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Given an action G
ρ
y T by a finitely generated group on a locally finite tree,

we view points of the visual boundary ∂T as directions in T and use ρ to
lift this sense of direction to G. For each point E ∈ ∂T , this allows us to ask
whether G is (n− 1)-connected “in the direction of E.” Then the invariant
6n(ρ) ⊆ ∂T records the set of directions in which G is (n− 1)-connected.
We introduce a family of actions for which 61(ρ) can be calculated through
analysis of certain quotient maps between trees. We show that for actions
of this sort, under reasonable hypotheses, 61(ρ) consists of no more than
a single point. By strengthening the hypotheses, we characterize precisely
when a given end point lies in 6n(ρ) for any n.

1. Introduction

Let G be a group having type Fn ,1 and let M be a proper CAT(0) metric space.2 Let
ρ :G→ Isom(M) be an action by isometries. Bieri and Geoghegan [2003a] intro-
duce a collection of geometric 6-invariants, 6n(ρ), n ≥ 0. These arise naturally
from the study of the Bieri–Neumann–Strebel–Renz (BNSR) invariants 6n(G),
which can then be viewed as a special case. 6-invariants give topological insight
into ρ and algebraic information about G. In particular, if ρ has discrete orbits and
G is finitely generated, then 61(ρ)= ∂M if and only if the point stabilizers under
ρ are finitely generated; more generally, if G has type Fn , then 6n(ρ)= ∂M if and
only if the point stabilizers under ρ have type Fn .3

MSC2010: 20E08, 20F65.
Keywords: BNSR invariant, controlled connectivity, Bieri–Geoghegan invariant, trees, finiteness

properties, boundary at infinity.
1By definition, G has type Fn if and only if there exists a K (G, 1)-complex with finite n-skeleton.

This is equivalent to saying that there is an n-dimensional (n−1)-connected CW-complex on which
G acts freely and cocompactly by permuting cells. All groups have type F0, while type F1 is equi-
valent to finitely generated and type F2 is equivalent to finitely presented [Geoghegan 2008, §7.2].

2A CAT(0) space is a geodesic metric space whose geodesic triangles are no fatter than the corre-
sponding “comparison triangles” in the Euclidean plane, and a metric space is proper if every closed
ball is compact [Bridson and Haefliger 1999, Chapter II.1].

3See [Bieri and Geoghegan 2003a, Theorem A and the Boundary Criterion]; the required condi-
tion “almost geodesically complete” is ensured by cocompactness [Ontaneda 2005, Theorem B].
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The invariant 6n(ρ) depends on a notion of controlled connectivity, which we
describe briefly here.4 The action ρ can be used to impose a sense of direction on
G as follows. The space M has a CAT(0) boundary ∂M , which is in one-to-one
correspondence with the collection of geodesic rays emanating from any particular
point of M . Thus ∂M encompasses the set of directions in M in which one can
go to infinity. For an end point E ∈ ∂M , there is a nested sequence of subsets of
M (called horoballs about E). This nested sequence provides a filtration of M .
Because G has type Fn , there is an n-dimensional (n−1)-connected CW-complex
X on which G acts freely and cocompactly by permuting cells. One can then
choose a G-equivariant “control” map h : X → M . With E ∈ ∂M fixed, h allows
us to lift the sense of direction from M up to X (and therefore G by proxy) by
taking the preimages of horoballs about E . If, roughly speaking, the preimages of
the horoballs about E are (n− 1)-connected, the action ρ is said to be controlled
(n − 1)-connected or CCn−1 over E .5 The precise definition ensures that this is
independent of choice of X or h, and is in fact a property of ρ [Bieri and Geoghegan
2003a, §3.2].

For n ≥ 0, the invariant 6n(ρ) consists of all those end points over which ρ is
CCn−1. These form a nested family

60(ρ)⊇61(ρ)⊇62(ρ) . . . .

The action ρ induces a topological action by G on ∂M , under which 6n(ρ) is
invariant. Those familiar with the BNSR invariant6n(G)may recall that the BNSR
invariant is an open subset of the boundary, which in the original case is a sphere.
The Bieri–Geoghegan invariant 6n(ρ) is in general not open in ∂M .

Bieri and Geoghegan calculate 6n for the modular group acting on the hyper-
bolic plane [2003b], and provide information about 6n for actions on trees by
metabelian groups of finite Prüfer rank [2003a, Chapter 10, Example C]. Rehn
[2007] provides calculations for the natural action by SLn(Z[1/k]) on the sym-
metric space for SLn(R).

In the case where M is a locally finite simplicial tree, Bieri and Geoghegan
[2003a] ask whether61(ρ) is always either empty, a singleton, or the entire bound-
ary of the tree. (The “entire boundary” case has been discussed above.) Lehnert
[2009] gives an example for which this is not the case. However, here we illustrate
that there does exist a class of actions for which 6n is either empty or a singleton.

Main result. All trees are assumed to be simplicial trees viewed as CAT(0) metric
spaces, by giving each edge a length of 1. All actions under consideration are
by simplicial automorphisms, and therefore are by isometries. Also, we assume

4The technical definition is provided in Section 2.
5For n = 0, we take (−1)-connected to mean nonempty.
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that actions are without inversions — that is, an edge is stabilized if and only if
it is fixed pointwise — since we can simply pass to the barycentric subdivision
otherwise. Any tree exhibiting such an action by a group G is called a G-tree. We
assume that all G-trees are infinite and that G is always finitely generated.

A group action on a tree is minimal if there exists no proper invariant subtree.
A cocompact action on an infinite tree is minimal if and only if the tree has no
leaves. We define a morphism of trees to mean a map between two trees that
sends vertices to vertices and edges to edges and that preserves adjacency. All
maps between G-trees are assumed to be G-equivariant morphisms of trees, and
therefore continuous. The star of a vertex is the set of edges adjacent to that vertex,
and a morphism is locally surjective or locally injective if, for each vertex of the
domain tree, the corresponding map between stars is surjective or injective. See
[Bass 1993] for further discussion. In the context of morphisms of trees (as opposed
to graphs), local injectivity is equivalent to injectivity, and local surjectivity implies
surjectivity. A tree is locally finite if the star of each vertex is finite; such trees are
proper metric spaces.

Theorem 1.1 (Main Theorem). Let G be a finitely generated group, T a locally
finite tree, and G

ρ
y T a cocompact action by isometries. If there exists a minimal

G-tree T̃ and a G-morphism q : T̃ → T that is locally surjective, but not locally
injective, then 61(ρ) consists of at most a single point of ∂T .

We do not require T̃ to be locally finite, because it is irrelevant to us whether T̃
is proper as a metric space. Also, the map q : T̃ → T does not generally extend to
a map ∂ T̃ → ∂T , because geodesic rays may be collapsed to finite paths by q .

As mentioned in the introduction,61(ρ) is a G-invariant subset of ∂T . Hence, if
the conditions of the Main Theorem apply and there does exist a point E0 ∈6

1(ρ),
then E0 is necessarily fixed by ρ. In some cases, this allows us to easily determine
that 61(ρ) is empty, as in the following examples.

Example 1.2. Let G be the group given by the presentation

G = 〈a, s, t | as
= a2, at

= a3
〉.

As is clear from this presentation, G can be realized as a fundamental group of a
graph of groups, where the graph is a 2-rose (a single vertex with two loops). The
Bass–Serre tree T̃ associated with this graph of groups decomposition is a regular
7-valent tree. Let N be the normal closure of a. Then N consists of all elements of
G that stabilize a vertex in T̃ . The quotient group G/N is free on two generators
and acts freely on T = N\T̃ with quotient a 2-rose of circles, so T is a regular
4-valent tree. Figure 1 demonstrates the collapsing on a neighborhood of a vertex
in T̃ . (One can take T to be the Cayley graph of G/N .) The natural quotient map
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q

T̃ T

Figure 1. G admits a normal subgroup N , whose action on T̃
collapses T̃ to T .

T̃ → T satisfies the conditions of the Main Theorem, and no end point E ∈ ∂T is
fixed by ρ. Hence 61(ρ)=∅.

This example can be generalized to any nonfree group with a graph of groups
decomposition over a graph containing a single vertex. Such a group always has a
free quotient obtained by collapsing the normal closure of the subgroup associated
with the vertex, and as above, the Cayley graph of this free group can be viewed
as the quotient of the original Bass–Serre tree.

Example 1.3. One of Lehnert’s counterexamples to the question of whether 61

must be either ∅, a singleton, or ∂T in the case of simplicial trees is closely related
to the group G discussed in Example 1.2. Let H =Z[16 ]oF2(x, y), where F2(x, y)
is a free group generated by the letters x and y. One obtains H from G by adding
relations corresponding to the commutator subgroup of N . The semidirect product
structure is given by t x

= t/2 and t y
= t/3 for t ∈ Z[16 ]. This group acts on

the same tree T , by viewing it as the Cayley graph of its factor F2(x, y), and
one can represent points in ∂T by infinite reduced words in F2(x, y). Any point
represented by an infinite word eventually consisting of only x or only y does
not lie in 61 [Lehnert 2009]; this is a consequence of the interplay between the
actions by F2(x, y) on Z[16 ] and on T . The author has a proof of this result in a
paper currently in preparation, which is based on the topological construction of
the Bass–Serre tree [Scott and Wall 1979; Geoghegan 2008, Chapter 6] and distinct
in flavor from both the contents of this paper and the proof in [Lehnert 2009].

Evidently, for the action H y T , there exists no T̃ and q : T̃ → T as described
in the Main Theorem.

Example 1.4. Here is an example where T̃ is not locally finite. Let K4 = Z2⊕Z2

be the Klein 4-group, and let D∞ = Z2 ∗ Z2 be the infinite dihedral group. Take
the quotient map π : D∞ ∗ D∞ � K4 ∗ K4, induced by performing the abelian-
ization map D∞ � K4 on each free factor of D∞ ∗ D∞. There is an action
ρ̃ : D∞ ∗ D∞→Aut(T̃ ), where T̃ (a regular∞-valent tree) is the Bass–Serre tree
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corresponding to the given free product decomposition. There is also an action
ρ : D∞ ∗ D∞→ Aut(T ), where T , a regular 4-valent tree, is the Bass–Serre tree
for K4 ∗ K4; this action factors through π . We can realize T as a quotient of T̃
satisfying the conditions of the Main Theorem. Again, because no point of ∂T
is fixed by ρ, it follows that 61(ρ) is empty. This example is of a kind initially
pointed out to the author by Mike Mihalik.

This, too, can be generalized: if A1 and A2 are two finitely generated infinite
groups that admit finite quotients Q1 and Q2, respectively, then G = A1 ∗ A2

admits a quotient map π : G → Q1 ∗ Q2. While G acts on the Bass–Serre tree
T̃ corresponding to the decomposition A1 ∗ A2, it also acts on ker π\T̃ , which is
isomorphic to the Bass–Serre tree corresponding to Q1 ∗ Q2.

Example 1.5. More generally, there is a notion of a morphism of graphs of groups
(essentially, a morphism of graphs together with a collection of homomorphisms
of vertex and edge groups that ensure that certain squares commute), which lifts to
an equivariant morphism between the corresponding Bass–Serre trees [Bass 1993,
Proposition 2.4], and one can determine whether the lift will be locally surjective
and not locally injective [Bass 1993, Corollary 2.5]. This can be used to produce
maps satisfying the conditions of the Main Theorem. For example, consider the
Baumslag–Solitar groups BS(m, n) = 〈a, t | tam t−1

= an
〉. There is a projection

map BS(2, 4)� BS(1, 2) obtained by adding the relation tat−1a−2. One can show
that this corresponds to a morphism of graphs of groups that lifts to a map between
the corresponding Bass–Serre trees and has the desired properties.

Applying [Bieri and Geoghegan 2003a, Theorems A and H], we have:

Corollary 1.6. If G
ρ
y T satisfies the conditions of the Main Theorem, then for

any point z ∈ T , the stabilizer Gz of z under the action ρ is not finitely generated.

Collapsing pairs. Recall that, in the language of [Serre 1980, Chapter I.2], each
geometric edge of T corresponds to two oriented edges, one pointing in either
direction.

Remark 1.7. We use the lowercase e to refer to edges of T , oriented or not, and
the uppercase E to refer to points of ∂T .

Definition 1.8. Under the hypotheses of the Main Theorem, let (ẽ1, ẽ2) be a pair of
adjacent distinct oriented edges in T̃ with common initial vertex ṽ. If q(ẽ1)=q(ẽ2),
we call this a collapsing pair (of edges) under q. Let e = q(ẽ1) be the resulting
oriented edge in T . For a vertex w ∈ T (or end point E ∈ ∂T ), we say the pair
(ẽ1, ẽ2) facesw (resp. E) if e points towardw (resp. E). This is the same as saying
that the geodesic from q(ṽ) to w (resp. E) passes through e.
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The proof of the Main Theorem follows from two facts: Proposition 3.8 states
that because q is not locally injective, all end points of T (with the possible ex-
ception of a single end point) are faced by a collapsing pair, while Proposition 3.4
states that local surjectivity of q forces any end point of T faced by a collapsing
pair to lie outside 61(ρ).

The case where stabilizers on T̃ have type Fn. If we add the condition that the
stabilizers under ρ̃ have type Fn , then we can prove that a point E ∈ ∂T that is not
faced by a collapsing pair lies in 6n(ρ).

Theorem 1.9. Assume the conditions of the Main Theorem. Also, suppose that G
has type Fn and that for each point z̃ of T̃ , the stabilizer G z̃ has type Fn , for n > 0.
Then E ∈ ∂T lies in 6n(ρ) if and only if there is no collapsing pair facing E.

Corollary 1.10. Let the group H have type Fn , and let ϕ : H → H be injective,
so that G = 〈H, t | at

= ϕ(a) for all a ∈ H〉 is an ascending HNN-extension. If
χ : G � Z maps t 7→ 1 and 〈〈H〉〉 7→ 0, then χ represents a point in 6n(G).

This corollary is not new [Meinert 1996; 1997], but the approach is. For further
discussion on this result, see [Bieri et al. 2010].

2. Controlled connectivity

In a CAT(0) space M , there is a notion of a (visual) boundary ∂M , which is
obtained by taking equivalence classes of geodesic rays [Bridson and Haefliger
1999, Chapter II.8]. This boundary carries a topology, called the cone topology,
induced by the topology on M . We call points of ∂M end points. CAT(0) spaces
are contractible, and the boundary of a proper CAT(0) space is a compact space.
Let τ be a geodesic ray in M . Following [Bieri and Geoghegan 2003a], we define
the Busemann function βτ : M→ R by

βτ (p)= lim
t→∞

(t − d(τ (t), p)).

For r ∈R, the set H Br (τ )=βτ
−1([r,∞)) is called a horoball around E . Horoballs

in CAT(0) spaces are contractible. We can view H Br (τ ) as the nested union of
closed balls

⋃
k≥max{0,r} Bk−r (τ (k)).

Definition 2.1. Fix n ∈N. Let G be a group having type Fn , and let M be a proper
CAT(0) space admitting an isometric action G

ρ
y M . Choose an n-dimensional

(n− 1)-connected CW-complex Xn on which X acts freely and cocompactly, and
choose a continuous G-map h : Xn

→ M . We call h a control map; one can be
found because the action by G on Xn is free and M is contractible. Fix a geodesic
ray τ representing E ∈ ∂M . For a horoball H Br (τ ) about E , denote the largest
subcomplex of Xn contained in h−1(H Br (τ )) by X(τ,r). Finally, we need a notion
of lag function: any λ(r) > 0 satisfying r − λ(r)→∞ as r→∞ is called a lag.
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We say ρ is controlled (n−1)-connected, or CCn−1, over E if for all r ∈R and
all −1 ≤ p ≤ (n − 1), there exists a lag λ such that every map f : S p

→ X(τ,r)
extends to a map f̃ : B p+1

→ X(τ,r−λ(r)).6

Definition 2.2. The Bieri–Geoghegan invariant 6n(ρ) is the subset of ∂M con-
sisting of all end points over which ρ is controlled (n− 1)-connected.

Relationship to the BNSR invariant. If ρ fixes an end point E , then the pair (ρ, E)
determines a homomorphism χρ,E : G → R, and E lies in 61(ρ) if and only if
χρ,E represents a point in 61(G) [Bieri and Geoghegan 2003a, §10.6]. In fact, we
can obtain the classical BNSR invariant 6n(G) as the special case where ρ is the
action G y Gab⊗R [Bieri and Geoghegan 2003a, Chapter 10, Example A]. This
is an action by translations on a finite-dimensional real vector space, so every end
point is fixed, and ∂(Gab⊗R)∼= Hom(G,R).

The question of finding a single technique for calculating61 for arbitrary group
actions on trees seems out of reach currently. To see this, consider an action G

ρ
y T

by translations, where T is a simplicial line. This corresponds to a homomorphism
χ : G � Z, and calculating 61(ρ) determines whether χ and −χ represent points
of 61(G). However, it is known that ker χ is finitely generated if and only if both
do represent points of 61(G) [Bieri et al. 1987, Theorem B1]. Thus a method for
calculating 61(ρ) even in the special case where the tree is a simplicial line would
enable us to determine whether or not the kernel of an arbitrary homomorphism to
Z is finitely generated.

3. Proof of the Main Theorem

An automorphism s of a tree T having no fixed point is said to be hyperbolic. For
each such s, there is a unique line As , called the axis of s, stable under the action
of the subgroup 〈s〉, that acts on As by translations. If e is an oriented edge of T ,
then s is said to act coherently on e if e and se are consistently oriented (that is, if
they point in the same direction — neither toward each other nor away from each
other). For an automorphism s, if e 6= se, then s acts coherently on e if and only if
s is hyperbolic and both e and se lie on the axis of s [Serre 1980, Proposition 25].

Lemma 3.1. Let T be a cocompact G-tree, and let E ∈ ∂T . Then for any geodesic
ray τ representing E , any r ∈ R, and any oriented edge e of T oriented toward E ,
there exists an element of the G-orbit of e that is oriented toward E and does not
lie in H Br (τ ).

Proof. The ray of oriented edges beginning at e and representing E , with all
edges pointing toward E , contains infinitely many edges. Because the action is

6By convention, S−1
=∅, and (−1)-connected means “nonempty”.
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cocompact, the pigeon-hole principle ensures that there must be edges e1 and e2

from this ray in the same G-orbit. Hence, there is an h ∈G with he1= e2. Because
e1 and e2 are consistently oriented, h is hyperbolic. Let v1 be the terminus of e1 (the
vertex of e1 where βτ is maximized). By choosing k ∈Z such that |k|>βτ (v1)−r
and hk moves e1 away from E , we ensure that hke1 is oriented toward E and does
not lie in H Br (τ ). Thus hke is the edge we seek. �

Observation 3.2. For trees T̃ and T , let q : T̃ → T be locally surjective. If
τ = (e0, e1, . . . ) is a geodesic edge ray in T and ẽ0 is an edge of T̃ satisfying
q(ẽ0)= e0, then there exists a lift τ̃ of τ to T̃ having initial edge ẽ0 and that is also
a geodesic edge ray.

Observation 3.3. Given a nonempty connected G-graph 0 and minimal G-tree T ,
any G-morphism h : 0→ T is surjective.

Proposition 3.4. Let T be a cocompact G-tree, and let T̃ be a minimal G-tree.
Suppose q : T̃ → T is a G-morphism that is locally surjective. If E ∈ ∂T is such
that there exists a collapsing pair facing E , then E does not lie in 61(ρ).

Proof. Let 0 be a free cocompact G-graph, and choose any G-morphism h :0→ T̃ .
Then the composition q ◦ h is a suitable control map for determining controlled
connectivity over E .

Let τ : [0,∞)→ T be a geodesic edge ray representing E . We show that for
any lag λ > 0, there exist points in the subgraph 0(τ,0) that cannot be connected
via a path in 0(τ,−λ).

By Lemma 3.1, we can choose a collapsing pair (ẽ1, ẽ2) facing E but whose
image in T does not lie in H B−λ(τ ). Let ṽ be the vertex shared by ẽ1 and ẽ2, and
let v be its image in T . Let γ be the geodesic ray representing E and emanating
from v. By Observation 3.2, there exist two distinct lifts γ̃i (i = 1, 2) of γ to T̃ ,
with γ̃i having initial edge ẽi . Because γ and τ both represent E , they eventually
merge, so that γ intersects H Br (τ ) nontrivially for all r ∈ R. Hence, both γ̃1 and
γ̃2 intersect q−1(H Br (τ )) for all r .

By design, γ̃1 ∩ γ̃2 = ṽ, and γ̃1 ∪ γ̃2 is a line. By Observation 3.3, h is onto, so
that γ̃1 ∪ γ̃2 lies in the image of h. Choose a vertex ỹi ∈ γ̃i ∩ q−1(H B0(τ )), and
choose xi ∈ h−1(ỹi ). Then both xi lie in 0(τ,0), but any path through 0(τ,−λ) joining
x1 to x2 would be mapped to a path in q−1(H B−λ(τ )) joining ỹ1 to ỹ2. Since T̃ is
a tree, no such path exists. �

Lemma 3.5. Let T be a minimal G-tree and let E be a nonempty G-invariant set of
oriented edges. Then there is no vertex v in T such that all edges of E are oriented
away from v.

Proof. The full subtree of T on the vertex subset

{v | each edge of E is oriented away from v}
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is a proper G-invariant subtree. By minimality, this set must be empty. �

Corollary 3.6. Let T be a cocompact G-tree and let T̃ be a minimal G-tree. Let
q : T̃ → T be a G-morphism that is surjective but not locally injective. Then every
vertex of T is faced by a collapsing pair.

Proof. Let Ẽ be the set of oriented edges of T̃ that are part of a collapsing pair.
This is a G-invariant set, and it is nonempty because q is not locally injective.
By Lemma 3.5, each vertex ṽ of T̃ must therefore have an edge ẽ in Ẽ oriented
toward ṽ. Set v= q(ṽ). Then if q(ẽ) is not oriented toward v, the image of the path
from ẽ to ṽ must contain points of backtracking. The point of backtracking closest
to v gives rise to a collapsing pair facing v. Because q is surjective, all vertices of
T are of this form. �

Observation 3.7. If a cocompact G-tree T has a nonempty G-invariant subtree T ′,
then T is a Hausdorff neighborhood of T ′. Hence, T and T ′ have the same set of
end points.

Proposition 3.8. Let T be a cocompact G-tree and let T̃ be a minimal G-tree.
Suppose q : T̃ → T is a G-morphism that is not locally injective. Then there exists
at most one point E0 ∈ ∂T such that no collapsing pairs face E0.

Proof. By Observation 3.7, the ends of T and the ends of q(T̃ ) are the same, so
we may assume q is surjective. By Corollary 3.6, each vertex of T is faced by a
collapsing pair in T̃ . If two points of ∂T were not faced by a collapsing pair, then
no vertex on the line between them would be faced by a collapsing pair. Hence,
there can be at most one point of ∂T not faced by a collapsing pair. �

This proposition has an interesting consequence. If such an end E0 exists, it must
clearly be fixed by ρ. Yet points of the boundary that are fixed by ρ correspond
to homomorphisms G→ R, and such an end point lies in 6n(ρ) if and only if the
corresponding homomorphism lies in the BNSR invariant 6n(G), as discussed in
Section 2. Since we only consider simplicial trees, such points in fact correspond
to homomorphisms G � Z.

Corollary 3.9. Under the conditions of Proposition 3.8, if an end point E0 ∈ ∂T is
faced by no collapsing pair in T̃ , then there exists a canonically associated discrete
character χ : G→ Z such that E0 ∈ 6

n(ρ) if and only if [χ ] ∈ 6n(G), the BNSR
invariant.

Proof of the Main Theorem. Because q is not locally injective, Proposition 3.8
ensures that there is at most one end point faced by a collapsing pair. Because q is
locally surjective, Proposition 3.4 ensures that every end point faced by a collapsing
pair lies outside 61(ρ). �
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The case where stabilizers under ρ̃ have type Fn. Recall the topological con-
struction of the Bass–Serre tree, discussed in [Geoghegan 2008, §6.2; Scott and
Wall 1979]: the action ρ̃ corresponds to a graph of groups decomposition of G.
From this we can build a K (G, 1) X admitting the quotient G\T̃ as a retract. Let
p : X̃ � X be the universal covering projection. There is a natural G-map h : X̃�T̃ ,
and it is clear from the construction of h that h−1(A) ⊆ X̃ is contractible for any
connected subset A ⊆ T̃ . If for an integer n ≥ 1 all point stabilizers under ρ̃ have
type Fn , then we can take X to have compact n-skeleton. Hence, letting 0 be the
n-skeleton of X̃ , the composition h̄ = q ◦ h|0 : 0→ T is an appropriate control
map for ρ.

Definition 3.10. While the map q does not induce a map ∂ T̃→ ∂T , each geodesic
ray in T can be lifted to one or more geodesic rays in T̃ (see Observation 3.2)
as long as q is locally surjective. Hence, given E ∈ ∂T , we can consider the set
q−1(E)⊆ ∂ T̃ of end points represented by lifts of rays representing E .

Lemma 3.11. If q is locally surjective, then q−1(E) is a singleton if and only if
there are no collapsing pairs facing E.

Proof. Suppose that q−1(E) is not a singleton. Then for τ representing E , there
exist two distinct lifts τ̃1 and τ̃2, representing distinct points Ẽ1 and Ẽ2 of ∂ T̃ . If
these lifts are not disjoint, then where they split (as they must, eventually) there
is a collapsing pair facing E . If they are disjoint, consider the geodesic path P
through T̃ connecting them. The image of P in T is a finite subtree of T . Choose
any vertex v 6= τ(0) that is a leaf of this subtree. This leaf and the corresponding
edge lie under a collapsing pair of edges of P facing E .

Now suppose there is a collapsing pair (ẽ1, ẽ2) of edges of T̃ facing E . Let e
be their common image in T , and let ζ be the geodesic ray in T representing E
and beginning with the edge e. Then there are distinct lifts ζ̃1 and ζ̃2 of ζ , each
representing a distinct end point of T̃ . Hence q−1(E) is not a singleton. �

Proof of Theorem 1.9. If there is a collapsing pair facing E , then by Proposition 3.4,
E 6∈61(ρ).

If there is no collapsing pair facing E , we take the control map h̄ described
above. By construction of h̄, we need only show that q−1(H Br (τ )) is connected
for any horoball H Br (τ ) about E .

For i = 1, 2, let z̃i be a point in q−1(H Br (τ )), and let zi be its image in T . We
find a path between z̃1 and z̃2 lying in q−1(H Br (τ )).

There is a unique geodesic ray ζi in T that emanates from zi and represents E .
Let ζ̃i be the lift of ζi to T̃ emanating from z̃i . Since ζi lies in H Br (τ ), ζ̃i lies in
q−1(H Br (τ )). Also, since q−1(E) is a singleton, ζ̃1(∞)= ζ̃2(∞). Hence, ζ̃1 and
ζ̃2 must eventually merge. The closure of (im ζ̃1 ∪ im ζ̃2)− (im ζ̃1 ∩ im ζ̃2) is the
geodesic connecting z̃1 to z̃2. �
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