an arbitrary unit vector x4 ∈ Vv1(0) so that it is orthogonal to all
x1, x2 and x3. Then we can take unit vectors x5, x6, x7 ∈ Vv1(0) and unit vectors
y4, y5, y6, y7 ∈ Vv2(0) inductively such that the following hold:

L(x4,y1)=−L(y4,x1)=−L(v2,x5)= L(v1,y5),(9-4)

L(x4,y2)=−L(v2,x6)= L(v1,y6), L(x4,y3)=−L(v2,x7)= L(v1,y7).(9-5)

From the previous equations, together with the isotropy conditions and the
Cauchy–Schwarz inequality, it immediately follows that L(xi , yi ) = L(v1, v2),
for i = 1, . . . 7. Applying once more the same properties it also follows that
L(xi , y j )=−L(x j , yi ) and L(xi , v2)=−L(yi , v1).

From (9-3) and (9-4) it additionally follows that

L(y1, x3)= L(x2, v2), L(x4, v2)= L(x5, y1),

L(x4, y5)=−L(v1, y1), L(x4, v2)= L(x6, y2),

L(x4, y6)=−L(v1, y2), L(x4, v2)= L(x7, y3),

L(x4, y7)=−L(v1, y3).
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Hence L(x4, v2) = L(x5, y1) = L(x6, y2) = L(x7, y3). Repeating now the same
procedure on the newly found identities shows that L has the desired form.

Finally note that the fact that {v1, x1, . . . , x7} and {v2, y1, . . . , y7} are orthonor-
mal can be seen as follows. First, we have

τ 〈x1, x3〉 = 〈L(v2, x3), L(v2, x1)〉 = 〈L(x1, y2), L(v2, x1)〉 = τ 〈v2, y2〉 = 0.

The other equations are obtained similarly. �

Lemma 9.3. Suppose dim D2=m−1≥1 and p=7. If k0≥2 in the decomposition
(4-6), then in fact k0 = 2.

Proof. Suppose on the contrary that k0≥ 3. To choose a basis for Vv3(0), we follow
the same ideas as in Lemma 9.2 for Vv1(0) and Vv2(0). Let x1, x2, x3 be given as
in Lemma 9.2, then we have unique unit vectors z1, z2 ∈ Vv3(0) and x̃3 ∈ Vv1(0)
that satisfy

L(z1, v1)=−L(x1, v3), L(z2, v1)=−L(x2, v3) and L(z1, x2)=−L(v3, x̃3).

Now we pick an arbitrary unit vector x4 ∈ Vv1(0) so that it is orthogonal to
x1, x2, x3 and x̃3. Then we can choose unit vectors x̃5, x̃6, x̃7 ∈ Vv1(0) and vectors
z3, z4, z5, z6, z7 ∈ Vv3(0) inductively by the following conditions:

L(z3, v1)=−L(x̃3, v3),

L(x4, z2)=−L(v3, x̃6)= L(v1, z6),

L(x4, z3)=−L(v3, x̃7)= L(v1, z7),

L(x4, z1)=−L(z4, x1)=−L(v3, x̃5)= L(v1, z5).

Then, similarly to the proof of Lemma 9.2, we get that {z1, z2, z3, z4, z5, z6, z7}

forms an orthonormal basis of Vv3(0) together with the relations between inner
products of L:

(9-6) L(e j (v1), el(v3))=−L(v1, e j el(v3))=−L(ele j (v1), v3), 1≤ j, l ≤ 7,

where e j el denotes a product defined by the multiplication table in Lemma 9.2.
We have two orthonormal bases of Vv1(0), namely {x1, x2, x3, x4, x5, x6, x7} and
{x1, x2, x̃3, x4, x̃5, x̃6, x̃7}. We first show that x̃i = xi for i = 3, 5, 6, 7:

By Lemma 4.8 and the relations between the inner products of L , we get

τ L(y1, z1)= h(L(y1, x2), L(z1, x2))= h(L(v1, y3), L(v1, z3))= τ L(y3, z3).

Similarly, we get L(v2, v3)= L(y j , z j ) for j = 1, . . . , 7.
Since {x1, x2, x3, x4, x5, x6, x7} and {x1, x2, x̃3, x4, x̃5, x̃6, x̃7} are two orthonor-

mal bases for Vv1(0), we may assume that x3 = b3 x̃3+ b5 x̃5+ b6 x̃6+ b7 x̃7. Then
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by Lemma 4.8 and the relations between the inner products of L , we get

τ L(y2, z2)= h(L(v1, y2), L(v1, z2))

=−h(L(x3, y1), L(v1, z2))

= b3h(L(x̃3, y1), L(x̃3, z1))+ b5h(L(x̃5, y1), L(x̃5, z7))

− b6h(L(x̃6, y1), L(x̃6, z4))− b7h(L(x̃7, y1), L(x̃7, z5))

= b3τ L(y1, z1)+ b5τ L(y1, z7)− b6τ L(y1, z4)− b7τ L(y1, z5).

By the relations between the inner products of L , we get L(y1, z1) = L(y2, z2),
and that L(y1, z4), L(y1, z5) and L(y1, z7) are orthogonal to each other. Hence we
get b3 = 1, b5 = b6 = b7 = 0 and x3 = x̃3. By a similar argument, we can prove
that x̃i = xi for i = 5, 6, 7.

In order to complete the proof of Lemma 9.3, we will first use (9-1) and (9-6)
to show that we have also similar relations between the spaces V2 = {v2}⊕Vv2(0)
and V3 = {v3}⊕ Vv3(0), that is,

(9-7) L(e j (v2), el(v3))=−L(v2, e j el(v3))=−L(ele j (v2), v3), 1≤ j, l ≤ 7,

where e j el denotes a product defined by the multiplication table in Lemma 9.2.
For j = l, by Lemma 4.8, (9-1) and (9-6) we have

τ JL(e j (v2), e j (v3))= h(L(e j (v2), ek(v1)), L(e j (v3), ek(v1)))

= h(−L(e j ek(v1), v2),−L(e j ek(v1), v3))= τ JL(v2, v3).

For j 6= l, from the table in Lemma 9.2 we have that there exists a unique k such
that ele j = εek, e j ek = εel, ekel = εe j , where ε is 1 or −1. Then by Lemma 4.8,
(9-1) and (9-6) we have

τ JL(e j (v2), el(v3))= h(L(e j (v2), v1), L(el(v3), v1))

= h(L(−εelek(v2), v1), L(el(v3), v1))

= εh(L(el(v1), ek(v2)),−L(el(v1), v3))

=−ετ JL(ek(v2), v3)=−τ L(ele j (v2), v3)

and

τ JL(v2, e j el(v3))= h
(
L(v2, ek(v1)), L(e j el(v3), ek(v1))

)
= h

(
L(v2, εele j (v1)), L(−εek(v3), ek(v1)))

)
= h

(
L(v1,−εele j (v2)), L(−εv3, v1))

)
= τ JL(ele j (v2), v3).

From (9-1), (9-6), (9-7) and Lemma 4.8 we have

(9-8) h(L(v1, y6)+ L(x1, y7), L(x2, v3))= 0.
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On the other hand, we have

h(L(v1, y6), L(x2, v3))= h(L(v1, y6),−L(v1, z2))=−τ J L(y6, z2),

h(L(x1, y7), L(x2, v3))= h(L(x1, y7),−L(x1, z3))=−τ J L(y7, z3).

These together with (9-8) give that

(9-9) L(y6, z2)+ L(y7, z3)= 0.

From (9-7) we have L(y6, z2)= L(y7, z3). We also have that

〈L(y6, z2), L(y6, z2)〉 = τ,

so we get a contradiction with (9-9). This completes the proof. �

Proof of Theorem 9.1. By Lemma 9.3, we have k0 = 2, m = 8k0 + 1 = 17 and
dim D2 = m− 1= 16.

Let {v1, v2, x j , y j | 1≤ j ≤ 7} be the orthonormal basis of D2 as constructed in
Lemma 9.2, whose elements satisfy (9-1). Define L1= L(v1, v1)−L(v2, v2), then
direct calculation shows that

(9-10) 〈L1, L1〉 = 4τ 6= 0.

We now easily see that the nine vectors

w0 =
1

2
√
τ

L1, w1 =
1
√
τ

L(v1, v2) and w j+1 =
1
√
τ

L(v1, y j ), 1≤ j ≤ 7,

in Im(L)⊂ D3 are orthonormal one to another.
Note that Tr L=8(L(v1, v1)+L(v2, v2)) is orthogonal to the above nine vectors.

Using (3-3) and (3-4), the vector Tr L obviously satisfies

1
64〈Tr L ,Tr L〉 = 1

2 k0η(λ1+ (k0− 1)µ)= η(λ1+µ)=: ρ
2, ρ ≥ 0.

Then we have the conclusion

n = 1+ dim D2+ dim D3 ≥ 1+ 16+ 9= 26,

and as proved in previous sections we see that n = 26 if and only if Tr L = 0.
When n = 27 or n ≥ 28, we can still define a unit vector t = 1

8ρTr L . As before
we get the same expressions as in Lemma 6.3, 6.4 and 6.5 which allows us to
conclude that M is locally the Calabi product of a point with a lower-dimensional
Lagrangian submanifold with parallel second fundamental form, or the Calabi
product of two lower-dimensional Lagrangian submanifolds with parallel second
fundamental form. �
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10. The remaining cases

In this section we will complete the proof of the classification theorem. Let k =
k0+ 1, we will show that if M is neither totally geodesic nor can be decomposed
as a Calabi product then one of the following applies:

(i) n = 1
2 k(k+ 1)− 1, k ≥ 3, and M is congruent with SU(k)/SO(k).

(ii) n = k2
− 1, k ≥ 3, and M is congruent with SU(k).

(iii) n = 2k2
− k− 1, k ≥ 3, and M is congruent with SU

(
2k
)
/Sp(k).

(iv) n = 26 and M is congruent with E6/F4.

From Naitoh [1981b; 1983a; 1983b] we see that there indeed exist parallel im-
mersions of the above spaces of the previously mentioned dimensions into the
complex projective space.

From the previous remaining sections, each of the resulting cases corresponds
to one of the cases p = 0, 1, 3, 7 with D32 = {0} (from Lemma 6.2, Lemma 7.5,
Lemma 8.6 and the arguments in Section 9) and Tr L vanishing. Note that in each
of the above cases, the vanishing of Tr L allows to determine λ1 explicitly. We
also have in each of the cases a basis and we can compute the components of the
second fundamental form from Lemmas 3.2, 3.4 and 4.8. For example in the case
of p= 0, this basis is spanned by

{e1, v1, . . . , vk0, L(v j , v j )|1≤ j≤k0−1, L(v j , vk) | 1≤ j < k ≤ k0}.

As M is parallel we can extend this basis using parallel translation thus obtaining
the same expression of the second fundamental form at every point. Applying
then the lemma of Cartan, as the previously mentioned spaces are also parallel and
therefore must admit a similar basis, shows that M is isometric with one of the pre-
viously mentioned spaces. Finally applying the uniqueness result for Lagrangian
immersions shows also that the immersion of M is congruent to one of Naitoh’s
examples.
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