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ON THE LOCAL LANGLANDS CORRESPONDENCES OF
DEBACKER–REEDER AND REEDER FOR GL(`, F),

WHERE ` IS PRIME

MOSHE ADRIAN

We prove that the conjectural depth-zero local Langlands correspondence
of DeBacker and Reeder agrees with the known depth-zero local Langlands
correspondence for the group GL(`, F), where ` is prime and F is a nonar-
chimedean local field of characteristic 0. We also prove that if one assumes
a certain compatibility condition between Adler’s and Howe’s constructions
of supercuspidal representations, then the conjectural positive-depth local
Langlands correspondence of Reeder also agrees with the known positive-
depth local Langlands correspondence for GL(`, F).

1. Introduction

Let F be a nonarchimedean local field of characteristic zero. Let G be a connected
reductive group defined over F . The local Langlands correspondence asserts that
there is a finite to one map from the set of admissible representations of G(F) to the
set of Langlands parameters of G(F), satisfying various conditions. Until recently,
this has only been proven for special cases of groups such as GL(n, F), Sp(4, F),
and U (3). The local Langlands correspondence for GL(n, F) was proven by Harris
and Taylor, and independently by Henniart.

More recently, DeBacker and Reeder, in two papers that will be cited throughout
the text, described conjectural local Langlands correspondences for a more general
class of groups and certain classes of Langlands parameters. These correspondences
are still conjectural, despite satisfying several requirements that the Langlands
correspondence should have. One would therefore like to know whether they agree
at least with the proven correspondences in the known cases.

We prove that the correspondence introduced in [DeBacker and Reeder 2009]
(henceforth [DB-R]) agrees with the known correspondence for GL(`, F), while
the one in [Reeder 2008] (henceforth [R]) agrees with the known correspondence

MSC2010: 11S37, 22E50.
Keywords: local Langlands correspondence, p-adic groups, Langlands program, representation

theory, number theory.
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258 MOSHE ADRIAN

for GL(`, F) if one assumes a certain compatibility condition, which we describe
later.

For GL(n, F), the constructions of Harris–Taylor, Henniart, and DeBacker–
Reeder (and Reeder) use different methods. We first recall the classical construction
of the tame local Langlands correspondence for GL(`, F) as in [Moy 1986]. We
note that a tame local Langlands correspondence for GL(n, F) was conjectured
there for general n. In view of [Bushnell and Henniart 2005], Moy’s correspondence
is indeed correct for GL(`, F), ` a prime.

Definition 1.1. Let E/F be an extension of degree `, ` relatively prime to the
residual characteristic of F , and let χ be a character of E∗. The pair (E/F, χ) is
called admissible if χ does not factor through the norm from a proper subfield of
E containing F .

We write P`(F) for the set of F-isomorphism classes of admissible pairs
(E/F,χ)where E/F is a degree-` extension (for more information about admissible
pairs, see [Moy 1986]). Let A0

`(F) denote the set of supercuspidal representations
of GL(`, F). Howe [1977] constructs a map

P`(F)→ A0
`(F), (E/F, χ) 7→ πχ .

This map is a bijection [Moy 1986]. Let G0
`(F) denote the set of irreducible `-

dimensional representations of WF , where WF is the Weil group of F . We then
have a bijection [Moy 1986]

P`(F)→ G0
`(F), (E/F, χ) 7→ IndWF

WE
(χ)=: φ(χ).

The local Langlands correspondence is then given by

φ(χ) 7→ πχ1χ

for some subtle finite order character 1χ of E∗ [Bushnell and Henniart 2005]. In
the case of depth-zero supercuspidal representations, there is only one extension
E/F to deal with, namely, the unramified extension of F of degree `.

On the other hand, the constructions of [DB-R] and [R] extensively use Bruhat–
Tits theory. To a certain class of Langlands parameters for an unramified connected
reductive group G, they associate a character of a torus, to which they attach a
collection of supercuspidal representations on the pure inner forms of G(F), a con-
jectural L-packet. They are also able to isolate the part of this packet corresponding
to a particular pure inner form, and prove that their correspondences satisfy various
natural conditions, such as stability.

Specifically, we prove the following. Let E/F be the unramified degree-`
extension, ` a prime. To any tame, regular, semisimple, elliptic, Langlands pa-
rameter (TRSELP) for GL(`, F), we show that DeBacker–Reeder theory attaches
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the character χ1χ of E∗, to which is attached the representation πχ1χ . This will
prove that their correspondence agrees with the correspondence of [Moy 1986] for
GL(`, F).

We then prove the same for Reeder’s construction, if one assumes a certain
compatibility condition, which we describe now. The construction in [R] begins by
canonically attaching a certain admissible pair (L/F, �) to a Langlands parameter
for GL(`, F). His construction then inputs this admissible pair into the theory
of [Adler 1998] in order to construct a supercuspidal representation π(L , �) of
GL(`, F). The compatibility condition that we will need to assume is that π(L , �)
is the same supercuspidal representation that is attached to (L/F, �) via the con-
struction in [Howe 1977]. We remark that this compatibility condition does not
seem to be known to the experts.

Although Moy’s correspondence agrees with DeBacker and Reeder’s (and also
with Reeder’s, assuming the above compatibility), some important details are
different. One interesting and subtle difference lies in the passage from a Lang-
lands parameter to a character of a torus. To illustrate it, we rewrite both cor-
respondences to include their factorization through characters of elliptic tori as{
Langlands parameters from [DB-R] or [R] for GL(`, F)

}
→ P`(F)→ A0

`(F).
Then, the correspondence of Moy is given by

φ(χ)= IndWF
WE
(χ) 7→ (E/F, χ) 7→ πχ1χ ,

whereas the correspondences of DeBacker–Reeder (and Reeder, assuming the
compatibility) are given by

φ(χ)= IndWF
WE
(χ) 7→ (E/F, χ1χ ) 7→ πχ1χ .

We now briefly present an outline of the paper. In Section 2, we introduce some
notation that we will need throughout. In Section 3, we briefly recall some of
the key components to the construction from [DB-R]. In Section 4, we recall the
tame local Langlands correspondence for GL(`, F) as explained in [Moy 1986]. In
Sections 5 and 6, we work out the DeBacker–Reeder theory for GL(`, F), and we
show that the correspondences of DeBacker–Reeder and Moy agree for GL(`, F).
Finally, in Section 7, we work out the theory of [R] for GL(`, F), where ` is prime,
and we show that under the compatibility condition, the correspondences of Reeder
and Moy agree for GL(`, F).

2. Notation

Let F denote a nonarchimedean local field of characteristic zero. We let oF denote
the ring of integers of F , pF its maximal ideal, f the residue field of F , q the order
of f, and p the characteristic of f. Let fm denote the degree-m extension of f. We
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let $ denote a uniformizer of F . Let Fu denote the maximal unramified extension
of F . We have the canonical projection

5 : o∗F → o∗F/(1+ pF )∼= f∗

We denote by WF the Weil group of F , IF the inertia subgroup of WF , I+F the
wild inertia subgroup of WF , and W ab

F the abelianization of WF . We denote by W ′F
the Weil–Deligne group, we set Wt :=WF/I+F , and we set It := IF/I+F . We fix an
element 8 ∈ Gal(F/F) whose inverse induces the map x 7→ xq on F := f, and if
E/F is the unramified extension of degree `, we fix an element 8E ∈ Gal(E/E)
whose inverse induces the map x 7→ xq` on F := f. Let G be an unramified connected
reductive group over F , and set G =G(Fu). We fix T⊂G, an Fu-split maximal
torus which is defined over F and maximally F-split, and set T = T(Fu). We
write X := X∗(T), Wo for the finite Weyl group NG(T )/T , and set N := NG(T ).
Recall that the extended affine Weyl group is defined by W := X o Wo, and that
the affine Weyl group is defined by W o

:=9 o Wo, where 9 is the coroot lattice
in X . We let A :=A(T ) be the apartment of T . We denote by θ the automorphism
of X,W induced by 8. If E/F is a finite Galois extension, then we denote by
ℵE/F the local class field theory character of F∗ with respect to the extension E/F .
If χ ∈ Ê∗ satisfies χ |1+pE ≡ 1, then χ |o∗E factors to a character, denoted χo, of
the multiplicative group of the residue field of E , given by χo(x) := χ(u) for any
u ∈ o∗E such that 5(u)= x . If E/F is the degree-` unramified extension, where ` is
prime, we once and for all fix a generator ξ of Gal(E/F). We also fix a generator
of Gal(f`/f), which, abusing notation, we also denote by ξ . If χ is a character of
E∗ or f∗` , we let χ ξ denote the character given by χ ξ (x) := χ(ξ(x)). If L/K is
a Galois quadratic extension, we let the map x 7→ x denote the nontrivial Galois
automorphism of L/K . If A is a group and B is a normal subgroup of A, we denote
the image of a ∈ A in A/B by [a]. If φ : C→ D is a group homomorphism and
φ is trivial on a normal subgroup M CC , then we will abuse notation and write
φ|C/M for the factorization of φ to a map C/M→ D. For example, the Langlands
parameters in [DB-R] are trivial on the wild inertia subgroup I+F of the inertia group
IF . Therefore, if φ is such a Langlands parameter and It := IF/I+F , we will write
φ|It to denote the factorization of φ|IF to the quotient It .

3. Review of construction of DeBacker and Reeder

We first review some of the basic theory from [DB-R]. We first fix a pinning
(T̂ , B̂, {xα}) for the dual group Ĝ. The operator θ̂ dual to θ extends to an automor-
phism of T̂ . There is a unique extension of θ̂ to an automorphism of Ĝ, satisfying
θ̂ (xα) = xθ ·α (see [DB-R, Section 3.2]). Following [DB-R], we may form the
semidirect product L G := 〈θ̂〉n Ĝ.



LOCAL LANGLANDS CORRESPONDENCES OF DEBACKER AND REEDER FOR GL(`, F) 261

Definition 3.1. Let W ′F denote the Weil–Deligne group. A Langlands parameter
φ : W ′F →

L G is called a tame regular semisimple elliptic Langlands parameter
(abbreviated TRSELP) if

(1) φ is trivial on I+F ;

(2) the centralizer of φ(IF ) in Ĝ is a torus;

(3) CĜ(φ)
o
= (Ẑ θ̂ )o, where Ẑ denotes the center of Ĝ.

Condition (2) forces φ to be trivial on SL(2,C). Let N̂ = NĜ(T̂ ). After conju-
gating by Ĝ, we may assume that φ(IF )⊂ T̂ and φ(8)= θ̂ f , where f ∈ N̂ . Let
ŵ be the image of f in Ŵo, and let w be the element of Wo corresponding to ŵ.

Let φ be a TRSELP with associated w and set σ = wθ . σ is an automorphism
of X . Let σ̂ be the automorphism dual to σ , and let n be the order of σ . We set
Ĝab := Ĝ/Ĝ ′, where Ĝ ′ denotes the derived group of Ĝ. Let

L Tσ := 〈σ̂ 〉n T̂ .

Associated to φ, DeBacker and Reeder [DB-R, Chapter 4] define a T̂ -conjugacy
class of Langlands parameters

(1) φT :WF →
L Tσ

as follows. Set φT := φ on IF , and φT (8) := σ̂ n τ where τ ∈ T̂ is any element
whose class in T̂ /(1− σ̂ ) T̂ corresponds to the image of f in Ĝab/(1− θ̂ )Ĝab

under the bijection

(2) T̂ /(1− σ̂ ) T̂
∼
−→ Ĝab/(1− θ̂ )Ĝab

Chapter 4 of [DB-R] gives a canonical bijection between T̂ -conjugacy classes
of admissible homomorphisms φ : Wt →

L Tσ and depth-zero characters of T8σ

where 8σ := σ ⊗8−1. We briefly summarize this construction. Let T := X ⊗F∗.
Given automorphisms α, β of abelian groups A, B, respectively, let Homα,β(A, B)
denote the set of homomorphisms f : A→ B such that f ◦α = β ◦ f . The twisted
norm map

Nσ : T8
n
σ → T8σ

given by Nσ (t)= t8σ (t)82
σ (t) . . . 8

n−1
σ (t) induces isomorphisms

Hom(T8σ ,C∗)
∼
−→ Hom8σ ,Id(T

8n
σ ,C∗)

∼
−→ Hom8σ ,Id(X ⊗ f∗n,C∗)

Moreover, the map s 7→ χs gives an isomorphism

Hom8,σ̂ (f
∗

n, T̂ )
∼
−→ Hom8σ ,Id(X ⊗ f∗n,C∗),
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where χs(λ⊗ a) := λ(s(a)). The canonical projection It → f∗m induces an isomor-
phism as 8-modules

It/(1−Ad(8)m) It
∼
−→ f∗m,

where Ad denotes the adjoint action. Since σ̂ has order n, we have

Hom8,σ̂ (f
∗

n, T̂ )∼= HomAd(8),σ̂ (It , T̂ ).

Therefore, the map s 7→ χs is a canonical bijection

HomAd(8),σ̂ (It , T̂ )
∼
−→ Hom(T8σ ,C∗)

Moreover, we have an isomorphism

0T8σ × Xσ ∼
−→ T8σ , (γ, λ) 7→ γ λ($),

where 0T is the group of oFu -points of T.
Finally, note that T̂ /(1− σ̂ ) T̂ is the character group of Xσ , whereby

τ ∈ T̂ /(1− σ̂ ) T̂

corresponds to χτ ∈ Hom(Xσ ,C∗), where χτ (λ) := λ(τ). Therefore, we have a
canonical bijection between T̂ -conjugacy classes of admissible homomorphisms
φ :Wt →

L Tσ and depth-zero characters

(3) χφ := χs ⊗χτ ∈ Irr(T8σ ),

where s := φ|It , φ(8)= σ̂ n τ , and where we have inflated χs to 0T8σ .
To get the depth-zero L-packet associated to φ, one implements the component

group
Irr(Cφ)∼= [X/(1−wθ)X ]tor

as follows. We set Xw to be the preimage of [X/(1− wθ)X ]tor in X . To λ ∈
Xw, DeBacker and Reeder associate a 1-cocycle uλ, hence a twisted Frobenius
8λ = Ad(uλ) ◦8. Moreover, to λ, they associate a facet Jλ, and hence a parahoric
subgroup Gλ associated to Jλ. Let Gλ := Gλ/G+λ . Let Wλ be the subgroup of W o

generated by reflections in the hyperplanes containing Jλ. Then to λ, DeBacker
and Reeder associate an element wλ ∈ Wλ. Fix once and for all a lift ẇ of w to
N . Using this lift, DeBacker and Reeder also associate a lift ẇλ of wλ to N . By
Lang’s theorem, there exists pλ ∈ Gλ such that p−1

λ 8λ(pλ)= ẇλ. We then define
Tλ :=Ad(pλ)T , and set χλ :=χφ ◦Ad(pλ)−1. Since χλ is depth-zero, its restriction
to 0T8λ

λ factors through a character χ0
λ of T

8λ
λ , where T

8λ
λ is the projection of

0T8λ in Gλ. Therefore, χ0
λ gives rise to an irreducible cuspidal Deligne–Lusztig

representation κ0
λ of G

8λ
λ . Inflate κ0

λ to a representation of G8λ
λ , and define an
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extension to Z8λ G8λ
λ by

κλ := χλ⊗ κ
0
λ,

where Z denotes the center of G. This makes sense since (Z ∩Gλ)
8λ acts on κ0

λ

via the restriction of χ0
λ . Finally, form the representation

πλ := IndG8λ

Z8λG8λ
λ

κλ,

where Ind denotes smooth induction. Then DeBacker and Reeder construct a packet
5(φ) of representations on the pure inner forms of G, parametrized by Irr(Cφ),
using the above construction, where Cφ is the component group of φ.

4. Existing description of the tame local Langlands correspondence
for GL(`, F)

In this section, we describe the construction of the tame local Langlands correspon-
dence for GL(`, F) as explained in [Moy 1986], where ` is a prime.

4A. Depth-zero supercuspidal representations of GL(`, F). Let (E/F, χ) be an
admissible pair, where χ has level 0 and E/F has degree `. By definition of
admissible pair, this implies that E/F is unramified, and the residue field of E
is f`. We have χ |1+pE = 1, so χ |o∗E is the inflation of the character χo of f∗` . By the
theory of finite groups of Lie type, this character gives rise to an irreducible cuspidal
representation λ′ of GL(`, f), which is the irreducible cuspidal Deligne–Lusztig
representation corresponding to the elliptic torus f∗` ⊂GL(`, f) and the character χo

of f∗` . Let λ be the inflation of λ′ to GL(`, oF ). We may extend λ to a representation
3 of K (F) := F∗GL(`, oF ) by setting 3|F∗ = χ |F∗ , and then induce the resulting
representation to G(F)= GL(`, F). Set

πχ = cIndG(F)
K (F)3,

where cInd denotes compact induction. Let P`(F)0 be the subset of admissible
pairs (E/F, χ) such that χ has level zero and A0

`(F)0 be the subset of depth-zero
supercuspidal representations of GL(`, F).

Proposition 4.1. Suppose that p 6= `. The map (E/F, χ ) 7→ πχ induces a bijection

P`(F)0→ A0
`(F)0

Proof. See [Moy 1986]. �

4B. Positive depth supercuspidal representations of GL(`, F), ` a prime. In this
section we recall the parametrization of the positive depth supercuspidal representa-
tions via admissible pairs, following [Moy 1986]. Let A0

`(F)
+ denote the set of

all positive depth irreducible supercuspidal representations of GL(`, F), and let
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P`(F)+ denote the set of all admissible pairs (E/F, χ) ∈ P`(F) such that χ has
positive level.

Proposition 4.2. Suppose that p 6= `. There is a map (E/F, χ) 7→ πχ that induces
a bijection

P`(F)+→ A0
`(F)

+

Proof. See [Moy 1986]. �

4C. Langlands parameters. Let G0
`(F) be the set of equivalence classes of irre-

ducible smooth `-dimensional representations of WF . Recall that there is a local
Artin reciprocity isomorphism given by W ab

E
∼= E∗. Then, if (E/F, χ) ∈ P`(F), χ

gives rise to a character of W ab
E , which we can pullback to a character, also denoted

χ , of WE . We can then form the induced representation φ(χ) := IndWF
WE
χ of WF .

Theorem 4.3. Suppose p 6= `. If (E/F, χ) ∈ P`(F), the representation φ(χ) of
WF is irreducible. The map (E/F, χ) 7→ φ(χ) induces a bijection

P`(F)→ G0
`(F)

Proof. See [Moy 1986]. �

For the next theorem, we will need to associate to any admissible pair (E/F, χ)
in P`(F) a specific character 1χ of E∗. We will not define 1χ in general, but only
for the cases that we need in this paper. For the general definition of 1χ associated
to any admissible pair (E/F, χ) ∈ P`(F), see [Moy 1986].

Definition 4.4. If (E/F, χ) is an admissible pair in which E/F is quadratic and
unramified, define 1χ to be the unique quadratic unramified character of E∗. If
(E/F, χ) is an admissible pair in which E/F is of degree ` and unramified, where
` is an odd prime, then define 1χ to be the trivial character of E∗.

Theorem 4.5 (Tame local Langlands correspondence [Moy 1986]). Suppose p 6= `.
For φ ∈G0

`(F), define π(φ)= πχ1χ in the notation of Propositions 4.1 and 4.2, for
any (E/F, χ) ∈ P`(F) such that φ ∼= φ(χ). The map

π : G0
`(F)→ A0

`(F)

is the local Langlands correspondence for supercuspidal representations of GL( ,̀F).

5. The case of GL(`, F)

For Sections 5 and 6, we consider the group G(F)= GL(`, F), where ` is prime.
We will show that the conjectural correspondence of [DB-R] agrees with the local
Langlands correspondence for GL(`, F) given in Section 4.

Let φ :WF →
L G be a TRSELP for G(F)= GL(`, F). This is equivalent to an

irreducible admissible φ :WF → GL(`,C) that is trivial on the wild inertia group.
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By Section 4C, we have φ = IndWF
WE
(χ) for some admissible pair (E/F, χ), where

χ has level zero and E/F is of degree ` and unramified. We will need the relative
Weil group [Tate 1979, Chapter 1]

WE/F :=WF/[WE ,WE ]
c,

where c denotes closure and [WE ,WE ] denotes the commutator subgroup of WE .
The representation φ = IndWF

WE
(χ) factors through WE/F , since

φ|WE = χ ⊕χ
ξ
⊕ · · ·⊕χ ξ

`−1
.

We begin by calculating the character χφ from (3). Note that

L G = 〈θ̂〉×GL(`,C).

T̂ is the diagonal maximal torus in Ĝ = GL(`,C), and after conjugation, we may
assume φ(IF )⊂ T̂ . Moreover, φ(8)= θ̂ f for some f ∈ N̂ such that ŵ is a cycle of
length ` in the Weyl group S`, the symmetric group on ` letters. The reason for this
requirement on the Weyl group element is that φ is TRSELP and hence elliptic. In
particular, ellipticity is equivalent to requiring that the image of φ is not contained in
any proper Levi subgroup of L G [DB-R, Section 3.4]. After conjugating the TRSELP

by a permutation matrix in NĜ(T̂ ), we may assume without loss of generality that
ŵ = (1 2 3 · · · `) ∈ S` since all cycles of length ` are conjugate in S`. Note that
this choice implies that w = (1 2 3 · · · `) ∈ S`. The arguments in the remainder of
the paper are the same for all other allowable choices of ŵ.

Let us first calculate χs , where s := φ|It (recall again that φ|I+F ≡ 1, so φ|IF

factors to It ).

Proposition 5.1. Let φ = IndWF
WE
(χ) and set s = φ|It , where (E/F, χ) is an admis-

sible pair as above. Then, the isomorphism

HomAd(8),σ̂ (It , T̂ )
∼
−→ Hom8,σ̂ (f

∗

`, T̂ )

sends s to β̃s , where

β̃s(x)=


χo(x) 0 0 . . . 0

0 χ
ξ
o (x) 0 . . . 0

0 0 χ
ξ2

o (x) . . . 0
...

...
...

. . .
...

0 0 0 . . . χ
ξ `−1

o (x)
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Proof. Since σ̂ has order `, s ∈ HomAd(8),σ̂ (It , T̂ ) is trivial on (1−Ad(8)`) It , so
factors to It/(1−Ad(8)`) It . We first note that the isomorphisms

It ∼= lim
←−
m

f∗m, It/(1−Ad(8)`) It
∼
−→ f∗`

are induced by local Artin reciprocity [R, Chapter 5]. Moreover, the map

HomAd(8),σ̂ (It , T̂ )→ Hom8,σ̂ (f
∗

`, T̂ )

comes from the diagram
It

s - T̂

f∗`
∼- It/(1−Ad(8)`) It

?

-

Recall that φ factors through WE/F . Hence, we also have the commutative diagram

WF
φ- GL(`,C)

WE/F

?

β
-

It is a fact that WE/F is an extension of Gal(E/F) by E∗, and can be described by
generators and relations as follows. The generators are {z ∈ E∗} and an element j
where j ∈WE/F satisfies j` =$ and j z j−1

= ξ(z). Then the map WF →WE/F

sends IF to o∗E and 8 to j .
Let us calculate the map β. Consider the canonical sequence

1→WE/[WE ,WE ]
c
→WF/[WE ,WE ]

c
→WF/WE ∼= Gal(E/F)→ 1

Recall that φ is trivial on [WE ,WE ]
c. To calculate β|E∗ , it suffices to calculate

φ|WE since WE/[WE ,WE ]
c ∼= E∗ by Artin reciprocity. But

φ|WE = χ ⊕χ
ξ
⊕ · · ·⊕χ ξ

`−1
.

Therefore,

β(t)=


χ(t) 0 0 . . . 0

0 χ ξ (t) 0 . . . 0
0 0 χ ξ

2
(t) . . . 0

...
...

...
. . .

...

0 0 0 . . . χ ξ
`−1
(t)


Moreover, since φ is irreducible, we have that β( j) ∈ NGL(`,C)(T̂ ) represents ŵ.
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Since φ|I+F ≡ 1, we have that β|1+pE ≡ 1, so β|o∗E factors to a map

β̃s : f
∗

`→ GL(`,C),

given by

β̃s(x)=



χo(x) 0 0 . . . 0
0 χ

ξ
o (x) 0 . . . 0

0 0 χ
ξ2

o (x) . . . 0
...

...
...

. . .
...

0 0 0 . . . χ
ξ `−1

o (x)

 for all x ∈ f∗` . �

Proposition 5.2. Let φ = IndWF
WE
(χ) and set s = φ|It as above. Then the composite

isomorphism

HomAd(8),σ̂ (It , T̂ )
∼
−→ Hom8,σ̂ (f

∗

`, T̂ )
∼
−→ Hom8σ ,Id(X ⊗ f∗`,C∗)

∼
−→ Hom8σ ,Id(T

8`σ ,C∗)

sends s to `χ E
o , where s=φ|It and `χ E

o (x1, x2, . . . , x`) :=χo(x1)χ
ξ
o (x2) . . . χ

ξ `−1

o (x`).

Proof. The composite isomorphism

Hom8,σ̂ (f
∗

`, T̂ )
∼
−→ Hom8σ ,Id(X ⊗ f∗`,C∗)

∼
−→ Hom8σ ,Id(T

8`σ ,C∗)

is given by α̃ 7−→ {λ(x) 7→ λ(α̃(x))}, where x ∈ f∗` and λ ∈ X = X∗(T )= X∗(T̂ ).
Note that T splits over f` and T8

`
σ ∼= f∗` ×· · ·× f∗` . Then, it is easy to see that under

this composite isomorphism, β̃s (where β̃s is as in Proposition 5.1) maps to the
homomorphism

(x1, x2, . . . , x`) 7→ χo(x1) χ
ξ
o (x2) · · ·χ

ξ `−1

o (x`) for all x1, x2, . . . , x` ∈ f∗`

by considering the standard basis of cocharacters of X . �

Proposition 5.3. The isomorphism

(4) Hom8σ ,Id(T
8`σ ,C∗)

∼
−→ Hom(T8σ ,C∗)

is given by 3 7→ 3′, where 3′(a) := 3((x1, x2, . . . , x`)) whenever a ∈ f∗` and

(x1, x2, . . . , x`) ∈ f∗` × f∗` × · · ·× f∗` satisfies x1xq`−1

2 xq`−2

3 · · · xq
` = a.

Proof. Recall that the isomorphism (4) is abstractly given by 3 7→ 3′, where
3′(a) :=3((x1, x2, . . . , x`)) for any (x1, x2, . . . , x`) ∈ f∗` × f∗` × · · ·× f∗` such that
Nσ ((x1, x2, . . . , x`))= a.
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We need some preliminaries. First note that

8σ ((x1, x2, . . . , x`))= w8−1((x1, x2, . . . , x`))

= w(xq
1 , xq

2 , . . . , xq
` )= (x

q
` , xq

1 , xq
2 , . . . , xq

`−1).

If we make the identification of T8
`
σ with tuples (x1, x2, . . . , x`)∈ f∗`× f∗`×· · ·× f∗` ,

then we have that since we made our choice of w = (1 2 3 · · · `) ∈ S`, we get

T8σ =
{
(x1, . . . , x`) ∈ f∗` × f∗` × · · ·× f∗` : (x

q
` , xq

1 , . . . , xq
`−1)= (x1, x2, . . . , x`)

}
=
{
(x1, xq

1 , xq2

1 , . . . , xq`−1

1 ) : x1 ∈ f`
}
.

If (x1, x2, . . . , x`) ∈ f∗` × f∗` × · · ·× f∗` = T8
`
σ , then

Nσ ((x1, x2, . . . , x`))

= (x1, x2, . . . , x`)8σ ((x1, x2, . . . , x`)) · · ·8`−1
σ ((x1, x2, . . . , x`))

= (x1, x2, . . . , x`)(x
q
` , xq

1 , xq
2 , . . . , xq

`−1)x
q2

`−2) . . . (x
q`−1

2 , xq`−1

3 , . . . , xq`−1

` , xq`−1

1 )

= (x1 xq`−1

2 xq`−2

3 · · · x
q
` , x2 xq`−1

3 xq`−2

4 · · · x
q
1 , . . . , x` xq`−1

1 xq`−2

2 · · · x
q
`−1)

Therefore, Nσ : T8
`
σ → T8σ is the map

(x1, x2, . . . , x`) 7→ x1 xq`−1

2 xq`−2

3 · · · x
q
`

for all (x1, x2, . . . , x`) ∈ f∗` × f∗` × · · ·× f∗` . �

We now need to obtain a character of 0T8σ from a character of T8σ . In our
case, 0T8σ = o∗E , which has a canonical projection map o∗E =

0T8σ
η
−→ T8σ = f∗` .

Then, given ζ ∈ Hom(T8σ ,C∗), we obtain a character µ of 0T8σ = o∗E given by
µ(z) := ζ(η(z)), z ∈ o∗E . Let us more explicitly calculate such a µ, given some
3′ ∈Hom(T8σ ,C∗) that comes from 3∈Hom8σ ,Id(T

8`σ ,C∗) as in (4). Let z ∈ o∗E .
Then µ(z)=3′(η(z))=3((η(z), 1, 1, . . . , 1)), by Proposition 5.3.

We may now calculate the character χs that arises from φ, where s = φ|It and
φ = IndWF

WE
(χ). The above analysis and Proposition 5.2 shows that

χs(z)= `χ E
o ((η(z), 1, 1, . . . , 1))= χo(η(z))= χ(z),

where z ∈ o∗E . It remains to compute χτ . First note that if we make the identification
X = Z × Z × · · · × Z, then Xσ

= {(k, k, . . . , k) : k ∈ Z}. Let λ(k,k,...,k) ∈ Xσ

denote the character of T̂ corresponding to (k, k, . . . , k) ∈ Z×Z×· · ·×Z via this
identification.

Proposition 5.4. Let `= 2. The character χτ : Xσ
→ C∗ is given by

λ(k,k) 7→ (−χ($))k .
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Proof. Note that θ̂ = 1 and Ĝ ′ = SL(2,C), so τ is any element whose class
in T̂ /(1− σ̂ )T̂ corresponds to the image of f in GL(2,C)/SL(2,C) under the
bijection

T̂ /(1− σ̂ ) T̂
∼
−→ GL(2,C)/SL(2,C)

as in (2). We thus need to compute f first.
Recall that φ(8)= β( j), where β is as in the proof of Proposition 5.1. Recall

that since φ is irreducible, then

β( j)=
(

0 a
b 0

)
for some a, b ∈ C∗. After conjugation by Ĝ, we may assume that b = 1. But since
j2
=$ , we have(

χ($) 0
0 χ ξ ($)

)
= β($)= β( j2)= β( j)2 =

(
a 0
0 a

)
Therefore, a = χ($) and so

β( j)=
(

0 χ($)

1 0

)
,

and we may take

f =
(

0 χ($)

1 0

)
.

We now note that the bijection

T̂ /(1− σ̂ ) T̂
∼
−→ Ĝab/(1− θ̂ )Ĝab

is induced by the inclusion T̂ ↪→ Ĝ [DB-R, Section 4.3]. Now, we have that[(
−χ($) 0

0 1

)]
=

[(
0 χ($)

1 0

)]
∈ GL(2,C)/SL(2,C)

since (
0 χ($)

1 0

)−1(
−χ($) 0

0 1

)
=

(
0 1
−1 0

)
∈ SL(2,C)

Therefore, since (
−χ($) 0

0 1

)
∈ T̂ ,

we may set

τ =

(
−χ($) 0

0 1

)
.
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Then χτ : Xσ
→ C∗ is given by

χτ (λ(k,k))= λ(k,k)(τ )= λ(k,k)

(
−χ($) 0

0 1

)
= (−χ($))k . �

Proposition 5.5. Let ` be an odd prime. The character χτ : Xσ
→ C∗ is given by

λ(k,k,...,k) 7→ χ($)k .

Proof. Note that θ̂ = 1 and Ĝ ′ = SL(`,C), so τ is any element whose class
in T̂ /(1− σ̂ ) T̂ corresponds to the image of f in GL(`,C)/SL(`,C) under the
bijection

T̂ /(1− σ̂ ) T̂
∼
−→ GL(`,C)/SL(`,C)

as in (2). We thus need to compute f first.
Recall that φ factors through WE/F , and we have the commutative diagram

WF
φ- GL(`,C)

WE/F

?

β
-

From Proposition 5.1, we have φ(8)= β( j). To compute β( j), recall that because
of our choice of ŵ, we have

β( j)=


0 0 0 . . . a1

a2 0 0 . . . 0
0 a3 0 . . . 0
...

...
. . .

. . .
...

0 0 . . . a` 0


for some ai ∈ C∗. After conjugation the Langlands parameter by an element in Ĝ
of the form 

0 x2 0 0 . . . 0
0 0 x3 0 . . . 0

0 0 0 x4
. . .

...
...

...
...

...
. . . 0

0 0 0 0 . . . x`
x1 0 0 0 . . . 0


we may assume that a2 = a3 = · · · = a` = 1. Therefore,
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χ($) 0 0 . . . 0

0 χ ξ ($) 0 . . . 0
0 0 χ ξ

2
($) . . . 0

...
...

...
. . .

...

0 0 0 . . . χ ξ
`−1
($)


= β($)= β( j`)= β( j)` =


a1 0 0 . . . 0
0 a1 0 . . . 0
0 0 a1 . . . 0
...

...
...
. . .

...

0 0 0 . . . a1



Hence, a1 = χ($), so we may take f =


0 0 0 . . . χ($)

1 0 0 . . . 0
0 1 0 . . . 0
...
...
. . .

. . .
...

0 0 . . . 1 0

 Now, we have




χ($) 0 0 . . . 0

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1



=



0 0 0 . . . χ($)

1 0 0 . . . 0
0 1 0 . . . 0
...
...
. . .

. . .
...

0 0 . . . 1 0



 ∈ GL(`,C)/SL(`,C)

since
0 0 0 . . . χ($)

1 0 0 . . . 0
0 1 0 . . . 0
...
...
. . .

. . .
...

0 0 . . . 1 0



−1
χ($) 0 0 . . . 0

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1

=


0 1 0 . . . 0
0 0 1 . . . 0

0 0 0
. . .

...
...
...
...
. . . 1

1 0 0 . . . 0

 ,

which is an element of SL(`,C). Therefore, we may set

τ =


χ($) 0 0 . . . 0

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...
. . .

...

0 0 0 . . . 1


Then χτ : Xσ

→ C∗ is given by

χτ (λ(k,k,...,k))= λ(k,k,...,k)(τ )= (χ($))
k . �
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Recall that we have computed χφ on o∗E . It remains to compute χφ($). Because
of the isomorphism

0T8σ × Xσ ∼
−→ T8σ , (γ, λ) 7→ γ λ($),

we need to compute χφ(1, λ(1,1,...,1)).

Proposition 5.6. Let `= 2. Then χφ = χ1χ , where φ = IndWF
WE
(χ).

Proof. We have that χφ(1, λ(1,1))=χs(1)χτ (λ(1,1))=−χ($). Therefore, χφ($)=
−χ($). Recall that we have shown that χφ|o∗E = χ |o∗E . Since ` = 2, 1χ is the
unique quadratic unramified character of E∗. Therefore, we have that 1χ ($)=−1
and 1χ |o∗E ≡ 1, so χφ = χ1χ . �

Proposition 5.7. Let ` be an odd prime. χφ = χ1χ .

Proof. We have that χφ(1, λ(1,1,...,1)) = χs(1) χτ (λ(1,1,...,1)) = χ($). Therefore,
χφ($)= χ($). Recall that we have shown that χφ|o∗E = χ |o∗E . Therefore, χφ = χ .
But recall that 1χ is trivial since ` is an odd prime, so we have χφ = χ1χ . �

6. From a character of a torus to a representation for GL(`, F)

In this section we determine the representation that DeBacker and Reeder assign to
a TRSELP for GL(`, F), using the results from Section 5. Note that

[X/(1−wθ)X ]tor = 0,

so we may let λ = 0 (recall that λ ∈ Xw). The proof of [DB-R, Lemma 2.7.2]
implies that we may take uλ = 1, and therefore 8λ =8. It is also easy to see that
we may take wλ =w ([DB-R, Section 2.7]) and ẇλ = ẇ, where ẇ is a fixed choice
of lift of w. Since the theory of [DB-R] is independent of any choices, we are free
to choose a specific lift ẇ, which we do now.

Let f (x) be a monic irreducible polynomial of degree ` over f. Let f̃ (x) be a
monic lift of f (x) to F[x]. We may write E = F(δ), where δ is a root of f̃ (x).
First set

w̃ :=


0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
...
...
. . .

. . .
...

0 0 . . . 1 0

 .

Recall that we need to find pλ ∈ Gλ such that p−1
λ 8(pλ) = ẇλ. By choosing

the basis 1, δ, δ2, . . . , δ`−1 for E over F , we may embed E∗ into GL(`, F) in the
standard way. Denote this embedding by ϕ : E∗ ↪→ GL(`, F).



LOCAL LANGLANDS CORRESPONDENCES OF DEBACKER AND REEDER FOR GL(`, F) 273

Lemma 6.1. There exists an A ∈ Gλ such that

A



t 0 0 0 . . . 0
0 ξ(t) 0 0 . . . 0
0 0 ξ 2(t) 0 . . . 0
0 0 0 ξ 3(t) . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . ξ `−1(t)


A−1
= ϕ(t)

for all t = a0+ a1δ+ a2δ
2
+ · · ·+ a`−1δ

`−1
∈ E∗, ai ∈ F.

Proof. Suppose R(x) is a polynomial of degree ` in F[x] that splits over E . Then
we get an isomorphism

E[x]/(R(x))
∼
−→

⊕̀
i=1

E,

p(x)0 7→ (p(a1), p(a2), . . . , p(a`)),

where the ai are the roots of R(x). Setting R(x) to now be the minimal polynomial
of δ, and considering the basis 1, x, x2, . . . , x`−1 of E[x]/(R(x)) over E , we get
an isomorphism

E[x]/(R(x))
G
−→ E ⊕ E ⊕ · · ·⊕ E

1 7→ (1, 1, 1, . . . , 1)

x 7→
(
δ,8(δ),82(δ), . . . , 8`−1(δ)

)
x2
7→
(
δ2,8(δ)2,82(δ)2, . . . , 8`−1(δ)2

)
. . .

x`−1
7→
(
δ`−1,8(δ)`−1,82(δ)`−1, . . . , 8`−1(δ)`−1)

This transformation yields the matrix

V :=



1 δ δ2 δ3 . . . δ`−1

1 8(δ) 8(δ)2 8(δ)3 . . . 8(δ)`−1

1 82(δ) 82(δ)2 82(δ)3 . . . 82(δ)`−1

1 83(δ) 83(δ)2 83(δ)3 . . . 83(δ)`−1

...
...

...
...

. . .
...

1 8`−1(δ) 8`−1(δ)2 8`−1(δ)3 . . . 8`−1(δ)`−1


.

We then set A := V−1. Note that what we have really done here is the following. We
first have taken the standard E-basis e′1, e′2, . . . , e′` of E ⊕ E ⊕ · · ·⊕ E and pulled
it back by G to get a basis e1, e2, . . . , e` of E[x]/(R(x)). We have then shown
that the standard embedding of an element w ∈ E∗ in GL(`, F) (by considering its
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action on the basis 1, δ, δ2, . . . , δ`−1 ) can be diagonalized over E with respect to
the basis e1, e2, . . . , e`.

Note that V is a Vandermonde matrix. Therefore, its determinant is∏
0≤i< j≤`−1

(8 j (δ)−8i (δ)),

which has valuation zero. Since we also have that the entries of V are contained in
o∗E , we conclude that V , and hence A, is contained in Gλ. �

Set s̃ = w̃−1 A−18(A). We now fix our choice of lift ẇ of w by setting ẇ :=
s̃−1w̃ s̃8(s̃), which we shall show is a legitimate lift. We claim first that we may
set pλ = As̃, and that s̃ ∈ Gλ ∩ T . Since we will show that s̃ ∈ Gλ ∩ T , this shows
that pλ ∈ Gλ, which is required. To prove all of this, consider the adjoint action of
A−18(A) on T . First, for s ∈ T8w , we have

(A−18(A)) ·8(s)= A−18(A)8(s)8(A)−1A

= A−18(As A−1)A = A−1As A−1A = s

since Lemma 6.1 implies that As A−1 is fixed by 8.
We therefore have that (A−18(A)) ·8(s)=w ·8(s) for all s ∈ T8w . Since T8w

is dense in T in the Zariski topology, we have that (A−18(A)) ·8(s)=w ·8(s) for
all s ∈ T . This implies that (w̃−1A−18(A)) · s = s for all s ∈ T since w̃ is clearly a
lift of w, which means that

w̃−1A−18(A) s (w̃−1 A−18(A))−1
= s for all s ∈ T .

This means that w̃−1A−18(A)∈CG(T )= T , so in particular w̃−1A−18(A)= s̃ ∈ T .
But A, w̃ ∈ Gλ implies that w̃−1A−18(A) ∈ Gλ, which implies that s̃ ∈ Gλ ∩ T .
This shows that pλ ∈ Gλ, which is required. Moreover,

p−1
λ 8(pλ)= (As̃)−18(As̃)= s̃−1A−18(A)8(s̃)= s̃−1w̃ s̃8(s̃)= ẇ.

Finally, ẇ is a lift of w since w̃ is, and since s̃ ∈ T , proving the claim.
Thus, we have a pλ such that p−1

λ 8λ(pλ) = ẇ, and ẇ is indeed a lift of w.
Then if we define Tλ := Ad(pλ)T , we get that T8λ

λ is the image of E∗ under ϕ.
This is crucial, since the depth-zero supercuspidals of GL(`, F) are constructed
in Section 4A by first fixing an the embedding of E∗ into GL(`, F). The overall
construction does not depend on the choice of embedding. We have fixed the
embedding ϕ. DeBacker and Reeder are attaching a depth-zero supercuspidal
representation of GL(`, F) to a Langlands parameter, and we need to show that
their depth-zero supercuspidal matches the depth-zero supercuspidal attached in
Theorem 4.5 (the latter of which, again, uses the construction in Section 4A, which
assumes a fixed embedding, which we are assuming without loss of generality is ϕ).
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Note that we have a simple description for the map Ad(pλ)−1
: T8λ

λ → T8w ,
namely,

φ(t) 7→ diag
(
t, ξ(t), ξ 2(t), . . . , ξ `−1(t)

)
,

where diag(d1, d2, . . . , d`) denotes the diagonal `× ` matrix with d1, d2, . . . , d`
on the diagonal, and where t = a0+ a1δ+ a2δ

2
+ · · ·+ a`−1δ

`−1. Note that

T8w =
{
diag

(
a0, ξ(a0), ξ

2(a0), . . . , ξ
`−1(a0)

)
: a0 ∈ E∗

}
Finally, because of Propositions 5.6 and 5.7 and the definition of χλ, we have:

Proposition 6.2. χλ is given by

χλ(ϕ(t))= χ(t)1χ (t)

for all t = a0+ a1δ+ a2δ
2
+ · · ·+ a`−1δ

`−1
∈ E∗.

Let us sum up the data that we have obtained so far. Given a TRSELP for
GL(`, F), we have obtained a torus T8w . Given λ= 0 ∈ Xw, we have constructed
T8λ
λ and pλ. We have T8λ

λ
∼= E∗. From φ we have constructed a character χφ of

T8w . Via Ad(pλ), we transported χφ to a character χλ of T8λ
λ . We have shown

that χλ = χ1χ . note that the restriction of χλ to 0T8λ
λ factors through a character

χ0
λ of T

8λ
λ . Then, the packet of representations that DeBacker–Reeder construct in

[DB-R] from the data that we have obtained thus far is the single representation

IndGL(`,F)
F∗GL(`,oF )

(χλ⊗ κ
0
λ)= πχ1χ

Recall that in Section 4C, the local Langlands correspondence for GL(`, F), where
` is prime, was given as

IndWF
WE
(χ) 7→ πχ1χ

We have therefore shown that the correspondence of DeBacker–Reeder coincides
with the local Langlands correspondence.

7. The positive-depth correspondence of Reeder for GL(`, F)

In this section, we prove that the correspondence of [R] agrees with the local
Langlands correspondence of [Moy 1986] for GL(`, F), where ` is an arbitrary
prime, if one assumes a certain compatibility condition, which we describe now.
Reeder’s construction begins by canonically attaching a certain admissible pair
(L/F, �) to a Langlands parameter for GL(`, F). His construction then inputs this
admissible pair into the theory of [Adler 1998] in order to construct a supercuspidal
representation π(L , �) of GL(`, F). The compatibility condition that we will need
to assume is that π(L , �) is the same supercuspidal representation that is attached
to (L/F, �) via the construction in [Howe 1977].
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Most of the arguments and setup are the same as in the depth-zero case, so there
is not much to prove here. We first very briefly review the construction of Reeder
and refer to [R] for definitions and notions that are not explained here.

7A. Review. Let G be an F-quasisplit and Fu-split connected reductive group.
Let B⊂G be a Borel subgroup defined over F , and T a maximal torus of B.

The Langlands parameters considered in [R] are the maps

φ :WF →
L G = 〈θ̂〉n Ĝ

such that:

(1) φ is trivial on I (r+1) and nontrivial on I (r) for some integer r > 0. Here,
{I (k)}k≥0 is a filtration on IF defined in [R, Section 5.2].

(2) The centralizer of φ(I (r)) in Ĝ is a maximal torus of Ĝ. This is the regularity
condition.

(3) φ(8) ∈ θ̂ n Ĝ, and the centralizer of φ(WF ) in Ĝ is finite, modulo Ẑ θ̂ . This
is the ellipticity condition.

We may conjugate φ by an element of Ĝ so that φ(IF ) ⊂ T̂ , and φ(8) = θ̂ f ,
where f ∈ N̂ . Let ŵ be the image of f in Ŵo, and let w be the element of Wo dual
to ŵ. We say that the element w is associated to φ.

Set σ = wθ and suppose its action on X has order n. From an above such
Langlands parameter, Reeder defines a T̂ -conjugacy class of Langlands parameters

φT :WF →
L Tσ

in the exact same way as in the depth-zero case. In particular, the element τ is
defined in the same way.

As in the depth-zero case, a bijection is later given between T̂ -conjugacy classes
of continuous homomorphisms

φ :WF/I (r+1)
→

L Tσ

for which φ(8) ∈ σ̂ n T̂ and characters of T8σ that are trivial on T8σ
r+1, where

{Tk}k≥0 is the canonical filtration on T [R, Section 5.3]. This is done as follows.
We have a composite isomorphism [R, Section 5.3]

(5) HomAd(8),σ̂
(
IF/I (r+1), T̂

)
∼= HomAd(8),σ̂

(
IF/I (r+1)

n , T̂
)

= Hom8,σ̂

(
o∗n/(1+ pr+1

n ), T̂
)

= Hom8σ ,Id
(
X ⊗ (o∗n/(1+ pr+1

n )),C∗
)

= Hom8σ ,Id
(0T8n

σ /T8n
σ

r+1,C∗
)

= Hom
(0T8σ /T8σ

r+1,C∗
)
.
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Under this composite isomorphism, s := φ|IF maps to a character

χs ∈ Hom(0T8σ /T8σ
r+1,C∗).

Then, if φ(8) = σ̂ n τ , we get that τ gives rise to a character of Xσ given by
χτ (λ) := λ(τ) for λ ∈ Xσ , just as in the depth-zero case. Recalling that T8σ =

0T8σ ×Xσ , we define a character χφ of T8σ by χφ :=χs⊗χτ , which is our desired
character of T8σ constructed from the Langlands parameter φ.

As in the depth-zero case, we have the set Xw. To λ ∈ Xw, Reeder associates a 1-
cocycle uλ, hence a twisted Frobenius8λ=Ad(uλ)◦8. Moreover, to λ is associated
an affine Weyl group element wλ, a parahoric subgroup Gxλ , and an element
pλ ∈ Gxλ such that p−1

λ 8λ(pλ) is a lift of wλ. We then define Tλ := Ad(pλ) T
and set χλ := χφ ◦ Ad(pλ)−1. To the torus Tλ and the character χλ, we apply
the construction of [Adler 1998] to obtain a supercuspidal representation. Then,
Reeder constructs a packet 5(φ) of representations on the pure inner forms of G,
parametrized by Irr(Cφ), using the above construction.

7B. The case of GL(`, F). We now consider the group G(F)= GL(`, F), for `
prime. Let φ :WF→

L G be one of the Langlands parameters for G(F)=GL(`, F)
that is considered in Section 7A.

Lemma 7.1. φ = IndWF
WE
(χ) for some admissible pair (E/F, χ), where χ has

positive level and E/F is of degree ` and unramified.

Proof. The proof is similar as in the GL(2, F) case, but we include it for complete-
ness purposes. As in the depth-zero case in Section 5, we may conjugate φ by an
element of Ĝ so that the Weyl group element w that is associated to φ is the Weyl
group element (1 2 3 · · · `) in the symmetric group on ` letters. We know that φ is
an irreducible admissible φ :WF→GL(`,C) that is trivial on I (r+1) and nontrivial
on I (r) for some integer r > 0. Let E be the degree ` unramified extension of
F . Again, any representation IndWF

WE
(�) where (E/F, �) is an admissible pair is

equivalent to the representation κ :WF → GL(`,C) satisfying:

(1) κ|WE is given by � ∈ Ê∗ by the local Langlands correspondence for tori.

(2) κ(8)=


0 0 0 . . . �($)

1 0 0 . . . 0
0 1 0 . . . 0
...
...
. . .

. . .
...

0 0 . . . 1 0

 .
We want to show that φ satisfies the two conditions above, for some admissible pair
(E/F, χ). Let’s restrict φ to WE . By the composite isomorphism (5), φ|IE gives
rise to a character χ̈ of o∗E . Then, by following the composite isomorphism (5)
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backwards, one sees that

φ(x)=


χ̈(r`(x)) 0 0 . . . 0

0 χ̈ ξ (r`(x)) 0 . . . 0
0 0 χ̈ ξ

2
(r`(x)) . . . 0

...
...

...
. . .

...

0 0 0 . . . χ̈ ξ
`−1
(r`(x))


as in the depth-zero case. Now, as in Propositions 5.4 and 5.5, we know that

φ(8)=


0 0 0 . . . a
1 0 0 . . . 0
0 1 0 . . . 0
...
...
. . .

. . .
...

0 0 . . . 1 0


for some a ∈ C∗, because of the ellipticity condition on φ. Therefore, we have that

φ(8E)= φ(8
`)= φ(8)` =


a 0 0 . . . 0
0 a 0 . . . 0
0 0 a . . . 0
...
...

...
. . .

...

0 0 . . . 0 a

 .

Then χ̈ extends to a character, denoted χ , of E∗, by setting

χ($) := a and χ |o∗E := χ̈ |o
∗

E
.

One can now see that φ = IndWF
WE
(χ). By the regularity condition on φ, we get that

χ̈ 6= χ̈ ξ , and thus (E/F, χ) is an admissible pair. Finally, χ has positive level since
r > 0. �

Proposition 7.2. Let `= 2. Then χφ = χ1χ .

Proof. The analogous arguments as in the depth-zero case show that χφ|o∗E = χ |o∗E .
In particular, let z ∈ o∗E . Let x ∈ IF be any element such that r2(x)= z (where r2 is
as in [R, Section 5.1]), and let 0 be the cocharacter t 7→

( t
0

0
1

)
. Then

Nσ
(
0⊗ r2(x)

)
=

(
z 0
0 z

)
.

Moreover, by the same arguments as in Proposition 5.1, we get

φ(x)=
(
χ (r2(x)) 0

0 χ
(

r2(x)
)) ,
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so that 0(φ(x))= χ(z), where here we are viewing 0 as a character of T̂ . Finally,
as we may take τ to be the same element as in the depth-zero case, we have that
χφ($)=−χ($), so that χφ = χ1χ . �

Proposition 7.3. Let ` be an odd prime. Then

χφ = χ1χ .

Proof. A reasoning analogous to that of Proposition 7.2 and the depth-zero case
works here. �

Note that [X/(1−wθ)X ]tor = 0, so we may let λ= 0 (recall that λ ∈ Xw). It is
easy to see that we may again take uλ = 1, and therefore 8λ =8. It is also easy to
see that we may take wλ =w (see [R, Section 6.4]), and we may also take the same
pλ as in the depth-zero case in Section 6. So we have the same Tλ as in Section 6
and the analogous χλ.

We have therefore shown that if we assume the compatibility condition in the
beginning of Section 7, then by Proposition 7.3, the Reeder construction attaches
the representation πχ1χ to the Langlands parameter φ = IndWF

WE
(χ). This shows

that as long as we assume this compatibility condition, the correspondences of [R]
and [Moy 1986] agree for GL(`, F), where ` is an odd prime.
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R-GROUPS AND PARAMETERS

DUBRAVKA BAN AND DAVID GOLDBERG

Let G be a p-adic group, SO2n+1, Sp2n, O2n or Un. Let π be an irreducible
discrete series representation of a Levi subgroup of G. We prove the con-
jecture that the Knapp–Stein R-group of π and the Arthur R-group of π
are isomorphic. Several instances of the conjecture were established earlier:
for archimedean groups by Shelstad; for principal series representations by
Keys; for G = SO2n+1 by Ban and Zhang; and for G = SOn or Sp2n in the
case when π is supercuspidal, under an assumption on the parameter, by
Goldberg.

1. Introduction

Central to representation theory of reductive groups over local fields is the study
of parabolically induced representations. In order to classify the tempered spec-
trum of such a group, one must understand the structure of parabolically induced
from discrete series representations, in terms of components, multiplicities, and
whether or not components are elliptic. The Knapp–Stein R-group gives an ex-
plicit combinatorial method for conducting this study. On the other hand, the local
Langlands conjecture predicts the parametrization of such nondiscrete tempered
representations, in L-packets, by admissible homomorphisms of the Weil–Deligne
group which factor through a Levi component of the Langlands dual group. Arthur
[1989] gave a conjectural description of the Knapp–Stein R-group in terms of the
parameter. This conjecture generalizes results of Shelstad [1982] for archimedean
groups, as well as those of Keys [1987] in the case of unitary principal series of
certain p-adic groups. In [Ban and Zhang 2005] this conjecture was established
for odd special orthogonal groups. In [Goldberg 2011] the conjecture was estab-
lished for induced from supercuspidal representations of split special orthogonal
or symplectic groups, under an assumption on the parameter. In the current work,
we complete the conjecture for the full tempered spectrum of all these groups.

Dubravka Ban was supported in part by NSF grant DMS-0601005 and by a Research Fellowship of
the Alexander von Humboldt Foundation.
MSC2010: 11F70, 22E35, 22E50.
Keywords: R-groups, reducibility of induced representations, classical groups.
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Let F be a nonarchimedean local field of characteristic zero. We denote by G a
connected reductive quasi-split algebraic group defined over F . We let G = G(F),
and use similar notation for other groups defined over F . Fix a maximal torus T of
G, and a Borel subgroup B = TU containing T . We let E(G) be the equivalence
classes of irreducible admissible representations of G, Et(G) the tempered classes,
E2(G) the discrete series, and ◦E(G) the irreducible unitary supercuspidal classes.
We make no distinction between a representation π and its equivalence class.

Let P = M N be a standard, with respect to B, parabolic subgroup of G. Let
A= AM be the split component of M, and let W =W (G, A)= NG(A)/M be the
Weyl group for this situation. For σ ∈ E(M) we let IndG

P (σ ) be the representation
unitarily induced from σ ⊗ 1N . Thus, if V is the space of σ , we let

V (σ )=
{

f ∈C∞(G, V ) | f (mng)= δP(m)1/2 f (g) for all m ∈M, n ∈ N , g ∈G
}
,

with δP the modulus character of P . The action of G is by the right regular rep-
resentation, so (IndG

P (σ )(x) f )(g)= f (gx). Then any π ∈ Et(G) is an irreducible
component of IndG

P (σ ) for some choice of M and σ ∈ E2(M). In order to deter-
mine the component structure of IndG

P (σ ), Knapp and Stein, in the archimedean
case, and Harish-Chandra in the p-adic case, developed the theory of singular
integral intertwining operators, leading to the theory of R-groups, due to Knapp
and Stein [1971] in the archimedean case and Silberger [1978; 1979] in the p-adic
case. We describe this briefly and refer the reader to the introduction of [Goldberg
1994] for more details. The poles of the intertwining operators give rise to the
zeros of Plancherel measures. Let 8(P, A) be the reduced roots of A in P . For
α ∈ 8(P, A) and σ ∈ E2(M) we let µα(σ ) be the rank one Plancherel measure
associated to σ and α. We let 1′ = {α ∈ 8(P, A) |µα(σ ) = 0}. For w ∈ W and
σ ∈ E2(M) we let wσ(m) = σ(w−1mσ). (Note, we make no distinction between
w ∈W and its representative in NG(A).) We let

W (σ )= {w ∈W |wσ ' σ },

and let W ′ be the subgroup of W (σ ) generated by those wα with α ∈ 1′. We let
R(σ ) = {w ∈ W (σ ) | w1′ = 1′} = {w ∈ W (σ ) | wα > 0 for all α ∈ 1′}. Let
C(σ )= EndG(IndG

P (σ )).

Theorem 1 [Knapp and Stein 1971; Silberger 1978; 1979]. For any σ ∈ E2(M),
we have W (σ ) = R(σ )nW ′, and C(σ ) ' C[R(σ )]η, the group algebra of R(σ )
twisted by a certain 2-cocycle η.

Thus R(σ ), along with η, determines how many inequivalent components appear
in IndG

P (σ ) and the multiplicity with which each one appears. Furthermore Arthur
shows C[R(σ )]η also determines whether or not components of IndG

P (σ ) are elliptic
(and hence whether or not they contribute to the Plancherel formula) [Arthur 1993].
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Arthur [1989] conjectured a construction of R(σ ) in terms of the local Langlands
conjecture. Let WF be the Weil group of F and W ′F = WF × SL2(C) the Weil–
Deligne group. Suppose ψ : W ′F →

L M parametrizes the L-packet, 5ψ(M), of
M containing σ . Here L M = M̂ oWF is the Langlands L-group, and M̂ is the
complex group whose root datum is dual to that of M. Then

ψ :W ′F →
L M ↪→ L G

must be a parameter for an L-packet 5ψ(G) of G. The expectation is that 5ψ(G)
consists of all irreducible components of IndG

P (σ
′) for all σ ′ ∈ 5ψ(M). We let

Sψ = ZĜ(Imψ), and take S◦ψ to be the connected component of the identity. Let
Tψ be a maximal torus in S◦ψ . Set Wψ = W (Sψ , Tψ), and W ◦ψ = W (S◦ψ , Tψ).
Then Rψ = Wψ/W ◦ψ is called the R-group of the packet 5ψ(G). By duality we
can identify Wψ with a subgroup of W . With this identification, we let Wψ,σ =

Wψ ∩W (σ ) and W ◦ψ,σ =W ◦ψ ∩W (σ ). We then set

Rψ,σ =Wψ,σ/W ◦ψ,σ .

We call Rψ,σ the Arthur R-group attached to ψ and σ .

Conjecture 2. For any σ ∈ E2(M), we have R(σ )' Rψ,σ .

In [Ban and Zhang 2005], the first named author and Zhang proved this con-
jecture in the case G = SO2n+1. In [Goldberg 2011] the second named author
confirmed the conjecture when σ is supercuspidal, and G = SOn or Sp2n , with a
mild assumption on the parameterψ . Here, we complete the proof of the conjecture
for Sp2n , or On , under assumptions given in Section 2.3.

This work is based on the classification of discrete series for classical p-adic
groups of Mœglin and Tadić [2002], and on the results of Mœglin [2002; 2007b].
Subsequent to our submission, Arthur’s unfinished book has become available in
preprint form [Arthur 2011]. In this long awaited and impressive work, he uses
the trace formula to classify the automorphic representations of special orthogonal
and symplectic groups in terms of those of GL(n). An important ingredient in
this work is a formulation of the classification at the local places. The results for
irreducible tempered representations are obtained from the classification of discrete
series using R-groups. Our result on isomorphism of R-groups and their dual
version for SO(2n+1, F) and Sp(2n, F) (see Theorem 7) also appear in Arthur’s
work [2011, page 346]. Arthur’s proof differs significantly from the one we use
here. We work with a rather concrete description of parameters based on Jordan
blocks and L-functions, while Arthur works in the general context of his theory.

We now describe the contents of the paper in more detail. In Section 2 we
introduce our notation and discuss the classification of E2(M) for our groups, due to
Mœglin and Tadić, as well as preliminaries on Knapp–Stein and Arthur R-groups.
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In Section 3 we consider the parameters ψ and compute their centralizers. In
Section 4 we turn to the case of G=O2n . Here we show the Arthur R-group agrees
with the generalization of the Knapp–Stein R-group as discussed in [Goldberg and
Herb 1997]. In Section 5 we complete the proof of the theorem for the induced
from discrete series representations of Sp2n,SO2n+1, or O2n .

In Section 6, we study R-groups for unitary groups. These groups are interesting
for us because they are not split and the action of the Weil group on the dual group
is nontrivial. In addition, the classification of discrete series and description of
L-parameters is completed [Mœglin 2007b].

The techniques used here can be used for other groups. In particular we should
be able to carry out this process for similitude groups and G2. Furthermore, the
techniques of computing the Arthur R-groups will apply to GSpin groups, as well,
and may shed light on the Knapp–Stein R-groups in this case. We leave all of this
for future work.

2. Preliminaries

2.1. Notation. Let F be a nonarchimedean local field of characteristic zero. Let
Gn , n ∈ Z+, be Sp(2n, F), SO(2n+ 1, F) or SO(2n, F). We define G0 to be the
trivial group. For G = Gn or G = GL(n, F), fix the minimal parabolic subgroup
consisting of all upper triangular matrices in G and the maximal torus consisting
of all diagonal matrices in G. If δ1, δ2 are smooth representations of GL(m, F),
GL(n, F), respectively, we define

δ1× δ2 = IndG
P (δ1⊗ δ2)

where G = GL(m + n, F) and P = MU is the standard parabolic subgroup of G
with Levi factor M ∼=GL(m, F)×GL(n, F). Similarly, if δ is a smooth represen-
tation of GL(m, F) and σ is a smooth representation of Gn , we define

δo σ = IndGm+n
P (δ⊗ σ)

where P =MU is the standard parabolic subgroup of Gm+n with Levi factor M ∼=
GL(m, F)×Gn . We denote by E2(G) the set of equivalence classes of irreducible
square integrable representations of G and by 0E(G) the set of equivalence classes
of irreducible unitary supercuspidal representations of G.

We say that a homomorphism h : X → GL(d,C) is symplectic (respectively,
orthogonal) if h fixes an alternating form (respectively, a symmetric form) on
GL(d,C). We denote by Sa the standard a-dimensional irreducible algebraic rep-
resentation of SL(2,C). Then

(1) Sa is
{

orthogonal for a odd,
symplectic for a even.
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Let ρ be an irreducible supercuspidal unitary representation of GL(d, F). Ac-
cording to the local Langlands correspondence for GLd [Harris and Taylor 2001;
Henniart 2000], attached to ρ is an L-parameter ϕ : WF → GL(d,C). Suppose
ρ∼= ρ̃. Then ϕ∼= ϕ̃ and one of the Artin L-functions L(s,Sym2ϕ) or L(s,

∧2
ϕ) has

a pole. The L-function L(s,Sym2ϕ) has a pole if and only if ϕ is orthogonal. The
L-function L(s,

∧2
ϕ) has a pole if and only if ϕ is symplectic. From [Henniart

2010] we know

(2) L(s,
∧2
ϕ)= L(s, ρ,

∧2
), and L(s,Sym2ϕ)= L(s, ρ,Sym2),

where L(s, ρ,
∧2
) and L(s, ρ,Sym2) are the Langlands L-functions as defined in

[Shahidi 1981].
Let ρ be an irreducible supercuspidal unitary representation of GL(d, F) and

a ∈ Z+. We define δ(ρ, a) to be the unique irreducible subrepresentation of

ρ‖(a−1)/2
× ρ‖(a−3)/2

× · · ·× ρ‖(−(a−1))/2
;

see [Zelevinsky 1980].

2.2. Jordan blocks. We now review the definition of Jordan blocks from [Mœglin
and Tadić 2002]. Let G be Sp(2n, F), SO(2n+1, F) or O(2n, F). For d ∈N, let
rd denote the standard representation of GL(d,C). Define

Rd =

{∧2rd for G = Sp(2n, F), O(2n, F),
Sym2rd for G = SO(2n+ 1, F).

Let σ be an irreducible discrete series representation of Gn . Denote by Jord(σ )
the set of pairs (ρ, a), where ρ ∈ 0E(GL(dρ, F)), ρ ∼= ρ̃, and a ∈ Z+, such that

(J-1) a is even if L(s, ρ, Rdρ ) has a pole at s = 0 and odd otherwise,

(J-2) δ(ρ, a)o σ is irreducible.

For ρ ∈ 0E(GL(dρ, F)), ρ ∼= ρ̃, define

Jordρ(σ )= {a | (ρ, a) ∈ Jord(σ )}.

Let Ĝ denote the complex dual group of G. Then Ĝ = SO(2n + 1,C) for
G = Sp(2n, F), Ĝ = Sp(2n,C) for G = SO(2n + 1, F) and Ĝ = O(2n,C) for
G = O(2n, F).

Lemma 3. Let σ be an irreducible discrete series representation of Gn . Let ρ be
an irreducible supercuspidal self-dual representation of GL(dρ, F) and a ∈ Z+.
Then (ρ, a) ∈ Jord(σ ) if and only if the following conditions hold:

(J-1′) ρ⊗ Sa is of the same type as Ĝ,

(J-2) δ(ρ, a)o σ is irreducible.
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Proof. We will prove that (J-1)⇔ (J-1′). We know from [Shahidi 1990] that one
and only one of the two L-functions L(s, ρ,

∧2
) and L(s, ρ,Sym2) has a pole at

s = 0. Suppose G = Sp(2n, F) or O(2n, F). We consider L(s, ρ,
∧2
). It has

a pole at s = 0 if and only if the parameter ρ : WF → GL(dρ,C) is symplectic.
According to (1), this is equivalent to ρ⊗Sa being orthogonal for a even. Therefore,
for (ρ, a) ∈ Jord(σ ), a is even if and only if ρ ⊗ Sa is orthogonal. For G =
SO(2n+ 1, F), the arguments are similar. �

2.3. Assumptions. In this paper, we use the classification of discrete series for
classical p-adic groups of Mœglin and Tadić [Mœglin and Tadić 2002], so we
have to make the same assumptions as there. Let σ be an irreducible supercuspidal
representation of Gn and let ρ be an irreducible self-dual supercuspidal represen-
tation of a general linear group. We make the following assumption:

(BA) ν±(a+1)/2ρo σ reduces for

a =


max Jordρ(σ ) if Jordρ(σ ) 6=∅,

0 if L(s, ρ, Rdρ ) has a pole at s = 0 and Jordρ(σ )=∅,
−1 otherwise.

Moreover, there are no other reducibility points in R.

In addition, we assume that the L-parameter of σ is given by

(3) ϕσ =
⊕

(ρ,a)∈Jord(σ )

ϕρ ⊗ Sa.

Here, ϕρ denotes the L-parameter of ρ given in [Harris and Taylor 2001; Henniart
2000].

Mœglin [2007a], assuming certain Fundamental Lemmas, proved the validity
of the assumptions for SO(2n+ 1, F) and showed how Arthur’s results imply the
Langlands classification of discrete series for SO(2n+ 1, F).

2.4. The Arthur R-group. Let L G = ĜoWF be the L-group of G, and suppose
L M is the L-group of a Levi subgroup, M , of G. Then L M is a Levi subgroup of
L G (see [Borel 1979, Section 3] for the definition of parabolic subgroups and Levi
subgroups of LG). Suppose ψ is an A-parameter of G which factors through LM ,

ψ :WF ×SL(2,C)×SL(2,C)−→ LM ⊂ LG.

Then we can regard ψ as an A-parameter of M . Suppose, in addition, the image
of ψ is not contained in a smaller Levi subgroup (i.e., ψ is an elliptic parameter
of M).
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Let Sψ be the centralizer in Ĝ of the image of ψ and S0
ψ its identity component.

If Tψ is a maximal torus of S0
ψ , define

Wψ = NSψ (Tψ)/ZSψ (Tψ), W 0
ψ = NS0

ψ
(Tψ)/ZS0

ψ
(Tψ), Rψ =Wψ/W 0

ψ .

Lemma 2.3 of [Ban and Zhang 2005] and the discussion on page 326 of [Ban and
Zhang 2005] imply that Wψ can be identified with a subgroup of W (G, A).

Let σ be an irreducible unitary representation of M . Assume σ belongs to the
A-packet 5ψ(M). If W (σ )= {w ∈W (G, A) |wσ ∼= σ }, we let

Wψ,σ =Wψ ∩W (σ ), W 0
ψ,σ =W 0

ψ ∩W (σ ),

and take Rψ,σ =Wψ,σ/W 0
ψ,σ as the Arthur R-group.

3. Centralizers

Let G be Sp(2n, F), SO(2n+1, F) or O(2n, F). Let Ĝ be the complex dual group
of G. Let

ψ :WF ×SL(2,C)×SL(2,C)−→ Ĝ ⊂ GL(N ,C)

be an A-parameter. We consider ψ as a representation. Then ψ is a direct sum
of irreducible subrepresentations. Let ψ0 be an irreducible subrepresentation. For
m ∈ N, set

mψ0 = ψ0⊕ · · ·⊕ψ0︸ ︷︷ ︸
m times

.

If ψ0 � ψ̃0, then it can be shown using the bilinear form on Ĝ that ψ̃0 is also
a subrepresentation of ψ . Therefore, ψ decomposes into a sum of irreducible
subrepresentations

ψ = (m1ψ1⊕m1ψ̃1)⊕ · · ·⊕ (mkψk ⊕mkψ̃k)⊕mk+1ψk+1⊕ · · ·⊕mlψl,

where ψi � ψ j , ψi � ψ̃ j for i 6= j . In addition, ψi � ψ̃i for i = 1, . . . , k and
ψi ∼= ψ̃i for i = k + 1, . . . , l. If ψi ∼= ψ̃i , then ψi factors through a symplectic or
orthogonal group. In this case, if ψi is not of the same type as Ĝ, then mi must be
even. This follows again using the bilinear form on Ĝ.

We want to compute Sψ and Wψ . First, we consider the case ψ = mψ0 or
ψ =mψ0⊕mψ̃0, where ψ0 is irreducible. The following lemma is an extension of
Proposition 6.5 of [Gross and Prasad 1992]. A part of the proof was communicated
to us by Joe Hundley.

Lemma 4. Let G be Sp(2n, F), SO(2n+ 1, F) or O(2n, F). Let

ψ0 :WF ×SL(2,C)×SL(2,C)→ GL(d0,C)

be an irreducible parameter.
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(i) Suppose ψ0 � ψ̃0 and ψ = mψ0⊕mψ̃0. Then Sψ ∼= GL(m,C) and Rψ = 1.

(ii) Suppose ψ0 ∼= ψ̃0 and ψ = mψ0. Suppose ψ0 is of the same type as Ĝ. Then

Rψ ∼=
{

Z2 for m even,
1 for m odd.

(iii) Suppose ψ0 ∼= ψ̃0 and ψ = mψ0. Suppose ψ0 is not of the same type as Ĝ.
Then m is even, Sψ ∼= Sp(m,C) and Rψ = 1.

Proof. (i) The proof of the statement is the same as in [Gross and Prasad 1992].

(ii) and (iii) Suppose G = Sp(2n, F) or SO(2n+ 1, F). Let V and V0 denote the
spaces of the representationsψ andψ0, respectively. Denote by 〈 , 〉 theψ-invariant
bilinear form on V and by 〈 , 〉0 the ψ0-invariant bilinear form on V0. There exists
an isomorphism V → V0 ⊕ · · · ⊕ V0. Equivalently, V ∼= W ⊗ V0, where W is
a finite dimensional vector space with trivial WF × SL(2,C)× SL(2,C)-action.
The space W can be identified with HomWF×SL(2,C)×SL(2,C)(V0, V ). Then the map
W ⊗ V0→ V is

l⊗ v 7→ l(v), l ∈ HomWF×SL(2,C)×SL(2,C)(V0, V ), v ∈ V0.

We claim there exists a nondegenerate bilinear form 〈 , 〉W on W such that 〈 , 〉 =
〈 , 〉W ⊗〈 , 〉0 in the sense that

〈l1⊗ v1, l2⊗ v2〉 = 〈l1, l2〉W 〈v1, v2〉0 for all l1, l2 ∈W, v1, v2 ∈ V0.

The key ingredient is Schur’s lemma, or rather, the variant thereof stating that
every invariant bilinear form on V0 is a scalar multiple of 〈 , 〉0. Given any l1, l2 in
HomWF×SL(2,C)×SL(2,C)(V0, V ),

〈l1(v1), l2(v2)〉

is an invariant bilinear form on V0 and therefore it is equal to c〈 , 〉0, for some
constant c. We can define 〈l1, l2〉W by

〈l1, l2〉W =
〈l1(v1), l2(v2)〉

〈v1, v2〉0

because Schur’s lemma tells us that the right-hand side is independent of v1, v2 in
V0. This proves the claim. Observe that if ψ0 is not of the same type as ψ , the
form 〈 , 〉W is alternating, while in the case when ψ0 and ψ are of the same type,
the form 〈 , 〉W is symmetric.

Now, Imψ = {Im ⊗ g | g ∈ Imψ0} and

ZGL(N ,C)(Imψ)= {g⊗ z | g ∈ GL(m,C), z ∈ {λId0 | λ ∈ C×}}

= {g⊗ Id0 | g ∈ GL(m,C)}.
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Let us denote by W the group of matrices in GL(W ) which preserve 〈 , 〉W , i.e.,
W = Sp(m,C) if 〈 , 〉W is an alternating form and W = O(m,C) if 〈 , 〉W is a
symmetric form. Then

Sψ = ZGL(N ,C)(Imψ)∩ Ĝ = {g⊗ Id0 | g ∈W, det(g⊗ Id0)= 1}.

It follows that in case (iii) we have Sψ ∼= Sp(m,C), S0
ψ = Sψ and Rψ = 1.

In case (ii), W= O(m,C). Since det(g⊗ Id0)= (det g)d0 , it follows

Sψ ∼=

{
O(m,C), d0 even,

SO(m,C), d0 odd .

In the case G=SO(2n+1, F),ψ0 is symplectic and d0 is even. Then Sψ∼=O(m,C)

and S0
ψ
∼= SO(m,C). If m is even, this implies Rψ ∼= Z2. For m odd, Wψ = W 0

ψ

and Rψ = 1.
In the case G = Sp(2n, F), we have Ĝ = SO(2n+ 1,C) and md0 = 2n+ 1. It

follows that m and d0 are both odd. Then Sψ ∼= SO(m,C), S0
ψ = Sψ and Rψ = 1.

The case G = O(2n, F) is similar, but simpler, because there is no condition on
determinant. It follows that Sψ ∼= O(m,C). This implies Rψ ∼= Z2 for m even and
Rψ = 1 for m odd. �

Lemma 5. Let G be Sp(2n, F), SO(2n+ 1, F) or O(2n, F). Let

ψ :WF ×SL(2,C)×SL(2,C)→ Ĝ

be an A-parameter. We can write ψ in the form

(4) ψ ∼=

( p⊕
i=1

(miψi ⊕mi ψ̃i )

)
⊕

( q⊕
i=p+1

2miψi

)

⊕

( r⊕
i=q+1

(2mi + 1)ψi

)
⊕

( s⊕
i=r+1

2miψi

)
,

where ψi is irreducible for i ∈ {1, . . . , s}, and

ψi � ψ j , ψi � ψ̃ j for i, j ∈ {1, . . . , s}, i 6= j,

ψi � ψ̃i for i ∈ {1, . . . , p},

ψi ∼= ψ̃i for i ∈ {p+ 1, . . . , s},

ψi not of the same type as Ĝ for i ∈ {p+ 1, . . . , q},

ψi of the same type as Ĝ for i ∈ {q + 1, . . . , s}.

Let d = s− r . Then
Rψ ∼= Zd

2 .
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Proof. Set 9i = miψi ⊕mi ψ̃i for all i ∈ {1, . . . , p}, and 9i = miψi for all i ∈
{p+1, . . . , s}. Denote by Zi the centralizer of the image of9i in the corresponding
GL. Then

ZGL(N ,C)(Imψ)= Z1× · · ·× Zs and Sψ = ZGL(N ,C)(Imψ)∩ Ĝ.

Lemma 4 tells us the factors corresponding to i ∈ {1, . . . , q} do not contribute to
Rψ . In addition, we can see from the proof of Lemma 4 that these factors do not
appear in determinant considerations. Therefore, we can consider only the factors
corresponding to i ∈ {q + 1, . . . , s}. Let Z = Zq+1× · · · × Zs and S = Z∩ Ĝ. In
the same way as in the proof of Lemma 4, we obtain

(5) S∼=
{
(gq+1,...,gs) | gi ∈ O(2mi + 1,C), i ∈ {q + 1,...,r},

gi ∈ O(2mi ,C),i ∈ {r + 1,...,s},
s∏

i=q+1
(detgi )

dimψi = 1
}
,

for G = SO(2n+ 1, F) or Sp(2n, F). For G = O(2n, F), we omit the condition
on determinant. If G = SO(2n+1, F), then for i ∈ {q+1, . . . , s}, ψi is symplectic
and dimψi is even. Therefore, the product in (5) is always equal to 1.

Now, for G = SO(2n+ 1, F) and G = O(2n, F), we have

S∼=
r∏

i=q+1
O(2mi + 1,C)×

s∏
i=r+1

O(2mi ,C).

It follows that Rψ ∼=
∏r

i=q+1 1×
∏s

i=r+1 Z2 ∼= Zd
2 .

It remains to consider G = Sp(2n, F), Ĝ = SO(2n+ 1,C). We have

q∑
i=1

2mi dimψi +
r∑

i=q+1
(2mi + 1) dimψi +

p∑
i=1

2mi dimψi = 2n+ 1.

Since the total sum is odd, we must have r > q and dimψi odd, for some i ∈
{q + 1, . . . , r}. Without loss of generality, we may assume dimψq+1 odd. Then

S∼= SO(2mq+1+ 1,C)×
r∏

i=q+2
O(2mi + 1,C)×

s∏
i=r+1

O(2mi ,C).

It follows Rψ ∼= 1×
∏r

i=q+2 1×
∏s

i=r+1 Z2 ∼= Zd
2 . �

4. Even orthogonal groups

4.1. R-groups for nonconnected groups. In this section, we review some results
of [Goldberg and Herb 1997]. Let G be a reductive F-group. Let G0 be the
connected component of the identity in G. We assume that G/G0 is finite and
abelian.
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Let π be an irreducible unitary representation of G. We say that π is discrete
series if the matrix coefficients of π are square integrable modulo the center of G.

We will consider the parabolic subgroups and the R-groups as defined in [Gold-
berg and Herb 1997]. Let P0

= M0U be a parabolic subgroup of G0. Let A be
the split component in the center of M0. Define M = CG(A) and P = MU . Then
P is called the cuspidal parabolic subgroup of G lying over P0. The Lie algebra
L(G) can be decomposed into root spaces with respect to the roots 8 of L(A),

L(G)= L(M)⊕
∑
α∈8

L(G)α.

Let σ be an irreducible unitary representation of M . We denote by rM0,M(σ ) the
restriction of σ to M0. Then, by Lemma 2.21 of [Goldberg and Herb 1997], σ
is discrete series if and only if any irreducible constituent of rM0,M(σ ) is discrete
series. Now, suppose σ is discrete series. Let σ0 be an irreducible constituent of
rM0,M(σ ). Then σ0 is discrete series and we have the Knapp–Stein R-group R(σ0)

for iG0,M0(σ0) [Knapp and Stein 1971; Silberger 1978]. We review the definition
of R(σ0). Let W (G0, A)= NG0(A)/M0 and WG0(σ0)={w ∈WG(M) |wσ0∼= σ0}.

For w ∈ WG0(σ0), we denote by A(w, σ0) the normalized standard intertwining
operator associated to w (see [Silberger 1979]). Define

W 0
G0(σ0)= {w ∈WG0(σ0) |A(w, σ0) is a scalar}.

Then W 0
G0(σ0)=W (81) is generated by reflections in a set 81 of reduced roots of

(G, A). Let 8+ be the positive system of reduced roots of (G, A) determined by
P and let 8+1 =81 ∩8

+. Then

R(σ0)= {w ∈WG0(σ0) | wβ ∈8
+ for all β ∈8+1 }

and WG0(σ0)= R(σ0)nW (81).
For the definition of R(σ ), we follow [Goldberg and Herb 1997]. Define

NG(σ )= {g ∈ NG(M) | gσ ∼= σ },

WG(σ )= NG(σ )/M, and

R(σ )= {w ∈WG(σ ) | wβ ∈8
+ for all β ∈8+1 }.

For w ∈WG(σ ), let A(w, σ ) denote the intertwining operator on iG,M(σ ) defined
in [Goldberg and Herb 1997, page 135]. Then the A(w, σ ), w∈ R(σ ), form a basis
for the algebra of intertwining operators on iG,M(σ ), by Theorem 5.16 of [Goldberg
and Herb 1997]. In addition, WG(σ )= R(σ )nW (81). For w ∈WG(σ ), A(w, σ )

is a scalar if and only if w ∈W (81); see [Goldberg and Herb 1997, Lemma 5.20].

4.2. Even orthogonal groups. Let G = O(2n, F) and G0
= SO(2n, F). Then

G=G0o{1, s}, where s=diag
(
In−1,

(0
1

1
0

)
, In−1

)
and it acts on G0 by conjugation.
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(a) Let

M0
= {diag(g1, . . . , gr , h, τ g−1

r , . . . , τ g−1
1 ) | gi ∈ GL(ni , F), h ∈ SO(2m, F)}

∼= GL(n1, F)× · · ·×GL(nr , F)×SO(2m, F),

where m > 1 and n1+ · · ·+ nr +m = n. Then M0 is a Levi subgroup of G0. The
split component of M0 is

A = {diag(λ1 In1, . . . , λr Inr , I2m, λ
−1
r Inr , . . . , λ

−1
1 In1) | λi ∈ F×}.

Then M = CG(A) is equal to

(6) M = {diag(g1, . . . , gr ,h, τ g−1
r , . . . , τ g−1

1 ) | gi ∈ GL(ni , F),h ∈ O(2m, F)}
∼= GL(n1, F)× · · ·×GL(nr , F)× O(2m, F).

Let π ∈ E2(M). Then π ∼= ρ1 ⊗ · · · ⊗ ρk ⊗ σ, where ρi ∈ E2(GL(ni , F)) and
σ ∈ E2(O(2m, F)). Let π0 ∼= ρ1⊗ · · · ⊗ ρk ⊗ σ0 be an irreducible component of
rM0,M(π). If sσ0 ∼= σ0, then WG(π) = WG0(π0) and R(π) = R(π0). In this case,
rM0,M(π)= π0, by Lemma 4.1 of [Ban and Jantzen 2003], and ρi oσ is reducible
if and only if ρi o σ0 is reducible, by Proposition 2.2 of [Goldberg 1995]. Then
Theorem 6.5 of [Goldberg 1994] tells us that R(π) ∼= Zd

2 , where d is the number
of inequivalent ρi with ρi o σ reducible.

Now, consider the case sσ0 � σ0. It follows from Lemma 4.1 of [Ban and
Jantzen 2003] that π = iM,M0(π0). Then iG,M(π)= iG,M0(π0) and we know from
Theorem 3.3 of [Goldberg 1995] that R(π) ∼= Zd

2 , where d = d1 + d2, d1 is the
number of inequivalent ρi such that ni is even and ρi o σ is reducible, and d2 is
the number of inequivalent ρi such that ni is odd and ρi ∼= ρ̃i . Moreover, Corollary
3.4 of [Goldberg 1995] implies if ni is odd and ρi ∼= ρ̃i , then ρi o σ is reducible.
Therefore, we see that R(π)∼= Zd

2 , where d is the number of inequivalent ρi with
ρi o σ reducible.

In the case m = 1, since

SO(2, F)=
{(

a 0
0 a−1

) ∣∣∣ a ∈ F×
}
,

we have

M0
= {diag(g1, . . . , gr , a, a−1, τ g−1

r , . . . , τ g−1
1 ) | gi ∈ GL(ni , F), a ∈ F×}

∼= GL(n1, F)× · · ·×GL(nr , F)×GL(1, F),

and this case is described in (b).

(b) Let M0 be a Levi subgroup of G0 of the form

M0
= {diag(g1, . . . , gr ,

τ g−1
r , . . . , τ g−1

1 ) | gi ∈ GL(ni , F)}
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where n1+ · · ·+ nr = n. The split component of M0 is

A = {diag(λ1 In1, . . . , λr Inr , λ
−1
r Inr , . . . , λ

−1
1 In1) | λi ∈ F×}

and M = CG(A)= M0. Therefore,

(7) M = {diag(g1, . . . , gr ,
τ g−1

r , . . . , τ g−1
1 ) | gi ∈ GL(ni , F)}

∼= GL(n1, F)× · · ·×GL(nr , F).

Let π ∼= ρ1⊗ · · · ⊗ ρk ⊗ 1 ∈ E2(M), where 1 denotes the trivial representation of
the trivial group. Since M = M0, we can apply directly Theorem 3.3 of [Goldberg
1995]. It follows R(π)∼= Zd

2 , where d = d1+ d2, d1 is the number of inequivalent
ρi such that ni is even and ρio1 is reducible, and d2 is the number of inequivalent
ρi such that ni is odd and ρi ∼= ρ̃i . As above, it follows from Corollary 3.4 of
[Goldberg 1995] that if ni is odd and ρi ∼= ρ̃i , then ρi oσ is reducible. Again, we
obtain R(π)∼=Zd

2 , where d is the number of inequivalent ρi with ρioσ reducible.
We summarize the above considerations in the following lemma. Observe that

the group O(2, F) does not have square integrable representations. It also does not
appear as a factor of cuspidal Levi subgroups of O(2n, F). We call a subgroup M
defined by (6) or (7) a standard Levi subgroup of O(2n, F).

Lemma 6. Let G = O(2n, F) and consider a standard Levi subgroup of G of the
form

M ∼= GL(n1, F)× · · ·×GL(nr , F)× O(2m, F),

where m ≥ 0, m 6= 1, n1+ · · ·+ nr +m = n. Let π ∼= ρ1⊗ · · ·⊗ ρk ⊗ σ ∈ E2(M).
Then R(π)∼= Zd

2 , where d is the number of inequivalent ρi with ρi o σ reducible.

5. R-groups of discrete series

Let G be Sp(2n, F), SO(2n+ 1, F) or O(2n, F).

Theorem 7. Let π be an irreducible discrete series representation of a standard
Levi subgroup M of Gn . Let ϕ be the L-parameter of π . Then Rϕ,π ∼= R(π).

Proof. We can write π in the form

(8) π ∼= (⊗
m1δ1)⊗ · · ·⊗ (⊗

mr δr )⊗ σ

where σ is an irreducible discrete series representation of Gm and δi (i = 1, . . . , r )
is an irreducible discrete series representation of GL(ni , F) such that δi � δ j for
i 6= j . As explained in Section 4, if Gn = O(2n, F), then m 6= 1.

Let ϕi denote the L-parameter of δi and ϕσ the L-parameter of σ . Then the
L-parameter ϕ of π is

ϕ ∼= (m1ϕ1⊕m1ϕ̃1)⊕ · · ·⊕ (mrϕr ⊕mr ϕ̃r )⊕ϕσ .
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Each ϕi is irreducible. The parameter ϕσ is of the form ϕσ = ϕ
′

1⊕ · · ·⊕ϕ
′
s where

ϕ′i are irreducible, ϕ′i ∼= ϕ̃
′

i and ϕ′i � ϕ
′

i for i 6= j . In addition, ϕ′i factors through a
group of the same type as Ĝn . The sets {ϕi | i = 1, . . . , r} and {ϕ′i | i = 1, . . . , s}
can have nonempty intersection. After rearranging the indices, we can write ϕ as

ϕ ∼=

( h⊕
i=1

(miϕi ⊕mi ϕ̃i )

)
⊕

( q⊕
i=h+1

2miϕi

)
⊕

( k⊕
i=q+1

2miϕi

)

⊕

( r⊕
i=k+1

(2mi + 1)ϕi

)
⊕

( l⊕
i=r+1

ϕi

)
,

where ϕσ =
⊕l

i=k+1 ϕi and

ϕi � ϕ j , ϕi � ϕ̃ j for i, j ∈ {1, . . . , l}, i 6= j,

ϕi � ϕ̃i for i ∈ {1, . . . , h},

ϕi ∼= ϕ̃i for i ∈ {h+ 1, . . . , l},

ϕi not of the same type as Ĝ for i ∈ {h+ 1, . . . , q},

ϕi of the same type as Ĝ for i ∈ {q + 1, . . . , k}.

Let d = k− q. Lemma 5 implies Rϕ ∼= Zd
2 . In addition, Rϕ,π ∼= Rϕ .

On the other hand, we know that R(π)∼= Zc
2, where c is cardinality of the set

C = {i ∈ {1, . . . , r} | δi o σ is reducible}.

This follows from [Goldberg 1994] for G = SO(2n + 1, F) and G = Sp(2n, F),
and from Lemma 6 for G = O(2n, F). We want to show C = {q + 1, . . . , k}.
For any i ∈ {1, . . . , l}, ϕi is an irreducible representation of WF × SL(2,C) and
therefore it can be written in the form ϕi = ϕ

′

i ⊗ Sai , where ϕ′i is an irreducible
representation of WF and Sai is the standard irreducible ai -dimensional algebraic
representation of SL(2,C). For i ∈ {1, . . . , r}, this parameter corresponds to the
representation δ(ρi , ai ). Therefore, the representation δi in (8) is δi = δ(ρi , ai ).

From (3), we have

ϕσ =

l⊕
i=k+1

ϕi =
⊕

(ρ,a)∈Jord(σ )

ϕρ ⊗ Sa.

For i ∈{h+1, . . . , q}, ϕi is not of the same type as Ĝ and δ(ρi , ai )oσ is irreducible.
For i ∈{q+1, . . . , k}, ϕi is of the same type as Ĝ. Now, Lemma 3 tells us (ρi , ai )∈

Jord(σ ) if and only if δ(ρi , ai ) o σ is irreducible. Therefore, δ(ρi , ai ) o σ is
irreducible for i ∈{k+1, . . . , r} and δ(ρi , ai )oσ is reducible for i ∈{q+1, . . . , k}.
It follows C = {q + 1, . . . , k} and R(π)∼= Zd

2
∼= Rϕ,π , finishing the proof. �
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6. Unitary groups

Let E/F be a quadratic extension of p-adic fields. Fix θ ∈WF \WE . Let G=U (n)
be a unitary group defined with respect to E/F , U (n)⊂ GL(n, E). Let

Jn =


1

–1
1

·

·

 .
We have

LG = GL(n,C)oWF ,

where WE acts trivially on GL(n,C) and the action ofw∈WF\WE on g∈GL(n,C)

is given by w(g)= Jn
tg−1 J−1

n .

6.1. L-parameters for Levi subgroups. Suppose we have a Levi subgroup M ∼=
ResE/F GLk ×U (l). Then

LM0
=

{( g
m

h

) ∣∣∣ g, h ∈ GL(k,C),m ∈ GL(l,C)
}
.

Direct computation shows that the action of w ∈WF \WE on LM0 is given by

w
(( g

m
h

))
=

Jk
th−1 J−1

k
Jl

tm−1 J−1
l

Jk
tg−1 J−1

k

 .
Let π be a discrete series representation of GL(k, E) = (ResE/F GLk)(F) and

τ a discrete series representation of U (l). Let ϕπ :WE ×SL(2,C)→GL(k,C) be
the L-parameter of π and ϕτ :WF ×SL(2,C)→GL(l,C)oWF the L-parameter
of τ . Write

ϕτ (w, x)= (ϕ′τ (w, x), w), w ∈WF , x ∈ SL(2,C).

According to [Borel 1979, Sections 4, 5 and 8], there exists a unique (up to
equivalence) L-parameter ϕ :WF ×SL(2,C)→ LM such that

(9)
ϕ((w, x))= (ϕπ (w), ∗, ∗, w) for all w ∈WE , x ∈ SL(2,C),

ϕ((w, x))= (∗, ϕ′τ (w, x), ∗, w) for all w ∈WF , x ∈ SL(2,C).

We will define a map ϕ : WF × SL(2,C)→ LM satisfying (9) and show that ϕ is
a homomorphism. Define

(10) ϕ((w, x))= (ϕπ (w, x), ϕ′τ (w, x),tϕπ (θwθ−1, x)−1, w),

w ∈WE , x ∈ SL(2,C)
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and
ϕ((θ, 1))= (J−1

k , ϕ′τ (θ, 1),tϕπ (θ2, 1)−1 Jk, θ).

Note that
ϕτ (θ

2, 1)= (ϕ′τ (θ, 1), θ)(ϕ′τ (θ, 1), θ)

= (ϕ′τ (θ, 1), 1)(Jl
tϕ′τ (θ, 1)−1 J−1

l , θ2)

= (ϕ′τ (θ, 1)Jl
tϕ′τ (θ, 1)−1 J−1

l , θ2).

It follows that

(11) ϕ′τ (θ, 1)Jl
tϕ′τ (θ, 1)−1 J−1

l = ϕ
′

τ (θ
2, 1).

Similarly, for w ∈WE , x ∈ SL(2,C),

ϕτ (θwθ
−1, x)= ϕτ (θ, 1)ϕτ (w, x)ϕτ (θ, 1)−1

= (ϕ′τ (θ, 1), θ)(ϕ′τ (w, x), w)(1, θ−1)(ϕ′τ (θ, 1)−1, 1)

= (ϕ′τ (θ, 1), 1)(Jl
tϕ′τ (w, x)−1 J−1

l , θwθ−1)(ϕ′τ (θ, 1)−1, 1)

= (ϕ′τ (θ, 1)Jl
tϕ′τ (w, x)−1 J−1

l ϕ′τ (θ, 1)−1, θwθ−1)

and thus

(12) ϕ′τ (θ, 1)Jl
tϕ′τ (w, x)−1 J−1

l ϕ′τ (θ, 1)−1
= ϕ′τ (θwθ

−1, x).

Now,

ϕ(θ, 1)ϕ(θ, 1)

=
(
J−1

k , ϕ′τ (θ, 1),tϕπ (θ2, 1)−1 Jk, θ
)(

J−1
k , ϕ′τ (θ, 1),tϕπ (θ2, 1)−1 Jk, θ

)
=
(
J−1

k , ϕ′τ (θ, 1),tϕπ (θ2, 1)−1 Jk, 1
)(

Jkϕπ (θ
2, 1), Jl

tϕ′τ (θ, 1)−1 J−1
l , J−1

k , θ2)
=
(
ϕπ (θ

2, 1), ϕ′τ (θ
2, 1),tϕπ (θ2, 1)−1, θ2)

= ϕ(θ2, 1),

using (11) and (10). Further, for w ∈WE , x ∈ SL(2,C), we have

ϕ(θ, 1)ϕ(w, x)ϕ(θ, 1)−1

=
(
J−1

k , ϕ′τ (θ, 1),tϕπ (θ2, 1)−1 Jk, θ
)(
ϕπ (w, x), ϕ′τ (w, x),tϕπ (θwθ−1, x)−1, w

)
· (1, 1, 1, θ−1)

(
Jk, ϕ

′

τ (θ, 1)−1, J−1
k

tϕπ (θ
2, 1), 1

)
=
(
J−1

k , ϕ′τ (θ, 1),tϕπ (θ2, 1)−1 Jk, 1
)

·
(
Jkϕπ (θwθ

−1, x)J−1
k , Jl

tϕ′τ (w, x)−1 J−1
l , Jk

tϕπ (w, x)−1 J−1
k , θwθ−1)

·
(
Jk, ϕ

′

τ (θ, 1)−1, J−1
k

tϕπ (θ
2, 1), 1

)
=
(
ϕπ (θwθ

−1, x), ϕ′τ (θwθ
−1, x),tϕπ (θ2wθ−2, x)−1, θwθ−1)

= ϕ(θwθ−1, x).
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Here, we use (12) and J 2
k = (J

−1
k )2 = (−1)k−1, so

tϕπ (θ
2, 1)−1 Jk Jk

tϕπ (w, x)−1 J−1
k J−1

k
tϕπ (θ

2, 1)= tϕπ (θ
2wθ−2, x)−1.

In conclusion, ϕ(θ2, 1) = ϕ(θ, 1)2 and ϕ(θwθ−1, x) = ϕ(θ, 1)ϕ(w, x)ϕ(θ, 1)−1.
Since ϕ is clearly multiplicative on WE × SL(2,C), it follows that ϕ is a homo-
morphism. Therefore, ϕ is the L-parameter for π ⊗ τ .

6.2. The coefficients λϕ . Let ϕ : WE × SL(2,C) → GLk(C) be an irreducible
L-parameter. Assume ϕ ∼= t(θϕ)−1. Let X be a nonzero matrix such that

tϕ(θwθ−1, x)−1
= X−1ϕ(w, x)X,

for all w ∈ WE , x ∈ SL(2,C). We proceed similarly as in [Mœglin 2002, p. 190].
By taking transpose and inverse,

ϕ(θwθ−1, x)= t X tϕ(w, x)−1 t X−1.

Next, we replace w by θwθ−1. This gives

ϕ(θ2, 1)ϕ(w, x)ϕ(θ−2, 1)= t X tϕ(θwθ−1, x)−1 t X−1
=

t X X−1ϕ(w, x)X t X−1,

for allw∈WE , x ∈SL(2,C). Since ϕ is irreducible, ϕ(θ−2, 1) t X X−1 is a constant.
Define

(13) λϕ = ϕ(θ
−2, 1) t X X−1.

As in [Mœglin 2002], we can show that λϕ =±1.

Lemma 8. Let ϕ : WE → GLk(C) be an irreducible L-parameter such that ϕ ∼=
t(θϕ)−1. Let Sa be the standard a-dimensional irreducible algebraic representation
of SL(2,C). Then θ ( t(ϕ⊗ Sa)

−1)∼= ϕ⊗ Sa and

λϕ⊗Sa = (−1)a+1λϕ.

Proof. We know that t S−1
a
∼= Sa . Let Y be a nonzero matrix such that

t Sa(x)−1
= Y−1Sa(x)Y,

for all x ∈ SL(2,C). Then t Y = Y for a odd and t Y =−Y for a even. Let X be a
nonzero matrix such that

tϕ(θwθ−1)−1
= X−1ϕ(w)X,

for all w ∈WE . We have
t(ϕ⊗ Sa(θwθ

−1, x))−1
= (tϕ(θwθ−1)−1)⊗ (t Sa(x)−1)

= (X−1ϕ(w)X)⊗ (Y−1Sa(x)Y )

= (X ⊗ Y )−1(ϕ⊗ Sa(w, x))⊗ (X ⊗ Y ).
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It follows that θ ( t(ϕ⊗ Sa)
−1)∼= ϕ⊗ Sa and

λϕ⊗Sa = (ϕ⊗ Sa(θ
−2, 1)) t(X ⊗ Y )(X ⊗ Y )−1

= (ϕ(θ−2) t X X−1)⊗ ( tY Y−1))= (−1)a+1λϕ. �

6.3. Centralizers. Let ϕ :WF×SL(2,C)→ L G be an L-parameter. Denote by ϕE

the restriction of ϕ to WE×SL(2,C). Then ϕE is a representation of WE×SL(2,C)

on V = Cn . Write ϕE as a sum of irreducible subrepresentations

ϕE = m1ϕ1⊕ · · ·⊕mlϕl,

where mi is the multiplicity of ϕi and ϕi � ϕ j for i 6= j . It follows from [Mœglin
2002] that Sϕ , the centralizer in Ĝ of the image of ϕ, is given by

(14) Sϕ ∼=
l∏

i=1

C(miϕi ),

where

C(miϕi )=


GL(mi ,C) ifϕi � θ ϕ̃i ,

O(mi ,C) ifϕi ∼=
θ ϕ̃i , λϕi = (−1)n−1,

Sp(mi ,C) ifϕi ∼=
θ ϕ̃i , λϕi = (−1)n.

6.4. Coefficients λρ . Let L M = GLk(C) × GLk(C) o WF , where the action of
w ∈WF \WE on GLk(C)×GLk(C) is given by

w(g, h, 1)w−1
= (Jn

th−1 J−1
n , Jn

tg−1 J−1
n , 1).

For η =±1, we denote by Rη the representation of L M on EndC(C
k) given by

Rη((g, h, 1)) · X = gXh−1,

Rη((1, 1, θ)) · X = ηJk
t X Jk .

Let τ denote the nontrivial element in Gal(E/F). Let ρ be an irreducible unitary
supercuspidal representation of GL(k, E). Assume ρ ∼= τ ρ̃. Then precisely one of
the two L-functions L(s, ρ, R1) and L(s, ρ, R−1) has a pole at s = 0. Denote by
λρ the value of η such that L(s, ρ, Rη) has a pole at s = 0.

Lemma 9. Assume that ρ is an irreducible unitary supercuspidal representation
of GL(k, E) such that ρ ∼= τ ρ̃. Let ϕρ be the L-parameter of ρ. Then λϕρ = λρ .

Proof. As shown in Section 6.1, the parameter ϕ : WF →
L M corresponding to

ϕρ :WE → GLk(C) is given by

(15) ϕ(w)=

((
ϕρ(w)

tϕρ(θwθ
−1)−1

)
, w

)
,
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for w ∈WE , and

(16) ϕ(θ)=

((
J−1

k
tϕρ(θ

2)−1 Jk

)
, θ

)
.

From [Henniart 2010], we have L(s, ρ, Rη)= L(s, Rη◦ϕ). Therefore, L(s, Rλρ◦ϕ)
has a pole at s = 0. Then Rλρ ◦ϕ contains the trivial representation, so there exists
nonzero X ∈ Mk(C) such that (Rλρ ◦ϕ)(w) · X = X for all w ∈WF . In particular,
(15) implies that for w ∈WE ,

ϕρ(w)X tϕρ(θwθ
−1)= X

so

(17) ϕρ(w)X = X tϕρ(θwθ
−1)−1.

Therefore, X is a nonzero intertwining operator between ϕρ and t(θϕρ)
−1. From

(13), we have

(18) ϕρ(θ
−2) t X X−1

= λϕρ .

Now, since (Rλρ ◦ϕ)(θ) · X = X , we have from (16)

t X tϕρ(θ
2)= λρX.

By transposing and multiplying by X−1, we obtain

ϕρ(θ
2)= λρ

t X X−1.

We compare this to (18). It follows λϕρ = λρ . �

6.5. Jordan blocks for unitary groups. For the unitary group U (n), define

Rd = Rη, where η = (−1)n.

Let σ be an irreducible discrete series representation of U (n). Denote by Jord(σ )
the set of pairs (ρ, a), where ρ ∈ 0E(GL(dρ, E)), ρ ∼= τ ρ̃, and a ∈ Z+, such that
(ρ, a) satisfies properties (J-1) and (J-2) from Section 2.2.

Lemma 10. Let ρ be an irreducible supercuspidal representation of GL(d, E)
such that ϕρ ∼= θ ϕ̃ρ, where ϕρ is the L-parameter for ρ. Then the condition (J-1)
is equivalent to

(J-1′′) λϕρ⊗Sa = (−1)n+1.
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Proof. The condition (J-1) says that a is even if L(s, ρ, Rd) has a pole at s = 0 and
odd otherwise. Observe that

L(s, ρ, Rd) has a pole at s = 0⇐⇒ λϕρ = (−1)n

⇐⇒ λϕρ⊗Sa = (−1)n(−1)a+1

⇐⇒ λϕρ⊗Sa =

{
(−1)n+1 a even,
(−1)n a odd.

From this, it is clear that (J-1) is equivalent to (J-1′′). �

6.6. R-groups for unitary groups.

Lemma 11. Let σ be an irreducible discrete series representation of U (n) and let
δ = δ(ρ, a) be an irreducible discrete series representation of GL(l, E), l = da,
d = dim(ρ). Let ϕρ and ϕ be the L-parameters of ρ and π = δ⊗ σ , respectively.
Then Rϕ,π ∼= R(π).

Proof. Let ϕσ be the L-parameter of σ . Then

ϕE ∼= ϕρ ⊗ Sa ⊕
θ ϕ̃ρ ⊗ Sa ⊕ (ϕσ )E .

This is a representation of WE ×SL(2,C) on V =Cn+2l . Write (ϕσ )E as a sum of
irreducible components,

(ϕσ )E = ϕ1⊕ · · ·⊕ϕm .

Each component appears with multiplicity one. The centralizer Sϕ is given by (14).
If ϕρ � θ ϕ̃ρ, then

Sϕ ∼= GL(1,C)×GL(1,C)×

m∏
i=1

GL(1,C).

This implies Rϕ = 1. On the other hand, δ o σ is irreducible, so R(π) = 1. It
follows Rϕ,π ∼= R(π).

Now, consider the case ϕρ ∼= θ ϕ̃ρ . If ϕρ ⊗ Sa ∈ {ϕ1, . . . , ϕm}, then

Sϕ ∼= O(3,C)×

m−1∏
i=1

GL(1,C) and S0
ϕ
∼= SO(3,C)×

m−1∏
i=1

GL(1,C).

This gives Wϕ = W 0
ϕ and Rϕ = 1. Since ϕρ ⊗ Sa ∈ {ϕ1, . . . , ϕm}, the condition

(J-2) implies that δo σ is irreducible. Therefore, R(π)= 1= Rϕ,π .
It remains to consider the case ϕρ ∼= θ ϕ̃ρ and ϕρ ⊗ Sa /∈ {ϕ1, . . . , ϕm}. Then

(ρ, a) does not satisfy (J-1′′) or (J-2). Assume first that (ρ, a) does not satisfy
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(J-1′′). Then δoσ is irreducible, so R(π)= 1. Since (ρ, a) does not satisfy (J-1′′),
we have λϕρ⊗Sa = (−1)n = (−1)n+2l . Then, by (14),

Sϕ ∼= Sp(2,C)×

m∏
i=1

GL(1,C).

It follows Rϕ,π = 1= R(π).
Now, assume that (ρ, a) satisfies (J-1′′), but does not satisfy (J-2). Then λϕρ⊗Sa=

(−1)n−1
= (−1)n+2l−1, so

Sϕ ∼= O(2,C)×

m∏
i=1

GL(1,C)

and Rϕ,π ∼= Z2. Since (ρ, a) does not satisfy (J-2), δ o σ is reducible and hence
R(π)∼= Z2 ∼= Rϕ,π . �
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FINITE-VOLUME COMPLEX-HYPERBOLIC SURFACES,
THEIR TOROIDAL COMPACTIFICATIONS,

AND GEOMETRIC APPLICATIONS

LUCA FABRIZIO DI CERBO

We study the classification of smooth toroidal compactifications of nonuni-
form ball quotients in the sense of Kodaira and Enriques. Several results
concerning the Riemannian and complex algebraic geometry of these spaces
are given. In particular we show that there are compact complex surfaces
which admit Riemannian metrics of nonpositive curvature, but which do
not admit Kähler metrics of nonpositive curvature. An infinite class of such
examples arise as smooth toroidal compactifications of ball quotients.

1. Introduction

Let M̃ be a symmetric space of noncompact type, and let Iso0(M̃) denote the
connected component of the isometry group of M̃ containing the identity. Recall
that Iso0(M̃) is a semisimple Lie group. A discrete subgroup 0 ⊂ Iso0(M̃) is a
lattice in M̃ if M̃/0 is of finite volume. When 0 is torsion free, then M̃/0 is
a finite volume manifold or a locally symmetric space. A lattice 0 is uniform
(nonuniform) if M̃/0 is compact (noncompact).

The theory of compactifications of locally symmetric spaces or varieties has
been extensively studied, see for example [Borel and Ji 2006]. In fact, locally
symmetric varieties of noncompact type often occur as moduli spaces in algebraic
geometry and number theory, see [Ash et al. 2010]. For technical reasons this
beautiful theory is mainly developed for quotients of symmetric spaces or varieties
by arithmetic subgroups. For arithmetic subgroups of semisimple Lie groups a nice
reduction theory is available [Borel and Ji 2006]. Among many other things, the
aforementioned theory can be used to deduce their finite generation, the existence of
finitely many conjugacy classes of maximal parabolic subgroups, and the existence
of neat subgroups of finite index.

The celebrated work of Margulis [1984] implies that lattices in any semisimple
Lie group of real rank bigger or equal than two are arithmetic subgroups. This
important theorem does not cover many interesting cases such as lattices in the

MSC2010: 14J29, 53C20, 53C55.
Keywords: manifolds with nonpositive curvature, toroidal compactifications.
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complex hyperbolic space CHn , where nonarithmetic lattices are known to exist by
the work of Mostow and Mostow–Deligne; see [Deligne and Mostow 1993] and
the bibliography therein.

It is thus desirable to develop a theory of compactifications of locally symmetric
varieties modeled on CHn regardless of the arithmeticity of the defining torsion
free lattices. A compactification of finite-volume complex-hyperbolic manifolds
as a complex spaces with isolated normal singularities was obtained by Siu and
Yau [1982]. This compactification may be regarded as a generalization of the
Baily–Borel compactification defined for arithmetic lattices in CHn . A toroidal
compactification for finite-volume complex-hyperbolic manifolds was described by
Hummel and Schroeder [1996] in connection with cusps closing techniques arising
from Riemannian geometry; see also [Mok 2009] and the classical reference [Ash
et al. 2010] for what concerns the arithmetic case.

The constructions of both Siu–Yau and Hummel–Schroeder rely on the theory of
nonpositively curved Riemannian manifolds. The key point here is that the structure
theorems for finite-volume manifolds of negatively pinched curvature, or more
generally for visibility manifolds [Eberlein 1996], can be used as a substitute of the
reduction theory for arithmetic subgroups.

In this paper we study torsion-free nonuniform lattices in the complex hyperbolic
plane CH2 and their toroidal compactifications. Let 0 be a lattice as above and
let CH2/0 denote its toroidal compactification. When CH2/0 is smooth, it is
a compact Kähler surface [Hummel 1998]. It is then of interest to place these
smooth Kähler surfaces in the framework of the Kodaira–Enriques classification of
complex surfaces [Barth et al. 2004]. The main purpose of this paper is to prove
the following:

Theorem A. Let 0 be a nonuniform torsion-free lattice in CH2. There exists a
finite subset F

′

⊂ 0 of parabolic isometries for which the following holds: for any
normal subgroup 0

′

C0 with the property that F
′

∩0
′

is empty, then CH2/0
′ is

a surface of general type with ample canonical line bundle. Moreover, CH2/0
′

admits Riemannian metrics of nonpositive sectional curvature but it cannot support
Kähler metrics of nonpositive sectional curvature.

An outline of the paper follows. Section 2 starts with a summary of the results
from [Hummel and Schroeder 1996]. Such results are then combined with the
Kodaira–Enriques classification to prove that when the lattice 0 is sufficiently small
then CH2/0 is a surface of general type with ample canonical bundle.

In Section 3 we present some examples of a surfaces of general type which do
not admit any nonpositively curved Kähler metric, but whose underlying smooth
manifolds admit Riemannian metrics of nonpositive curvature. Finally we prove
Theorem A.
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In Section 4 we show how Theorem A, combined with the theory of semistable
curves on algebraic surfaces [Sakai 1980], can be used to address the problem of
the projective-algebraicity of minimal compactifications (Siu–Yau) of finite-volume
complex-hyperbolic surfaces. Those results are summarized in Theorem B. The
result obtained is effective.

The projective-algebraicity of minimal compactifications was proved in [Mok
2009] through L2-estimates for the ∂-operator. This analytical approach works in
any dimension.

2. Toroidal compactifications and the Kodaira–Enriques classification

Let PU(1, 2) denote the connected component of Iso(CH2) containing the identity.
Let 0 be a nonuniform torsion-free lattice of holomorphic isometries of the complex
hyperbolic plane CH2, that is, 0 ≤ PU(1, 2). Recall that the locally symmetric
space CH2/0 has finitely many cusp ends A1, . . . , An which are in one to one
correspondence with conjugacy classes of the maximal parabolic subgroups of 0
[Eberlein 1980]. The set of all parabolic elements of 0 can be written as a disjoint
union of subsets 0x , where 0x is the set of all parabolic elements in 0 having x as
their unique fixed point. Here x is a point in the natural point set compactification of
CH2 obtained by adjoining points at infinity corresponding to asymptotic geodesic
rays. Thus, given a cusp Ai , let us consider the associated maximal parabolic
subgroup 0xi ≤ 0 and the horoball HBxi stabilized by 0xi . We then have that
HBxi /0xi is naturally identified with Ai .

Recall that after choosing an Iwasawa decomposition [Eberlein 1996] for PU(1, 2),
we get a identification of ∂HB with the three-dimensional Heisenberg Lie group N .
Moreover, N comes equipped with a left invariant metric and then we may view 0xi

as a lattice in Iso(N ). The cusps A1, . . . , An are then identified with N/0xi×[0,∞),
for i = 1, . . . , n.

The isometry group of N is isomorphic to the semi-direct product N o U (1).
We say that a lattice in Iso(N ) is rotation free if it is a lattice in N , that is, if it is a
lattice of left translations. A parabolic isometry φ ∈ 0 is called unipotent if it acts
as a translation on its invariant horospheres.

We now briefly summarize some of the results from [Hummel 1998; Hummel
and Schroeder 1996].

Theorem 2.1 (Hummel–Scroeder). Let 0 be a nonuniform torsion-free lattice in
CH2. There exists a finite subset F⊂ 0 of parabolic isometries such that, for any
normal subgroup 0

′

C0 with the property that F∩0
′

is empty, CH2/0
′ is smooth

and Kähler.

Furthermore, using a cusp closing technique arising from Riemannian geometry
they were able to prove:
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Theorem 2.2 (Hummel–Schroeder). Let 0 be a nonuniform torsion-free lattice in
CH2. Then there exists a finite subset F

′

⊂ 0 of parabolic isometries containing
F such that if 0

′

C0 is a normal subgroup with the property that F
′

∩0
′

is empty,
then CH2/0

′ admits a Riemannian metric of nonpositive sectional curvature.

A few remarks about these results. A nonuniform torsion-free lattice in CH2

admits a smooth toroidal compactification if its parabolic isometries are all unipotent.
In the arithmetic case this is achieved by choosing a neat subgroup of finite index
[Ash et al. 2010]. It is also interesting to observe that we have plenty of normal
subgroups satisfying the requirements of Theorems 2.1 and 2.2, in fact PU(1, 2) is
linear and then residually finite by a fundamental result of Mal’tsev [1940]. Finally,
it is interesting to notice that in general one expects the strict inclusion F

′

⊃ F to
hold. Explicit examples can be derived from the construction of Hirzebruch [1984].

For simplicity, a compactification as in Theorem 2.2 will be referred to as a
toroidal Hummel–Schroeder compactification.

Proposition 2.3. Let M be a finite-volume complex-hyperbolic surface which ad-
mits a toroidal Hummel–Schroeder compactification. Then the Euler number of M
is strictly positive.

Proof. The idea for the proof goes back to an unpublished result of J. Milnor
about the Euler number of closed four-dimensional Riemannian manifolds having
sectional curvatures along perpendicular planes of the same sign; see [Chern 1955].
Let (M, g) be the Riemannian manifold obtained by closing the cusps of M under
the condition of nonpositive curvature [Hummel and Schroeder 1996]. Let � be its
curvature matrix. We can always choose [Chern 1955] a orthonormal frame {ei }

4
i=1

such that R1231 = R1241 = R1232 = R1242 = R1332 = R1341 = 0. Hence

Pf(�)=�1
2 ∧�

3
4−�

1
3 ∧�

2
4+�

1
4 ∧�

2
3

=
(
R1221 R3443+ R2

1243+ R1331 R2442+ R2
1342+ R1441 R2332+ R2

1234
)
dµg,

where Pf(�) is the Pfaffian of the skew symmetric matrix �. The statement is now
a consequence of Chern–Weil theory. �

We can now use the Kodaira–Enriques classification of closed smooth surfaces
[Barth et al. 2004] to derive the following theorem. The proof is in the spirit of the
theory of nonpositively curved spaces.

Theorem 2.4. Let M be a finite-volume complex-hyperbolic surface which admits
a toroidal Hummel–Schroeder compactification. Then M is a surface of general
type without rational curves.

Proof. Since M admits a Riemannian metric of nonpositive sectional curvature,
the Cartan–Hadamard theorem [Petersen 2006] implies that the universal cover
of M is diffeomorphic to the four-dimensional euclidean space. Consequently,
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M is aspherical and then it cannot contain rational curves. Moreover, the second
Betti number of M is even since by construction it admits a Kähler metric. By the
Kodaira–Enriques classification [Barth et al. 2004] we conclude that the Kodaira
dimension of M cannot be negative.

From Proposition 2.3, we know that the Euler number of M is strictly positive.
The minimal complex surfaces with Kodaira dimension equal to zero and positive
Euler number are simply connected or with finite fundamental group. Since π1(M)
is infinite, the Kodaira dimension of M is bigger or equal than one.

The fundamental group of an elliptic surface with positive Euler number is
completely understood in terms of the orbifold fundamental group of the base of
the elliptic fibration. More precisely, denoting by π : S→ C the elliptic fibration,
if S has no multiple fibers then π induces an isomorphism π1(S)' π1(C). If we
allow multiple fibers we have the isomorphism π1(S)' πOrb

1 (C). For these results
we refer to [Friedman and Morgan 1994]. We now show that M cannot be an
elliptic surface. When S has multiple fibers, π1(S) always has torsion and then it
cannot be the fundamental group of a nonpositively curved manifold. If we assume
π1(M)' π1(C), the fact that π1(M) grows exponentially [Avez 1970] forces the
genus of the Riemann surface C to be bigger or equal than two. Since all closed
geodesics in a manifold of nonpositive curvature are essential in π1, we have that the
fundamental group of the flats introduced in the compactification injects into π1(M)
and then by assumption into π1(C). By elementary hyperbolic geometry this would
imply that Z⊕Z acts as a discrete subgroup of R, which is clearly impossible. �

Corollary 2.5. A toroidal Hummel–Schroeder compactification has ample canoni-
cal line bundle.

Proof. By Theorem 2.4 we know that M is a minimal surface of general type
without rational curves. The corollary follows from Nakai’s criterion for ampleness
of divisors on surfaces [Barth et al. 2004]. More precisely, since for a minimal
surface of general type the self-intersection of the canonical divisor is strictly
positive [ibid.], it suffices to show that KM · E > 0 for any effective divisor E .
Thus, let E be an irreducible divisor and assume KM · E = 0. By the Hodge index
theorem we must have E · E < 0. By the adjunction formula E must be isomorphic
to a smooth rational curve with self-intersection −2. �

In the arithmetic case, part of the results contained in Theorem 2.4 can be derived
from a theorem of Tai, see [Ash et al. 2010]. Furthermore, similar results for the
so-called Picard modular surfaces are obtained by Holzapfel [1980].

3. Examples

In this section we present examples of surfaces of general type which do not
admit nonpositively curved Kähler metrics, but such that their underlying smooth
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manifolds do admit Riemannian metrics with nonpositive Riemannian curvature. In
order to do this one needs to understand the restrictions imposed by the nonpositive
curvature assumption on the holomorphic curvature tensor.

Thus, define
p = 2 Re ξ and q = 2 Re η

where
ξ = ξα∂α and η = ηα∂α.

In real coordinates we have

R(p, q, q, p)= Rhi jk phq i q jpk

while in complex terms

R
(
ξ+ξ, η+η, η+η, ξ+ξ

)
= R

(
ξ, η, η, ξ

)
+R

(
ξ, η, η, ξ

)
+R

(
ξ, η, η, ξ

)
+R

(
ξ, η, η, ξ

)
.

We then have

Rhi jk phq i q jpk

= Rαβγ δ ξ
αηβηγ ξ δ + Rαβγ δ ξ

αηβηγ ξ δ + Rαβγ δ ξ
αηβηγ ξ δ + Rαβγ δξαηβηγ ξ δ

= Rαβγ δ ξ
αηβηγ ξ δ − Rαβγ δ ξ

αηβηδξγ − Rαβγ δ ξ
βηαηγ ξ δ + Rαβγ δ ξ

βηαηδξ γ

= Rαβγ δ
(
ξαηβηγ ξ δ − ξαηβηδξγ − ξβηαηγ ξ δ + ξβηαηδξγ

)
= Rαβγ δ

(
ξαηβ − ηαξβ

)(
ξ δηγ − ηδξγ

)
.

If we assume the Riemannian sectional curvature to be nonpositive we have

Rhi jk phq i q j pk
= Rαβγ δ

(
ξαηβ − ηαξβ

)(
ξ δηγ − ηδξγ

)
≤ 0.

In complex dimension two, the right hand side of the above equality reduces (after
some manipulations) to

Rαβγ δ
(
ξαηβ − ηαξβ

)(
ξ δηγ − ηδξγ

)
= R1111

∣∣ξ 1η1
− η1ξ 1∣∣2+ 4 Re

{
R1112

(
ξ 1η1
− η1ξ 1)(ξ 2η1− η2ξ 1

)}
+ 2R1122

{∣∣ξ 1η2
− η1ξ 2∣∣2+Re

(
ξ 1η1
− η1ξ 1)(ξ 2η2− η2ξ 2

)}
+ 2 Re

{
R1212

(
ξ 1η2
− η1ξ 2)(ξ 2η1− η2ξ 1

)}
+ 4 Re

{
R2212

(
ξ 2η2
− η2ξ 2)(ξ 2η1− η2ξ 1

)}
+ R2222

∣∣ξ 2η2
− η2ξ 2∣∣2.

Following Mostow and Siu [1980], we choose the ansatz

ξ 1
= ia, ξ 2

=−i, η1
= a, η2

= 1
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where a is a real number. We get the inequality

R1111 4a4
− 2R1122 4a2

+ R2222 4≤ 0.

Since nonpositive Riemannian sectional curvature implies nonpositive holomorphic
sectional curvature, we conclude that

(1)
(
R1122

)2
≤ R1111 R2222.

Theorem 3.1. A toroidal Hummel–Schroeder compactification does not admit any
Kähler metric with nonpositive Riemannian sectional curvature.

Proof. Let us proceed by contradiction. Consider one of the elliptic divisors added
in the compactification. By the properties of submanifolds of a Kähler manifold
[Kobayashi and Nomizu 1969], we have that the holomorphic sectional curvature
tangent to the elliptic divisor has to be zero. Let us denote such a holomorphic
sectional curvature by R1111. By the inequality (1), we conclude that R1122 = 0.
As a result, the Ricci curvature tangent to the elliptic divisor has to be zero. We
conclude that

KM ·6 =

∫
6

c1
(
KM

)
= 0,

which contradicts the ampleness of KM , see Corollary 2.5. �

Combining Theorems 2.4 and 3.1 with Corollary 2.5, we have thus proved
Theorem A.

4. Projective-algebraicity of minimal compactifications

Let M be a smooth toroidal compactification of a finite-volume complex-hyperbolic
surface M and let 6 denote the compactifying divisor. The set 6 is exceptional
and it can be blow down. The resulting complex surface, with isolated normal
singularities, is usually referred as the minimal compactification of M [Siu and
Yau 1982]. In this section we address the problem of the projective-algebraicity
of minimal compactifications of finite-volume complex-hyperbolic surfaces. This
is motivated by a beautiful example of Hironaka, see [Hartshorne 1977, p. 417],
which shows that by contracting a smooth elliptic divisor on an algebraic surface
one can obtain a nonprojective complex space. In the arithmetic case, the projective-
algebraicity of minimal compactifications of finite-volume complex-hyperbolic
surfaces is known by the work of Baily and Borel, see [Borel and Ji 2006].

For completeness, we recall the theory of semistable curves on algebraic surfaces
and logarithmic pluricanonical maps as developed by Sakai [1980].

Let M be a smooth projective surface. Let 6 be a reduced divisor having simple
normal crossings on M .
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Definition 4.1. The pair (M, 6) is called minimal if M does not contain an excep-
tional curve E of the first kind such that E ·6 ≤ 1.

We consider the logarithmic canonical line bundle L= KM +6 associated to
6. Given any integer k, define Pm = dimH 0(M,O(mL)). If Pm > 0, we define
the m-th logarithmic canonical map 8mL of the pair (M, 6) by

8mL(x)= [s1(x), . . . , sN (x)],

for any x ∈ M and where s1, . . . , sN is a basis for the vector space H 0(M,O(mL)).
At this point one introduces the notion of logarithmic Kodaira dimension exactly
as in the closed smooth case. We denote this numerical invariant by k(M) where
M = M\6. We refer to [Iitaka 1982] for further details.

Definition 4.2. A curve 6 is semistable if it has only normal crossings and each
smooth rational component of 6 intersects the other components of 6 in more than
one point.

We next give a numerical criterion for a minimal semistable pair (M, 6) to be
of log-general type.

Proposition 4.3 [Sakai 1980]. Given a minimal semistable pair (M, 6) we have
that k(M)= 2 if and only if L is numerically effective and L2 > 0.

In what follows, we denote by E the set of irreducible curves E in M such that
L · E = 0.

Theorem 4.4 [Sakai 1980]. Let (M, 6) be a minimal semistable pair of log-general
type. The map 8mL is then an embedding modulo E for any m ≥ 5.

It is then necessary to characterize the irreducible divisors in E. In particular, we
need the following proposition.

Proposition 4.5. Let (M, 6) be a minimal semistable pair with k(M) = 2. Let
E be an irreducible curve such that L · E = 0. If E is not contained in 6 then
E ' CP1 and E · E =−2.

Proof. Under these assumptions we know that L2 > 0. By the Hodge index theorem

L2 > 0, L · E = 0 H⇒ E2 < 0.

But now L · E = 0 which implies

KM · E =−6 · E ≤ 0.

We then have KM · E = 0 if and only if E does not intersect 6. In this case
pa(E)= 0 and then E ' CP1 and E2

=−2. Assume now that KM · E < 0, then
KM · E = E2

=−1 and therefore E is an exceptional curve of the first kind such
that E ·6 = 1. This contradicts the minimality of the pair (M, 6). �
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We are now ready to prove the main results of this section. Let CH2/0 be a finite-
volume complex-hyperbolic surface that admits a smooth toroidal compactification
as in Theorem 2.4. We then have that CH2/0 is a surface of general type with
compactification divisor consisting of smooth disjoint elliptic curves.

Proposition 4.6. Let M be a minimal surface of general type. Let 6 be a reduced
divisor whose irreducible components consist of disjoint smooth elliptic curves.
Then (M, 6) is a minimal semistable pair with k(M)= 2.

Proof. Recall that the canonical divisor of any minimal complex surface of non-
negative Kodaira dimension is numerically effective [Barth et al. 2004]. It follows
that the adjoint divisor L is numerically effective. An elliptic curve on a minimal
surface of general type has negative self intersection. Moreover, for a minimal
surface of general type it is known that the self-intersection of the canonical divisor
is strictly positive [ibid.]. By the adjunction formula, we have L2

= K 2
M
−62 > 0.

By Proposition 4.3, we conclude that k(M)= 2. �

Let CH2
\01 be a finite-volume complex-hyperbolic surface which admits a

smooth toroidal compactification M1. Let (M1, 61) be the associated minimal
semistable pair. By Theorem A, we can find a normal subgroup 02C01 of finite
index such that the toroidal compactification M2 of CH2/02 is a minimal surface
of general type with compactification divisor 62. Since

π : CH2/02→ CH2/01

is an unramified covering we conclude that k(M1) = k(M2) [Iitaka 1982]. But
by Proposition 4.6 we know that k(M2) = 2, it follows that (M1, 61) is a mini-
mal semistable pair of log-general type. Let us summarize this argument into a
proposition.

Proposition 4.7. Let (M, 6) be a smooth pair arising as the toroidal compactifi-
cation of a finite-volume complex-hyperbolic surface. The pair (M, 6) is minimal
and log-general.

The following theorem is the main result of the present section.

Theorem B. Let (M, 6) be a smooth pair arising as the toroidal compactifica-
tion of a finite-volume complex-hyperbolic surface. Then the associated minimal
compactification is projective algebraic.

Proof. By Proposition 4.7, the minimal pair (M, 6) is log-general. By Theorem 4.4
we know that 8mL is an embedding modulo E for any m ≥ 5. We clearly have that
6 is contained in E. We claim that there are no other divisors in E. Assume the
contrary. By Proposition 4.5, any other curve in E must be a smooth rational divisor
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E with self-intersection minus two. The adjunction formula gives KM ·E = 0 which
implies 6 · E = 0. This is clearly impossible. By Theorem 4.4 for m ≥ 5, the map

8mL : M→ CP N−1

gives a realization of the minimal compactification as a projective-algebraic variety.
�

For an approach to the projective-algebraicity problem through L2-estimates for
the ∂-operator we refer to [Mok 2009].
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CHARACTER ANALOGUES OF RAMANUJAN-TYPE
INTEGRALS INVOLVING THE RIEMANN 4-FUNCTION

ATUL DIXIT

A new class of integrals involving the product of4-functions associated with
primitive Dirichlet characters is considered. These integrals give rise to
transformation formulas of the type

F(z, α, χ)= F(−z, β, χ̄)= F(−z, α, χ̄)= F(z, β, χ),

where αβ = 1. New character analogues of the Ramanujan–Guinand for-
mula, the Koshliakov’s formula, and a transformation formula of Ramanu-
jan, as well as its recent generalization, are shown as particular examples.
Finally, character analogues of a conjecture of Ramanujan, and Hardy and
Littlewood involving infinite series of Möbius functions are derived.

1. Introduction

Modular transformations are ubiquitous in Ramanujan’s notebooks [1957] and in
his “Lost Notebook” [1988]. Ramanujan usually expressed them in a symmetric
way, and they were valid under the conditions αβ=π , or αβ=π2, . . . . In the same
spirit, on page 220 in one of the manuscripts of Ramanujan in the handwriting of
Watson [Ramanujan 1988], one finds the following beautiful claim.

Theorem 1.1. Define

λ(x) := ψ(x)+ 1
2x
− log x,

where

ψ(x) := 0
′(x)
0(x)

=−γ −

∞∑
m=0

( 1
m+x

−
1

m+1

)
is the logarithmic derivative of the Gamma function. Let the Riemann ξ -function
be defined by

ξ(s) := (s− 1)π−s/20(1+ 1
2 s)ζ(s),
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and let
4(t) := ξ(1

2 + i t)

be the Riemann4-function. If α and β are positive numbers such that αβ = 1, then

(1-1)
√
α

(
γ − log(2πα)

2α
+

∞∑
k=1

λ(kα)
)
=
√
β

(
γ − log(2πβ)

2β
+

∞∑
k=1

λ(kβ)
)

=−
1
π3/2

∫
∞

0

∣∣∣4( 1
2 t)0

(
−1+i t

4

)∣∣∣2 cos((t/2) logα)
1+t2 dt,

where γ denotes Euler’s constant.

This identity is of a special kind since it contains not only a modular transfor-
mation, but also a beautiful integral involving the Riemann 4-function. In fact, the
invariance of the integral in (1-1) under the map α → β establishes the equality
of the first and the second expressions in (1-1). This is used in [Berndt and Dixit
2010] to prove the claim above and in [Dixit 2010; 2011a; 2011b] to obtain many
transformation formulas of the type F(α) = F(β) or F(z, α) = F(z, β), where
αβ= 1 and an integral involving the Riemann4-function is always linked to them.
This gives new identities involving infinite series of the Hurwitz zeta function as
well as extensions of some well-known formulas like the Ramanujan–Guinand
formula, discovered first by Ramanujan [1988, p. 253] and later in a different but
equivalent form by Guinand [1955], and a formula of Koshliakov [1928], also in
the lost notebook [Ramanujan 1988, p. 254]; see [Berndt et al. 2008; Dixit 2011b].
For example, we mention the following generalization of Theorem 1.1:

Theorem 1.2 [Dixit 2011a; 2011b]. Let −1< Re z < 1. Define ϕ(z, x) by

ϕ(z, x)= ζ(z+ 1, x)− x−z

z
−

1
2 x−z−1,

where ζ(z, x) denotes the Hurwitz zeta function. If α and β are any positive num-
bers such that αβ = 1, then

(1-2) α
z+1

2

( ∞∑
n=1

ϕ(z, nα)−
ζ(z+ 1)
2αz+1 −

ζ(z)
αz

)
= β(z+1)/2

( ∞∑
n=1

ϕ(z, nβ)−
ζ(z+ 1)
2βz+1 −

ζ(z)
βz

)
=

8(4π)(z−3)/2

0(z+1)

∫
∞

0
0
( z−1+i t

4

)
0
( z−1−i t

4

)
×4

( t+i z
2

)
4
( t−i z

2

)cos((t/2) logα)
(z+1)2+t2 dt,

where 4(t) is the Riemann 4-function.
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Another example of a transformation formula of the type F(z, α) = F(z, β)
along with an integral involving Riemann’s 4-functions is the following extended
version of the Ramanujan–Guinand formula just mentioned:

Theorem 1.3 [Dixit 2011b, Theorem 1.4]. Let Kν(s) denote the modified Bessel
function of order ν, let γ denote Euler’s constant and let σk(n) =

∑
d|n dk . Let

−1< Re z < 1. Then if α and β are positive numbers such that αβ = 1, we have

(1-3)
√
α

(
αz/2−1π−z/20

( z
2

)
ζ(z)

+α−z/2−1π z/20
(
−z
2

)
ζ(−z)− 4

∞∑
n=1

σ−z(n)nz/2Kz/2(2nπα)
)

=
√
β

(
βz/2−1π−z/20

( z
2

)
ζ(z)

+β−z/2−1π z/20
(
−z
2

)
ζ(−z)− 4

∞∑
n=1

σ−z(n)nz/2Kz/2(2nπβ)
)

=−
32
π

∫
∞

0
4
( t+i z

2

)
4
( t−i z

2

) cos((t/2) logα)
(t2+(z+1)2)(t2+(z−1)2)

dt.

Letting z→ 0 in (1-3) then gives an extended version of Koshliakov’s formula:

Theorem 1.4 [Dixit 2010]. Let d(n) denote the number of positive divisors of n,
and let K0(n) denote the modified Bessel function of order 0. If α and β are positive
numbers such that αβ = 1, then

√
α

(
γ − log(4πα)

α
− 4

∞∑
n=1

d(n)K0(2πnα)
)

=
√
β

(
γ − log(4πβ)

β
− 4

∞∑
n=1

d(n)K0(2πnβ)
)

=−
32
π

∫
∞

0

(4(t/2))2 cos(1
2 t logα) dt

(1+ t2)2
.

By an “extended version”, we mean that the original identity known before is
linked to an integral involving the Riemann 4-function.

N. S. Koshliakov [1934a; 1934b; 1936; 1949; 1954]1 was another mathemati-
cian who did significant research in this area after Ramanujan. Besides using
contour integration, Mellin transforms, and several summation formulas that he
developed, he frequently used a method similar to that developed by Ramanujan
[1915; 1927, pp. 72–77] to obtain old and new transformation formulas of the form

1For the genesis of the monograph [Koshlyakov 1949], written under the patronymic “N. S.
Sergeev”, see [Bogolyubov et al. 1990, pp. 198–199].
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F(α)= F(β), where αβ= k for some constant k. He obtained deep generalizations
of well-known formulas of Ramanujan and of Hardy (such as [Hardy 1915, (2)]),
some of them being analogues in rational and number fields. Koshliakov [1934c;
1937] also used Fourier’s integral theorem to obtain expressions for the Riemann
4-function, a method also enunciated in [Ramanujan 1915]. Around the same
time, Ferrar [1936] also worked on transformation formulas of this kind.

As can be seen from (1-1), the general form of the integrals giving rise to for-
mulas of the type F(α)= F(β), where αβ = 1, is∫

∞

0
f
( t

2

)
4
( t

2

)
cosµt dt,

for µ real and f (t) = φ(i t)φ(−i t), where φ is analytic in t as a function of a
real variable. This integral is mentioned in [Titchmarsh 1986, p. 35]. Similarly,
from (1-2) and (1-3), it is clear that the general form of the integrals giving rise to
identities of the type F(z, α)= F(z, β), where αβ = 1, is

(1-4)
∫
∞

0
f
(

z,
t
2

)
4
( t+i z

2

)
4
( t−i z

2

)
cosµt dt,

forµ real and f (z, t)=φ(z, i t)φ(z,−i t), where φ is both analytic in t as a function
of a real variable and analytic in z in some complex domain. An integral of this
kind was first introduced by Ramanujan [1915].

In this article, we find character analogues of all of the above-mentioned theo-
rems. The character analogue of the Ramanujan–Guinand formula, and hence of
Koshliakov’s formula, given here differs from the ones established in [Berndt et al.
2011]. Throughout this article, we will be concerned with the principal branch of
the logarithm. Since we frequently use the functional equation for L-functions (see
(1-10) below), we work only with a primitive, nonprincipal Dirichlet character χ
modulo q , where q is the period of the character; see [Apostol 1972, Theorem 1].
It is easy to see that its conjugate character χ is also a primitive, nonprincipal
character modulo q and χ is even (odd) if and only if χ is even (respectively odd).
Let L(s, χ) denote the Dirichlet L-function defined by L(s, χ) =

∑
∞

n=1 χ(n)/ns

for Re s > 1. This series converges conditionally for 0 < Re s < 1. Also, it can
be analytically continued to an entire function of s. Let G(χ) := G(1, χ), where
G(n, χ) is the Gauss sum defined by

G(n, χ) :=
q∑

m=1

χ(m)e2π imn/q .

We know that [Apostol 1976, p. 168]

(1-5) |G(χ)|2 = q,
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and it is easy to see that

(1-6) G(χ)=
{

G(χ) for χ even,
−G(χ) for χ odd.

Define b as follows:

(1-7) b =
{

0 for χ(−1)= 1,
1 for χ(−1)=−1.

Then the function ξ(s, χ) is defined by

(1-8) ξ(s, χ) :=
(
π

q

)−(s+b)/2
0
(s+b

2

)
L(s, χ),

and the analogue of the Riemann 4-function for Dirichlet characters is defined as

(1-9) 4(t, χ) := ξ
( 1

2 + i t, χ
)
.

L-functions satisfy the functional equation [Apostol 1976, p. 263]

(1-10) L(1− s, χ)=
qs−10(s)
(2π)s

(e−π is/2
+χ(−1)eπ is/2)G(χ)L(s, χ),

which can be rephrased in terms of ξ(s, χ) as [Davenport 2000]

(1-11) ξ(1− s, χ)= ε(χ)ξ(s, χ),

where ε(χ)= ibq1/2/G(χ). By (1-5), |ε(χ)| = 1. Next, we note Stirling’s formula
in a vertical strip α ≤ σ ≤ β, s = σ + i t , namely,

(1-12) |0(s)| = (2π)
1
2 |t |σ−

1
2 e−

1
2π |t |

(
1+ O

( 1
|t |

))
uniformly as |t |→∞. Now, using (1-10) and the fact that |L(s, χ)| = O(q|t |) for
Re s ≥ 1

2 [Davenport 2000, p. 82], we easily see that for Re s ≥−δ, δ > 0, we have

(1-13) L(s, χ)= O(q
3
2+δ|t |

3
2+δ).

We will subsequently use this result.
Transformation formulas involving Dirichlet characters of the form

∞∑
n=1

χ(n) f (n)=
∞∑

n=1

χ(n)g(n),

where

g(x)=


2G(χ)

q

∫
→∞

0
cos
(

2πxt
q

)
f (t) dt for χ(−1)= 1,

−2iG(χ)
q

∫
→∞

0
sin
(

2πxt
q

)
f (t) dt for χ(−1)=−1,
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were considered by Guinand [1941, Theorems 4 and 5], though he did not give
particular examples. Here, we derive a character analogue of the integral in (1-4).
Its general form is

(1-14)
∫
∞

0
f
(

z, t
2

)
4
( t+i z

2
, χ
)
4
( t−i z

2
, χ
)

cos
( 1

2 t logα
)

dt,

where f is an even function of both the variables z and t . These integrals give rise
to transformation formulas of the type F(z, α, χ)= F(−z, β, χ)= F(−z, α, χ)=
F(z, β, χ). Then, via Fourier’s integral theorem, one may be able to obtain integral
representations for 4((t + i z)/2, χ)4 ((t − i z)/2, χ), which are of independent
interest. The character analogue of Theorem 1.3 is as follows.

Theorem 1.5. Let −1< Re z < 1 and let χ denote a primitive, nonprincipal char-
acter modulo q. Let the number b be defined as in (1-7). Let Kν(z), d(n), and γ
be defined as before, and let α and β be positive numbers such that αβ = 1. If

F(z, α, χ) := αb+ 1
2

∞∑
n=1

χ(n)n−z/2+b
(∑

d|n

χ2(d)d z
)

K−z/2

(2πnα
q

)
,

then

(1-15) F(z, α, χ)= F(−z, β, χ)= F(−z, α, χ)= F(z, β, χ)

=
1

8π

∫
∞

0
4
( t+i z

2
, χ
)
4

(
t−i z

2
, χ

)
cos
(

1
2 t logα

)
dt.

Define ψ(a, χ) by

(1-16) ψ(a, χ)=−
∞∑

n=1

χ(n)
n+ a

,

where a ∈ C \Z<0. For a real character χ , this agrees with the character analogue
of the psi function obtained by the logarithmic differentiation of the following
Weierstrass product form of the character analogue of the gamma function for real
characters derived by Berndt [1975]:

0(a, χ)= e−aL(1,χ)
∞∏

n=1

(
1+ a

n

)−χ(n)
eaχ(n)/n.

The character analogue of the Hurwitz zeta function ζ(z, a) is given by [Berndt
1970, Example 3.2]

(1-17) L(z, a, χ)=
∞∑

n=1

χ(n)
(n+ a)z

,
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valid for Re z > 0, and provided a ∈C\Z<0. The above character analogue of the
Hurwitz zeta function can also be obtained as the special case when x = 0 of the
function L(z, x, a, χ) defined by [Berndt 1975]

L(z, x, a, χ) :=
∞∑′

n=0

e2π inx/qχ(n)(n+ a)−z,

where the prime indicates that the term corresponding to n = −a is omitted if
a is a negative integer and χ(a) 6= 0. As shown in [Berndt 1975], L(z, x, a, χ)
converges for Re z> 0 if x is not an integer, or if x is an integer and gcd(x, q) > 1.
If x is an integer and gcd(x, q) = 1, the series converges for Re z > 1. For mean
value properties of L(z, a, χ) and asymptotic formulas, see [Ma et al. 2010]. The
character analogues of Theorem 1.2 are given below.

Theorem 1.6. Let χ denote an even, primitive, nonprincipal character modulo q.
Let −1<Re z < 1, and let L(z, a, χ) be defined as in (1-17). Define T (z, α, χ) by

(1-18) T (z, α, χ) :=
αz/2q z/20(z+ 1)

2zπ z/2G(χ)
,

and �(z, t) by

(1-19) �(z, t) := ((z+ 1)2+ t2)0
(
−z−1+i t

4

)
0
(
−z−1−i t

4

)
+((z− 1)2+ t2)0

( z−1+i t
4

)
0
( z−1−i t

4

)
.

If α and β are positive numbers such that αβ = 1, then

(1-20)
√
α

(
T (z, α, χ)

∞∑
n=1

χ(n)L(z+ 1, nα, χ)

+ T (−z, α, χ)
∞∑

n=1

χ(n)L(−z+ 1, nα, χ)
)

=
√
β

(
T (−z, β, χ)

∞∑
n=1

χ(n)L(−z+ 1, nβ, χ)

+ T (z, β, χ)
∞∑

n=1

χ(n)L(z+ 1, nβ, χ)
)

=
1

64π3/2q

∫
∞

0
�(z, t)4

( t+i z
2
, χ
)
4
( t−i z

2
, χ
)

cos
( 1

2 t logα
)

dt.

Theorem 1.7. Let χ denote an odd, primitive, nonprincipal character modulo q.
Let −1 < Re z < 1, let L(z, a, χ) be defined as in (1-17), and let T (z, α, χ) be
defined as in (1-18). Define 3(z, t) by

(1-21) 3(z, t) := 0
( z+1+i t

4

)
0
( z+1−i t

4

)
+0

(
−z+1+i t

4

)
0
(
−z+1−i t

4

)
.
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If α and β are positive numbers such that αβ = 1, then

(1-22)
√
α

(
T (z, α, χ)

∞∑
n=1

χ(n)L(z+ 1, nα, χ)

+ T (−z, α, χ)
∞∑

n=1

χ(n)L(−z+ 1, nα, χ)
)

=
√
β

(
T (−z, β, χ)

∞∑
n=1

χ(n)L(−z+ 1, nβ, χ)

+ T (z, β, χ)
∞∑

n=1

χ(n)L(z+ 1, nβ, χ)
)

=
1

4π1/2iq2

∫
∞

0
3(z, t)4

( t+i z
2
, χ
)
4
( t−i z

2
, χ
)

cos
( 1

2 t logα
)

dt.

The following interesting identity was suggested by the work of Ramanujan:

Theorem 1.8 ([Hardy and Littlewood 1916, p. 156, Section 2.5]). Let µ(n) denote
the Möbius function. Let α and β be two positive numbers such that αβ = 1.
Assume that the series ∑

ρ

0 ((1− ρ)/2)
ζ
′

(ρ)
aρ

converges, where ρ runs through the nontrivial zeros of ζ(s) and a denotes a posi-
tive real number, and that the nontrivial zeros of ζ(s) are simple. Then

(1-23)
√
α

∞∑
n=1

µ(n)
n

e−πα
2/n2
−

1
4
√
π
√
α

∑
ρ

0((1− ρ)/2)
ζ
′

(ρ)
πρ/2αρ

=
√
β

∞∑
n=1

µ(n)
n

e−πβ
2/n2
−

1
4
√
π
√
β

∑
ρ

0((1− ρ)/2)
ζ
′

(ρ)
πρ/2βρ .

Hardy and Littlewood’s original formulation was slightly different from (1-23)
but is readily seen to be equivalent to it. See also [Berndt 1998, p. 470; Paris
and Kaminski 2001, p. 143; Titchmarsh 1986, p. 219, Section 9.8] for discussions
on this identity. Based on certain assumptions, the character analogues of (1-23)
for even and odd primitive Dirichlet characters, which furnish two examples of
transformation formulas of the form F(α, χ)= F(β, χ), are derived here and are
as follows.

Theorem 1.9. Let χ be an odd, primitive character modulo q , and let α and β be
two positive numbers such that αβ = 1. Assume that the series∑

ρ

πρ/2αρ0((2− ρ)/2)
qρ/2L ′(ρ, χ)

and
∑
ρ

πρ/2βρ0((2− ρ)/2)
qρ/2L ′(ρ, χ)
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converge, where ρ runs through the nontrivial zeros of L(s, χ) and L(s, χ) re-
spectively, and that the nontrivial zeros of the associated Dirichlet L-functions are
simple. Then

(1-24) α
√
α
√

G(χ)
( ∞∑

n=1

χ(n)µ(n)
n2 e−πα

2/(qn2)
−

q
4πα2

∑
ρ

0
( 2−ρ

2

)
L ′(ρ,χ)

(
π

q

)ρ/2
αρ
)

= β
√
β
√

G(χ)
( ∞∑

n=1

χ(n)µ(n)
n2 e−πβ

2/(qn2)
−

q
4πβ2

∑
ρ

0
( 2−ρ

2

)
L ′(ρ,χ)

(
π

q

)ρ/2
βρ
)
.

Theorem 1.10. Let χ be an even, primitive character modulo q , and let α and β
be two positive numbers such that αβ = 1. Assume that the series

∑
ρ

πρ/2αρ0((2− ρ)/2)
qρ/2L ′(ρ, χ)

and
∑
ρ

πρ/2βρ0((2− ρ)/2)
qρ/2L ′(ρ, χ)

converge, where ρ runs through the nontrivial zeros of L(s, χ) and L(s, χ) re-
spectively, and that the nontrivial zeros of the associated Dirichlet L-functions are
simple. Then

(1-25)
√
α
√

G(χ)
( ∞∑

n=1

χ(n)µ(n)
n

e−πα
2/(qn2)

−

√
q

4
√
πα

∑
ρ

0
( 1−ρ

2

)
L ′(ρ,χ)

(π
q

)ρ/2
αρ
)

=
√
β
√

G(χ)
( ∞∑

n=1

χ(n)µ(n)
n

e−πβ
2/(qn2)

−

√
q

4
√
πβ

∑
ρ

0
( 1−ρ

2

)
L ′(ρ,χ)

(
π

q

)ρ/2
βρ
)
.

This paper is organized as follows. In Section 2, we give a complex integral
representation of (1-14) that is used in subsequent sections. In Section 3, we prove
Theorem 1.5. Then in Section 4, we compute the inverse Mellin transforms and as-
ymptotic expansions of certain functions which are subsequently used in Section 5.
Section 5 is devoted to proofs of Theorems 1.6 and 1.7. Character analogues of
Ramanujan’s transformation formula (Theorem 1.1) are derived as special cases of
these theorems. We conclude this section with a curious result on a certain double
series involving characters. In Section 6, we present proofs of Theorems 1.9 and
1.10. Finally we conclude with some open problems in Section 7.

2. A complex integral representation of (1-14)

In this section, we give a formal way of transforming an integral involving a char-
acter analogue of Riemann’s4-function into an equivalent complex integral which
allows us to use residue calculus and Mellin transform techniques for its evaluation.
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Theorem 2.1. Let

(2-1) f (z, t)=
φ(z, i t)φ(z,−i t)+φ(−z, i t)φ(−z,−i t)

2
,

where φ is analytic in t as a function of a real variable and analytic in z in some
complex domain. Let y = eµ with µ real. Then, under the assumption that the
integral on the left side below converges,

(2-2)
∫
∞

0
f (z, t)4

(
t + i z

2
, χ
)
4
(

t − i z
2
, χ
)

cosµt dt

=
1

4i
√

y

∫ 1
2+i∞

1
2−i∞

(
φ
(
z, s− 1

2

)
φ
(
z, 1

2 − s
)
+φ

(
−z, s− 1

2

)
φ
(
−z, 1

2 − s
))

× ξ
(

s− z
2
, χ
)
ξ
(

s+ z
2
, χ
)

ys ds.

Proof. Let

I (z, µ, χ) :=
∫
∞

0
f (z, t)4

(
t + i z

2
, χ
)
4
(

t − i z
2
, χ
)

cosµt dt.

Then

(2-3) I (z, µ, χ)= 1
2

(∫
∞

0
f (z, t)4

(
t + i z

2
, χ
)
4
(

t − i z
2
, χ
)

yi t dt

+

∫
∞

0
f (z, t)4

(
t + i z

2
, χ
)
4
(

t − i z
2
, χ
)

y−i t dt
)

=
1
2

(∫
∞

0
f (z, t)4

(
t + i z

2
, χ
)
4
(

t − i z
2
, χ
)

yi t dt

+

∫ 0

−∞

f (z,−t)4
(
−t + i z

2
, χ
)
4
(
−t − i z

2
, χ
)

yi t dt
)
.

However, using (1-11), we readily see that

4
(
−t + i z

2
, χ
)
= ξ

(
1
2 − i t − z

2
, χ
)

= ε(χ)ξ
(

1
2 + i t + z

2
, χ
)
= ε(χ)4

(
t − i z

2
, χ
)
,

4
(
−t − i z

2
, χ
)
= ξ

(
1
2 − i t + z

2 , χ
)

= (ε(χ))−1ξ
(

1
2 + i t − z

2
, χ
)
= (ε(χ))−14

(
t + i z

2
, χ
)

so that

(2-4) 4
(
−t + i z

2
, χ
)
4
(
−t − i z

2
, χ
)
=4

(
t + i z

2
, χ
)
4
(

t − i z
2
, χ
)
.
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Thus from (2-3), (2-4), and the fact that f is an even function of t , we obtain

I (z, µ, χ)

=
1
2

∫
∞

−∞

f (z, t)4
(

t + i z
2
, χ
)
4
(

t − i z
2
, χ
)

yi t dt

=
1

4i
√

y

∫ 1
2+i∞

1
2−i∞

(
φ
(
z, s− 1

2

)
φ
(
z, 1

2 − s
)
+φ

(
−z, s− 1

2

)
φ
(
−z, 1

2 − s
))

×ξ
(

s− z
2
, χ
)
ξ
(

s+ z
2
, χ
)

ys ds,

where in the penultimate line, we made the change of variable s = 1
2 + i t . �

For our purpose here, we replace µ by 2µ in (2-2) and then t by t/2 on the
left-hand side of (2-2). Thus, with y = e2µ, we find that

(2-5)
∫
∞

0
f
(

z, t
2

)
4
( t+i z

2
, χ
)
4
( t−i z

2
, χ
)

cosµt dt

=
1

2i
√

y

∫ 1
2+i∞

1
2−i∞

(
φ
(
z, s− 1

2

)
φ
(
z, 1

2 − s
)
+φ

(
−z, s− 1

2

)
φ
(
−z, 1

2 − s
))

×ξ
(

s− z
2
, χ
)
ξ
(

s+ z
2
, χ
)

ys ds.

It is with this equation that we will be working throughout this paper.

3. Character analogues of the extended version of the
Ramanujan–Guinand formula

Lemma 3.1. For Re s > 1 and Re(s− η) > 1,

(3-1) L(s, χ)L(s− η, χ)=
∞∑

n=1

χ(n)
ns

∑
d|n

χ2(d)dη.

Proof. Since the Dirichlet series for both the L-functions converge absolutely under
the given hypotheses, using [Apostol 1976, Theorem 11.5], we see that

L(s, χ)L(s− η, χ)=
∞∑

n=1
(n,q)=1

χ(n)
ns

∞∑
k=1

(k,q)=1

χ(k)
ks−η =

∞∑
j=1

( j,q)=1

1
j s

∑
nk= j
(k,q)=1

χ(n)χ(k)kη

=

∞∑
j=1

( j,q)=1

χ( j)
j s

∑
nk= j
(k,q)=1

χ2(k)
χ(k)χ(k)

kη =
∞∑
j=1

χ( j)
j s

∑
nk= j

χ2(k)kη,

where in the last step, we make use of the fact that χ(k)χ(k)= 1 for (k, q)= 1. �
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Proof of Theorem 1.5. Assume that χ is even. Let φ(z, s)≡ 1. From (2-1) we see
that f (z, t)≡ 1. Using (1-9), (1-8), (1-12), and (1-13), we find that the integral

M(z, µ, χ) :=
∫
∞

0
4
( t+i z

2
, χ
)
4
( t−i z

2
, χ
)

cosµt dt

does converge. Using (2-5), we observe that

(3-2) M(z, µ, χ)

=
1

i
√

y

∫ 1
2+i∞

1
2−i∞

ξ
(

s− z
2
,χ
)
ξ
(

s+ z
2
,χ
)

ys ds

=
1

i
√

y

∫ 1
2+i∞

1
2−i∞

0
( s

2
−

z
4

)
0
( s

2
+

z
4

)
L
(

s− z
2
,χ
)

L
(

s+
z
2
,χ
)( π

qy

)−s
ds.

Since Re s = 1
2 and −1 < Re z < 1, we have 0 < Re(s − z/2) < 1 and 0 <

Re(s + z/2) < 1. Now replace s by s − z/2 and let η = −z in Lemma 3.1. Then,
for Re(s− z/2) > 1 and Re(s+ z/2) > 1,

(3-3) L
(

s− z
2
, χ
)

L
(

s+ z
2
, χ
)
=

∞∑
n=1

χ(n)
ns−z/2

∑
d|n

χ2(d)d−z.

We wish to shift the line of integration from Re s= 1
2 to Re s= 3

2 in order to be able
to use (3-3) in (3-2). Consider a positively oriented rectangular contour formed by
[

1
2+iT, 1

2−iT ], [12−iT, 3
2−iT ], [ 32−iT, 3

2+iT ] and [ 32+iT, 1
2+iT ], where T is

any positive real number. The integrand on the extreme right side of (3-2) does not
have any pole inside the contour. Also as T→∞, the integrals along the horizontal
segments [12− iT, 3

2− iT ] and [32+ iT, 1
2+ iT ] tend to zero, which can be seen by

using (1-12). Hence, employing Cauchy’s residue theorem, letting T →∞, using
(3-3) in (3-2), and interchanging the order of summation and integration, which is
valid because of absolute convergence, we observe that

(3-4) M(z,µ,χ)

=
1

i
√

y

∞∑
n=1

χ(n)nz/2
(∑

d|n

χ2(d)d−z
)∫ 3

2+i∞

3
2−i∞

0
( s

2
−

z
4

)
0
( s

2
+

z
4

)(nπ
qy

)−s
ds.

But from [Oberhettinger 1974, Formula 11.1, p. 115], for c = Re s >± Re ν,

(3-5) 1
2π i

∫ c+i∞

c−i∞
2s−2w−s0

( s
2
−
ν

2

)
0
( s

2
+
ν

2

)
x−s ds = Kν(wx).
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Hence, using (3-5) with c= 3/2, ν = z/2, w= 2, and x = nπ/qy in (3-4), we find
that

(3-6) M(z, µ, χ)= 8π
√

y

∞∑
n=1

χ(n)nz/2
(∑

d|n

χ2(d)d−z
)

Kz/2

(2πn
qy

)
.

Now let µ = 1
2 logα in (3-6) so that y = e2µ implies that y = α. Then using the

fact that αβ = 1, we deduce that

(3-7) 1
8π

∫
∞

0
4
( t+i z

2
, χ
)
4
( t−i z

2
, χ
)

cos
( 1

2 t logα
)

dt

=
√
β

∞∑
n=1

χ(n)nz/2
(∑

d|n

χ2(d)d−z
)

K z
2

(2πnβ
q

)
.

Next, observing that replacing α by β and/or simultaneously replacing χ by χ and
z by −z in (3-7) leaves the integral on the left side invariant, we obtain (1-15).

Now consider the case when χ is odd. Again the convergence of the integral
M(z, µ, χ) can be seen from (1-12) and (1-13). Following similar steps as in the
case of even χ and using the definition of ξ(s, χ) from (1-8) for χ odd, we get

(3-8) M(z,µ,χ)

=
q

iπ
√

y

∞∑
n=1

χ(n)nz/2
∑
d|n

χ2(d)d−z
∫ 3

2+i∞

3
2−i∞

0
( s

2
−

z
4
+

1
2

)
0
( s

2
+

z
4
+

1
2

)(nπ
qy

)−s
ds.

Now replacing s by s+ 1 in (3-5), we find that for c = Re s >±Re ν− 1,

(3-9) 1
2π i

∫ c+i∞

c−i∞
2s−1w−s−10

(s+1
2
−
ν

2

)
0
(s+1

2
+
ν

2

)
x−s ds = x Kν(wx).

Then using (3-9) with c = 3
2 , ν = 0, w = 2 and x = nπ/qy in (3-8), we see that

(3-10) M(z, µ, χ)= 8π
y3/2

∞∑
n=1

χ(n)nz/2+1
(∑

d|n

χ2(d)d−z
)

Kz/2

(2πn
qy

)
.

Now let µ = 1
2 logα in (3-10) so that y = e2µ implies that y = α. Then using the

fact that αβ = 1, we deduce that

(3-11) 1
8π

∫
∞

0
4
( t+i z

2
, χ
)
4
( t−i z

2
, χ
)

cos
( 1

2 t logα
)

dt

= β3/2
∞∑

n=1

χ(n)nz/2+1
(∑

d|n

χ2(d)d−z
)

Kz/2

(
2πnβ

q

)
.

Next, observing that replacing α by β and/or simultaneously replacing χ by χ and
z by −z in (3-11) leaves the integral on the left side invariant, we obtain (1-15). �



330 ATUL DIXIT

Remark. Letting z → 0 in Theorem 1.5 gives a new character analogue of the
extended version of Koshliakov’s formula, that is, Theorem 1.4.

When χ is real, Theorem 1.5 reduces to the following corollary.

Corollary 3.2. Let −1< Re z < 1 and let χ denote a real, primitive, nonprincipal
character modulo q. Let the number b be defined as in (1-7). If

F(z, α, χ)= αb+ 1
2

∞∑
n=1

χ(n)n−
z
2+bσz(n)K−z/2

(2πnα
q

)
,

then

F(z, α, χ)= F(−z, β, χ)= F(−z, α, χ)= F(z, β, χ)

=
1

8π

∫
∞

0
4
( t+i z

2
, χ
)
4
( t−i z

2
, χ
)

cos
( 1

2 t logα
)

dt.

The above corollary (without the integral) is equivalent to the special cases,
when χ is real, of the character analogues of the Ramanujan–Guinand formula
established in [Berndt et al. 2011, Theorems 3.1 and 4.1].

4. Inverse Mellin transforms and asymptotic expansions

We will now evaluate inverse Mellin transforms of some functions and asymptotic
expansions of certain other functions used in the later sections.

Lemma 4.1. Let z ∈C be fixed such that −1<Re z < 1. For a primitive, nonprin-
cipal character χ mod q , let L(z, a, χ) be defined as in (1-17). Then, for

−Re z
2
< c = Re s < 1+Re z

2
and x ∈ R \Z<0,

(4-1) 1
2π i

∫ c+i∞

c−i∞
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s ds

= x z/20(z+ 1)L(z+ 1, x, χ).

Proof. We prove the result only for even characters. The case for odd characters
can be proved similarly. We first assume |x | < 1 and later extend it to any real
x ∈ R \Z<0 by analytic continuation. Let

−Re(z/2) < c = Re s < 1+Re(z/2).

Consider a positively oriented rectangular contour formed by [c − iT, c + iT ],
[c+iT,−M+iT ], [−M+iT,−M−iT ], and [−M−iT, c−iT ], where T is some
positive real number and M = n− 1

2 , where n is a positive integer. Let s = σ + i t .
Among the poles of the function 0(s+z/2)0(1−s+z/2)L(1−s+z/2, χ)x−s , the
only ones that contribute are the poles at s =−z/2−m,m ≥ 0. Let R f (a) denote
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the residue of the function f (s) := 0(s+ z/2)0(1− s+ z/2)L(1− s+ z/2, χ)x−s

at a. Then for m ≥ 0,

(4-2) R f

(
−

z
2
−m

)
= lim

s→−z/2−m

(
s+ z

2
+m

)
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s

=
(−1)m

m!
0
(

1+ z+m
)

L
(

1+ z+m, χ
)

xm+z/2.

From (4-2) and the residue theorem, we have

(4-3)
[∫ c+iT

c−iT
+

∫
−M+iT

c+iT
+

∫
−M−iT

−M+iT
+

∫ c−iT

−M−iT

]
0
(

s+
z
2

)
0
(

1− s+
z
2

)
L
(

1− s+
z
2
, χ
)

x−s ds

= 2π i x z/2
∑

0≤m<M

(−1)m

m!
0 (1+ z+m) L (1+ z+m, χ) xm .

We now estimate the integral along the upper horizontal segment. Using (1-13),
we find that for −M ≤ σ ≤ c,

(4-4) L(1− σ ± iT, χ)= O(qc+1/2T c+1/2).

Hence, for −M ≤ σ ≤ c, i.e., −M −Re z/2≤ σ −Re z/2≤ c−Re z/2, we have

(4-5) L
(

1−
(
σ −Re z

2

)
− i
(

T − Im z
2

)
, χ
)

= O
(

qc−Re z/2+1/2
(

T − Im z
2

)c−Re z/2+1/2
)
.

By (1-12), we observe that

(4-6)
∣∣∣0(s+ z

2

)∣∣∣∼√2πe−π/2|T+Im z/2|
·

∣∣∣T + Im z
2

∣∣∣σ+Re z/2−1/2

and

(4-7)
∣∣∣0(1− s+

z
2

)∣∣∣∼√2πe−
π
2 |T−Im z/2|

·

∣∣∣T − Im z
2

∣∣∣−σ+Re z/2+1/2
.

Since |x |< 1, from (4-5), (4-6), and (4-7), we deduce that∣∣∣∣∫ −M+iT

c+iT
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s ds
∣∣∣∣

≤ 2πK1(c+M)|x |−cqc−Re z/2+1/2e−π/2(|T+Im z/2|+|T−Im z/2|)

×

∣∣∣T + Im z
2

∣∣∣σ+Re z/2−1/2∣∣∣T − Im z
2

∣∣∣c−σ+1
,
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where K1 is some absolute constant. Hence

(4-8)
∫
−M+i∞

c+i∞
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s ds = 0.

Similarly for the integral along the lower horizontal segment, using (4-6), (4-7),
and the fact that

L
(

1−
(
σ−Re z

2

)
+i
(

T+Im z
2

)
, χ
)
=O

(
qc−Re z/2+1/2

(
T+Im z

2

)c−Re z/2+1/2
)
,

we observe that

(4-9)
∫ c−i∞

−M−i∞
0(s+ z/2)0(1− s+ z/2)L(1− s+ z/2, χ)x−s ds = 0.

Hence, from (4-3), (4-8), and (4-9), it is clear that

(4-10)
[∫ c+i∞

c−i∞
+

∫
−M−i∞

−M+i∞

]
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−sds

= 2π i x z/2
∑

0≤m<M

(−1)m

m!
0 (1+ z+m) L (1+ z+m, χ) xm .

It remains to evaluate∫
−M−i∞

−M+i∞
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s ds.

Using (1-12) and the reflection formula for the gamma function [Temme 1996,
Equation (3.5), p. 46], we find that as |t | →∞,

0(−M + i t)= O(|t |−M− 1
2 e−π |t |/2).

Hence, as |t | →∞,

(4-11) 0
(
−M + i t + z

2

)
= O

(∣∣∣t + Im z
2

∣∣∣−M+Re z/2−1/2
e−(π/2)|t+Im z/2|

)
.

Again by (1-12), as |t | →∞,

(4-12)
∣∣∣0(1+M − i t + z

2

)∣∣∣
=
√

2πe−(π/2)|t−Im z/2|
·

∣∣∣t − Im z
2

∣∣∣M+Re z/2+1/2(
1+ O

( 1
|t−Im z/2|

))
.
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Also, L(1+M − i t + z/2, χ) is bounded as Re(1+M − i t + z/2) > 1. Hence,∣∣∣∣∫ −M−i∞

−M+i∞
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s ds
∣∣∣∣

=

∣∣∣∣i∫ ∞
−∞

0
(
−M + i t + z

2

)
0
(

1+M − i t + z
2

)
L
(

1+M − i t + z
2
,χ
)

x M−i t dt
∣∣∣∣

= |x |M
∫ 1

−1
O(1)dt + |x |M

∫
±∞

1
O
(∣∣∣t + Im z

2

∣∣∣−M+Rez/2−1/2∣∣∣t − Im z
2

∣∣∣M+Rez/2+1/2

× e−(π/2)(|t+Imz/2|+|t−Imz/2|)
)

dt

= O(|x |M).

Since |x |< 1,

(4-13) lim
M→∞

∫
−M−i∞

−M+i∞
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s ds = 0.

From (4-10) and (4-13), we finally deduce that

1
2π i

∫ c+i∞

c−i∞
0
(

s+ z
2

)
0
(

1− s+ z
2

)
L
(

1− s+ z
2
, χ
)

x−s ds

= x z/2
∞∑

m=0

(−1)m

m!
0(1+ z+m)L(1+ z+m, χ)xm+z/2

= x z/20(z+ 1)
∞∑

m=0

(−1)m

m!
0(1+z+m)
0(1+z)

∞∑
k=1

χ(k)
kz+m+1 xm

= x z/20(z+ 1)
∞∑

k=1

χ(k)
kz+1

∞∑
m=0

0(1+z+m)
m!0(1+z)

(
−x
k

)m

= x z/20(z+ 1)
∞∑

k=1

χ(k)
kz+1

(
1+ x

k

)−z−1

= x z/20(z+ 1)
∞∑

k=1

χ(k)
(k+ x)z+1 = x z/20(z+ 1)L(z+ 1, x, χ),

where, in the fourth step, we have utilized the binomial theorem, since |x | < 1.
Since both sides of (4-1) are analytic for any x ∈ R \ Z<0, the result follows by
analytic continuation. �

When z = 0, we get the following corollary.
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Corollary 4.2. For a primitive, nonprincipal character χ mod q , let ψ(a, χ) be
defined as in (1-16). Then, for 0< c = Re s < 1 and x ∈ R \Z<0,

(4-14) 1
2π i

∫ c+i∞

c−i∞

L(1− s, χ)
sinπs

x−s ds =− 1
π
ψ(x, χ).

For j ≥ 1, the generalized Bernoulli numbers B j (χ) are given by

B2 j (χ)=
2(−1) j−1G(χ)(2 j)!

q(2π/q)2 j L(2 j, χ)

for χ even and by

(4-15) B2 j−1(χ)=
2(−1) j−1iG(χ)(2 j − 1)!

q(2π/q)2 j−1 L(2 j − 1, χ)

for χ odd; see [Berndt 1975, p. 426]. It is also known [Berndt 1975, Corollary 3.4,
p. 423] that B2 j−1(χ) = 0 when χ is even and B2 j (χ) = 0 when χ is odd. The
asymptotic expansion of L(z, a, χ) as |a| →∞ is given below.

Lemma 4.3. For Re z > 0 and −π < arg a < π , as |a| →∞,

L(z, a, χ)∼ χ(−1)
∞∑
j=1

B j (χ)
∏ j−2

m=0(z+m)
j ! az+ j−1 .

Proof. One takes (4.3) and (4.4) in [Berndt 1975, p. 424], valid for χ even and odd
respectively, substitutes A= 0, B = N , r = 1, and f (u)= (u+a)−z , lets N→∞,
and performs repeated integration by parts on the prevalent integral. �

This gives, as a special case, the following asymptotic expansion of ψ(a, χ) as
|a| →∞.

Corollary 4.4. For −π < arg a < π , as |a| →∞,

(4-16) ψ(a, χ)∼−
L(0, χ)

a
−χ(−1)

∞∑
j=2

B j (χ)

ja j .

Proof. Specialize z = 1 in Lemma 4.3. Observe that L(1, a, χ) = −ψ(a, χ). For
χ even, we have B1(χ) = 0. But from [Apostol 1976, p. 268], L(0, χ) = 0. This
yields (4-16) for χ even. For χ odd, we observe from (4-15) that

(4-17) B1(χ)=
i
π

G(χ)L(1, χ),

and from (1-10), it is easy to see that

(4-18) L(1, χ)= iπ
G(χ)

L(0, χ).

Now (4-16) follows from (4-17) and (4-18). �
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5. Character analogues of Theorem 1.2

In this section, we prove analogues of Theorem 1.2 for even and odd primitive char-
acters. Then we give character analogues of Ramanujan’s transformation formula
(Theorem 1.1) as special cases.

Proof of Theorem 1.6. Using Lemma 4.3, one sees that the series involving the
functions L(z, a, χ) in the theorem are convergent. Let

φ(z, s)= (z+ 1+ 2s)0
(
−z−1

4
+

s
2

)
.

From (2-1) and (1-19), we find that f (z, t/2)= 1
2�(z, t). From (2-5), we have

(5-1)
∫
∞

0
�(z, t)4

( t+i z
2
, χ
)
4
( t−i z

2
, χ
)

cosµt dt

=
1

i
√

y
(J (z, y, χ)+ J (−z, y, χ)),

where

(5-2) J (z, y, χ) :=
∫ 1

2+i∞

1
2−i∞

U (z, s, y, χ) ds

with

U (z, s, y, χ)

:= (−z+ 2s)(−z+ 2− 2s)0
( z

4
+

s
2
−

1
2

)
0
( z

4
−

s
2

)
ξ
(

s− z
2
, χ
)
ξ
(

s+ z
2
, χ
)

ys .

Using (1-12) and (1-13), one sees that indeed the integral on the left side of (5-1)
converges. We first simplify the integrand in (5-2). Using (1-8) with b = 0, and
then the duplication formula [Temme 1996, Equation (3.4), p. 46] and the reflection
formula for the Gamma function in the second equality below, we have

(5-3) U (z, s, y, χ)

= 16
(
π

qy

)−s{
0
( z

4
+

s+1
2

)
0
( z

4
+

s
2

)}{
0
( z

4
−

s
2
+ 1

)
0
( s

2
−

z
4

)}
× L

(
s− z

2
, χ
)

L
(

s+ z
2
, χ
)

= 16
(
π

qy

)−s
·

√
π

2s+z/2−10
(

s+ z
2

)
·

π

sin(π(s/2−z/4))

× L
(

s− z
2
, χ
)

L
(

s+ z
2
, χ
)
.

Substituting (1-10) in the form

L
(

s− z
2
, χ
)
=

(2π)s−z/2L(1− s+ z/2, χ)
2qs−z/2−1G(χ)0(s− z/2) cos((π/2)(s− z/2))
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in (5-3) and then simplifying, we find that

(5-4) U (z, s, y, χ)

=
32ys2−zπ (1−z)/2

q−z/2−1G(χ)
0
(

1− s+ z
2

)
0
(

s+ z
2

)
L
(

1− s+ z
2
, χ
)

L
(

s+
z
2
, χ
)
.

We wish to shift the line of integration from Re s = 1
2 to Re s = 3

2 in order to
evaluate (5-2), since then −1< Re z < 1 implies that

Re(s+ z/2) > 1,

which allows us to use the series representation of L (s+ z/2, χ). Consider a
positively oriented rectangular contour formed by [ 12+iT, 1

2−iT ], [12−iT, 3
2−iT ],

[
3
2 − iT, 3

2 + iT ], and [32 + iT, 1
2 + iT ], where T is any positive real number. The

integrand in (5-2) does not have any pole inside the contour since the pole of
0(1− s+ z/2) at s = 1+ z/2 is canceled by the zero of L (1− s+ z/2, χ) there.
Also as T →∞, the integrals along the horizontal segments [ 12 − iT, 3

2 − iT ] and
[

3
2 + iT, 1

2 + iT ] tend to zero, which can be seen using (1-12). Employing the
residue theorem, letting T →∞ and using (5-4), we find that

(5-5) J (z, y, χ)

=
32·2−zπ (1−z)/2

q−z/2−1G(χ)

∫ 3
2+i∞

3
2−i∞

0
(

s+ z
2

)
0
(

1− s+ z
2

)
× L

(
1− s+ z

2
, χ
)

L
(

s+ z
2
, χ
)

ys ds

=
32·2−zπ (1−z)/2

q−z/2−1G(χ)

∞∑
n=1

χ(n)
nz/2

∫ 3
2+i∞

3
2−i∞

0
(

s+ z
2

)
0
(

1− s+ z
2

)
× L

(
1− s+ z

2
, χ
)(n

y

)−s
ds.

Now, in order to use Lemma 4.1 to evaluate the integral in (5-5), we again have to
shift the line of integration from Re s > 3

2 to Re s = d , where

−Re z/2< d < 1+Re z/2.

Again, we do not encounter any pole in this process. Hence

(5-6) J (z, y, χ)=
64i2−z y−z/2π (3−z)/20(z+ 1)

q−z/2−1G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
(k+ n/y)z+1 .

Since −1 < Re(z) < 1, the other integral, namely J (−z, y, χ), can be evaluated
by simply replacing z by −z and χ by χ in (5-6). Now (5-1), (5-6), (1-18), and
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the discussion in the previous line give

(5-7)
∫
∞

0
�(z, t)4

( t+i z
2
, χ
)
4
( t−i z

2
, χ
)

cosµt dt

=
64π3/2q
√

y

(
T (z, y−1, χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
(k+ n/y)z+1

+ T (−z, y−1, χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
(k+ n/y)−z+1

)
,

where it is easy to see from the fact that −1 < Re z < 1, from the discussion just
preceding the statement of Theorem 1.6, and from Lemma 4.3, that both the double
series on the right side of (5-7) converge.

Now let µ= 1
2 logα in (5-7) so that y = e2µ implies that y = α. Then using the

fact that αβ = 1 and using (1-17) in the second equality below, we deduce that∫
∞

0
�(z, t)4

( t+i z
2
, χ
)
4
( t−i z

2
, χ
)

cos
(

1
2 t logα

)
dt

= 64π3/2q
√
β

(
T (z, β, χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
(k+ nβ)z+1

+ T (−z, β, χ)
∞∑

n=1

∞∑
k=1

χ(n)χ(k)
(k+ nβ)−z+1

)

= 64π3/2q
√
β

(
T (z, β, χ)

∞∑
n=1

χ(n)L(z+ 1, nβ, χ)

+ T (−z, β, χ)
∞∑

n=1

χ(n)L(−z+ 1, nβ, χ)
)
.

The integral on the extreme left side above is invariant under the transformation
α→ β or under the simultaneous application of the transformations

α→ β, χ→ χ, z→−z.

Thus we obtain (1-20). �

Next we give an analogue of Ramanujan’s transformation formula (Theorem 1.1)
for even characters.

Corollary 5.1. For an even, primitive, and nonprincipal character χ modulo q ,
define P(α, χ) by

P(α,χ):=
√
αRe

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)
=−
√
αRe

(
G(χ)

∞∑
n=1

χ(n)ψ(nα,χ)
)
,
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where ψ(a, χ) is defined in (1-16). Then we have

(5-8) P(α, χ)= P(β, χ)= P(α, χ)= P(β, χ)

=
1

64π3/2

∫
∞

0
(1+ t2)0

(
−1+i t

4

)
0
(
−1−i t

4

)
×4

( t
2
, χ
)
4
( t

2
, χ
)

cos
(1

2
t logα

)
dt.

Proof. Using Corollary 4.4, we readily see that the double series in the definition
of P(α, χ) converges. Let z→ 0 in (1-20). Then, multiplying both sides by q and
using (1-6), we have

(5-9)
√
α

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

+G(χ)
∞∑

n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)

=
√
β

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

+G(χ)
∞∑

n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

)
=

1
32π3/2

∫
∞

0
(1+ t2)0

(
−1+i t

4

)
0
(
−1−i t

4

)
×4

( t
2
, χ
)
4
( t

2
, χ
)

cos
( 1

2 t logα
)

dt.

Each of the first two expressions in (5-9) can be written in two different ways as
real parts of a double series. Thus,

√
α Re

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)
=
√
α Re

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)

=
√
β Re

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

)

=
√
β Re

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

)
=

1
64π3/2

∫
∞

0
(1+ t2)0

(
−1+ i t

4

)
0
(
−1−i t

4

)
×4

( t
2
, χ
)
4
( t

2
, χ
)

cos
( 1

2 t logα
)

dt.

This implies (5-8). �

Moreover, if we start with the integral in Corollary 5.1, evaluate it using (2-5)
with z=0, and make use of Corollary 4.2 when χ is even, we obtain the same result
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as in Corollary 5.1, except that the function P(α, χ) is replaced by the function
F(α, χ) defined by

(5-10) F(α, χ) :=
√
αG(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

=−
√
αG(χ)

∞∑
n=1

χ(n)ψ (nα, χ) .

It is then trivial to see that F(α, χ)= P(α, χ).
Theorem 1.7 can be analogously proved using Lemma 4.1 for χ odd. We just

note that there we have to take care of the pole of

0
(

1− s+ 1
2

z
)

in the integrands of two separate integrals. However, in the calculations that follow
later, the two residues turn out to be additive inverses of each other and hence do
not contribute anything.

The following is an analogue of Theorem 1.1 (Ramanujan’s transformation for-
mula) for odd characters.

Corollary 5.2. For an odd, primitive and, nonprincipal character χ modulo q ,
define Q(α, χ) by

Q(α,χ):=
√
αIm

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)
=−
√
αIm

(
G(χ)

∞∑
n=1

χ(n)ψ (nα,χ)
)
,

where ψ (a, χ) is defined as in (1-16). Then we have

(5-11) Q(α, χ)= Q(β, χ)= Q(α, χ)= Q(β, χ)

=
1

4π1/2q

∫
∞

0
0
(1+i t

4

)
0
(1−i t

4

)
×4

( t
2
, χ
)
4
( t

2
, χ
)

cos
( 1

2 t logα
)

dt.

Proof. Using Corollary 4.4, we find that the double series in the definition of
Q(α, χ) converges. Let z→ 0 in Theorem 1.7. Multiplying both sides by −q and
using (1-5) and (1-6), we observe that

(5-12)
√
α

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

+G(χ)
∞∑

n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)

=
√
β

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

+G(χ)
∞∑

n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

)
=

i
2π1/2q

∫
∞

0
0
(1+i t

4

)
0
(1−i t

4

)
4
( t

2
, χ
)
4
( t

2
, χ
)

cos
( 1

2 t logα
)

dt.
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Now, using (1-6) for odd characters to simplify (5-12), we see that

2i
√
α Im

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)

= 2i
√
α Im

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nα

)

= 2i
√
β Im

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

)

= 2i
√
β Im

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)
k+ nβ

)
=

i
2π1/2q

∫
∞

0
0
(1+i t

4

)
0
(1−i t

4

)
×4

( t
2
, χ
)
4
( t

2
, χ
)

cos
( 1

2 t logα
)

dt. �

If we now start with the integral in Corollary 5.2, evaluate it using (2-5) with
z= 0, and make use of Corollary 4.2 when χ is odd, we obtain the same result as in
Corollary 5.2, except that the function Q(α, χ) is replaced by −i F(α, χ), where
F(α, χ) is defined in (5-10). It is then trivial to see that F(α, χ)= i Q(α, χ).

We separately record the following corollary resulting from the discussion on
the previous line and the one succeeding Corollary 5.1.

Corollary 5.3. The sum F(α, χ) defined in (5-10) is real if χ is even and purely
imaginary if χ is odd.

6. Character analogues of the Ramanujan–Hardy–Littlewood conjecture

In this section, we prove Theorems 1.9 and 1.10. We require [Ahlgren et al. 2002,
Lemma 3.1] which states that if χ is a primitive character of conductor N and k≥2
is an integer such that χ(−1)= (−1)k ,

(6-1)
(k− 2)! N k−2G(χ)

2k−1π k−2ik−2 L(k− 1, χ)= L ′(2− k, χ).

Proof of Theorem 1.9. From [Landau 1905], we have for Re s > 1,

(6-2)
∞∑

n=1

χ(n)µ(n)
ns =

1
L(s, χ)

.

Also, since for −1< c = Re s < 0,

(6-3) (1− e−x)=−
1

2π i

∫ c+i∞

c−i∞
0(s)x−s ds,
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replacing s by s+ 1, we find that for −2< c <−1,

(6-4) (1− e−x)=−
1

2π i

∫ c+i∞

c−i∞
0(s+ 1)x−s−1 ds.

Using (6-2) and (6-4), we observe that

(6-5)
∞∑

n=1

χ(n)µ(n)
n2 e−πα

2/(n2q)

=
1

L(2, χ)
−

∞∑
n=1

χ(n)µ(n)
n2 (1− e−πα

2/(n2q))

=
1

L(2, χ)
+

q
2π2iα2

∫ c+i∞

c−i∞

∞∑
n=1

χ(n)µ(n)
n−2s 0(s+ 1)

(
πα2

q

)−s
ds

=
1

L(2, χ)
+

q
2π2iα2

∫ c+i∞

c−i∞

0(s+1)
L(−2s, χ)

(
πα2

q

)−s
ds,

where in the second step above, we interchanged the order of summation and in-
tegration, which is valid because of absolute convergence. For χ odd, (1-10) can
be put in the form

(
π

q

)−(2−s)/2
0
(2−s

2

)
L(1− s, χ)=

iq1/2

G(χ)

(
π

q

)−(s+1)/2
0
(s+1

2

)
L(s, χ).

Hence

(6-6) 0(s+1)
L(−2s, χ)

=
G(χ)
iq1/2

(
π

q

)2s+1
2 0

( 1
2 − s

)
L(2s+ 1, χ)

.

Substituting (6-6) in (6-5), we observe that

(6-7)
∞∑

n=1

χ(n)µ(n)
n2 e−πα

2/(n2q)

=
1

L(2, χ)
−

G(χ)
2π3/2α2

∫ c+i∞

c−i∞

0
( 1

2 − s
)

L(2s+ 1, χ)

(qα2

π

)−s
ds.

We wish to shift the line of integration from Re s = c, −2< c <−1, to Re s = λ,
where 1

2 < λ < 3
2 . Consider a positively oriented rectangular contour formed by

[c− iT, λ− iT ], [λ− iT, λ+ iT ], [λ+ iT, c+ iT ], and [c+ iT, c− iT ], where T
is any positive real number. Let ρ= δ+ iγ denote a nontrivial zero of L(s, χ). Let
T→∞ through values such that |T−γ |> exp(−A1γ / log γ ) for every ordinate γ
of a zero of L(s, χ). It is known [Davenport 2000, p. 102] that for t not coinciding
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with the ordinate γ of a zero, and −1≤ σ ≤ 2,

L
′

(s, χ)
L(s, χ)

=

∑
|t−γ |≤1

1
s−ρ

+ O
(
log(q(|t | + 2))

)
,

from which we can conclude that

(6-8) log L(s, χ)=
∑
|t−γ |≤1

log(s− ρ)+ O
(
log(q(|t | + 2))

)
.

Taking real parts in (6-8) gives

(6-9) log |L(s, χ)| =
∑
|t−γ |≤1

log |s− ρ| + O
(
log(q(|t | + 2))

)
≥

∑
|t−γ |≤1

log |t − γ | + O
(
log(q(|t | + 2))

)
.

Hence, from (6-9), we have

(6-10) log |L(σ + iT, χ)| ≥ −
∑
|T−γ |≤1

A1γ / log γ + O
(
log(q(|T | + 2))

)
>−A2T,

where A2<π/4 if A1 is small enough and T > T0 for some fixed T0. From (6-10),
we see that

(6-11)
∣∣∣ 1
L(2s+1, χ)

∣∣∣< eA3T ,

where A3 < π/2. Using (1-12) and (6-11), we observe that as T →∞ through
the above values, the integrals along the horizontal segments tend to zero. Now let
(ρ − 1)/2 := δ + iγ denote a nontrivial zero of L(2s + 1, χ). Let R f (a) denote
the residue at a of the function

f (s) :=
0
( 1

2 − s
)

L(2s+ 1, χ)

(
qα2

π

)−s

.

The nontrivial zeros of L(2s+1, χ) lie in the critical strip− 1
2 <Re s< 0, whereas

the trivial zeros are at −1, −2, −3, . . . . Also, 0
( 1

2 − s
)

has poles at 1
2 , 3

2 , 5
2 , . . . .

Then the residue theorem yields

(6-12)
∫ c+i∞

c−i∞

0
( 1

2 − s
)

L(2s+ 1, χ)

(qα2

π

)−s
ds

=

∫ λ+i∞

λ−i∞

0
( 1

2 − s
)

L(2s+ 1, χ)

(qα2

π

)−s
ds−2π i

(
R f (−1)+

∑
ρ

R f

(
ρ−1

2

)
+ R f

(1
2

))
,
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where

R f (−1)= lim
s→−1

(s+ 1)
0
( 1

2 − s
)

L(2s+ 1, χ)

(
qα2

π

)−s

=
α2q

4
√
πL ′(−1, χ)

,(6-13)

R f

(
ρ−1

2

)
= lim

s→(ρ−1)/2

(
s− ρ−1

2

) 0
( 1

2 − s
)

L(2s+ 1, χ)

(
qα2

π

)−s

(6-14)

=
0((2− ρ)/2)

2L ′(ρ, χ)

(
π

qα2

)(ρ−1)/2
,

R f (1/2)=−
√
π

α
√

q L(2, χ)
.(6-15)

Of course, here we have assumed that the nontrivial zeros of L(2s + 1, χ) are all
simple and that

∑
ρ R f ((ρ−1)/2) converges, since the aforementioned discussion

regarding the integrals along the horizontal segments tending to zero as T →∞
through the chosen sequence does not imply the convergence of

∑
ρ R f ((ρ−1)/2)

in the ordinary sense. It only means that the series converges only when we bracket
the terms in such a way that the two terms for which

|γ − γ ′|< exp
(
−A1|γ |

log(|γ | + 2)

)
+ exp

(
−A1|γ

′
|

log(|γ ′| + 2)

)
are included in the same bracket. Using (6-2) and interchanging the order of sum-
mation and integration, which is valid because of absolute convergence, we obtain

(6-16)
∫ λ+i∞

λ−i∞

0
( 1

2 − s
)

L(2s+ 1, χ)

(
qα2

π

)−s

ds

=

∞∑
n=1

χ(n)µ(n)
n

∫ λ+i∞

λ−i∞
0
( 1

2 − s
)(qα2n2

π

)−s

ds

=

√
π

α
√

q

∞∑
n=1

χ(n)µ(n)
n2

∫ d+i∞

d−i∞
0(s)

(
π

α2n2q

)−s
ds,

where in the penultimate line, we have made the change of variable s→ 1
2 − s so

that −1< d < 0. Thus, Equations (6-3) and (6-12)–(6-16) imply

(6-17)
∫ c+i∞

c−i∞

0
( 1

2 − s
)

L(2s+ 1,χ)

(
qα2

π

)−s

ds=−2π3/2i
α
√

q

∞∑
n=1

χ(n)µ(n)
n2 (1−e−π/(α

2n2q))

− 2π i
(

α2q
4
√
πL ′(−1, χ)

+

∑
ρ

0 ((2− ρ)/2)
2L ′(ρ, χ)

(
π

qα2

)(ρ−1)/2
−

√
π

α
√

q L(2, χ)

)
.
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From (6-7), (6-17), and the fact that αβ = 1 and
√

G(χ)G(χ)= i
√

q, we find that

(6-18) α
√
α
√

G(χ)
∞∑

n=1

χ(n)µ(n)
n2 e−πα

2/(n2q)

=
α
√
α
√

G(χ)
L(2, χ)

−
β
√
β
√

G(χ)
L(2, χ)

+β
√
β
√

G(χ)
∞∑

n=1

χ(n)µ(n)
n2 e−πβ

2/(n2q)

−
α
√
αq3/2√G(χ)

4πL ′(−1,χ)
−

q
√

G(χ)
2π
√
β

∑
ρ

0((2− ρ)/2)
L ′(ρ,χ)

(
π

q

)ρ/2
βρ+

β
√
β
√

G(χ)
L(2,χ)

.

Applying (6-1) with N = q and k = 3, and replacing χ by χ gives

(6-19) 1
L ′(−1, χ)

=
4π i

qG(χ)L(2, χ)
.

Thus (6-18) and (6-19) yield

(6-20) α
√
α
√

G(χ)
∞∑

n=1

χ(n)µ(n)
n2 e−πα

2/(n2q)

−β
√
β
√

G(χ)
∞∑

n=1

χ(n)µ(n)
n2 e−πβ

2/(n2q)

=−
q
√

G(χ)
2π
√
β

∑
ρ

0((2− ρ)/2)
L ′(ρ, χ)

(
π

q

)ρ/2
βρ .

Switching the roles of α and β and those of χ and χ gives

(6-21)
q
√

G(χ)
2π
√
α

∑
ρ

0((2− ρ)/2)
L ′(ρ, χ)

(
π

q

)ρ/2
αρ

+
q
√

G(χ)
2π
√
β

∑
ρ

0((2− ρ)/2)
L ′(ρ, χ)

(
π

q

)ρ/2
βρ = 0.

Finally (6-20) and (6-21) give (1-24) upon simplification. �

Remark. The approach used above for proving that the integrals along the hori-
zontal segments tend to zero as T →∞ through the chosen sequence is adapted
from [Titchmarsh 1986, p. 219].

To prove Theorem 1.10, we require the following lemma.

Lemma 6.1.
∞∑

n=1

χ(n)µ(n)
n

=
1

L(1, χ)
.
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Proof. Dividing n into its residue classes mod q by letting n = qr+b, 0≤ r <∞,
0≤ b ≤ q − 1, we find that since χ has period q ,

(6-22)
∞∑

n=1

χ(n)µ(n)
n

=

∞∑
r=0

q−1∑
b=0

χ(b)µ(qr + b)
qr + b

=

q−1∑
b=0

χ(b)
∞∑

r=0

µ(qr + b)
qr + b

.

The series
∑
∞

r=0 µ(qr + b)/(qr + b) was first studied by Kluyver [1904] and
its convergence was proved by Landau [1905]. In fact, Landau gave an explicit
representation for this series in terms of a finite sum consisting of L-functions.
Thus (6-22) implies convergence of

∑
∞

n=1 χ(n)µ(n)/n. Then using (6-2) and an
analogue of Abel’s theorem for power series, we see that

∞∑
n=1

χ(n)µ(n)
n

= lim
s→1

∞∑
n=1

χ(n)µ(n)
ns = lim

s→1

1
L(s, χ)

=
1

L(1, χ)
. �

Proof of Theorem 1.10. The proof is very similar to that of Theorem 1.9 and
hence we omit the details. However we note that Lemma 6.1, (1-10) in the form
[Davenport 2000, p. 69]

π−(1−s)/2q(1−s)/20
(1−s

2

)
L(1− s, χ)=

q1/2

G(χ)
π−s/2qs/20

( s
2

)
L(s, χ),

and (6-1) with N = q and k = 2 are used in the proof. �

7. Open problems

Following are some open problems with which we will conclude.

(1) We have indirectly given the proof of the fact that function F(α, χ) defined
in (5-10) is real (respectively purely imaginary) when χ is even (respectively
odd). Prove this directly; that is, without using Corollaries 5.1 and 5.2 and
the integrals in those corollaries.

(2) Since (1-23) is of the form F(α) = F(β), where αβ = 1, it is natural to ask
if there exists an integral representation involving the Riemann 4-function
equal to the two expressions in (1-23). Finding an integral representation for
either side of (1-23) may shed light on the convergence of∑

ρ

0 ((1− ρ)/2) aρ

ζ
′

(ρ)
,

provided, of course, that the integral converges in the first place. It should be
remarked here that Hardy and Littlewood [1916, p. 161] have shown that the
relation

(7-1) P(y)= O(y−
1
4+δ),
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where P(y) =
∑
∞

n=1(−y)n/(n!ζ(2n + 1)) can be derived from (1-23) if we
assume the Riemann hypothesis and the absolute convergence of∑

ρ

0((1− ρ)/2)
ζ
′

(ρ)
.

They have further shown that (7-1) is a necessary and sufficient condition for
the Riemann hypothesis to be true.

Similarly, it is natural to ask if the expressions in (1-24) and (1-25) have
integral representations involving 4(t/2, χ).
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SPECTRAL THEORY FOR LINEAR RELATIONS
VIA LINEAR OPERATORS

DANA GHEORGHE AND FLORIAN-HORIA VASILESCU

We develop a spectral theory for closed linear operators of the form T :
D(T ) ⊂ X 7→ X/X0, where X is a complex Banach space and X0 a closed
vector subspace of it. This approach, essentially expressed in terms of linear
operators, provides a better understanding of the spectral theory for closed
linear relations.

1. Introduction

As in the case of linear operators, the spectral theory of linear relations, including
the associated analytic functional calculus, is an important tool for studying various
properties of these objects and for deriving some of their applications. Results
related to the spectral theory of linear relations and its applications can be found
in [Baskakov and Chernyshov 2002; Baskakov and Zagorskiı̆ 2007; Cross 1998;
Favini and Yagi 1993; Favini and Yagi 1999] and elsewhere.

In this paper we emphasize the strong connection between the spectral theory
of closed linear relations and that of some closed linear operators. As a matter of
fact, we develop a spectral theory for a certain class of linear operators, obtaining
as consequences most of the main spectral properties of linear relations.

Our concept of spectrum is equivalent to that of extended spectrum of a linear
relation, as given by [Baskakov and Chernyshov 2002, Definition 1.5]; see also
[Cross 1998, Section VI.4], where it is called augmented spectrum. In particular,
the point ∞ is in the spectrum unless the quotient range operator is an ordinary
everywhere-defined bounded operator (see Proposition 11).

Let us introduce some notation and definitions.
Let X be a complex Banach space and let B(X) denote the Banach algebra of

all bounded linear operators from X into X . Let also X0 ⊂ X be a closed vector
subspace, and let J0 : X 7→ X/X0 be the canonical projection. The identity operator
on X will be usually denoted by I .

D. Gheorghe gratefully acknowledges support from the grant PN-II-RU-PD-2011-3-0052 (CNCS-
Romania).
MSC2010: primary 47A06, 47A10, 47A60; secondary 47A56.
Keywords: linear relations, spectrum, analytic functional calculus.
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We are interested in linear operators of the form T : D(T )⊂ X 7→ X/X0, where
D(T ) is, of course, the domain of T . (The use of such operators is inspired by
the works [Albrecht and Vasilescu 1986; Waelbroeck 1982]; see also [Gheorghe
and Vasilescu 2009].) Such an operator is said to be a quotient range operator.
Although X/X0 is itself a Banach space, its quotient space form plays an important
role in what follows. As a matter of fact, the class of closed quotient range operators
is in one-to-one correspondence with the class of closed linear relations (see the
definition below), and they have important similar properties. Note that the formula
T : D(T ) ⊂ X 7→ X/X0 implies that T is a quotient range operator, and in such
situations the expression “quotient range” will be often omitted.

If T : D(T )⊂ X 7→ X/X0, we denote, as usual, by N (T ), R(T ) and G(T ) the
null-space, the range and the graph of T . Let R0(T ) be given by R(T )= R0(T )/X0,
and G0(T ) = {(x, y) ∈ X × X; x ∈ D(T ), J0(y) = T (x)}, which are called, with
the terminology of [Albrecht and Vasilescu 1986], the lifted range and lifted graph,
respectively.

Following Arens [1961], any linear subspace Z of X × X is called a linear
relation in X . Given a linear relation Z ⊂ X × X , we associate it, as usual (see
[Arens 1961; Cross 1998]), with the following subspaces:

D(Z)= {u ∈ X; (u, v) ∈ Z for some v ∈ X}, N (Z)= {u ∈ D(Z); (u, 0) ∈ Z},

R(Z)= {v ∈ X; (u, v) ∈ Z for some u ∈ X}, M(Z)= {v ∈ R(Z); (0, v) ∈ Z}.

The left two are called the domain of Z , the range of Z ; the right are the kernel
of Z and the multivalued part of Z . When M(Z) = {0}, then Z is the graph of a
linear operator. We often identify the relation given by the graph of an operator
with the operator itself.

Given an arbitrary relation Z ⊂ X × X , to avoid any confusion with the inverse
of an operator, we will denote the reverse relation {(y, x) ∈ X × X; (x, y) ∈ Z}
by Z†.

The strong connection between linear relations and quotient range operators is
well known and easily explained; see [Cross 1998; Gheorghe and Vasilescu 2009]
for example. Namely, given an operator T : D(T )⊂ X 7→ X/X0, the space ZT =

G0(T )⊂ X×X is a linear relation. Conversely, given a linear relation Z ⊂ X×X ,
with M(T ) closed (which is automatic in the framework which will be used in the
sequel), the linear operator Q Z : D(Z) 7→ X/M(Z), given by Q Z (x)= y+M(Z)
whenever (x, y) ∈ Z , is a quotient range operator. Moreover, this correspondence
is one-to-one. This connection will be exploited to develop a spectral theory for
linear relations. The simple but crucial remark leading to this development is that
for a closed relation Z ⊂ X×X , the reverse relation Z† is (the graph of) a bounded
operator if and only if the operator Q Z : D(Z) 7→ X/M(Z) has a bounded inverse.
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Given a linear relation Z and a complex number λ ∈ C, we consider the linear
relations λI−Z={(u, λu−v); (u, v)∈ Z} and (λI−Z)†={(λu−v, u); (u, v)∈ Z}
(see Section 5). If we assume that Z is closed, N (λI−Z)={0} and R(λI−Z)= X ,
then we have that (λI − Z)† is (the graph of) a closed everywhere-defined linear
operator (which is, in general, neither surjective nor injective; see Example 32),
and hence (λI−Z)† ∈B(X). Because the bounded operator (λI−Z)† exists if and
only if the operator λJZ−Q Z : D(Z)⊂ X 7→ X/M(Z) has a bounded inverse (see
Remark 4(ii)), where JZ : X 7→ X/M(Z) is the canonical projection, the spectral
theory of these objects can be simultaneously developed. However, in our opinion,
the spectral theory of quotient range operators is easier to handle.

Our main tool is an analytic functional calculus for quotient range operators,
defined in Section 2 by using the classical Riesz–Dunford–Waelbroeck integral
formula; see [Dunford and Schwartz 1958; Waelbroeck 1954]. A similar formula,
valid for linear relations, is also used in [Baskakov and Chernyshov 2002]. Never-
theless, an analytic functional calculus in its full generality seems to appear only
in the present work.

The analytic functional calculus allows us to recapture, in terms of operators,
most of the main spectral properties known for linear relations; see especially
[Cross 1998; Baskakov and Chernyshov 2002]. Among some simplifications, we
mention that our approach avoids the use of the concept of pseudoresolvent, as well
as that of invariant subspace, as done in [Baskakov and Chernyshov 2002]. Other
differences between our approach and that of the quoted works will be discussed in
due course. We should also mention that a calculus with the exponential function
and with fractional powers has been already used in [Favini and Yagi 1993] to
obtain a Hille–Yoshida–Phillips-type theorem for linear relations.

The paper is organized as follows. In Section 2, we introduce a notion of spec-
trum for quotient range operators (equivalent to that for linear relations) in the
Riemann sphere C∞, and construct a functional calculus with analytic functions in
neighborhoods of this spectrum. As mentioned above, our Theorem 16, asserting
in particular the multiplicativity of the analytic functional calculus, seems to be
new in this context (as well as in that of linear relations). In Section 3, we study
quotient range operators with unbounded spectrum and nonempty resolvent set.
The existence of a spectral decomposition corresponding to separate parts of the
spectrum as well as a spectral mapping theorem are presented herein. In Section 4,
we study the class of quotient range operators for which the point∞ is an isolated
point of the spectrum. In Section 5, we investigate some connections between the
analytic functional calculus and the Arens polynomial calculus [Arens 1961].
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2. Spectrum and analytic functional calculus for closed quotient range
operators

As in the introduction, X denotes a complex Banach space, X0 a closed vector
subspace of it, and J0 : X 7→ X/X0 the canonical projection. The symbol C∞

denotes the one-point compactification of C. We designate by B(X, Y ) the Banach
space of all bounded linear operators from X into another Banach space Y . As
usually, B(X, X) is denoted by B(X).

Let T : D(T ) ⊂ X 7→ X/X0 be a closed linear operator. We denote by ρA(T )
the Arens resolvent set of T , that is, the set of those λ ∈C such that (λJ0−T )−1

∈

B(X/X0, X). The Arens spectrum of T is the set σA(T ) := C \ ρA(T ). Because
λJ0−T : D(T )⊂ X 7→ X/X0 is closed, we have λ ∈ ρA(T ) if and only if λJ0−T
is bijective.

Remark 1. Given two complex Banach spaces X1, X2, we denote by X1 ⊕ X2

their direct sum, endowed with a convenient norm, compatible with the norms of
X1, X2.

Let T j : D(T j )⊂ X j 7→ X j/X0 j for j = 1, 2 be quotient range operators. Then
the map

T1⊕ T2 : D(T1)⊕ D(T2)⊂ X1⊕ X2 7→ (X1/X01)⊕ (X2/X02)

may be regarded as a quotient range operator, provided we identify the Banach
space (X1/X01)⊕(X2/X02) with the Banach space (X1⊕X2)/(X01⊕X02), using
the natural isomorphism

V : (X1/X01)⊕ (X2/X02) 7→ (X1⊕ X2)/(X01⊕ X02)(1)

given by the assignment

(X1/X01)⊕ (X2/X02) 3 (x1+ X01)⊕ (x2+ X02) 7→

x1⊕ x2+ X01⊕ X02 ∈ (X1⊕ X2)/(X01⊕ X02).

We write
T1⊕q T2 := V (T1⊕ T2).

In particular, given T : D(T ) ⊂ X 7→ X/X0 closed such that there are closed
vector subspaces X1, X2 of X and X01, X02 of X0 with X = X1⊕ X2, X0= X01⊕

X02, D(T )= (D(T )∩X1)⊕(D(T )∩X2), and closed operators T j : D(T j )⊂ X j 7→

X j/X0 j with D(T j )= D(T )∩ X j for j = 1, 2 and T (x1⊕ x2)= V (T1x1⊕ T2x2)

for all x1⊕ x2 ∈ D(T1)⊕ D(T2), we have T = T1⊕q T2.

Definition 2. Let T : D(T )⊂ X 7→ X/X0 be closed.
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(1) Assume σA(T ) bounded, and let m ≥ 0 be an integer. The point ∞ is said
to be m-regular for T if the set {λ1−m(λJ0− T )−1 J0; |λ| ≥ r} is bounded in
B(X) for some r > supλ∈σA(T ) |λ|.

(2) If∞ is not 0-regular we put σ(T )= σA(T )∪ {∞}.

(3) Assume∞ to be 0-regular and X0 6= {0}. If T = T0⊕q T1, T0 : {0} ⊂ X0 7→

X0/X0 = {0}, we put σ(T )= σA(T )∪ {∞}; otherwise, σ(T )= σA(T ).

(4) If∞ is 0-regular and X0 = {0}, we put σ(T )= σA(T ).

The set σ(T ) is called the spectrum of T , and the set ρ(T )= C∞ \σ(T ) is called
the resolvent set of T .

The set σ(T ) is nonempty except for X0 = X = {0} (see Proposition 7), but
it may be equal to C∞. For practical reasons, in this paper we work only with
(quotient range) operators with nonempty resolvent set.

Example 3. The well-known fact that any continuous linear operator on a Banach
space X has a bounded spectrum is no longer true in the case of quotient range
operators, as we can see in the following example.

Let X be the Hilbert space of all square-summable complex sequences, let
A ∈B(X) be the shift

A((x1, x2, x3, . . . )= (0, x1, x2, . . . )

and let
X0 = {(x1, x2, 0, 0, . . . ) : x1, x2 ∈ C}.

Consider the operator T defined by T x = Ax + X0 for x ∈ X . Clearly T is con-
tinuous and thus closed. We will show that σ(T ) is unbounded. Let λ ∈ C. We
have

x ∈ N (λJ0− T )⇐⇒ λx − Ax + y = 0 for some y ∈ X0,

⇐⇒

−λx1 = y1,

x1− λx2 = y2,

xk − λxk+1 = 0 for k ≥ 2

 for some y1, y2 ∈ C.

For |λ|> 1 and x1, x2 ∈ C consider x3 =−x1/λ
2
− x2/λ. Then

(−x1/λ, x3, x3/λ, . . . , x3/λ
k, . . . ) ∈ N (λJ0− T ),

which implies that N (λJ0− T ) 6= {0} for |λ|> 1. Consequently,

{λ ∈ C : |λ|> 1} ⊂ σ(T ),

so σ(T ) is unbounded.
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Remark 4. (i) For a closed operator T : D(T ) ⊂ X 7→ X — in particular for
an everywhere defined bounded operator on X — Definition 2 provides the usual
definition of the spectrum. Note that the density of D(T ) in X is not required. For
instance, if A is the operator from Example 3, which is injective, and T = A−1,
then T is not densely defined but 0 /∈ σ(T ), so ρ(T ) 6=∅.

Note also that if 0 : {0} ⊂ X 7→ X , we have σ(0)=C∞ if X 6= {0} and σ(0)=∅
if X = {0}, by Definition 2.

If X0 = X 6= {0} and 0 : {0} ⊂ X 7→ X/X0 = {0}, then 0 is a quotient range
operator, whose Arens spectrum is empty, and σ(T )= {∞}, by Definition 2.

(ii) Let Z ⊂ X × X be a closed relation. It is clear that the subspace M(Z) ⊂ X
is closed. As in the introduction, we consider the (quotient range) operator Q Z :

D(Z) 7→ X/M(Z) given by Q Z (x) = y + M(Z) whenever (x, y) ∈ Z , which is
closed.

Let JZ : X 7→ X/M(Z) be the canonical projection. Given λ ∈ C, the operator
λJZ−Q Z is again closed. If (λI−Z)† ∈B(X), then λJZ−Q Z has an everywhere-
defined, and hence bounded, inverse. Indeed, (λI − Z)† exists if and only if for
every u ∈ X we can find a unique x ∈ X such that (x, y) ∈ Z and λx − y = u for
some y ∈ X . Moreover, x = 0 if and only if u ∈M(Z). Hence λJZ x−Q Z x = JZ u,
showing that λJZ − Q Z is bijective.

Conversely, if Q Z is closed, then Z is closed. In addition, if λJZ − Q Z is
bijective, for every u ∈ X we put x = (λJZ−Q Z )

−1 JZ u. Then we have λx− y= u
for some y ∈ X with (x, y)∈ Z , and so (λI−Z)† does exist. Evidently, (λI−Z)†=
(λJZ − Q Z )

−1 JZ .
From this discussion it clearly follows that we may define the Arens resolvent

set and Arens spectrum of a closed relation Z ⊂ X × X by the equalities ρA(Z)=
ρA(Q Z ) and σA(Z)=σA(Q Z ), respectively. Similarly, we may define the resolvent
set and spectrum of a closed relation Z ⊂ X × X via the equalities ρ(Z)= ρ(Q Z )

and σ(Z) = σ(Q Z ). Consequently, most of the spectral properties obtained for a
quotient range operator can be translated into properties for linear relations. This
definition of the spectrum of a linear relation coincides with the corresponding
definition [Cross 1998, Definition VI.4.1] or [Baskakov and Chernyshov 2002,
Definition 1.5], because the condition lim|λ|→∞(λI − Z)† = 0 is equivalent to the
fact that∞ is a 0-regular point for Q Z .

In fact, given an integer m ≥ 0, we may say that the point∞ is m-regular for
the closed linear relation Z if∞ is m-regular for the operator Q Z .

As an example, if Z = {0} × X (X 6= {0}), then D(Z) = {0}, M(Z) = X and
Q Z : {0} ⊂ X 7→ X/X = {0}. Therefore, σ(Z)= σ(Q Z )= {∞}, as in (i).

Definition 5. Let T :D(T )⊂ X 7→ X/X0 be closed, with ρA(T ) 6=∅. The function

ρA(T ) 3 λ 7→ (λJ0− T )−1 J0 ∈B(X)
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is called the resolvent (function) of T . We also put R(λ, T )= (λJ0− T )−1 J0.

As in the case of linear relations (see [Cross 1998; Favini and Yagi 1993]), we
have a resolvent equation, which is very useful for the construction of the analytic
functional calculus.

Lemma 6. If λ,µ ∈ ρA(T ), then

R(µ, T )− R(λ− T )= (λ−µ)R(µ, T )R(λ, T ).

Proof. Indeed, for all λ,µ ∈ ρA(T ), we have the identity

(µJ0− T )−1 J0− (λJ0− T )−1 J0 = (λ−µ)(µJ0− T )−1 J0(λJ0− T )−1 J0,

which is easily checked. �

As in the case of ordinary operators, the resolvent set is open and the resolvent
function is holomorphic on it.

Proposition 7. The resolvent sets ρA(T ) and ρ(T ) are open subsets of C and C∞

respectively, and the resolvent function λ 7→ R(λ, T ) is holomorphic on ρA(T ),
with values in B(X), having an analytic extension to ρ(T ), whenever∞ ∈ ρ(T ).
In particular, the spectrum σ(T ) is a closed subset of C∞, which is nonempty
provided X0 6= X or X = X0 6= {0}.

Proof. We may assume ρ(T ) 6= ∅. The proof is similar to the corresponding one
for linear relations; see for instance [Cross 1998, Section VI.1]. Because of some
differences, we shall sketch an appropriate proof.

Let λ0 ∈ ρ(T ). We show that there exists a neighborhood V ⊂ C∞ of λ0 such
that V ⊂ ρ(T ). We have the following situations.

First, if λ0 = ∞, it follows from Definition 2 that there exists r > 0 such that
{|λ|> r} ⊂ ρ(T ).

Second, assume λ0 ∈ ρA(T ) and that R(λ0, T ) 6= 0. Then, if |λ − λ0| <

‖R(λ0, T )‖−1, then λ ∈ ρ(T ) and

R(λ, T )= R(λ0, T )(I + (λ− λ0)R(λ0, T ))−1,

implying, in particular, the holomorphy of R(λ, T ) in this open disc.
Third, next assume R(λ0, T ) = 0. Then J0 = 0, and so X = X0. Moreover,

R(λ, T )= 0 for all λ ∈ C.
If X = X0 = {0}, then ρA(T )= C, ρ(T )= C∞ by Definition 2.
If X = X0 6= {0}, then D(T )={0} (otherwise ρ(T )=∅) and ρA(T )=ρ(T )=C,

again by Definition 2.
Note that the assumption X = X0 6= {0} implies σ(T ) 3 {∞}. Finally, suppose

that X0 6= X and σ(T ) = ∅. Then R(λ, T ) is analytic in C and has an analytic
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extension at∞. By Liouville’s theorem, it follows that R(λ, T ) is a constant oper-
ator, say C0. Since∞ is a 0-regular point of T , we must have C0 = 0. Therefore,
as above, X = X0, which is not possible. �

Remark 8. If σA(T ) is bounded, according to Proposition 7 we have a develop-
ment in B(X) of the form

R(λ, T )=
∞∑

k=−∞

λkCk,

where the series is uniformly convergent when r1 ≤ |λ| ≤ r2 for fixed r2 ≥ r1 >

supλ∈σA(T ) |λ|. This representation shows that ∞ is m-regular for some integer
m ≥ 0 if and only if Ck = 0 for all k ≥ m. In particular, if m ≥ 2, the point∞ is
m-regular for T if and only if∞ is a pole of R(λ, T ) of order ≤m−1. As already
noted,∞ is a 0-regular point of T if and only if limλ→∞ R(λ, T )= 0, while∞ is
a 1-regular point if and only if limλ→∞ R(λ, T ) exists in B(X).

Henceforth, to avoid quotient range operators with empty spectrum, we assume
that either X0 6= X or X = X0 6= {0}, if not otherwise specified.

Definition 9. Let T : D(T )⊂ X 7→ X/X0 be closed, with ∅ 6= ρ(T ).

(i) We denote by O(T ) the set of all complex-valued functions f , each of them
defined and analytic in an open set containing σ(T ) and depending on f .
By identifying any two functions equal in a neighborhood of σ(T ) (that is,
considering O(T ) as the set of germs of analytic functions in neighborhoods
of σ(T )), we may and will regard O(T ) as an algebra.

(ii) Let F⊂C∞ be closed and let U be an open neighborhood of F . An admissible
contour surrounding F in U is a finite system of rectifiable Jordan curves 0,
positively oriented, which is the boundary of an open set 1 ⊂ 1 ⊂ U , with
1⊃ F . Note that 0 ∩ F =∅ and that 0 is a compact set in C.

(iii) We define the analytic functional calculus for the quotient range operator T
as follows. Let f ∈ O(T ). We set

f (T ) :=

{
(2π i)−1

∫
0

f (λ)R(λ, T )dλ if∞ /∈ σ(T ),

f (∞)I + (2π i)−1
∫
0

f (λ)R(λ, T )dλ if∞∈ σ(T ),

where0 is an admissible contour surrounding σ(T ) in the domain of definition
of f .

Remark. Via Proposition 7, f (T ) is a continuous linear operator on X that does
not depend on 0.

The next result seems to be new even in the context of linear relations.
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Proposition 10. For every quotient range closed operator T with ∅ 6= ρ(T ), the
map f 7→ f (T ) of O(T ) into B(X) is an algebra morphism. If σ(T ) 3 ∞, this
morphism is unital.

Proof. Clearly the map f 7→ f (T ) is linear. To prove the multiplicativity of the
application f 7→ f (T ), we follow the lines of [Vasilescu 1982, Proposition III.3.4],
via Lemma 6.

Consider first the case∞∈ σ(T ).
Let f, g ∈ O(T ) and let U ⊂ C∞ be open in the domain of definition of both

f, g, with σ(T ) ⊂ U . Let 1 and 11 be open sets such that their boundaries 0
and 01, respectively, are admissible contours surrounding σ(T ) in U , and such
that σ(T )⊂1⊂1⊂11 ⊂11 ⊂U . Then we have

f (T )g(T )

= f (∞)g(∞)I+ f (∞) 1
2π i

∫
01

g(µ)R(µ, T )dµ+g(∞) 1
2π i

∫
0

f (λ)R(λ, T )dλ

+
1

2π i

∫
0

f (λ)R(λ, T )dλ 1
2π i

∫
01

g(µ)R(µ, T )dµ

= f (∞)g(∞)I+ f (∞) 1
2π i

∫
01

g(µ)R(µ, T )dµ+g(∞) 1
2π i

∫
0

f (λ)R(λ, T )dλ

+
1

2π i

∫
0

f (λ)
( 1

2π i

∫
01

(µ− λ)−1g(µ)(R(λ, T )− R(µ, T ))dµ
)

= f (∞)g(∞)I + 1
2π i

∫
0

f (λ)g(λ)R(λ, T )dλ= ( f g)(T ),

via Lemma 6 and the Cauchy formula at infinity for analytic functions.
If∞ /∈ σ(T ), the proof is similar and will be omitted.
If σ(T ) 3∞, by letting p0 be the constant polynomial equal to 1, we may take

as 0 the boundary of a closed disc in ρ(T ) (negatively oriented). Since R(λ, T ) is
analytic in ρ(T ), it follows that

∫
0

R(λ, T )dλ= 0, so p0(T )= I . �

The next result corresponds to [Baskakov and Chernyshov 2002, Lemma 2.2],
whose proof uses an ergodic theorem from [Hille and Phillips 1957]. We give a
direct proof based on Proposition 10.

Proposition 11. Given a closed operator T : D(T ) ⊂ X 7→ X/X0, the spectrum
σ(T ) is a bounded subset of C if and only if X0 = 0 and T ∈B(X).

Proof. We use some ideas from [Vasilescu 1982, Lemma III.3.5]; see also [Hille
and Phillips 1957].

Assume σ(T ) bounded, and fix an r > 0 such that σ(T ) ⊂ {λ ∈ C; |λ| < r}.
From the analyticity of the resolvent function (Proposition 7), it follows that there
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exists a sequence (Cn)n≥0 ⊂B(X) such that

R(λ, T )=
∞∑

n=0

λ−nCn uniformly with respect to |λ| ≥ r.

The operator C0, given by the equality C0 = limλ→∞ R(λ, T ), is necessarily 0
because∞ is 0-regular

We define the bounded linear operators

E = 1
2π i

∫
|λ|=r

R(λ, T )dλ and A = 1
2π i

∫
|λ|=r

λR(λ, T )dλ.

Because
1

2π i

∫
|λ|=r

λndλ=
{

0 if n 6= −1,
1 if n =−1,

we have

1
2π i

∫
|λ|=r

λk R(λ, T )dλ= 1
2π i

∫
|λ|=r

λk
∞∑

n=0

λ−nCndλ

=

∞∑
n=0

( 1
2π i

∫
|λ|=r

λk−ndλ
)

Cnr = Ck+1

for all integers k ≥ 0. Consequently C1= E and An
=Cn+1. The same proposition

shows that E2
= E and An E = E An

= An . On the other hand, if |λ| ≥ r , then

λ−1 I + λ−2 A+ · · · = (λI − A)−1,

which implies that

(2) R(λ, T )= E(λI − A)−1.

Let
X1 = (I − E)(X) and X2 = E(X).

Hence X = X1⊕ X2 because E is a projection. Setting A2 = A|X2 and using the
fact that AE = E A, we have

(λI − A)−1
|X2 = (λI2− A2)

−1,

whenever |λ| ≥ r , where I2 is the identity on X2. This together with (2) implies

(3)
R(λ, T )(X1)⊂ X1, R(λ, T )|X1 = 0|X1,

R(λ, T )(X2)⊂ X2, R(λ, T )|X2 = (λI2− A2)
−1
|X2,

whenever |λ| ≥ r .
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Set 01 = 0|X1 . Let u ∈ D(T ) and let v ∈ X with J0v = T u. Then we have
R(λ, T )(λu − v) = u for a fixed λ with |λ| ≥ r . Write u = u1+ u2, v = v1+ v2,
with u j , v j ∈ X j for j = 1, 2. Using (3), we have in fact that

R(λ, T )(λu1− v1)= 0= u1 and R(λ, T )(λu2− v2)= u2.

These relations imply that

v1 ∈ N (01)= X1,(4)

(λI2− A2)
−1(λu2− v2)= u2,(5)

From (5) we obtain that A2u2 = v2. This calculation shows that D(T )⊂ {0}⊕ X2,
and that T (0⊕ u2)= v1+ A2u2+ X0 whenever 0⊕ u2 ∈ D(T ).

If u = 0, then we may take as v ∈ X with J0v = T u = 0 any vector v ∈ X0. The
decomposition 0 = u1 + u2 shows that u1 = u2 = 0. Then, from (4) and (5) we
derive v1 ∈ X1 and v2 = 0. Therefore, X0 ⊂ X1. As T (01v1⊕ 0) = 0 = v1 + X0

for every v1 ∈ X1, we must have X0 = X1.
In fact, D(T ) = {0} ⊕ X2. Indeed, if A2u2 = v2 for some u2 ∈ X2, taking into

account (5), we have

(λI2− A2)
−1(λu2− v2)= u2 = R(λ, T )(λu2− v2) ∈ D(T ).

In summary, we have now two closed vector subspaces X1 and X2 of X with
X = X1 ⊕ X2, the operator 01 ∈ B(X1), an operator A2 ∈ B(X2), X0 = X1,
D(T ) = {0} ⊕ X2, and T : {0} ⊕ X2 7→ (X1 ⊕ X2)/X1 is given by T (0⊕ x2) =

0⊕ A2x2 + X1 for all 0⊕ x2 ∈ {0} ⊕ X2. Setting T1 : {0} ⊂ X1 7→ X1/X1 = {0}
and T2 = A2 : X2 7→ X2, we obtain T = T1⊕q T2. Assuming X1 6= {0}, we must
have σ(T ) 3 {∞} via Definition 2, which is not possible. Therefore, which is not
possible. Therefore, X1 = {0}, and so T = A2 ∈B(X2)=B(X).

Conversely, the conditions in the statement from above are obviously sufficient
to insure the boundedness of the spectrum of T . �

Remark 12. From the previous proof it follows that if∞ is 0-regular for T , then
T = T1⊕q T2, where T1 : {0}⊂ X1 7→+X1/X1={0}, and T2 : X2 7→ X2 is bounded.

Corollary 13. Let T : D(T )⊂ X 7→ X/X0 be closed. Then σ(T )= σA(T ) if and
only if T ∈B(X), and σ(T )= σA(T )∪ {∞} otherwise.

In particular, if T : D(T ) ⊂ X 7→ X is a closed operator, the spectrum of T is
a bounded subset of C if and only if T ∈B(X).

The next result is related to [Baskakov and Chernyshov 2002, Lemma 2.2].

Corollary 14. Let Z ⊂ X×X be a closed relation. The spectrum of Z is a bounded
subset of C if and only if Z is the graph of an operator in B(X).
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The spectrum of a direct sum of two quotient range operators behaves as one
expects (see also Lemma 2.1 from [Baskakov and Chernyshov 2002], in the context
of linear relations):

Corollary 15. If T : D(T )⊂ X 7→ X/X0 is closed and has the form T = T1⊕q T2,
then σ(T )= σ(T1)∪ σ(T2).

Proof. Note that J0 = J01 ⊕q J02, where J0 j : X j 7→ X j/X0 j are the canonical
projections for j = 1, 2. We have to show that ρ(T )= ρ(T1)∩ρ(T2). We have the
following cases.

First, fix λ ∈ ρ(T )∩C. Setting S = λJ0−T, S j = λJ0 j −T j , j = 1, 2, we have
to show that S= S1⊕q S2 is bijective if and only if both S1, S2 are bijective, which
is routine and is left to the reader. In fact, we obtain that

(6) (λJ0− T )−1
= ((λJ01− T1)

−1
⊕ (λJ02− T2)

−1)V−1,

where V is given by (1). Therefore,

(7) R(λ, T )= R(λ, T1)⊕ R(λ, T2).

This clearly shows that σA(T )= σA(T1)∪ σA(T2).
Second, we have only to note that T ∈B(X) if and only if T j ∈B(X j ) ( j =1, 2),

which easily leads to the equality σ(T )= σ(T1)∪ σ(T2), via Corollary 13. �

A general result concerning the existence of an analytic functional calculus for
quotient range closed operators is the following.

Theorem 16. For every quotient range closed operator T with ∅ 6= ρ(T ), the map
f 7→ f (T ) of O(T ) into B(X) is a unital algebra morphism. If σ(T ) is bounded,
then T ∈B(X) and p1(T )= T , where p1(λ)= λ for all λ ∈ C.

Proof. If σ(T ) is unbounded, the assertion follows from Proposition 10. If σ(T )
is bounded, then T ∈B(X) by Proposition 11, and the assertion is classical. �

Remark 17. (i) For every f ∈ O(T ), we have

f (T )|X0 =

{
f (T )|{0} = 0 if∞ /∈ σ(T ),
f (∞)I if∞∈ σ(T ).

Indeed, we clearly have∫
0

f (λ)R(λ, T )dλ=
(∫

0

f (λ)(λJ0− T )−1dλ
)

J0,

for each admissible contour 0 surrounding σ(T ), which in turn implies the
desired equalities.
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This remark also shows that f (T )(X0) ⊂ X0 for every f ∈ O(T ). This
allows us to define an operator f ◦(T ) ∈B(X/X0), given by

f ◦(T )(x + X0) := f (T )x + X0 for x ∈ X,

for all f ∈ O(T ). In other words, f ◦(T )J0 = J0 f (T ) for all f ∈ O(T ).

(ii) If∞ is an isolated point of σ(T ), then E = (2π i)−1
∫
0

f (λ)R(λ, T )dλ is a
projection, where 0 is a contour surrounding σA(T ).

(iii) If Z ⊂ X× X is a closed relation with nonempty resolvent set, we may define
the operator f (Z) := f (Q Z ) for every analytic function from O(Z) := O(Q Z )

(see Remark 4(ii)). This provides an analytic functional calculus for Z , whose
properties are easily derived from those valid for Q Z (see also [Baskakov and
Chernyshov 2002, formula (2.8)] for a similar but partial approach.)

3. Quotient range operators with unbounded spectrum

As before, let X be a complex Banach space, let X0 be a closed vector subspace
of X , and let J0 : X 7→ X/X0 be the canonical projection. Let also T : D(T ) ⊂
X 7→ X/X0 be closed. We may consider on D(T ) the graph norm given by

‖x‖T := ‖x‖+ inf
J0 y=T x

‖y‖ for x ∈ D(T ).

It is well known that when endowed with this norm, the vector space D(T ) becomes
a Banach space; see for instance [Cross 1998, Section IV.3]. With the terminology
from [Waelbroeck 1982], (D(T ), ‖ · ‖T ) becomes a Banach subspace of X , which
will be occasionally denoted by DT .

It is obvious that the maps T : DT 7→ X/X0 and JT : DT 7→ X/X0, with
JT = J0|DT , are continuous.

Throughout this section, T : D(T ) ⊂ X 7→ X/X0 will be a closed (quotient
range) operator, with∞∈ σ(T ) and a nonempty resolvent set.

Lemma 18. For every function f ∈O(T ) and each admissible contour 0 surround-
ing σ(T ), the map

X 3 x 7→
∫
0

f (λ)R(λ, T )xdλ

has values into the Banach space DT and is continuous.
In particular, if f (∞)= 0, then f (T ) is a continuous operator from X into DT .

Proof. Indeed, R(λ, T )= (λJ0−T )−1 J0 : X 7→DT is in B(X, DT ) for all λ∈ρ(T ),
and hence

2π i( f (T )− f (∞))=
∫
0

f (λ)(λJ0− T )−1 J0dλ ∈B(X, DT ),
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which implies the assertions. �

We recall that for any quotient range operator T and each function f ∈ O(T ),
we denote by f ◦(T ) the operator induced by f (T ) in X/X0; see Remark 17(i).

Lemma 19. Let f ∈ O(T ) be such that f1(λ) = λ f (λ) ∈ O(T ). Then T f (T ) =
J0 f1(T )= f ◦1 (T )J0.

Proof. It is clear that f (∞)= 0. Let 0 be an admissible contour surrounding σ(T )
in the domain of definition of f . We have

T ( f (T )x)= 1
2π i

∫
0

f (λ)T (λJ0− T )−1 J0xdλ

= J0

(
−

1
2π i

∫
0

f (λ)xdλ+ 1
2π i

∫
0

λ f (λ)(λJ0− T )−1 J0xdλ
)

= J0( f1(T )x)= f ◦1 (T )J0x,

because −(1/2π i)
∫
0

f (λ)dλ= f1(∞). �

Remark 20. With the notation from the previous lemma, if x ∈ D(T ) and y ∈ X
satisfy J0 y = T x , then f1(T )x = f (T )y. Indeed,

f1(T )x = f1(∞)x +
1

2π i

∫
0

λ f (λ)(λJ0− T )−1 J0xdλ

=
1

2π i

∫
0

f (λ)(λJ0− T )−1 J0 ydλ= f (T )y,

because (1/2π i)
∫
0

f (λ)xdλ=− f1(∞)x , as noticed before.

Lemma 21. For all f ∈ O(T ) and x ∈ D(T ), we have T f (T )x = f ◦(T )T x.

Proof. Because the function λ f (λ) is not necessarily in O(T ), we need an argument
different from that in the proof of Lemma 19.

If (x, y) ∈ G0(T ), then J0 y = T x . Therefore, for a fixed λ ∈ ρ(T ),

(8) T R(λ, T )x =−J0x + λJ0(λJ0− T )−1 J0x = J0 R(λ, T )y.

Let 0 be an admissible contour surrounding σ(T ) in the domain of f ∈ O(T ),
positively oriented. We have, via (8), that

T
∫
0

f (λ)R(λ, T )xdλ= J0

∫
0

f (λ)R(λ, T )ydλ,

implying T f (T )x = J0 f (T )y. Consequently,

T f (T )x = J0 f (T )y = f ◦(T )J0 y = f ◦(T )T x for all x ∈ D(T ). �
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The next result is a version of the idempotent theorem in the context of quo-
tient range operators. For a similar result in the context of linear relations, see
[Baskakov and Chernyshov 2002, Theorem 2.3]. Unlike the result there, our proof
uses essentially Theorem 16.

Theorem 22. Let T : D(T ) ⊂ X 7→ X/X0 be a quotient range operator with
σ(T )3∞ and assume that there are two nonempty disjoint closed sets F, H ⊂C∞

such that σ(T )= F∪H. Then there exist closed vector subspaces X F and X H with
X = X F ⊕ X H , and operators TF : D(TF ) ⊂ X F 7→ X F/X0F and TH : D(TH ) ⊂

X H 7→ X H/X0H , where X0F ⊂ X F , X0H ⊂ X H and X0 = X0F ⊕ X0H , such that
D(T )= D(TF )⊕ D(TH ) and T = TF ⊕q TH .

In addition, σ(TF )= F and σ(TH )= H.

Proof. To fix the ideas, assume that ∞ ∈ F . We choose open sets U and V in
C∞ such that U ⊃ F , V ⊃ H and U ∩ V = ∅. Then the characteristic functions
χU and χV of the sets U and V respectively, restricted to U ∪ V , are analytic. We
put PF = χU (T ) and PH = χV (T ). Since χ2

U = χU , and by a similar relation
for χV , the operators PF and PH are projections via Proposition 10. Moreover,
PF PH = PH PF = 0 and PF + PH = I .

In fact, since∞∈ F , we have

PF = I + 1
2π i

∫
0F

R(λ, T )dλ, and PH =
1

2π i

∫
0H

R(λ, T )dλ,

where 0F and 0H are admissible contours surrounding F and H in U and V ,
respectively.

Note that PH |X0 = 0 and PF |X0 is the identity on X0; see Remark 17(i).
Lemma 21 shows that if x ∈ D(T ), then PF x ∈ D(T ), and T PF x = P◦F T x ,

where P◦F =χ
◦

U (T ). Similarly, PH x ∈ D(T ) and T PH x = P◦H T x . This also shows
that D(T )= (D(T )∩ PF (X))⊕ (D(T )∩ PF (H)).

Let X F = PF (X) and X H = PH (X). Obviously, X = X F ⊕ X H . We have
X0 ⊂ X F , and we put X0F = X0 and X0H = {0}.

Let TF = T |(D(T )∩X F ). For each x ∈ D(TF ) := D(T ) ∩ X F , Lemma 21 gives
TF x ∈ X F/X0F . Similarly, if TH =T |(D(T )∩X H ) for each x ∈D(TH ) :=D(T )∩X H ,
we have TH x ∈ X H/X0H = X H . Consequently,

T (xF ⊕ xH )= TF (xF )⊕ TH (xH ) ∈ (X F/(X0F )⊕ (X H/(X0H )

for all xF ∈ D(TF ) and xH ∈ D(TH ), and so T = TF ⊕q TH .
Let us show that σ(TF )⊂ F .
Let µ ∈ C \ F . With no loss of generality we may suppose that µ /∈ U . Then

the function fµ(λ)= (µ−λ)−1χU (λ) is analytic in U ∪V , null at infinity, and we
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may define the operator

fµ(T )=
1

2π i

∫
0F

fµ(λ)R(λ, T )dλ= PF fµ(T ).

Because we have (µ−λ) fµ(λ)=χU (λ), it follows that µ fµ(T )− f1,µ(T )= PF ,
where f1,µ(λ)= λ fµ(λ) ∈ O(T ).

Let us show that µJF − TF is injective, where JF : X F 7→ X F/X0 is J0|X F .
Assuming that for an x ∈ D(TF ) one has µJF x = TF x , and fixing an y ∈ X F with
JF y = TF x , we have µx − y ∈ X0. Because fµ(∞)= 0, we infer that

0= fµ(T )(µx − y)= 1
2π i

∫
0F

fµ(λ)(λJ0− T )−1 J0(µx − y)dλ

=
1

2π i

∫
0F

((χU (λ)R(λ, T )x + f1,µ(λ)R(λ, T )x − fµ(λ)(λJ0− T )−1 J0 y)dλ

= PF x = x,

where we have used the equality f1,µ(T )x = fµ(T )y, via Remark 28.
Let us show that µJF − TF is surjective. Let y = PF y ∈ X F . Note that y =

µ fµ(T )y − f1,µ(T )y, as we have seen above. Moreover, by Lemma 19 J0 y =
µJ0 fµ(T )y−T fµ(T )y. Therefore, (µJF−TF )

−1 exists for all µ /∈U . Since U is
an arbitrary open neighborhood of F , it follows that (µJF−TF )

−1 JF = fµ(T )|X F

for all µ /∈ F .
We show now that σ(TH )⊂ H . First of all, we identify the space (X H+X0)/X0

with X H , and so J0|X H = IH , where IH is the identity on X H . Note also that
TH : D(TH ) 7→ X H is a simply closed operator.

Fixing µ ∈ C \ H , we may suppose that µ /∈ V . Then the function gµ(λ) =
(µ − λ)−1χV (λ) is analytic in U ∪ V , null at infinity, and we can consider the
operator gµ(T )= PH gµ(T ).

Because we have (µ−λ)gµ(λ)=χV (λ), it follows that µgµ(T )−g1,µ(T )= PH ,
where g1,µ(λ)= λgµ(λ) ∈ O(T ).

Proceeding as in the previous case, we derive that µIH −TH : D(TH ) 7→ X H is
bijective. In fact, (µIH − TH )

−1
= gµ(T )|X H for all µ /∈ H . We omit the details.

We have only to note that

‖gµ(T )|X H‖ ≤
1

2π dist(µ, 0H )

∫
0H

‖R(λ, T )‖|dλ|,

implying that∞ is 0-regular for TH . In other words, σ(TH )⊂ H .
Since we already have σ(TF ) ⊂ F and σ(TH ) ⊂ H , it suffices to prove that

σ(TF )∪ σ(TH )= σ(T ). Indeed, this follows from Corollary 15, showing that we
must have σ(TF )= F and σ(TH )= H . �
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A result similar to [Baskakov and Chernyshov 2002, Theorem 2.3] follows
directly from the previous theorem:

Corollary 23. Let Z ⊂ X × X be a closed relation with σ(Z) 3 ∞. Assume that
there are two nonempty disjoint closed sets F, H ⊂ C∞ such that σ(Z) = F ∪ H.
Then we have a decomposition Z = Z F ⊕ Z H with Z F and Z H closed relations
and σ(Z F )= F and σ(Z H )= H.

We end this section with a version of the spectral mapping theorem. A similar
result valid for linear relations can be found in [Baskakov and Chernyshov 2002,
Theorem 2.5], whose proof uses Gelfand’s theory (see also Corollary 10 there).
Our proof is different and is based on Theorems 16 and 22.

Theorem 24. For every f ∈ O(T ), we have σ( f (T ))= f (σ (T )).

Proof. Fix an f ∈ O(T ). Let µ /∈ f (σ (T )) with µ 6= ∞. Then the function
gµ(λ)= (µ− f (λ))−1 is in O(T ). It is plain that (µI − f (T ))gµ(T )= I , showing
that gµ(T )= (µI − f (T ))−1, and so σ( f (T ))⊂ f (σ (T )) (that it is 0-regular for
f (T ) is obvious).

Conversely, let µ0 ∈ f (σ (T )), so µ0= f (λ0) for some λ0 ∈ σ(T ). Assume that
µ0 /∈ σ( f (T )).

In the case λ0 6= ∞, we consider the function h(λ) = (λ0 − λ)
−1(µ0 − f (λ)),

which can be clearly extended at λ= λ0, and this extension belongs to O(T ). Note
that λ0h(T )− h1(T )= µ0 I − f (T ), where h1(λ)= λh(λ) ∈ O(T ). Therefore,

(9) λ0h(T )(µ0 I − f (T ))−1
− h1(T )(µ0 I − f (T ))−1

= I.

This shows that for each v ∈ X we have

(λ0 J0− T )h(T )(µ0 I − f (T ))−1v = J0v

via Lemma 19. Therefore, λ0 J0− T is surjective.
Further, let x ∈ X be such that (λ0 J0− T )x = 0, and let y ∈ X with J0 y = T x .

Using (9), we have

x = (µ0 I − f (T ))−1(λ0h(T )− h1(T )x)= (µ0 I − f (T ))−1h(T )(λ0x − y)= 0

via Remark 20, and that J0(λ0x − y) = 0 and h(∞) = 0; see also Remark 17(i).
This shows that λ0 J0 − T is injective too. Consequently, λ0 J0 − T is invertible,
which is not possible.

In the case that λ0 = ∞, and there exists a sequence (λm)m≥1 in σA(T ) such
that limm→∞ λm = λ0, then f (λm) ∈ σ( f (T )) for all m ≥ 1 by the first part of the
proof, implying f (∞) ∈ σ( f (T )).

Finally, if∞ is an isolated point of σ(T ), then, according to Theorem 22, there
is a decomposition X = X1⊕X∞, and setting T∞= T |D(T )∩X∞ , we have σ(T∞)=
{∞}. Because we have σ( f (T∞)) ⊂ f (σ (T∞)) = { f (∞)} by the first part of the
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proof, we must actually have σ( f (T∞)) = { f (∞)} since σ( f (T∞)) is nonempty.
Consequently, f (∞) ∈ σ( f (T )), as a consequence of Corollary 15 and of the
equality f (T )= f (T1)⊕q f (T∞), where T1 = T |X1 ∈B(X1). �

Theorem 2.5 from [Baskakov and Chernyshov 2002] is then a consequence of
the preceding theorem:

Corollary 25. If Z is a closed relation with nonempty resolvent set and unbounded
spectrum, we have σ( f (Z))= f (σ (Z)) for all f ∈ O(Z).

Using Theorem 24, we get the superposition of the analytic functional calculus:

Proposition 26. Let f ∈ O(T ) and let g ∈ O( f (T )). Then we have g ◦ f ∈ O(T )
and (g ◦ f )(T )= g( f (T )).

Proof. The property g ◦ f ∈ O(T ) follows easily from Theorem 24. The proof
of the equality (g ◦ f )(T ) = g( f (T )) follows the lines of the similar assertion in
[Vasilescu 1982, Theorem III.3.10(4)]. Specifically, we may choose an admissible
contour 0 surrounding σ(T ) such that 01 = f (0) surrounds σ( f (T )). Then

g( f (T ))= 1
2π i

∫
01

g(µ)R(µ, f (T ))dµ

=
1

2π i

∫
01

g(µ)
(
(µ− f (∞))−1 I+ 1

2π i

∫
0

(µ− f (λ)−1)R(λ, T )dλ
)

dµ

= g( f (∞))I+ 1
2π i

∫
0

( 1
2π i

∫
01

g(µ)(µ− f (λ)−1)dµ
)

R(λ, T )dλ

= g( f (∞))I+ 1
2π i

∫
0

g( f (λ))R(λ, T )dλ= (g◦ f )(T ),

which proves the result. �

A result similar to [Baskakov and Chernyshov 2002, Corollary 2.4] can be also
obtained with our techniques:

Proposition 27. We have σ(T ) = {∞} if and only if there is a quasinilpotent
operator Q ∈ B(X) such that T : R(Q) 7→ X/N (Q), T (Qx) = x + N (Q) for
x ∈ X.

Proof. Assume σ(T ) = {∞}. If h(λ) = λ−1 (λ 6= 0), we have h ∈ O(T ) and
h(∞)= 0. Therefore, by Lemma 19, h(T )x ∈ D(T ) for all x ∈ X , and T h(T )x =
J0h1(T )x = J0x , where h1(λ) = 1 for all λ. Hence h(T ) = T−1 J0, showing that
D(T ) = R(h(T )) and N (h(T )) = X0. We have only to remark that σ(h(T )) =
h({∞})= {0}, showing that Q = h(T ) is quasinilpotent.

Conversely, if there is a quasinilpotent operator Q ∈B(X) such that T : R(Q) 7→
X/N (Q), T (Qx)= x+N (Q) for x ∈ X , then one has (λJ0−T )−1(y+N (Q))=
(λQ− I )−1 Qy for all y ∈ X and λ ∈ C. Hence, σ(T )= {∞}.

Note also that R(λ, T )= (λQ− I )−1 Q, λ ∈ C. �
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Remark 28. The spectrum of the relation Z ⊂ X × X is equal to {∞} if and only
if Z is the reverse of the graph of a quasinilpotent operator Q ∈ B(X). This can
be deduced either from the previous result or directly, from the fact that Z† is a
bounded operator and the equality

(λ−1 I − Z†)† = λI + λ2(λI − Z)† for λ 6= 0;

see for instance [Sandovici 2006, (2.1.2)] or [Baskakov and Chernyshov 2002,
Corollary 2.4].

4. Quotient range operators with bounded Arens spectrum

In this section we study those quotient range operators for which the point ∞ is
isolated and m-regular, for some integer m ≥ 1. We discuss the case m = 0 in
Remark 12. Similar results for linear relations can be also found in [Baskakov and
Chernyshov 2002, Section 3]. We start with a version of Proposition 27.

Proposition 29. Let T :D(T )⊂ X 7→ X/X0 be closed with σ(T )={∞}. The point
∞ is m-regular for T for some integer m ≥ 1 if and only if there exists Q ∈B(X)
such that Qm+1

= 0, and T : R(Q) 7→ X/N (Q) is given by T (Qx) = x + N (Q)
for all x ∈ X.

Proof. The condition is sufficient by Proposition 27. Let us prove its necessity.
With the notation from Remark 8, because σ(T )= {∞} and so R(λ, T ) should

be of the form −
∑
∞

k=0 λ
kCk for all λ ∈ C, we must have Ck = 0 for all k ≥ m.

Therefore, R(λ, T )=−
∑m−1

k=0 λ
kCk . For the rest of the proof, we sketch an alge-

braic argument.
For any two distinct points λ and µ in C, the resolvent equation shows that

(µ− λ)

m−1∑
k=0

∑
p+q=k

λpµqC pCq =−

m−1∑
k=0

(λk
−µk)Ck .

Hence ∑
p+q=k−1

(λ−µ)λpµqC pCq = (λ
k
−µk)Ck

whenever 1≤ k ≤m−1, implying by recurrence C0Ck−1=Ck , and so Ck =Ck+1
0 .

Therefore, taking Q = C0, we must have Qm+1
= Cm = 0.

Finally, since R(λ, T ) = Q(λQ − I )−1, we infer the equality, T−1 J0 = Q,
showing that X0= N (Q), D(T )= R(Q), and T Qx = x+N (Q) for all x ∈ X . �

The next result is related to [Baskakov and Chernyshov 2002, Theorem 3.1].

Theorem 30. Let T : D(T ) ⊂ X 7→ X/X0 be closed, with σA(T ) bounded and
∞ ∈ σ(T ). The point∞ is m-regular for some integer m ≥ 1 if and only if there
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are closed vector subspaces X1 and X2 of X with X = X1 ⊕ X2, an operator
A1 ∈B(X1) with Am+1

1 = 0, another operator A2 ∈B(X2), with X0= N (A1)⊕{0},
D(T ) = R(A1)⊕ X2, and T = T1 ⊕q T2, where T1(A1x1) = x1 + N (A1) for all
x1 ∈ X1, and T2 = A2.

In addition, σA(T )= σ(A2).

Proof. Assume that T is closed, with σA(T ) bounded, such that the point∞ is m-
regular for some integer m ≥ 1. Then σ(T )= F ∪{∞}, where F := σA(T ). Since
F is bounded, according to Theorem 22 and Proposition 27, there exist closed
vector subspaces X F and X∞ with X = X F ⊕ X∞, and operators TF : X F 7→ X F

and T∞ : D(T∞)⊂ X∞ 7→ X∞/X0∞, with σ(TF )= F and σ(T∞)= {∞}, where
X0∞=N (Q∞)= X0, D(T∞)= R(Q∞)⊕X F , and Q∞∈B(X∞) is quasinilpotent.
Moreover, T∞(Q∞x)= x + N (Q∞) for all x ∈ X∞, and T = T∞⊕q TF . In fact,
since∞ is m-regular for T , it is also m-regular for T∞. Therefore, Qm+1

∞
= 0 by

Proposition 29. The assertion from the statement is obtained for A1 = Q∞ and
A2 = TF .

Conversely, if T = T1⊕q T2 with the stated properties, then σ(T1) = {∞} and
∞ is m-regular for T2 by Proposition 29, and so σA(T ) = σ(T2) is bounded and
∞ is m-regular also for T , by (7). �

A part of [Baskakov and Chernyshov 2002, Theorem 3.1] is now obtained as a
consequence of the previous theorem.

Corollary 31. Given a closed linear relation Z ⊂ X × X with σA(Z) a bounded
subset of C and∞ not 0-regular, the set {|λ|1−m

‖(λ− Z)†‖; |λ| ≥ r} is bounded
for an integer m ≥ 1 and some r > sup{|λ|; λ ∈ σA(Z)} if and only if there exist
closed linear subspaces X1 and X2 with X1⊕ X2 = X , and operators A1 ∈B(X1)

with Am+1
1 = 0, and A2 ∈B(X2), such that

Z = G(A1)
†
⊕G(A2).

In this case, one has σA(Z)= σ(A2).

Example 32. Let P ∈ B(X) be a proper projection, and let Z = G(P)†. Clearly
Z†
= P and thus 0∈ ρ(Z), and so Z† is neither injective nor surjective. In fact, we

can now easily compute the spectrum of Z . Setting X1 = N (P) and X2 = R(P),
we have that X = X1⊕ X2. Therefore Z = G(01)

†
⊕G(I2), where 01 is the null

operator on X1 and I2 is the identity on X2. Using Corollary 31, it follows that
σ(Z)= σ({0})∪ σ(I2)= {∞}∪ {1}.

Remark 33. Let Z be a densely defined closed linear relation such that, for some
r > 0, we have {λ; |λ| > r} ⊂ ρA(Z) and R = {(λI − Z)†; |λ| > r} is a bounded
subset of B(X). Then σA(Z) is bounded, possibly empty. Let us show that σA(Z)
is nonempty. If ∞ is 0-regular, the assertion follows via Corollary 14 (see also
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Remark 12). Assuming that σA(Z) is empty and∞ is not 0-regular, Corollary 31
shows that σ(A2) is empty, leading to X2= {0}, and A2

1= 0. Since D(Z)= R(A1)

is dense, the closure of R(A1) should be equal to X . Therefore A1 = 0 implying
R(A1) = {0}, and so X = {0}, which is not possible. Consequently, σA(Z) is
nonempty.

One can see that the conditions from above on Z are more general than those
from [Cross 1998, Theorem VI.3.3], leading to the same conclusion.

5. Applications to Arens polynomial calculus

Given the linear relations Z , Z1, Z2 in X × X , and α ∈ C, we may consider, as
usual (see e.g., [Arens 1961; Cross 1998]), the following linear relations in X . The
composition of Z1 and Z2:

Z1 ◦ Z2 = {(u, w) ∈ X × X; (u, v) ∈ Z2, (v,w) ∈ Z1 for some v ∈ X},

which will be also denoted by Z1 Z2. The sum of Z1 and Z2:

Z1+ Z2 = {(u, v+w); u ∈ D(Z1)∩ D(Z2), (u, v) ∈ Z1, (u, w) ∈ Z2}.

The product of Z by a number α ∈ C:

αZ = {(u, αv); (u, v) ∈ Z} = α I ◦ Z ,

where we identify the operator α I with its graph. Note that Z1 + Z2 is not an
algebraic sum and that 0Z is the null operator on D(Z).

For a linear relation Z ⊂ X × X we write

Zn
:= Z ◦ Z ◦ · · · ◦ Z︸ ︷︷ ︸

n
for n ∈ N∗.

If p(z) = α0+ α1z + · · · + αnzn for z ∈ C, following Arens [1961] we define the
relation

pA(Z) := α0 I +α1 Z + · · ·+αn Zn.

Remark 34. Let Z , Z1 and Z2 be linear relations defined on a linear space X . The
following assertions, which are well known, follow by a simple calculation.

(i) For any ξ, η ∈ C, one has that (ξ I − Z)(ηI − Z)= (ηI − Z)(ξ I − Z).

(ii) (Z1 Z2)
†
= Z†

2 Z†
1 .

We recall that the symbol σA(Z) denotes the Arens spectrum of the linear rela-
tion Z ; see Remark 4(ii). We also define ρA(Z) := C \ σA(Z).

The next proposition enables us to apply the results from the previous sections
to linear relations of the form pA(Z); see also [Kascic 1968, Theorem 3.16].



370 DANA GHEORGHE AND FLORIAN-HORIA VASILESCU

Proposition 35. If Z is a closed linear relation on the Banach space X such that
ρA(Z) 6=∅ and p is a polynomial, then pA(Z) is a closed linear relation on X.

Proof. Fix a λ∈ ρA(Z), so (λI−Z)† ∈B(X). Using [Brezis 1983, Theorem III.9],
we obtain that (λI − Z)† is continuous from (X, σ (X, X ′)) to (X, σ (X, X ′)).
Therefore we can finish by applying [Kascic 1968, Theorem 3.16]. �

The next results show that the functional calculus introduced in Theorem 16
agrees, in some sense, with the Arens polynomial calculus.

Remark 36. Let Z be a closed linear relation in X such that σ(Z) = {∞} and
the point∞ is m-regular for some integer m ≥ 1. Let us compute pA(Z), where
p(z) = α0 + α1z + · · · + αnzn for z ∈ C. According to Corollary 31 (see also
Remark 12), there exists Q ∈ B(X) such that Qm+1

= 0 and Z = G(Q)†. Hence
Z k
= G(Qk)† for all integers k ≥ 0. In particular, Z k

= G(0)† if k ≥ m + 1. In
other words, pA(Z)= pA(G(Q)†). Therefore, if n = 0 we have pA(Z)= α0G(I );
if 1≤ n ≤ m we have

pA(Z)= α0G(I )+α1G(Q)†+ · · ·+αnG(Qn)†

= {(x0, α0x0+α1x1+ · · ·+αnxn); x0 = Qx1 = · · · = Qnxn};

and if n ≥ m+ 1,

pA(Z)= {(0, α1x1+ · · ·+αm xm + ym); Qx1 = · · · = Qnxn = 0, ym ∈ X},

Proposition 37. Let Z be a closed linear relation in X such that the point ∞ is
m-regular for Z for some integer m ≥ 1. Then there exist closed linear subspaces
X1 and X2 with X1 ⊕ X2 = X , and operators A1 ∈ B(X1) with Am+1

1 = 0, and
A2 ∈B(X2), such that

pA(Z)= pA(G(A1)
†)⊕G(pA(A2)),

with pA(G(A1)
†) computed as in Remark 36.

Proof. If Z = Z1 ⊕ Z2, then pA(Z) = pA(Z1) ⊕ pA(Z2). In particular, using
Z1=G(A1)

† and Z2=G(A2) obtained by Corollary 31 (see also Remark 12), we
deduce the formula from the statement. Clearly, the computation of pA(G(A1)

†)

is given by Remark 36 for Q = A1. �

Proposition 38. Let Z be a closed linear relation with σ(Z)3∞, and let f ∈O(Z).
Assume that fn(λ) = λ

n f (λ) ∈ O(Z), where n ≥ 1 is an integer. Then we have
( f (Z)x, (p f )(Z)x) ∈ pA(Z) for all polynomials p of degree n and all vectors
x ∈ X.

Proof. Set fk(λ)= λ
k f (λ) ∈ O(Z) for 1≤ k ≤ n. It follows, as in Lemma 19, that

( f (Z)x, f1(Z)x) ∈ Z . Similarly, ( fk−1(Z)x, fk(Z)x) ∈ Z for all k = 2, . . . , n.
Consequently, ( f (Z)x, fk(Z)x) ∈ Z k for all k = 1, . . . , n.
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If p(z)= a0+ a1z+ · · ·+ anzn (z ∈ C), then

( f (Z)x, (p f )(Z)x)= ( f (Z)x, a0 f (Z)x + a1 f1(Z)x + · · ·+ an fn(Z)x ∈ pA(Z).
�

We have the following spectral mapping theorem for polynomials.

Proposition 39. Let Z be a closed linear relation on the Banach space X such that
ρ(Z) 6=∅ and let p be a nonconstant polynomial.

(i) σA(pA(Z))= p(σA(Z)).

(ii) If ∞ ∈ σ(pA(Z)), then ∞ ∈ σ(Z). Conversely, if ∞ ∈ σ(Z) and ∞ is not
isolated in σ(Z), then∞∈ σ(pA(Z)).

Proof. (i) This part follows with minor changes as [Arens 1961, Theorem 2.5]. For
this reason, we omit the details.

(ii) Assume that∞∈ σ(pA(Z)). Assuming∞ /∈ σ(Z), we deduce that Z =G(T ),
with T ∈B(X), via Corollary 14. In this case, as we have pA(Z)=G(pA(T )) and
pA(T ) ∈B(X), we infer that∞ /∈ σ(pA(Z)), which is not possible.

Conversely, assume that ∞ ∈ σ(Z) and that ∞ is not isolated in σ(Z). Then
we can find a sequence (λn)n in σ(Z) such that limn→∞ λn = ∞. Since µn =

pA(λn)∈ σ(p(Z)) for all n by (i), it follows that∞= limn→∞ µn ∈ σ(pA(Z)). �

Remark. If Z = {0} × X and p(z) = α0, then σ(Z) = {∞}, while σ(pA(Z)) =
σ(α0 I )={α0}. In other words, there is a linear relation Z with∞ isolated in σ(Z)
such that∞ /∈ σ(pA(Z)) for some polynomial pA.
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HOMOGENEOUS LINKS AND THE SEIFERT MATRIX

PEDRO M. GONZÁLEZ MANCHÓN

Homogeneous links were introduced by Peter Cromwell, who proved that
the projection surface of these links, given by the Seifert algorithm, has
minimal genus. Here we provide a different proof, with a geometric rather
than combinatorial flavor. To do this, we first show a direct relation between
the Seifert matrix and the decomposition into blocks of the Seifert graph.
Precisely, we prove that the Seifert matrix can be arranged in a block tri-
angular form, with small boxes in the diagonal corresponding to the blocks
of the Seifert graph. Then we prove that the boxes in the diagonal have
nonzero determinant, by looking at an explicit matrix of degrees given by
the planar structure of the Seifert graph. The paper also contains a com-
plete classification of homogeneous knots of genus one.

1. Introduction

Throughout this paper, we assume that all links and diagrams are oriented. Let F
be a spanning surface for an oriented link L , and let b : F × [0, 1] → R3 be a
regular neighborhood. Identify F with F × {0}. The associated Seifert matrix
M = (ai j )1≤i, j≤n of order n is defined by the linking numbers ai j = lk(ai , a+j ),
where the ai are simple closed oriented curves in F whose homology classes form
a basis B of H1(F), and a+i = b(ai × 1) is the lifting of ai out of F, in F × {1}.
Then

n = rk H1(F)= 2g(F)+µ− 1= 1−χ(F),

where g(F) and χ(F) are the genus and Euler characteristic of F , and µ is the
number of components of the link. Homology with coefficients in Z is assumed
throughout the paper.

Let ∇L(z) and 1L(x) be the Conway and Alexander polynomials of L , in the
variables z and x respectively, as defined in [Cromwell 2004]. Upon the substitu-
tion z = x−1

− x , we have ∇L(z) = 1L(x) = det(x M − x−1 M t). Therefore the
coefficient c of the highest degree term in ∇L(z) is (−1)n det M and the degree

Partially supported by Spanish Project MTM2010-19355 and FEDER.
MSC2010: primary 57M25, 57M27; secondary 57M15, 05C50.
Keywords: homogeneous link, projection surface, Seifert graph, Seifert matrix, Conway

polynomial, knot genus, blocks of a graph.
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of ∇L(z) is n, whenever det M does not vanish. In general deg∇L(z) ≤ n, which
provides the famous lower bound on the genus, deg∇L(z)−µ+ 1 ≤ 2g(F), and
in particular it allows us to deduce that F is a minimal genus spanning surface for
L if det M 6= 0.

Now suppose that the spanning surface F has been constructed by applying the
Seifert algorithm to a diagram D of the link L . We briefly summarize the main
features of this construction: start with a diagram D in the xy-plane. For each
Seifert circle α a Seifert disc a is built in the plane z = k, if there are exactly k
Seifert circles that contain α; we say that the height of a is k and write h(a) = k.
This collection of discs lives in the upper half-space R3

+
and they are stacked in

such a way that when viewed from above, the boundary of each disc is visible.
To complete the projection surface, insert small twisted rectangles (called bands
from now on) at the site of each crossing, choosing the half-twist according to
the corresponding crossing. Following [Cromwell 2004], we call F a projection
surface.

We can now define a graph G contained in F as follows: take a vertex in each
Seifert disc of F and, if two discs are joined by a band, join the corresponding
vertices by an edge contained in the band. Label the edge with the sign of the
associated crossing in the diagram D. This graph, called the Seifert graph of D,
is in fact a planar graph. The rank rk G of G, as defined in graph theory, is one
minus the number of vertices plus the number of edges. Since χ(F)= s(D)−c(D),
where s(D) is the number of Seifert circles and c(D) is the number of crossings
of D, it follows that rk G = rk H1(F).

In general, we can consider the decomposition G = B1∪· · ·∪Bk of the graph G
into its blocks, which are the maximal connected subgraphs without cut vertices.
The part of the projection surface (bands and Seifert discs) that corresponds to a
block Bi is a submanifold of F and will be denoted by FBi , or simply Fi . The
graph G is a deformation retract of the surface F , taking Fi onto Bi ; in particular
H1(F) ∼= H1(G) taking H1(Fi ) onto H1(Bi ) and rk G = rk H1(G), an equality
sometimes taken as a definition. Now, a basis of H1(G), hence a basis B of H1(F),
can be obtained by juxtaposing basis Bi of H1(Bi ), since the cycles in G are
precisely the cycles of its blocks [Diestel 2005, Lemma 3.1.1]. In particular, the
rank of G is the sum of the ranks of its blocks.

Let Mi , where i = 1, . . . , k, be the Seifert matrix defined by any basis Bi of
H1(Bi ) (hence of H1(Fi )). Our main result is this:

Theorem 6. Let D be a connected diagram of an oriented link L. Let G be the
corresponding Seifert graph and G = B1 ∪ · · · ∪ Bk its decomposition into blocks.
Then there is an order in the set of blocks of G for which the Seifert matrix for the
projection surface is upper block triangular. More precisely, if Mi is the Seifert
matrix that corresponds to any basis Bi of H1(Bi ), i = 1, . . . , k, there exists a



HOMOGENEOUS LINKS AND THE SEIFERT MATRIX 375

permutation σ ∈ Sk such that the Seifert matrix takes on the form



B+σ(1) B+σ(2) . . . B+σ(k)
Bσ(1) Mσ(1) 0 . . . 0

Bσ(2) ∗ Mσ(2)
. . .

...
...

...
. . .

. . . 0
Bσ(k) ∗ . . . ∗ Mσ(k)

.
A link is homogeneous if it has a homogeneous diagram, which is a diagram

in which all the edges of each block of its Seifert graph have the same sign. Al-
ternating and positive diagrams (links) are homogeneous diagrams (links). The
knot 943 is an example of a homogeneous link that is neither positive nor alternat-
ing. Homogeneous links were introduced in [Cromwell 1989]. In knot theory the
adjective homogeneous was first applied to a certain class of braids in [Stallings
1978]. Certainly, the closure of a homogeneous braid is a homogeneous diagram,
although there are homogeneous links that cannot be presented as the closure of a
homogeneous braid, just as there are alternating links that cannot be presented as
the closure of alternating braids. In Cromwell proved the following basic result on
homogeneous links:

Theorem [Cromwell 1989; 2004]. Let D be a connected homogeneous diagram
of an oriented homogeneous link L and let G be the corresponding Seifert graph.
Then the highest degree of ∇L(z) is the rank of G. Let G = B1 ∪ · · · ∪ Bk be the
decomposition of G into blocks and Mi , i = 1, . . . , k, the corresponding Seifert
matrices. Then det Mi 6= 0 for i = 1, . . . , k, and the leading coefficient of ∇L(z) is

k∏
i=1

ε
ri
i |det Mi |

where εi is the sign of the edges in Bi and ri = rk Bi .

Corollary. A projection surface constructed from a connected homogeneous dia-
gram of an oriented link is a minimal-genus spanning surface for the link.

Cromwell’s proof is based on a previous construction of a specific resolving
tree for calculating the Conway polynomial [Cromwell 2004, Lemma 7.5.1]. This
means that no crossing is switched more than once on any path from the root of
the tree to one of its leaves. The skein relation is then considered, at both the
level of the diagram and the corresponding Seifert graph, having in mind that to
obtain terms involving powers of z when resolving the resolution tree, a crossing
must be smoothed in the diagram D, or equivalently, an edge must be deleted from
the graph G. A direct proof of the corollary has been recent and independently
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suggested by M. Hirasawa. The proof, outlined in [Abe 2011] (see also [Ozawa
2011]), is strongly based on a difficult result from [Gabai 1983], which states that
the sum of Murasugi of minimal genus surfaces is a minimal-genus surface. Hira-
sawa applies this result to the portions Fi above defined.

In this paper we give a different proof of Cromwell’s theorem, based on the close
relation between the Seifert matrix and the decomposition into blocks of the Seifert
graph stated in Theorem 6. The key point is the understanding of how the parts
of the projection surface corresponding to the blocks are geometrically positioned
among them. We remark that Theorem 6 can be useful even when the diagram is
not homogeneous. A special case, involving fibered knots of genus two formed by
plumbing Hopf bands, was already considered in [Melvin and Morton 1986]. We
deal with this topic in Section 2.

Since a homogeneous block of the Seifert graph corresponds to an alternating di-
agram, each little box in the diagonal of the Seifert matrix has nonzero determinant,
according to the work by K. Murasugi [1958a; 1958b; 1960] and independently
Crowell [1959]. Murasugi’s proof was accomplished by working on the Alexan-
der matrix of the Dehn presentation of the link, while Crowell worked with the
Wirtinger presentation of the fundamental group. In this paper we will prove this
result, the second ingredient of our argument, by looking at an explicit matrix of
degrees that uses the planar structure of the Seifert graph (Theorem 9). This will
be done in Section 3.

Section 4 contains a complete classification of genus-one homogeneous knots.

2. An order for the blocks and the Seifert matrix

The main achievement of this paper is to prove that there is a certain ordered
basis of the first homology group of the projection surface for which the Seifert
matrix has a block triangular form. We need first to prove that, in a certain sense,
there are only two types of blocks, or more precisely, there are only two possible
configurations for the portions FB associated to a block B.

Let a, b be two Seifert discs. We say that a contains b (written
a ⊃ b) if the projection onto the xy-plane of a contains that of b
(see figure). Equivalently, the Seifert circle associated to a
contains that associated to b, in the xy-plane.

�����
�����
�����
�����

�����
�����
�����
�����

a
b

Remark 1. If we project the projection surface onto the xy-plane, the only self-
intersections of its boundary are given by the crossings of the original diagram D,
and they are produced by the half-twists of the bands.

In particular the arrangement on the right is not
possible. As a result we obtain the next lemma.
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Lemma 2. Let a, b be two Seifert discs connected by a band. Then exactly one of
the following three statements holds:

(1) a ⊃ b and h(b)= h(a)+ 1.

(2) b ⊃ a and h(a)= h(b)+ 1.

(3) h(a)= h(b).

The proof is easy and left to the reader. Now, we can prove that there are
basically two types of blocks. Precisely:

Theorem 3. Let D be a diagram, F its projection surface and G the corresponding
Seifert graph. Then all the Seifert discs associated to a block of G have the same
height, except possibly one of them which contains all the other, being its height
one less.

Proof. Suppose that a and b are two Seifert discs with different height connected
by a band, both associated to the same block. By Lemma 2 we may assume that
one contains the other; say a ⊃ b. It turns out that there is no other Seifert disc
associated to the block with height lower than b, since that would make the vertex
corresponding to a a cut vertex, according to Remark 1. Analogously, any other
disc above b would make (the vertex corresponding to) b a cut vertex. �

Hence we have two possible arrangements for (the Seifert discs that correspond
to) a block: type I (fried eggs type) and type II (fried eggs with a pan type). In
a type II block, the pan is the Seifert disc with lowest height. The two types of
blocks are illustrated here:

Fried eggs Fried eggs with a pan

Following Cromwell [1989] or Murasugi [1958a; 1958b] we say that a (Seifert)
circle is of type I if it does not contain any other circle; otherwise it is of type II.
When a type II circle has other circles outside, it is called a decomposing circle.
By definition, a special diagram does not contain any decomposing circle. Note
that a type II circle is the boundary of the pan of a type II block, assuming that the
diagram is connected.

Now, recall from the introduction that the part of the projection surface that
corresponds to a block Bi is denoted by Fi , which is a submanifold of F . Recall
also that, since the cycles of a graph are the cycles of its blocks, we have that a
basis of H1(F) can be obtained by juxtaposing a basis for each block.
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Remark 4. Two different Fi ’s can have at most one common Seifert disc; hence
F is the Murasugi sum of the portions Fi ’s. The proof by Hirasawa mentioned in
the introduction follows from this fact.

In order to prove the main theorem, we need the following result of graph theory:

Lemma 5. Let G be a connected finite graph with at least one cut vertex. Then
there is a block of G which has exactly one cut vertex of G.

Proof. It can be deduced from Proposition 3.1.2 of [Diestel 2005]. It follows a
direct argument: delete any cut vertex v0 of C0 = G and consider C1 = C ′1 ∪ {v0}

where C ′1 is any connected component of C0− {v0}. We remark that, under these
assumptions, the cut vertices of C1 are exactly the cut vertices of G that lie in C1,
except for v0, and that any block of C1 is a block of G. If C1 has no cut vertices,
then it is the wanted block. Otherwise we select a cut vertex v1 of C1 and consider
C2 = C ′2 ∪ {v1} where C ′2 is a connected component of C1 − {v1} with v0 /∈ C ′2.
Repeating this process, we finally get a k ∈ N such that Ck has no cut vertices,
hence being the wanted block. Otherwise we would obtain an infinite sequence of
distinct vertices {v0, v1, v2, . . . } in the finite graph G, a contradiction. �

Theorem 6. Let D be a connected diagram of an oriented link L. Let G be the
corresponding Seifert graph and G = B1 ∪ · · · ∪ Bk its decomposition into blocks.
Then there is an order in the set of blocks of G for which the Seifert matrix for the
projection surface is upper block triangular. More precisely, if Mi is the Seifert
matrix that corresponds to any basis Bi of H1(Bi ), i = 1, . . . , k, there exists a
permutation σ ∈ Sk such that the Seifert matrix takes on the form



B+σ(1) B+σ(2) . . . B+σ(k)
Bσ(1) Mσ(1) 0 . . . 0

Bσ(2) ∗ Mσ(2)
. . .

...
...

...
. . .

. . . 0
Bσ(k) ∗ . . . ∗ Mσ(k)


Proof. By Lemma 5, there exists a block B which has exactly one cut vertex. Let
D be the Seifert disc associated to the unique cut vertex in B. Translated to the
surface, this means that the geometric block FB is separated from the rest of the
surface F , with D as the unique intersection.

We may assume, by induction on the number of blocks, that the Seifert matrix
for F\(FB\D) is upper triangular for a suitable order of the rest of blocks Bi ’s.
Suppose now that the positive orientation of the disc D, that looking at F×{1}, is
upwards. Then, the basis that corresponds to the block B must be added

– at the beginning if B is of type I, or D is an egg of the type II block B,

– at the end if D is the pan of the type II block B.
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Indeed, if the positive orientation of D were downward, these statements must
be interchanged.

In the following displayed figures, the shadowed discs correspond all to the
block B; the disc D, partially shadowed, is part of the two considered blocks,
B and any other block Bi previously ordered. On D there is an oriented arrow
looking upwards, indicating the positive orientation. Suppose now that g, gi ∈

H1(F) correspond to the blocks B and Bi respectively. We have to analyze the
three possible cases:

(1) Suppose that B is of type I. We have to see that lk(g, g+i ) = 0. This can be
easily checked if Bi is of type I, or Bi is of type II and the disc D is its pan. And it
is also true if Bi is of type II being D an egg of Bi , since in this case the eggs would
be on different half parts of the pan. To see this, project both blocks B and Bi onto
the plane z = h(D) − 1, hence the Seifert discs at height h(D) are now nested
inside the pan of the block Bi (all the eggs in the same pan). By Remark 1 there
is no intersections other than those given by the half-twists of the bands, which
means that the two blocks are basically in separated half parts of the pan of Bi . In
particular, a band crossed like this is not possible:

(2) Suppose that B is of type II, and the disc D is an egg of B. As in the previous
case, we have to see that lk(g, g+i ) = 0. This can be easily checked if any other
block Bi is of type I, or (see figure below) Bi is of type II and the disc D is the
pan of Bi .

Note that D cannot be an egg of another type II block Bi . Indeed, if it were,
again by Remark 1, the pan would be the same for B and Bi , hence the blocks B
and Bi would share at least two vertices. But, by their maximality, different blocks
of G overlap in at most one vertex.

(3) Suppose that B is of type II, and the disc D is its pan. In this case we have to
see that lk(gi , g+) = 0. This can be easily checked if the block Bi is of type I, or
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the disc D is an egg of a type II block Bi . And it is also true if the disc D is the pan
of another type II block Bi , since in this case, by a similar argument to that used
in the first case, the eggs would be on different half parts of the pan, the crossed
band shown here not being possible:

�

Example 7. Suppose that we wish to find the block triangular form for the Seifert
matrix of the link shown here:

We draw the corresponding Seifert circles and Seifert graph:

We decompose the Seifert graph into blocks B1, B2 and B3, from left to right:

B1 B2 B3

Here is projection surface:

We can consider B = B1 as the block with only one cut vertex. Then, if the
positive orientation of D is upwards, for the other two blocks the suitable basis is
given by the order of blocks {B3, B2}, which gives the matrix

B+3 B+2

B3 ∗ 0

B2 ∗ ∗

Since B = B1 is a block of type II and the disc D that corresponds to the cut
vertex is a pan of B, according to the proof of Theorem 6 we must add the basis
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for B at the end, obtaining the order {B3, B2, B1} and the matrix

B+3 B+2 B+1

B3 ∗ 0 0

B2 ∗ ∗ 0

B1 ∗ ∗ ∗

3. The box matrix associated to a block

Recall from the introduction that the coefficient c of the highest degree term in
∇L(z) is equal to (−1)n det M and the degree of ∇L(z) is n = rk H1(F), whenever
det M does not vanish. By Theorem 6, det M =

∏k
i=1 det Mi where Mi is the

Seifert matrix that corresponds to the surface Fi associated to the block Bi of G.
Then, in order to prove the theorem stated in the introduction, it is enough to show
that, if Bi is a block with rank ri and all its edges have sign εi , then the determinant
of its Seifert matrix does not vanish and has sign (−εi )

ri . Indeed, since n = rk G
is the sum of the ranks ri of its blocks, we would have

c = (−1)n det M = (−1)n
k∏

i=1
det Mi

= (−1)n
k∏

i=1
(−εi )

ri |det Mi | =
k∏

i=1
ε

ri
i |det Mi | 6= 0.

Now, the part of the diagram that corresponds to a homogeneous block is al-
ternating (in fact, it is a special alternating diagram), and the result for these links
follows from [Murasugi 1960] and [Crowell 1959]. Murasugi’s proof was accom-
plished by working on the Alexander matrix of the Dehn presentation, while Crow-
ell worked with the Wirtinger presentation of the fundamental group of the link.
In fact, Crowell’s paper rests on a striking application of a graph theoretical result,
the Bott–Mayberry matrix tree theorem, an approach also explained in [Burde and
Zieschang 2003, Proposition 13.24]. In this section we will prove it (Theorems 9
and 10) by looking at an explicit matrix of degrees defined using the planar structure
of the Seifert graph.

Let D be an oriented diagram, F its projection surface and G the corresponding
Seifert graph. Let B be a block of G. A basis {g1, . . . , gr } of
H1(B) (hence of H1(FB)) can be obtained collecting the
counterclockwise oriented cycles defined by the bound-
aries of the bounded regions Ri defined by B. Let Rr+1

be the unbounded region defined by this planar graph B
(like R5 in the figure on the right).

R1

R2 R3

R4

R5
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The Seifert graph is a bipartite graph because the projection surface is orientable,
hence every circuit in the graph must have an even length. In particular, we can
choose a sign for an arbitrary vertex, and extend this labelling to the other vertices
in an alternating fashion, when moving along the edges. We also have, for each
edge e in B, its corresponding sign ε(e) (if the original diagram is homogeneous,
this sign is constant in the block). We define Ei j as the set of edges in ∂Ri ∩ ∂R j

with the sign arrangement exemplified by the figure. (The edge e belongs to Ei j

with this arrangement of signs.)

R j

e
ε ε –ε

Ri

It turns out that lk(gi , g+i )=
1
2

∑
e∈∂Ri
−ε(e) and lk(gi , g+j )=

∑
e∈Ei j

ε(e).
In particular, if the block is homogeneous, let say with sign ε, then

lk(gi , g+i )=−εki ,

where 2ki is the number of edges in ∂Ri , and

lk(gi , g+j )= ε|Ei j |.

In other words, lk(gi , g+j ) is the number (with sign ε) of the edges e in the frontier
of the regions Ri and R j , such that one leaves the −ε signed vertex on the left
when going from Ri to R j through the edge e (see figure above).

As an example, we display the Seifert matrix associated to
the graph of the previous page, assuming that the top
left vertex is labelled with sign ε; the figure on the right
shows the other vertex labels (note that this constitutes a
homogeneous block; all the edges have sign ε):

R1
R2 R3

R4

R5

ε −ε

−ε ε ε

ε
−ε −ε

−ε ε
g+1 g+2 g+3 g+4

g1 –3ε ε ε 0
g2 ε –2ε 0 ε

g3 0 ε –3ε 0
g4 ε 0 ε –2ε


The sets Ei j satisfy two properties, which will play later a central role, especially

in Theorem 9:

(1) If e ∈ ∂Ri ∩∂R j , then e ∈ Ei j ⇐⇒ e /∈ E j i , and in particular |Ei j |+ |E j i | is
the cardinal of the edges in ∂Ri ∩ ∂R j .
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(2) Consider two consecutive edges e and f in the boundary of a certain region
Ri , which separate Ri from R j and Rk respectively (see figure), with possibly
j = k. Suppose that both edges have the same sign, which is the case if we
have a homogeneous graph. Then e ∈ Ei j ⇐⇒ f ∈ Eki .

R j Rk

e f
Ri

Remark 8. For a homogeneous block with sign ε, the sum of two transposed
elements in the corresponding Seifert matrix gives

lk(gi , g+j )+ lk(g j , g+i )= ε|Ei j | + ε|E j i | = ε |∂Ri ∩ ∂R j |.

The directed dual graph. A description of the Seifert matrix corresponding to a
homogeneous block can be better understood as a certain matrix of degrees for the
oriented dual graph. To construct the directed dual graph we draw a vertex vi in
the region Ri , including a vertex vr+1 for the unbounded region Rr+1, and for each
edge e in ∂Ri ∩ ∂R j we draw an edge ē joining vi and v j , the edge ē intersecting
the original graph only in e. Moreover, the edge ē is oriented from vi to v j if (and
only if) e ∈ Ei j . The directed dual graph in the case of our running example is
exhibited in the figure, assuming the sign ε =+1 for all the edges and for the top
left vertex.

+

vr+1

Note that the edges incident at any vertex have alternative orientations, which
is equivalent to the second property of the sets Ei j ’s. In particular the degrees of
the vertices are even numbers.

We now define mi i = −ε degi and mi j = ε degi j , where degi is the number of
edges leaving (or going to) vi and degi j is the number of edges from vi to v j . It
turns out that the matrix (mi j )1≤i, j≤r+1 has determinant zero, and we obtain the
Seifert matrix of the block by just deleting its last row and column. In our running
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example, for ε =+1, we would have
–3 1 1 0 1
1 –2 0 1 0
0 1 –3 0 2
1 0 1 –2 0
1 0 1 1 –3

 .
One should note that this is essentially what Proposition 13.21 in [Burde and

Zieschang 2003] states, where the adjective special is applied to a diagram if the
union of the black regions (assuming a chessboard coloring in which the unbounded
region is white) is the image of a Seifert surface under the projection that defines
the diagram.

Properties of the matrix for a homogeneous block. Sard matrices. Let ε be a
sign, +1 or −1. A square matrix A is said to be ε-signed if its diagonal elements
have sign−ε (in particular they do not vanish) and the elements out of the diagonal
are zero or have sign ε. The matrix A is said to be row-dominant if for any row i we
have |ai i | ≥

∑
j 6=i |ai j |. The matrix A is said to be strictly ascending row-dominant

(abbreviated, sard) if A is row-dominant and, in addition, there is an order of its
rows i1 < · · ·< ir such that |air ir |> 0 and for any k ∈ {1, . . . , r − 1} we have that
|aik ik |>

∑
j 6=i1,i2,...,ik

|aik j |.
The following matrix can be seen to be (+)-signed and sard choosing the order

3, 1, 2 for its rows (note that the condition |air ir |> 0 is for sure if A is ε-signed):–3 0 3
0 –2 1
1 0 –2


Theorem 9. Let B be a homogeneous block with sign ε. Then there exists a basis
of H1(B) such that the associated Seifert matrix M is ε-signed and sard.

Proof. Consider the basis of H1(B) given by the counterclockwise oriented cycles
{g1, . . . , gr }, boundaries of the bounded regions Ri of B. Then the Seifert matrix
M = (ai j )1≤i, j≤r is obviously ε-signed since ai i = lk(gi , g+i ) = −εki where ki is
half the number of edges in the boundary of Ri , and ai j = lk(gi , g+j ) = ε|Ei j | if
i 6= j . To see that A is row-dominant note that |ai i | = ki , and on the other hand∑

j 6=i |ai j | =
∑

j 6=i |Ei j | ≤ ki , the inequality by the second property of the sets Ei j .
We finally check that the matrix M is sard, by finding an order i1 < · · · < ir

for its rows such that |aik ik | >
∑

j 6=i1,i2,...,ik
|aik j | for any k ∈ {1, . . . , r − 1}. By

the second property of the sets Ei j there is always a bounded region Ri such that
Ei,r+1 6= ∅. The corresponding row is chosen to be the first one in this order,
that is, i1 = i . Note that, since |ai i | ≥

∑
1≤ j≤r+1, j 6=i |Ei j | and Ei,r+1 6= ∅, it
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follows that |ai i |>
∑

j 6=i |ai j |. Now, when we delete the i-th row and column, the
remaining matrix corresponds to the graph that remains after deleting the region Ri

(precisely, deleting the intersection between Ri and Rr+1). The region can be also
taken in such a way that the remaining graph is still a homogeneous block, hence
the repetition of this process provides the wanted order for the rows of M . �

The determinant for a homogeneous block. In this section we will prove that,
given a block with sign ε and rank r , the determinant of the corresponding sub-
matrix is nonzero, and its sign is equal to (−ε)r . To see this we just need a purely
algebraic result due to Murasugi. For the convenience of the reader, we reproduce
here its proof in a slightly different way:

Theorem 10 [Murasugi 1960, Section 2]. Let A be a square matrix of order r ,
ε-signed and sard. Then det A< 0 if ε=+1 and r is odd, and det A> 0 otherwise.
In other words, det A does not vanish and has sign (−ε)r .

Proof. By induction on r . The case r = 1 (odd) is trivial; for A = (a) we have
det A = a, and the result follows from the fact that A is ε-signed.

Now assume the statement for cases 1 to r−1, and consider the case r . Since A
is sard, there is an order i1< · · ·< ir of the rows such that for any k ∈ {1, . . . , r−1}
we have |aik ik |>

∑
j 6=i1,i2,...,ik

|aik j |. In particular, we have

ai1i1 =−

∑
j 6=i1

ai1 j − λ

with λ 6= 0 and sign ε. We now develop the determinant by the i1-row, obtaining

det A = det

 . . .

ai11 . . . ai1i1 . . . ai1r

. . .

= x − λy,

where

x = det

 . . .

ai11 . . . −
∑

j 6=i1
ai1 j . . . ai1r

. . .


and y is the determinant of the square matrix of order r − 1, obtained by deleting
the i1-th row and column. Since this matrix is also ε-signed and sard, by induction
y = (−ε)r−1

|y| 6= 0. Moreover, if each ai1 j = 0 for j 6= i1 then x = 0 obviously;
otherwise it is a square matrix of order r , ε-signed and row-dominant, and by
Lemma 11, either x = 0 or x has sign (−ε)r . Then

det A = x − λy = (−ε)r |x | − ε|λ|(−ε)r−1
|y| = (−ε)r (|x | + |λ||y|)

and the result follows since |λ|> 0, |y|> 0 and |x | ≥ 0. �
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Lemma 11. Let A be a square matrix of order r , ε-signed and row-dominant. Then
det A ≤ 0 if ε =+1 and r is odd, and det A ≥ 0 otherwise.

Proof. For technical reasons in the induction argument, we will prove this result
for a slightly wider category of matrices, the weak ε-signed and row-dominant
matrices. For this matrices the condition of being ε-signed is relaxed for allowing
zeros in the diagonal.

We proceed by induction on r . The case r = 1 is trivial. Assume now the
statement for cases 1 to r−1, and consider the case r . Since A is weak ε-signed and
row-dominant, each diagonal element of A can be written as ai i =−

∑
j 6=i ai j−λi

with λi = 0 or with sign ε.
Let Ai be the same matrix as A except for possibly the first i elements of its

diagonal, where ai i is replaced by ai i + λi . Let A0 = A. It turns out that

det A = det Ar −

r∑
i=1

λi det
(
(Ai−1)

i
i
)
,

where the notation Bi
i is used to denote the matrix obtained from B by deleting its

i-th row and i-th column. This follows from the fact that, for k = 1, . . . , r ,

det Ak−1 = det Ak − λk det
(
(Ak−1)

k
k
)
.

Note that the determinant of Ar is equal to zero, since the sum of all the elements
of each row is zero. Moreover, each matrix (Ai−1)

i
i is also weak ε-signed and row-

dominant, and has order r − 1. By induction, its determinant is zero or has sign
(−ε)r−1. Since each λi is zero or has sign −ε, the result follows. �

Here is an application of the argument developed in this section:

Claim. Let L be an oriented link which has a special alternating diagram. Then
the leading coefficient of ∇L(z) is ±1 if and only if L is the connected sum of
(2, q)-torus links.

Proof. Assume that L is the connected sum of (2, q)-torus links. Since ∇L]L ′(z)=
∇L(z)∇L ′(z), it is enough to show that the leading coefficient of ∇L(z) is ±1 if L
is a (2, q)-torus link. The diagram of L is then of this form, or its mirror image:

It has q crossings, all with the same sign ε. The corresponding
Seifert graph, shown on the right, is a homogeneous block B with
two vertices and q edges, all of them with sign ε.

Following the process explained at the beginning of this section, we obtain
the Seifert matrix M = (mi, j )i, j=1,...,q−1 where mi,i = −ε for i = 1, . . . , q − 1,
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mi,i+1= ε for i =1, . . . , q−2, and mi, j =0 otherwise. Then the leading coefficient
of ∇L(z) is εrk B

| det M | = εq−1 since rk B = 1− v+ e = 1− 2+ q = q − 1.
Suppose now that the leading coefficient of ∇L(z) is ±1, and L has a special

alternating diagram D. Then D is the connected sum of diagrams D1, . . . , Dr ,
where each Di is a diagram (of a link L i ) such that its Seifert graph has only one
(homogeneous) block:

Clearly, L = ]r
i=1L i . Since ∇L(z)=

∏r
i=1 ∇L i (z) and ∇L(z) ∈ Z [z±1

], the leading
coefficient of each∇L i (z) is±1. Hence it is enough to prove that L is a (2, q)-torus
link assuming that the leading coefficient of ∇L(z) is ±1, and L has a diagram D
whose associated Seifert graph is a homogeneous block B, let’s say with sign ε.

We will prove that B has the desired form (reproduced on the right for con-
venience). We do this by induction on the number of edges of
B. With this aim, we order the r bounded regions of B as in the
proof of Theorem 9. The corresponding Seifert matrix A is then
ε-signed and sard, and by the proof of Theorem 10, we have

det A = (−ε)r (|x | + |λ| |y|),

where y = det A1
1 6= 0. Since the leading coefficient of ∇L(z) is ±1, we have

det A =±1; since λ and y are nonzero integers, we have y = det A1
1 =±1.

Now, according to the proof of Theorem 9, A1
1 is the Seifert matrix associated

to the diagram D′ whose Seifert graph is B ′ = B \ (R1 ∩ Rr+1), where Rr+1 is
the unbounded region of B. Since B ′ is still a homogeneous block, by induction
we have that B ′ has the form shown above and to the right, and B adds a path
connecting the two vertices of B ′ in the unbounded region of B ′:

R1 Rr+1

Let 2k be the number of edges bounding R1 in B. Then the original Seifert
matrix is

A =


k ±1 0 · · · 0
0
...

0

A1
1
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or its transpose, in any case with determinant ±k. Hence k = 1 and the result
follows. �

Corollary 12. Let L be an oriented homogeneous link. Then the leading coefficient
of ∇L(z) equals ±1 if and only if L is the Murasugi sum of connected sums of
(2, q)-torus links.

4. Homogeneous knots of genus one

We finish the paper with a complete classification of the family of homogeneous
knots of genus one. Let D be a homogeneous diagram of a homogeneous knot K of
genus one. Let F and G be respectively the projection surface and the Seifert graph
associated to the diagram D. We already know that the genus of F is exactly the
genus of the knot. Since 2g(F)+µ−1= rk G and K is a link with one component,
we deduce that G has rank two. Here are the two types of graphs:

G(a, b, c) = a b c m k = G(m, k)

Homogeneous graphs with rank two: one and two blocks

As indicated, we name them G(a, b, c) and G(m, k), respectively; the absolute
values of the integers a, b, c,m, k are the numbers of corresponding edges, and
their signs are the signs of these edges.

Note that these graphs could have some tails, but this would not affect to the
knot type. Since G(a, b, c) is homogeneous and has only one block, a, b, c must
have all the same sign; since F is orientable, they have also the same parity. On
the contrary, G(m, k) has two blocks, hence m and k can have different signs, but
both must be even because of the orientability. Note also that the second graph can
be considered a degenerated form of the first one, with b = 0.

In general, the Seifert graph does not determine the link where it comes from,
although in the first case it does. In G(a, b, c) there are exactly two trivalent ver-
tices; the corresponding Seifert circles can be one inside the other, or separated.
When viewed this in the sphere S2 there is no difference, and the corresponding
knot is the pretzel knot with diagram P(a, b, c). Moreover, since P(a, b, c) must
be a knot, the numbers a, b, c should be all odd, or exactly one of them should be
even. It follows that all of them are odd.

Now consider the graph with two blocks, G(m, k). There is only one vertex with
valence four, given the two possible configurations for the Seifert circles shown in



HOMOGENEOUS LINKS AND THE SEIFERT MATRIX 389

the figure (which illustrates the case |m| = |k| = 4):

The first configuration corresponds to a link with three components, and the
second corresponds to a knot K (see figure below). Moreover, the knot K obtained
is also a pretzel knot, given by the pretzel diagram D(m, k) = P(m, ε, |k|. . ., ε),
where m and k are even integers and ε is the sign of k. For example, D(4,−2)=
P(4,−1,−1) is the example in the right diagram:

What we have done is to prove the following result:

Theorem 13. A genus-one knot is homogeneous if and only if it belongs to one of
the two following classes of knots:

(1) Pretzel knots with diagram P(a, b, c), where a, b, c are odd integers with the
same sign.

(2) Pretzel knots with diagram D(m, k) = P(m, ε, |k|. . ., ε), where m and k are
nonzero even integers and ε = k/|k| is the sign of k.

This classification and some partial information from the Jones polynomial al-
low us to give another proof of the following result:

Corollary 14 [Cromwell 1989]. Pretzel knots P(p,−q,−r) with 3 ≤ p ≤ q ≤ r ,
all of them odd, are not homogeneous.

In the original proof, Cromwell calculated the Homfly polynomial P(v, z) =∑r
i=0 αi (v)zi and checked that αr (v) contains terms of both signs [Cromwell 1989,

Theorem 10]. But, for homogeneous links, these coefficients are all nonnegative
or all nonpositive, according to a result [ibid, Corollary 4.3] due to Traczyk.

Proof. We want to prove that the knot K defined by a pretzel diagram P(p,−q,−r)
is not homogeneous. First note that K has genus one, since the projection surface
defined by the diagram P(p,−q,−r) has Euler characteristic −1, hence genus
one, and K is not the trivial knot; for example, according to [Manchón 2003,
Theorem 2, case (iv)(a)], the span of its Jones polynomial (with normalization
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−t−1/2
− t1/2) is p + q + r − min{p, q − 1}, which is different from one since

3≤ p ≤ q, r .
Now, the lowest degree and the coefficient of the highest degree term of the Jones

polynomial tell us that K does not belong to any of the two classes of homogeneous
knots of genus one given by Theorem 13, as the following table shows:

Knot diagram Lowest degree Coefficient of the
highest degree term

P(p,−q,−r)
3≤ p < q ≤ r 1/2 −1

3≤ p = q ≤ r −1/2

P(a, b, c)
0≤ a, b, c −3/2− a− b− c

a, b, c ≤ 0 1/2 1

m, k > 0 −m− 1/2

D(m, k)
m < 0, k > 0 1/2 1

m > 0, k < 0 k−m− 1/2

m, k < 0 k− 1/2 �

Note that the Conway polynomial together with the span of the Jones polynomial
are not enough in order to prove Corollary 14. According to the values displayed
in the following table, we have for example that the knots defined by the diagrams
P(3,−45,−91) and P(11, 23, 101) share Conway polynomial and the span of
their Jones polynomials, and the same happens to the pair of knots defined by the
diagrams P(11,−15,−15) and D(−4, 26).

Knot diagram Conway polynomial
1+ λz2, where λ is

Jones polynomial span

P(p,−q,−r)
3≤ p < q ≤ r

(qr − pq − pr + 1)/4
q + r

3≤ p = q ≤ r q + r + 1

P(a, b, c)
0≤ a, b, c

(ab+ ac+ bc+ 1)/4
1+ a+ b+ c

a, b, c ≤ 0 1− a− b− c

m, k > 0 1+m+ k

D(m, k)
m < 0, k > 0

mk/4
k−m

m > 0, k < 0 m− k

m, k < 0 1−m− k
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We also have the following result (as above, the Jones polynomial of the pretzel
links and their spans have been calculated following [Manchón 2003]):

Corollary 15. At least one of the extreme coefficients of the Jones polynomial of a
homogeneous knot of genus one is −1.

Finally, we remark that Stoimenow [2008] has showed that a genus-two homo-
geneous knot is alternating or positive. Jong and Kishimoto [2009] have studied
genus-two positive knots extensively.
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QUANTUM AFFINE ALGEBRAS, CANONICAL BASES, AND
q-DEFORMATION OF ARITHMETICAL FUNCTIONS

HENRY H. KIM AND KYU-HWAN LEE

We obtain affine analogs of the Gindikin–Karpelevich and Casselman–Sha-
lika formulas as sums over Kashiwara and Lusztig’s canonical bases. As
suggested by these formulas, we define natural q-deformation of arithmeti-
cal functions such as (multi)partition functions and Ramanujan τ -functions,
and prove various identities among them. In some examples we recover clas-
sical identities by taking limits. Additionally, we consider q-deformation of
the Kostant function and study certain q-polynomials whose special values
are weight multiplicities.

Introduction

This paper is a continuation of [Kim and Lee 2011]. The classical Gindikin–
Karpelevich formula and the Casselman–Shalika formula express certain integrals
of spherical functions over maximal unipotent subgroups of p-adic groups as prod-
ucts over all positive roots. In the previous paper, we expressed the products over
positive roots as sums over Kashiwara and Lusztig’s canonical bases. This idea first
appeared in [Bump and Nakasuji 2010]. Let G be a split reductive p-adic group,
χ an unramified character of T , the maximal torus, and f 0 the standard spherical
vector corresponding to χ . Let z be the element of L T ⊂ L G, the L-group of G,
corresponding to χ by the Satake isomorphism. Then∫

N−(F)
f 0(n) dn =

∏
α∈1+

1− q−1zα

1− zα
=

∑
b∈B

(1− q−1)d(φi (b))zwt(b),(0-1) ∫
N−(F)

f 0(n)ψλ(n) dn = χ(V (λ))
∏
α∈1+

(1− q−1zα)(0-2)

= (−t)M z2ρ χ(V (λ))
∏
α∈1+

(1− t−1z−α)

= (−t)M zρ
∑

b′⊗b∈Bλ⊗Bρ

Gρ(b; q)zwt(b′⊗b),

Henry Kim was partially supported by an NSERC grant.
MSC2010: primary 17B37; secondary 05E10.
Keywords: quantum affine algebras, canonical bases, q-deformation of arithmetic functions.
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where 1+ is the set of positive roots, B is the canonical basis, Bλ is the crystal
basis with highest weight λ, and we set M = |1+| and t = q−1. Notice that in the
Casselman–Shalika formula, we used crystal bases because they behave well with
respect to the tensor product.

In the affine Kac–Moody groups, A. Braverman, D. Kazhdan, and M. Patnaik
[Braverman et al. ≥ 2012] calculated the integral (0-1) and obtained a formula of
the form

(0-3)
∫

N−(F)
f 0(n) dn = A

∏
α∈1+

(
1− q−1zα

1− zα

)multα

,

where A is a certain correction factor. When the underlying finite simple Lie alge-
bra gcl is simply laced of rank n, A is given by

n∏
i=1

∞∏
j=1

1− q−di z jδ

1− q−di−1z jδ ,

where di ’s are the exponents of gcl, and δ is the minimal positive imaginary root.
In this paper, we use the explicit description of the canonical basis introduced by

Beck, Chari, Pressley, and Nakajima [Beck et al. 1999; Beck and Nakajima 2004]
to write the right-hand side of (0-3) as a sum over the canonical basis. Moreover, we
obtain the generalization of (0-2). Namely, we prove the following (Theorem 1-16
and Corollary 2-12, respectively).∏

α∈1+

(
1− q−1zα

1− zα

)multα

=

∑
b∈B

(1− q−1)d(φ(b))zwt(b),(0-4)

χ(V (λ))zρ
∏
α∈1+

(1− q−1z−α)multα
=

∑
b′⊗b∈Bλ⊗Bρ

Gρ(b; q) zwt(b′⊗b),(0-5)

where B is the canonical basis of U+ (the positive part of the quantum affine
algebra), and Bλ is the crystal basis with highest weight λ. Here z is a formal
variable. We also write the correction factor A as a sum over a canonical basis in
the case when gcl is simply laced.

We first prove (0-4) by induction, and deduce (0-5) from (0-4) and the Weyl–
Kac character formula. In the course of the proof, we see that (0-5) can be con-
sidered as a q-deformation of the Weyl–Kac character formula. We also introduce
Hλ+ρ(µ; q) ∈Z[q−1

] (Definition 2-2). It has many remarkable properties; its con-
stant term is the multiplicity of the weight λ−µ in V (λ), and the value at q=−1 is
the multiplicity of the weight λ+ρ−µ in the tensor product V (λ)⊗V (ρ). It is also
related to Kazhdan–Lusztig polynomials when g is of finite type (Corollary 3-30).

When q = −1 and λ is a strictly dominant weight, the Casselman–Shalika for-
mula (0-5) gives a formula for multiplicity of the weight ν in the tensor product
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V (λ − ρ) ⊗ V (ρ) in terms of q-deformation of the Kostant partition function,
generalizing the result of [Guillemin and Rassart 2004, Theorem 1] to affine Kac–
Moody algebras; see (3-24). More precisely, we define K∞q (µ) in a similar way
as in [Guillemin and Rassart 2004], by∑

µ∈Q+

K∞q (µ)z
µ
=

∏
α∈1+

(
1− q−1zα

1− zα

)multα

.

Note that when q = ∞, K∞q (µ) is the classical Kostant partition function. Then
we have

dim(V (λ− ρ)⊗ V (ρ))ν =
∑
w∈W

(−1)l(w)K∞
−1(wλ− ν).

Since the set of positive roots is infinite, the left-hand sides of (0-4) and (0-5)
become infinite products. This leads to very interesting q-deformation of arithmeti-
cal functions such as multipartition functions and Fourier coefficients of modular
forms. We indicate one example here.

We define εq,n(k) as
∞∏

k=1

(1− q−1tk)n =

∞∑
k=0

εq,n(k)tk .

Note that ε1,n(k) is a classical arithmetic function related to modular forms. For
example, we have ε1,24(k) = τ(k + 1), where τ(k) is the Ramanujan τ -function.
Thus the function εq,n(k) should be considered as a q-deformation of the function
ε1,n(k).

For a multipartition p= (ρ(1), . . . , ρ(n)) ∈ P(n), we define

pq,n(k)=
∑

p∈P(n)
| p|=k

(1− q−1)d( p), k ≥ 1,

and set pq,n(0) = 1. Here | p| is the weight of the multipartition and the num-
ber d( p) is defined in Section 1. Notice that if q → ∞ and k > 0, the func-
tion p∞,n(k) is just the multipartition function with n-components. In particular,
p∞,1(k) = p(k), the usual partition function. Hence we can think of pq,n(k) as a
q-deformation of the multipartition function.

It turns out that there are remarkable relations among these q-deformations. We
prove (Theorem 3-8)

εq,n(k)=
k∑

r=0

ε1,n(r)pq,n(k− r),

which yields an infinite family of q-polynomial identities. We also obtain “classi-
cal” identities by taking limits.
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When n = 24 and q→∞, the identity becomes a well-known recurrence for-
mula for the Ramanujan τ -function:

0=
k∑

r=0

τ(r + 1)p∞,24(k− r).

In fact, we prove another family of identities (Proposition 3-13) and obtain an
intriguing characterization of the function εq,n(k). In Example 3-14, by taking
q = 1, we write τ(k+ 1) as a sum of certain integers arising from the structure of
the affine Lie algebra of type A(1)4 .

These q-deformations of arithmetic functions essentially come from the obser-
vation that the Casselman–Shalika formula may be interpreted as a q-deformation
of the Weyl–Kac character formula. In a forthcoming paper, we intend to study q-
deformation of other arithmetical functions such as the divisor function, and obtain
identities which become classical identities when q = 1 or q→∞.

1. Gindikin–Karpelevich formula

Let g be an untwisted affine Kac–Moody algebra over C. We denote by I =
{0, 1, . . . , n} the set of indices for simple roots. Let W be the Weyl group. We
keep almost all the notations from [Beck and Nakajima 2004, Sections 2 and 3].
However, we use v for the parameter of a quantum group and reserve q for another
parameter. Whenever there is a discrepancy in notations, we will make it clear.

We fix h = (. . . , i−1, i0, i1, . . . ) as in [Beck and Nakajima 2004, Section 3.1].
Then for any integers m<k, the product sim sim+1 · · · sik ∈W is a reduced expression,
as is the product sik sik−1 · · · sim ∈W . We set

βk =

{
si0si−1 · · · sik+1(αik ) if k ≤ 0,
si1si2 · · · sik−1(αik ) if k > 0,

and define

R(k)= {β0, β−1, . . . , βk} for k ≤ 0 and R(k)= {β1, β2, . . . , βk} for k > 0.

Let Ti = T
′′

i,1 be the automorphism of U as in [Lusztig 1993, Section 37.1.3],
and let

c+ = (c0, c−1, c−2, . . . ) ∈ NZ≤0 and c− = (c1, c2, . . . ) ∈ NZ>0

be functions (or sequences) that are zero almost everywhere. We denote by C>
(respectively C<) the set of such functions c+ (respectively c−). Then we define

Ec+ = E (c0)
i0

T−1
i0
(E (c−1)

i−1
)T−1

i0
T−1

i−1
(E (c−2)

i−2
) · · ·

and
Ec− = · · · Ti1 Ti2(E

(c3)
i3
)Ti1(E

(c2)
i2
)E (c1)

i1
.
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We set

B(k)=
{
{Ec+ : cm = 0 for m < k} for k ≤ 0,
{Ec− : cm = 0 for m > k} for k > 0.

We denote by B the Kashiwara-Lusztig canonical basis for U+, the positive part
of the quantum affine algebra.

Proposition 1-1 [Beck et al. 1999; Beck and Nakajima 2004]. For each Ec+ ∈

B(k), k ≤ 0 (respectively Ec− ∈ B(k), k > 0), there exists a unique b ∈ B such that

(1-2) b ≡ Ec+ (respectively Ec−) mod v−1Z[v−1
].

We denote by B(k) the subset of B corresponding to B(k) as in the above
theorem. Then we define the map φ : B(k)→ C> for k ≤ 0 (respectively C< for
k > 0) to be b 7→ c+ (respectively c−) such that the condition (1-2) holds. For an
element c+= (c0, c−1, . . . )∈C> (respectively c−= (c1, c2, . . . )∈C>), we define
d(c+) (respectively d(c−)) to be the number of nonzero ci ’s.

Proposition 1-3. For each k ∈ Z, we have

(1-4)
∏

α∈R(k)

1− q−1zα

1− zα
=

∑
b∈B(k)

(1− q−1)d(φ(b))zwt(b).

Proof. First we assume k > 0 and use induction on k. If k = 1, then the identity
(1-4) is easily verified. Now, using an induction argument, we obtain∏
α∈R(k)

1− q−1zα

1− zα

=

( ∏
α∈R(k−1)

1− q−1zα

1− zα

)
1− q−1zβk

1− zβk

=

( ∑
b∈B(k−1)

(1− q−1)d(φ(b))zwt(b)
)(

1+
∑
j≥1

(1− q−1)z jβk

)
=

∑
b∈B(k−1)

(1− q−1)d(φ(b))zwt(b)
+

∑
j≥1

∑
b∈B(k−1)

(1− q−1)d(φ(b))+1zwt(b)+ jβk .

On the other hand, since b′ ∈ B(k) satisfies

b′ ≡ bTi1 Ti2 · · · Tik (E
( j)
k ) mod v−1Z[v−1

]

for unique b ∈ B(k− 1) and j ≥ 0, we can write B(k) as a disjoint union

B(k)=
⋃
j≥0

{b′ ∈ B(k) : φ(b′)= (c1, . . . , ck−1, j, 0, 0, . . . ), ci ∈ N}.
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Now it is clear that∑
b∈B(k)

(1− q−1)d(φ(b))zwt(b)

=

∑
b∈B(k−1)

(1− q−1)d(φ(b))zwt(b)
+

∑
j≥1

∑
b∈B(k−1)

(1− q−1)d(φ(b))+1zwt(b)+ jβk .

This completes the proof of the case k > 0. The case k ≤ 0 can be proved in a
similar way through a downward induction. �

We set
R> =

⋃
k≤0

R(k) and R< =

⋃
k>0

R(k).

Similarly, we set

B> =
⋃
k≤0

B(k) and B< =
⋃
k>0

B(k).

Corollary 1-5. We have

(1-6)
∏
α∈R>

1− q−1zα

1− zα
=

∑
b∈B>

(1− q−1)d(φ(b))zwt(b).

The same identity is true if R> and B> are replaced with R< and B<, respectively.

Let c0 = (ρ
(1), ρ(2), . . . , ρ(n)) be a multipartition with n components, that is,

each component ρ(i) is a partition. We denote by P(n) the set of all multipartitions
with n components. Let Sc0 be defined as in [Beck and Nakajima 2004, p. 352]
and set

B0 = {Sc0 : c0 ∈ P(n)}.

Proposition 1-7 [Beck et al. 1999; Beck and Nakajima 2004]. For each Sc0 ∈ B0,
there exists a unique b ∈ B such that

(1-8) b ≡ Sc0 mod v−1Z[v−1
].

We denote by B0 the subset of B corresponding to B0. Using the same notation
φ as we used for B(k), we define a function φ : B0→P(n), b 7→ c0, such that the
condition (1-8) is satisfied.

For a partition p= (1m12m2 · · · rmr · · · ), we define

d( p)= #{r : mr 6= 0} and | p| = m1+ 2m2+ 3m3+ · · · .

Then for a multipartition c0 = (ρ
(1), ρ(2), . . . , ρ(n)) ∈ P(n), we set

d(c0)= d(ρ(1))+ d(ρ(2))+ · · ·+ d(ρ(n)).
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We obtain from the definition of Sc0 that if φ(b)= c0 then

wt(b)= |c0|δ,

where |c0| = |ρ
(1)
| + · · · + |ρ(n)| is the weight of the multipartition c0.

Proposition 1-9. We have

(1-10)
∏
α∈1+im

(
1− q−1zα

1− zα

)multα

=

∞∏
k=1

(
1− q−1zkδ

1− zkδ

)n

=

∑
b∈B0

(1−q−1)d(φ(b))zwt(b),

where 1+im is the set of positive imaginary roots of g.

Proof. The first equality follows from the fact that 1+im = {δ, 2δ, 3δ, . . . } and
mult(kδ) = n for all k = 1, 2, . . . . Now we consider the second equality and
assume n = 1. Then we have

(1-11)
∞∏

k=1

(
1− q−1zkδ

1− zkδ

)
=

∞∏
k=1

(
1+

∞∑
j=1

(1− q−1)z jkδ
)
.

We consider the generating function of the partition function p(m):

(1-12)
∞∑

m=0

p(m)zmδ
=

∞∏
k=1

(
1+

∞∑
j=1

z jkδ
)
=

∑
ρ(1)∈P(1)

z|ρ
(1)
|δ
=

∑
b∈B0

zwt(b).

Comparing (1-11) and (1-12), we see that if we expand the product in the right-
hand side of (1-11) into a sum, the coefficient of z|ρ(1)|δ will be a power of (1−q−1)

and the exponent of (1−q−1) is exactly the number d(ρ(1)). Therefore, we obtain
∞∏

k=1

(
1− q−1zkδ

1− zkδ

)
=

∑
ρ(1)∈P(1)

(1− q−1)d(ρ
(1))z|ρ

(1)
|δ
=

∑
b∈B0

(1− q−1)d(b)zwt(b).

Next we assume that n = 2. Then we have
∞∏

k=1

(
1− q−1zkδ

1− zkδ

)2

=

( ∑
ρ(1)∈P(1)

(1− q−1)d(ρ
(1))z|ρ

(1)
|δ

)( ∑
ρ(2)∈P(1)

(1− q−1)d(ρ
(2))z|ρ

(2)
|δ

)
=

∑
(ρ(1),ρ(2))∈P(2)

(1− q−1)d(ρ
(1))+d(ρ(2))z(|ρ

(1)
|+|ρ(2)|)δ

=

∑
b∈B0

(1− q−1)d(b)zwt(b).

It is now clear that this argument naturally generalizes to the case n > 2. �



400 HENRY H. KIM AND KYU-HWAN LEE

Let us consider the correction factor A in (0-3). We will make a modification
of the formula (1-10) to write A as a sum over B0 in the case when the underlying
classical Lie algebra gcl is simply laced. For a partition p = (1m12m2 · · · ) and
di ∈ N, we define

Qdi ( p, j)=
{
(1− q)q−(di+1)m j if m j 6= 0,
1 if m j = 0,

and Qdi ( p)=
∞∏
j=1

Qdi ( p, j).

For a multipartition p= (ρ(1), . . . , ρ(n)) and di ∈ N, i = 1, . . . , n, we define

Qd1,...,dn ( p)=
n∏

i=1

Qdi (ρ
(i)).

Then we obtain:

Corollary 1-13. Assume that gcl is simply laced. Then we have

A =
n∏

i=1

∞∏
j=1

1− q−di z jδ

1− q−di−1z jδ =
∑
b∈B0

Q(φ(b))zwt(b),

where the di ’s are the exponents of gcl and we write Q( p)= Qd1,...,dn ( p).

Proof. The first equality is a result in [Braverman et al. ≥ 2012] and the second
can be obtained using a similar argument as in the proof of Proposition 1-9. �

Let C= C>×P(n)×C< as in [Beck and Nakajima 2004].

Theorem 1-14 [Beck et al. 1999; Beck and Nakajima 2004]. There is a bijection
between the sets B and C such that for each c = (c+, c0, c−) ∈ C, there exists a
unique b ∈ B such that

(1-15) b ≡ Ec+Sc0 Ec− mod v−1Z[v−1
].

Then we naturally extend the function φ to a bijection of B onto C and the
number d(c) is also defined by d(c)= d(c+)+ d(c0)+ d(c−) for each c ∈ C.

Theorem 1-16. We have

(1-17)
∏
α∈1+

(
1− q−1zα

1− zα

)multα

=

∑
b∈B

(1− q−1)d(φ(b))zwt(b).

Proof. Recall that 1+ =1+re ∪1
+

im, 1+re =R> ∪R<, and multα = 1 for α ∈1+re.
Then the identity of the theorem follows from Corollary 1-5, Proposition 1-9, and
Theorem 1-14. �
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2. Casselman–Shalika formula

For the functions c+ = (c0, c−1, c−2, . . . ) ∈ C> and c− = (c1, c2, . . . ) ∈ C<, we
define

|c+| = c0+ c−1+ c−2+ · · · and |c−| = c1+ c2+ · · · .

For a multipartition c0= (ρ
(1), ρ(2), . . . , ρ(n))∈P(n), set |c0| = |ρ

(1)
|+· · ·+|ρ(n)|

as in Section 1.
Using similar arguments as in Section 1, we obtain the following identities.

Proposition 2-1. (1) For each k ∈ Z,∏
α∈R(k)

(1− q−1zα)−1
=

∑
b∈B(k)

q−|φ(b)|zwt(b).

(2) The following identity is still true if R> and B> are replaced with R< and
B<, respectively.∏

α∈R>

(1− q−1zα)−1
=

∑
b∈B>

q−|φ(b)|zwt(b).

(3)
∏
α∈1+im

(
1− q−1zα

)−multα
=

∞∏
k=1

(
1− q−1zkδ)−n

=

∑
b∈B0

q−|φ(b)|zwt(b).

(4)
∏
α∈1+

(1− q−1zα)−multα
=

∑
b∈B

q−|φ(b)|zwt(b).

Let P+= {λ∈ P : 〈hi , λ〉 ≥ 0 for all i ∈ I }. Recall that the irreducible g-module
V (λ) is integrable if and only if λ ∈ P+ [Kac 1990, Lemma 10.1].

Definition 2-2. Let λ ∈ P+. We define Hλ( · ; q) : Q+→ Z[q−1
] using the gener-

ating series∑
µ∈Q+

Hλ(µ; q)zλ−µ =
∑
w∈W

(−1)`(w)
∑
b∈B

(1− q−1)d(φ(b))zwλ−wt(b)

=

(∑
w∈W

(−1)`(w)zwλ
)(∑

b∈B

(1− q−1)d(φ(b))z−wt(b)
)
,

and we write

χq(V (λ))=
∑
µ∈Q+

Hλ(µ; q)zλ−µ.

We denote by χ(V (λ)) the usual character of V (λ). We have the element d ∈ h

such that α0(d)= 1 and α j (d)= 0, j ∈ I \ {0}. We define ρ ∈ h∗ as in [Kac 1990,
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Chapter 6] by ρ(h j )= 1, j ∈ I and ρ(d)= 0. By the Weyl–Kac character formula,∑
w∈W

(−1)`(w)zw(λ+ρ)−ρ∏
α∈1+

(1− z−α)multα
= χ(V (λ)).

In particular, if λ= 0, then∑
w∈W

(−1)`(w)zwρ = zρ
∏
α∈1+

(1− z−α)multα.

By Theorem 1-16,∑
b∈B

(1− q−1)d(φ(b))z−wt(b)
=

∏
α∈1+

(
1− q−1z−α

1− z−α

)multα

.

Thus we obtain

χq(V (ρ))=
(∑
w∈W

(−1)`(w)zwρ
)(∑

b∈B

(1− q−1)d(φ(b))z−wt(b)
)

= zρ
∏
α∈1+

(1− z−α)multα
∏
α∈1+

(
1− q−1z−α

1− z−α

)multα

= zρ
∏
α∈1+

(1− q−1z−α)multα.

Therefore we have proved that

(2-3) χq(V (ρ))= zρ
∏
α∈1+

(1− q−1z−α)multα.

When q = −1 in (2-3), we have the following identity from [Kac 1990, Exer-
cise 10.1].

Lemma 2-4. χ−1(V (ρ))= zρ
∏
α∈1+

(1+ z−α)multα
= χ(V (ρ)).

Remark 2-5. By Definition 2-2,

χ−1(V (ρ))=
∑
µ∈Q+

Hρ(µ;−1)zρ−µ = zρ
∏
α∈1+

(1+ z−α)multα.

Therefore, if Hρ(µ;−1) 6= 0, ρ −µ must be a weight of V (ρ) and Hρ(µ;−1) is
the multiplicity of ρ−µ in V (ρ).

Now we have the following affine analog of the Casselman–Shalika formula.

Corollary 2-6.

(2-7) χq(V (λ+ ρ))= χ(V (λ))χq(V (ρ)).
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Proof. By Definition 2-2 and Theorem 1-16,

χq(V (λ+ ρ))=
(∑
w∈W

(−1)`(w)zw(λ+ρ)
) ∏
α∈1+

(
1− q−1z−α

1− z−α

)multα

.

By the Weyl–Kac character formula and (2-3), the right-hand side is

χ(V (λ))χq(V (ρ)). �

Remark 2-8. When q = 1, we see that χ1(V (λ+ ρ))z−ρ is the numerator of the
Weyl–Kac character formula. Hence we can think of (2-7) as a q-deformation of
Weyl–Kac character formula. Since χ∞(V (ρ))= zρ , by setting q =∞, we have

χ∞(V (λ+ ρ))= zρχ(V (λ)).

Hence we may consider χq(V (λ+ρ))z−ρ as a q-deformation of χ(V (λ)). More-
over, by Definition 2-2,∑

µ∈Q+

Hλ+ρ(µ;∞)zλ−µ = χ(V (λ)).

Therefore, Hλ+ρ(µ;∞) is the multiplicity of the weight λ−µ in V (λ).

By setting q =−1 in (2-7), and by Lemma 2-4 we get the following.

Lemma 2-9. χ−1(V (λ+ ρ))=
∑
µ∈Q+

Hλ+ρ(µ;−1)zλ+ρ−µ

= χ(V (λ))χ(V (ρ))= χ(V (λ)⊗ V (ρ)).

Hence, Hλ+ρ(µ;−1) is the multiplicity of the weight λ+ρ−µ in the tensor product
V (λ)⊗ V (ρ).

Before we investigate further the implication of the Casselman–Shalika formula
(2-7), we need the following lemma.

Lemma 2-10. Assume that λ1, λ2 ∈ P+. Then the set of weights of V (λ1)⊗V (λ2)

is the same as that of V (λ1+ λ2).

Proof. Suppose that λ1, λ2 ∈ P+. Let V (λ1) and V (λ2) be the integrable high-
est weight modules with highest weights λ1 and λ2, respectively. By [Kac 1990,
p. 211], V (λ1 + λ2) occurs in V (λ1)⊗ V (λ2) with multiplicity one. Hence it is
enough to prove that any weight of V (λ1)⊗ V (λ2) is a weight of V (λ1+ λ2).

If V1 and V2 are modules in the category O, the weight space of (V1⊗ V2)µ for
µ ∈ h∗, is given by

(V1⊗ V2)µ =
∑
ν∈h∗

(V1)ν ⊗ (V2)µ−ν .
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Hence weights of V (λ1)⊗ V (λ2) are of the form µ1 +µ2, where µ1 and µ2 are
weights of V (λ1) and V (λ2), respectively. Furthermore, since V (λ1)⊗ V (λ2) is
completely reducible, a weight µ1+µ2 of V (λ1)⊗V (λ2) is a weight of the module
V (λ) for some λ ∈ P+ that appears in the decomposition of V (λ1)⊗ V (λ2).

It follows from [Kac 1990, Corollary 10.1] that we can choose w ∈W such that
w(µ1+µ2)∈ P+. Then, by [Kac 1990, Proposition 11.2], we need only show that
w(µ1+µ2) is nondegenerate with respect to λ1+λ2. By [Kac 1990, Lemma 11.2],
wµ1 and wµ2 are nondegenerate with respect to λ1 and λ2, respectively. Now,
from the definition of nondegeneracy [Kac 1990, p. 190], we see that wµ1+wµ2

is nondegenerate with respect to λ1+ λ2. �

Now we use crystal bases, namely, bases at v = 0, since they behave nicely
under tensor products. Let Bλ be the crystal basis associated to a dominant integral
weight λ ∈ P+. We choose Gρ( · ; q) :Bρ→ Z[q−1

] by assigning any element of
Z[q−1

] to each b ∈Bρ so that

(2-11) Hρ(µ; q)=
∑

b∈Bρ

wt(b)=ρ−µ

Gρ(b; q).

By Remark 2-5, it is enough to consider µ ∈ Q+ such that ρ −µ is a weight of
b ∈Bρ .

Using the function Gρ( · ; q), we can rewrite the Casselman–Shalika formula in
Corollary 2-6 in a familiar form:

Corollary 2-12.

(2-13)
∑
µ∈Q+

Hλ+ρ(µ; q)zλ+ρ−µ = χ(V (λ))zρ
∏
α∈1+

(1− q−1z−α)multα

=

∑
b′⊗b∈Bλ⊗Bρ

Gρ(b; q)zwt(b′⊗b).

Proof. The first equality is obvious from (2-3) and Corollary 2-6. For the second
equality, we obtain

χ(V (λ))zρ
∏
α∈1+

(1− q−1z−α)multα

= χ(V (λ))χq(V (ρ))=
( ∑

b′∈Bλ

zwt(b′)
)(∑

µ∈Q+

Hρ(µ; q) zρ−µ
)

=

( ∑
b′∈Bλ

zwt(b′)
)(∑

b∈Bρ

Gρ(b; q)zwt(b)
)
=

∑
b′⊗b∈Bλ⊗Bρ

Gρ(b; q)zwt(b′⊗b). �

The following proposition provides useful information on Hλ+ρ(µ; q)∈Z[q−1
].



QUANTUM AFFINE ALGEBRAS, q -DEFORMATION OF ARITHMETICAL FUNCTIONS 405

Proposition 2-14. Assume that λ∈ P+. We then have that Hλ+ρ(µ; q) is a nonzero
polynomial if and only if λ+ ρ−µ is a weight of V (λ+ ρ).

Proof. We obtain from (2-13) that if Hλ+ρ(µ; q) 6= 0, then λ+ρ−µ is a weight of
V (λ)⊗V (ρ). Then λ+ρ−µ is a weight of V (λ+ρ) by Lemma 2-10. Conversely,
assuming that λ+ρ−µ is a weight of V (λ+ρ), it is also a weight of V (λ)⊗V (ρ).
By Lemma 2-9, ∑

µ′∈Q+

Hλ+ρ(µ′;−1)zλ+ρ−µ
′

= χ(V (λ)⊗ V (ρ)).

Since λ+ ρ − µ is a weight of V (λ)⊗ V (ρ), the coefficient Hλ+ρ(µ;−1) 6= 0.
Then Hλ+ρ(µ; q) is a nonzero polynomial. �

3. Applications

We give several applications of our formulas to q-deformation of (multi)partition
functions and modular forms, and the Kostant function and the multiplicity for-
mula. We also obtain formulas for Hλ(µ; q).

3.1. Multipartition functions and modular forms. We will write P = P(1). For
a partition p= (1m12m2 · · · rmr · · · ) ∈ P, we define

κq( p)=
{
(−q−1)

∑
mr if mr = 0 or 1 for all r,

0 otherwise.

We define for k ≥ 1
εq(k)=

∑
p∈P
| p|=k

κq( p)

and set εq(0)=1. For example, εq(5)=2q−2
−q−1 and εq(6)=−q−3

+2q−2
−q−1.

From the definitions, we have
∞∏

k=1

(1− q−1tk)= 1+
∑
p∈P

κq( p)t | p| = 1+
∞∑

k=1

εq(k)tk .

Then it follows from Euler’s pentagonal number theorem that when q = 1, we have

(3-1) ε1(k)=
{
(−1)m if k = 1

2 m(3m± 1),
0 otherwise.

We also define for k ≥ 1

pq(k)=
∑
p∈P
| p|=k

(1− q−1)d( p),
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where d( p) is the same as in the previous sections, and we set pq(0) = 1. Note
that if k > 0, p∞(k) = p(k). Hence we can think of pq(k) as a q-deformation of
the partition function.

Proposition 3-2. If k > 0, then

(3-3) εq(k)− pq(k)=
∞∑

m=1

(−1)m{pq(k− 1
2 m(3m− 1))+ pq(k− 1

2 m(3m+ 1))},

where we define pq(M)= 0 for all negative integers M.

Proof. We put n = 1 in Proposition 1-9 and obtain

∞∏
k=1

(1− q−1zkδ)=

(∑
p∈P

(1− q−1)d( p)z| p|δ
) ∞∏

k=1

(1− zkδ).

After the change of variables zδ = t , we obtain

1+
∞∑

k=1

εq(k)tk
=

∞∏
k=1

(1− q−1tk)

=

(∑
p∈P

(1− q−1)d( p)t | p|
) ∞∏

k=1

(1− tk)

=

(
1+

∞∑
k=1

pq(k)tk
)(

1+
∞∑

m=1

(−1)m
{
t

1
2 m(3m−1)

+ t
1
2 m(3m+1)}),

where we use the definition of pq(k) and (3-1) in the last equality. We obtain
the identity (3-3) by expanding the product and equating the coefficient of tk with
εq(k). �

As a corollary of the proof of Proposition 3-2, we obtain:

Corollary 3-4. Let (a; q)n =
∏n−1

k=0(1− aqk). Then

∞∑
n=0

(q−1
; t)n

(t; t)n
tn
=

∞∑
k=0

pq(k)tk .

Proof. By the q-binomial theorem,

∞∏
k=1

(1− q−1tk)=

( ∞∑
n=0

(q−1
; t)n

(t; t)n
tn
) ∞∏

k=1

(1− tk).

Comparing this with the identity in the proof of Proposition 3-2, we obtain the
result. �
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Remark 3-5. When q→∞, we have
∞∑

n=0

tn

(t; t)n
=

∑
p∈P

t | p| =
∞∑

n=0

p(n)tn.

This is a special case of [Andrews 1976, Corollary 2.2].

We generalize Proposition 3-2 to the case of multipartitions. For a multipartition
p= (ρ(1), . . . , ρ(n)) ∈ P(n), we define

κq( p)=
n∏

i=1

κq(ρ
(i)),

and for k ≥ 1,

(3-6) εq,n(k)=
∑

p∈P(n)
| p|=k

κq( p),

and set εq,n(0)= 1. From the definitions, we have
∞∏

k=1

(1− q−1tk)n = 1+
∑

p∈P(n)

κq( p)t | p| =
∞∑

k=0

εq,n(k)tk .

One can see that if k > 0, we have ε∞,n(k)= 0.

Remark 3-7. Note that ε1,n(k) is a classical arithmetic function related to modular
forms. For example, we have ε1,24(k) = τ(k + 1), where τ(k) is the Ramanujan
τ -function. Thus the function εq,n(k) should be considered as a q-deformation of
the function ε1,n(k).

We also define for k ≥ 1

pq,n(k)=
∑

p∈P(n)
| p|=k

(1− q−1)d( p),

and set pq,n(0) = 1. Notice that if k > 0, the function p∞,n(k) is nothing but the
multipartition function with n-components. Hence we can think of pq,n(k) as a
q-deformation of the multipartition function.

Theorem 3-8. If k > 0, then

(3-9) εq,n(k)=
k∑

r=0

ε1,n(r)pq,n(k− r).

Proof. From Proposition 1-9 we obtain
∞∏

k=1

(1− q−1zkδ)n =

( ∑
p∈P(n)

(1− q−1)d( p)z| p|δ
) ∞∏

k=1

(1− zkδ)n.
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After the change of variables zδ = t , we obtain from the definitions

∞∑
k=0

εq,n(k)tk
=

( ∑
p∈P(n)

(1− q−1)d( p)t | p|
) ∞∏

k=1

(1− tk)n

=

( ∞∑
r=0

pq,n(r)tr
)( ∞∑

s=0

ε1,n(s)t s
)
. �

By taking q→∞, we obtain the identity

0=
k∑

r=0

ε1,n(r)p∞,n(k− r),

where p∞,n(k) is the multipartition function with n-components. This is an easy
consequence of the identities

∞∏
k=1

(1− tk)n =

∞∑
k=0

ε1,n(k)tk and
∞∏

k=1

(1− tk)−n
=

∞∑
k=0

p∞,n(k)tk .

Example 3-10. When the affine Kac–Moody algebra g is of type X (1)
24 , with X =

A, B,C , or D, we have

εq,24(k)=
k∑

r=0

τ(r + 1)pq,24(k− r) and 0=
k∑

r=0

τ(r + 1)p∞,24(k− r),

where τ(k) is the Ramanujan τ -function. If k = 2, the first identity becomes

εq,24(2)= τ(1)pq,24(2)+ τ(2)pq,24(1)+ τ(3)pq,24(0).

Through some computations, we obtain

εq,24(2)= 276q−2
− 24q−1.

On the other hand, we have

τ(1)pq,24(2)+ τ(2)pq,24(1)+ τ(3)pq,24(0)

= pq,24(2)− 24pq,24(1)+ 252

= {276(1− q−1)2+ 48(1− q−1)}− 24 · 24(1− q−1)+ 252

= 276(1− q−1)2− 528(1− q−1)+ 252

= 276q−2
− 24q−1

= εq,24(2).

We also see that

τ(1)p∞,24(2)+ τ(2)p∞,24(1)+ τ(3)p∞,24(0)= 324− 24 · 24+ 252= 0.
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Now we consider the whole set of positive roots, not just the set of imaginary
positive roots, and obtain interesting identities. We begin with the identity (2-3).
Recalling the description of the set of positive roots, we obtain

(3-11)
∑
µ∈Q+

Hρ(µ; q)z−µ

= z−ρχq(V (ρ))=
∏
α∈1+

(1− q−1z−α)multα

=

( ∞∏
k=1

(1− q−1z−kδ)n
∏
α∈1cl

(1− q−1zα−kδ)

) ∏
α∈1+cl

(1− q−1z−α),

where 1cl is the set of classical roots.
Let

Z=

{ ∑
α∈Q+

cα z−α : cα ∈ C

}
be the set of (infinite) formal sums. Recall that we have the element d ∈ h such that
α0(d)= 1 and α j (d)= 0, j ∈ I \ {0}. Let hZ be the Z-span of {h0, h1, . . . , hn, d}.
We then define the evaluation map EVt : Z× hZ→ C[[t]] by

EVt

(∑
α

cα z−α, s
)
=

∑
α

cαtα(s), s ∈ hZ.

Then we see that EVt( · , d) is the same as the basic specialization in [Kac 1990,
p. 219] with q replaced by t . We apply EVt( · , d) to (3-11) and obtain

(3-12) (1− q−1)|1
+

cl |

∞∏
k=1

(1− q−1tk)dim gcl =

∞∑
k=0

( ∑
µ∈Q+,cl

Hρ(kα0+µ; q)
)

tk,

where gcl is the finite-dimensional simple Lie algebra corresponding to g, and
Q+,cl is the Z≥0-span of {α1, . . . , αn}. We write |1+cl | = r and dim gcl = N so that
N = 2r + n. By comparing (3-12) with the identity

∞∏
k=1

(1− q−1tk)n =

∞∑
k=0

εq,n(k)tk,

we obtain:

Proposition 3-13. εq,N (k)=
∑

µ∈Q+,cl

Hρ(kα0+µ; q)
(1− q−1)r

.

By Definition 2-2, εq,N (k) is a power series in q−1 in the above formula. How-
ever, one can see from (3-6) that εq,N (k) is actually a polynomial in q−1.
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Example 3-14. We take g to be of type A(1)4 . Then the classical Lie algebra gcl is
of type A4, and r = |1+cl | = 10 and N = dim gcl = 24. Taking the limit q→ 1, we
obtain

τ(k+ 1)= lim
q→1

∑
µ∈Q+,cl

Hρ(kα0+µ; q)
(1− q−1)10 .

Therefore the sum
∑

µ∈Q+,cl
Hρ(kα0 + µ; q) is always divisible by (1− q−1)10.

But Lehmer’s conjecture predicts that the sum is never divisible by (1− q−1)11.

3.2. The Kostant function and Hλ(µ; q). In this section, let g be an untwisted
affine Kac–Moody algebra (affine type) or a finite-dimensional simple Lie algebra
(finite type).

Definition 3-15. We define the functions K∞q (µ) and K 1
q (µ) by∑

µ∈Q+

K∞q (µ)z
µ
=

∏
α∈1+

(
1− q−1zα

1− zα

)multα

=

∑
b∈G

(1− q−1)d(φ(b)zwt(b)

and ∑
µ∈Q+

K 1
q (µ)z

µ
=

∏
α∈1+

(1− q−1zα)−multα
=

∑
b∈G

q−|φ(b)|zwt(b).

We set K∞q (µ)= K 1
q (µ)= 0 if µ 6∈ Q+.

Remark 3-16. (1) Note that both K∞
∞
(µ) with q =∞ and K 1

1 (µ) with q = 1 are
equal to the classical Kostant partition function K (µ). Hence both of them
can be considered as q-deformations of the Kostant function.

(2) The function K 1
q (µ) was introduced by Lusztig [1983] for finite types; see

also [Kato 1982]. On the other hand, the function K∞q (µ) for finite types can
be found in the work of Guillemin and Rassart [2004].

We obtain from the Casselman–Shalika formula (Corollary 2-6)

z−λχ(V (λ))=
∑
β∈Q+

(dim V (λ)λ−β)z−β

= z−λ−ρχq(V (λ+ ρ))
∏
α∈1+

(1− q−1z−α)−multα

=

(∑
µ∈Q+

Hλ+ρ(µ; q)z−µ
)(∑

ν∈Q+

K 1
q (ν)z

−ν

)
.

Therefore, we have a q-deformation of the Kostant multiplicity formula:

Proposition 3-17. dim V (λ)λ−β =
∑
µ∈Q+

Hλ+ρ(µ; q)K 1
q (β−µ).
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In order to see that this is indeed a q-deformation of the Kostant multiplicity
formula, we need to determine the value of Hλ+ρ(µ; 1).

Lemma 3-18. We have

Hλ+ρ(µ; 1)=
{
(− 1)`(w) if w ◦ λ=−µ for some w ∈W,

0 otherwise,

where we define w ◦ λ= w(λ+ ρ)− λ− ρ for w ∈W and λ ∈ P+.

Note that such a w ∈ W is unique if it exists, so there is no ambiguity in the
assertion.

Proof. From Definition 2-2, we obtain∑
µ∈Q+

Hλ+ρ(µ; 1)zλ+ρ−µ =
∑
w∈W

(−1)`(w)zw(λ+ρ).

The condition λ+ ρ−µ= w(λ+ ρ) is equivalent to w ◦ λ=−µ. �

Now we take q = 1 in Proposition 3-17 and use Lemma 3-18 to obtain the
classical Kostant multiplicity formula

dim V (λ)λ−β =
∑
w∈W

(−1)`(w)K (w ◦ λ+β).

Note that the sum is actually a finite sum. Indeed, we have w ◦ λ < 0 for each
w ∈ W and w ◦ λ+ β ≥ 0 only for finitely many w ∈ W for fixed λ ∈ P+ and
β ∈ Q+. For the same reason, the sum in (3-23) below is also a finite sum.

Remark 3-19. In Section 2 we obtained (Remark 2-8 and Lemma 2-9)

Hλ+ρ(µ;∞)= dim V (λ)λ−µ,(3-20)

Hλ+ρ(µ;−1)= dim(V (λ)⊗ V (ρ))λ+ρ−µ.(3-21)

When g is of finite type, we define Hλ(µ; q) as in Definition 2-2, and we can prove
the analogous results. See [Kim and Lee 2011] for details.

We next derive a formula for Hλ+ρ(µ; q):

Proposition 3-22.

(3-23) Hλ+ρ(µ; q)=
∑
w∈W

(−1)`(w)K∞q (w ◦ λ+µ).

Proof. From the definitions we have

χq(V (λ+ ρ))=
∑
µ∈Q+

Hλ+ρ(µ; q)zλ+ρ−µ

=

(∑
w∈W

(−1)`(w)zw(λ+ρ)
)(∑

ν∈Q+

K∞q (ν)z
−ν

)
.
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The identity comes from expanding the product and comparing the coefficients. �

If we take the limit q→∞ in (3-23), we have, from (3-20),

dim V (λ)λ−µ =
∑
w∈W

(−1)`(w)K (w ◦ λ+µ),

which is again the classical Kostant multiplicity formula.
If we take q =−1 in (3-23), we obtain, from (3-21),

(3-24) dim(V (λ)⊗ V (ρ))λ+ρ−µ =
∑
w∈W

(−1)`(w)K∞
−1(w ◦ λ+µ).

This is a generalization of the formula in [Guillemin and Rassart 2004, Theorem 1]
to the affine case.

Example 3-25. Assume that g is of type A(1)1 . We write

µ= mα0+ nα1 = (m, n) ∈ Q+

and set λ= 0 in (3-23). Through standard computation, we obtain

{wρ+µ− ρ : w ∈W } =
{(

m− k(k+1)
2

, n− k(k−1)
2

) ∣∣∣ k ∈ Z
}
.

Thus we have

Hρ(m, n; q)=
∑
k∈Z

(−1)k K∞q
(

m− k(k+1)
2

, n− k(k−1)
2

)
.

By taking the limit as q→∞, we obtain, for (m, n) 6= (0, 0),

0=
∑
k∈Z

(−1)k K
(

m− k(k+1)
2

, n− k(k−1)
2

)
.

In this case, K (m, n) counts the number of vector partitions of (m, n) into parts of
the forms (a, a), (a − 1, a), or (a, a − 1). Then we have obtained (3-9) [Carlitz
1965, p. 148].

We further investigate properties of the function Hλ(µ; q). From the definitions
of K∞q (µ) and K 1

q (µ), we have(∑
µ∈Q+

K∞q (µ)z
µ

)(∑
ν∈Q+

K 1
q (ν)z

ν

)
=

∏
α∈1+

(
1− q−1zα

1− zα

)multα ∏
α∈1+

(1− q−1zα)−multα

=

∏
α∈1+

(1− zα)−multα
=

∑
β∈Q+

K (β)zβ,
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where K (β) is the classical Kostant function. Thus we have

(3-26)
∑
µ∈Q+

K∞q (µ)K
1
q (β −µ)= K (β),

and we obtain, for β > 0,

(3-27) K∞q (β)= K (β)− K 1
q (β)−

∑
0<ν<β

K∞q (ν)K
1
q (β − ν),

and K∞q (0)= K 1
q (0)= K (0)= 1.

Then we obtain from Proposition 3-22

Hλ+ρ(µ; q)=Hλ+ρ(µ; 1)+
∑
w∈W

(−1)`(w)K (w◦λ+µ)−
∑
w∈W

(−1)`(w)K 1
q (w◦λ+µ)

−

∑
w∈W

w◦λ+µ>0

(−1)`(w)
∑

0<ν<w◦λ+µ

K∞q (ν)K
1
q (w ◦ λ+µ− ν),

where Hλ+ρ(µ; 1) plays the role of a correction term for the case w ◦ λ+µ = 0.
See Lemma 3-18 for the value of Hλ+ρ(µ; 1). We also used the fact that

K (β)= K 1
q (β)= K∞q (β)= 0

unless β ≥ 0.
Now we apply the classical Kostant formula and get:

Proposition 3-28. Assume that λ ∈ P+ and µ ∈ Q+. Then we have

Hλ+ρ(µ; q)= Hλ+ρ(µ; 1)+ dim V (λ)λ−µ−
∑
w∈W

(−1)`(w)K 1
q (w ◦ λ+µ)

−

∑
w∈W

w◦λ+µ>0

(−1)`(w)
∑

0<ν<w◦λ+µ

K∞q (ν)K
1
q (w ◦ λ+µ− ν).

For the rest of this section, we assume that g is of finite type. We denote by ρ∨

the element of h defined by 〈αi , ρ
∨
〉 = 1 for all the simple roots αi . The following

identity was conjectured by Lusztig [1983] and proved by S. Kato [1982].

Proposition 3-29. For λ ∈ P+ and µ ∈ Q+, we have∑
w∈W

(−1)`(w)K 1
q (w ◦ λ+µ)= q−〈µ,ρ

∨
〉Pwλ−µ,wλ(q),

where wν is the element in the affine Weyl group Ŵ corresponding to ν ∈ P+, and
Pwλ−µ,wλ(q) is the Kazhdan–Lusztig polynomial.

Hence, from Proposition 3-28, we obtain:
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Corollary 3-30. Hλ+ρ(µ; q)= Hλ+ρ(µ; 1)+dim V (λ)λ−µ−q−〈µ,ρ
∨
〉Pwλ−µ,wλ(q)

−

∑
w∈W

w◦λ+µ>0

(−1)`(w)
∑

0<ν<w◦λ+µ

K∞q (ν)K
1
q (w ◦ λ+µ− ν).

Setting q = 1, and noting that K∞1 (β) = 0 if β > 0, we obtain the famous
property of the Kazhdan–Lusztig polynomial:

Corollary 3-31. dim V (λ)λ−µ = Pwλ−µ,wλ(1).
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DIRICHLET–FORD DOMAINS AND ARITHMETIC
REFLECTION GROUPS

GRANT S. LAKELAND

We show that a Fuchsian group, acting on the upper half-plane model for
H2, admits a Ford domain which is also a Dirichlet domain, for some center,
if and only if it is an index 2 subgroup of a reflection group. This is used
to exhibit an example of a maximal arithmetic hyperbolic reflection group
which is not congruence. Analogous results, and counterexamples, are given
in the case of Kleinian groups.

1. Introduction

The action of the modular group PSL2(Z) on the upper half-plane model for hyper-
bolic 2-space H2 has been extensively studied. It is well known that a fundamental
domain for this action is given by the triangle T with vertices at ρ = 1

2 +
√
−3
2 , −ρ

and∞. This domain is an example of two common constructions of fundamental
domains for Fuchsian groups: it is both a Ford domain and a Dirichlet domain for
the action of the modular group. Furthermore, it arises from more than one distinct
choice of Dirichlet center, as taking the Dirichlet domain centered at any z0 = iy,
for y > 1, gives rise to T . One expects the Dirichlet domain to change along with
the choice of center [Díaz and Ushijima 2009], so in this sense the modular group
exhibits some atypical properties.

It is also well known that PSL2(Z) is the orientation-preserving index 2 subgroup
of the group generated by reflections in an ideal triangle in H2 with angles π

2 , π3
and 0, located at i , ρ and∞ respectively. More generally, a hyperbolic reflection
group is a subgroup of Isom(H2) generated by reflections in the sides of a polygon
Q ⊂ H2. Such a group is discrete if and only if each angle of Q is either 0 or an
integer submultiple of π .

The purpose of this paper is to determine exactly which Fuchsian groups admit
a fundamental domain that is both a Dirichlet domain and a Ford domain (which
we will call a DF domain) or a Dirichlet domain for multiple centers (a double
Dirichlet domain).

It turns out that the above properties of PSL2(Z) are very much related to that;

MSC2010: primary 20H10; secondary 19B37.
Keywords: fundamental domain, arithmetic reflection groups, congruence.
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we give in Theorems 5.3 and 5.4 the following characterization for such groups:

Theorem. A finitely generated, finite coarea Fuchsian group 0 admits a DF do-
main (or a double Dirichlet domain) P if and only if 0 is an index 2 subgroup of
the discrete group G of reflections in a hyperbolic polygon Q.

The condition given by this result provides a method of checking whether a given
Fuchsian group is the index 2 orientation-preserving subgroup of a hyperbolic re-
flection group. This is particularly useful in the context of maximal arithmetic
reflection groups. A noncocompact hyperbolic reflection group is arithmetic if it
is commensurable with PSL2(Z). A maximal arithmetic reflection group is then an
arithmetic reflection group which is not properly contained in another arithmetic
reflection group. As an application of the above theorem, we give:

Corollary. There exists a maximal arithmetic hyperbolic reflection group which is
not congruence.

This answers a question raised by Agol, Belolipetsky, Storm, and Whyte in
[Agol et al. 2008] (see also [Belolipetsky 2011]).

Any group 0 satisfying the theorem must have genus zero [Long et al. 2006],
as well as a certain symmetrical property. Having a double Dirichlet or DF do-
main therefore also gives an obstruction to the group having nontrivial cuspidal
cohomology [Grunewald and Schwermer 1981].

Motivated by this, one may ask whether there exists a similar obstruction to
nontrivial cuspidal cohomology for Kleinian groups. We will show that this is
not the case: in Section 7 we exhibit a Kleinian group which possesses both non-
trivial cuspidal cohomology and a DF domain. However, the condition of having
such a domain does impose some restrictions on 0; perhaps the most striking is
that the group possesses a generating set, all of whose elements have real trace
(Theorem 7.3).

This paper is organized as follows. After the preliminaries of Section 2, Section 3
will examine Fuchsian groups with DF domains, and show that such domains are
symmetrical and give rise to punctured spheres. The more general case of the
double Dirichlet domain is discussed in Section 4. In Section 5, it will be shown
that the main theorem follows from the previous sections and standard results on
reflection groups. An example of a noncongruence maximal arithmetic hyperbolic
reflection group can be found in Section 6. Section 7 contains a discussion of these
domains in the setting of Kleinian groups.

2. Preliminaries

We will work in the upper half-plane model for the hyperbolic plane. The group of
conformal, orientation-preserving isometries (or linear fractional transformations)
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of H2 can be identified with PSL2(R) via the correspondence(
a b
c d

)
←→ z 7→

az+ b
cz+ d

.

A Fuchsian group0 is a subgroup of PSL2(R), discrete with respect to the topology
induced by regarding that group as a subset of R4. The Dirichlet domain for 0
centered at z0 is defined to be

{x ∈ H2
| d(x, z0)≤ d(x, α(z0)) for all α ∈ 0 distinct from 1}.

It is an intersection of closed half-spaces.
Beardon [1983, Section 9.5] demonstrates an alternative definition, in terms of

reflections, which allows us to define a generalized Dirichlet domain by taking our
center to be on the boundary ∂H2. We will typically conjugate 0 in PSL2(R) so that
this center is placed at∞ in the upper half-plane. We suppose 0 is zonal, or that∞
is a parabolic fixed point, and so the reflections given are not uniquely determined
for any parabolic isometry fixing∞. To account for this, we define a Ford domain
[Ford 1951] to be the intersection of the region exterior to all isometric circles
with a fundamental domain for the action of the parabolic subgroup stabilizing∞,
0∞ < 0, which is a vertical strip.

For a given finitely generated Fuchsian group 0, the signature

(g; n1, . . . , nt ;m; f )

of 0 records the topology of the quotient space H2/0, where g is the genus, t is the
number of cone points of orders n1, . . . , nt respectively, m is the number of cusps,
and f is the number of infinite area funnels. If 0 is the orientation-preserving
index 2 subgroup of a reflection group, then H2/0 is a sphere with cusps and/or
cone points, and thus in this case we have g= 0. If additionally 0 has finite coarea,
then we also have that f = 0.

The group of orientation-preserving isometries of the upper half-space model
of H3 can likewise be identified with PSL2(C). A Kleinian group is a discrete
subgroup of this isometry group. The definitions of Dirichlet domain and Ford
domain carry over to this situation, with one small modification: instead of 0
being zonal, we assume that 0∞ contains a copy of Z2.

Throughout, we will assume that 0 is finitely generated, and hence that all fun-
damental domains we encounter have a finite number of sides. For simplicity, we
will also suppose that f = 0 and that 0 has finite covolume (and thus that all
fundamental domains have finite volume; that is, finitely many ideal vertices, each
adjacent to two sides), although many of the arguments should extend to the case
where 0 does not have finite covolume.
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3. DF domains

Suppose 0 contains a nontrivial parabolic subgroup 0∞ fixing∞. In H2, 0∞ must
be cyclic, and after conjugation, we may take it to be generated by

T =
(

1 1
0 1

)
.

Theorem 3.1. If 0 admits a DF domain, then the quotient space H2/0 is a punc-
tured sphere, possibly with cone points.

Before commencing the proof of this, we will prove two elementary but impor-
tant lemmas. The first is given as Exercise 2 in Section 9.6 of [Beardon 1983].

Lemma 3.2. Any vertex cycle on the boundary of a Ford domain P is contained
within a horocycle based at∞.

Proof. Fix a vertex v. By construction of P , v lies on or exterior to all isometric
circles, and necessarily lies on at least one. We first consider a γ ∈ 0 such that
v /∈ Sγ . Then v lies exterior to Sγ . It follows that γ sends v into the interior of
Sγ−1 . Thus γ (v) cannot be a vertex of P . Now suppose that v ∈ Sγ . Then γ is the
composition of reflection in Sγ , which fixes v, and reflection in a vertical line. It
therefore necessarily preserves the imaginary part of v, proving the lemma. �

Remark. The lemma holds for any point on the boundary of the Ford domain P .
For our purposes, it will be enough to have it for the vertices of P .

Lemma 3.3 [Greenberg 1977, p. 203]. Let P be a Dirichlet domain for 0 with
center z0. Let 1 6= γ be an element of 0 and suppose that z, γ (z) ∈ ∂P ∩H2. Then
dH(z, z0)= dH(γ (z), z0).

Proof. This is an application of the definition of a Dirichlet domain stated above.
Specifically, setting x = z and α = γ−1 yields the inequality

d(z, z0)≤ d(z, γ−1(z0))= d(γ (z), z0),

the latter equality holding because γ is an isometry. Setting x = γ (z) and α = γ
now gives

d(γ (z), z0)≤ d(γ (z), γ (z0))= d(z, z0).

Combining these two inequalities gives the required equality. �

Proof of Theorem 3.1. Suppose we are given a DF domain P for 0. Since P is a
Ford domain, it is contained in a fundamental region for 0∞, which is a vertical
strip

{z ∈ H2
| x0 ≤ Re(z)≤ x0+ 1}
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Figure 1. γ (v)= v∗.

for some x0 ∈ R. Shimizu’s Lemma (see [Maskit 1988], p. 18) tells us that the
radii of the isometric circles Sγ cannot exceed 1. Thus we may consider a point
z = x0 + iy ∈ ∂P , where y > 1. Choosing γ = T , and applying Lemma 3.3 to z
and γ (z), we find that Re(z0)= x0+

1
2 .

Next suppose that v∈H2 is a vertex of P , and γ ∈0 a side pairing such that γ (v)
is another vertex of P . Then, by Lemma 3.2, Im(γ (v))= Im(v), and by Lemma 3.3,
dH(γ (v), z0) = dH(v, z0). Consider the two sets {z ∈ H2

| Im(z) = Im(v)} and
{z ∈ H2

| dH(z, z0) = dH(v, z0)}. The former is the horizontal line through v, and
the latter a circle with Euclidean center located vertically above z0 (see Figure 1). In
particular, the picture is symmetrical in the vertical line

{
Re(z)= x0+

1
2

}
. Either

γ (v)= v or γ (v)= v∗, where v∗ is the reflection of v in the line
{
Re(z)= x0+

1
2

}
.

Suppose that γ (v) = v. Then, by considering a point w ∈ ∂P close to v, the
fact that d(w, z0) = d(γ (w), z0) means that v necessarily lies directly below the
Dirichlet center z0. The contrapositive of this states that if Re(v) 6= x0 +

1
2 , then

any side pairing γ pairing v with a vertex of P must send v to v∗.
Suppose now that v ∈ ∂H2 is a vertex of P. Then two isometric circles meet at

v. Fix one such circle S. S is the isometric circle Sγ of some element γ ∈ 0. Sγ
contains a side of P adjacent to v, and we pick two points of Sγ , w1, w2 ∈ ∂P∩H2.
By Lemma 3.3, γ must send bothw1 andw2 to points the same respective distances
from z0. For each i , the point wi is either fixed or sent to its reflection in the line
{Re(z) = Re(z0)}. If w1 were fixed, w2 would neither be fixed nor sent to its
reflection, and vice versa if w2 were fixed. Thus we conclude that γ sends points
of S to their reflections in the line {Re(z)= Re(z0)}.

We can now show that H2/0 is a punctured sphere. We first identify the two
vertical sides of P , creating the cusp at ∞ and a circle awaiting identification.
Consider the side of P adjacent to the side contained in the vertical line Re(z)= x0.
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This side lies on some isometric circle Sγ . We see that γ must identify our side
with a side adjacent to the side of P contained in the line Re(z)= x0+1. Working
inwards toward the center and applying this argument repeatedly, we see that all
sides must pair up symmetrically. In particular, there can not exist two hyperbolic
generators whose axes intersect precisely once. Thus we conclude that the quotient
space has genus zero. �

Remarks. (1) We may take the Dirichlet center of P to be any point of the interior
of P on this vertical line

{
Re(z)= x0+

1
2

}
. To see this, let z0 be any such point,

and γ ∈ 0 \0∞ a side pairing of P . Since γ (Sγ )= Sγ−1 , and this pair is arranged
symmetrically with respect to the line

{
Re(z)= x0+

1
2

}
, both of these isometric

circles are geodesics of the form used to construct the Dirichlet polygon centered
at z0.

(2) The converse of Theorem 3.1 is false. The symmetrical nature of P implies
a certain symmetry in the quotient space H2/0, namely that the surface admits
an orientation-reversing involution of order 2. This is not the case for a generic
punctured sphere.

4. Double Dirichlet domains

We now suppose that the same fundamental domain P is obtained when we con-
struct the Dirichlet domains P0 and P1 centered at z0 and z1 ∈H2 respectively. For
comparison with the previous section, we will assume that we have conjugated 0
in PSL2(R) so that the geodesic line L containing z0 and z1 is vertical.

Theorem 4.1. If the Dirichlet domains P0 and P1 for 0, centered at z0 6= z1 ∈ H2

respectively, coincide, then the quotient space H2/0 is a sphere, with cone points
and/or punctures.

Proof. Much of the work in Section 3 was concerned with showing precisely how
the sides of P were identified. This follows relatively swiftly here, once we have
cleared up one technical point. We often think of a fundamental domain as a subset
of H2 combined with a set of side pairings identifying its sides. We only assume
that the sets P0 and P1 are equal, and thus we must make sure that 0 identifies
their sides the same way each time.

Lemma 4.2. If P = P0 = P1 is the Dirichlet domain centered at z0 and at z1, then
the sides of P are identified the same way in each case.

Proof. Suppose, for the sake of contradiction, that this is not the case. Any side of
a Dirichlet domain bisects the domain’s center and its image under some isometry.
Here, we have a side A of P which is the bisector of both the pair z0 and γ−1

0 (z0)

and the pair z1 and γ−1
1 (z1), where γ0 6= γ1 are the isometries defining that side of

P . It follows that γ0 pairs A with some side B, and γ1 pairs A with some other
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side C 6= B. Let d := d(z0, z1) be the distance between the two centers z0 and z1.
Since γ−1

0 (z0) and γ−1
1 (z1) are the reflections of each in A, we see that

d(γ−1
0 (z0), γ

−1
1 (z1))= d.

Applying the isometry γ1 to both points, this gives that

d(γ1(γ
−1
0 (z0)), z1)= d.

Now, if γ1(γ
−1
0 (z0))= z0, then the isometries γ0 and γ1 both send γ−1

0 (z0) to z0

and γ−1
1 (z1) to z1. Since they also both preserve orientation, this implies that

γ0 = γ1, which is a contradiction. Thus γ1(γ
−1
0 (z0)) 6= z0. But then γ1(γ

−1
0 (z0))

is a point in the orbit of z0, and thus the construction of P0 involves the half-space
{x ∈ H2

| d(x, z0)≤ d(x, γ1(γ
−1
0 (z0)))}. As we saw above,

d(γ1(γ
−1
0 (z0)), z1)= d(z0, z1)= d.

Hence z1 is equidistant from z0 and γ1(γ
−1
0 (z0)). Thus z1 cannot be in the interior

of P0, contradicting the assumption that P0 = P1. �

The following result will allow us to conclude the proof of Theorem 4.1.

Lemma 4.3. Each side of P (and each point of ∂P) is identified with its reflection
in the line L.

Proof. Given a point v ∈ ∂P , v is sent to a point of ∂P the same distance away
from z0. Put another way, v is sent somewhere on the hyperbolic circle of center z0

and radius d(v, z0). But v is also sent to a point on the hyperbolic circle of center
z1 and radius d(v, z1). Thus we see a picture similar to Figure 1, except instead of
a horizontal line, we have a second circle, centered vertically above or below z0.
These two circles intersect only at v if v ∈ L , and at v and v∗, the reflection of v
in L , if v /∈ L . If v ∈ L then v is necessarily an elliptic fixed point and a vertex
of P , and the two sides adjacent to v are identified with one another. If v /∈ L , it
suffices to show that v cannot be fixed by a side pairing, and thus must be identified
with v∗. Let v be a nonvertex point, and γ the side pairing associated to the side
containing v in its interior. Since v is not a vertex, it cannot be an elliptic fixed
point, and so γ must identify v with v∗. From this, it follows that each vertex is
also identified with its reflection. �

So we now know that our domain P has the same symmetrical property that
we saw DF domains possess. If the line L ∩ P̊ extends vertically to ∞, then the
argument from the proof of Theorem 3.1 applies directly, and we are done. If
the line terminates at a boundary point of P , then we observe that the two sides
adjacent to this vertex are identified symmetrically, creating a cone point instead of
a cusp. This creates a circle awaiting identification as in the proof of Theorem 3.1,
and the rest of the argument applies from there. �
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Remarks. (1) The first remark at the end of Section 3 applies here as well. That is,
if we take any point z ∈ L ∩ P̊ as our Dirichlet center, we will obtain the Dirichlet
domain P . Thus we see that a Fuchsian group which admits a DF domain is simply
one that admits Dirichlet domain with a line of centers and a cusp on the line of
symmetry.

(2) The same discussion can also be used to show that these are the only Dirichlet
centers giving rise to P . The Dirichlet center must be equidistant from a point
of ∂P and its destination under its side pairing; in this setup, the locus of such
points is always precisely L . Thus, it is impossible to find a Fuchsian group with
a triangle of Dirichlet centers all giving rise to the same domain.

5. Reflection groups

The goal of this section is to prove the main theorem. As a corollary, we will show
that given the signature of any sphere which can be obtained as a quotient of H2,
then we may exhibit a Fuchsian group 0 that admits a double Dirichlet domain
(and a DF domain if there is at least one puncture) and gives rise to a quotient
space of the given signature.

We first recall the following results regarding reflection groups (see [Ratcliffe
2006], Section 7.1).

Theorem 5.1. Let G be a discrete reflection group with respect to the polygon Q.
Then all the angles of Q are submultiples of π , and if gS and gT are reflections in
the adjacent sides S and T of Q with θ(S, T )= π/k, then gS ◦ gT has order k.

Theorem 5.2. Let Q be a finite sided convex hyperbolic polygon of finite volume,
all of whose angles are submultiples of π . Then the group G, generated by re-
flections of H2 in the sides of Q, is a discrete reflection group with respect to the
polygon Q.

We will appeal to these results, as well as to the results of Sections 3 and 4, in
the following discussion.

Theorem 5.3. If the finitely generated, orientation-preserving, finite coarea Fuch-
sian group 0 admits a double Dirichlet domain, or a DF domain, P , then 0 is an
index 2 subgroup of the discrete group G of reflections in a hyperbolic polygon Q.

Proof. Suppose first that 0 admits a DF domain P . We know that P has reflectional
symmetry about a vertical axis L which bisects P . Since P is a fundamental
domain for 0, the side pairings of P generate 0. Each side pairing, with the
exception of the parabolic element pairing the vertical sides, has the form σL ◦ σi ,
where σL denotes reflection in L and σi is reflection in the isometric circle Si ,
1 ≤ i ≤ m, where Si contains a side of P . Furthermore, since each side is paired
with its mirror image in L , it suffices to consider the σi corresponding to sides in
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one half of P . The parabolic side pairing can be written σL ◦ σK , where σK is
reflection in K , the vertical side of P in the same half as the Si . Thus we have a
generating set for 0 of the form

{σL ◦ σ1, . . . , σL ◦ σm, σL ◦ σK }

for some m ∈N. Consider the group G obtained by adding the reflection σL to this
generating set. The set becomes

{σL , σL ◦ σ1, . . . , σL ◦ σm, σL ◦ σK }

and because σL = σ
−1
L has order 2, it follows that we can replace the generator

σL ◦ σi with the element σi and still have a generating set. The generating set

{σL , σ1, . . . , σm, σK }

is precisely the set of reflections in the sides of a polygon Q with sides on K , L and
Si , 1≤ i ≤m. To prove that all of the angles of Q are submultiples of π , it suffices
to observe that the vertices of P are paired symmetrically, and that the Poincaré
polyhedron theorem gives that the sum of the angles in each cycle is 2π/s, for
s ∈ N. Now Theorem 5.2 allows us to reach the desired conclusion.

To prove the result for the case where L ∩ P̊ does not extend to ∂H2, we simply
observe that, in this case, every side pairing generator of 0 can be written σL ◦σi ,
since here there are no vertical sides. Instead of the cusp at ∞ we have another
finite vertex of P , but since this vertex lies on the line L , it must also be an elliptic
fixed point, and the paragraph above applies. �

We now turn to the converse of Theorem 5.3.

Theorem 5.4. If G is a discrete group of reflections in a polygon Q ⊂ H2, then
G contains an index 2 subgroup of orientation-preserving isometries that admits a
double Dirichlet domain (and a DF domain if Q has an ideal vertex at∞).

Proof. Let Q be such a polygon. If necessary, rotate Q so that one of its sides is
vertical. Call this side L . By Theorem 5.1, all angles of Q are submultiples of
π . Denote by σL reflection in the vertical side L of Q. If Q has another vertical
side (and hence an ideal vertex at∞), call this side K and denote reflection in K
by σK . Denote by σi reflection in the (nonvertical) line Si containing a side of Q.
By definition, these reflections constitute a generating set for G. Let 0< G be the
subgroup generated by elements of the form σ2◦σ1 where σ1 and σ2 are reflections
in the generating set for G. Then 0 is a Fuchsian group. Since σL /∈0, we see that
the set P := Q ∪ σL Q is contained within a fundamental domain for 0. We will
show that P is itself a fundamental domain for 0.

To see this, denote by Ti := σL(Si ) the geodesic obtained by reflecting Si in
L . Then Ti contains a side of P . Also denote σL(K ) by M . Then K is paired



426 GRANT S. LAKELAND

with M by the element σL ◦ σK ∈ 0, and Si is paired with Ti by σL ◦ σi . Thus the
sides of P are paired by generators of 0. To see that these side pairings generate
0 themselves, consider a generating element σ2 ◦ σ1 ∈ 0. We may write

σ2 ◦ σ1 = σ2 ◦ (σL ◦ σL) ◦ σ1 = (σ2 ◦ σL) ◦ (σL ◦ σ1)= (σL ◦ σ2)
−1
◦ (σL ◦ σ1),

which shows that together, the elements σL ◦ σi and σL ◦ σK generate 0. We
therefore have that 0 has index 2 in G, and that P is a fundamental domain for 0.

To see that 0 admits a fundamental domain of the required type, it will suffice
to check that P is one. Let z0 be any point on the line L which lies in the interior
of P . If there is a second vertical side K , then it is the line bisecting z0 and σK (z0),
so σL(K )= M bisects σL(z0)= z0 and σL(σK (z0)). Thus M is a line of the form
found in the definition on a Dirichlet domain centered at z0. A similar argument
applied to (σL ◦σK )

−1
=σK ◦σL shows that K is also such a line. Now Si is the line

bisecting z0 and σi (z0), so σL(Si ) = Ti bisects σL(z0) = z0 and σL(σi (z0)). This
shows that Ti is a line of the form found in the definition on a Dirichlet domain
centered at z0. A similar argument shows that the same is true of Si , and thus we
see that P must contain a Dirichlet domain centered at z0. But we know that P is
itself a fundamental domain for 0, so that P is a Dirichlet domain for any center
z0 ∈ L ∩ P̊ .

If there is a second vertical side K , we must also check that P is a Ford domain.
Si is the isometric circle of the generator σL ◦ σi , and Ti = σL(Si ) is the isometric
circle of the inverse element. Since σL ◦ σK pairs the two vertical sides of P and
generates 0∞, it follows that P must contain a Ford domain for 0. But P is itself
a fundamental domain, so this Ford domain cannot be a proper subset, and hence
is equal to P . �

We now show that Fuchsian groups with this symmetrical property, though they
necessarily have genus zero, have no other restrictions on their signature.

Corollary 5.5. Given the signature (0; n1, . . . , nt ;m) of a (nontrivial, hyperbolic)
sphere with m ≥ 0 punctures and t ≥ 0 cone points of orders ni ∈N, for 1≤ i ≤ t ,
there exists a Fuchsian group 0 such that 0 admits a double Dirichlet domain (and
a DF domain if m > 0) and H2/0 is a sphere of the given signature.

Proof. Suppose m> 0. Construct Q by placing one vertex at∞, t vertices in H2 of
angles π/ni (ni ≥2) for 1≤ i ≤ t , and m−1 ideal vertices in R. If m=0, construct a
compact t-gon with angles π/n1, . . . , π/nt . Now let G be the group of hyperbolic
isometries generated by reflections in the sides of Q. By Theorem 5.4, 0 admits a
DF domain (or double Dirichlet domain if m = 0) P = Q ∪σQ, where σ denotes
reflection in one of the vertical sides L of Q. The symmetrical identifications,
combined with the Poincaré polyhedron theorem, give that the quotient surface
has the required signature. �
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Remark. If m > 0 above, then there is a certain amount of freedom in our choice
of the polygon Q. For example, we do not necessarily have to place one of the
ideal vertices of Q at∞. We do so in order to ensure that we obtain a DF domain
for 0. Instead, we could have all of the ideal vertices lie in R, thereby placing the
line of symmetry L away from any of the ideal vertices. Similarly, if m > 1, we
could construct Q so that L meets only one of the m ideal vertices, instead of 2 in
the construction above. We also do not have to construct Q so that each angle is
bisected by a vertical line; we only do so in order to demonstrate that it is possible
to find the required polygon.

6. A noncongruence arithmetic maximal reflection group

In this section, we will prove explicitly that there exists a noncongruence arithmetic
maximal hyperbolic reflection group. Recall that a noncocompact hyperbolic re-
flection group 0ref < Isom(H2) is called arithmetic if and only if it is commensu-
rable with PSL2(Z). Such a group is then called congruence if it contains some
principal congruence subgroup

0(n)=
{(

a b
c d

) ∣∣∣ a ≡ d ≡±1, b ≡ c ≡ 0 mod n
}
⊂ PSL2(Z).

Consider the group 0< PSL2(R) generated by the matrices

γ1 =

(
1 1
0 1

)
, γ2 =

(
0 −1

√
11√

11 0

)
, γ3 =

(√
11 5

√
11

2
√

11
√

11

)
,

γ4 =

(
10 3
33 10

)
, γ5 =

(
23 8
66 23

)
.

We first wish to show that 0 is discrete. Consider the group

00(11)=
{(

a b
11c d

) ∣∣∣ a, b, c, d ∈ Z, ad − 11bc = 1
}
⊂ PSL2(Z).

It is well known that the normalizer N (00(11)) of 00(11) in PSL2(R) is a (maximal
arithmetic) Fuchsian group generated by 00(11) and(

0 −
1
√

11√
11 0

)
,

which is γ2 ∈ 0 [Maclachlan 1981; Long et al. 2006]. We see then that(
0 −

1
√

11√
11 0

)(
2 1
−11 −5

)
=

(√
11 5

√
11

2
√

11
√

11

)
= γ3 ∈ 0,
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and since γ1, γ4, γ5 ∈ 00(11), we have that 0< N (00(11)), and so 0 is discrete.
We next wish to construct a Ford domain for 0. In Figure 2 we see the isometric
circles corresponding to the generators listed above and their inverses.

Figure 2. A Ford domain for 0.

The claim is that this polygon is in fact the required Ford domain. To see this, ob-
serve that each generator γi can be decomposed into the product of two reflections
γi = σL ◦ σi , where σi is reflection in the isometric circle Si of γi , σ1 is reflection
in the line x =−1

2 , and σL is reflection in the line x = 0. Thus the elements of the
generating set for 0 pair the sides of P , and each pushes P̊ completely off itself.
This shows that P is a fundamental domain for 0; by its construction, it is a Ford
domain.

Thus we see that the quotient space H2/0 is a sphere of signature (0; 2, 2, 2, 2; 2)
and area 4π . Further, P is a DF domain, as each of these generators pairs one side
Si of P with its reflection σL(Si ) in the line x = 0. Thus, by Theorem 5.3, we see
that 0 is the index 2 orientation-preserving subgroup of the group 0ref of reflections
in a hyperbolic hexagon Q with angles (0, π2 ,

π
2 , 0, π2 ,

π
2 ). The claim is that this

hyperbolic reflection group 0ref is arithmetic, maximal (as an arithmetic reflection
group), and noncongruence.

Claim 1. 0ref is arithmetic.

Proof. Note that the finite area of H2/0 implies that the index [N (00(11)) : 0] is
finite. Hence, since N (00(11)) is arithmetic, we see that 0 is also arithmetic, from
which it follows that 0ref is arithmetic. �

Claim 2. 0ref is a maximal reflection group.
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Proof. If 0ref were not maximal, it would be properly contained in another re-
flection group Href, which is therefore also arithmetic. Let H < Href denote the
orientation-preserving index 2 subgroup. Note that then we have 0< H . Since 0
and H are both arithmetic Fuchsian groups of genus zero, they are contained in a
common maximal, arithmetic, genus zero Fuchsian group M from the appropriate
list in [Long et al. 2006]. As we saw above, 0 is contained in the normalizer
N (00(11)), and by area considerations we find that [N (00(11)) : 0] = 2. Further,
0 cannot be contained in any other of these maximal arithmetic groups; to see this,
observe that if n 6= 11 then, if we pick some nonzero integer b coprime to n, we
may find integers a, d such that

( a b
n d

)
∈ 00(n). We then have

γ2

(
a b
n d

)
γ2 =

(
0 −

1
√

11√
11 0

)(
a b
n d

)( 0 −
1
√

11√
11 0

)
=

(
−d n

11
11b −a

)
.

We wish to show that this does not belong to 00(n). If n is not divisible by 11 this
is clear, so suppose n ≥ 22 is a multiple of 11. Then, by construction, b is coprime
to 11, and so 11b is not divisible by n. This shows that γ2 cannot belong to any
normalizer N (00(n)) except N (00(11)).

It remains to verify that we cannot have H = M = N (00(11)). Construction of
the Ford domain for N (00(11)) yields the generating set

δ1 =

(
1 1
0 1

)
, δ2 =

(
0 −1

√
11√

11 0

)
, δ3 =

(√
11 5

√
11

2
√

11
√

11

)
,

δ4 =

(√
11 −4

√
11

3
√

11 −
√

11

)
, δ′4 =

(
−
√

11 −4
√

11

3
√

11
√

11

)
.

The Ford domain corresponding to these generators is shown in Figure 3.

Figure 3. A Ford domain for N (00(11)). All sides except those
marked are paired with their opposites.
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The fact that three of the generating elements are involutions, which pair adja-
cent sides of the Ford domain, precludes N (00(11)) from possessing a DF domain.
By Theorem 5.4, this also precludes it from being an index 2 subgroup of a reflec-
tion group. Thus 0ref is maximal. �

Remark. Since 0ref is an arithmetic maximal hyperbolic reflection group, one
would expect to find it in existing lists of such groups. This example appears
to be the lattice 2-fill(L26.1) in Allcock’s enumeration [2010] of rank-3 reflective
Lorentzian lattices, which would correspond to the case N = 26 in [Nikulin 2000,
Table 1]. If one could show 0ref is indeed this lattice, this would provide an alter-
native proof that it is maximal arithmetic; however, we omit this at present, as the
proofs given above suffice for our purposes.

Claim 3. 0ref is not congruence.

Proof. Suppose 0ref is congruence. Then it contains some principal congruence
subgroup 0(n). These groups all belong to the modular group, so 0(n) is contained
in G = 0 ∩ PSL2(Z). By Wohlfahrt’s theorem (see [Newman 1972], p. 149), G
contains 0(n) for n equal to the level of G, that is, the smallest natural number
such that G contains the normal closure of

T n
=

(
1 1
0 1

)n

=

(
1 n
0 1

)
in PSL2(Z).

Subclaim. The level of G is 11.

Proof of subclaim. The group G = 0 ∩ PSL2(Z) = 0 ∩00(11) is not equal to 0,
by the presence of the nonintegral elements γ2 and γ3. However, it contains the
matrices

β1 = γ1 =

(
1 1
0 1

)
, β2 = γ2γ

−1
1 γ2 =

(
1 0
11 1

)
, β3 = γ2γ3 =

(
−2 −1
11 5

)
,

β4 = γ2γ
−1
3 =

(
2 −1
11 −5

)
, β5 = γ4 =

(
10 3
33 10

)
, β6 = γ5 =

(
23 8
66 23

)
.

The isometric circles of these elements and their inverses are shown in Figure 4.
Notice that the isometric circles centered at 2

11 and − 2
11 are paired with those at

5
11 and − 5

11 respectively; with these four circles excepted, each other side is paired
with its reflection in the line x = 0. There are four equivalence classes of ideal
points: these classes are {∞}, {0},

{1
3 ,−

1
3

}
,
{ 4

11 ,
3

11 ,−
3
11 ,−

4
11

}
. All four finite

vertices belong to the same cycle, and their angles are π/3 at x = ±1
2 , and 2π/3

at x =± 3
22 , giving angle sum 2π .
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Figure 4. A Ford domain for G.

The region PG of H2 bounded by these circles and the lines x =−1
2 and x = 1

2
has area 8π and contains a Ford domain for G. This is enough for us to conclude
that it is a Ford domain for G: since G is a proper subgroup of 0, of finite index
due to the finite area of PG , G must have coarea a multiple 4mπ of 4π , where
m = [0 : G] > 1. That the area of PG is 8π tells us that m ≤ 2, and hence that in
fact m = 2. So G has index 2 in 0 and index 24 in PSL2(Z), and the list above is
a generating set.

To prove the Subclaim, we need to show that given any ϕ ∈ PSL2(Z), we have
that ϕ T 11ϕ−1

∈G. If ϕ fixes∞ this is clear, so suppose ϕ(∞) 6=∞. Topologically,
H2/G is a torus with four cusps, with the cusp orbits in Q∪{∞} represented by 0,
∞, 1

3 and 3
11 . Therefore ϕ(∞) is G-equivalent to exactly one of these four points;

let g ∈ G be such that g−1ϕ(∞) is this point. We observe that T 11
∈ G; we also

find that (
0 −1
1 0

)(
1 11
0 1

)(
0 −1
1 0

)
=

(
1 0
−11 1

)
=

(
1 0

11 1

)−1

∈ G

is a parabolic element fixing 0, that(
1 0
3 1

)(
1 11
0 1

)(
−1 0
3 −1

)
=

(
−32 11
−99 34

)
=

(
10 3
33 10

)(
−23 8
66 −23

)
∈ G

is a parabolic element fixing 1
3 , and that(

3 1
11 4

)(
1 1
0 1

)(
−4 1
11 −3

)
=

(
−32 9
−121 34

)
=

(
2 −1
11 −5

)(
23 8
66 23

)(
−5 −1
11 −2

)(
−10 3
33 −10

)
∈ G
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is a parabolic element fixing 3
11 . Note that in this last case, G also contains a

conjugate of T 11 fixing 3
11 , by taking the 11th power of the given element. Thus

there exists a conjugate α of T 11 such that α∈G and α fixes g−1ϕ(∞). The element
g.α.g−1

∈ G is therefore a parabolic element, conjugate in PSL2(Z) to T 11, with
parabolic fixed point at ϕ(∞). We wish to show that g.α.g−1

= ϕ T 11ϕ−1. Since
the former element is known to be a conjugate of T 11, we may alternatively write it
as ψ T 11ψ−1 for some ψ ∈ PSL2(Z) with ψ(∞)= ϕ(∞). Now ψ−1ϕ ∈ PSL2(Z)

fixes ∞ and so must be a power of T ; in particular, ψ−1ϕ commutes with T . It
follows that ψ−1ϕ T 11ϕ−1ψ = T 11 and therefore

g.α.g−1
= ψ T 11ψ−1

= ϕ T 11ϕ−1

as required. Thus G contains all elements of the form ϕ T 11ϕ−1, and so the level
of G is at most 11. To see that it is not smaller, observe that G does not contain
any element of the form

( 1 0
t 1

)
for t = 1, 2, . . . , 10. �

To complete the proof of Claim 3, we note that by the Subclaim, G must contain
0(11). Computation in GAP Version 4.4.12 [GAP 2008] reveals that the core of
G in PSL2(Z), the largest normal subgroup of PSL2(Z) contained in G, has index
k= 1351680= 213

·3·5·11 in PSL2(Z). Thus G cannot contain a normal subgroup
of PSL2(Z) of index (in PSL2(Z)) smaller than this constant. But all principal
congruence subgroups are normal, and [PSL2(Z) : 0(11)] = 660 < k. From this
contradiction we conclude that 0ref is not congruence. �

Remark. Hsu [1996] gives a congruence test which can be applied to G. Since G
has index 24 in PSL2(Z), we obtain a representation in the symmetric group S24.
After expressing the known generators for G in terms of L =

( 1 1
0 1

)
and R=

( 1 0
1 1

)
,

we find

L = (2 4 9 15 8 5 11 13 7 3 6) (10 17 21 23 22 19 14 12 18 20 16)

and

R = (1 2 5 12 14 7 4 10 16 8 3) (9 17 19 13 11 18 21 24 22 20 15)

are both of order 11, also giving that the level of G is 11. Hsu’s test is then that G is
a congruence subgroup if and only if (R2L−

1
2 )3 = 1, where 1

2 is the multiplicative
inverse of 2 mod 11, in this case equal to 6. Here we find that R2L−6 has order 6,
and so G is noncongruence.

Remark. The example given above is not the only arithmetic maximal reflection
group which is not congruence. Of the 23 noncocompact arithmetic maximal re-
flection groups which belong to Isom(H2), eight are not congruence. Furthermore,
there exists a noncongruence example in Isom(H3). Further details will appear in
the author’s Ph.D. thesis.



DIRICHLET–FORD DOMAINS AND ARITHMETIC REFLECTION GROUPS 433

7. Kleinian groups and DF domains

In this section, it will be shown that only one direction (the analogue of 5.4) of
the main theorem holds when we consider Kleinian groups in the place of Fuch-
sian groups. This is because the added dimension gives new possibilities for the
shape of the domains in question; in particular, they no longer have to glue up in
a completely symmetrical way, although some symmetry remains. Examples will
be given to demonstrate this flexibility, which extends as far as having nontrivial
cuspidal cohomology. The discussion will be restricted to DF domains; as the
above work demonstrates, it is not unreasonable to suppose that double Dirichlet
domains share many similar properties.

Theorem 7.1. Let Q ⊂ H3 be a finite sided, convex hyperbolic polyhedron with
all dihedral angles integer submultiples of π , and let G be the discrete group of
reflections in Q. Then G contains an index 2 Kleinian subgroup that admits a
double Dirichlet domain (and a DF domain if Q has an ideal vertex).

Proof. Suppose that Q is placed in upper half-space H3 such that one of its faces
L is contained in a vertical plane. Let

G = 〈τ1, . . . , τm, τL〉

be a generating set for G. Let

0 = 〈τL ◦ τ1, . . . , τL ◦ τm〉

be the index 2 subgroup. Let P = Q ∪ τL Q. Let w0 = x0 + y0i + z0 j ∈ L̊ , for
z0> 0. The claim is that w0 is a Dirichlet center for 0. Fix a generator γi = τL ◦τi .
Then the plane Pi fixed by τi bisects w0 and τi (w0), and so τL(Pi ), which by
construction is a face of P , bisects w0 and γi (w0). �

The next result provides the first counterexamples of Theorem 5.3 by exhibiting
Kleinian groups that admit DF domains and do not have index 2 in a reflection
group.

Proposition 7.2. Let Q be an all right hyperbolic polyhedron, with a vertex at∞,
and all vertices ideal. Let G be the group of reflections in Q. Then G contains a
subgroup of index 4 that admits a DF domain.

Proof. Since Q is all right, the link of each vertex is a rectangle. Rotate Q in H3

so that the four faces adjacent to the vertex at∞, each lie above x- or y-lines in C,
where x-lines are parallel to the real axis, and y-lines are parallel to the imaginary
axis. Let H be a side above a y-line, V a side above an x-line, and τH and τV the
respective reflections. Let P = (Q∪τH Q)∪τV (Q∪τH Q). Then P is the union of
4 copies of Q. Looking down from∞ on the floor of P , label by A the nonvertical
face adjacent to the top left vertex and to the vertical face opposite H . Label any
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nonvertical faces adjacent to this face B. Proceed to label every nonvertical face
A or B, with no two adjacent faces sharing the same label. The symmetry of P
implies that this labeling is symmetric in both the x- and y-directions. Define the
subgroup 0 as follows. Given a nonvertical side Pi of P , if Pi has label A, let the
element τH ◦ τi belong to 0; if Pi has label B, let τV ◦ τi belong to 0. If H ′ is the
face of Q opposite H , and V ′ the face of Q opposite V , let τH ◦ τH ′ and τV ◦ τV ′

belong to 0. Then P is a DF domain for 0. �

Remark. Given a group 0 constructed as in the above proof, note that 0 is not
an index 2 subgroup of the group of reflections in the polyhedron (Q ∪ τH Q).
This is because the reflection τH will be absent from this group, preventing the
construction of elements of 0 of the form τH ◦ τi . The same is valid for the group
of reflections in the polyhedron (Q ∪ τV Q).

Since there is no direct analogue of Theorem 5.3 for Kleinian groups, the ques-
tion arises as to what, if anything, is implied about a Kleinian group by it having
a DF domain. For example, one might ask whether such groups must have trivial
cuspidal cohomology. The following example gives a Kleinian group which admits
a DF domain, but which has nontrivial cuspidal cohomology; that is, there exists a
nonperipheral homology class of infinite order in the first homology of the quotient
space.

Example. Let 0< PSL2(C) be generated by the matrices(
1 5
0 1

)
,

(
1 5i
0 1

)
,

(
0 −1
√

2√
2 0

)
,

(
−
√

2 i
√

2

−i
√

2 −
√

2

)
,

and (
1 a
0 1

)( 0 −1
√

2√
2 0

)(
1 ā
0 1

)
=

(√
2a
√

2aā− 1
√

2√
2

√
2ā

)
for each a∈{1, 2, 1+i, 2+i, 2i, 1+2i, 2+2i, 1−i, 2−i,−2i, 1−2i, 2−2i}, where
ā is the complex conjugate of a. Then the isometric spheres of these matrices have
centers at the Gaussian integers {x + iy | x, y ∈ Z} and radius 1/

√
2. The square

with vertices at ± 5
2 ±

5
2 i is a Dirichlet domain for the action of 0∞. Let P be the

intersection of the exterior of all these isometric spheres with the chimney above
the given rectangle. Then P is a DF domain for 0, with Dirichlet center any point
of P̊ above 0. Every dihedral angle of P is π/2. The quotient space H3/0 has
14 boundary components; the cusp at∞ gives a boundary torus, and each of the
13 cusp cycles in C gives a (2, 2, 2, 2) or a (2, 4, 4) sphere. Thus the peripheral
homology has rank 1. Computation using GAP gives that H1(H

3/0) has rank 2,
so there is infinite nonperipheral homology.
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Remarks. (1) The cuspidal cohomology of this example has rank 1, but it can be
modified to give examples where this rank is arbitrarily high.

(2) This example is arithmetic. To see this, consider the Picard group PSL2(O1).
This group contains as a finite index subgroup the congruence subgroup 00(2),
where the lower left entry is a member of the ideal in O1 generated by 2. This
congruence subgroup is normalized by the element

γ =

(
0 −1
√

2√
2 0

)
and, since γ has order 2, 00(2) is an index 2 subgroup of the group H obtained by
adding γ . The group 0 given in the example is a subgroup of H , of finite index
due to the finite volume of the DF domain. In turn, H is commensurable with
PSL2(O1), as both share 00(2) as a subgroup of finite index.

(3) The quotient space of H3 by this group is not a manifold, so one can thus ask
whether there exists another example which has nontrivial cuspidal cohomology,
and which is additionally torsion free.

Although there does not appear to be a specific condition for a Kleinian group
which is equivalent to having a DF domain, we can say something about a group
that admits a DF domain. We cannot always decompose an orientation-preserving
isometry of H3 into the composition of two reflections, but Carathéodory [1954]
shows that we need at most four. If γ /∈ 0∞, these can be taken to be γ = γ4 ◦γ3 ◦

γ2 ◦ γ1, where γ1 is reflection in the isometric sphere Sγ , γ2 in the vertical plane
Rγ bisecting Sγ and Sγ−1 , and γ4 ◦ γ3 is rotation around the vertical axis through
the north pole of Sγ−1 .

Theorem 7.3. Suppose the Kleinian group 0 admits a DF domain P. Then the
planes Rγ , for side pairings γ ∈ 0 \ 0∞ of P , all intersect in a vertical axis.
Furthermore, for each such γ , γ4◦γ3=1, and so each element of the corresponding
generating set for 0 has real trace.

Proof. Let P be a Ford domain. Suppose there is some side pairing γ such that
γ4 ◦ γ3 6= 1. By considering the north pole of Sγ and its image, the north pole of
Sγ−1 , we see that if P were a Dirichlet domain, its center w0 would have to be in
the plane Rγ . But given any such choice of w0, one can find a point w ∈ P ∩ Sγ
such that d(w0, w) 6= d(w0, γ (w)). Thus P is not a Dirichlet domain. Since each
γ ∈0 \0∞ is then simply the composition of two reflections, it is the conjugate in
PSL2(C) of an element of PSL2(R). It thus has real trace. Since it is assumed that
any element of 0∞ is parabolic, these too have real trace.

Next suppose that the planes Rγ do not have a common intersection. Since we
know that γ4 ◦ γ3 = 1, for a given γ , the plane Rγ represents the set of potential
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Dirichlet centers. If there is no common such center, P is not a Dirichlet domain.
Thus if P is a DF domain, the planes Rγ have a common intersection. �

The examples given earlier in this section give a flavor of the particular case with
only two distinct, perpendicular planes Rγ . It is therefore possible for DF domains
to be more complicated than this. This theorem provides a useful criterion for
having a DF domain, which can be used to check known Ford domains. Observe
that the vertical axis of intersection of the planes Rγ must correspond to a Dirichlet
center for the action of 0∞. Thus we see that the figure-8 knot group [Riley 1975],
as well as the Whitehead link group and the group of the Borromean rings [Wie-
lenberg 1978] do not admit DF domains. Furthermore, the groups obtained from a
standard Ford domain in [Wielenberg 1981] cannot admit DF domains. Although
in some cases, with the right choice of Ford domain, one can generate congruence
subgroups of Bianchi groups using elements of real trace, the sides of the domain
are identified in a way similar to the corresponding Fuchsian congruence subgroup,
and so these groups seldom admit a DF domain.
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FORMAL EQUIVALENCE OF POISSON STRUCTURES
AROUND POISSON SUBMANIFOLDS

IOAN MĂRCUT,

Let (M, π) be a Poisson manifold. A Poisson submanifold P ⊂ M gives
rise to a Lie algebroid AP → P . Formal deformations of π around P are
controlled by certain cohomology groups associated to AP . Assuming that
these groups vanish, we prove that π is formally rigid around P; that is,
any other Poisson structure on M, with the same first-order jet along P ,
is formally Poisson diffeomorphic to π . When P is a symplectic leaf, we
find a list of criteria that are sufficient for these cohomological obstructions
to vanish. In particular, we obtain a formal version of the normal form
theorem for Poisson manifolds around symplectic leaves.

1. Introduction

A Poisson bracket on a manifold M is a Poisson algebra structure on the space
of smooth functions on M , that is, a Lie bracket { · , · } on C∞(M) satisfying the
derivation property

(1) { f, gh} = { f, g}h+{ f, h}g for all f, g, h ∈ C∞(M).

Equivalently, it can be given by a bivector π ∈ X2(M) that satisfies [π, π] = 0.
The two definitions are related by the formula

〈π, d f ∧ dg〉 = { f, g} for all f, g ∈ C∞(M).

An immersed submanifold ι : P → M is called a Poisson submanifold of M if π
is tangent to P . This ensures that π|P is a Poisson structure on P for which the
restriction map

ι∗ : C∞(M)→ C∞(P)

is a Lie algebra homomorphism. We regard the Poisson algebra (C∞(P), { · , · })
as the 0th-order approximation of the Poisson structure on M . If P is embedded,

This research was supported by the NWO Vidi Project “Poisson topology.”
MSC2010: primary 53D17, 58H15; secondary 70K45, 17B55, 17B70.
Keywords: Poisson geometry, Lie algebroid, graded Lie algebra.
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then P is a Poisson submanifold if and only if its vanishing ideal

I (P)= { f ∈ C∞(M) | ι∗( f )= 0}

is an ideal in the Lie algebra (C∞(M), { · , · }). Assuming that P is also closed1,
we have a canonical identification of Poisson algebras

(C∞(P), { · , · })= (C∞(M)/I (P), { · , · }).

This gives a recipe for constructing higher-order approximations. For example, the
first-order approximation fits into an exact sequence of Poisson algebras

(2) 0→ (I (P)/I 2(P), { · , · })

→ (C∞(M)/I 2(P), { · , · })→ (C∞(P), { · , · })→ 0.

The Poisson algebra structures in this sequence depend only on j1
|Pπ , the first jet

of π along P . A better way to describe (2) is using the language of Lie algebroids.
As explained in Section 2, the extension (2) gives rise to a Lie algebroid structure
AP on T ∗P M that fits into a short exact sequence of Lie algebroids

(3) 0→ TP◦→ AP → T ∗P→ 0,

where TP◦ ⊂ T ∗P M = AP is the annihilator of TP and T ∗P is the cotangent Lie
algebroid of (P, { · , · }). In particular, we obtain a representation of AP on TP◦,
and thus also on its symmetric powers Sk(TP◦).

We study formal rigidity of Poisson structures around Poisson submanifolds. In
general, deformation and rigidity problems in Poisson geometry are controlled by
the Poisson cohomology groups H•π (M), which are the cohomology of the complex
of multivector fields (X•(M), dπ ), where

dπ := [π, · ].

For a Poisson submanifold P , this dπ induces a differential on X•(M)|P , the
complex of multivector fields along M . The corresponding cohomology, denoted
by H•π (M, P), is called the Poisson cohomology relative to P [Ginzburg and Lu
1992]. The formal rigidity of Poisson structures around Poisson submanifolds is
controlled by a version of this cohomology with coefficients. Lie algebroids pro-
vide the right setting to make this precise; that is, the relative Poisson cohomology
groups can be computed as the cohomology of the Lie algebroid AP

H•π (M, P)= H•(AP),

1Since we study local properties of (M, π) around P , only the condition that P is embedded is
essential; closeness can be achieved by replacing M with a tubular neighborhood of P .
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and the cohomology groups of AP with coefficients in Sk(TP◦), which we denote
by H•(AP;S

k(TP◦)), control formal rigidity (see Section 2 for the definition of
Lie algebroid cohomology).

Our main result is the following:

Theorem 1.1. Let π1 and π2 be two Poisson structures on M , such that P ⊂ M
is an embedded Poisson submanifold for both, and such that they have the same
first-order jet along P. If their common algebroid AP has the property that

H 2(AP;S
k(TP◦))= 0 for all k ≥ 2,

then the two structures are formally Poisson diffeomorphic. More precisely, there
exists a diffeomorphism

ψ :U→ V,

with dψ|TP M = idTP M , where U and V are open neighborhoods of P , such that
π1|U and ψ∗(π2|V) have the same infinite jet along P:

j∞
|P (π1|U)= j∞

|P (ψ
∗(π2|V)).

Applying Theorem 1.1 to the linear Poisson structure on the dual of a compact,
semisimple Lie algebra, we obtain the following result.

Corollary 1.2. Let g be a semisimple Lie algebra of compact type and consider πlin

the linear Poisson structure on g∗. Let S(g)⊂ g∗ be the sphere in g∗ centered at 0,
of radius 1 with respect to some invariant inner product. Then S(g) is a Poisson
submanifold, and any Poisson structure π1 defined in some open neighborhood of
S(g), such that

j1
|S(g)(πlin)= j1

|S(g)(π1),

is formally Poisson diffeomorphic to πlin.

The symplectic leaves of (M, π) are Poisson submanifolds of a special type.
Recall that a Poisson manifold carries a canonical singular foliation whose leaves
are the maximal integral submanifolds of the distribution π ](T ∗M). Such a leaf S
has a natural symplectic structure given by ωS := π

−1
|S . If (S, ωS) ⊂ (M, π) is an

embedded symplectic leaf, then the Lie algebroid extension (3) — which encodes
only the first-order jet π along S — can be used to construct a second Poisson
structure π1

S , called the first-order approximation of π around S, defined on some
open neighborhood of S and having the same first jet as π along S.

In [Crainic and Mărcuţ 2010] we obtained a normal form theorem for Poisson
structures around symplectic leaves: we proved that, under some assumptions on
the first jet of π along S, the Poisson structures π and π1

S are Poisson diffeomorphic
around S. Our goal is to give a formal version of this result, which we state below
in its most general form (observe that it is a direct consequence of Theorem 1.1).
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Theorem 1.3. Let (M, π) be a Poisson manifold and S ⊂ M an embedded sym-
plectic leaf. If the cohomology groups

H 2(AS,Sk(TS◦))

vanish for all k ≥ 2, then π is formally Poisson diffeomorphic to its first-order
approximation around S.

In many cases we show that these cohomological obstructions vanish, and we
obtain the following corollaries.

Corollary 1.4. Let (M, π) be a Poisson manifold and S ⊂ M an embedded sym-
plectic leaf. Assume that the Poisson homotopy cover of S is a smooth principal
bundle with vanishing second de Rham cohomology group, and that its structure
group G satisfies

H 2
diff(G,Sk(g))= 0 for all k ≥ 2,

where g is the Lie algebra of G, and H•diff(G,Sk(g)) denotes the differentiable
cohomology of G with coefficients in the k-th symmetric power of the adjoint rep-
resentation. Then π is formally Poisson diffeomorphic to its first-order approxima-
tion around S.

Since the differentiable cohomology of compact groups vanishes, we obtain the
following immediate corollary.

Corollary 1.5. Let (M, π) be a Poisson manifold and S ⊂ M an embedded sym-
plectic leaf. If the Poisson homotopy cover of S is a smooth principal bundle with
vanishing second de Rham cohomology group and compact structure group, then
π is formally Poisson diffeomorphic to its first-order approximation around S.

The next consequence is bit more technical:

Corollary 1.6. Let (M, π) be a Poisson manifold and S ⊂ M an embedded sym-
plectic leaf whose isotropy Lie algebra is reductive. If the abelianization algebroid

Aab
S := AS/[TS◦,TS◦]

is integrable by a simply connected principal bundle with compact structure group
and vanishing second de Rham cohomology group, then π is formally Poisson
diffeomorphic to its first-order approximation around S.

Corollary 1.7. Let (M, π) be a Poisson manifold and S ⊂ M an embedded sym-
plectic leaf through x ∈ M. If the isotropy Lie algebra at x is semisimple, π1(S, x)
is finite, and π2(S, x) is torsion, then π is formally Poisson diffeomorphic to its
first-order approximation around S.
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Some related results. The first-order approximation of a Poisson manifold (M, π)
around a one-point leaf x (a zero of π ) is the linear Lie–Poisson structure on g∗x ,
the dual of the isotropy Lie algebra at x . Formal linearization in this setup was
proven by Weinstein [1983] for semisimple gx . This case is also covered by our
Corollary 1.7. Under the stronger assumption that gx is semisimple of compact
type, Conn [1985] proved that a neighborhood of x is in fact Poisson diffeomorphic
to an open neighborhood of 0 in the local model g∗x .

Vorobjev [2001] constructed the first-order approximation around arbitrary sym-
plectic leaves (see [Crainic and Mărcuţ 2010] for a more geometrical approach).

A weaker version of our Theorem 1.1 — of which we became aware only at the
end of this research — was stated by Itskov et al. [1998]. They work around com-
pact symplectic leaves instead of embedded Poisson submanifolds, proving that for
each k, there exists a diffeomorphism that identifies the Poisson structures up to
order k [Itskov et al. 1998, Theorem 7.1]. Compactness of the leaf is nevertheless
too strong an assumption for formal equivalence. For example, they conclude in
their Corollary 7.4 that hypotheses similar to those in our Corollary 1.7 imply
the vanishing of the cohomology groups H 2(AS,Sk(TS◦)), but also remark that
compactness of the leaf is incompatible with these assumptions (it forces S to be
a point).

To prove Theorem 1.1, we reduce it to a result on the equivalence of Maurer–
Cartan elements in complete graded Lie algebras, which we prove in the Appendix.
The same criteria for equivalence of Maurer–Cartan elements, but in the context
of differential graded algebras, can be found in [Abad et al. 2010, Appendix A].

To prove the vanishing of the cohomological obstructions, and the corollaries
listed above, we use techniques such as Whitehead’s Lemma for semisimple Lie
algebras and spectral sequences for Lie algebroids, but also the more powerful
techniques developed in [Crainic 2003], such as the Van Est map and vanishing of
cohomology of proper groupoids.

Theorem [Crainic and Mărcuţ 2010, main result]. Let (M, π) be a Poisson man-
ifold and S ⊂ M an embedded symplectic leaf ; π is Poisson diffeomorphic to its
first-order approximation around S if the following conditions are satisfied:

• the Poisson homotopy cover P of S is smooth;

• H 2
dR(P)= 0;

• the structure group of P is compact;

• S is compact.

The first three conditions are the hypotheses of Corollary 1.5. So, giving up on
compactness of the leaf, we still conclude that π and its first-order approximation
are formally Poisson diffeomorphic. Nevertheless, the conditions of Corollary 1.5
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are too strong in the formal setting; they force the semisimple part of the isotropy
Lie algebra to be compact. Thus we consider the more technical Corollary 1.6 to
be the correct analog in the formal category of the normal form theorem in [Crainic
and Mărcuţ 2010]. In fact, Corollary 1.5 is a consequence of Corollary 1.6; it is
precisely the case when the semisimple part of the isotropy Lie algebra is compact.

2. The first-order data

We recall some definitions; for more on Lie algebroids, see [Mackenzie 1987].

Definitions 2.1. A Lie algebroid over a manifold B is a vector bundle A → B
endowed with a Lie bracket [ · , · ] on its space of sections 0(A) and a vector bundle
map ρ :A→ TB, called the anchor, which satisfy the Leibniz identity:

[α, fβ] = f [α, β] + Lρ(α)( f )β for all f ∈ C∞(B), α, β ∈ 0(A).

A representation of A is a vector bundle E→ B endowed with a bilinear map

∇ : 0(A)×0(E)→ 0(E),

satisfying

∇f α(s)= f∇α(s), ∇α( f s)= f∇α(s)+ Lρ(α)( f )s,

and the flatness condition

∇α∇β(s)−∇β∇α(s)=∇[α,β](s).

The cohomology of a Lie algebroid (A, [ · , · ], ρ) with coefficients in a rep-
resentation (E,∇) is defined by the complex �•(A, E) := 0(3•A∗ ⊗ E) with
differential given by the classical Koszul formula:

d∇ω(α0, . . . , αq)=
∑

i

(−1)i∇αi

(
ω(α1, . . . , α̂i , . . . , αq)

)
+

∑
i< j

(−1)i+ jω
(
[αi , α j ], . . . , α̂i , . . . , α̂ j , . . . , αq

)
.

The corresponding cohomology groups are denoted by H•(A, E).

To a Poisson manifold (M, π) one can associate a Lie algebroid structure on the
cotangent bundle T ∗M , with anchor given by π viewed as a bundle map

π ] : T ∗M→ TM

and bracket uniquely determined by

[d f, dg] := d{ f, g} for all f, g ∈ C∞(M);

see [Vaisman 1994] for details.
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Let P ⊂ M be an embedded Poisson submanifold. Since π is tangent to P , it is
easy to see that the algebroid structure can be restricted to P , in the sense that there
is a unique Lie algebroid structure on AP := T ∗P M with anchor π ]

|P and bracket
such that the restriction map 0(T ∗M)→ 0(AP) is a Lie algebra homomorphism.
The dual of the inclusion TP⊂ TP M gives a map AP→ T ∗P that is a Lie algebroid
homomorphism, where T ∗P is the cotangent Lie algebroid of (P, π|P). This way
we obtain the extension of Lie algebroids from the introduction:

(4) 0→ (TP◦, [ · , · ])→ (AP , [ · , · ])→ (T ∗P, [ · , · ])→ 0.

This short exact sequence implies that TP◦ is an ideal in (AP , [ · , · ]); therefore

∇ : 0(AP)×0(TP◦)→ 0(TP◦), ∇α(η) := [α, η]

defines a representation of AP on TP◦, and thus on its symmetric powers Sk(TP◦).
The resulting cohomology groups are the obstructions appearing in Theorems 1.1
and 1.3. The Lie algebroid structures on AP and the sequence (4) depend only on
the first jet of π along P (that is, the brackets and anchors can be expressed in
terms of π|P and the first-order derivatives of π restricted to P).

Remark 2.2. We regard the Lie algebroid AP as the first-order approximation of
the Poisson bracket at P . To justify this interpretation, fix a Poisson structure πP

on P , where P ⊂M is a closed embedded submanifold. Then there is a one-to-one
correspondence between Poisson algebra structures on the commutative algebra
C∞(M)/I 2(P), which fit into the short exact sequence

(5) 0→ (I (P)/I 2(P), { · , · })

→ (C∞(M)/I 2(P), { · , · })→ (C∞(P), { · , · })→ 0,

and Lie algebroid structures on AP := T ∗P M , which fit into a sequence of the form

(6) 0→ (TP◦, [ · , · ])→ (AP , [ · , · ])→ (T ∗P, [ · , · ])→ 0.

The exterior derivative induces a map

d : C∞(M)/I 2(P)→ 0(AP),

and the correspondence between the brackets is uniquely determined by the fact
that this is a Lie algebra homomorphism.

Example 2.3. Consider P := R2 as the submanifold {z = 0} ⊂ M := R3. We
construct a first-order extension of the trivial Poisson structure on P to M , that is,
a Poisson algebra structure on the commutative algebra

C∞(M)/I 2(P)= C∞(M)/(z2)= C∞(P)⊕ zC∞(P)
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with the property that { f, g} ∈ (z), for all f, g ∈ C∞(M)/(z2). Explicitly, define

{ f, g} = z
(∂ f
∂x
∂g
∂y
−
∂ f
∂y
∂g
∂x
+ x

∂ f
∂x
∂g
∂z
− x

∂ f
∂z
∂g
∂x

)
mod (z2).

A straightforward computation yields that { · , · } satisfies the Jacobi identity, and
therefore we have an extension of Poisson algebras

0→ zC∞(P)→ C∞(P)⊕ zC∞(P)→ C∞(P)→ 0,

where the Poisson bracket on P is zero. The total space of the corresponding Lie
algebroid AP is R3

×P→ P . The bracket is given on the global frame dx|P , dy|P ,
dz|P by

[dx|P , dy|P ] = dz|P , [dy|P , dz|P ] = 0, [dx|P , dz|P ] = xdz|P ,

and extended bilinearly to all sections, since the anchor is zero.
Nevertheless, there is no Poisson structure on M (nor on any open neighborhood

of P) that has this Poisson algebra as its first-order approximation. Assume, to the
contrary, that on some open neighborhood U of P such a Poisson structure exists.
Then it must have the form

{x, y} = z+ z2h, {y, z} = z2k, {x, z} = xz+ z2l,

for some smooth functions h, k, l defined on U. Computing the Jacobiator of x , y,
and z, we obtain

J = {x, {y, z}}+{z, {x, y}}+{y, {z, x}} = z2((2−x)k(x, y, 0)+1
)
+ z3a(x, y, z),

where a is a smooth function. In particular, we see that J cannot vanish, since

∂2 J
∂z2 (2, y, 0)= 2 6= 0.

This example shows that not everything that looks like the first jet of a Poisson
structure around P (that is, an extension of the form (6) or (5)) comes from an
actual Poisson structure.

On the other hand, if P is a symplectic manifold, the situation changes for
the better; every “first jet” of a Poisson structure can be extended to a Poisson
structure around P . More precisely, consider (S, ωS) a symplectic manifold, with
S⊂M embedded, and an algebroid structure on AS := T ∗S M that fits into the exact
sequence

0→ TS◦→ AS→ T ∗S→ 0.

Then, using a tubular neighborhood E :TS M/TS→M , one can construct a Poisson
structure π1

S = π
1
S(AS, ωS,E) on some open neighborhood of S, from which we

recover the first-order data: it has (S, ωS) as a symplectic leaf, and the algebroid
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structure induced on T ∗S M is AS . This Poisson structure was first constructed by
Vorobjev [2001]; we also recommend [Crainic and Mărcuţ 2010] for some different
approaches. Applied to different tubular neighborhoods, this construction produces
Poisson structures which, when restricted to small enough neighborhoods of S, are
Poisson diffeomorphic [Vorobjev 2001]. So the isomorphism class of the germ
around S of π1

S doesn’t depend on E.
We can view the whole story from a different perspective; start with a Poisson

structure π on M , for which (S, ωS) is an embedded symplectic leaf, and denote as
usual by AS the Lie algebroid on T ∗S M . For E a tubular neighborhood of S, we call
π1

S = π
1
S(AS, ωS,E) the first-order approximation of π around S. The first-order

approximation is defined on some open neighborhood of S in M , and it plays the
role of a local normal form for π around S.

3. The formal equivalence theorem

The algebra of formal vector fields. Take the graded Lie algebra (X•(M), [ · , · ])
of multivector fields on M , with the Nijenhuis–Schouten bracket and deg(W ) =

k − 1 for W ∈ Xk(M). For a closed, embedded submanifold P ⊂ M , denote by
X•P(M) the following subalgebra of multivector fields tangent to P:

X•P(M) := {u ∈ X•(M) | u|P ∈ X•(P)}.

The vanishing ideal I (P)⊂ C∞(M) of P induces a filtration F on X•P(M):

X•P(M)⊃ F•0 ⊃ F•1 ⊃ . . .F
•

k ⊃ F•k+1 ⊃ . . . ,

F•k = I k+1(P)X•(M), k ≥ 0.

It is readily checked that

(7) [Fk,Fl] ⊂ Fk+l, [X
•

P(M),Fk] ⊂ Fk .

Let X̂•P(M) be the completion of X•P(M) with respect to the filtration F, defined
by the projective limit

X̂•P(M) := lim
←−

X•P(M)/F
•

k .

By (7), it follows that X̂•P(M) inherits a graded Lie algebra structure, such that, for
k ≥ 0, the natural maps

j k
|P : X̂

•

P(M)→ X•P(M)/F
•

k

are Lie algebra homomorphisms. The algebra (X̂•P(M), [ · , · ]) is called the algebra
of formal multivector fields along P . Consider also the homomorphism

j∞
|P : X

•

P(M)→ X̂•P(M).
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From a version of Borel’s Theorem (see, for example, [Moerdijk and Reyes 1991])
about the existence of a smooth section with a specified infinite jet along a sub-
manifold, it follows that j∞

|P is surjective. Observe that X̂•P(M) inherits a filtration
F̂ from X•P(M), given by

F̂•k = j∞
|P F•k,

that satisfies the corresponding equations (7).
The adjoint action of an element X ∈ F̂1

1

adX : X̂
•

P(M)→ X̂•P(M), adX (Y ) := [X, Y ]

increases the degree of the filtration by 1. Therefore the partial sums

n∑
i=0

adi
X

i !
(Y )

are constant modulo F̂k for n ≥ k and all Y ∈ X̂•P(M). This and the completeness
of the filtration on F̂ show that the exponential of adX

eadX : X̂•P(M)→ X̂•P(M), eadX (Y ) :=
∑
n≥0

adn
X

n!
(Y )

is well-defined. It is readily checked that eadX is a graded Lie algebra isomorphism
with inverse e− adX and that it preserves the filtration. We need the following geo-
metric interpretation of these isomorphisms.

Lemma 3.1. For every X ∈ F̂1
1, there exists ψ : M→ M a diffeomorphism of M ,

with ψ|P = idP and dψ|P = idTP M , such that for every W ∈ X•P(M), we have

j∞
|P (ψ

∗(W ))= eadX ( j∞
|P (W )).

Proof. By Borel’s Theorem, there is a vector field V on M such that X = j∞
|P (V ).

We claim that V can be chosen to be complete. Let g be a complete metric on
M and let φ : M → [0, 1] be a smooth function that satisfies φ = 1 on the set
{x | gx(Vx , Vx) ≤

1
2} and φ = 0 on the set {x | gx(Vx , Vx) ≥ 1}. Since V|P = 0, it

follows that φV has the same germ as V around P , and therefore j∞
|P (φV ) = X .

On the other hand, since φV is bounded, it is complete, so replace V by φV .
We show that ψ :=FlV , the flow of V at time 1, satisfies all requirements. Since

j1
|P(V )= 0, it is clear that ψ|P = idP and dψ|P = idTP M .

Consider W ∈X•P(M), and denote by Ws := Fl∗sV (W ) the pullback of W by the
flow of V at time s. Since Ws satisfies the differential equation dWs/ds=[V,Ws],



EQUIVALENCE OF POISSON STRUCTURES AROUND POISSON SUBMANIFOLDS 449

a simple computation gives

d
ds

( k∑
i=0

(−s)i adi
V

i !
(Ws)

)
=
(−s)k adk+1

V

k!
(Ws).

This shows that the sum
k∑

i=0

(−s)i adi
V

i !
(Ws)

modulo Fk+1 is independent of s, and therefore

W −
k∑

i=0

(−1)i adi
V

i !
(ψ∗(W )) ∈ Fk+1.

Applying j∞
|P to this equation yields

j∞
|P (W )−

k∑
i=0

(−1)i adi
X

i !
j∞
|P (ψ

∗(W )) ∈ F̂k+1,

and hence we conclude

j∞
|P (W )= e− adX j∞

|P (ψ
∗(W )). �

The cohomology of the restricted algebroid. Let (M, π) be a Poisson manifold
and P ⊂ M a closed, embedded Poisson submanifold. The cohomologies we are
considering are all versions of the Poisson cohomology H•π (M), computed by the
complex X•(M) of multivector fields on M and differential dπ = [π, · ]. Since P
is a Poisson submanifold, we have that [π, I (P)X•(M)] ⊂ I (P)X•(M), and more
generally, it follows that I k(P)X•(M) forms a subcomplex. Taking consecutive
quotients, we obtain the complexes(

I k(P)X•(M)/I k+1(P)X•(M), dk
π

)
,

with differential dk
π induced by [π, · ]. For k=0, we obtain the Poisson cohomology

relative to P . Observe that the differential on these complexes depends only on the
first jet of π along P , and therefore, following the philosophy of Section 2, it can
be described only in terms of the algebroid AP .

Proposition 3.2. The following two complexes are isomorphic:(
I k(P)X•(M)/I k+1(P)X•(M), dk

π

)
∼=
(
�•(AP ,Sk(TP◦)), d∇k

)
for all k ≥ 0.

Proof. Since the space of sections of TP◦ is spanned by differentials of elements
in I (P), it is easy to see that the map given by

τk : I k(P)X•(M)→�•(AP ,Sk(TP◦))= 0(3•(TP M)⊗Sk(TP◦)),



450 IOAN MĂRCUT,

τk( f1 . . . fk W )=W|P ⊗ d f1|P � · · ·� d fk|P ,

where f1, . . . , fk ∈ I (P) and W ∈X•(M), is well-defined and surjective. Also, its
kernel is precisely I k+1(P)X•(M). Hence, it remains to prove that

(8) τk([π,W ])= d∇k (τk(W )) for all W ∈ I k(P)X•(M).

Recall that the algebroid AP has anchor ρ = π ]
|P and bracket determined by

[dφ|P , dψ|P ]P := d{φ,ψ}|P for all φ,ψ ∈ C∞(M).

Also, for k = 0, we have that ∇0 is given by

∇
0
: 0(AP)×C∞(P)→ C∞(P), ∇0

η(h)= Lρ(η)(h).

Since both differentials dπ and d∇k act by derivations and ∇k is obtained by ex-
tending ∇1 by derivations, it suffices to prove (8) for φ ∈C∞(M) and X ∈X1(M)
(with k = 0), and for f ∈ I (P) (with k = 1).

Let φ ∈ C∞(M) and η ∈ 0(AP). Since π is tangent to P , we obtain

τ0([π, φ])(η)= [π, φ]|P(η)= dφ|P(π
]
|P(η))= Lρ(η)(τ0(φ))= d∇0(τ0(φ))(η).

Let X ∈X1(M) and φ,ψ ∈C∞(M), and define η := dφ|P for θ := dψ|P ∈0(AP).
Then

τ0([π, X ])(η, θ)= [π, X ]|P(dφ|P , dψ|P)

=
(
{X (φ), ψ}+ {φ, X (ψ)}− X ({φ,ψ})

)
|P

= π
]
|P(dφ|P)(X |P(dψ|P))

−π
]
|P(dψ|P)(X |P(dφ|P))− X |P(d{φ,ψ}|P)

= Lρ(η)(τ0(X)(θ))− Lρ(θ)(τ0(X)(η))− τ0(X)([η, θ]P)

= d∇0(τ0(X))(η, θ),

and thus (8) holds for X .
Consider now f ∈ I (P) and η := dφ|P ∈0(AP), with φ ∈C∞(M). The formula

defining τk implies that for every W ∈ I k(P)X•(M), we have

τk(idφ(W ))= idφ|P τk(W ).

Using this, the following computation finishes the proof:

τ1([π, f ])(η)= τ1([π, f ](dφ))= τ1({φ, f })= d{φ, f }|P

= [η, d f|P ]P =∇1
η(τ ( f ))= d∇1(τ ( f ))(η). �
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Proof of Theorem 1.1. By replacing M with a tubular neighborhood of P , we can
assume that P is closed in M . Write

γ := j∞
|P π1, γ ′ := j∞

|P π2 ∈ X̂2
P(M).

By Proposition 3.2, we can recast the hypothesis as

[γ, γ ] = 0, [γ ′, γ ′] = 0, γ − γ ′ ∈ F̂1, H 2(F̂•k/F̂
•

k+1, dγ )= 0,

for all k ≥ 1, where dγ := adγ . All these conditions are expressed in terms of the
graded Lie algebra L• := X̂•+1

P (M), with a complete filtration F̂. Theorem A.5
in the Appendix shows that there exists a formal vector field X ∈ F̂1

1 such that
γ = eadX (γ ′). By Lemma 3.1, there exists a diffeomorphism ψ of M , such that
j∞
|P (ψ

∗(W ))= eadX j∞
|P (W ), for all W ∈ X•P(M). This concludes the proof, since

j∞
|P (ψ

∗(π2))= eadX j∞
|P (π2)= eadX (γ ′)= γ = j∞

|P (π1).

Existence of Poisson structures with a specified infinite jet. This proof can be
applied to obtain a result on existence of Poisson bivectors with a specified infinite
jet. Let S be a closed embedded submanifold of M . An element π̂ ∈ X̂2

S(M),
satisfying [π̂ , π̂ ] = 0, is called a formal Poisson bivector. Observe that

π̂|S := π̂ mod F̂0 ∈ X2(S)

is a Poisson structure on S. We call S a symplectic leaf on π̂ if π̂|S is nondegenerate.
Assuming that S is a symplectic leaf of π̂ , by the discussion in Section 2, the first
jet of π̂ ,

j1
|S(π̂)= π̂ mod F̂1,

determines a Lie algebroid AS on T ∗S M , and thus can be used to construct a Poisson
bivector π1

S on some open neighborhood U of S, whose first jet coincides with that
of π̂ . If the cohomology groups

H 2(AS;S
k(TS◦))

vanish for all k ≥ 2, then by the proof of Theorem 1.1, there exists a formal vector
field X ∈ F̂1

1 such that eadX ( j∞
|S π

1
S)= π̂ . By Lemma 3.1, we find a diffeomorphism

ψ :U→U such that

j∞
|S (ψ

∗(π1
S))= eadX ( j∞

|S π
1
S)= π̂ .

Thus π := ψ∗(π1
S) gives a Poisson structure defined on an open neighborhood of

S whose infinite jet is π̂ . Hence we have proved the following statement.
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Corollary 3.3. Let π̂ ∈ X̂2
S(M) be a formal Poisson structure for which S is a

symplectic leaf. If for any k ≥ 2, the algebroid AS induced by j1
|Sπ̂ satisfies

H 2(AS;S
k(TS◦))= 0,

then there exists a Poisson structure π defined on some open neighborhood of S
such that π̂ = j∞

|S π .

4. Proofs of the criteria

Here we explain and prove the corollaries from the Introduction.

Integration of Lie algebroids and differentiable cohomology. We recall some
properties of Lie groupoids and Lie algebroids; see [Mackenzie 1987; Moerdijk
and Mrčun 2003] for the general theory. A Lie groupoid over a manifold B is
denoted by G, the source and target maps by s, t : G→ B, and the unit map by
u : B → G. To a Lie groupoid G one can associate a Lie algebroid A(G)→ B,
which is the infinitesimal counterpart of G. A Lie algebroid A is called integrable
if A ∼= A(G) for some Lie groupoid G. The relation between Lie algebroids and
Lie groupoids is similar to that between Lie algebras and Lie groups, the most
significant difference being that not every Lie algebroid is integrable.

Recall that a transitive Lie algebroid is a Lie algebroid A→ B with surjective
anchor. For example, if S ⊂ M is a symplectic leaf of a Poisson manifold (M, π),
then the Lie algebroid AS is transitive. A Lie groupoid G is called transitive if
the map (s, t) : G→ M × M is a surjective submersion. The Lie algebroid of a
transitive Lie groupoid is transitive. Conversely, if the base B of a transitive Lie
algebroid A is connected, and A is integrable, then any Lie groupoid G integrating
it is transitive. Every transitive Lie groupoid is a gauge groupoid; that is, it is of
the form P×G P , where G is a Lie group and p : P→ B is a principal G-bundle.
For P one can take any s-fiber s−1(x) of G for x ∈ B, and G := s−1(x)∩ t−1(x).
We can recover A from P as follows: as a bundle A = TP /G, the Lie bracket is
induced by the identification

0(A)= X(P)G,

and the anchor is given by dp. We will also say, about a principle G-bundle P
for which A u T P/G, that it integrates A. As for Lie algebras, if a transitive Lie
algebroid with connected base is integrable, then, up to isomorphism, there exists
a unique 1-connected principal bundle integrating it [Mackenzie 1987].

Let S ⊂ M be a symplectic leaf of a Poisson manifold (M, π), and assume
that the transitive algebroid AS is integrable. The connected and simply connected
principal bundle P → S for which P ×G P integrates AS is called the Poisson
homotopy cover of S. We say that P is smooth if AS is integrable; this terminology
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is justified by the fact that P exists also in the nonintegrable case as a topological
principal bundle over S [Crainic and Fernandes 2003].

Let A be a transitive Lie algebroid with connected base space B, and denote
by g ⊂ A the kernel of the anchor. On each fiber of g, the Lie bracket restricts
to a Lie algebra structure (gx , [ · , · ]x), and this Lie algebra is called the isotropy
Lie algebra at x . In the integrable case, when A= A(G), the isotropy Lie algebra
coincides with the Lie algebra of the isotropy group Gx := s−1(x)∩ t−1(x). In the
case of a symplectic leaf S ⊂ M of a Poisson manifold, the kernel of the anchor of
the Lie algebroid AS is given by g := TS◦.

A Lie groupoid G is called proper if (s, t) : G→ B× B is a proper map.
A representation of a Lie groupoid G over B is a vector bundle E → B and

a smooth linear action g : Ex → Ey for every arrow g : x → y satisfying the
obvious identities. A representation E of G can be differentiated to a representation
of its Lie algebroid A(G) on the same vector bundle E . If the s-fibers of G are
connected and simply connected, then every representation of A(G) comes from
a representation of G [Crainic and Fernandes 2003, Proposition 2.2], and in our
applications this is usually the case.

The differentiable cohomology of a Lie groupoid G with coefficients in a rep-
resentation E → B is computed by the complex C

p
diff(G; E) of smooth maps

c : G(p)→ E , where

G(p) := {(g1, . . . , gp) ∈ Gp
| s(gi )= t (gi+1), i = 1, . . . , p− 1}

with c(g1, . . . , gp) ∈ Et (g1), and with differential given by

dc(g1, . . . , gp+1)= g1c(g2, . . . , gp+1)

+

p∑
i=1

(−1)i c(g1, . . . , gi gi+1, . . . , gp+1)+ (−1)p+1c(g1, . . . , gp).

The resulting cohomology groups are denoted H•diff(G, E). For more details on this
subject, see [Haefliger 1979].

In the following proposition we list some results from [Crainic 2003] that are
needed in the proofs of the corollaries from the Introduction.

Proposition 4.1. Let G be a Lie groupoid over B with Lie algebroid A, and let
E→ B be a representation of G.

(1) If the s-fibers of G are cohomologically 2-connected, then

H 2(A; E)∼= H 2
diff(G; E).

(2) If G is proper, then H 2
diff(G; E)= 0.

(3) If G is transitive, then H 2
diff(G; E) ∼= H 2

diff(Gx ; Ex), where x ∈ B and Gx :=

s−1(x)∩ t−1(x).
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Proof. (1) is a particular case of [Crainic 2003, Theorem 4], and (2) follows from
[Crainic 2003, Proposition 1]. Since G is transitive, it is Morita equivalent to Gx

[Moerdijk and Mrčun 2003]; by [Crainic 2003, Theorem 1], a Morita equivalence
induces an isomorphism in cohomology, and this proves (3). �

Proof of Corollary 1.2. Recall that the cotangent Lie algebroid of (g∗, πlin) is
isomorphic to the action Lie algebroid g n g∗→ g∗ for the coadjoint action of g

on g∗, and that it is integrable by the action groupoid G ng∗, where G denotes the
compact, connected and simply connected Lie group of g. Also, the symplectic
leaves of (g∗, πlin) are the orbits of the action of G. So, because S(g) is G-
invariant, it is a union of symplectic leaves, and therefore a Poisson submanifold.
The algebroid AS(g) is isomorphic to the action algebroid g n S(g), and therefore
it is integrable by the action groupoid G n S(g). Since G is simply connected, it
follows that H 2

d R(G) = 0 [Duistermaat and Kolk 2000, Theorem 1.14.2]. On the
other hand, all s-fibers of GnS(g) are diffeomorphic to G, and so the assumptions
of Proposition 4.1(1) are satisfied, and therefore, for any representation E→S(g)

of G n S(g), we have

H 2(g n S(g); E)∼= H 2
diff(G n S(g); E).

Since G n S(g) is compact, it is proper, and hence by Proposition 4.1(2), we have
H 2

diff(GnS(g); E)= 0 for every representation E . Now the corollary follows from
Theorem 1.1. �

Proof of Corollary 1.4. Denote by P the Poisson homotopy cover of S with struc-
ture group G. By hypothesis, P is smooth, simply connected and with vanishing
second de Rham cohomology group. Let G := P ×G P be the gauge groupoid
of P . Since every s-fiber of G is diffeomorphic to P , G satisfies the assumptions
of Proposition 4.1(1), and therefore

H 2(AS;S
k(TS◦))∼= H 2

diff(G;S
k(TS◦)).

Since G is transitive, by Proposition 4.1(3), we have

H 2
diff(G;S

k(TS◦))∼= H 2
diff(G;S

k(Tx S◦)).

Since Tx S◦∼=g as G representations (both integrate the adjoint representation of g),
the proof follows from Theorem 1.3. �

Proof of Corollary 1.5. This follows from Corollary 1.4, because the differentiable
cohomology of compact Lie groups vanishes, by Proposition 4.1(2). �

Proof of Corollary 1.6. Let x ∈ S, and denote by gx := Tx S◦ the isotropy Lie
algebra of the transitive algebroid AS . By hypothesis, gx is reductive; that is, it
splits as a direct product of a semisimple Lie algebra and its center gx = sx ⊕ zx ,
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where sx = [gx , gx ] and zx = Z(gx) is the center of gx . Since g = TS◦ is a Lie
algebra bundle, it follows that this splitting is in fact global:

g= [g, g]⊕ Z(g)= s⊕ z.

Since s= [g, g] is an ideal of AS , we obtain a short exact sequence of algebroids

0→ s→ AS→ Aab
S → 0,

with Aab
S = AS/[g, g]. Similar to the spectral sequence for Lie algebra extensions

[Hochschild and Serre 1953], there is a spectral sequence for extensions of Lie
algebroids [Mackenzie 1987, Theorem 5.5 and the remark following it], which in
our case converges to H•(AS;S

k(g)), with

E p,q
2 = H p(Aab

S ; Hq(s;Sk(g)))⇒ H p+q(AS;S
k(g)).

Since s is in the kernel of the anchor, Hq(s;Sk(g)) is indeed a vector bundle,
with fiber Hq(s;Sk(g))x = Hq(sx ;S

k(gx)), and it inherits a representation of Aab
S .

Since sx is semisimple, by the Whitehead Lemma we have that H 1(sx ;S
k(gx))=0

and H 2(sx ;S
k(gx))= 0. Therefore,

(9) H 2(AS;S
k(g))∼= H 2(Aab

S ;S
k(g)s),

where Sk(gx)
sx is the sx -invariant part of Sk(gx). By hypothesis, Aab

S is integrable
by a principle bundle Pab that is simply connected and that has vanishing second
de Rham cohomology and compact structure group T . Therefore, by (9) and by
applying Proposition 4.1(1), (2) and (3), we obtain that

H 2(AS;S
k(g))∼= H 2(Aab

S ;S
k(g)s)∼= H 2

diff(P
ab
×T Pab

;Sk(g)s)

∼= H 2
diff(T ;S

k(gx)
sx )= 0.

Theorem 1.3 finishes the proof. �

Proof of Corollary 1.7. Assume that gx is semisimple, π1(S, x) is finite, and
π2(S, x) is a torsion group. With the notation above, we have Aab

S
∼= TS. Also,

TS is integrable, and the simply connected principal bundle integrating it is S̃,
the universal cover of S. Finiteness of π1(S) is equivalent to compactness of the
structure group of S̃. By the Hurewicz theorem, we have H2(S̃,Z) ∼= π2(S̃), and
since π2(S̃) = π2(S) is torsion, we have H 2

dR(S̃) = 0. So the result follows from
Corollary 1.6. �

Appendix: Equivalence of MC-elements in complete GLAs

Here we discuss some general facts about graded Lie algebras endowed with a
complete filtration, with the aim of proving a criterion for equivalence of Maurer–
Cartan elements (Theorem A.5), which is used in the proof of Theorem 1.1. Some
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of the constructions given here can be also found in [Bursztyn et al. 2009, Ap-
pendix B.1] in the more general setting of differential graded Lie algebras with
a complete filtration. In fact, all our constructions can be adapted to this setup,
including in particular Theorem A.5. The analog of Theorem A.5 in the case of
differential graded associative algebras is in [Abad et al. 2010, Appendix A].

Definitions A.1. (1) A graded Lie algebra (L•, [ · , · ]) (or GLA) consists of a
Z-graded vector space L• endowed with a graded bracket [ · , · ] :Lp

×Lq
→

Lp+q , which is graded commutative and satisfies the graded Jacobi identity:

[X, Y ] = −(−1)|X ||Y |[Y, X ], [X, [Y, Z ]] = [[X, Y ], Z ] + (−1)|X ||Y |[Y, [X, Z ]].

(2) An element γ ∈L1 satisfying [γ, γ ] = 0 is called a Maurer–Cartan element.

(3) A filtration on a GLA is a decreasing sequence of homogeneous subspaces

L• ⊃ F0L• ⊃ · · · ⊃ FnL• ⊃ Fn+1L• ⊃ · · ·

satisfying

[FnL,FmL] ⊂ Fn+mL, [L,FnL] ⊂ FnL.

(4) A filtration FL is called complete if L is isomorphic to the projective limit
lim
←−

L/FnL.

An example of a GLA with a complete filtration appeared in Section 3: starting
from a manifold M and a closed embedded submanifold P ⊂ M , we constructed
(X̂•+1

P (M), [ · , · ]), the algebra of formal vector fields along P , with filtration given
by the powers of the vanishing ideal of P . So, the index of the filtration plays the
role of the order to which elements vanish along P .

For a general GLA with a complete filtration FL, define the order of an element
as follows:

O : L→ {0, 1, . . . ,∞},

O(X)=


0 if X ∈ L\F1L,

n if X ∈ FnL\Fn+1L,

∞ if X = 0.

The order has the following properties, which follow from those of the filtration:

• O(X)=∞ if and only if X = 0,

• O(X + Y )≥ O(X)∧O(Y )2,

• O(αX)≥ O(X) for all α ∈ R,

• O([X, Y ])≥ O(X)+O(Y ).

2u ∧ v denotes min{u, v}.
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The completeness assumption on the filtration implies the following property:

Lemma A.2. Let {Xn}n≥0 ∈ L be a sequence of elements such that

lim
n→∞

O(Xn)=∞.

Then there exists a unique element X ∈ L, denoted X :=
∑

n≥0 Xn , such that

X −
n∑

k=0

Xk ∈ FmL,

for all n big enough.

Note that g(L) := F1L0 forms a Lie subalgebra of L0. Elements X ∈ g(L)

satisfy O(adX (Y )) ≥ O(Y )+ 1 for all Y ∈ L, and therefore, by Lemma A.2, the
exponential of adX is well defined, and it is a GLA-automorphism of L•, written

Ad(eX ) : L•→ L•, Ad(eX )Y := eadX (Y )=
∑
n≥0

adn
X

n!
(Y ).

By Lemma A.2, the Campbell–Hausdorff formula converges for all X, Y ∈ g(L):

(10) X ∗ Y = X + Y +
∑
k≥1

(−1)k

k+1
Dk(X, Y ),

where

Dk(X, Y )=
∑

li+mi>0

ad l1
X

l1!
◦

ad m1
Y

m1!
◦ . . . ◦

ad lk
X

lk !
◦

ad mk
Y

mk !
(X).

We use the notation G(L)={eX
| X ∈g(L)}; that is, G(L) is the same space as g(L),

but we denote its elements by eX . The universal properties of the Campbell–
Hausdorff formula (10) imply that G(L) endowed with the product eX eY

= eX∗Y

forms a group. Also, Ad gives an action of G(L) on L by graded Lie algebra
automorphisms, which preserves the order:

• Ad(eX∗Y )= Ad(eX eY )= Ad(eX ) ◦Ad(eY ),

• Ad(eX )([U, V ])= [Ad(eX )U,Ad(eX )V ],

• O(Ad(eX )(U ))= O(U ),

for all X, Y ∈ g(L) and all U, V ∈ L.
For later use, we give the following straightforward estimates:

Lemma A.3. For all X, Y, X ′, Y ′ ∈ g(L) and U ∈ L, we have

(1) O(X ∗ Y − X ′ ∗ Y ′)≥ O(X − X ′)∧O(Y − Y ′) and

(2) O(Ad(eX )U −Ad(eY )U )≥ O(X − Y ).
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Let γ be an MC-element. Notice that [γ, γ ] = 0 implies that dγ := adγ is
a differential on L•. The fact that FkL are ideals implies that (FkL•, dγ ) are
subcomplexes of (L•, dγ ). The induced differential on the consecutive complexes
depends only on γ modulo F1, and their cohomology groups are denoted

H n
γ (FkL•/Fk+1L•).

Ad(eX )γ is again an MC-element for eX
∈ G(L), and we call γ and Ad(eX )γ

gauge equivalent. The next Lemma gives a linear approximation of the action G(L)

on MC-elements.

Lemma A.4. For γ an MC-element and eX
∈ G(L), we have

O(Ad(eX )γ − γ + dγ X)≥ 2O(X).

We have the following criterion for gauge equivalence.

Theorem A.5. Let (L•, [ · , · ]) be a GLA with a complete filtration FnL, and let
γ, γ ′ be two Maurer–Cartan elements. If O(γ−γ ′)≥ 1, and if for all q ≥O(γ−γ ′)

we have
H 1
γ (FqL•/Fq+1L•)= 0,

then γ and γ ′ are gauge equivalent; that is, there exists an element eX
∈G(L) such

that γ = Ad(eX )γ ′.

Proof. Define p := O(γ − γ ′). By hypothesis, for q ≥ p, we can find homotopy
operators

hq
1 : FqL1

→ FqL0 and hq
2 : FqL2

→ FqL1

such that hq
1(Fq+1L1)⊂ Fq+1L0, hq

2(Fq+1L2)⊂ Fq+1L1 and

(dγ hq
1 + hq

2dγ − I d)(FqL1)⊂ Fq+1L1.

We first prove an estimate. Let q ≥ p, and let γ̃ be an MC-element such that
O(γ̃ − γ ) ≥ q . Then for X̃ := hq

1(γ̃ − γ ), we claim that the following estimates
hold:

(11) O(X̃)≥ q, O(Ad(e X̃ )γ̃ − γ )≥ q + 1.

The first follows by the properties of hq
1 , and to prove the second we compute:

O(Ad(e X̃ )γ̃ − γ )≥ O(Ad(e X̃ )γ̃ − γ̃ + dγ̃ (X̃))∧O(γ̃ − dγ̃ (X̃)− γ )

≥ 2O(X̃)∧O([γ − γ̃ , X̃ ])∧O(γ̃ − γ − dγ (X̃))

≥ 2q ∧ (O(γ − γ̃ )+O(X̃))∧O(γ̃ − γ − dγ (X̃))

≥ 2q ∧O((I d − dγ hq
1)(γ̃ − γ )),
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where for the second inequality we use Lemma A.4. The last term can be evaluated
as follows:

O((I d − dγ hq
1)(γ̃ − γ ))≥ O((I d − dγ hq

1 − hq
2dγ )(γ̃ − γ ))∧O(hq

2(dγ (γ̃ − γ )))

≥ (q + 1)∧O(hq
2(dγ (γ̃ − γ ))).

Since dγ (γ̃ − γ )=− 1
2 [γ̃ − γ, γ̃ − γ ], we have O(dγ (γ̃ − γ ))≥ 2q ≥ q + 1, so

O((I d − dγ hq
1)(γ̃ − γ ))≥ q + 1,

and this proves (11).
We construct a sequence of MC-elements {γk}k≥0 and a sequence of group ele-

ments {eXk }k≥1 ∈ G(L) by the following recursive formulas:

γ0 := γ
′,

Xk := h p+k−1
1 (γk−1− γ ) for k ≥ 1,

γk := Ad(eXk )γk−1 for k ≥ 1.

To show that these formulas do indeed give well-defined sequences, we have to
check that γk−1− γ ∈ Fp+k−1L1. This holds for k = 1, and in general it follows
by applying the estimate (11) inductively at each step k ≥ 1 to γ̃ = γk−1 and
q = p+ k− 1, to obtain

O(Xk)≥ p+ k− 1, O(γk − γ )≥ p+ k.

Using Lemma A.3(1), we obtain

O(Xk ∗ Xk−1 · · · ∗ X1− Xk−1 · · · ∗ X1)≥ O(Xk)≥ p+ k− 1,

and therefore by Lemma A.2, the product Xk ∗ Xk−1 ∗ · · · ∗ X1 converges to some
element X . Applying Lemma A.3(1) k times, we obtain

O(Xk ∗ Xk−1 · · · ∗ X1)≥ O(Xk)∧O(Xk−1)∧ · · · ∧O(X1)≥ 1,

and thus X ∈ g(L). On the other hand, we have

O(Ad(eX )γ ′− γ )≥ O(Ad(eX )γ ′− γk)∧O(γk − γ )

≥ O(Ad(eX )γ ′−Ad(eXk∗···∗X1)γ ′)∧ (p+ k)

≥ O(X − Xk ∗ · · · ∗ X1)∧ (p+ k),

where for the last estimate we used Lemma A.3(2). If we let k→∞, we obtain
the conclusion: Ad(eX )γ ′ = γ . �
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A REGULARITY THEOREM FOR GRAPHIC SPACELIKE
MEAN CURVATURE FLOWS

BENJAMIN STUART THORPE

For mean curvature flows in Euclidean spaces, Brian White proved a regu-
larity theorem which gives C2,α estimates in regions of spacetime where the
Gaussian density is close enough to 1. This is proved by applying Huisken’s
monotonicity formula. Here we will consider mean curvature flows in semi-
Euclidean spaces, where each spatial slice is an m-dimensional graph in
Rm+n

n satisfying a gradient bound stronger than the spacelike condition.
By defining a suitable quantity to replace the Gaussian density ratio, we
prove monotonicity theorems similar to Huisken’s and use them to prove a
regularity theorem similar to White’s.

1. Introduction

A mean curvature flow can roughly be described as a family of submanifolds
M= {M(t)}t∈I evolving with velocity equal to the mean curvature vector on each
M(t). Let M be such a flow, where each spatial slice M(t) is assumed to be an
m-dimensional submanifold of a Euclidean space. For spacetime points (y, s), the
Gaussian density ratio is given by∫

M(t)

1
(4π(s− t))m/2

exp
(
−
|x − y|2

4(s− t)

)
dx

for times t < s. Huisken [1990] proved an important monotonicity formula, which
roughly says that this will be nonincreasing with respect to t on mean curvature
flows. A local version of this formula was proved by Ecker [2004, Proposition
4.17]. One application of these monotonicity formulas is the proof of Brian White’s
[2005] local regularity theorem for mean curvature flows in Euclidean spaces. This
theorem says that such a flow will be smooth in regions of spacetime where the
Gaussian density ratios are close enough to 1.

Our goal is to prove a similar regularity theorem, but now for spacelike mean
curvature flows in semi-Euclidean spaces. We will assume that these flows are

MSC2010: 35B65, 35K93.
Keywords: mean curvature flow, semi-Riemannian geometry.
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graphs and that they satisfy some uniform gradient bound stronger than the space-
like condition. Roughly, we will prove that if such a flow is smooth on an interval
(0, T ) then it can be extended smoothly to time T (see Theorem 16). This should
be compared to [White 2005, Theorem 3.5]. We prove this by defining a quantity
that has similar properties to the Gaussian density ratio. This quantity is chosen
in such a way that the evolution equations for spacelike mean curvature flows will
allow us to prove monotonicity formulas similar to Huisken’s and Ecker’s. The
proof of the regularity theorem itself is then similar to the proofs in [White 2005]
and [Ecker 2004], with some adjustments.

The main differences between this case and the Euclidean case are caused by
the semi-Euclidean metric. Obviously the mean curvature flow system is only par-
abolic when the spacelike condition is satisfied. Therefore any gradient estimates
are only useful if they are stronger than the spacelike condition. This is why we will
always assume such a bound on the gradient.1 This assumption is also useful when
defining our replacement for the Gaussian density ratio. For example, we need the
gradient bound to guarantee that this quantity is finite on a smooth flow (since we
need the eigenvalues of the induced metric to stay uniformly away from zero). We
will frequently need this assumption, used with inequality (4), to get the uniform
bounds needed to use the dominated convergence theorem (such arguments here
are more difficult than in the Euclidean case, and therefore will be explained in
more detail).

Other difficulties due to the semi-Euclidean metric appear in the proofs of the
monotonicity and regularity theorems. For example, Ecker’s local formula involves
a nice localisation function which is not useful in the semi-Euclidean case, thus
making our proof of local monotonicity slightly more awkward (see Theorem 10
and compare to [Ecker 2004, Proposition 4.17]). We also get different signs in the
evolution equations for various quantities, so that the inequalities seen in the Eu-
clidean case are often reversed here (see Equation (8), for example). The results of
this are seen in the monotonicity theorems, where we see that certain quantities are
nondecreasing, but where the corresponding quantities in the Euclidean case would
be nonincreasing (also see Theorem 13, where the inequality in the assumption is
the reverse of what we get in the Euclidean case).

The results proved in this paper formed part of the author’s Ph.D. thesis at
Durham University, under the supervision of Wilhelm Klingenberg.

2. Preliminaries

Notation. We will attempt to keep our notation as close to the notation in [White
2005] as possible, so that the similarities are clear. When N ≥ 2, RN will be

1For a case where such an estimate holds, see the appendix of [Thorpe 2011].
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Euclidean space with elements denoted by x and with the usual norm |x |. B N
R (x)

will be the ball of radius R and centre x . We will denote by RN ,1 the spacetime
RN
×R with elements X = (x, t) and parabolic norm ‖X‖ =max{|x |, |t |1/2}. We

write B N ,1
R (X)= B N

R (x)×(t−R2, t+R2) and U N ,1
R (X)= B N

R (x)×(t−R2, t]. The
function τ :RN ,1

→R will be the projection τ(x, t)= t onto the time axis. For any
λ> 0, we define the parabolic dilation Dλ :R

N ,1
→RN ,1 by Dλ(x, t)= (λx, λ2t).

Note that ‖DλX‖ = λ‖X‖. For subsets U of RN ,1 and functions f from U into
some Euclidean space, we define

d(X,U )= inf{‖X − Y‖ | Y /∈U } and ‖ f ‖p,α =
∑

k+2h≤p

‖Dk(∂t)
h f ‖0,α,

(for 0 < α < 1 and nonnegative integers p) where [ f ]α = supX 6=Y∈U | f (X) −
f (Y )|/‖X − Y‖α and ‖ f ‖0,α = supU | f | + [ f ]α, and where we have used the
notation ∂t f = ∂ f/∂t , ∂A f = ∂ f/∂x A, D = (∂1, . . . , ∂N ). In the obvious way,
we also define the parabolic C p norm by ‖ f ‖p =

∑
k+2h≤p supU |D

k(∂t)
h f |. If

we say that a sequence of functions converges in C p or C p,α on some set, we just
mean that it converges on that set with respect to the corresponding norm.

Semi-Euclidean spaces. For integers m ≥ 2 and n ≥ 1, it will be convenient here
for us to consider the space Rm+n with elements denoted by x = (x̂, x̃), where
x̂ ∈ Rm and x̃ ∈ Rn . With this notation, we can define the semi-Euclidean spaces
Rm+n

n = (Rm+n, 〈 · , · 〉) with metric tensor 〈x, y〉 = x̂ · ŷ − x̃ · ỹ. If we use the
summation convention with indices i, j = 1, . . . ,m and ν, γ =m+ 1, . . . ,m+ n,
then 〈x, y〉 = x i yi

− xγ yγ and we denote by ḡ the corresponding diagonal matrix
with ḡi j = δi j , ḡνγ =−δνγ .

Let M be a submanifold of Rm+n
n ; then we can take the induced metric g on M

in the usual way, and we say that M is spacelike if g is positive definite. The corre-
sponding Levi-Civita connections (denoted ∇̄ and ∇) are defined in the usual way,
and the second fundamental form on M is given by B(V,W ) = ∇̄V W −∇V W =
(∇̄V W )⊥ for tangent vector fields V,W on M (where ⊥ denotes projection to
normal spaces of M in Rm+n

n ). Taking the trace of this (with respect to the induced
metric g) gives the mean curvature vector H = traceg B of this submanifold. We
can also define the gradient (gradM ), divergence (divM ) and induced Laplace op-
erator (1M ) on this submanifold, all taken with respect to the induced metric; see
[O’Neill 1983] for details.

If� is a domain in Rm and F :�→Rm+n
n is an embedding such that M = F(�)

is a spacelike submanifold of Rm+n
n , then it is not difficult to check that the mean

curvature is given by

(1) H = (gi j∂i j F)⊥ =
1

√
det g

∂i
(√

det ggi j∂ j F
)
=1M F,
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where gi j =
〈
∂i F, ∂ j F

〉
gives the induced metric. This is proved as in the Euclidean

case; see [Ecker 2004, Appendix A].

3. Graphic mean curvature flows

We will consider graphic flows of the form

(2) M= {(x̂, u(x̂, t), t) | x̂ ∈�, t ∈ I } ⊂ Rm+n
n ×R,

where� is some domain in Rm , I is some time interval in R (not necessarily open)
and u :�× I → Rn . When we say that such a flow M is smooth (or locally C2,α,
etc.), we mean that the function u has that property. We will also discuss sequences
MJ of such flows (where J = 1, 2, . . . ). When we talk about convergence of MJ

in some space of functions, we actually mean convergence of the corresponding
u J .

On each spatial slice M(t)={x ∈Rm+n
n | (x, t)∈M}, we take the metric induced

from Rm+n
n and assume that it is spacelike. It will be convenient for us to use the

following norm for the differential map Du(x, t) : Rm
→ Rn ,

|||Du|||(x, t)= sup
v∈Rm ,|v|=1

|Du(x, t)(v)|.

Here | · | denotes the usual Euclidean norm, and D is taken with respect to the space
variables only (as usual). It is possible to show that |||Du|||2 will be equal to the
largest eigenvalue of DuT Du at each point, and that |||Du||| ≤ |Du| ≤

√
m|||Du|||.

Using the obvious relationship between |||Du||| and the eigenvalues of the induced
metric, we see that the graph will be spacelike if and only if |||Du||| < 1. If � is
convex and |||Du|||2 < 1− κ then it is easy to check that, for any t ∈ I ,2

(3) |u(x̂, t)− u(ŷ, t)| ≤ sup
�

|||Du( · , t)||| |x̂ − ŷ| ≤ (1− κ)1/2|x̂ − ŷ|,

and then, whenever s ≥ t are both in I ,

(4) |u(x̂, t)− u(ŷ, s)| ≤ |u(x̂, t)− u(ŷ, t)| + |u(ŷ, t)− u(ŷ, s)|

≤ (1− κ)1/2|x̂ − ŷ| + (s− t) sup(t,s) |∂t u(ŷ, · )|.

We denote by H(x, t) the mean curvature vector at the point x of the spatial slice
M(t). We will consider graphic flows that satisfy the quasilinear system

(5) ∂t u = ĝi j (Du)∂i j u

2To prove this, take x̂ ∈ � and let h ∈ Rm be such that x̂ + δh ∈ � for all δ ∈ [0, 1]. Then
|u(x̂+h)−u(x̂)|= |(

∫ 1
0 Du(x̂+δh)dδ)·h|≤

∫ 1
0 |Du(x̂+δh)·h|dδ=|h|

∫ 1
0 |Du(x̂+δh)·h|/|h|dδ≤

|h| sup� |||Du|||.
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on �× I , where ĝi j = δi j − ∂i uν∂ j uν gives the components of the induced metric
on each spatial slice. This system will be parabolic because the spacelike condition
implies that ĝ = I − DuT Du will be positive definite.

Proposition 1. Let M be a graph as in (2), and let I be open. Then M is a mean
curvature flow in Rm+n

n ×R if and only if the function u satisfies the system (5).

Proof. If (5) holds then, to show that we have a mean curvature flow, it is enough
to get parametrisations F of our spatial slices with ∂t F = H . In other words, for
each s ∈ I , we hope to find φ such that F(x̂, t) = (φ(x̂, t), u(φ(x̂, t), t)) satisfies
∂t F(x̂, t) = H(F(x̂, t), t) for times t close to s. But we know that the mean
curvature of our graph is (0, ĝi j∂i j u)⊥, and that ∂t u = ĝi j∂i j u. These facts and the
chain rule applied to F imply that we need ∂t F = (∂tφ, Du∂tφ)+ (0, ∂t u) to be
equal to (0, ∂t u)⊥. This is equivalent to the system ∂tφ

j
= ∂t u ·∂ j uĝi j (Du)|(φ(x̂,t),t)

for j = 1, . . . ,m. By thinking of x̂ as being fixed, we can think of this as a system
of ordinary differential equations and solve for some φ(t) with initial condition
φ(s) = x̂ , for any x̂ ∈ �. By the usual existence and uniqueness theorems [Lee
2003, Theorem 17.15], solutions φx̂,s(t) will exist for each x̂ ∈� and s ∈ I . If we
write φx̂,s(t) = φs(x̂, t), then φs( · , s) is the identity, φs is defined on some open
set E ⊂ � × I containing � × {s}, and each φs( · , t) will be a diffeomorphism
[Lee 2003, Problem 17-15]. Then φs is the required function, so we have a mean
curvature flow.

Conversely, if M is a mean curvature flow then we take F = (F̂, F̃) such
that ∂t F = H and F(x̂, t) = (F̂(x̂, t), u(F̂(x̂, t), t)). By the chain rule, this
gives ∂t F(x̂, t) = (I, Du(F̂(x̂, t), t)) · ∂t F̂(x̂, t)+ (0, ∂t u(F̂(x̂, t), t)). The left-
hand side is a normal vector and the first term on the right-hand side is tangen-
tial, therefore ∂t F(x̂, t) = (0, ∂t u)⊥|(F̂(x̂,t),t). We already know that ∂t F(x̂, t) =
H(F(x̂, t), t), but the mean curvature at F(x̂, t) is given by (0, ĝi j∂i j u)⊥|(F̂(x̂,t),t).
Hence (0, ∂t u)⊥ = (0, ĝi j∂i j u)⊥, and from here it is easy to check that we must
have ∂t u = ĝi j∂i j u. �

Assumption 2. M is a graphic flow, as in (2), where� is a convex, smooth domain
in Rm , and where the smooth function u :�× I → Rn satisfies the system (5) and
the inequality |||Du|||2 ≤ 1− κ for some constant κ > 0.

For such flows, and for times t on the interior of I , we can use the parametrisa-
tion F from the proof of Proposition 1 to prove the following facts. Note that we
will repeatedly use the fact that ∂t F = H =1M(t)F , by Equation (1), and we will
write g = (gi j ) = (

〈
∂i F, ∂ j F

〉
) for the induced metric on spatial slices. The first

fact is a version of the divergence theorem on mean curvature flows,∫
M(t)
〈H, V 〉 =

∫
M(t)

〈
1M(t)F, V

〉
=−

∫
M(t)

divM(t)V
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for vector fields V with compact support on M(t), where the integrals are taken over
the spatial slice with respect to the induced metric g.3 If f (x, t) is a real-valued
function defined on the flow then

(6)
d f
dt
= ∂t f +〈ḡD f, H〉 and 1M(t) f = 〈H, ḡD f 〉+ divM(t) (ḡD f ) ,

where ḡ is the matrix defined in the previous section. The second equation here,
along with the divergence theorem above, gives

(7)
∫

M(t)

(
φ1M(t)η− η1M(t)φ

)
= 0,

whenever φ and η are C2 on M(t) with φ having compact support. Finally, using
the usual formula for differentiating determinants, we have the following evolution
equation on mean curvature flows,

(8)
d
dt

√
det g =−

√
det g 〈H, H〉 ≥ 0.

Definition 3. Let X0 = (x0, t0) ∈Rm+n,1. Define 8X0 :R
m+n
× (−∞, t0)→R by

8X0(x, t)=
1

(4π(t0− t))m/2
exp

(
−
〈x − x0, x − x0〉

4(t0− t)

)
.

Let M be a graphic flow in Rm+n
n ×R, as in (2). For times t < t0, we define

2(M, X0, t)=
∫

x∈M(t)
8X0(x, t).

We see that

(9)
∂8X0

∂t
=

m8X0

2(t0− t)
−
〈x − x0, x − x0〉8X0

4(t0− t)2
, ḡD8X0 =−

(x − x0)8X0

2(t0− t)
.

These equations, combined with (6), give

(10)
(

d
dt
+1M(t)

)
8X0

= ∂t8X0 + 2
〈
ḡD8X0, H

〉
+ divM(t)(ḡD8X0)

= ∂t8X0 + divM(t)(ḡD8X0)+

〈
(ḡD8X0)

⊥, (ḡD8X0)
⊥
〉

8X0

−

〈
H −

(ḡD8X0)
⊥

8X0

, H −
(ḡD8X0)

⊥

8X0

〉
8X0 +〈H, H〉8X0 .

3Whenever it will not cause confusion, we will write integrals of the form
∫

x∈M(t) f (x, t) dx as∫
M(t) f to save space. Such integrals are always taken relative to the induced metric from Rm+n

n .
Similarly, we write 1M(t) f (x, t) as 1M(t) f when the meaning is clear.
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But the first three terms on the right-hand side of this equation add up to 0 since,
by (9),

divM(t)(ḡD8X0)=
−m8X0

2(t0− t)
+

8X0

4(t0− t)2
〈
(x − x0)

>, (x − x0)
>
〉
,〈

(ḡD8X0)
⊥, (ḡD8X0)

⊥
〉

8X0

=
8X0

4(t0− t)2
〈
(x − x0)

⊥, (x − x0)
⊥
〉
.

Now we use this, and the evolution equation for
√

det g, to differentiate the
integral

∫
x∈M(t)8X0(x, t)φ(x, t) when φ is some nonnegative C2 function where

each φ( · , t) has compact support on M(t).

d
dt

∫
M(t)

8X0φ

=

∫
M(t)

(
φ

d8X0

dt
+8X0

dφ
dt
−〈H, H〉φ8X0

)
=

∫
M(t)

8X0

( d
dt
−1M(t)

)
φ+

(( d
dt
+1M(t)

)
8X0 −〈H, H〉8X0

)
φ

=

∫
M(t)

8X0

( d
dt
−1M(t)

)
φ−

〈
H −

(ḡD8X0)
⊥

8X0

, H −
(ḡD8X0)

⊥

8X0

〉
φ8X0,

where we have used (7) and then (10). By (9) this gives:

(11)
d
dt

∫
M(t)

8X0φ =

∫
M(t)

8X0

( d
dt
−1M(t)

)
φ

−

∫
M(t)

〈
H −

(x − x0)
⊥

2(t0− t)
, H −

(x − x0)
⊥

2(t0− t)

〉
φ8X0 .

This will be very useful later, and it is our first step towards the proof of mono-
tonicity formulas. It is important to remember that the second term on the right-
hand side is nonnegative (since the flow is spacelike, which means that normal
vectors will be timelike or zero). This is unlike the Euclidean case, where the
corresponding term would be nonpositive.

Proposition 4. Let M be as in Assumption 2, but with � = Rm and I = (−∞, T ]
for T > 0. If , for every point (x, t) on the flow, we have

(12) H(x, t)=
x⊥

2t
,

then M∩ {X | τ(X)≤ 0} is invariant under parabolic dilations.

Proof. The idea (as for a similar result in [Ilmanen 1997]) is to assume that there is
some point Y = (y, t) on M′=M∩{X |τ(X)≤0}, but not on DλM′ for some λ. Then
we take a compactly supported C2 function φ with φ(y)= 1 and φ= 0 on DλM(t).
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The transformation formula for integrals gives
∫

DλM(t) φ=λ
m
∫

M(t/λ2)
φ(λx). Then

our evolution equation for
√

det g implies that
d

dλ

∫
DλM(t)

φ

λm

=

∫
x∈M(t/λ2)

(
2t
λ3φ(λx)

〈
H,

x⊥

2t/λ2

〉
+Dφ(λx) ·x−

2t
λ2 Dφ(λx) ·H+

m
λ
φ(λx)

)
,

where we have used Equation (12) to get H = x⊥/(2t/λ2) on M(t/λ2), and the
fact that ∂t F = H . We can deal with the first term by using the divergence theorem
(and the fact that H is a normal vector) to get∫

x∈M(t/λ2)

〈
H, φ(λx)x⊥

〉
=−

∫
x∈M(t/λ2)

divM(t/λ2)(φ(λx)x),

and by using the fact that divM(t/λ2)(φ(λx)x)=mφ(λx)+λDφ(λx)·x>. It follows
that

d
dλ

∫
DλM(t)

φ = 0,

so
∫

DλM φ remains constant as λ varies. The contradiction proves our claim. �

Proposition 5. Let X, Y ∈ Rm+n,1, s < τ(Y ) and λ > 0; then

2(Dλ(M− X), Y, s)=2(M, X + D1/λY, τ (X)+ s/λ2).

Proof. If M is given by u : �× I → Rn and if X = (x̂, x̃, t), then Dλ(M− X) is
given by uλ,X ( · , · ) = λ(u( · /λ+ x̂, · /λ2

+ t)− x̃) on Dλ(�× I − (x̂, t)). Then
the transformation rule for integrals gives the expected result. �

4. Monotonicity for entire flows

Given a flow satisfying Assumption 2, we say that it is an entire flow if � = Rm

and I = (−∞, T ] for some T ∈ (−∞,∞]. If M is such an entire flow, then
2(M, X0, t) is finite at points X0 = (x0, t0) = (x̂0, u(x̂0, t0), t0) on M for times
t < t0. To prove this, we use

√
det ĝ < 1 and the fact that inequality (4) gives a

bound on the exponent in 8X0 on the flow,

(13) −
〈x− x0, x− x0〉

4(t0− t)
≤
−κ|x̂− x̂0|

2

4(t0− t)
+
(1−κ)1/2 sup(t,t0) |∂t u(x̂0, · )||x̂− x̂0|

2

+
(t0− t)2 sup(t,t0) |∂t u(x̂0, · )|

2

4(t0− t)
.

Here we can use the fact that u is smooth, so the time derivative in this inequality
will be bounded on (t, t0) by some constant. Also, the fact that t < t0 is fixed means
that t0− t > 0 will be constant. This means that, for large |x̂− x̂0|, the first term in
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the right-hand side of (13) will dominate. So we have a bound on 2(M, X0, t) by
some integral known to be finite, being given by the usual formula for Gaussian
integrals,

∫
Rm exp(−Ai j yi y j/2)dy =

√
(2π)m/ det(Ai j ). (Here the matrix Ai j is

constant, symmetric and positive definite. Almost all of the bounds on integrals
that we use will follow from this.)

The simplest example is a nonmoving plane, where each spatial slice is a space-
like plane (independent of time). Then Du is constant and ∂t u = 0. Obviously this
implies that |u(x̂, t)− u(x̂0, t0)|2 = |Du · (x̂ − x̂0)|

2
= (x̂ − x̂0)

T DuT Du(x̂ − x̂0),
where we know that ĝ= I −DuT Du. For any point X0 = (x̂0, u(x̂0, t0), t0) on the
flow, we then see that

2(M, X0, t)=
∫

Rm

1
(4π(t0− t))m/2

exp
(
−
(x̂ − x̂0)

T ĝ(x̂ − x̂0)

4(t0− t)

)√
det ĝ d x̂ = 1,

where we again use the Gaussian integral formula. Therefore 2 is equal to 1 on
nonmoving planes.

Theorem 6. Let M be an entire flow satisfying Assumption 2, and let the mean
curvature H be uniformly bounded on M. Then

d
dt
2(M, X0, t)=−

∫
x∈M(t)

〈
H(x, t)+

(x − x0)
⊥

2(t0− t)
, H(x, t)+

(x − x0)
⊥

2(t0− t)

〉
8X0

when X0 = (x0, t0) ∈M and t < t0.

This theorem gives us a monotonicity formula, similar to Huisken’s, for entire
spacelike mean curvature flows. It tells us that 2 will be nondecreasing with
respect to the time variable on such flows (since the right-hand side in the formula
is nonnegative, by the spacelike condition). This is different to the Euclidean case,
where the Gaussian density ratio would be nonincreasing. The proof of this theo-
rem should be compared to the one in [Ecker 2004, p. 55]. We could even weaken
the assumption on H , but for now it is enough to assume that it is bounded.

Proof. For each R > 0 we can choose (as in [Ecker 2004, proof of Theorem 4.13])
functions χm

R :R
m
→R such that χBm

R (0)≤χ
m
R ≤χBm

2R(0) and R|Dχm
R |+R2

|D2χm
R |≤

C for some constant C .4 Using these functions, we define χR :R
m+n
n →R by taking

χR(x)= χR(x̂, x̃)= χm
R (x̂) for any x = (x̂, x̃). We apply (11) with φ = χR to get

(14)
d
dt

∫
M(t)

8X0χR =−

∫
M(t)

〈
H +

(x − x0)
⊥

2(t0− t)
, H +

(x − x0)
⊥

2(t0− t)

〉
8X0χR

+

∫
M(t)

8X0

(
d
dt
−1M(t)

)
χR.

4For a set K , we denote by χK the characteristic function of K .
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Using (6), the Schwarz inequality and the bounds on the eigenvalues of ĝ (from
the assumed bound on the gradient), we have5

(15)
∣∣∣∣( d

dt
−1M(t)

)
χR

∣∣∣∣≤ |ĝ−1(Du)| · |D2χm
R | ≤ C0(κ)

C
R2χBm

2R(0)−Bm
R (0),

where we have also used the fact that χm
R is constant outside Bm

2R(0)− Bm
R (0).

Now we will restrict to any fixed bounded time interval I ′ = [a, b] ⊂ (−∞, t0),
considering only times t ∈ I ′. The first thing to note here is that we have positive
upper and lower bounds, independent of t (but depending on I ′), on both t0− t and
1/(t0− t). Next we note that the flow is smooth on (−∞, t0] (by our assumptions
in the statement of the theorem) and X0 = (x̂0, u(x̂0, t0), t0) lies on the flow, so
we have sup[t,t0] |∂t u(x̂0, · )| ≤ sup[a,t0] |∂t u(x̂0, · )|, where sup[a,t0] |∂t u(x̂0, · )| is a
finite constant independent of t ∈ I ′. We can use this to apply inequality (4) to
bound the exponent of 8X0 on our flow, getting

−
〈x − x0, x − x0〉

4(t0− t)
≤
−κ|x̂ − x̂0|

2

4(t0− a)
+
(t0− a) sup[a,t0] |∂t u(x̂0, · )|

2

4

+
(1− κ)1/2 sup[a,t0] |∂t u(x̂0, · )|

2
|x̂ − x̂0|.

We denote the right-hand side of this inequality by Q(|x̂ − x̂0|), where the coef-
ficients of the polynomial Q depend on I ′ and x̂0 but are independent of t ∈ I ′.
Also, using the Schwarz and triangle inequalities, with the assumed bounds on H
and |||Du||| (and hence on the eigenvalues of ĝ), it is not difficult to see that we
have −

〈
H + (x − x0)

⊥/2(t0− t), H + (x − x0)
⊥/2(t0− t)

〉
≤ P(|x̂ − x̂0|) on our

flow, where P is some polynomial with coefficients again independent of t ∈ I ′.
Now we recall (14) and use it to get∣∣∣∣ d
dt

∫
M(t)

8X0
χR +

∫
M(t)

〈
H +

(x − x0)
⊥

2(t0− t)
, H +

(x − x0)
⊥

2(t0− t)

〉
8X0

∣∣∣∣
≤

∣∣∣∣∫
M(t)

8X0

( d
dt
−1M(t)

)
χR

∣∣∣∣
+

∣∣∣∣∫
M(t)

〈
H +

(x − x0)
⊥

2(t0− t)
, H +

(x − x0)
⊥

2(t0− t)

〉
8X0(1−χR)

∣∣∣∣
≤

∫
Rm

C0C
R2

χBm
2R(0)−Bm

R (0)

(4π(t0− b))m/2
exp

(
Q(|x̂ − x̂0|)

)
dx̂

+

∫
Rm

P(|x̂ − x̂0|)
(1−χBm

R (0))

(4π(t0− b))m/2
exp

(
Q(|x̂ − x̂0|)

)
dx̂,

5From now on, C( · , . . . , · ) will always denote a positive constant depending on the quantities in
parentheses.
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where we have used all of the inequalities above, as well as
√

det ĝ ≤ 1. Both
integrands in the right-hand side are bounded by an integrable function independent
of R (since Q is dominated by the −|x̂ − x̂0|

2 term and P is just a polynomial).
Both integrands converge pointwise to zero on Rm as R →∞, which allows us
to apply the dominated convergence theorem to see that the right-hand side of this
inequality converges to zero. Since the right-hand side is independent of t ∈ I ′,
this convergence is uniform. So we have

lim
R→∞

d
dt

∫
M(t)

8X0χR =−

∫
M(t)

〈
H +

(x − x0)
⊥

2(t0− t)
, H +

(x − x0)
⊥

2(t0− t)

〉
8X0 .

The uniform convergence allows us to swap the order of the limit and the derivative
on the left-hand side to get

−

∫
M(t)

〈
H +

(x − x0)
⊥

2(t0− t)
, H +

(x − x0)
⊥

2(t0− t)

〉
8X0 =

d
dt

∫
M(t)

8X0,

where we have again used a dominated convergence argument (involving Q, etc.)
and the fact that χm

R converges to 1 pointwise. Since we can do this for any such
I ′, the equation above holds for all t < t0. �

Corollary 7. Let M be as in Theorem 6, then 2(M, X, t) ≤ 1 for all X ∈ M and
all t < τ(X). Also, 2(M, X, t)= 1 for all X ∈M and all t < τ(X) if and only if M

is a nonmoving plane.

Proof. Let Y = (y, s) ∈ M, then we claim that limt→s 2(M, Y, t) = 1. We prove
this by considering dilations of the flow using Proposition 5.

2(M, Y, t)=2(D1/(s−t)1/2(M− Y ), 0,−1)(16)

and, since the flow is smooth at Y , the flows D1/(s−t)1/2(M − Y ) converge to a
nonmoving plane as t → s. To understand why, write λ =

√
s− t and let each

D1/λ(M − Y ) be given by the graph of a function uλ. If (M − Y ) is the graph
of a function u, then uλ(ẑ, r) = u(λẑ, λ2r)/λ and the definition of the derivative
(with respect to λ) gives limλ→0 uλ(ẑ, r)= Du(0, 0) · ẑ+0 ·2r∂t u(0, 0). Therefore
D1/λ(M− Y ) converges pointwise to a nonmoving plane as λ→ 0.

We easily see that

Duλ(ẑ, r)= Du(λẑ, λ2r)→ Du(0, 0),

so det ĝ(Duλ) converges to det ĝ(Du(0, 0)). Also,

sup
[−1,0]
|∂t uλ(0, · )| = λ sup

[−λ2,0]
|∂t u(0, · )| → 0

as λ→ 0. We can use these facts to apply the dominated convergence theorem to
2(D1/λ(M− Y ), 0,−1), by again using inequality (4) in the usual way to get an
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upper bound on the exponent of 80( · ,−1) on each D1/λ(M− Y ),

−|x̂ |2+ |uλ(x̂,−1)|2

4
≤
−|x̂ |2+

(
(1− κ)1/2|x̂ | + sup[−1,0] |∂t uλ(0, · )|

)2

4

≤
−κ|x̂ |2+ 2(1− κ)1/2|x̂ | + 1

4
,

whenever λ is small enough that sup[−1,0] |∂t uλ(0, · )| ≤ 1. Now we have a bound
(for all small λ) on the integrands of each 2(D1/λ(M− Y ), 0,−1) by some inte-
grable function. We can therefore apply the dominated convergence theorem to get
2(D1/λ(M−Y ), 0,−1)→ 1 as λ→ 0, since2 is always equal to 1 on nonmoving
planes. This fact and (16) give2(M, Y, t)→1 as t→ s. The monotonicity theorem
tells us that 2(M, Y, t) is nondecreasing with respect to t < s and therefore must
be ≤ 1.

For the second part of the corollary, if 2(M, Y, t) ≡ 1 then the monotonicity
formula gives

0=
d
dt
2(M, Y, t)=−

∫
M(t)

〈
H +

(x − y)⊥

2(s− t)
, H +

(x − y)⊥

2(s− t)

〉
8Y ,

and therefore (since normal vectors are timelike or zero) we have

H(x, t)=−(x − y)⊥/2(s− t).

This means that the flow M′ = (M− Y )∩ {X | τ(X) ≤ 0} satisfies (12) and must
be invariant under parabolic dilations. As λ→∞, the flows DλM′ again converge
to a nonmoving plane, which must be equal to M′. This is true for all Y ∈M with
τ(T ) < T = sup I , so M must be a nonmoving plane. �

5. Local monotonicity

If a flow satisfying Assumption 2 has I = [a, b), then Proposition 17 (given in the
Appendix) implies that we can extend it continuously to [a, b]. Taking a subset
of � if necessary (remember that we are interested in local theorems here), the
following assumption will hold.

Assumption 8. With M as in Assumption 2, �× I is bounded and u is continuous
on its closure.

Now we will prove a kind of local monotonicity theorem, which will be used
to prove a local regularity theorem later. We will need to define a local version of
2. We can choose a C2 function φ :Rm

→R which satisfies χBm
1/2(0) ≤ φ ≤ χBm

1 (0)

and |D2φ| ≤ C1, where C1 is some positive constant depending only on m. Then,
for any spacetime point X0 = (x̂0, x̃0, t0) and any ρ > 0, we define a function on



REGULARITY THEOREM FOR GRAPHIC SPACELIKE MEAN CURVATURE FLOWS 475

Rm+n by

φρ,X0(x)= φρ,X0(x̂, x̃)= φ
( x̂− x̂0

ρ

)
,

which will satisfy χBm
ρ/2(x̂0)×Rn ≤φρ,X0 ≤χBm

ρ (x̂0)×Rn and |D2φρ,X0 |≤C1/ρ
2. It will

also be convenient now for us to define the sets Qm,n,1
ρ (X)= Bm

ρ (x̂)×Rn
×(t−ρ2, t)

and Pm,n,1
ρ (X)= Bm

ρ (x̂)×Rn
×(t−ρ2, t+ρ2) for any spacetime point X= (x̂, x̃, t).

Definition 9. Let M be a graphic flow in Rm+n
n ×R, as in (2). If X0 ∈ Rm+n,1 and

ρ > 0 are such that Qm,n,1
ρ (X0)⊂�×Rn

× I then we define

2(M, X0, t, ρ)=
∫

x∈M(t)
8X0(x, t)φρ,X0(x)

for t < τ(X0) in I .

As in Proposition 5, we can prove

(17) 2(Dλ(M− X), Y, t, ρ)=2(M, X + D1/λY, τ (X)+ t/λ2, ρ/λ).

By the dominated convergence theorem, we easily see that 2(M, X, s, ρ) is con-
tinuous with respect to X ∈M. Now we can prove a local monotonicity theorem.
We will use the notation M̄ for the closure of M.

Theorem 10. Let M satisfy Assumption 8, and let ρ > 0. Then there exist positive
constants C2 and δ < ρ2 such that, whenever X0 ∈ M̄ is such that Qm,n,1

ρ (X0) ⊂

�× Rn
× I , the function t 7→ 2(M, X0, t, ρ)+ C2t will be nondecreasing with

respect to t ∈ (τ (X0)− δ, τ (X0)).

Note that C2 and δ will be independent of such points X0, but will depend on
M and ρ.

Proof. We know from (11) that

(18)
d
dt
2(M, X0, t, ρ)≥

∫
M(t)

8X0

(
d
dt
−1M(t)

)
φρ,X0 .

As in the proof of Theorem 6, it is easy to check that
∣∣(d/dt −1M(t))φρ,X0

∣∣ ≤
C3χBm

ρ (x̂0)×Rn−Bm
ρ/2(x̂0)×Rn , where C3 =C3(κ, ρ) is constant. Let x̂, ŷ ∈ �̄ and t < s

in Ī be such that ρ/2 < |x̂ − ŷ| < ρ. Then, by (3) and the triangle inequality, we
have

(19) −|x̂ − ŷ|2+ |u(x̂, s)− u(ŷ, t)|2

≤−κ|x̂ − ŷ|2+ 2(1− κ)1/2|x̂ − ŷ‖u(x̂, s)− u(x̂, t)| + |u(x̂, s)− u(x̂, t)|2

≤−κρ2/4+ 2(1− κ)1/2ρ|u(x̂, s)− u(x̂, t)| + |u(x̂, s)− u(x̂, t)|2.
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But, by uniform continuity of u (since it is continuous on the closure of �× I ), we
can take δ > 0 (not depending on x̂, ŷ, s, t) such that the right-hand side of (19)
will be ≤ −κρ2/8 whenever |t − s| < δ.6 Taking s = τ(X0) and combining the
above inequalities with the fact that

√
det ĝ ≤ 1 gives∣∣∣∣∫

M(t)
8X0

(
d
dt
−1M(t)

)
φρ,X0

∣∣∣∣≤ ∫
�

C3χBm
ρ (x̂0)−Bm

ρ/2(x̂0)

(4π(τ(X0)− t))m/2
exp

(
−ρ2κ/32
τ(X0)− t

)
,

for 0 < τ(X0)− t < δ. Taking t → τ(X0) in the right-hand side shows that it is
bounded by some finite constant C4 for these values of t . Therefore

d
dt
2(M, X0, t, ρ)≥−C4

for t ∈ (τ (X0)− δ, τ (X0)), proving the theorem. �

Corollary 11. Let M be as in Theorem 10. If X0 ∈ M̄ and ρ0 > 0 are such that
Qm,n,1
ρ0

(Y )⊂�×Rn
× I for all Y ∈ Qm,n,1

ρ0
(X0), and if

lim
t→τ(X0)

2(M, X0, t, ρ0) > 1− ε

for some ε > 0, then there exists ρ ∈ (0, ρ0) such that

2(M, Y, t, ρ0)≥ 1− ε

for all Y ∈ Qm,n,1
ρ (X0)∩M and all t ∈ (τ (Y )− ρ2, τ (Y )).

Proof. Let limt→τ(X0)2(M, X0, t, ρ0)≥ 1− ε+η for some η > 0 (the limit exists
in R∪{∞} by the local monotonicity theorem). Then there must exist ρ1 ∈ (0, ρ0]

such that 2(M, X0, τ (X0)− ρ
2
1 , ρ0) > 1− ε + η/2. We can choose ρ1 to be as

small as we like, so we take ρ2
1 to be less than both δ(M, ρ0) and η/4C2(M, ρ0)

(with δ and C2 as in Theorem 10). By continuity, there will exist ρ ∈ (0, ρ1) such
that, for all Y ∈ Qm,n,1

ρ (X0)∩M,

2(M, Y, τ (X0)− ρ
2
1 , ρ0) > 1− ε+ η/4

and (τ (Y )− ρ2, τ (Y )) ⊂ (τ (X0)− ρ
2
1 , τ (X0)) ⊂ (τ (X0)− δ, τ (X0)). So we can

apply Theorem 10 to 2(M, Y, t, ρ0) for t ∈ (τ (Y )− ρ2, τ (Y )) to get

2(M, Y, τ (X0)− ρ
2
1 , ρ0)+C2(τ (X0)− ρ

2
1)≤2(M, Y, t, ρ0)+C2t

for all such Y and t , which in turn implies

2(M, Y, t, ρ0)≥ C2(τ (X0)− t − ρ2
1)+ 1− ε+ η/4≥ 1− ε+ (η/4− ρ2

1C2),

where the last term is positive by our choice of ρ1. �

6Uniform continuity implies that, for any ε > 0, there exists δ > 0 such that ‖(x̂, s)− (ŷ, t)‖< δ
implies |u(x̂, s)− u(ŷ, t)|< ε. Taking x̂ = ŷ and a small enough ε here proves our claim.
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Proposition 12. Let M satisfy Assumption 8, and let X0 and ρ be as in Theorem 10.
Then limt→τ(X0)2(M, X0, t, ρ)= limt→τ(X0)2(M, X0, t). In particular, the limit
on the left-hand side is independent of ρ.

Proof. It is easy to see that, if we write X0 = (x̂0, u(x̂0, t0), t0),

0≤2(M, X0, t)−2(M, X0, t, ρ)

=

∫
�

exp
(
−|x̂ − x̂0|

2
+ |u(x̂, t)− u(x̂0, t0)|2

4(t0− t)

)
(4π(t0− t))m/2

(
1−φ

(
x̂− x̂0
ρ

))√
det ĝ d x̂ .

But
√

det ĝ < 1 and 1−φ((x̂ − x̂0)/ρ) is at most 1 and vanishes for x̂ ∈ Bm
ρ/2(x̂0).

Thus we only need to consider |x̂ − x̂0| ≥ ρ/2 and, as in inequality (19), we get

−|x̂ − x̂0|
2
+ |u(x̂, t)− u(x̂0, t0)|2

≤−κ|x̂ − x̂0| + 2(1− κ)1/2|x̂ − x̂0‖u(x̂0, t)− u(x̂0, t0)| + |u(x̂0, t)− u(x̂0, t0)|2

≤−κρ2/4+ 2(1− κ)1/2 diam�|u(x̂0, t)− u(x̂0, t0)| + |u(x̂0, t)− u(x̂0, t0)|2,

which is≤−κρ2/8 when we take |u(x̂0, t)−u(x̂0, t0)| small enough (by continuity)
by taking t close enough to t0. Therefore, for such t , we have

2(M, X0, t)−2(M, X0, t, ρ)≤
∫
�

exp
(
(−κρ2/8)/4(t0− t)

)
(4π(t0− t))m/2

dx̂,

which converges to 0 as t→ t0. �

6. Local regularity

In [White 2005], a regularity theorem for mean curvature flows in Euclidean spaces
is proved. To do this, a kind of local C2,α norm is used (defined at each point of
a flow and denoted by K2,α). For a sequence of C2,α flows, denoted by MJ , if
this norm is uniformly bounded on compact subsets as J →∞ then a version of
the Arzelà–Ascoli theorem [White 2005, Theorem 2.6] gives local parabolic C2

convergence of a subsequence to some locally C2,α flow. However, the definition
of this norm involves rotations, which would cause problems in the semi-Euclidean
case (because of the spacelike condition and because the mean curvature flow sys-
tem is not preserved by such rotations). It is convenient for us to define a slightly
different quantity with similar properties. The idea will be to use the gradient
bound (from the spacelike assumption) to ignore the first few terms in the C2,α

norm, thus removing the need to translate and rotate in the definition of K2,α.
Suppose that we have a spacelike, graphic flow M (as in (2), not necessarily a

mean curvature flow) and X ∈�×Rn
× I . For any α∈ (0, 1), we define G2,α(M, X)
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to be the infimum of the numbers λ > 0 such that

(20) [Duλ,X |U m,1]α +‖D2uλ,X |U m,1‖0,α +‖∂t uλ,X |U m,1‖0,α ≤ 1,

where uλ,X is the function whose graph gives the flow Dλ(M− X), and uλ,X |U m,1

is the restriction to U m,1
= Bm

1 (0)× (−1, 0]. This will be finite when the flow is
smooth (to understand why, see how each term in (20) is affected by dilations). It is
important to note that, for any X = (x̂, x̃, t), G2,α(M, X) is independent of x̃ (since
the definition only involves derivatives of u). We will also need the obvious facts
that this quantity will be zero on nonmoving planes and that G2,α(Dλ(M−X), 0)=
G2,α(M, X)/λ.

The most important property of G2,α is a version of the Arzelà–Ascoli theorem.
Roughly, if we have a sequence of smooth spacelike flows MJ , each containing the
origin and with G2,α(MJ , · ) uniformly bounded on compact subsets of spacetime
as J →∞, then we have local parabolic C2 convergence of some subsequence to
a locally C2,α limit flow. Comparing G2,α to K2,α and applying Theorem 2.6 of
[White 2005] gives us this fact, but we will still explain in detail in Proposition 19
in a special case (the only case that we need). Furthermore, if each of the flows
satisfies the system (5) then so will the limit (by the C2 convergence). This limit
must then be smooth by induction, since a Ck,α solution to the system must be
Ck+1,α, by the usual theorems for linear equations; see [Friedman 1964, Chapter
3], for example.

Theorem 13. Let α, κ ∈ (0, 1) be given. Then there exist positive constants ε and
C5 such that if

(a) M is as in Assumption 2, with sup I = 0 ∈ I and with u(0, 0)= 0, and

(b) ρ0 > 1 is such that Qm,n,1
ρ0

(Y )⊂�×Rn
× I and

2(M, Y, t, ρ0)≥ 1− ε

for all Y ∈ Qm,n,1
1 (0)∩M and all t ∈ (τ (Y )− 1, τ (Y )),

then supX∈Qm,n,1
1 (0) G2,α(M, X)d(X, Pm,n,1

1 (0))≤ C5.

It is important to notice that the constants ε and C5 will depend on κ, α,m, n, but
will be independent of M. Also, since G2,α scales like the reciprocal of parabolic
distance, the inequality in the conclusion of the theorem is invariant under parabolic
dilations. This is the most important theorem of this section and is a version of
White’s local regularity theorem. The proof should be compared to those of [White
2005, Theorem 3.1] and [Ecker 2004, Theorem 5.6]. As in this latter reference,
we use the local version of 2. As in [White 2005], we aim for bounds on the C2,α
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norm and use the Schauder estimates,7 rather than aiming for bounds on the second
fundamental form and using related interior estimates as in [Ecker 2004].

Proof. Let ε̄ be the infimum of numbers ε > 0 for which the theorem fails (i.e., for
which no such C5 exists). We need ε̄ >0, so we assume ε̄=0 to get a contradiction.
We take a sequence εJ→ ε̄ with εJ >ε̄. Then there exist sequences MJ and ρJ >1,
satisfying all of the assumptions of the theorem (with the same α and κ), but with
εJ ,MJ , ρJ in place of ε,M, ρ0, and with

γJ = sup
X∈Qm,n,1

1 (0)

d(X, Pm,n,1
1 (0))G2,α(MJ , X)→∞

as J →∞. Each γJ is finite since MJ is smooth. For each J we can choose YJ

in Qm,n,1
1 (0) such that G2,α(MJ , YJ )d(YJ , Pm,n,1

1 (0))≥ γJ/2, and we can assume
that YJ ∈MJ .8 We define λJ = G2,α(MJ , YJ ) and consider the flows9

M̃J = DλJ (MJ − YJ ),

which all contain the origin (in spacetime). Then G2,α(M̃J , 0) = 1 for all J and
DλJ (P

m,n,1
1 (0)− YJ )= Pm,n,1

λJ
(−DλJ YJ ). But now

γJ

2
≤ G2,α(MJ , YJ )d(YJ , Pm,n,1

1 (0))= 1× d(0, Pm,n,1
λJ

(−DλJ YJ )),

so d(0, Pm,n,1
λJ

(−DλJ YJ ))→∞ since γJ →∞ as J →∞. Let X be a point in
Qm,n,1
λJ

(−DλJ YJ ). Then

d(X, Pm,n,1
λJ

(−DλJ YJ ))G2,α(M̃J , X)≤ γJ ≤ 2d(0, Pm,n,1
λJ

(−DλJ YJ )),

from which we obtain

G2,α(M̃J , X)≤
2d(0, Pm,n,1

λJ
(−DλJ YJ ))

d(X, Pm,n,1
λJ

(−DλJ YJ ))
.

The triangle inequality gives ‖0−Y‖≤‖0−X‖+‖Y−X‖, and taking the supremum
over all Y /∈ Pm,n,1

λJ
(−DλJ YJ ) gives

d(X, Pm,n,1
λJ

(−DλJ YJ ))≥ d(0, Pm,n,1
λJ

(−DλJ YJ ))−‖X‖,

7Note that White uses the Schauder estimates for the heat equation but, since we do not want to
rotate our flows, we have to use a more general version of the Schauder estimates.

8Remember that G2,α(M, (x̂, x̃, t)) is independent of x̃ , and so is d((x̂, x̃, t), Pm,n,1
1 (0)).

9Note that the flows MJ and M̃J will be graphs of functions u J and ũ J on sets �J × IJ and
�̃J × ĨJ respectively, where sup IJ = 0⇒ sup ĨJ = τ(−DλJ YJ ) > 0.
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which leads to

(21) G2,α(M̃J , X)≤
2

1−‖X‖/d(0, Pm,n,1
λJ

(−DλJ YJ ))
,

whenever the right-hand side is positive. Since d(0, Pm,n,1
λJ

(−DλJ YJ ))→∞, this
inequality tells us that G2,α(M̃J , X) is uniformly bounded (as J→∞) on compact
subsets of spacetime with τ(X) ≤ 0.10 This allows us to apply Proposition 19 to
the sequence M̃J ∩ {X | τ(X) ≤ 0} to get parabolic C2 convergence, on compact
subsets of Rm

× (−∞, 0], of a subsequence to a limit flow M′. We can assume
that this subsequence is our original sequence, and will therefore continue to use
the notation M̃J . The limit M′ will be a smooth entire graphic flow defined on
Rm
× (−∞, 0] (since λJ →∞). It will be the graph of a function u′ satisfying the

system (5) (since the convergence is C2). Also, since the gradient bound is unaf-
fected by parabolic dilations, sup |||Du′|||2 ≤ 1− κ . Proposition 19 tells us that M′

has uniformly bounded mean curvature. This allows us to apply the monotonicity
theorem and related results to the flow.

Now we use the assumption that2(MJ , Y, s, ρJ )≥1−εJ for Y ∈Qm,n,1
1 (0)∩MJ

and s ∈ (τ (Y )− 1, τ (Y )). By (17), this is equivalent to the inequality

2(M̃J , Y, s, λJρJ )≥ 1− εJ

for Y ∈Qm,n,1
λJ

(−DλJ YJ )∩M̃J and s ∈ (τ (Y )−λ2
J , τ (Y )). Given Z = (ẑ, u′(ẑ, t), t)

in M′, with s < t < 0, we can take a sequence Z J = (ẑ, ũ J (ẑ, t), t) ∈ M̃J with
Z J → Z . Then, for large enough J , the fact that d(0, Pm,n,1

λJ
(−DλJ YJ ))→ ∞

implies that Z J (which is bounded since it converges) will be in Qm,n,1
λJ

(−DλJ YJ ).
Obviously we will have s ∈ (τ (Z J ) − λ

2
J , τ (Z J )) for all large J . This gives

2(M̃J , Z J , s, λJρJ )≥ 1− εJ . We see easily that 2(M̃J , Z J , s, λJρJ ) equals

(22)
∫
�̃J

exp
(
−|x̂−ẑ|2+|ũ J (x̂, s)−ũ J (ẑ, t)|2

4(t−s)

)
(4π(t−s))m/2

φ

(
x̂−ẑ
λJρJ

)√
det ĝ(Dũ J (x̂, s)) dx̂,

where the integral can be thought of as an integral over Rm since φ has compact
support. By the C2 convergence ũ J → u′ and the fact that ρJλJ →∞ with φ ≡ 1
in some ball with centre 0, the integrands above will converge pointwise to the
integrand in2(M′, Z , s). But we have φ≤ 1,

√
det ĝ≤ 1 and t−s> 0 independent

10For example, for any such compact set we can assume G2,α(M̃J , X) ≤ 4 for all X in this set
by assuming ‖X‖ ≤ R and taking J so large that d(0, Pm,n,1

λJ
(−DλJ YJ ))≥ 2R.
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of J , as well as

−|x̂− ẑ|2+|ũ J (x̂, s)− ũ J (ẑ, t)|2 ≤−κ|x̂− ẑ|2+ (t−s)2 sup(s,t) |∂t ũ J (ẑ, · )|2

+ 2(1−κ)1/2|x̂ − ẑ|(t − s) sup(s,t) |∂t ũ J (ẑ, · )|

by inequality (4). By the parabolic C2 convergence, we can assume for large J
that sup(s,t) |∂t ũ J (ẑ, · )| is arbitrarily close to sup(s,t) |∂t u′(ẑ, · )|, which is finite (by
smoothness of u′) and independent of J . These inequalities combine to give a
bound on the integrands of (22) by some function that is independent of J and
integrable over Rm . This allows us to apply the dominated convergence theorem to
get 2(M′, Z , s)←2(M̃J , Z J , s, λJρJ )≥ 1−εJ → 1− ε̄. So, for all Z ∈M′ with
s<τ(Z)< 0, we have2(M′, Z , s)≥ 1− ε̄. Now, since we assumed ε̄= 0, the fact
that M′ is entire with2(M′, Z , s)≥ 1 implies by Corollary 7 that2(M′, Z , s)≡ 1.
Therefore M′ must be a nonmoving plane.

Let u′ be as above and consider the linear operator with constant coefficients
∂t − ĝi j (Du′)∂i j applied to ũ J . The system (5) and the fact that ∂i j u′ = ∂t u′ = 0
then give (∂t−ĝi j (Du′)∂i j )(ũ J−u′)= (ĝi j (Dũ J )−ĝi j (Du′))∂i j ũ J . For U m,1

2 (0)⊂
Rm
×(−∞, 0], the Schauder estimates for linear parabolic equations [Krylov 1996,

Theorem 8.11.1] tell us that

‖(ũ J − u′)|U m,1
2 (0)‖2,α

≤ C6
(
‖(∂t − ĝi j (Du′)∂i j )(ũ J − u′)|U m,1

4 (0)‖0,α + supU m,1
4 (0) |ũ J − u′|

)
= C6

(
‖(ĝi j (Dũ J )− ĝi j (Du′))∂i j ũ J |U m,1

4 (0)‖0,α + supU m,1
4 (0) |ũ J − u′|

)
,

whenever J is large enough that U m,1
6 (0) ⊂ �̃J × ĨJ , and where the constant C6

will depend on m, n, α, κ . But both terms on the right-hand side converge to 0 as
J →∞, since ∂i j ũ J is bounded in C0,α on compact subsets (by inequality (21))
and since (ĝi j (Dũ J )− ĝi j (Du′))→ 0 in C1 on compact sets. This means that,
on U m,1

2 (0), the convergence ũ J → u′ is C2,α. In particular, the terms of the C2,α

norm of ũ J involved in the definition of G2,α(M̃J , 0)will converge to 0 (since these
terms are zero on u′). This finally gives a contradiction because we dilated in such
a way that G2,α(M̃J , 0)= 1, which implies that [Dũ J ]α+‖D2ũ J‖0,α+‖∂t ũ J‖0,α

is bounded from below, independently of J , on U m,1
2 (0). Therefore ε̄ > 0. �

Corollary 14. Let ε and C5 be as in Theorem 13. Let M satisfy Assumption 2, with
X0 ∈M and τ(X0)= sup I .11 Suppose that ρ0 > ρ > 0 are such that Qm,n,1

ρ0
(Y )⊂

�×Rn
× I and

2(M, Y, s, ρ0)≥ 1− ε,

11By these assumptions, the flow will be smooth at time τ(X0), since we are taking X0 to be a
point on the flow.
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for all Y ∈ Qm,n,1
ρ (X0)∩M and all s ∈ (τ (Y )− ρ2, τ (Y )). Then

sup
M∩Qm,n,1

ρ (X0)

G2,α(M, · )d( · , Pm,n,1
ρ (X0))≤ C5.

Proof. This follows easily from Theorem 13 after taking the dilation D1/ρ(M−X0)

and applying (17). �

The next corollary should be compared to Theorem 3.5 of [White 2005].

Corollary 15. Let M satisfy Assumption 8. Let X0 lie in the closure M̄ such that
τ(X0)= sup I .12 Suppose ρ0 > ρ > 0 are such that Qm,n,1

ρ0
(Y )⊂�×Rn

× I and

2(M, Y, s, ρ0)≥ 1− ε,

for all Y ∈ Qm,n,1
ρ (X0)∩M and all s ∈ (τ (Y )− ρ2, τ (Y )). Then M̄ will be smooth

in some spacetime neighbourhood of X0.

Proof. We take a sequence X J → X0 (as J →∞) in M with τ(X J ) < τ(X0) and
with x̂ J = x̂0. For large J , ‖X J − X0‖< ρ/2 and we define

MJ = {Y ∈M | τ(Y )≤ τ(X J )}.

Now 2(MJ , Y, s, ρ0) ≥ 1− ε for Y ∈ Qm,n,1
ρ/2 (X J ) ∩MJ ⊂ Qm,n,1

ρ (X0) ∩M and
s ∈ (τ (Y )− ρ2/4, τ (Y ))⊂ (τ (Y )− ρ2, τ (Y )). Then, by Corollary 14,

sup
MJ∩Qm,n,1

ρ/2 (X J )

G2,α(MJ , · )d( · , Pm,n,1
ρ/2 (X J ))≤ C5

for large J . This gives a C2,α bound on each MJ in some fixed spacetime neigh-
bourhood of X0. Then, since τ(X J ) → τ(X0), we see that M̄ is C2,α in this
neighbourhood and therefore smooth. �

Theorem 16. Let M be a spacelike graphic mean curvature flow in Rm+n
n × R,

given by a smooth function u : �× (0, T )→ Rn with |||Du|||2 ≤ 1− κ for some
positive constant κ . Then M can be extended smoothly to the time T .

Proof. We can extend u continuously to T , thanks to Proposition 17, and let
X0 = (x̂0, u(x̂0, T ), T ) for any x̂0 ∈ �. By Proposition 1, u satisfies system
(5). We can take a convex, bounded neighbourhood �0 ⊂ � of x̂0 and some
t0 ∈ (0, T ). Then the flow M0 given by the restriction of u to �0 × (t0, T ) will
satisfy Assumption 8. Choosing ρ0 > 0 to be sufficiently small, we first apply
Theorem 18 and Proposition 12 to get limt→T 2(M0, X0, t, ρ0) > 1− ε. Then we
can apply Corollary 11, which allows us to use Corollary 15 to get smoothness of
M̄0 in a neighbourhood of X0. We can do this at any x̂0 ∈�, and therefore M can
be extended smoothly to T . �

12By these assumptions, M̄ is continuous at time τ(X0) but not necessarily smooth, since we only
assume X0 to be on the closure and not necessarily on the flow itself.
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Appendix

Proposition 17. Suppose that M is as in Assumption 2, with I = [a, b). Then u
can be extended to a continuous function on �×[a, b].

Proof. Take the linear operator P = ∂t − ĝi j (Du)∂i j . Using Pu = 0, applying
Theorem 2.14 of [Lieberman 1996] (in particular, the comment that follows it) on
cylinders in �× (a, b) tells us that, for any x̂ ∈�, u(x̂, · ) is uniformly continuous
on some interval with supremum b. It can therefore be extended continuously to
[a, b]. On �×[a, b) we have |u(x̂, t)−u(ŷ, t)| ≤ (1−κ)1/2|x̂− ŷ|, so taking the
limit of this as t→ b gives continuity of the extension with respect to x̂ . �

Theorem 18. Suppose that M satisfies Assumption 8, with I = (0, T ). For any
X0 = (x̂0, u(x̂0, T ), T ) with x̂0 ∈�, we will have limt→T 2(M, X0, t)≥ 1.

It is important to remember that we are not assuming the flow to be smooth on
�× (0, T ], only continuous. The proof of this theorem is roughly the same as the
proofs of similar results in [Wang 2001].

Proof. We will first define a function on the flow, ζ =1+log(1/κm/2)−log (cosh θ),
where θ is the hyperbolic angle defined on page 3 of [Li and Salavessa 2011].13

An evolution equation discussed in Sections 4 and 5 of the same work tells us that( d
dt
−1M(t)

)
ζ ≥ κ|B|2,

where |B|2 is the norm of the second fundamental form on the spatial slices. We
note that there exist constants C7,C8 > 0 (depending on κ) such that C7|B|2 ≤
|D2u|2≤C8|B|2.14 Another useful fact is that, by the assumption |||Du|||2≤ 1−κ ,
there exists a constant C9(κ) > 0 such that if v ∈ Rm+n

n is any tangent vector to
M(t) then 〈v, v〉 ≤ |v|2 ≤ C9 〈v, v〉. If we use φρ,X0 from Definition 9 for small
enough ρ, (11) gives

d
dt

∫
M(t)

8X0ζφρ,X0 ≥

∫
M(t)

8X0

( d
dt
−1M(t)

)
(ζφρ,X0).

It is easy to check, as in [Ecker 2004, Lemma 3.14], that we have the product rule( d
dt
−1M(t)

)
(φρ,X0ζ )

= ζ
( d

dt
−1M(t)

)
φρ,X0+φρ,X0

( d
dt
−1M(t)

)
ζ −2

〈
gradM(t)φρ,X0, gradM(t)ζ

〉
.

13At a point on M, cosh θ is just the value of 1/
√

det ĝ at the corresponding point in �× I .
14We can write |B|2 = |〈Bi j , Bkl 〉ĝik ĝ jl

|; see [Li and Salavessa 2011] for details. |D2u| just
denotes the Euclidean norm of D2u, and to prove the inequality we need the fact that the eigenvalues
of DuT Du are bounded above and below. Compare to [Ilmanen 1997, p. 31].
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By Young’s inequality,〈
gradM(t)φρ,X0, gradM(t)ζ

〉
=

〈
gradM(t)φρ,X0√

φρ,X0

,
√
φρ,X0gradM(t)ζ

〉
≤

1
2ε
|gradM(t)φρ,X0 |

2

φρ,X0

+
ε

2
φρ,X0 |gradM(t)ζ |

2

≤
1
ε

C10
|Dφρ,X0 |

2

φρ,X0

+
ε

2
C9φρ,X0

〈
gradM(t)ζ, gradM(t)ζ

〉
,

where C10(κ)>0 and ε is any positive number. Since φρ,X0 is compactly supported
on the flow, Example 3.16 of [Ecker 2004]15 implies that

|Dφρ,X0 |
2/φρ,X0 ≤ 2 max |D2φρ,X0 |,

where we remember that |D2φρ,X0 |< C1/ρ
2. Using facts from [Li and Salavessa

2011] (see Equation 3.9 and the first inequality for |B|2 in the proof of Proposition
5.2 there), we see that

〈
gradM(t)ζ, gradM(t)ζ

〉
≤ C11|B|2 for some constant C11(κ).

So there exist constants C12,C13,C14 > 0 (depending on κ, ρ) such that

2
〈
gradM(t)φρ,X0, gradM(t)ζ

〉
≤

C12

ε
+ εC13φρ,X0 |B|

2,( d
dt
−1M(t)

)
φρ,X0 ≤ C14,

where we prove the second inequality as in Theorem 6. Combining all of the
inequalities above,

d
dt

∫
M(t)

8X0ζφρ,X0 ≥

∫
M(t)

8X0

(
κφρ,X0 |B|

2
−C15C14−

C12

ε
− εC13φρ,X0 |B|

2
)

=
κ

2

∫
M(t)

8X0φρ,X0 |B|
2
−C162(M, X0, t),

where we use the fact that ζ is clearly less than or equal to some constant C15(κ)

and choose ε = κ/2C13 and C16 = C15C14+C12/ε. We can use this to prove the
theorem. We assume that limt→T 2(M, X0, t) < 1 and hope to get a contradiction.
So for t close enough to τ(X0) = T (say t ∈ (T − δ, T ) for some δ > 0) we can
assume that

d
dt

∫
M(t)

8X0ζφρ,X0 ≥
κ

2

∫
M(t)

8X0φρ,X0 |B|
2
−C16.(23)

We can see how this inequality is affected by parabolic dilations, Dλ for λ > 1, by
using the transformation formula for integrals, and by noting that ζ involves first

15
|Dφ|2/φ ≤ 2 max |D2φ| for compactly supported C2 functions.
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derivatives and |B| involves second derivatives. We get

d
ds

∫
Dλ(M−X0)(s)

80ζφλρ,0 ≥−
C16

λ2 +
κ

2

∫
Dλ(M−X0)(s)

80|B|2φλρ,0

for s ∈ (−λ2δ, 0), remembering that λ > 1. We now take τ < δ/2 and integrate
with respect to s over the interval (−δ/2− τ,−δ/2) to get[∫

Dλ(M−X0)(s)
80ζφλρ,0

]−δ/2
−δ/2−τ

≥−
C16τ

λ2 +
κ

2

∫
−δ/2

−δ/2−τ

∫
Dλ(M−X0)(s)

80|B|2φλρ,0.

The left-hand side and the first term on the right-hand side clearly have limit zero
as λ→∞. Therefore we must have

∫
−δ/2
−δ/2−τ

∫
Dλ(M−X0)(s)

80|B|2φλρ,0 → 0. As
in [Wang 2001, p. 26], we can use the integral mean value theorem to choose
sequences λJ →∞, τJ → 0 and sJ ∈ [−δ/2− τJ ,−δ/2] such that∫

DλJ (M−X0)(sJ )

80|B|2φλJρ,0→ 0 as J →∞.

We have δ/2≤ |sJ | ≤ δ, so

80(x̂, x̃, sJ )=
exp

(
(−|x̂ |2+ |x̃ |2)/4|sJ |

)
(4π |sJ |)m/2

≥
exp

(
−|x̂ |2/2δ

)
(4πδ)m/2

.

The function φλJρ,0 is zero outside Bm
λJρ
(0)×Rn and equals 1 inside Bm

λJρ/2(0)×Rn .
For any R > 0 we can take J large enough that Bm

R (0)× Rn
⊂ Bm

λJρ/2(0)× Rn ,
implying that

exp(−R2/2δ)
(4πδ)m/2

∫
DλJ (M−X0)(sJ )∩Bm

R (0)×Rn
|B|2 ≤

∫
DλJ (M−X0)(sJ )

80φρλJ ,0|B|
2.

We therefore have

(24)
exp(−R2/2δ)
(4πδ)m/2

∫
DλJ (M−X0)(sJ )∩Bm

R (0)×Rn
|B|2→ 0 as J →∞.

Now let us consider the functions ũ J (x̂) whose graphs give the spatial slices
DλJ (M− X0)(sJ ). The fact that λJ →∞ tells us that, for any R > 0, we can take
J large enough that Bm

R (0) is contained in the domain of ũ J . Since we also have a
uniform bound on the gradients Dũ J , the usual Arzelà–Ascoli theorem argument
gives a subsequence (which we continue to denote by ũ J ) converging pointwise on
Rm , and uniformly on each Bm

R (0), to some limit ũ. Define

v
kγ
J = ∂k ũγJ and ckγ

J =
1

vol(Bm
R (0))

∫
Bm

R (0)
v

kγ
J ,
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and take a convergent subsequence ckγ
J → ckγ (since the sequence is bounded, by

the gradient bound on ũ J ). Apply the Poincaré inequality to get∫
Bm

R (0)
|v

kγ
J − ckγ

J |
2
≤ C17

∫
Bm

R (0)
|Dvkγ

J |
2
≤ C17

∫
Bm

R (0)
|D2ũ J |

2
→ 0,

where the last step uses (24) and |D2ũ J |
2
≤ C8|B|2. So vkγ

J − ckγ
J → 0 with

respect to the L2 norm on Bm
R (0). Now we can assume that the derivatives of our

sequence converge pointwise almost everywhere to constants. These constants will
be the weak derivatives of ũ, which therefore must be linear. Since this holds for
any R, and since 2 is equal to 1 on nonmoving planes, we can use this to apply
the dominated convergence theorem to see that

1≤ lim
J→∞

2(DλJ (M− X0), 0, sJ )

= lim
J→∞

2(M, X0, T + sJ/λ
2
J )= lim

t→T
2(M, X0, t),

contradicting the assumption that limt→T 2(M, X0, t) < 1. �

We only need the next proposition in the proof of Theorem 13. First we note
that a bound on G2,α on some subset of spacetime implies a bound on [Du]α +
[D2u]α + sup |D2u| + [∂t u]α + sup |∂t u| on a subset of Rm,1. If the flow contains
the origin, then inequality (4) and the spacelike assumption give a bound on |Du|
and on |u| on this subset, and therefore a bound on ‖u‖2,α.

Proposition 19. The sequence M̃J ∩{X | τ(X)≤ 0}, from the proof of Theorem 13,
has a convergent subsequence (this is parabolic C2 convergence on compact sub-
sets). The limit is a smooth entire flow M′, defined on Rm

× (−∞, 0], satisfying
Assumption 2, with uniformly bounded mean curvature vector.

Proof. Let ũ J , M̃J , etc. be exactly as in the proof of Theorem 13. Then, since
λJ →∞ and sup ĨJ ≥ 0, any compact subset of Rm

× (−∞, 0] will be contained
in the domain of ũ J for large enough J . By inequality (21), G2,α(M̃J , · ) will be
uniformly bounded on compact subsets of spacetime with τ(X) ≤ 0, as J →∞.
Therefore we get uniform bounds on ‖ũ J‖2,α on compact subsets of Rm

×(−∞, 0].
We can use this to prove convergence of a subsequence by following the same steps
as in the proof of the Arzelà–Ascoli theorem. We use the Cantor diagonalization
process to choose a pointwise convergent subsequence on Rm

× (−∞, 0], and
then the C2,α estimates imply C2 convergence on compact subsets. The limit M′

is clearly C2,α and therefore smooth by the usual induction argument (since the
system (5) holds on M′). Also, the C2,α bound implies a uniform bound on the
mean curvature of M′. �
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ANALOGUES OF LEVEL-N EISENSTEIN SERIES

HIROFUMI TSUMURA

We consider certain analogues of level-N Eisenstein series involving hyper-
bolic functions. By developing the method used in our previous work, we
prove some relation formulas for these series at positive integers which in-
clude our previous results corresponding to the cases of level 1 and 2. Fur-
thermore, using these results, we evaluate certain two-variable analogues of
level-N Eisenstein series.

1. Introduction

In [Tsumura 2008], we considered an analogue of the Eisenstein series defined by

Gk(i)=
∑

m∈Z\{0}

∑
n∈Z

(−1)n

sinh(mπ)(m+ ni)k
(1-1)

=

∑
m∈Z\{0}

∑
n∈Z

1
sinh((m+ ni)π)(m+ ni)k

(k ∈ N),(1-2)

where i =
√
−1 and sinh x = (ex

− e−x)/2. We evaluated G2p−1(i) (p ∈ N) in
terms of π and the lemniscate constant $ defined by

$ = 2
∫ 1

0

dx
√

1− x4
=
0(1/4)2

2
√

2π
= 2.6220575542921 . . . .

More precisely we gave

(1-3) G2p−1(i)=
2(−1)p

π

p∑
j=1

(1−21−2p+2 j )ζ(2p−2 j)
(
(−1) j G2 j (i)−2ζ(2 j)

)
,

where ζ(s) is Riemann’s zeta function and G2 j (τ ) is the ordinary Eisenstein series
defined by

(1-4) G2 j (τ )=
∑
m∈Z

∑
n∈Z

(m,n) 6=(0,0)

1
(m+ nτ)2 j

MSC2010: primary 11M41; secondary 11M99.
Keywords: Eisenstein series, Riemann zeta function, hyperbolic functions.
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for j ∈N and τ ∈C with Im τ >0. Note that G2(τ ) is conditionally convergent with
respect to the order of summation as above. We can view (1-3) as a double series
analogue of the following formula given by Cauchy [1889] and Mellin [1902]:

∑
m∈Z\{0}

(−1)m

sinh(mπ)m4k−1 =
2
π

2k∑
j=0

(1−21−4k+2 j )ζ(4k−2 j)(−1) j (21−2 j
−1)ζ(2 j),

and similar formulas for the Dirichlet series involving hyperbolic functions; see,
for example, [Berndt 1977; 1978; Meyer 2000].

As another type analogue of G2 j (i), we considered

C
〈r〉
l (i)=

∑
m∈Z
m 6=0

∑
n∈Z

(coth(mπ))r

(m+ ni)l
(l ∈ N≥3, r ∈ Z≥−1),(1-5)

where coth x = (ex
+e−x)/(ex

−e−x), and evaluated them in the case l ≡ r mod 2;
see [Tsumura 2009].

In [Komori et al. 2010], using a method completely different from the one in
[Tsumura 2008; 2009], Komori, Matsumoto and the author evaluated

G
〈r〉
k (τ )=

∑
m∈Z\{0}

∑
n∈Z

1
sinh((m+ nτ)π i/τ)r (m+ nτ)k

(r, k ∈ N)(1-6)

(and more generalized double series) for any τ ∈ C with Im τ > 0.
In [Tsumura 2010] we considered analogues of level-2 Eisenstein series such as∑

m∈Z

∑
n∈Z

1
sinh((2m+ 1+ (2n+ 1)i)π/2)(2m+ 1+ (2n+ 1)i)k

,(1-7)

∑
m∈Z

∑
n∈Z

1
cosh((2m+ 1+ (2n+ 1)i)π/2)(2m+ 1+ (2n+ 1)i)k

,(1-8)

∑
m∈Z

∑
n∈Z

tanh((2m+ 1+ (2n+ 1)i)π/2)
(2m+ 1+ (2n+ 1)i)l

,(1-9)

∑
m∈Z

∑
n∈Z

coth((2m+ 1+ (2n+ 1)i)π/2)
(2m+ 1+ (2n+ 1)i)l

(1-10)

for k, l ∈ N with l ≥ 3, and evaluated them in terms of π and $ . Note that the
level-N Eisenstein series is defined by

(1-11) Gk(τ ; a mod n)=
∑
m∈Z

m≡a1 mod N

∑
n∈Z

n≡a2 mod N
(m,n) 6=(0,0)

1
(m+ nτ)k
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for k ∈N≥2 and a= (a1, a2)∈Z2 with 0≤ a1, a2< N , which was studied by Hecke
[Hecke 1937, Section 1] (see also, for example, [Koblitz 1993, Chapter III]).

In this paper, by developing the method used in [Tsumura 2008; 2009; 2010],
we consider analogues of level-N Eisenstein series involving hyperbolic functions,
namely

(1-12) C
〈r〉
k (τ ; a mod n)=

∑
m∈Z\{0}

m≡a1 mod N

∑
n∈Z

n≡a2 mod N

coth((m+ nτ)π i/Nτ)r

(m+ nτ)k

for k ∈N≥2, r ∈ Z and a = (a1, a2) ∈ Z2 with 0≤ a1, a2 < N . Note that (1-12) in
the case k = 2 and r = 2 is conditionally convergent with respect to the order of
summation as above. In fact, since (coth x)2 = 1+ 1/(sinh x)2, we have

C
〈2〉
2 (τ ; a mod n)=

∑
m∈Z\{0}

m≡a1 mod N

∑
n∈Z

n≡a2 mod N

(
1+

1
sinh((m+nτ)π i/Nτ)2

)
1

(m+nτ)2
.

If we divide this double series into two parts, the first is conditionally convergent
and the second is absolutely convergent. Considering (coth x)2ν , we can induc-
tively confirm that C

〈2ν〉
2 (τ ; a mod n) (ν ∈ N) is also conditionally convergent.

Outline of article. In Section 2, we state evaluation formulas for some quantities
of the form (1-12) (see Theorem 2.1, whose proof is given in Section 3). We also
evaluate (1-12) in terms of (1-11) and certain partial zeta values which will be
defined by (2-4) (see Examples 2.5 and 2.6). This subsumes previous results on
(1-5) corresponding to the case (r, N ) = (1, 1) [Tsumura 2009] and on (1-9) and
(1-10) corresponding to the cases (r, N ) = (±1, 2) [Tsumura 2010]. Here, for
example, we give a new formula corresponding to the case r = 2:

C
〈2〉
4 (i; (1, 1)mod 2)=−

5$ 4
+ 2π3

360
.

More generally, we give explicit formulas for level-N versions of these expressions
(see Example 2.6). From these results, we evaluate the level-N version of (1-6),
defined by

G
〈r〉
k (τ ; a mod n)=

∑
m∈Z\{0}

m≡a1 mod N

∑
n∈Z

n≡a2 mod N

1
sinh((m+nτ)π i/Nτ)r (m+nτ)k

(1-13)

(see Proposition 2.4; also Remark 3.9).
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In Section 4, based on the results above, we evaluate a two-variable analogue of
(1-11) defined by

G̃ j,k(τ ; a mod n)=
∑
m∈Z

m≡a1 mod N

∑
n∈Z

n≡a2 mod N
(m,n)6=(0,0)

∑
l∈Z

l≡a2 mod N
(m,l) 6=(0,0)

1
(m+lτ) j (m+nτ)k

(1-14)

for j, k ∈ N≥2. Note that in the case j = 2 or k = 2, (1-14) is conditionally con-
vergent with respect to the order of summation as above. We prove some relation
formulas among G̃ j,k(τ ; a mod n) and G

〈r〉
l (τ ; a mod n) (see Theorems 4.1 and

4.2), and evaluate G̃2p,2q(i; a mod n) (see Examples 4.3 and 4.4). For example,
we obtain

G̃4,4(i; (1, 1)mod 2)=
∑
m∈Z

m≡1 mod 2

∑
n∈Z

n≡1 mod 2

∑
l∈Z

l≡1 mod 2

1
(m+ li)4(m+ ni)4

=
$ 8

8960
−
$ 4π4

17280
+

π7

6048
.

This paper contains a lot of examples of evaluation formulas. They were checked
numerically using Mathematica 7.

2. Relation formulas for Cν
k(α)

From now on, we set N ∈N, a= (a1, a2)∈Z2 with 0≤ a1, a2 < N and τ ∈C with
Im τ > 0. For convenience, we set

a= a mod N .

Theorem 2.1. For r ∈ Z and p ∈ N, we have

(2-1) (Nτ)2p+1C
〈r+1〉
2p+1(τ ; a)

=
2i
π

p∑
ω=1

ζ(2p− 2ω)(Nτ)2ω+2C
〈r〉
2ω+2(τ ; a)+ 2ζ(2p)

(Nτ)3

π2 C
〈r−1〉
3 (τ ; a)

and

(2-2) (Nτ)2p+2C
〈r+1〉
2p+2(τ ; a)=

2i
π

p∑
ω=0

ζ(2p− 2ω)(Nτ)2ω+3C
〈r〉
2ω+3(τ ; a).

We will prove this theorem in the next section. Note that if we know the values
C
〈−1〉
3 (τ ; a) and C

〈0〉
4 (τ ; a), then we can inductively evaluate C

〈r〉
k (τ ; a) for k ∈N≥3

and r ∈ Z≥−1 with k ≡ r mod 2, as follows.
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By the definition (1-12), we can see that

(2-3) C
〈0〉
2k (τ ; a)=


G2k(τ ; a) if a1 6= 0,

G2k(τ ; a)− τ
−2k ∑

n∈Z
n≡a2 mod N

1
n2k if a1 = 0 and a2 6= 0,

N−2k
(
G2k(τ )− 2τ−2kζ(2k)

)
if a1 = a2 = 0,

for k ∈ N≥2. For simplicity, we define a certain partial zeta value by

(2-4) ζ̃ (l; a mod N ) :=
∑

n∈Z\{0}
n≡a mod N

1
nl (l ∈ N≥2).

The proof of the next proposition will be given in Section 3 as well.

Proposition 2.2. With the same notation,

C
〈−1〉
3 (τ ; a)=



iπ
Nτ

G2(τ ; a) if a1 6= 0,

iπ
Nτ

(
G2(τ ; a)− τ

−2ζ̃ (2; a2 mod N )
)

if a1 = 0 and a2 6= 0,

iπ
N 3τ

(
G2(τ )− 2τ−2ζ(2)

)
if a1 = a2 = 0.

From Theorem 2.1 and Proposition 2.2, we derive:

Theorem 2.3. For r ∈ Z≥−1 and k ∈ N≥3 with k ≡ r mod 2,

(2-5) τ kπrC
〈r〉
k (τ ; a) ∈Q

[
τ, π,

{
ζ̃ (2 j; a2 mod N ), G2 j (τ ; a)

}
j∈N

]
.

Proof. We prove (2-5) by induction on r ≥ −1. First we assume r = −1. Since
k ≡ r mod 2 with k ≥ 3, we can write k = 2p+ 3 (p ≥ 0). Hence we further use
induction on p. When p = 0, namely k = 3, we immediately obtain the assertion
from Proposition 2.2. Furthermore, by (2-2) with r =−1, we have
π

i
(Nτ)2p+3C

〈−1〉
2p+3(τ ; a)

=−(Nτ)2p+2C
〈0〉
2p+2(τ ; a)+

2i
π

p−1∑
ω=0

ζ(2p− 2ω)(Nτ)2ω+3C
〈−1〉
2ω+3(τ ; a).

Hence, by (2-3), we obtain the assertion by induction on p in the case r =−1.
Next we assume that the induction hypotheses hold for r . By multiplying the

both sides of (2-1) and of (2-2) by πr+1, we obtain the assertion in the case of
r + 1. Thus we complete the proof. �

As we noted in Section 1, using the relation 1/(sinh x)2 = (coth x)2−1 and the
binomial theorem, we have the following relation between C

〈r〉
k (τ ; a) and G

〈r〉
k (τ ; a)

defined by (1-13).
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Proposition 2.4. For ν ∈ N,

(2-6) G
〈2ν〉
k (τ ; a)=

ν∑
j=0

(
ν

j

)
(−1)ν− jC

〈2 j〉
k (τ ; a).

Therefore, for l ∈ N and ν ∈ N,

τ 2lπ2νG
〈2ν〉
2l (τ ; a) ∈Q

[
τ, π,

{
ζ̃ (2k; a2 mod N ), G2k(τ ; a)

}
k∈N

]
.(2-7)

Hence we can evaluate G
〈2ν〉
2l (τ ; a) by using the result on C

〈2 j〉
2l (τ ; a) (see below).

We will consider G
〈2ν+1〉
2l+1 (τ ; a) in Remark 3.9.

Example 2.5. In the case N = 1, we simply denote (1-12) by C
〈r〉
k (τ ). Then,

combining Theorem 2.1, Proposition 2.2 and (2-3), we obtain

C
〈−1〉
3 (τ )= i(−π3

+ 3πτ 2G2(τ ))/(3τ 3),

C
〈−1〉
5 (τ )= i(−2π5

+ 5π3τ 2G2(τ )+ 15πτ 4G4(τ ))/(15τ 5),

C
〈1〉
3 (τ )= i(−4π4

+ 15τ 2G2(τ )π
2
− 45τ 4G4(τ ))/(45τ 3π),

C
〈1〉
5 (τ )= i(−4π6

+ 7τ 2G2(τ )π
4
+ 105τ 4G4(τ )π

2
− 315τ 6G6(τ ))/(315τ 5π),

C
〈2〉
4 (τ )= (16π6

− 84τ 2G2(τ )π
4
+ 630τ 4G4(τ )π

2
− 945τ 6G6(τ ))/(945τ 4π2),

C
〈2〉
6 (τ )= (64π8

− 180τ 2G2(τ )π
6
− 945τ 4G4(τ )π

4
+ 9450τ 6G6(τ )π

2

− 14175τ 8G8(τ ))/(14175τ 6π2),

C
〈3〉
3 (τ )= i(−44π6

+189τ 2G2(τ )π
4
−945τ 4G4(τ )π

2
+945τ 6G6(τ ))/(945τ 3π3),

C
〈3〉
5 (τ )= i(−4π8

− 45τ 2G2(τ )π
6
+ 1260τ 4G4(τ )π

4
− 4725τ 6G6(τ )π

2

+ 4725τ 8G8(τ ))/(4725τ 5π3),

C
〈4〉
4 (τ )= (208π8

− 1080τ 2G2(τ )π
6
+ 8505τ 4G4(τ )π

4
− 18900τ 6G6(τ )π

2

+ 14175τ 8G8(τ ))/(14175τ 4π4),

C
〈4〉
6 (τ )= (1024π10

− 2376τ 2G2(τ )π
8
− 30690τ 4G4(τ )π

6
+ 270270τ 6G6(τ )π

4

− 623700τ 8G8(τ )π
2
+ 467775τ 10G10(τ ))/(467775τ 6π4).

The case τ = i was studied in [Tsumura 2009], and we recover the results found
there. For example,

C
〈2〉
4 (i)=

42$ 4
+ 16π4

− 84π3

945
,

C
〈4〉
4 (i)=

27$ 8
+ 567$ 4π4

+ 208π8
− 1080π7

14175π4 .
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By Proposition 2.4, we can inductively evaluate G
〈2l〉
2ν (τ ) in terms of G2 j (τ ) and

ζ(2k). This fact was already given in [Komori et al. 2010] by a totally different
method. Here we recover, for example,

G
〈2〉
4 (i)=

−21$ 4
+ 37π4

− 84π3

945
,(2-8)

G
〈4〉
4 (i)=

27$ 8
+ 252$ 4π4

− 587π8
+ 1440π7

14175π4 .(2-9)

Next we consider the case τ = ρ = e2π i/3. We recall the properties of G2k(ρ).
For the details, see [Koblitz 1993; Nesterenko and Philippon 2001; Serre 1970;
Waldschmidt 1999]; also [Komori et al. 2010]. Let

(2-10) $̃ =
0(1/3)3

24/3π
= 2.42865064788758 · · ·

which is an analogue of the lemniscate constant $ . Then we obtain G2(ρ) =

2πρ/
√

3,

(2-11) G6(ρ)=
$̃ 6

35
, G12(ρ)=

$̃ 12

7007
, G18(ρ)=

$̃ 18

1440257
, . . .

and Gk(ρ) = 0 for k ≥ 3 with 6 - k. Using these results, we can evaluate C
〈r〉
k (ρ),

similarly to the case τ = i , for example,

C
〈2〉
4 (ρ)=

−27$̃ 6
+ 16π6

− 56
√

3π5

945ρπ2 ,

C
〈4〉
4 (ρ)=

−18900$̃ 6π2
+ 7280π8

− 25200
√

3π7

496125ρπ4 .

From these results, we recover these formulas from [Komori et al. 2010]:

G
〈2〉
4 (ρ)=

−27$̃ 6
+ 37π6

− 56
√

3π5

945ρπ2 ,(2-12)

G
〈4〉
4 (ρ)=

270$̃ 6
− 587π6

+ 960
√

3π5

14175ρπ2 .(2-13)

Example 2.6. We consider the case N > 1, a1 6= 0 and a2 6= 0. We simply denote
the level-N Eisenstein series by Ga

2 j (τ ) instead of G2 j (τ ; a). Then we have the
following formulas which are explicit examples of the main result in this paper:

C
〈−1〉
3 (τ ; a)= iGa

2(τ )π/(Nτ),

C
〈−1〉
5 (τ ; a)= i(Ga

2(τ )π
3
+ 3N 2τ 2Ga

4(τ )π)/(3N 3τ 3),

C
〈1〉
3 (τ ; a)= i(Ga

2(τ )π
2
− 3N 2τ 2Ga

4(τ ))/(3Nτπ),
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C
〈1〉
5 (τ ; a)= i(Ga

2(τ )π
4
+ 15i N 2τ 2Ga

4(τ )π
2
− 45N 4τ 4Ga

6(τ ))/(45N 3τ 3π),

C
〈2〉
4 (τ ; a)= (−4Ga

2(τ )π
4
+ 30N 2τ 2Ga

4(τ )π
2
− 45N 4τ 4Ga

6(τ ))/(45N 2τ 2π2),

C
〈2〉
6 (τ ; a)= (−4Ga

2(τ )π
6
− 21N 2τ 2Ga

4(τ )π
4
+ 210N 4τ 4Ga

6(τ )π
2

− 315N 6τ 6Ga
8(τ ))/(315N 4τ 4π2),

C
〈3〉
3 (τ ; a)= i(9Ga

2(τ )π
4
− 45N 2τ 2Ga

4(τ )π
2
+ 45N 4τ 4Ga

6(τ ))/(45Nτπ3),

C
〈3〉
5 (τ ; a)= i(−Ga

2(τ )π
6
+ 28N 2τ 2Ga

4(τ )π
4
− 105N 4τ 4Ga

6(τ )π
2

+ 105N 6τ 6Ga
8(τ ))/(105N 3τ 3π3),

C
〈4〉
4 (τ ; a)= (−8Ga

2(τ )π
6
+ 63N 2τ 2Ga

4(τ )π
4
− 140N 4τ 4Ga

6(τ )π
2

+ 105N 6τ 6Ga
8(τ ))/(105N 2τ 2π4),

C
〈4〉
6 (τ ; a)= (−24Ga

2(τ )π
8
− 310N 2τ 2Ga

4(τ )π
6
+ 2730N 4τ 4Ga

6(τ )π
4

− 6300N 6τ 6Ga
8(τ )π

2
+ 4725N 8τ 8Ga

10(τ ))/(4725N 4τ 4π4).

In [Tsumura 2010], we studied the case when (N , a1, a2, τ ) = (2, 1, 1, i) and
r = ±1, based on [Katayama 1978]. In this case, as mentioned in both of these
papers, we see G(1,1)

2 (i) = −π/4, G(1,1)
4k+2(i) = 0 and G(1,1)

4k (i) ∈ Q ·$ 4k (k ∈ N),
which can be concretely calculated; for example,

G(1,1)
4 (i)=−

$ 4

48
, G(1,1)

8 (i)=
$ 8

8960
, G(1,1)

12 (i)=−
$ 12

1689600
.

Hence, by the formulas above, we can explicitly evaluate C
〈r〉
k (τ ; (1, 1)mod 2)

when k ≡ r mod 2. In particular, when r = ±1, these coincide with the results
given in [Tsumura 2010]. As examples in the cases r = 2, 4, we give

C
〈2〉
4 (i; (1, 1)mod 2)=−

5$ 4
+ 2π3

360
,

C
〈4〉
4 (i; (1, 1)mod 2)=

3$ 8
− 21$ 4π4

− 8π7

1680π4 ,

and

G
〈2〉
4 (i; (1, 1)mod 2)=

5$ 8
− 4π3

720
,(2-14)

G
〈4〉
4 (i; (1, 1)mod 2)=

9$ 8
− 28$ 4π4

+ 32π7

5040π4 .(2-15)

3. Proofs of Theorem 2.1 and Proposition 2.2

For a= (a1, a2)∈Z2 with 0≤ a1, a2 < N , we set β = (a1+a2τ)/N for simplicity.
We fix a small ε > 0. For u ∈ [1, 1+ ε], r ∈ Z and k ∈ N, we define
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D̂
〈r〉
k (τ ;β; u)=

∑∗

m∈Z

∞∑
n=1

u−n coth((m+β + nτ)π i/τ)r

sinh((m+β + nτ)π i/τ)(m+β + nτ)k
(3-1)

+

∑∗

m∈Z

∞∑
n=1

u−n coth((m+β − nτ)π i/τ)r

sinh((m+β − nτ)π i/τ)(m+β − nτ)k

+

∑∗

m∈Z

coth((m+β)π i/τ)r

sinh((m+β)π i/τ)(m+β)k
,

where
∑
∗

m∈Z

stands for the sum over m ∈ Z \ {0} if a1 = 0 and over m ∈ Z if a1 6= 0.

When u > 1, we define D̂
〈r〉
−k(τ ;β; u) for k ∈ Z≥0 by (3-1). This is well-defined

in the following sense. Since sinh(x)= 0 implies x ∈ π iZ, the equality

sinh
(
(m+β + nτ)π i

τ

)
= sinh

((
Nm+ a1+ (Nn+ a2) τ

) π i
Nτ

)
= 0 (m, n ∈ Z)

implies (a1, a2)= (0, 0) and m=0. Similarly, cosh(x)=0 implies x ∈π i/2+π iZ,
so the equality

cosh
(
(m+β + nτ) π i

τ

)
= cosh

((
Nm+ a1+ (Nn+ a2) τ

) π i
Nτ

)
= 0 (m, n ∈ Z)

implies (a1, a2)= (0, N/2) and m = 0. Hence, by the definition of
∑
∗ a few lines

above, we see that (3-1) is absolutely convergent under the conditions above, that
is, well-defined.

Since cosh(nπ i)= (−1)n and sinh(nπ i)= 0, we can rewrite (3-1) as

(3-2) D̂
〈r〉
k (τ ;β; u)=

∑∗

m∈Z

coth((m+β)π i/τ)r

sinh((m+β)π i/τ)

×

( ∞∑
n=1

(−u)−n
(

1
(m+β+nτ)k

+
1

(m+β−nτ)k

)
+

1
(m+β)k

)
.

When k ≥ 2, we see that D̂
〈r〉
k (τ ;β; u) converges absolutely and uniformly for u

in [1, 1+ ε]. Furthermore, when k = 1, we have

(3-3) D̂
〈r〉
1 (τ ;β; u)=

∑∗

m∈Z

2(m+β) coth((m+β)π i/τ)r

sinh((m+β)π i/τ)

∞∑
n=1

(−u)−n

(m+β)2− n2τ 2

+

∑∗

m∈Z

coth((m+β)π i/τ)r

sinh((m+β)π i/τ)(m+β)
,

which converges absolutely and uniformly for u in [1, 1+ε]. Hence, for any k ∈N,
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we have

(3-4) lim
u→1

D̂
〈r〉
k (τ ;β; u)= D̂

〈r〉
k (τ ;β; 1)

=

∑∗

m∈Z

∑
n∈N

coth((m+β + nτ)π i/τ)r

sinh((m+β + nτ)π i/τ)(m+β + nτ)k
.

Now we let

(3-5) Sr (θ; τ ;β)=
∑∗

m∈Z

coth((m+β)π i/τ)r e(m+β)iθ/τ

sinh((m+β)π i/τ)
.

Set A = Re(i/τ) and B = Im(i/τ). Then A > 0 because Im τ > 0. We further let
D(R) := {θ ∈ C : |θ |< R} be the closed disk of radius R, where R > 0.

Lemma 3.1. Sr (θ; τ ;β) converges absolutely for θ ∈ D (Aπ/(A+ |B|)).

Proof. Let θ ∈ D(Aπ/(A+ |B|)) and set (a, b)= (Re θ, Im θ). Then

(3-6) |a|, |b|<
Aπ

A+ |B|
.

Here we consider the order of Sr (θ; τ ;β), namely

Sr (θ; τ ;β)= O
(
e|m|Re((±θ−π)i/τ)) (|m| →∞),

which implies the maximum of two cases corresponding to ±θ . By (3-6), we have

Re((±θ −π)i/τ)= Re((±a−π ± bi)(A+ Bi))= (±a−π)A∓ bB

≤ (|a| −π)A+ |b||B|<
(

Aπ
A+ |B|

−π

)
A+

A |B|π
A+ |B|

= 0.

Therefore we have the assertion. �

As in [Tsumura 2008, § 2], we set

(3-7) H(θ; u) := −
1
2

(
eθ

eθ + u
+

e−θ

e−θ + u

)
for θ ∈ C and u ∈ [1, 1 + ε]. This function is holomorphic for θ ∈ D(π), and
satisfies

(3-8) lim
u→1

H(θ; u)=− 1
2 (θ ∈ D(π)).

We also set

(3-9) Jr (θ; τ ;β; u) := Sr (θ; τ ;β)(2H(iθ; u)+ 1).

Since Aπ/(A + |B|) ≤ π , it follows from Lemma 3.1 that Jr (θ; τ ;β; u) is
holomorphic for θ ∈ D(Aπ/(A + |B|)). Hence, for each u ∈ [1, 1+ ε], we can
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expand Jr (θ; τ ;β; u) as

(3-10) Jr (θ; τ ;β; u)=
∞∑

n=0

3〈r〉n (τ ;β; u)
θn

n!
(θ ∈ D(Aπ/(A+ |B|))).

By Cauchy’s integral theorem, for any γ ∈R with 0<γ < Aπ/(A+|B|), we have

(3-11)
|3
〈r〉
n (τ ;β; u)|

n!
≤

1
2π

∫
Cγ
|Jr (θ; τ ;β; u)||z|−n−1

|dz| ≤
Mγ

γ n (n ∈ Z≥0),

where Cγ : z = γ ei t (0≤ t ≤ 2π) and

Mγ := max
(z,u)∈Cγ×[1,1+ε]

|Jr (z; τ ;β; u)|.

Hence the right-hand side of (3-10) is uniformly convergent in u ∈ [1, 1+ ε] if
θ ∈ D(Aπ/(A+ |B|)). By (3-8) and (3-9), we have Jr (θ; τ ;β; u)→ 0 as u→ 1.
Therefore we see that

(3-12) 3〈r〉n (τ ;β; u)→ 0 (u→ 1; n ∈ Z≥0).

Lemma 3.2. For u ∈ (1, 1+ ε] and θ ∈ D(Aπ/(A+ |B|)),

(3-13) Jr (θ; τ ;β; u)=
∞∑
j=0

D̂
〈r〉
− j (τ ;β; u)

θ j

j !
,

that is, D̂
〈r〉
− j (τ ;β; u)=3

〈r〉
j (τ ;β; u), for j ∈ Z≥0.

Proof. When u > 1, from (3-7), we have (see [Tsumura 2008, Lemma 2.1])

H(iθ; u)=
∞∑

n=1

(−u)−n cos(nθ).

Therefore, from (3-5) and (3-9), we have

Jr (θ; τ ;β; u)=
∑∗

m∈Z

∞∑
n=1

(−u)−n coth((m+β)π i/τ)r e(m+β+nτ)iθ/τ

sinh((m+β)π i/τ)
(3-14)

+

∑∗

m∈Z

∞∑
n=1

(−u)−n coth((m+β)π i/τ)r e(m+β−nτ)iθ/τ

sinh((m+β)π i/τ)

+

∑∗

m∈Z

coth((m+β)π i/τ)r e(m+β)iθ/τ

sinh((m+β)π i/τ)
.

Using the Maclaurin expansion of ex and the definition of D̂
〈r〉
−k(τ ;β; u) in (3-1),

namely in (3-2), we complete the proof. �
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Lemma 3.3. For r ∈ Z and k ∈ N,

(3-15) N k+2C
〈r〉
k+2(τ ; a)=

∑∗

m∈Z

∑
n∈Z

coth((m+β + nτ)π i/τ)r

(m+β + nτ)k+2

=

[k/2]∑
j=0

D̂
〈r〉
k+1−2 j (τ ;β; 1)

(iπ/τ)2 j+1

(2 j + 1)!
.

Proof. The first equality comes from the definition (1-12) and β = (a1+ a2τ)/N .
We prove the second equality. We first assume k ∈ Z≥0. For u ∈ [1, 1+ ε], we set

(3-16) 8r (θ; k; τ ;β; u)=
∑∗

m∈Z

∞∑
n=1

(−u)−n coth((m+β)π i/τ)r e(m+β+nτ)iθ/τ

sinh((m+β)π i/τ)(m+β+nτ)k+2

+

∑∗

m∈Z

∞∑
n=1

(−u)−n coth((m+β)π i/τ)r e(m+β−nτ)iθ/τ

sinh((m+β)π i/τ)(m+β−nτ)k+2

+

∑∗

m∈Z

coth((m+β)π i/τ)r e(m+β)iθ/τ

sinh((m+β)π i/τ)(m+β)k+2 ,

which converges absolutely and uniformly in u ∈ [1, 1+ε] if θ ∈ D(Aπ/(A+|B|)).
If u > 1, it follows from Lemma 3.2 that

(3-17) 8r (θ; k; τ ;β; u)

=

∞∑
j=0

D̂
〈r〉
k+2− j (τ ;β; u)

(iθ/τ) j

j !

=

k+1∑
j=0

D̂
〈r〉
k+2− j (τ ;β; u)

(iθ/τ) j

j !
+

∞∑
j=k+2

3
〈r〉
j−k−2(τ ;β; u)

(iθ/τ) j

j !
.

By considering

lim
u→1

1
2 {8r (θ; k; τ ;β; u)−8r (−θ; k; τ ;β; u)} ,

and using (3-4) and (3-11), we can let u→ 1 on the both sides of (3-17) if θ lies
in D(Aπ/(A+ |B|)). By (3-12), we have

(3-18)
1
2

∑∗

m∈Z

∑
n∈Z

(−1)n coth((m+β)π i/τ)r
(
e(m+β+nτ)iθ/τ

− e−(m+β+nτ)iθ/τ
)

sinh((m+β)π i/τ)(m+β + nτ)k+2

=

[k/2]∑
ν=0

D̂
〈r〉
k+1−2ν(τ ;β; 1)

(iθ/τ)2ν+1

(2ν+ 1)!
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for θ ∈ D(Aπ/(A+ |B|)). Moreover, we claim that the left-hand side of (3-18) is
absolutely convergent on the region �(τ) :=

⋃
n≥1 Xn(τ ), where

Xn(τ )=

{
θ ∈ C :

∣∣∣θ − (1− 1
n

)
π

∣∣∣< Aπ
(A+ |B|)n

}
.

Actually we know that the left-hand side of (3-18) is

O
(
e|m|Re((±θ−π)i/τ)

|m+β + nτ |−k−2) (|m|, |n| →∞).

Hence we aim to prove Re((±θ −π)i/τ) < 0 for any θ ∈�(τ). In fact, for any n
and any θ ∈ Xn , we set (a, b)= (Re θ, Im θ). Then

|a|<
(

1− 1
n

)
π +

Aπ
(A+ |B|)n

and |b|<
Aπ

(A+ |B|)n
.

Hence, by recalling that A=Re(i/τ) and B = Im(i/τ), we obtain the claim, since

Re((±θ−π)i/τ)= Re((±a−π±bi)(A+Bi))= (±a−π)A∓Bb

≤ (|a|−π)A+|B| |b|<−
Aπ
n
+

A2π

(A+|B|)n
+

A|B|π
(A+|B|)n

= 0.

On the other hand, it is clear that the right-hand side of (3-18) is holomorphic for
θ ∈�(τ), so (3-18) holds for θ ∈�(τ).

Finally we claim that �(τ)⊃ [(1−1/L)π, π), where L =max (1, |B|/2A). In
order to prove this, we only have to prove Xn(τ ) ∩ Xn+1(τ ) 6= ∅ for all n ≥ L ,
because any Xn(τ ) is the disk whose center is on the real axis. More precisely, we
have to prove(

1− 1
n

)
π +

Aπ
(A+ |B|)n

≥

(
1− 1

n+1

)
π −

Aπ
(A+ |B|)(n+ 1)

,

if n ≥ L . In fact, this can be easily verified. Hence we obtain the claim. Therefore
(3-18) holds for θ ∈ [(1− 1/L)π, π). If we set θ = π on the left-hand side of
(3-18), we have ∑∗

m∈Z

∑
n∈Z

coth((m+β + nτ)π i/τ)r

(m+β + nτ)k+2 ,

which is absolutely convergent if k ≥ 1. Hence, by Abel’s theorem, (3-18) holds
for θ = π , which implies (3-15). Thus we complete the proof. �

Remark 3.4. As stated in the proof, (3-18) holds for k = 0 if θ ∈ [(1−1/L)π, π),
because the left-hand side of (3-18) converges absolutely even if k = 0 and θ is
in [(1− 1/L)π, π). We claim that (3-18) holds for θ = π when (k, r) = (0, 0).
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In fact, by setting (k, r, θ)= (0, 0, π) on the left-hand side of (3-18), we have∑∗

m∈Z

∑
n∈Z

1
(m+β+nτ)2

= N 2G2(τ ;a)−
δa1,0 N 2

τ 2 ×

{
N 2ζ̃ (2;a2 mod N ) if a2 6= 0,
2ζ(2) if a2= 0,

where δp,q is the Kronecker delta. Therefore it follows from Abel’s theorem that
(3-18) holds for k = 0 and θ = π . Hence we obtain

(3-19) D̂
〈0〉
1 (τ ;β; 1)=

N 2τ

iπ
G2(τ ; a)−

δa1,0

iπτ

{
N 2ζ̃ (2; a2 mod N ) if a2 6= 0,
2ζ(2) if a2 = 0.

For k ∈ N, we differentiate (3-18) in θ ∈ [(1− 1/L)π, π). Then

(3-20)
1
2

∑∗

m∈Z

∑
n∈Z

(−1)n coth((m+β)π i/τ)r
(
e(m+β+nτ)iθ/τ

+ e−(m+β+nτ)iθ/τ
)

sinh((m+β)π i/τ)(m+β + nτ)k+1

=

[k/2]∑
ν=0

D̂
〈r〉
k+1−2ν(τ ;β; 1)

(iθ/τ)2ν

(2ν)!
.

If k≥2, both sides on (3-20) converge absolutely and uniformly in [(1−1/L)π, π].
Hence, by letting θ→ π , we have:

Lemma 3.5. For r ∈ Z and k ∈ N with k ≥ 2,

(3-21) N k+1C
〈r+1〉
k+1 (τ ; a)=

[k/2]∑
j=0

D̂
〈r〉
k+1−2 j (τ ;β; 1)

(iπ/τ)2 j

(2 j)!
.

Letting k = 2p+µ for p ∈ N and µ ∈ {0, 1} in (3-15) and (3-21), we have

N 2p+2+µC
〈r〉
2p+2+µ(τ ; a)=

p∑
j=0

D̂
〈r〉
2p+1+µ−2 j (τ ;β; 1)

(iπ/τ)2 j+1

(2 j + 1)!
,(3-22)

N 2p+1+µC
〈r+1〉
2p+1+µ(τ ; a)=

p∑
j=0

D̂
〈r〉
2p+1+µ−2 j (τ ;β; 1)

(iπ/τ)2 j

(2 j)!
.(3-23)

Note that (3-22) also holds for p = 0 if µ = 1, because (3-15) holds for k = 1.
Here we use the following result given in our previous work.

Lemma 3.6 [Tsumura 2007, Lemma 4.4]. Let {P2h}, {Q2h}, {R2h} be sequences
satisfying

(3-24) P2h =

h∑
j=0

R2h−2 j
(iπ)2 j

(2 j)!
, Q2h =

h∑
j=0

R2h−2 j
(iπ)2 j

(2 j + 1)!
(h ∈ Z≥0).
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Then

(3-25) P2h =−2
h∑

ω=0

ζ(2h− 2ω)Q2ω (h ∈ Z≥0).

Multiply the both sides of (3-22) and (3-23) by τ 2p+2+µ and τ 2p+1+µ, respec-
tively. Then apply Lemma 3.5 with P0 = Q0 = R0 = τ

1+µD̂
〈r〉
1+µ(τ ;β; 1) and

P2h = (Nτ)2p+1+µC
〈r+1〉
2p+1+µ(τ ; a),

Q2h =
1

iπ
(Nτ)2p+2+µC

〈r〉
2p+2+µ(τ ; a),

R2h = τ
2h+1+µD̂

〈r〉
2h+1+µ(τ ;β; 1)

for h ∈ N. Then it follows from (3-25) that

(3-26) (Nτ)2p+1+µC
〈r+1〉
2p+1+µ(τ ; a)

=−2
p∑

ω=1

ζ(2p− 2ω)
1

iπ
(Nτ)2ω+2+µC

〈r〉
2ω+2+µ(τ ; a)

− 2ζ(2p)τ 1+µD̂
〈r〉
1+µ(τ ;β; 1)

for p ∈ N. In order to complete the proof of Theorem 2.1, we have to determine
D̂
〈r〉
1+µ(τ ;β; 1) for µ = 0, 1. As noted above, (3-22) holds for p = 0 when µ = 1,

namely

(3-27) N 3C
〈r〉
3 (τ ; a)= D̂

〈r〉
2 (τ ;β; 1)

iπ
τ
.

Moreover, we obtain the following.

Lemma 3.7. For r ∈ Z,

(3-28)
iπ
τ

D̂
〈r〉
1 (τ ;β; 1)= D̂

〈r−1〉
2 (τ ;β; 1)=

N 3τ

iπ
C
〈r−1〉
3 (τ ; a).

Proof. The second equality comes from (3-27) by replacing r with r − 1. So we
will prove the first equality.

As we stated in Remark 3.4, (3-18) holds for k = 0 if θ ∈ [(1 − 1/L)π, π).
Hence we see that

(3-29) 1
2

∑∗

m∈Z

∑
n∈Z

(−1)n coth((m+β)π i/τ)r
(
e(m+β+nτ)iθ/τ

− e−(m+β+nτ)iθ/τ
)

sinh((m+β)π i/τ)(m+β + nτ)2

= D̂
〈r〉
1 (τ ;β; 1)

iθ
τ



504 HIROFUMI TSUMURA

holds for θ ∈ [(1− 1/L)π, π). On the other hand, (3-20) with r replaced by r − 1
and k by 1 becomes

(3-30) 1
2

∑∗

m∈Z

∑
n∈Z

(−1)n coth((m+β)π i/τ)r−1
(
e(m+β+nτ)iθ/τ

+e−(m+β+nτ)iθ/τ
)

sinh((m+β)π i/τ)(m+β + nτ)2

= D̂
〈r−1〉
2 (τ ;β; 1),

which also holds for θ ∈ [(1− 1/L)π, π). Now we subtract (3-30) from (3-29) of
each side. Then we have

(3-31)
1
2

∑∗

m∈Z

∑
n∈Z

(−1)n coth((m+β)π i/τ)r−11(θ)

sinh((m+β)π i/τ)(m+β + nτ)2

= D̂
〈r〉
1 (τ ;β; 1)

iθ
τ
− D̂

〈r−1〉
2 (τ ;β; 1),

where 1(θ) is equal to

coth
(
(m+β) iπ

τ

)(
e(m+β+nτ) iθ

τ − e−(m+β+nτ) iθ
τ
)
−
(
e(m+β+nτ) iθ

τ + e−(m+β+nτ) iθ
τ
)

=
1

2 sinh
(
(m+β) iπ

τ

)((e(m+β) iθ
τ +e−(m+β)

iθ
τ
)(

e(m+β)
iθ
τ eniθ

−e−(m+β)
iθ
τ eniθ)

−
(
e(m+β)

iθ
τ − e−(m+β)

iθ
τ
)(

e(m+β)
iθ
τ eniθ

+ e−(m+β)
iθ
τ eniθ))

=
i sin(nθ)

sinh((m+β)π i/τ)
.

Therefore the left-hand side of (3-31) is absolutely and uniformly convergent in
θ ∈ [(1− 1/L)π, π]. Hence, letting θ→ π on the both sides of (3-31) and noting
sin(nπ)= 0, we have

0= D̂
〈r〉
1 (τ ;β; 1)

iπ
τ
− D̂

〈r−1〉
2 (τ ;β; 1). �

Proofs of Theorem 2.1 and Proposition 2.2. Combining (3-26) and (3-28), we
obtain the proof of Theorem 2.1. Combining (3-19) and (3-28), we obtain the
proof of Proposition 2.2. �

Remark 3.8. The left-hand side of (3-29) in the case θ = π and r = 2ν (ν ∈
Z≥0) coincides with C

〈2ν〉
2 (τ ; a), which is conditionally convergent as we noted in

Section 1. Therefore, by Abel’s theorem, we can let θ → π on the both sides of
(3-29). Hence we have

(3-32) N 2C
〈2ν〉
2 (τ ; a)= D̂

〈2ν〉
1 (τ ;β; 1)

iπ
τ

(ν ∈ Z≥0).
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Therefore, by (3-28), we have

(3-33) C
〈2ν〉
2 (τ ; a)=

iπ
Nτ

C
〈2ν−1〉
3 (τ ; a).

Remark 3.9. Combining Lemmas 3.3 and 3.7, and using Examples 2.5 and 2.6,
we can inductively evaluate

D̂
〈2ν〉
2p+1(τ ;β; 1)=

∑∗

m∈Z

∑
n∈N

coth((m+β + nτ)π i/τ)2ν

sinh((m+β + nτ)π i/τ)(m+β + nτ)2p+1

= N 2p+1
∑

j∈Z\{0}
j≡a1 mod N

∑
l∈Z

l≡a2 mod N

(coth(( j + lτ)π i/Nτ))2ν

sinh(( j + lτ)π i/Nτ)( j + lτ)2p+1

in terms of G2k(τ ; a) and ζ̃ (2d; a2 mod N ) (k, d ∈ N). Therefore, by using the
relation 1/(sinh x)2 = (coth x)2− 1 repeatedly, we see that

G
〈2ν+1〉
2 j+1 (τ ; a)=

ν∑
µ=0

(
ν

µ

)
(−1)ν−µN−2 j−1D̂

〈2ν〉
2 j+1(τ ;β; 1),

which can be evaluated in terms of G2k(τ ; a) and ζ̃ (2d; a2 mod N ).

4. Two-variable analogues of level-N Eisenstein series

In this section, we aim to evaluate two-variable analogues of level-N Eisenstein
series G̃ j,k(τ ; a) ( j, k ∈ N≥2) defined by (1-14).

As well as in the previous section, we set β = (a1+ a2τ)/N (0 ≤ a1, a2 < N ).
Since Im τ > 0, namely Re(i/τ) > 0, it follows from the binomial theorem that

1
(sinh((m+β)π i/τ))2ν

= 22ν e−2ν(m+β)π i/τ

(1− e−2(m+β)π i/τ )2ν

= 22νe−2ν(m+β)π i/τ
∞∑
j=0

(
j + 2ν− 1

2ν− 1

)
e−2 j (m+β)π i/τ ,

if m > 0. By putting µ= j + ν, we conclude that this equals

(4-1)

22νe−2π iν(m+β)/τ

(2ν− 1)!

∞∑
µ=ν

(µ+ν−1) · · · (µ+1)µ(µ−1) · · · (µ−ν+1)e−2π i(µ−ν)(m+β)/τ

=
22ν

(2ν− 1)!

∞∑
µ=1

µ

ν−1∏
l=1

(µ− l)(µ+ l)e−2π iµ(m+β)/τ .
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Recall the Stirling numbers of the first kind, {c(n, k)}, defined by

Fn(X)= X (X − 1)(X − 2) · · · (X − n+ 1)=
n∑

k=0

c(n, k)X k

(see, for example, [Stanley 1997]). Using these numbers, we define {α(n, k)} by

(4-2) F̃n(X)= X
n−1∏
l=1

(X−l)(X+l)
(
=
(−1)n Fn(X)Fn(−X)

X

)
=

2n−1∑
k=0

α(n, k)X k .

Hence we have

α(n, j)= (−1)n
j+1∑
ω=0

(−1)ωc(n, j + 1−ω)c(n, ω)

for 0≤ j ≤ 2n−1. Since F̃n(−X)=−F̃n(X), we have α(n, 2 j)= 0 for 0≤ j < n.
By (4-1), we have

(4-3)
1

(sinh((m+β)π i/τ))2ν
=

22µ

(2ν−1)!

ν∑
j=1

α(ν,2 j−1)
∞∑
µ=1

µ2 j−1e−2π iµ(m+β)/τ,

when m > 0. Here we recall the summation formula from [Lipschitz 1889]:

(4-4)
∑
l∈Z

1
(z+ l)k

= (−1)k
(2π i)k

(k− 1)!

∞∑
n=1

nk−1e2π inz

for k ∈ N with k ≥ 2 and z ∈ C with Im z > 0. This formula also holds for k = 1
as follows:

(4-5) lim
L→∞

L∑
l=−L

1
z+ l

=−π i − 2π i
∞∑

n=1

e2π inz

for z ∈ C with Im z > 0 (see [Pribitkin 2002, Section 5]).
We can set z = −(m + β)/τ in (4-4), because we have Im(−(m + β)/τ) > 0.

Then we see that (4-3) is equal to

(4-6)
1

(sinh((m+β)π i/τ))2ν

=
22µ

(2ν− 1)!

ν∑
j=1

α(ν, 2 j − 1)
(2 j − 1)!
(2π i)2 j

∑
l∈Z

1
(−(m+β)/τ + l)2 j

=
22µ

(2ν− 1)!

ν∑
j=1

α(ν, 2 j − 1)
(2 j − 1)!
(2π i/τ)2 j

∑
l∈Z

1
(m+β + lτ)2 j ,
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by replacing l by −l. This holds for m > 0. When m < 0, by replacing (m, l, β)
by (−m,−l,−β) in (4-6), we have

1
(sinh((−m−β)π i/τ))2ν

=
22µ

(2ν− 1)!

ν∑
j=1

α(ν, 2 j − 1)
(2 j − 1)!
(2π i/τ)2 j

∑
l∈Z

1
(−m−β − lτ)2 j ,

which coincides with (4-6). This implies that (4-6) also holds for m < 0.
On the other hand, by (1-13), we have

G
〈2p〉
2q (τ ; a)=

∑
k∈Z\{0}

k≡a1 mod N

∑
l∈Z

l≡a2 mod N

1
sinh((k+ lτ)π i/Nτ)2p(k+ lτ)2q

= N−2q
∑∗

m∈Z

∑
n∈Z

1
sinh((m+β + nτ)π i/τ)2p(m+β + nτ)2q

= N−2q
∑∗

m∈Z

∑
n∈Z

1
sinh((m+β)π i/τ)2p(m+β + nτ)2q

for p, q ∈ N. Therefore, by (4-6) for any m ∈ Z \ {0}, we have

G
〈2p〉
2q (τ ; a)=

22p N−2q

(2p− 1)!
×

p∑
j=1

α(p, 2 j − 1)
(2 j − 1)!
(2π i/τ)2 j∑∗

m∈Z

∑
n∈Z

∑
l∈Z

1
(m+β + lτ)2 j (m+β + nτ)2q .

By (1-14) and β = (a1+ a2τ)/N , we have∑∗

m∈Z

∑
n∈Z

∑
l∈Z

1
(m+β + lτ)2 j (m+β + nτ)2q

= N 2 j+2q
(

G̃2 j,2q(τ ; a)−
δa1,0

τ 2 j+2q ζ̃ (2 j; a2 mod N )ζ̃ (2q; a2 mod N )
)
,

where ζ̃ is defined by (2-4). Combining these relations, we obtain:

Theorem 4.1. For p, q ∈ N,

(4-7) G
〈2p〉
2q (τ ; a)=

22p

(2p− 1)!

p∑
j=1

α(p, 2 j − 1)
(2 j − 1)!
(2π i/Nτ)2 j

×

(
G̃2 j,2q(τ ; a)−

δa1,0

τ 2 j+2q ζ̃ (2 j; a2 mod N )ζ̃ (2q; a2 mod N )
)
.
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By multiplying the both sides of (4-7) by τ 2qπ2p, we can inductively obtain the
following theorem by Proposition 2.4 and the fact G2k(τ ) ∈Q[G4(τ ),G6(τ )] for
k ∈ N≥2 (see [Koblitz 1993, Chapter III, § 2]).

Theorem 4.2. For p, q ∈ N,

τ 2(p+q)G̃2p,2q(τ ; a) ∈Q
[
τ, π,

{
ζ̃ (2k; a2 mod N ), G2k(τ ; a)

}
k∈N

]
.

In particular when N = 1, put G̃2p,2q(τ )= G̃2p,2q(τ ; (0, 0)mod 1). Then

τ 2(p+q)G̃2p,2q(τ ) ∈Q
[
τ, π, G2(τ ), G4(τ ), G6(τ )

]
.

Actually, combining (4-7) and the results given in Section 2, we can concretely
evaluate G̃2p,2q(τ ; a) as follows.

Example 4.3. We set N = 1, (a1, a2)= (0, 0), p= 1, 2, q = 2 and τ = i . By (4-2),
we see that α(1, 1) = 1, α(2, 1) = −1 and α(2, 3) = 1. By substituting (2-8) and
(2-9) into (4-7), we obtain

G̃2,4(i)=−
$ 4π2

45
+

2
63
π6
−

4
45
π5,

G̃4,4(i)=
1

525
$ 8
+

2
675

$ 4π4
−

2
135

π8
+

8
189

π7.

Set τ = ρ. Then, by substituting (2-12) and (2-13) into (4-7), we obtain

G̃2,4(ρ)=
$̃ 6

35
−

2
63
π6
+

8
√

3
135

π5, G̃4,4(ρ)= ρ

(
−

2
135

π8
+

16
√

3
567

π7
)
.

Example 4.4. We set N = 2, (a1, a2) = (1, 1), p = 1, 2, q = 2 and τ = i . By
substituting (2-14) and (2-15) into (4-7), we obtain

G̃2,4(i; (1, 1)mod 2)=
$ 4π2

576
−
π5

720
,

G̃4,4(i; (1, 1)mod 2)=
$ 8

8960
−
$ 4π4

17280
+

π7

6048
.

Remark 4.5. Pasles and Pribitkin [2001] studied two-variable Lipschitz summa-
tion formulas. At present, it is unclear whether or not the results stated above can
be obtained from their formula.
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