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We classify the 3-dimensional hyperbolic polyhedral orbifolds that contain
no embedded essential 2-suborbifolds, up to decomposition along embed-
ded hyperbolic triangle orbifolds (turnovers). We give a necessary condi-
tion for a 3-dimensional hyperbolic polyhedral orbifold to contain an im-
mersed (singular) hyperbolic turnover, we classify the triangle subgroups of
the fundamental groups of orientable 3-dimensional hyperbolic tetrahedral
orbifolds in the case when all of the vertices of the tetrahedra are nonfinite,
and we provide a conjectural classification of all the triangle subgroups of
the fundamental groups of orientable 3-dimensional hyperbolic polyhedral
orbifolds. Finally, we show that any triangle subgroup of a (nonorientable)
3-dimensional hyperbolic reflection group arises from a triangle reflection
subgroup.

1. Introduction

Let P be a finite volume 3-dimensional hyperbolic Coxeter polyhedron. That is, P
is the finite volume intersection of a finite collection of half-spaces in hyperbolic 3-
space H3 in which the bounding planes of each pair of intersecting half-spaces meet
at an angle of the form π/n, where n≥ 2 is an integer (the geodesic of intersection
is called an edge of P , and the angle of intersection is called the dihedral angle of
P along this edge). Then the group of isometries of H3 generated by the reflections
in the faces of P is a discrete group that acts on H3 with fundamental domain P .
Let 0 be the subgroup of index two in this reflection group generated by all the
rotations of the form rs, where r and s are the reflections through two intersecting
planes that support P . We denote by OP the quotient space H3/0. Then OP is
an orientable hyperbolic 3-orbifold called a hyperbolic polyhedral orbifold. The
group 0 is sometimes denoted by π1(OP) and called the fundamental group of OP .
We call P a hyperbolic reflection polyhedron.

A small hyperbolic reflection polyhedron corresponds to a hyperbolic 3-dimen-
sional polyhedral orbifold that contains no embedded essential 2-suborbifolds, up
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Figure 1. The small Coxeter polyhedra in H3.

to decomposition along embedded triangular 2-suborbifolds (Definition 2.1). We
classify these polyhedra (see Figure 1):

Theorem 1.1. A 3-dimensional hyperbolic reflection polyhedron is small if and
only if it is a generalized tetrahedron.

We also determine those hyperbolic polyhedral orbifolds that contain an im-
mersed (singular) hyperbolic triangular 2-suborbifold. This result is a generaliza-
tion of the partial classification of triangle groups inside of arithmetic hyperbolic
tetrahedral reflection groups given in [Maclachlan 1996]. In Section 4, we will
provide a conjectural list of all the possibilities for immersed turnovers in all poly-
hedral orbifolds:

Theorem 1.2. If a hyperbolic polyhedral 3-orbifold contains a singular hyperbolic
turnover that does not cover an embedded hyperbolic turnover, then at least one
component of its Dunbar decomposition is a generalized tetrahedron, and the im-
mersed turnover is contained in a unique such component. Furthermore, if T is
a generalized tetrahedron with all nonfinite vertices and whose associated polyhe-
dral 3-orbifold contains an immersed turnover, then, up to symmetry, T is of the
form T [2,m, q; 2, p, 3] (in the notation described in Section 4) with m ≥ 6, q ≥ 3
and p ≥ 6, and the immersed turnover has singular points of orders m, q and p.

We also determine the triangle subgroups of 3-dimensional hyperbolic reflection
groups as arising from triangle reflection subgroups:

Theorem 1.3. Any (orientable) hyperbolic triangle subgroup of a (nonorientable)
3-dimensional hyperbolic reflection group G arises as a subgroup of index two of
a (nonorientable) hyperbolic triangle reflection subgroup of G.

Essential surfaces play an integral role in low-dimensional topology and geom-
etry. One of the most important instances of this fact is the proof of Thurston’s
hyperbolization theorem for Haken 3-manifolds [Thurston 1982; Morgan 1984].
In brief, Thurston’s Theorem is proved by decomposing a given 3-manifold M
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(which is called Haken if it contains an essential surface) along such surfaces as
part of a finite-step process that ends in topological solid balls, from which the
hyperbolic structure on M (whose existence is claimed by the theorem) is then, in
a sense, reverse-engineered.

One difficulty that arises in attempting to extend the utility of essential sur-
faces to the orbifold setting is the possible presence of triangular hyperbolic 2-
dimensional suborbifolds called hyperbolic turnovers. For example, whereas an
irreducible 3-manifold with nonempty and nonspherical boundary always contains
an essential surface, this is not always the case in the orbifold setting, with hyper-
bolic turnovers presenting the principal barrier. Thurston’s original definition of a
Haken 3-orbifold was given for nonorientable 3-orbifolds with underlying space
the 3-ball and with singular locus equal to the boundary of the ball [Thurston 1979,
Section 13.5, p. 324]. (The singular locus, in this instance, was meant to correspond
to the boundary of a polyhedron.) Subsequent formulations of the definition of
Haken (“sufficiently large” in [Dunbar 1988, Glossary] or “Haken” in [Boileau
et al. 2003, Section 4.2, Remark]) were given for the orientable case and take into
account the difficulties that arise from hyperbolic turnovers. Theorem 1.1, which
is proved using the same observations that Thurston used to determine 3-orbifolds
with the combinatorial type of a simplex as the original non-Haken polyhedral
orbifolds, echoes Thurston’s original result [1979, Proposition 13.5.2], with respect
to this evolution of the language.

2. Definitions

There are several excellent references for orbifolds, such as [Boileau et al. 2003;
Cooper et al. 2000]. All of the 3-orbifolds considered in this paper are either
orientable hyperbolic polyhedral 3-orbifolds or the result of cutting an orientable
hyperbolic polyhedral 3-orbifold along a finite set of totally geodesic hyperbolic
turnovers or totally geodesic hyperbolic triangles with mirrored sides. A hyper-
bolic polyhedral 3-orbifold OP is geometrically just two copies of its associated
hyperbolic polyhedron P with the corresponding sides of the two copies identified.
Therefore, OP is a complete metric space of constant curvature −1 except along
a 1-dimensional singular subset which is locally cone-like. If P is compact, OP

is topologically a 3-sphere together with a trivalent planar graph (corresponding
to the 1-skeleton of P) with each edge marked by a positive integer to represent
the submultiple of π of the dihedral angle at the corresponding edge of P . If P
is noncompact with finite volume, then its ideal vertices correspond to trivalent or
quadrivalent vertices in the planar graph (again, corresponding to the 1-skeleton of
P) and the sum of the reciprocals of the incident edge marks at each such vertex
is equal to one or two, according to whether the vertex is trivalent or quadrivalent.
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In the noncompact case, OP is topologically the result of taking a 3-sphere with this
marked graph and removing a (closed) 3-ball neighborhood from each ideal vertex.
The statements about the combinatorics of hyperbolic polyhedra in this paragraph
are consequences of Andreev’s Theorem [1970a; 1970b] (see also [Roeder et al.
2007; Thurston 1979, Section 13.6; 1992]).

A (closed) orientable 2-orbifold is topologically a closed orientable surface with
some finite set of its points marked by positive integers (greater than one). Every
such 2-orbifold can be realized as a complete metric space of constant curvature
with cone-like singularities at the marked points, and where the sign of the cur-
vature depends only on the topology of the underlying surface together with the
markings. A 2-orbifold is called spherical, Euclidean or hyperbolic according to
the sign of its constant curvature realization. A turnover is a 2-orbifold that is
topologically a 2-sphere with three marked points, and a hyperbolic turnover is a
turnover for which the reciprocal sum of the integer markings is less than one.

Although we will seldom deal with nonorientable objects, we define a hyper-
bolic triangle with mirrored sides as a topological closed disk whose boundary is
marked with three distinct points, each point labeled by an integer greater than
one and such that the sum of the reciprocals of these integers is less than one, and
with the connecting intervals in the boundary between these points marked as “mir-
rors.” Hyperbolic triangles with mirrored sides are nonorientable 2-orbifolds that
are doubly covered by hyperbolic turnovers: they are the quotients of hyperbolic
turnovers by an involution that fixes an embedded topological circle that passes
through the marked points of the turnover. Every embedded hyperbolic turnover
in a hyperbolic 3-orbifold can either be made totally geodesic by an isotopy in the
3-orbifold (in which case the preimage in H3 under the covering map of this totally
geodesic 2-suborbifold is a collection of disjoint planes, each tiled by a hyperbolic
triangle that is determined by the markings of the singular points — see [Maskit
1988, Chapter IX.C] or [Adams and Schoenfeld 2005, Theorem 2.1], for instance)
or else can be moved by an isotopy to be the boundary of a regular neighborhood
of a totally geodesic hyperbolic triangle with mirrored sides.

An embedded orientable 2-suborbifold of OP is topologically a surface that
meets the marked graph transversely. We note that any simple closed curve C⊂∂P
that meets the 1-skeleton transversely determines such a 2-suborbifold by adjoining
to C the two topological disks that it bounds, one to either side of ∂P ⊂ OP . A
closed path on ∂P that is isotopic to a simple circuit in the dual graph to the 1-
skeleton of P is called a k-circuit, where k is the number of edges the path crosses.
An embedded hyperbolic triangle with mirrored sides occurs as a suborbifold of
OP whenever P has a triangular face all of whose edges are labeled two (in this
case, the triangle with mirrored sides is topologically just the disc bounded by these
three edges in the marked graph).
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The terminology of this paragraph is introduced in terms of general orbifolds.
A compact n-orbifold O with boundary is a metrizable topological space which is
locally diffeomorphic either to the quotient of Rn by a finite group action or to
the quotient of Rn−1

× [0,∞) by a finite group action, with points of the latter
type making up the boundary ∂O of O (itself an (n−1)-orbifold). We use the term
orbifold ball (respectively, orbifold disk) to refer to the quotient of a compact 3-ball
(respectively, 2-disk) by a finite group action. We say a compact 3-orbifold O is
irreducible if every embedded spherical 2-suborbifold bounds an orbifold ball in O.
A 2-suborbifold F ⊂O is called compressible if either F is spherical and bounds an
orbifold ball or if there is a simple closed curve in F that does not bound an orbifold
disk in F but that bounds an orbifold disk in O, and incompressible otherwise.
There is a relative notion of ∂-incompressibility (whose exact definition we do
not require). We call F essential if it is incompressible, ∂-incompressible and not
parallel to a boundary component of O. We call a compact irreducible 3-orbifold
Haken if it is either an orbifold ball, or a turnover crossed with an interval, or if it
contains an essential 2-suborbifold but contains no essential turnover. A compact
irreducible 3-orbifold is called small if it contains no essential 2-suborbifolds and
has (possibly empty) boundary consisting only of turnovers. (We note that a com-
pact, orientable and irreducible orbifold is both Haken and small if and only if it is
either a cone on a spherical turnover or a product of a turnover with an interval.)
These definitions extend to any arbitrary 3-orbifold that is diffeomorphic to the
interior of a compact 3-orbifold with boundary.

We observe that Euclidean and hyperbolic turnovers are always incompressible
because a simple closed curve on these objects always bounds an orbifold disk. As
a consequence, in an irreducible 3-orbifold, any incompressible 2-orbifold (in fact,
even any singular hyperbolic turnover) can be made disjoint from an embedded
hyperbolic turnover.

Remark. It is a consequence of a theorem of Dunbar [1988] that a hyperbolic
polyhedral 3-orbifold can be decomposed (uniquely, up to isotopy) along a system
of essential, pairwise nonparallel hyperbolic turnovers into pieces that contain no
essential (embedded) turnovers, and, moreover, that each component of the decom-
position is either a Haken or a small 3-orbifold; see [Boileau et al. 2003, Theorem
4.8]. An embedded hyperbolic turnover in a hyperbolic polyhedral 3-orbifold OP

will correspond to a simple closed curve in ∂P that crosses exactly three edges
whose dihedral angles sum to less than π . If such a curve is parallel in ∂P to a
triangular face of P all of whose edges are labeled two, then the hyperbolic turnover
corresponding to this curve is isotopic to the boundary of a regular neighborhood of
a hyperbolic triangle with mirrored sides (the latter arising from the triangular face
of P) in OP . In this case, one component of the Dunbar decomposition will consist
of the regular neighborhood of this triangle with mirrored sides (in fact, this is a
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small 3-orbifold). The complement of this component in OP is (orbifold) diffeo-
morphic to the complement of the triangle with mirrored sides in OP (because the
hyperbolic turnover collapses onto the mirrored triangle as the radius of the regular
neighborhood goes to zero), and so, for convenience, we discard the component of
the Dunbar decomposition corresponding to this regular neighborhood.

With the above convention in mind, we have the following:

Definition 2.1. A hyperbolic reflection polyhedron P is small if the Dunbar de-
composition of OP (with the convention of the preceding paragraph) consists of a
single connected small component.

In the projective model of H3, consider a linearly independent set of four points,
any or all of which may lie on the boundary of or outside of the projective ball. If
the line segment between each pair of these points intersects the interior of the pro-
jective ball, then the points determine a generalized tetrahedron. This polyhedron
is obtained by taking the (possibly infinite volume) polyhedron in H3 spanned
by the points and truncating its infinite volume ends by the dual hyperplanes to
the superideal vertices. The resulting polyhedron has finite volume and all of
its vertices are either finite or ideal. The faces arising from truncated superideal
vertices — which are called, along with the finite and ideal vertices, generalized
vertices — are triangular, and the dihedral angle at each edge of these faces is π/2.
In particular, if a generalized tetrahedron P is a Coxeter polyhedron, then any
generalized vertex arising from a truncated face is a hyperbolic triangle that tiles
(under the tiling associated to P) a geodesic plane in H3 (and thus gives rise to an
embedded hyperbolic triangle with mirrored sides in OP ).

3. Proof of Theorem 1.1

Let P be a 3-dimensional hyperbolic Coxeter polyhedron, and let OP be its hyper-
bolic polyhedral 3-orbifold. First assume that P is a generalized tetrahedron. Then
OP is topologically the 3-sphere with a marked planar graph as in Figure 2.

Each dot in the figure represents a generalized vertex, and so is either a finite
vertex, a triangle with mirrored sides or a Euclidean turnover cusp (the latter if the
vertex is ideal). Any dot that represents a triangle corresponds to a nonseparating

Figure 2. The graph associated to a generalized tetrahedron.
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hyperbolic turnover of the Dunbar decomposition of OP . Moreover, since any two
hyperbolic turnovers can be made disjoint by an isotopy, any other turnovers in the
Dunbar decomposition occur as topological 2-spheres that intersect the graph from
the figure in exactly three distinct edges. But the only possibility for such a 2-sphere
is one that surrounds a dot, and that therefore is parallel to a generalized vertex of
P . So the Dunbar decomposition of OP (under the convention of Definition 2.1)
has a single component.

To see that this component is small, we consider the graph of Figure 2 as the
1-skeleton of a tetrahedron in the 3-sphere. Using standard topology arguments,
it can be shown that an incompressible 2-suborbifold intersects the interior of this
tetrahedron in triangles and quadrilaterals. But a triangular intersection implies that
the incompressible 2-suborbifold is isotopic to the hyperbolic turnover associated
to a generalized vertex, and a quadrilateral intersection produces a compression.
So P is small if it is a generalized tetrahedron.

Now assume that P is small. The rest of the proof of Theorem 1.1 depends on
the following simple observation

Remark [Thurston 1979, Proposition 13.5.2]. Suppose that C ⊂ ∂P is a simple
closed curve that is transverse to, forms no bigons with, does not surround a single
vertex of, and that crosses at least two distinct edges of the 1-skeleton of P . Then
C determines an incompressible 2-suborbifold of OP if and only if (1) it intersects
any face in a connected set or not at all and (2) it intersects the common edge of
two adjacent faces whenever its intersection with both faces is nonempty.

We begin with the following fact about triangular faces of P:

Lemma 3.1. If T is a triangular face of P , then T corresponds to a hyperbolic
turnover in OP or P is a generalized tetrahedron.

Proof. Suppose that T is as in Figure 3a (in this and all subsequent figures in this
section, we depict P by a planar projection). If 1/p+1/q+1/r ≥ 1, then the three
edges incident to the vertices of T must intersect (or meet at a Euclidean turnover)
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T T T

Figure 3. Triangular faces.
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[Roeder et al. 2007, Lemmata 3.2 and 3.3], in which case P is a generalized tetra-
hedron (possibly with an ideal vertex). Otherwise, we have 1/p+ 1/q + 1/r < 1.
Then the 3-circuit around this face determines a hyperbolic turnover in OP whose
associated triangle in P must be boundary-parallel (in P) because P is small.
The two possibilities are shown in Figures 3b (in which the hyperbolic turnover
collapses to the outermost face) and 3c (in which the hyperbolic turnover collapses
to T ). �

Throughout the rest of the proof, we will use the observation from the above
lemma, i.e., that any 3-circuit in a small hyperbolic polyhedron surrounds a gen-
eralized vertex. In the case when the 3-circuit determines a hyperbolic turnover,
this follows by the fact that a hyperbolic turnover in a hyperbolic 3-orbifold always
corresponds to a totally geodesic 2-suborbifold (according to the second paragraph
in Section 2; compare also with the incompressibility observation just before the
remark on page 195): Because the polyhedron P is small, this totally geodesic 2-
suborbifold of OP cannot be an embedded hyperbolic turnover (because OP has no
boundary, and so such a turnover would have to be essential), and therefore must
be a triangle with mirrored sides that corresponds to a triangular face of P .

Consider an n-sided face F of P , as in Figure 4. Assume that n ≥ 4. The

F
γ β

α

Figure 4. A face of P and a compression.

n-circuit α around F determines a 2-orbifold that must be compressible, with a
compressing orbifold disk whose intersection with ∂P appears as the dashed arc β
in the figure. Since n ≥ 4, it must be that each side of the 3-circuit β ∪ γ contains
at least two edges radiating outward from F (that is, edges meeting F only in
vertices). Since OP is small, β ∪ γ bounds a triangle T ⊂ ∂P . Figure 5 illustrates
the two possibilities, depending on the side of β ∪ γ to which T lies. Of course,
these differ only by the choice of projection of P into the plane.
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Figure 5. Two projections of a face of P with adjacent triangle.

We now consider all such compressions of this 2-orbifold, and all of the result-
ing adjacent triangles to F . Let α denote the k-circuit that encloses F and these
triangles, as in Figure 6, left.

F

α

F

α

Figure 6. Left: a face of P with all of its adjacent triangles, and
a k-circuit. Right: the same, with k = 2.

If k = 2, then F must be a quadrilateral with two triangles adjacent to it on
opposite sides, in which case P is a triangular prism with one face that corresponds
to a hyperbolic turnover in OP as in Lemma 3.1, i.e., P is a generalized tetrahedron.
See Figure 6, right.

If k = 3, then α surrounds a generalized vertex to the outside. In this case, the
face F must be as in Figure 7, where each dot represents either a finite vertex, an
ideal vertex or a hyperbolic triangle. Filling in the generalized vertex to the outside
of α, we have that P is a generalized tetrahedron.
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F

α

Figure 7. A face of P with all of its adjacent triangles, and a 3-circuit.

If k > 3, then the 2-orbifold determined by α has a compression. But any such
compression would add an adjacent triangular face to F , and we have assumed that
α encloses all such triangles. So k ≤ 3. This completes the proof of Theorem 1.1.

4. Turnovers in hyperbolic polyhedra

In this final section, we prove Theorems 1.2 and 1.3, and provide a classification
of the immersed hyperbolic turnovers in those tetrahedral orbifolds that arise from
tetrahedra with no finite vertices. Although Theorem 1.3 does not follow from
Theorem 1.2, we will provide the proof of the former in the midst of the proof of
the latter, as it contains an observation that is necessary for both proofs.

It was shown in [Rafalski 2010] that if a hyperbolic 3-orbifold contains a singular
hyperbolic turnover, then that turnover must be contained in a low-volume small
3-suborbifold. In particular:

Theorem 4.1 [Rafalski 2010, Theorem 1.1 and Corollary 1.3]. Let Q be a com-
pact, irreducible, orientable, atoroidal 3-orbifold. Then any immersion f :T→ Q
of a hyperbolic turnover into Q is homotopic into a unique component of the
Dunbar decomposition of Q, up to covers of parallel boundary components of
the decomposition. Moreover, if f is a singular immersion that does not cover an
embedded turnover or triangle with mirrored sides, then the component containing
f (T) is unique, and it is a small 3-orbifold.

Proof of Theorem 1.2.. If OP is a hyperbolic polyhedral 3-orbifold, then it is home-
omorphic to the interior of an orbifold that satisfies the hypotheses of Theorem 4.1.
If OP contains a singular turnover, then this turnover is contained in a small com-
ponent of the Dunbar decomposition of OP , and Theorem 1.1 classifies these small
orbifolds as generalized tetrahedral orbifolds.

It remains to provide a classification of the generalized tetrahedra whose as-
sociated 3-orbifolds contain immersed turnovers. We will do so for generalized
tetrahedra all of whose vertices are nonfinite. See the summary at the end of the
paper for the results of the classification. The techniques we use to provide this
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Figure 8. T [l,m, q; n, p, r ].

classification can be used to classify the immersed turnovers in all tetrahedral orb-
ifolds, thereby extending and completing the classification begun by Maclachlan
in the case of compact (nongeneralized) tetrahedral orbifolds [Maclachlan 1996],
however, the case-by-case analysis required to complete this classification in gen-
eral is somewhat excessive.

We let T [l,m, q; n, p, r ] denote the hyperbolic generalized tetrahedron ABC D
with dihedral angles π/ l, π/m, π/q , π/n, π/p and π/r , as in Figure 8, with the
convention that a vertex of T is truncated (respectively, ideal) if the dihedral angles
of its three coincident edges sum to less than (respectively, equal to) π .

The conditions on l,m, q, n, p and r guaranteeing the existence of the tetrahe-
dron T [l,m, q; n, p, r ] are known [Ushijima 2006]. In particular, there are nine
compact (nontruncated) tetrahedra (see [Ratcliffe 1994, Chapter 7], for instance),
all of whose associated orbifolds contain singular turnovers. We note that, of
the nine compact (nontruncated) tetrahedra, eight yield arithmetic hyperbolic 3-
orbifolds. As we noted above, Maclachlan classified almost all of the immersed
turnovers in these arithmetic tetrahedral orbifolds using arithmetic methods. Our
geometric technique can be considered as an alternative means to prove (and ex-
tend) those results, without appeal to arithmeticity.

Denote by OT the 3-orbifold determined by T [l,m, q; n, p, r ]. Recall from
Section 2 that any hyperbolic turnover in a hyperbolic 3-orbifold that does not
collapse onto a hyperbolic triangle with mirrored sides may be assumed to be
totally geodesic. It also follows from the incompressibility of hyperbolic turnovers
in irreducible orbifolds that an immersed turnover must be disjoint from any em-
bedded turnover [Rafalski 2010, Lemma 5.3]. Consequently, if T is a hyperbolic
turnover, then an immersion f : T→ OT lifts to the universal cover H3 as a col-
lection of geodesic planes with some intersections — two or more of these planes
will intersect whenever there is a covering transformation (i.e., an element of the
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fundamental group π1(OT ) of OT , which is just the group of isometries of H3 that
yields the quotient OT ) that does not move one plane completely disjoint from some
of the others, and this must occur if there is a singular immersion of a turnover
in OT — and, additionally, the collection of planes determined by an immersed
turnover must be disjoint from the collection of planes determined by any turnover
corresponding to a generalized vertex of T .

Proof of Theorem 1.3. Let P⊂H3 be a polyhedron that generates the nonorientable
3-dimensional hyperbolic polyhedral reflection group G, and let S ⊂ G be an
orientable triangle subgroup. Then S is generated by two elliptic elements in G and
stabilizes a plane5S⊂H3. In particular,5S meets the axis of every element of S at
a right angle, and the intersections of5S with these axes comprise the vertex set of
a tiling of 5S by hyperbolic triangles. Every such vertex will have k lines passing
through it (where k is the order of the elliptic element stabilizing the vertex) that
are the perpendicular intersections with 5S of G-translates of a face of P . This
set of lines and their intersections generates a tiling of 5S by hyperbolic triangles
that corresponds to a hyperbolic triangle with mirrored sides in the nonorientable
hyperbolic orbifold H3/G, and this 2-orbifold is covered by the hyperbolic turnover
corresponding to S. Therefore, S is contained in the triangle reflection subgroup
of G that corresponds to this nonorientable triangle 2-orbifold. �

We take a moment to emphasize the observation from the above proof: Any
maximal (orientable) triangle subgroup of 3-dimensional hyperbolic polyhedral
reflection group has as a fundamental domain a triangle whose edges are contained
in the faces of the corresponding polyhedral tiling of H3 (the edges may intersect
multiple faces of the polyhedral tiling). This fact is used in the next paragraph.

Here is the strategy for classifying the immersed turnovers of OT . (The proof is
long, but this paragraph contains the core idea.) Let T be a hyperbolic turnover. Up
to conjugacy, there is a unique discrete orientation-preserving group of isometries
of the hyperbolic plane H2 corresponding to the tiling of H2 by copies of the triangle
that determines T (the fundamental group π1(T) of T). If f : T → OT is an
immersion, then f may be assumed to have totally geodesic image. Consider a
plane 5T in the collection of planes in H3 corresponding to f (T). This plane
is stabilized by a copy of the fundamental group of some turnover (possibly a
smaller turnover that is covered by f (T), if the fundamental group of f (T) is not
maximal) — a subgroup0 of the fundamental group of the orbifold OT — for which
there is a tiling of 5T by hyperbolic triangles whose edges are a (possibly proper)
subset of the intersections of 5T with 0-translates of the faces of T , and whose
vertices are a (possibly proper) subset of the perpendicular intersections of5T with
0-translates of the edges of T . We will locate all of the immersed turnovers in OT

by reversing this process, that is, by determining exactly the hyperbolic planes in
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the universal cover H3 that are stabilized by a triangle subgroup of π1(OT ). Thus
we choose an arbitrary edge e1 of T and develop copies of T in H3 (by reflecting
in faces) until we find another edge e2 which is coplanar with but which shares no
(generalized) vertex with e1. Since we need only concern ourselves with maximal
triangle subgroups, the observation following the proof of Theorem 1.3 allows to
assume that the common plane, which we denote by 5F (where F is a face of T
incident to e1), consist of developed faces of T . Let 51 be the plane containing
another face of T incident with e1, and let 52 be the plane containing another face
of (a developed image of) T containing e2. Suppose that51 and52 intersect5F at
angles of π/a and π/b, respectively. If51 and52 intersect at an angle of π/c, and
if 1/a+1/b+1/c< 1, then the rotations about edges e1 and e2 (of orders a and b,
respectively), will generate a triangle subgroup of π1(OT ), and the invariant plane
for that subgroup will project to an immersed turnover in OT (every developed
edge of T that intersects the invariant plane for this triangle subgroup at an oblique
angle will correspond to an immersion of the turnover). This determines a maximal
triangle subgroup of π1(OT ), and the type of the corresponding immersed turnover
will be (a, b, c). In most cases, we will show that there can be no such edge e2

that is both coplanar with e1 and that has an incident face whose corresponding
plane 52 intersects the plane 51, which rules out the possibility of an immersed
turnover. In the other cases, we will find a turnover after a minimal development
of T . Thus, our determination of the immersed turnovers in OT will be complete.

We divide the remainder of the proof of Theorem 1.2 into subsections.

4.1. The case when a single edge separates e1 from e2.

4.1.1. The single separating edge has order 2: To begin, we determine the case in
which the immersed turnover can be found after crossing only one edge between
e1 and e2 (there must be at least one edge crossed, in this process, to ensure that
the turnover is not parallel to a vertex). Consider Figure 9, which shows two
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C

C ′

B

n

2/2
r/2

m

q

p/2

n
q

m

Figure 9. Two copies of the tetrahedron T [2,m, q; n, p, r ].
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copies of the tetrahedron T [2,m, q; n, p, r ]. Each edge is labeled according to the
submultiple of π for the dihedral angle there (so, for example, the edge AD has a
dihedral angle of 2π/p). In particular, the points A, B, C and C ′ are coplanar. We
use F to denote the face ABC of T and 5F to denote the plane that contains F .
We consider the edges e1 = AC ′ and e2 = BC , and the planes 51 = AC ′D, 5F

and 52 = BC D. Under the assumption that all of the vertices of T are nonfinite,
we observe it is necessary for m, q, p and r to all be at least 3. From the figure,
we see that 51 meets 5F at an angle of π/q and that 5F meets 52 at an angle of
π/m, and so we are left to determine whether or not 51 and 52 intersect, and at
what angle this possible intersection occurs.

The vertex D is either ideal or truncated. If it is ideal, then its link is the orbifold
quotient of a horosphere by a Euclidean triangle group. If it is truncated, then it
corresponds to a geodesic plane in the universal cover that is stabilized by a hy-
perbolic triangle group. In both cases, we illustrate the straightforward geometric
determination of the conditions on n, p and r that ensure the intersection of 51

and 52 in the link of D, and determine the angle at which any intersection occurs
[Rafalski 2010, Section 9.4].

Figure 10 illustrates part of the link of D as viewed from D (this is either a
hyperbolic plane or a Euclidean plane corresponding to the horosphere centered at
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Figure 10. Part of the link of a nonfinite vertex of T [2,m, q; n, p, r ].
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an ideal vertex). The vertices in the picture are labeled according to the edges of T
that are incident at D (the labels D A′ and DB ′ represent edges in the development
of T that are the reflections of the edges D A and DB through the faces BC ′D and
AC D, respectively, in Figure 9). Assume first that n > 2. Because p must be at
least 3 (and similarly for r ), we have the inequality (p−2)π/p+ (n−1)π/n ≥ π
(and similarly (r−2)π/r+(n−1)π/n≥π ). The angles with the measures from the
previous sentence are indicated in the figure as the labels of the four dotted arcs (all
other angles in the figure refer to the measure at the appropriate triangular vertex).
Using this inequality, we conclude that the indicated bold rays directed northwest
from D A and DC do not intersect, because the sum of the angles that these rays
make with the segment from DC to D A is at least π (and similarly for the rays
directed southeast from DC ′ and DB, because the sum of the angles that these rays
make with the segment from DB to DC ′ is at least π ). Consequently, the bold lines
in the figure (and the corresponding planes51 and52) cannot intersect in this case.
A similar argument implying that 51 and 52 do not intersect holds when n = 2
and both p and r are greater than 3: The rays directed northwest from D A and DC
make angles with the segment between these two points of (p−2)π/p ≥ π/2 and
π/2, respectively, and so the sum of these angles will be at least π (when n = 2
and r ≥ 4, the same argument proves that the southeast rays from DC ′ and DB
do not intersect). Finally, if n = 2 and p = 3 (respectively, r = 3), then it is easily
seen 51 and 52 intersect at an angle of π/r (respectively, π/p), and the line of
intersection passes through the point DB ′ (respectively, D A′).

We therefore have, when l = 2 and our search for a turnover crosses only one
edge, that an immersed turnover only arises when n = 2 and either r = 3 or p= 3.
If r = 3, then this yields a triple of planes intersecting pairwise in angles of π/q,
π/m and π/p, with q ≥ 3, m ≥ 6 and p ≥ 6. If p = 3, then the pairwise angles of
intersection are π/q, π/m and π/r , with q ≥ 6, m ≥ 3 and r ≥ 6. (The inequalities
are induced by the assumption that all of the vertices of T are nonfinite.) By
analyzing Table 1 (whose data is collected from [Singerman 1972]), we see that

supergroup subgroup index normal supergroup subgroup index normal

(3, 3, t) (t, t, t) 3 Yes (2, 3, 8) (3, 8, 8) 10 No
(2, 3, 2t) (t, t, t) 6 Yes (2, 3, 9) (9, 9, 9) 12 No
(2, s, 2t) (s, s, t) 2 Yes (2, 4, 5) (4, 4, 5) 6 No
(2, 3, 7) (7, 7, 7) 24 No (2, 3, 4t) (t, 4t, 4t) 6 No
(2, 3, 7) (2, 7, 7) 9 No (2, 4, 2t) (t, 2t, 2t) 4 No
(2, 3, 7) (3, 3, 7) 8 No (2, 3, 3t) (3, t, 3t) 4 No
(2, 3, 8) (4, 8, 8) 12 No (2, 3, 2t) (2, t, 2t) 3 No

Table 1. Triangle supergroups and subgroups.
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Figure 11. A (q,m, p) triangle in T [2,m, q; 2, p, 3].

this triple of planes does not yield a triangle group that contains any other triangle
group. By comparing the second column of the table with the first, we note that it is
possible for this triple of planes to yield a triangle group that is contained in some
larger triangle group. However, it is not possible for such a supergroup to be a
subgroup of π1(OT ). This follows from the observation in the paragraph following
the proof of Theorem 1.3: Because such a supergroup would be a maximal triangle
subgroup of π1(OT ) stabilizing the plane that contains the (q,m, p) (or (q,m, r))
triangle, there would have to be edges in the development of T that intersect the
interior of the (q,m, p) (or (q,m, r)) triangle perpendicularly (these intersections
would be necessary for the corresponding orbifold covering of the smaller turnover
by the larger (q,m, p) or (q,m, r) turnover). By construction, there are no such
perpendicular intersections in the interior of the triangle. See Figure 11, which
illustrates the case when r = 3. As can be seen in the figure, no developed edges of
T intersect the interior of the (q,m, p) triangle (the intersections with this triangle
that yield immersions of the corresponding turnover are indicated by the dots).
Consequently, we can conclude that the (q,m, p) or (q,m, r) triangle determined
by 51,5F and 52 is not parallel to any of the vertices of T , and therefore that it
determines an immersed turnover in OT , because OT is small. The observations of
this paragraph are summarized in items (1) and (2) at the conclusion of the paper.

4.1.2. The single separating edge has order 3: We next turn to the case in which
the immersed turnover can be found after crossing only one edge between e1 and
e2, where the order of the crossed edge is l = 3. See Figure 12. Let e1 = AD′,
e2= BC ,51= AC ′D′ and52= BC D. We make several preliminary observations:

(1) Any two (distinct) planes that truncate developed vertices must be disjoint.
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Figure 12. Three copies of the tetrahedron T [3,m, q; n, p, r ].

(2) By (1) and by the fact that T has no finite vertices, any two developed edges
of the tetrahedron (whose corresponding geodesics in H3 are distinct) must be
disjoint.

(3) It is always the case that the plane containing one face of a generalized hy-
perbolic tetrahedron will be disjoint from the plane that truncates the vertex
opposite to that face.

(4) By (2), if two planes corresponding to two developed faces of T meet a third
plane that corresponds to a developed face of T , then any intersection of the
first two planes must occur on the side of the third plane where the two interior
supplementary angles of intersection sum to less than π .

(5) Any two planes corresponding to two developed faces that both intersect a
third plane that truncates a developed vertex intersect if and only if their inter-
sections with that truncated plane (i.e., with the link of the generalized vertex)
do so. A corresponding statement is also true in the case when the developed
vertex is ideal, that is, that two planes corresponding to two developed faces
that intersect at infinity in the case of an ideal vertex intersect in H3 if and only
if their intersections with the link of the ideal vertex themselves intersect.

By (3),52 is disjoint from the plane that truncates the vertex A. When r =2, the
planes51 and52 will intersect if and only if their intersections with the link of C ′

themselves intersect (by (4)). We will analyze the r = 2 case in a moment. When
r ≥ 3, we also have that 52 does not intersect the plane that truncates the vertex
C ′, reasoned as follows. We will always choose the “inward” normal direction for
a plane that contains a face of T by indicating the appropriate opposite vertex to
that face in any of our diagrams. When r = 3, we observe that 52 contains the
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face of the tetrahedron (not pictured in the figure) that is the reflection of AB DC ′

through the face B DC ′, and so 52 does not intersect the truncating plane of C ′ in
this case (by (3)). When r ≥ 4, then we consider the line containing the segment
B D which divides 52. The half of 52 that meets C is prevented from intersecting
the truncating plane for C ′ by the plane AB D, and the other half of52 is prevented
from intersecting the truncating plane at C ′ by the plane containing the reflection
of AB D through the face B DC ′ (both of these follow from (3)).

Therefore, when r 6= 2, we have that 52 has no intersection with the planes that
truncate the vertices A and C ′. We observe now that these truncating planes at A
and C ′ determine an open ball (i.e., the region between them in H3) which contains
52. We also note that the edge from A to C ′ is the only segment of the line of
intersection of 51 with the planes ABC ′ and ADC ′ that lies in this ball. Using
the convention for the inward normal direction given above, we conclude that, in
order for 51 to intersect 52, it is necessary for that intersection to occur on the
outward side of either ABC ′ (where inward is relative to D) or the outward side
of ADC ′ (where inward is relative to B), and consequently that 52 must cross at
least one of the planes ABC ′ or ADC ′.

By considering the geometry of the generalized vertex B, we have that52 meets
ABC ′ if and only if r = 2, and so we analyze this case now. In this case, 52 =

B DC ′ (as planes) and 51 and 52 intersect if and only if their intersections with
the link of C ′ intersect (by (5)). The conditions for this intersection in the link of
C ′ are either m = 2 (not possible, since r = 2), or n = 2 and one of q or m equals
3 (not possible, since r = 2), or else q = 2. In the last case, the intersection of 51

and 52 occurs along the edge C ′D at an angle of π/n, and because q = 2= r we
must have m ≥ 6, p ≥ 6 and n ≥ 3. In this case, T = T [3,m, 2; n, p, 2] contains
an immersed (m, n, p) turnover, and this tetrahedron (and the set of conditions on
m, n and p) is isometric to the tetrahedron T [2, p, n; 2,m, 3], which appears in
item (1) at the end of the paper (it is listed as item (3), additionally). The summary
at the end of the paper gives exact conditions on the arrangements of l,m, q, n, p
and r which yield isometric tetrahedra.

Otherwise, 52 must intersect ADC ′, and any possible intersection of 51 and
52 must occur on the outward side of ADC ′ (that is, the side opposite to vertex
B). Using the geometry of the generalized vertex D, we conclude that either r = 2
(the case we just analyzed), or p= 2, or n= 2 and one of p or r equals 3. If p= 2,
then q ≥ 6 (using the vertex A), n ≥ 3 (using the vertex D), and ADC ′ = AC DC ′

(as planes). By item (2) above, the lines AC ′ and C D are disjoint lines in the
plane AC DC ′. These lines are also the intersections with AC DC ′ of 51 and
52, respectively. We consider the side of AC DC ′ that is outward from vertex B,
and the interior angles of intersection (q − 2)π/q (formed by 51 and AC DC ′)
and (n − 1)π/n (formed by 52 and AC DC ′) on this side of AC DC ′ (that is,
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Figure 13. Four copies of the tetrahedron T [3,m, q; 2, 3, r ].

the two angles of intersection contained on this side of AC DC ′ and in the same
complementary component of these three planes). The conditions on n and p imply
that (n− 1)π/n+ (q− 2)π/q ≥ π , and because it is only possible for 51 and 52

to intersect to the outward side of AC DC ′ (relative to the inward B direction), we
use item (4) above to conclude that 51 ∩52 =∅ in this case.

In the remaining case, we have n = 2 and one of p or r equals 3. If p = 3, then
r ≥6 and q and m must both be bigger than 2 and also satisfy 1/q+1/m≤1/2. We
modify Figure 12 by adjoining another copy of T to the face AC D. See Figure 13.
In this case, ADC ′ = AB ′DC ′ as planes, and we consider, as in the previous case,
the interior angles of intersection (q−2)π/q ≥π/3 and (r−1)π/r ≥ 5π/6 formed
by AB ′DC ′ with51 and52, respectively, on the outward side of this plane (again,
relative to the inward B direction). Since (r−1)π/r+ (q−2)π/q >π , and again
because 51 and 52 can only intersect on the side of AB ′DC ′ opposite to B, we
conclude that 51∩52 =∅ in this case. The case when n = 2 and r = 3 is entirely
similar, with the same conclusion.

4.1.3. The single separating edge has order greater than 3: We now handle the
analogous cases to the previous two: when the search for an immersed turnover
crosses a single edge between the planes 51 and 52, and when l > 3 (we will
specify these planes in each example below, in an analogous way to the previous
cases). We will show that no immersed turnovers can be found when l > 3.

We consider first the case when l = 4 and the vertex B has the Euclidean type
(2, 4, 4) with m = 4. See Figure 14 (we will, for the most part, drop references to
the “link” of a vertex for the remainder of the paper, and assume that work done
in, and figures referring to, the link of a vertex will be clear from the context).
Referring to the lower half of this figure, we have e1= AC ′′,51= AC ′′D′, e2= BC
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and 52= BC D. The upper half of Figure 14 illustrates the view in the upper half-
space model of H3 from the vertex B, which we have placed at the point at infinity.
(This view, along with the similar figures in this section, was generated using the
software KaleidoTile by Jeffrey Weeks [≥ 2012].) Now 52 is represented in this
diagram by the line C D, and the plane 51 must be represented by a circle (the
circle is the boundary of a hemisphere in this model of H3). We claim that the
circle representing 51 must be centered at some point in the triangle AC ′′D′, and
that none of the three points A, C ′′ or D′ can be contained in this circle’s interior.
To see this, suppose first that the vertex A of the tetrahedron is a truncated vertex.
Then the plane truncating that vertex would appear as a circle in the figure. This
circle would have to be centered at the point labeled A because the geodesic edge
from B to this plane must meet the plane perpendicularly. Next, we observe that
the circle representing 51 must intersect the circle centered at A at a right angle
(because 51 intersects the plane that truncates the vertex A perpendicularly). This
is only possible if the point labeled A lies outside of the circle representing 51. In
the case when the vertex A of T is an ideal vertex, then the circle representing 51

would pass through the point labeled A. Since all of the vertices A, C ′′ and D′ of
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Figure 14. The view from the ideal vertex of type (2, 4, 4).
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the tetrahedron are nonfinite, the circle representing51 cannot contain the vertices
of the triangle AC ′′D′ in its interior disk. Moreover, this circle must meet each line
segment AD′, AC ′′ and C ′′D′ (at angles of π/p, π/q and π/n, respectively) and
so the center of this circle must be contained in the triangle AC ′′D′. Such a circle
is depicted. Since any such circle cannot intersect the line C D, we conclude that
51 ∩52 = ∅. An analogous argument can be used to show that we obtain no
immersed turnover in this fashion, whenever the vertex B is Euclidean and l is not
equal to 2 or 3; this occurs only when the triple (l,m, r) is one of (4, 2, 4), (6, 2, 3)
or (6, 3, 2).

We are left then to consider the case when l≥4 and the vertex B has a hyperbolic
type. The argument is similar to the Euclidean vertex case, but we provide the
details. Consider first the case of Figure 15. For the purposes of illustration, we
have assumed that the vertex B has the type (2, 4, 5), with l = 5, m = 2 and r = 4.
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Figure 15. The view from the truncated vertex of type (2, 4, 5).



212 SHAWN RAFALSKI

Here, we have

e1 = AD′′, 51 = AD′′C ′′, e2 = BC, 52 = BC D.

We consider the hyperbolic plane 5B that truncates vertex B as a hemisphere in
the upper half-plane model, and wish to construct a “view from B” that is similar
to the previous case when the B was an ideal vertex. The Poincaré disk (2, 4, 5)
tiling pattern of the figure results from projecting this hemisphere to the bounding
plane of H3 through the south pole of the whole sphere that contains it [Thurston
1997, Figure 2.12, p. 58]. An important observation about this projection is that
it is equivalent to projecting every point x ∈ 5B to the bounding plane of half-
space along the geodesic ray that is perpendicular to 5B at x . In particular, as
in the Euclidean vertex case, each line or circular arc in the figure is the ideal
boundary of a plane (each plane corresponding to a face in the tiling of H3 by
T ) that meets 5B perpendicularly, and this projection is conformal, so that the
angle of intersection between two lines or circular arcs in the figure is equal to the
angle of intersection of the corresponding planes in H3. We have indicated, in the
projection of the figure, the images of the intersection of five copies of T with5B ,
labeled the endpoints of the lines emanating from B by the corresponding letters
in the lower part of the figure, and applied an isometry so that A (or, in the case
that the vertex A is truncated, the center of the circle that represents the truncating
plane for the vertex A) is at the center of the Poincaré disk. The planes 51 and 52

are represented by a circle and the circular arc C D, respectively.
We observe that, if the vertex C ′′ is truncated, then the truncating plane 5C ′′ for

C ′′ will appear in the figure as a circle (not pictured) with center on the segment
AC ′′, because the point labeled C ′′ is the endpoint of a semicircle in the half-space
model that is perpendicular to both 5B and 5C ′′ (to see this, recall that we may
consider the projection from 5B to the bounding plane as a projection along arcs
of such semicircles). As in the previous case, the point C ′′ cannot be contained in
the interior of the circle that is the ideal boundary of 51, because then the arc of
the semicircle from C ′′ to its inverse image in5B under the projection would meet
51, and this is impossible because this arc meets5C ′′ perpendicularly and5C ′′ and
51 are orthogonal (the contradiction arises because it would imply the existence
of a triangle with two right angles). The same argument holds when either of A or
D′′ is a truncated vertex, and therefore, as in the previous case, the ideal boundary
of 51 must bound a disk whose interior is disjoint from the points A, C ′′ and D′′

(these points may lie on the ideal boundary of 51 if they are ideal vertices of T ).
The ideal boundary of 51 intersects the segments AC ′′ and AD′′ and the circular
arc C ′′D′′ at angles of π/q , π/p and π/n, respectively, and the center of the circle
representing this ideal boundary has its center contained in the hyperbolic triangle
AC ′′D′′ in the projection. This is the circle that is depicted in the figure. But such
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Figure 16. The view from the truncated vertex of generic hyper-
bolic type when none of l, m and r is 2.

a circle can have no points in the hyperbolic polygon C AD′′C ′′D′C ′D that lie
outside of the union of hyperbolic triangle AC ′′D′′ and the circle with the segment
AC ′′ as its diameter (pictured with a dashed arc in the figure). Consequently, this
circle cannot meet any of the sides of this hyperbolic polygon other than AD′′ and
D′′C ′′, and, in particular, we have 51 ∩52 = ∅. An analogous argument works
whenever B has hyperbolic type with one incident order 2 edge and l ≥ 4.

The case when l ≥ 4 and B has hyperbolic type with no incident order 2 edge
is similar. See Figure 16, in which 52 is represented by the circular arc C D and
51 is represented as the circle pictured.

When l ≥ 4, we observe that, in any similar picture (for example, Figure 17),
the angles α = (l − 2)π/ l and β = (r − 1)π/r will always be at least π/2.
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Figure 17. Another view from the truncated vertex of generic hy-
perbolic type when none of l, m and r is 2.

Hence, since α ≥ π/2 and because the center of the circle representing 51 is
contained in the hyperbolic triangle AE F , this circle will be disjoint from the
interior of the segment AD (it may pass through A, if the corresponding vertex is
ideal). Also, noting that AD will always have Euclidean length equal to one of the
lengths |AF | or |AE |, the conditions on α and β imply that no point of the circle
C D that lies above the line AD will be closer to the center of the circle representing
51 than any of the points A, E or F . Since A, E and F are not contained in the
interior of this circle, we can conclude that 51 ∩52 =∅ in this case.

4.2. The case when multiple edges separates e1 from e2. Recall that 5T denotes
the plane stabilized by a copy of a triangle subgroup in the fundamental group of
OT , and that e1 and e2 denote two developed coplanar edges of T whose (perpen-
dicular) intersections with5T correspond to two of the cone points of an immersed
turnover (whose fundamental group is the triangle group stabilizing 5T) in OT .

Notation. For the remainder of the paper, 5F refers to the plane containing e1

and e2. It is the development in H3 of one face F of T . The diagrams from Figures
18, 19 and 20 (along with several other figures later in this section) are all drawn
with the convention that 5F is the page containing the illustration. We use L F to
denote the intersection of 5T with 5F . Additionally, the phrase “the other side of
5F ” refers, in each of the relevant figures, to the side of5F that is behind the page
(relative to the reader), and the use of the word “plane” at any edge in a diagram
always refers to a plane that is the development of a face of T in H3 that passes
through that edge.
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Figure 18. Schematic of some possible developments of a face of
T , together with switches and the intersection of the plane 5T.

Now that we have determined the conditions on T which give rise to a turnover
in OT when 5T intersects a single edge in the development of F between e1 and
e2, we will show that it is impossible for there to be more than one such edge in
the development of F between e1 and e2. This will complete the classification of
immersed turnovers in tetrahedral orbifolds with no finite generalized vertices.

Figure 18 shows two possible schematic diagrams for this discussion. In each
of the subfigures, the edges e1 and e2 are indicated, and the dotted line represents
L F . Notice that, in each triangle of the planar development of F , there is always a
unique translate of a vertex of T that is separated from the other two by 5T. The
edge translates of T labeled by s represent points at which this vertex switches.

We consider the following procedure for dividing any diagram of the type from
Figure 18 into subdiagrams of the type (up to possible reflection or order two
rotation) given in Figures 19 and 20:

(1) Starting at the first edge of the diagram, we follow L F until we arrive at the
first switch. There must always be such a switch, for otherwise the supposed
turnover would be parallel to a cover of an embedded turnover corresponding
to one of the truncated vertices of T .

(2) If the switch is the only switch in the diagram, then our diagram looks like,
up to reflection or rotation, one of the diagrams from Figure 19. In this case,
we stop.
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Figure 19. One type of possibility for the subdiagram compo-
nents for a diagram of the type given in Figure 18.
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Figure 20. Another type of possibility for the subdiagram com-
ponents for a diagram of the type given in Figure 18.

(3) If there is more than one switch and the diagram looks like, up to reflection
or rotation, one of the diagrams from Figure 20, then we stop.

(4) If we have not halted in the previous two steps, then the diagram up to and
including the first edge after the first switch looks like the diagram in either
Figure 19(a) or 19(b). Call this portion a subdiagram.

(5) Starting at the last edge of the subdiagram from the previous step, we repeat
this process with the remaining portion of the original diagram, starting from
the first step, until we reach edge e2.

This procedure divides our diagram into subdiagrams of the type illustrated in
parts (a) and (b) of Figure 19(a), with the possible exception that the final sub-
diagram may be of the type in Figure 19(c) or one of the two types in Figure 20
(we note that this process can eliminate certain switches, in each of the resulting
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subdiagrams). Again, we denote by51 and52 the planes at e1 and e2, respectively,
whose intersections with 5T are supposed to form two of the sides of a triangle
in the tiling of 5T. Our strategy is to use the subdiagrams of Figures 19 and 20
to find a sequence of planes in H3 — one or more planes at each of the two outer-
most edges of each subdiagram — that are pairwise disjoint on either side of 5F

and that therefore separate 51 from 52.
We first make two observations about the subdiagram from Figure 19(a). First,

if either of the orders of the two edges separated by the switch is 2, then no plane at
either edge can meet any of the planes at the other edge (excepting the plane 5F ).
This fact follows from the extensive analysis done in Section 4.1. Second, if the
two planes at the outer edges that are inclined closest toward the switch (“inclined
closest” means closest, on the other side of 5F , to the planes that pass through
the switch edge) do meet (thus generating an immersed turnover in OT with two
singular points of order at least 6 and one singular point of order at least 3), then
the next two planes (one at either outer edge) inclined away from the switch do not
meet. This fact follows from an easy analysis of the patterns of line intersections in
hyperbolic triangular tilings. See Figure 21 for the conditions on the vertex orders
of an (a, b, c) hyperbolic triangular tiling under which such intersections can occur.

disjo
int intersection only if

b = 3 and a ≥ 6

a b

c = 2

b

disjoint

a ≥ 6 b = 2

c = 3

a

(i) (ii)

disjoint

a ≥ 3 b ≥ 3

c ≥ 3

b
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a ≥ 4 b = 2

c ≥ 4
(iii) (iv)

Figure 21. The possibilities for the intersection of lines in a tri-
angular tiling of E2 or H2.
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In this case (although this will not be the case for subsequent applications of this
figure), Figure 21 should be thought of as depicting the plane which meets5F and
the two southwest-to-northeast edges from Figure 19(a) perpendicularly, so that
all the planes through these two edges appear as lines in Figure 21. In particular,
in order for the next two planes inclined away from the switch in Figure 19(a)
to meet, then one of the southwest-to-northeast edges must have order 2, which
does not happen in this situation. Therefore, it is left to show that, for each of
the remaining types of subdiagram, the two planes at the outer-most edges that are
inclined closest to the single or double switch in the subdiagram do not intersect
(again, “inclined closest” means closest, on the other side of 5F , to the planes
passing through the switch edge(s)). This will produce the sequence of planes that
separates 51 and 52, and therefore complete the proof. We will show this by
cases, which are indicated by their labels in the figures.

4.2.1. Figure 19(b): See Figure 22, in which we have supposed without loss of
generality that F is the face ABC of the tetrahedron T , as in Figure 8. This picture
only differs from Figure 19(b) by a 180◦ rotation. Observe that the edges incident
at the vertices A and B have orders l, q, p and l, m, r (respectively).

We observe that the vertex B must have at least one order 2 edge incident to it.
Otherwise, if B were of the type (x, y, z) with all orders at least 3, then it is readily
seen, by using the information from Figure 21(iii) applied to vertex B, that52 (the
plane through e2 that is inclined closest to the switch) cannot meet the plane at edge
BC that is inclined closest to the switch. We indicate how this can be determined.
Recall that we may construct the view from B as a triangular tiling of either the
Euclidean or hyperbolic plane (in this case, a tiling by (x, y, z) triangles) such that
5F appears as a horizontal line, and such that each edge incident to B appears as
a point on that line and each plane through an edge incident to B appears as a line

l

A

B

m

C

qe1

e2

L F

Figure 22. The case of Figure 19(b).
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xyzxyz

disjoint

(i)

l = ym = zlmlm

disjoint

(ii)

y ≥ 4z ≥ 4
even even

l = ym = z2mlm

disjoint

(iii)

y ≥ 4z ≥ 4
odd even

Figure 23. Patterns of intersections of certain lines corresponding
to sides in a triangular tiling of H2 or E2. Double arrows indicate
two lines that do not intersect above the horizontal line.

(or hyperbolic line, if B is superideal) passing through the corresponding point in
the view from B. Using Figure 21(iii), we can conclude that the view from B,
when B has no incident order 2 edge, looks schematically like Figure 23(i). This
figure assumes that x , y and z are all odd; the other cases are similar. Suppose,
for example, that the right-most point x in this figure represents the edge BC (x
also indicates the order of that edge), and that the (schematic) line through this
point inclined furthest to the right represents the plane through edge BC inclined
closest to the switch edge AB. Then it is easily seen that no right-most inclined
line through any subsequent point to the left along the horizontal can intersect with
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this line. Consequently, the planes to which these lines correspond cannot intersect
on the other side of 5F (i.e., the other side of the page in Figure 22). In particular,
52 cannot cross the plane through BC inclined closest to the switch, as we wished
to show. Furthermore, by our analysis in the cases of Section 4.1, the only way
that 51 can meet the plane through edge BC that is inclined closest to the switch
is if B has an incident order 2 edge. Consequently, if there is no such order 2 edge
at B, then we have 51 ∩52 =∅.

So B either has the type (2, 3, x ≥ 6) or (2, y ≥ 4, z ≥ 4). In the latter case, if
l = y or l = z, then we have shown in Section 4.1.3 that 51 is disjoint from every
plane through edge BC . If l= y and m= z and l and m are both even, it is a simple
exercise, using Figure 21(i), to show that no plane that is inclined closest to the
switch edge AB through any of the subsequent edges from BC toward e2 along L F

can meet the plane through edge BC that is inclined closest to the switch, as in the
argument of the previous paragraph (the schematic of the view from B in this case
would be Figure 23(ii), with the edges AB and BC corresponding to the right-most
points labeled l and m, respectively). So 51 ∩52 = ∅ in this case. If l = y and
m = z and m is odd, we can apply the same argument (but using the information
from parts (i), (ii) and (iv) from Figure 21 to obtain the schematic view from B as
depicted in Figure 23(iii)) to conclude that 51 ∩52 = ∅. The analogous cases,
where l = y and m = z and l and m are of mixed parity, are similar. The case when
l = y or l = z and m = 2 requires more analysis. Here we use the geometry of the
vertex A, the fact that l ≥ 4 and the information from Figure 21 to conclude that
51 cannot intersect the plane through edge AB that is inclined closest to the edge
BC . But 51 must intersect 5F and it must intersect some of the planes through
the switch edge AB. We refer to Figure 24, which depicts the schematic view from

AC

π
l

π
z

at least π2

C ′D

51

A′

π
l

π
z

π
z

Figure 24. The schematic view from the vertex B in the case
when l = y ≥ 4, m = 2 and r = z ≥ 4.
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B in this case, with l = y≥ 4 and m= 2 (the third edge incident to B, which would
have the label r in the tetrahedron T , is labeled by z ≥ 4).

In this figure, the line segment AD corresponds to the plane through the switch
edge AB of the tetrahedron that is inclined closest to the edge BC . As we have
seen in previous cases, the ideal boundary of 51, in this view, is a circle that
cannot contain any vertex of the triangulation in its interior disk. Since z ≥ 4, we
may conclude from the figure that the ideal boundary of 51 cannot intersect the
line A′D. By noting that the line A′D represents the plane inclined closest to the
switch through the edge just after the edge BC along L F toward e2 in Figure 22, we
may use the previous arguments from this paragraph to conclude that51∩52=∅
in this case.

Referring to the first sentence of the previous paragraph, in the latter case and
when l = 2 and y = 4= z, we may show that 51∩52 =∅ by using the Euclidean
vertex argument as in Figure 14. In the latter case and when l = 2 and one of y
or z is greater than 4, it is again readily shown that the second closest plane to
the switch through edge BC (recall that 51 must be disjoint from this plane, by
the observation of the penultimate paragraph before the start of this subsection)
misses the plane inclined closest to the switch at every subsequent edge that L F

crosses toward e2. The argument uses the information of parts (i), (ii) and (iv) from
Figure 21, and is similar to the arguments already presented in the previous two
paragraphs. Thus, we have 51 ∩52 = ∅ in the case that the type of vertex B is
(2, y ≥ 4, z ≥ 4).

This leaves us with the possibility that B has type (2, 3, x ≥ 6). When l = x ,
we are in a case that is similar to the first case in Section 4.1.3; that is, we have
to consider a regular l-gon in either the Euclidean or hyperbolic plane and a circle

C

A

D

51

52

Figure 25. A view from the truncated vertex of hyperbolic type
(2, 3, 7). The arrow indicates that the plane 52 is represented by
a circular arc that meets the horizontal somewhere to the left of
the arc C D.
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centered inside the polygon that does not contain in its interior the center of the
polygon, any vertex of the polygon or any midpoint of a side. In this case, however,
we observed that such a circle (representing 51) must be disjoint from all but two
sides of the polygon. But the plane 52 will correspond in such a picture to a line
or circular arc in the picture that does not meet the interior of this polygon, and
so 51 ∩52 = ∅ when l = x . See Figure 25 for an example illustration of this
argument, in the case when x = 7.

The cases when l = 2 or l = 3 remain. In the case when l = 3, we refer to
Figure 26. The upper half of this figure depicts the salient aspects of the view from
vertex B, as in the previous cases we have considered. The lower half of the figure
depicts part of the development of T in H3. In particular, in the lower half of the
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Figure 26. A view from the truncated vertex of type (2, 3, x ≥ 6).
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figure, the triangle with edge e2 and the lowest set of elliptical dots are both meant
to lie in 5F (which is the horizontal line C AD′ in the upper half of the figure),
and the plane 52 is not depicted, although 51 = AC ′D′ is. In the upper half of
the figure, 51 is represented by a circle centered at some point inside the triangle
AC ′D′ that cannot meet any vertex of the triangulation and that can only meet the
sides AD and AD′ of the x-gon centered at C ′ (the fact that this circle can meet
no other sides of the x-gon centered at C ′ follows by an argument similar to that
depicted in Figure 15 from Section 4.1.3). Since 52 must be represented by a line
emanating from a vertex on the line C AD′ which is further to the left than C (the
direction, in the upper part of the figure, to which the line representing 52 must
lie is indicated by the lower left arrow), and no such lines will enter the x-gon
centered at C ′, we conclude that 51 ∩52 =∅ in this case.

When l = 2, then the only way for which we are unable to apply the preceding
argument is when m = 3. See Figure 27. This is because the angle 6 A′DC ′ is less
than π/2 when x > 6, and so it is, in principle, possible that the circle representing
51 (whose center must be contained in the triangle AC ′D) may intersect the line
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Figure 27. A view from the truncated vertex of type (2, 3, x ≥ 6).
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representing52 if51= AC ′D and52= A′D′B D (we have drawn the circle as an
ellipse in the view from B in order to indicate this possible intersection). However,
using the accompanying tetrahedral illustration and the techniques of Section 4.1.1
(applied to vertex D), it is readily seen that we must have p = 2 and n = 3 in
order for51 and52 to intersect. However, because we assume that T has no finite
vertices and because l = 2, we do not allow p = 2. (Note: When l = p = 2 and
m = n = 3 (so that the vertex A is finite), there is an immersed turnover of type
(q, x, x) in T , provided that q ≥ 3 and x ≥ 4. See the conjectural classification at
the end of this paper. In this case, T = T [2, 3, q; 3, 2, x], which is isometric to the
tetrahedron listed in item (6).)

4.2.2. Figure 19(c): See Figure 28, in which again we have supposed without loss
of generality that F is the face ABC of the tetrahedron T , with the edges incident
at the vertices A and B having orders l, q , p and l, m, r (respectively). We again
denote by 51 and 52 the planes at the edges e1 and e2, respectively, that are
inclined closest to the switch edge. The dotted curve in all of these figures, which
we denote by L F , represents the intersection of the planar development 5F of
F with the plane that (purportedly) contains the turnover determined by 5F , 51

and 52.

Remark. The symbol ∗ attached to a letter in this figure and in all subsequent
figures is meant to indicate an ambiguity that may arise due to parity, and it is
important for us to take note of it. For example, in Figure 28, if the order of the
edge AB is even, then the vertex C∗ is a developed copy of the vertex C , and the
order of the edge AC∗ is also q , i.e., the order of edge AC . However, if l is odd,
then it would take an odd number l of tetrahedra developed around the edge AB
to continue the development of the face ABC , making C∗ a developed copy of the
vertex D (recall that, behind the page, relative to the reader, lies the fourth vertex
D of the tetrahedron), and making the order of the edge AC∗ equal to p, i.e., the

l

e1

A

B

CC∗

e2

B∗

m

q

Figure 28. The case of Figure 19(c).
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Figure 29. After analysis, the remaining cases of Figure 19(c).

order of the edge AD (recall the notation T [l,m, q; n, p, r ] defined in Figure 8).
We will avoid this notation whenever it is possible, although it will be necessary
at times.

By the previous case, we know that 51 meets none of the planes through edge
BC . It is therefore necessary, if 51 and 52 are to intersect, that 52 cross every
plane through edge BC . As in the previous case, then, we can conclude that one
of the edges incident at B must have order 2, for otherwise it is not possible for
52 to cross the plane through BC inclined closest to the switch.

Using Figure 21 and the fact that B must have an incident order 2 edge, we can
reduce the cases that must be considered to those listed in Figure 29, as follows.

Referring to Figure 28, suppose first that l = 2 and m = 3. Recall that the
dotted curve represents the line L F . Then the next edge incident to B that L F

crosses after BC in the direction away from the switch should have order x ≥ 6. A
schematic of the view from B is pictured in Figure 30(i). The bold line in the figure
represents any plane through a subsequent edge incident to B that L F crosses after
the edge with order x . Because the angle α, which is formed by the bold line and
the line AC , will always be at least π/x , we conclude that the two lines indicated
in the figure by the endpoints of the double arrow will not intersect above the line
AC . Consequently, because the line AC represents the plane 5F , we conclude
that the planes represented by these lines will not intersect on the other side of
5F (recall that the other side of 5F refers to the side underneath the page in
Figure 28). Therefore, we have reduced the case of showing that 51 ∩52 =∅ in
Figure 28 to the case of Figure 29(ii), provided that l = 2 and m = 3. The case
when l = 2 and m is even with m ≥ 4 can be eliminated in an entirely similar
fashion. See Figure 30(ii), which shows the pattern of intersections of lines that
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Figure 30. Patterns of intersections of certain lines corresponding
to sides in a triangular tiling of H2 or E2. Double arrows indicate
two lines that do not intersect above the horizontal line.

would result in the view from B. Here, we consider the right-most point on the
horizontal (the horizontal represents 5F in the view from B) with the label 2 as
corresponding to the edge AB, and the right-most point on the horizontal with the
label m as corresponding to the edge BC . It is readily seen from the figure that no
lines passing through the labeled points on the horizontal to the left of the right-
most point labeled m ever intersect the line through the latter point that is inclined
closest to the switch point (i.e., the right-most point labeled 2). Therefore, no plane
through an edge incident to B that is crossed by L F after the edge BC can intersect
the plane through BC inclined closest to the switch, when l = 2 and m is even and
at least 4. Therefore, no plane through an edge incident to B that is crossed by L F

after the edge BC (such as 52) can intersect the plane 53 through BC inclined
closest to the switch, when l= 2 and m is even and at least 4. Since51 will also be
disjoint from 53 (by Section 4.2.1), 51 will be separated from 52 by 53, which
eliminates this case. In fact, all of the other reductions are arrived at in this way,
that is, by using the information in Figure 21. The other cases that are eliminated
by the methods of this paragraph are: (1) l = 2 and m≥ 5 with m odd, (2) l = 3 and
m ≥ 6 and (3) l ≥ 6 and m = 3. The other cases that are reduced by the methods of
this paragraph are: (4) l ≥ 3 and m = 2 (which reduces to the case of Figure 29(i))
and (5) l = 3 and m = 2 (which reduces to the case of Figure 29(iii)). (We note
that, when l = 3 and m = 2, case (i) of Figure 29 may seem to rule out case (iii).
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However, the plane inclined closest to the switch through the edge labeled x in
case (iii) intersects the plane inclined closest to the switch through the lower edge
labeled 3 (this may be seen using the information of Figure 21). We therefore must
show that 51 ∩52 =∅ in both the case that e2 is the lower edge labeled l = 3 in
(i) and in the case that e2 is the lower edge labeled x in (iii).)

Now, we apply the arguments of the previous two paragraphs to the other direc-
tion along L F from the switch. Specifically, referring to Figure 28, we know by
the previous case that 52 meets none of the planes through the edge AC∗, and so
we reduce the possibilities for the number of developed faces around the vertex A
using the fact that 51 must intersect every plane through the edge AC∗ in order
for it to be possible for 51 and 52 to have nonempty intersection. The result of
this further analysis leaves us to consider only the cases of Figure 31. We note
the change from “l ≥ 3” to “l ≥ 3 odd” that occurs when reducing Figure 29(i) to
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Figure 31. After further analysis, applied to the cases of Figure
29, these are the remaining cases of Figure 19(c) to consider.
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Figure 31(i). This change is due to the fact that, when l is even, the edge label 2
for AD′ in 31(i) must equal the edge label for AC . However, this would contradict
our assumption that none of the vertices of T is finite, because C would have two
incident edges, AC and BC , labeled 2.

So we are left to analyze the cases of Figure 31. We begin with case (iv). See
Figure 32. The multiple parts of this figure are explained in the caption. Referring
to the left side of the lower half of the figure, 51 is the plane through edge AC ′′

inclined closest to the switch edge AB and 52 is the plane through edge B D′′
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C ′
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Figure 32. The case of Figure 31(iv). The upper half of the figure
represents the view from the vertex A when y = 7. The lower half
consists of a perspective image of the three copies of the tetrahe-
dron ABC D on the right, and several triangles in the development
of the face ABC on the left.
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inclined closest to the switch edge AB. We wish to show that 51 ∩52 = ∅. We
do so using the upper half of the figure, which shows the view from A under the
assumption that y = 7 (the same argument we give here applies to any other value
for y ≥ 6). In the upper half of the figure, the plane 51 is represented by the line
C ′′D′′′, and the plane AC D — which is depicted in the right side of the lower half
of the figure, and which is the plane through AC inclined closest to the switch
edge AB in the left side of the lower half of the figure — is represented by the
line C D. Recalling that 5F is the plane containing the face ABC (and, therefore,
the plane in which the left side of the lower half of the figure is drawn, as well
as the horizontal line in the upper half of the figure), we observe that there are
two planes, other than 5F , that pass through AB. These planes are represented
in the upper half of the figure by the lines BC ′ and B D. Using the upper half of
the figure, we observe that any point of 51 that is on the same side of AC D as
the vertex B is also on the same side of the plane ABC ′ (which is represented by
the line BC ′) as the point D′. We now use the previous case (Section 4.2.1) to
observe that 52 ∩ AC D =∅: namely, 52 and AC D are the planes through B D′′

and AC , respectively, inclined closest to the new switch edge BC for the three
triangles ABC , A′BC and A′B D′′ from the lower left half of Figure 32, to which
Section 4.2.1 applies (to see this more clearly, turn these three triangles together
so that the edge BC is vertical, and compare with Figure 22). In exactly the same
way (i.e., using Section 4.2.1), we see that 52 ∩ AC ′D′ = ∅, this time using AB
as the switch edge. But now, since 52 is on the same side of AC D as the vertex
B and on the same side of AC ′D′ as the vertex B, we can use the upper half of
Figure 32 to see that there is no part of 51 which is both on the B side of AC ′D′

and on the B side of AC D. Therefore, 51 ∩52 =∅.
The argument of the previous paragraph can be used in case (iii) of Figure 31.

See Figure 33. In the lower left half of this figure, 51 is the plane through the
edge AB ′ inclined closest to the switch edge AB. In the lower right half, 51 is the
plane AC ′B ′A′′. In the upper half of the figure, which represents the view from A
when y = 7 (the case when y ≥ 6 is similar), 51 is represented as the line B ′C ′.
Proceeding as in the previous paragraph, we have 52∩ AC D =52∩ AC ′D′ =∅
(by Section 4.2.1). Furthermore, 52 is on the B side of both AC D and AC ′D′.
But now, referring to the upper half of Figure 33, we see that there is no part of
51 that is on the B side of both AC D and AC ′D′. So 51 ∩52 =∅.

We now address case (ii) of Figure 31. See Figure 34. In the upper part of this
figure, 51 and 52 are the planes through the edges AD′ and B D′′, respectively,
that are inclined closest to the switch edge AB. In the lower part of the figure,
which depicts the development of multiple copies of the tetrahedron, 51 is the
plane ADB ′D′ and 52 is the plane B D A′D′′. Because these two planes are both
incident to the nonfinite vertex D, they intersect if and only if their intersections
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Figure 33. The case of Figure 31(iii). The upper half of the figure
represents the view from vertex A when y=7. The right side of the
lower half of the figure depicts the development of several copies
of the tetrahedron, and the left side of the lower half depicts the
development of the face ABC .
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Figure 35. The schematic view from the vertex D for Figure 34.
The letters x , y and n represent the integral submultiples of π of
the dihedral angles of the tetrahedra incident at D.

with the link of D intersect. See Figure 35, which schematically depicts the view
of this link from the vertex D.

In the figure, 51 is represented by the bold line AB ′ and 52 by the bold line
A′B. We have labeled the interior angles of the triangles in this view by their
submultiples of π . Because vertex C has two edges of order 3 incident to it, we
must have that n ≥ 3. But since x and y must both be at least 6, we can use
Figure 21(iii) (with base the segment AB) to conclude that the bold lines cannot
intersect on either side of the line AB. So51∩52=∅ in the case of Figure 31(ii).

This leaves case (i) of Figure 31. We begin by assuming that l ≥ 5 (recall that
l must be odd). See Figure 36, which depicts the view from the vertex A with the
projection centered at the vertex B, and Figure 37. For the purposes of illustration,
we take the type of A to be (2, 4, 5), although the argument only depends on the
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Figure 36. The case of Figure 31(i): view from the vertex A, in
the case when A has type (2, 4, 5).
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Figure 37. The case of Figure 31(i) (continued).

presence of the order 2 edge incident to A and the fact that the order of the edge AB
is at least 5. The plane51 is represented by the circular arc B ′C ′′. We note that the
plane BC ′D in the lower right part of the figure is represented in the upper half of
the figure by a circle, centered on the line segment BC ′ because the planes BC ′D
and ABC ′ are perpendicular, and whose interior disk does not contain any of the
points B, D, C ′ or D′. As we have observed previously (see the argument depicted
in Figure 15 from Section 4.1.3), the circle representing BC ′D can intersect at most
two sides of the l-gon centered at B, and in this case those sides will always be
D′C ′ and DC ′. It is clear that this circle is disjoint from the arc B ′C ′′ representing
51, and hence that 51 ∩ BC ′D = ∅. Now referring to the lower right part of
the figure, we observe that 52 = A′B D (as planes) and that the part of 52 that
is on the same side of BC D as A is also on the opposite side of BC ′D as A.
Since 51 is disjoint both from BC ′D and BC D (the latter by the previous case of
Section 4.2.1), and because 51 lies on the same side of these planes as A, we can
conclude that 51 ∩52 =∅ in this case when l ≥ 5.

So we now assume that l= 3 in this case. We are not able to use the argument of
the previous paragraph because some of the intersections ruled out in the previous
paragraph can occur in this case. We refer to Figure 38. The possible values for q,
n and r in the figure are based on the fact that the tetrahedron has no finite vertices.
In this figure, 51 = AC ′A′′B ′ and 52 = A′B ′′DB (as planes). We determine that
these planes are disjoint by applying the techniques of Sections 4.1.1 and 4.1.2. In
particular, if n ≥ 4, then we use the geometry of the link of vertex C ′ to conclude
that 51 is disjoint from the plane B DC ′D′ (it lies to the same side of B DC ′D′ as
the vertex A) and the geometry of the link of vertex D to conclude that52 is disjoint
from the plane AC DC ′ (it lies to the same side of AC DC ′ as vertex B). Now by
considering the plane AB D and the geometry of the vertex B, we have that the part
of 52 that is on the C ′ side of AB D is always on the opposite side of B DC ′D′ to
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Figure 38. The case of Figure 31(i) when l = 3.

51. Similarly, we have that the part of 51 on the D side of ABC ′ is always on the
opposite side of AC DC ′ to 52. We conclude that 51∩52 =∅. When n = 3, the
argument is similar, except that AC DC ′= AC B ′′DC ′ and B DC ′D′= B DC ′A′′D′

(as planes), and51 and52 will form interior angles on the B side of AC B ′′DC ′ of
3π/q≤π/2 and π/r ≤π/6, respectively (so that51 and52 cannot intersect on the
side of this plane opposite to B), and interior angles on the A side of B DC ′A′′D′

of π/q ≤π/6 and 3π/r ≤π/2, respectively (so that51 and52 cannot intersection
on the side of this plane opposite to A). Again, we conclude that 51 ∩52 = ∅.
This completes case (i) of Figure 31, and concludes this subsection.

4.2.3. Figure 20(a): See Figure 39, and recall the significance of the symbol ∗

from the remark on page 224. We must first address the case when e2 = A∗C .
There are two possibilities that we must consider in determining whether or not
51 and 52 can intersect: either (1) 51 meets the plane through BC that is closest
in inclination to the switch edge AB (it cannot meet more planes through BC , by
our previous observations) and 52 meets at least the second closest plane through
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Figure 39. One case of Figure 20(a).

BC to the switch edge AB, or (2) 51 meets no planes passing through BC and
52 meets all of the planes passing through BC . We handle these two cases below:

(1) In order for 51 to meet a plane passing through BC , our tetrahedron must
take one of the forms of items (1)–(3) in the summary at the conclusion of
the paper. This follows from the extensive analysis of Section 4.1 (in fact, the
pairwise intersections of 51, 5F and the plane through BC inclined closest
to the switch edge AB determine an immersed turnover in this case). We
consider the case when l = 3, corresponding to item (3) in the summary. If
l = 3, then q = 2, m ≥ 6 and n (the order of the third edge associated to
vertex C) is at least 3. It is then an easy analysis, using Figure 21 applied
to the vertex C , to see that there is no choice of n and m for which 52 can
intersect either of the two closest planes through BC toward the edge AB. So
51 ∩52 = ∅. Exactly the same analysis holds if our tetrahedron takes the
form of item (1) of the summary at the conclusion of the paper (in this case
we have l = 2, m ≥ 6, n= 2 and q ≥ 3, and so the order of edge A∗C is either
2 or q , and there is no choice for m and q such that 52 meets either of the
two planes through BC inclined closest to the switch). If our tetrahedron has
the form of item (2) from the summary, then l = 2, m ≥ 3 and q ≥ 6. If m is
odd and at least 5, then the order of edge A∗C is 2 and we can use Figure 21
applied to vertex C to conclude that 52 does not meet the two planes through
BC inclined closest to the switch. If m is even and at least 6, then the order
of A∗C is q ≥ 6, and the conclusion of the previous sentence also holds. If
m = 4, then we refer to Figure 40. Only the relevant edges are labeled in this
figure, in which 51 = AC∗D and 52 = A∗D′A′C . Because q ≥ 6, we have
that 51 and 52 form interior angles on the side of AC A′D opposite to vertex
B of π/3 and (q−2)π/q ≥ 2π/3, respectively (these are interior angles with
respect to the edge C D). Therefore, 51 and 52 do not intersect on the side
of this plane opposite to B. But, as we have observed, 51∩ A′BC =∅. Since
the part of 52 that is on the B side of AC A′D is always on the opposite side
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Figure 40. The case of Figure 39, when l = 2, m = 4 and e2 = A∗C .

of A′BC to 51, we have 51 ∩52 = ∅. The case when m = 3 is exactly the
same. These are all the possibilities for when the tetrahedron has one of the
types (1)–(3) in the summary. So 51 ∩52 =∅ for this case.

(2) If the order of edge BC is greater than 4, then it is not possible to choose
integers for the type of vertex C so that 52 crosses all the planes through
BC . This follows by using the information of Figure 21 applied to the vertex
C , as in the arguments that accompany Figure 23 in Section 4.2.1. The same
statement is true (with the same argument) if the order of BC is 3 and the
vertex C has no incident order 2 edge. So the order of edge BC is either 3
and C has the type (2, 3, x ≥ 6) or the order of edge BC is 2. Suppose that the
edge BC has order 3. Then we can use the same argument as the one given
at the end of the previous paragraph. Namely, it is readily shown that 51 and
52 meet the plane containing the face AC D at interior angles that sum to at
least π on the opposite side of AC D of the vertex B, and since they do not
meet on the B side of this plane, they must be disjoint. The same argument
also works when the order of BC is 2. So 51 ∩52 =∅ in this case.

So we assume e2 6= A∗C . We observe that removing the sides AC∗ and BC∗

from the Figure 39 leaves a picture that is equivalent to the previous case of
Section 4.2.1. We therefore know that 52 misses every plane through the switch
edge AB. It follows, using Figure 21 applied to the vertex A, that l must be either
2 or 3, in order for 51 to cross every plane through this switch edge. Moreover,
we must have, as in previous cases, that the type of vertices A and C must include
an order 2 point. Suppose l = 2. This implies that neither m nor q is 2. If, in
addition, neither m nor q is 3, then it is straightforward using the information in
Figure 21 (applied to vertex C) to show that 52 cannot meet the plane through
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Figure 41. The case of Figure 39, when l = 3, q = 2 and p ≥ 6.

A∗C inclined closest to 51, and so prove that 51∩52 =∅ in this case. So either
m = 3 and q ≥ 6 or q = 3 and m ≥ 6, and in both cases n = 2. In either case, it
is a straightforward application of the techniques already employed — specifically,
the techniques involving developing tetrahedra from Sections 4.1.1 and 4.1.2 — to
show that 51 and 52 do not intersect.

Now suppose l=3. This implies that the order of edge e1 is p. Because51 must
cross every plane through the switch edge AB, it is easily shown using Figure 21
(applied to vertex A) that the order p of edge e1 is at least 6 and q = 2. Figure 41
shows three copies of T , with C∗ relabeled as D′. Because q = 2, we must have
n ≥ 3 and m ≥ 3. Since n 6= 2, analysis using the vertex D shows that 51, which
is the plane ADC ′D′, intersects the plane BC D if and only if r = 2. We analyze
two cases:

Case r 6= 2: In this case, 51 does not intersect BC D, and so it is necessary for 52

to intersect BC D if 51 and 52 are to intersect. If m ≥ 4 and even, then the edges
emanating from the vertex C in Figure 39 — C A, C B, C A∗,. . . , e2 — have labels
that alternate 2,m, 2, . . . . However, by using Figure 30(ii) applied to the vertex C ,
it is easily seen that no plane through any of the edges C A∗,. . . , e2 that is inclined
closest to the switch edge AB will intersect the plane BC D. Since 51 does not
intersect BC D, the latter plane separates 51 from 52. So we are left to consider
when m ≥ 3 and odd. When m ≥ 5 and odd, an application of the information
from Figure 21 to the vertex C shows that no plane that is inclined closest to the
switch edge AB through any of the edges from C A∗ to e2 can intersect with the
plane BC D. So again, 51 ∩52 = ∅. Finally, when m = 3, it is necessary for n
(the label of the third edge of T that meets the vertex C , and the label of the edge
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C A∗) to be at least 6. So the type of the vertex C is (2, 3, n ≥ 6), and no plane
through any edge after C A∗ and up to and including e2 that is inclined closest to
the switch edge AB will intersect the closest such inclined plane through the edge
C A∗ (as in Figure 30(i)). Since, by the observation of the first paragraph of this
section, the closest inclined plane to the switch edge AB through C A∗ is disjoint
from 51, we again have 51 ∩52 = ∅. This completes the analysis of the case
when r 6= 2.

Case r=2: In this case,51 does intersect the plane BC D. Because r=2 and l=3,
it is necessary that m ≥ 6. We have previously observed that 51 cannot intersect
with the second-closest inclined plane to the switch edge AB through BC (because
the planes51, ABC and BC D form pairwise angles of intersection π/p, π/m and
π/n, with p≥ 6, m ≥ 6 and n ≥ 3). However, vertex C has type (2,m ≥ 6, n ≥ 3),
and it is easily seen using the information of Figure 21 applied to C that no plane
that is inclined closest to the switch edge AB through any of the edges from C A∗

to e2 can intersect the second-closest inclined plane to AB through C B, provided
that m ≥ 7. So this second-closest inclined plane through C B separates 51 from
52, when m ≥ 7. This leaves the case when m = 6. But this case is handled by
an argument similar to the accompanying argument for Figure 26 in Section 4.2.1.
This completes the case when r = 2, and concludes this subsection.

4.2.4. Figure 20(b): See Figure 42. By the result of Section 4.2.1, it is not possible
for e2 to equal C A∗. Because of this, it is not possible, also by the Section 4.2.1,
for 52 to meet any of the planes through the edge AB. Nor is it possible, by
Section 4.2.1, for51 to meet any of the planes through the edge BC . Consequently,
the intersection of 51 and 52 can only occur if 51 crosses every plane through
AB and 52 crosses every plane through BC . The subsequent possibilities and
arguments to rule them out are all straightforward to carry out, using the techniques
we have employed to this point. This completes the proof of Theorem 1.2. �

l
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A∗
B

e1

e2C
C∗

q
B∗

Figure 42. One case of Figure 20(b).
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Summary

We provide a summary of the classification of immersed turnovers in the orbifold
OT associated to the generalized tetrahedron T [l,m, q; n, p, r ]. These are listed in
the order in which they appear in the proof, but isometric cases are indicated (the
24 isometric cases are determined by applying an element of the symmetric group
S4: any element of the symmetric group S3 may be applied to both the first and
second triples of T [l,m, q; n, p, r ], and any pair from one triple may be swapped
with the corresponding pair of the other triple). We also include a conjectural
list of all the immersed turnovers in hyperbolic tetrahedral orbifolds. All of these
can be confirmed using the techniques of this paper, and while the author believes
this list to be exhaustive, the necessary computations to determine the complete
classification are somewhat extensive.

(1) T [2,m, q; 2, p, 3]. OT contains an immersed (q,m, p) turnover, where q ≥
3,m ≥ 6 and p ≥ 6.

(2) T [2,m, q; 2, 3, r ] (isometric to item (1)). OT contains an immersed (q,m, r)
turnover, where q ≥ 6,m ≥ 3 and r ≥ 6.

(3) T [3,m, 2; n, p, 2] (isometric to item (1)). OT contains an immersed (m, n, p)
turnover, where m ≥ 6, n ≥ 3 and p ≥ 6.

Conjectural list of all immersed turnovers in hyperbolic tetrahedral orbifolds:

(4) T [2,m, q; 2, p, 3]. OT contains an immersed (q,m, p) turnover for any of
the following values:

(a) q = 2, m = 4 and p ≥ 5. In this case, OT also contains

(i) a (2, p, p) turnover,
(ii) a (4, 4, 5) turnover if p = 5, and

(iii) a (p/2, p, p) turnover if p is even.

(b) q = 2, p = 4 and m ≥ 5 (isometric to item (4), with the same set of
additional nonmaximal turnovers).

(c) q = 2, m ≥ 5 and p ≥ 5. In this case, OT also contains

(i) a (m,m, p/2) turnover if p is even, or
(ii) a (m/2, p, p) turnover if m is even.

(d) q, m and p are all greater than 2, and at least one is greater than 3. In this
case, if two of the values are 3, then OT also contains a (x, x, x) turnover,
where x is the integer that is greater than 3.

(5) T [3, 2, 2; 2, p, 3]. OT contains an immersed (2, p, p) turnover, where p ≥ 5.

(6) T [3,m, 2; 2, p, 3]. OT contains an immersed (m, p, p) turnover, where m≥3
and p ≥ 4.
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(7) T [3,m, 3; 2, 3, 2]. OT contains an immersed (3,m,m) turnover, where m≥4.

(8) T [4, 3, q; 2, 2, 2]. OT contains an immersed (q, q, 3) turnover, where q ≥ 4.

(9) T [2, 2, 4; n, 3, r ]. OT contains an immersed turnover of type (2, 4, r ≥ 5) (as
well as the additional nonmaximal turnovers listed in item (4)) if n = 2, an
immersed turnover of type (4, 4, r ≥ 3) if n = 3, and immersed turnovers of
types (3, 3, 5), (3, 5, 5) and (5, 5, 5) if n = 2 and r = 5.

(10) T [2, 3, q; 2, 3, r ]. OT contains an immersed (q, r, r) turnover, where q ≥ 3
and r = 4 or r = 5.

(11) T [2, 2, q; 3, 5, 2]. OT contains an immersed (q, q, 5) turnover, where q ≥ 3.

(12) T [2, 2, 5; 2, 3, 5]. OT contains an immersed (3, 5, 5) turnover.

(13) T [2, 2, 3; 3, p, 2]. OT contains immersed turnovers of type (3, p, p) and
(p, p, p), where p = 5 or p = 6 (also, (2, p, p) by item (5) and (3, 3, 5),
when p = 5, by item (11)).

(14) T [2, 2, 3; 2, p, 3]. OT contains immersed turnovers of type (2, p, p), (3, 3, p)
and (p, p, p) if p = 5, and an immersed turnover of type (3, p, p) if p = 6.

Acknowledgments

The author thanks Ian Agol for helpful conversations. Very special thanks to the
referee for invaluable feedback and for recommending simplifications to some of
the arguments.

References

[Adams and Schoenfeld 2005] C. Adams and E. Schoenfeld, “Totally geodesic Seifert surfaces in
hyperbolic knot and link complements. I”, Geom. Dedicata 116 (2005), 237–247. MR 2006j:57008
Zbl 1092.57003

[Andreev 1970a] E. M. Andreev, “On convex polyhedra in Lobachevskii spaces”, Mat. Sb. (N.S.)
81 (1970), 445–478. In Russian; translated in Math. USSR Sb. 10 (1970), 413-440. MR 41 #4367
Zbl 0217.46801

[Andreev 1970b] E. M. Andreev, “On convex polyhedra of finite volume in Lobachevskii space”,
Mat. Sb. (N.S.) 83 (1970), 256–260. In Russian; translated in Math. USSR Sb. 12 (1971), 255-259.
MR 42 #8388

[Boileau et al. 2003] M. Boileau, S. Maillot, and J. Porti, Three-dimensional orbifolds and their
geometric structures, Panoramas et Synthèses 15, Société Mathématique de France, Paris, 2003.
MR 2005b:57030 Zbl 1058.57009

[Cooper et al. 2000] D. Cooper, C. D. Hodgson, and S. P. Kerckhoff, Three-dimensional orb-
ifolds and cone-manifolds, MSJ Memoirs 5, Math. Soc. of Japan, Tokyo, 2000. MR 2002c:57027
Zbl 0955.57014

[Dunbar 1988] W. D. Dunbar, “Hierarchies for 3-orbifolds”, Topology Appl. 29:3 (1988), 267–283.
MR 89h:57008 Zbl 0665.57011



240 SHAWN RAFALSKI

[Hodgson 1992] C. D. Hodgson, “Deduction of Andreev’s theorem from Rivin’s characterization of
convex hyperbolic polyhedra”, pp. 185–193 in Topology ’90, edited by B. Apanasov et al., Ohio
State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin, 1992. MR 93h:57022 Zbl 0765.52013

[Maclachlan 1996] C. Maclachlan, “Triangle subgroups of hyperbolic tetrahedral groups”, Pacific J.
Math. 176:1 (1996), 195–203. MR 98d:20056 Zbl 0865.20031

[Maskit 1988] B. Maskit, Kleinian groups, Grundlehren der Mathematischen Wissenschaften 287,
Springer, Berlin, 1988. MR 90a:30132 Zbl 0627.30039

[Morgan 1984] J. W. Morgan, “On Thurston’s uniformization theorem for three-dimensional mani-
folds”, pp. 37–125 in The Smith conjecture (New York, 1979), edited by J. W. Morgan and H. Bass,
Pure Appl. Math. 112, Academic Press, Orlando, FL, 1984. MR 758464 Zbl 0599.57002

[Rafalski 2010] S. Rafalski, “Immersed turnovers in hyperbolic 3-orbifolds”, Groups Geom. Dyn.
4:2 (2010), 333–376. MR 2011a:57036 Zbl 1194.57024

[Ratcliffe 1994] J. G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathemat-
ics 149, Springer, New York, 1994. MR 95j:57011 Zbl 0809.51001

[Roeder et al. 2007] R. K. W. Roeder, J. H. Hubbard, and W. D. Dunbar, “Andreev’s theorem on
hyperbolic polyhedra”, Ann. Inst. Fourier (Grenoble) 57:3 (2007), 825–882. MR 2008e:51011
Zbl 1127.51012

[Singerman 1972] D. Singerman, “Finitely maximal Fuchsian groups”, J. London Math. Soc. (2) 6
(1972), 29–38. MR 48 #529 Zbl 0251.20052

[Thurston 1979] W. P. Thurston, “The geometry and topology of three-manifolds”, lecture notes,
Princeton University, 1979, available at http://msri.org/publications/books/gt3m.

[Thurston 1982] W. P. Thurston, “Three-dimensional manifolds, Kleinian groups and hyperbolic
geometry”, Bull. Amer. Math. Soc. (N.S.) 6:3 (1982), 357–381. MR 83h:57019 Zbl 0496.57005

[Thurston 1997] W. P. Thurston, Three-dimensional geometry and topology, vol. 1, Princeton Math-
ematical Series 35, Princeton Univ. Press, Princeton, NJ, 1997. MR 97m:57016 Zbl 0873.57001

[Ushijima 2006] A. Ushijima, “A volume formula for generalised hyperbolic tetrahedra”, pp. 249–
265 in Non-Euclidean geometries: János Bolyai memorial volume (Budapest, 2002), edited by A.
Prékopa and E. Molnár, Math. Appl. (N. Y.) 581, Springer, New York, 2006. MR 2007h:52008
Zbl 1096.52006

[Weeks ≥ 2012] J. Weeks, “Kaleidotile”, available at http://www.geometrygames.org/KaleidoTile.

Received February 1, 2011. Revised October 28, 2011.

SHAWN RAFALSKI

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

FAIRFIELD UNIVERSITY

1073 NORTH BENSON ROAD

15 BANNOW SCIENCE CENTER

FAIRFIELD, CT 06825-5195
UNITED STATES

srafalski@fairfield.edu



PACIFIC JOURNAL OF MATHEMATICS
http://pacificmath.org

Founded in 1951 by
E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Darren Long
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Alexander Merkurjev
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Jonathan Rogawski
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

jonr@math.ucla.edu

PRODUCTION
pacific@math.berkeley.edu

Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or pacificmath.org for submission instructions.

The subscription price for 2012 is US $420/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of
Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company,
11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt
MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans
Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2012 by Pacific Journal of Mathematics

http://pacificmath.org/
mailto:chari@math.ucr.edu
mailto:finn@math.stanford.edu
mailto:liu@math.ucla.edu
mailto:pacific@math.ucla.edu
mailto:long@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:merkurev@math.ucla.edu
mailto:popa@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:jonr@math.ucla.edu
mailto:pacific@math.berkeley.edu
http://pacificmath.org/
http://www.periodicals.com/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/


PACIFIC JOURNAL OF MATHEMATICS

Volume 255 No. 1 January 2012

1Averaging sequences
FERNANDO ALCALDE CUESTA and ANA RECHTMAN

25Affine group schemes over symmetric monoidal categories
ABHISHEK BANERJEE

41Eigenvalue estimates on domains in complete noncompact Riemannian
manifolds

DAGUANG CHEN, TAO ZHENG and MIN LU

55Realizing the local Weil representation over a number field
GERALD CLIFF and DAVID MCNEILLY

79Lagrangian submanifolds in complex projective space with parallel second
fundamental form

FRANKI DILLEN, HAIZHONG LI, LUC VRANCKEN and XIANFENG

WANG

117Ultra-discretization of the D(3)
4 -geometric crystal to the G(1)

2 -perfect
crystals

MANA IGARASHI, KAILASH C. MISRA and TOSHIKI NAKASHIMA

143Connectivity properties for actions on locally finite trees
KEITH JONES

155Remarks on the curvature behavior at the first singular time of the Ricci
flow

NAM Q. LE and NATASA SESUM

177Stability of capillary surfaces with planar boundary in the absence of
gravity

PETKO I. MARINOV

191Small hyperbolic polyhedra
SHAWN RAFALSKI

241Hurwitz spaces of coverings with two special fibers and monodromy group
a Weyl group of type Bd

FRANCESCA VETRO

0030-8730(201201)255:1;1-D

Pacific
JournalofM

athem
atics

2012
Vol.255,N

o.1


	
	
	

