Pacific

Journal of

Mathematics

\boldsymbol{R}-GROUPS AND PARAMETERS

Dubravka Ban and David Goldberg

R-GROUPS AND PARAMETERS

Dubravka Ban and David Goldberg

Abstract

Let G be a p-adic group, $\mathrm{SO}_{2 n+1}, \mathrm{Sp}_{2 n}, O_{2 n}$ or U_{n}. Let π be an irreducible discrete series representation of a Levi subgroup of G. We prove the conjecture that the Knapp-Stein R-group of π and the Arthur R-group of π are isomorphic. Several instances of the conjecture were established earlier: for archimedean groups by Shelstad; for principal series representations by Keys; for $G=\mathbf{S O}_{2 n+1}$ by Ban and Zhang; and for $G=\mathbf{S O}_{n}$ or $\mathbf{S p}_{2 n}$ in the case when π is supercuspidal, under an assumption on the parameter, by Goldberg.

1. Introduction

Central to representation theory of reductive groups over local fields is the study of parabolically induced representations. In order to classify the tempered spectrum of such a group, one must understand the structure of parabolically induced from discrete series representations, in terms of components, multiplicities, and whether or not components are elliptic. The Knapp-Stein R-group gives an explicit combinatorial method for conducting this study. On the other hand, the local Langlands conjecture predicts the parametrization of such nondiscrete tempered representations, in L-packets, by admissible homomorphisms of the Weil-Deligne group which factor through a Levi component of the Langlands dual group. Arthur [1989] gave a conjectural description of the Knapp-Stein R-group in terms of the parameter. This conjecture generalizes results of Shelstad [1982] for archimedean groups, as well as those of Keys [1987] in the case of unitary principal series of certain p-adic groups. In [Ban and Zhang 2005] this conjecture was established for odd special orthogonal groups. In [Goldberg 2011] the conjecture was established for induced from supercuspidal representations of split special orthogonal or symplectic groups, under an assumption on the parameter. In the current work, we complete the conjecture for the full tempered spectrum of all these groups.

[^0]Let F be a nonarchimedean local field of characteristic zero. We denote by \boldsymbol{G} a connected reductive quasi-split algebraic group defined over F. We let $G=\boldsymbol{G}(F)$, and use similar notation for other groups defined over F. Fix a maximal torus \boldsymbol{T} of \boldsymbol{G}, and a Borel subgroup $\boldsymbol{B}=\boldsymbol{T} \boldsymbol{U}$ containing \boldsymbol{T}. We let $\mathscr{E}(G)$ be the equivalence classes of irreducible admissible representations of $G, \mathscr{E}_{t}(G)$ the tempered classes, $\mathscr{E}_{2}(G)$ the discrete series, and ${ }^{\circ} \mathscr{E}(G)$ the irreducible unitary supercuspidal classes. We make no distinction between a representation π and its equivalence class.

Let $\boldsymbol{P}=\boldsymbol{M} \boldsymbol{N}$ be a standard, with respect to \boldsymbol{B}, parabolic subgroup of \boldsymbol{G}. Let $\boldsymbol{A}=\boldsymbol{A}_{\boldsymbol{M}}$ be the split component of \boldsymbol{M}, and let $W=W(\boldsymbol{G}, \boldsymbol{A})=N_{\boldsymbol{G}}(\boldsymbol{A}) / \boldsymbol{M}$ be the Weyl group for this situation. For $\sigma \in \mathscr{E}(M)$ we let $\operatorname{Ind}_{P}^{G}(\sigma)$ be the representation unitarily induced from $\sigma \otimes \mathbf{1}_{N}$. Thus, if V is the space of σ, we let
$V(\sigma)=\left\{f \in C^{\infty}(G, V) \mid f(m n g)=\delta_{P}(m)^{1 / 2} f(g)\right.$ for all $\left.m \in M, n \in N, g \in G\right\}$,
with δ_{P} the modulus character of P. The action of G is by the right regular representation, so $\left(\operatorname{Ind}_{P}^{G}(\sigma)(x) f\right)(g)=f(g x)$. Then any $\pi \in \mathscr{C}_{t}(G)$ is an irreducible component of $\operatorname{Ind}_{P}^{G}(\sigma)$ for some choice of M and $\sigma \in \mathscr{E} \mathscr{E}_{2}(M)$. In order to determine the component structure of $\operatorname{Ind}_{P}^{G}(\sigma)$, Knapp and Stein, in the archimedean case, and Harish-Chandra in the p-adic case, developed the theory of singular integral intertwining operators, leading to the theory of R-groups, due to Knapp and Stein [1971] in the archimedean case and Silberger [1978; 1979] in the p-adic case. We describe this briefly and refer the reader to the introduction of [Goldberg 1994] for more details. The poles of the intertwining operators give rise to the zeros of Plancherel measures. Let $\Phi(\boldsymbol{P}, \boldsymbol{A})$ be the reduced roots of \boldsymbol{A} in \boldsymbol{P}. For $\alpha \in \Phi(\boldsymbol{P}, \boldsymbol{A})$ and $\sigma \in \mathscr{E}_{2}(M)$ we let $\mu_{\alpha}(\sigma)$ be the rank one Plancherel measure associated to σ and α. We let $\Delta^{\prime}=\left\{\alpha \in \Phi(\boldsymbol{P}, \boldsymbol{A}) \mid \mu_{\alpha}(\sigma)=0\right\}$. For $w \in W$ and $\sigma \in \mathscr{E}_{2}(M)$ we let $w \sigma(m)=\sigma\left(w^{-1} m \sigma\right)$. (Note, we make no distinction between $w \in W$ and its representative in $N_{G}(A)$.) We let

$$
W(\sigma)=\{w \in W \mid w \sigma \simeq \sigma\},
$$

and let W^{\prime} be the subgroup of $W(\sigma)$ generated by those w_{α} with $\alpha \in \Delta^{\prime}$. We let $R(\sigma)=\left\{w \in W(\sigma) \mid w \Delta^{\prime}=\Delta^{\prime}\right\}=\left\{w \in W(\sigma) \mid w \alpha>0\right.$ for all $\left.\alpha \in \Delta^{\prime}\right\}$. Let $\mathscr{C}(\sigma)=\operatorname{End}_{G}\left(\operatorname{Ind}_{P}^{G}(\sigma)\right)$.

Theorem 1 [Knapp and Stein 1971; Silberger 1978; 1979]. For any $\sigma \in \mathscr{E}_{2}(M)$, we have $W(\sigma)=R(\sigma) \ltimes W^{\prime}$, and $\mathscr{G}(\sigma) \simeq \mathbb{C}[R(\sigma)]_{\eta}$, the group algebra of $R(\sigma)$ twisted by a certain 2-cocycle η.

Thus $R(\sigma)$, along with η, determines how many inequivalent components appear in $\operatorname{Ind}_{P}^{G}(\sigma)$ and the multiplicity with which each one appears. Furthermore Arthur shows $\mathbb{C}[R(\sigma)]_{\eta}$ also determines whether or not components of $\operatorname{Ind}_{P}^{G}(\sigma)$ are elliptic (and hence whether or not they contribute to the Plancherel formula) [Arthur 1993].

Arthur [1989] conjectured a construction of $R(\sigma)$ in terms of the local Langlands conjecture. Let W_{F} be the Weil group of F and $W_{F}^{\prime}=W_{F} \times \mathrm{SL}_{2}(\mathbb{C})$ the WeilDeligne group. Suppose $\psi: W_{F}^{\prime} \rightarrow{ }^{L} M$ parametrizes the L-packet, $\Pi_{\psi}(M)$, of M containing σ. Here ${ }^{L} M=\hat{M} \rtimes W_{F}$ is the Langlands L-group, and \hat{M} is the complex group whose root datum is dual to that of \boldsymbol{M}. Then

$$
\psi: W_{F}^{\prime} \rightarrow{ }^{L} M \hookrightarrow{ }^{L} G
$$

must be a parameter for an L-packet $\Pi_{\psi}(G)$ of G. The expectation is that $\Pi_{\psi}(G)$ consists of all irreducible components of $\operatorname{Ind}_{P}^{G}\left(\sigma^{\prime}\right)$ for all $\sigma^{\prime} \in \Pi_{\psi}(M)$. We let $S_{\psi}=Z_{\hat{G}}(\operatorname{Im} \psi)$, and take S_{ψ}° to be the connected component of the identity. Let T_{ψ} be a maximal torus in S_{ψ}°. Set $W_{\psi}=W\left(S_{\psi}, T_{\psi}\right)$, and $W_{\psi}^{\circ}=W\left(S_{\psi}^{\circ}, T_{\psi}\right)$. Then $R_{\psi}=W_{\psi} / W_{\psi}^{\circ}$ is called the R-group of the packet $\Pi_{\psi}(G)$. By duality we can identify W_{ψ} with a subgroup of W. With this identification, we let $W_{\psi, \sigma}=$ $W_{\psi} \cap W(\sigma)$ and $W_{\psi, \sigma}^{\circ}=W_{\psi}^{\circ} \cap W(\sigma)$. We then set

$$
R_{\psi, \sigma}=W_{\psi, \sigma} / W_{\psi, \sigma}^{\circ} .
$$

We call $R_{\psi, \sigma}$ the Arthur R-group attached to ψ and σ.
Conjecture 2. For any $\sigma \in \mathscr{E}_{2}(M)$, we have $R(\sigma) \simeq R_{\psi, \sigma}$.
In [Ban and Zhang 2005], the first named author and Zhang proved this conjecture in the case $\boldsymbol{G}=\mathrm{SO}_{2 n+1}$. In [Goldberg 2011] the second named author confirmed the conjecture when σ is supercuspidal, and $\boldsymbol{G}=\mathrm{SO}_{n}$ or $\mathrm{Sp}_{2 n}$, with a mild assumption on the parameter ψ. Here, we complete the proof of the conjecture for $\mathrm{Sp}_{2 n}$, or O_{n}, under assumptions given in Section 2.3.

This work is based on the classification of discrete series for classical p-adic groups of Mœglin and Tadić [2002], and on the results of Mœglin [2002; 2007b]. Subsequent to our submission, Arthur's unfinished book has become available in preprint form [Arthur 2011]. In this long awaited and impressive work, he uses the trace formula to classify the automorphic representations of special orthogonal and symplectic groups in terms of those of GL(n). An important ingredient in this work is a formulation of the classification at the local places. The results for irreducible tempered representations are obtained from the classification of discrete series using R-groups. Our result on isomorphism of R-groups and their dual version for $\mathrm{SO}(2 n+1, F)$ and $\operatorname{Sp}(2 n, F)$ (see Theorem 7) also appear in Arthur's work [2011, page 346]. Arthur's proof differs significantly from the one we use here. We work with a rather concrete description of parameters based on Jordan blocks and L-functions, while Arthur works in the general context of his theory.

We now describe the contents of the paper in more detail. In Section 2 we introduce our notation and discuss the classification of $\mathscr{E}_{2}(M)$ for our groups, due to Mœglin and Tadić, as well as preliminaries on Knapp-Stein and Arthur R-groups.

In Section 3 we consider the parameters ψ and compute their centralizers. In Section 4 we turn to the case of $\boldsymbol{G}=O_{2 n}$. Here we show the Arthur R-group agrees with the generalization of the Knapp-Stein R-group as discussed in [Goldberg and Herb 1997]. In Section 5 we complete the proof of the theorem for the induced from discrete series representations of $\mathrm{Sp}_{2 n}, \mathrm{SO}_{2 n+1}$, or $O_{2 n}$.

In Section 6, we study R-groups for unitary groups. These groups are interesting for us because they are not split and the action of the Weil group on the dual group is nontrivial. In addition, the classification of discrete series and description of L-parameters is completed [Mœglin 2007b].

The techniques used here can be used for other groups. In particular we should be able to carry out this process for similitude groups and G_{2}. Furthermore, the techniques of computing the Arthur R-groups will apply to GSpin groups, as well, and may shed light on the Knapp-Stein R-groups in this case. We leave all of this for future work.

2. Preliminaries

2.1. Notation. Let F be a nonarchimedean local field of characteristic zero. Let $G_{n}, n \in \mathbb{Z}^{+}$, be $\operatorname{Sp}(2 n, F), \mathrm{SO}(2 n+1, F)$ or $\operatorname{SO}(2 n, F)$. We define G_{0} to be the trivial group. For $G=G_{n}$ or $G=\mathrm{GL}(n, F)$, fix the minimal parabolic subgroup consisting of all upper triangular matrices in G and the maximal torus consisting of all diagonal matrices in G. If δ_{1}, δ_{2} are smooth representations of $\mathrm{GL}(m, F)$, $\mathrm{GL}(n, F)$, respectively, we define

$$
\delta_{1} \times \delta_{2}=\operatorname{Ind}_{P}^{G}\left(\delta_{1} \otimes \delta_{2}\right)
$$

where $G=\mathrm{GL}(m+n, F)$ and $P=M U$ is the standard parabolic subgroup of G with Levi factor $M \cong \mathrm{GL}(m, F) \times \mathrm{GL}(n, F)$. Similarly, if δ is a smooth representation of $\mathrm{GL}(m, F)$ and σ is a smooth representation of G_{n}, we define

$$
\delta \rtimes \sigma=\operatorname{Ind}_{P}^{G_{m+n}}(\delta \otimes \sigma)
$$

where $P=M U$ is the standard parabolic subgroup of G_{m+n} with Levi factor $M \cong$ $\mathrm{GL}(m, F) \times G_{n}$. We denote by $\mathscr{E}_{2}(G)$ the set of equivalence classes of irreducible square integrable representations of G and by ${ }^{0} \mathscr{E}(G)$ the set of equivalence classes of irreducible unitary supercuspidal representations of G.

We say that a homomorphism $h: X \rightarrow \operatorname{GL}(d, \mathbb{C})$ is symplectic (respectively, orthogonal) if h fixes an alternating form (respectively, a symmetric form) on $\mathrm{GL}(d, \mathbb{C})$. We denote by S_{a} the standard a-dimensional irreducible algebraic representation of $\operatorname{SL}(2, \mathbb{C})$. Then

$$
S_{a} \text { is } \begin{cases}\text { orthogonal } & \text { for } a \text { odd } \tag{1}\\ \text { symplectic } & \text { for } a \text { even. }\end{cases}
$$

Let ρ be an irreducible supercuspidal unitary representation of $\mathrm{GL}(d, F)$. According to the local Langlands correspondence for GL_{d} [Harris and Taylor 2001; Henniart 2000], attached to ρ is an L-parameter $\varphi: W_{F} \rightarrow \operatorname{GL}(d, \mathbb{C})$. Suppose $\rho \cong \tilde{\rho}$. Then $\varphi \cong \tilde{\varphi}$ and one of the Artin L-functions $L\left(s, \operatorname{Sym}^{2} \varphi\right)$ or $L\left(s, \bigwedge^{2} \varphi\right)$ has a pole. The L-function $L\left(s, \operatorname{Sym}^{2} \varphi\right)$ has a pole if and only if φ is orthogonal. The L-function $L\left(s, \bigwedge^{2} \varphi\right)$ has a pole if and only if φ is symplectic. From [Henniart 2010] we know

$$
\begin{equation*}
L\left(s, \bigwedge^{2} \varphi\right)=L\left(s, \rho, \bigwedge^{2}\right), \text { and } L\left(s, \operatorname{Sym}^{2} \varphi\right)=\mathrm{L}\left(\mathrm{~s}, \rho, \operatorname{Sym}^{2}\right) \tag{2}
\end{equation*}
$$

where $L\left(s, \rho, \bigwedge^{2}\right)$ and $L\left(s, \rho, \operatorname{Sym}^{2}\right)$ are the Langlands L-functions as defined in [Shahidi 1981].

Let ρ be an irreducible supercuspidal unitary representation of $\operatorname{GL}(d, F)$ and $a \in \mathbb{Z}^{+}$. We define $\delta(\rho, a)$ to be the unique irreducible subrepresentation of

$$
\rho\left\|^{(a-1) / 2} \times \rho\right\|^{(a-3) / 2} \times \cdots \times \rho \|^{(-(a-1)) / 2}
$$

see [Zelevinsky 1980].
2.2. Jordan blocks. We now review the definition of Jordan blocks from [Mœglin and Tadić 2002]. Let G be $\operatorname{Sp}(2 n, F), \operatorname{SO}(2 n+1, F)$ or $O(2 n, F)$. For $d \in \mathbb{N}$, let r_{d} denote the standard representation of $\operatorname{GL}(d, \mathbb{C})$. Define

$$
R_{d}= \begin{cases}\bigwedge^{2} r_{d} & \text { for } G=\operatorname{Sp}(2 n, F), O(2 n, F) \\ \operatorname{Sym}^{2} r_{d} & \text { for } G=\operatorname{SO}(2 n+1, F)\end{cases}
$$

Let σ be an irreducible discrete series representation of G_{n}. Denote by $\operatorname{Jord}(\sigma)$ the set of pairs (ρ, a), where $\rho \in{ }_{\mathscr{E}}\left(\operatorname{GL}\left(d_{\rho}, F\right)\right), \rho \cong \tilde{\rho}$, and $a \in \mathbb{Z}^{+}$, such that (J-1) a is even if $L\left(s, \rho, R_{d_{\rho}}\right)$ has a pole at $s=0$ and odd otherwise,
(J-2) $\delta(\rho, a) \rtimes \sigma$ is irreducible.
For $\rho \in{ }^{0} \mathscr{E}\left(\operatorname{GL}\left(d_{\rho}, F\right)\right), \rho \cong \tilde{\rho}$, define

$$
\operatorname{Jord}_{\rho}(\sigma)=\{a \mid(\rho, a) \in \operatorname{Jord}(\sigma)\}
$$

Let \hat{G} denote the complex dual group of G. Then $\hat{G}=\mathrm{SO}(2 n+1, \mathbb{C})$ for $G=\operatorname{Sp}(2 n, F), \hat{G}=\operatorname{Sp}(2 n, \mathbb{C})$ for $G=\operatorname{SO}(2 n+1, F)$ and $\hat{G}=O(2 n, \mathbb{C})$ for $G=O(2 n, F)$.

Lemma 3. Let σ be an irreducible discrete series representation of G_{n}. Let ρ be an irreducible supercuspidal self-dual representation of $\operatorname{GL}\left(d_{\rho}, F\right)$ and $a \in \mathbb{Z}^{+}$. Then $(\rho, a) \in \operatorname{Jord}(\sigma)$ if and only if the following conditions hold:
$\left(\mathrm{J}-1^{\prime}\right) \rho \otimes S_{a}$ is of the same type as \hat{G},
$(\mathrm{J}-2) \quad \delta(\rho, a) \rtimes \sigma$ is irreducible.

Proof. We will prove that (J-1) $\Leftrightarrow\left(\mathrm{J}-1^{\prime}\right)$. We know from [Shahidi 1990] that one and only one of the two L-functions $L\left(s, \rho, \bigwedge^{2}\right)$ and $L\left(s, \rho, \operatorname{Sym}^{2}\right)$ has a pole at $s=0$. Suppose $G=\operatorname{Sp}(2 n, F)$ or $O(2 n, F)$. We consider $L\left(s, \rho, \Lambda^{2}\right)$. It has a pole at $s=0$ if and only if the parameter $\rho: W_{F} \rightarrow \mathrm{GL}\left(d_{\rho}, \mathbb{C}\right)$ is symplectic. According to (1), this is equivalent to $\rho \otimes S_{a}$ being orthogonal for a even. Therefore, for $(\rho, a) \in \operatorname{Jord}(\sigma), a$ is even if and only if $\rho \otimes S_{a}$ is orthogonal. For $G=$ $\mathrm{SO}(2 n+1, F)$, the arguments are similar.
2.3. Assumptions. In this paper, we use the classification of discrete series for classical p-adic groups of Mœglin and Tadić [Mœglin and Tadić 2002], so we have to make the same assumptions as there. Let σ be an irreducible supercuspidal representation of G_{n} and let ρ be an irreducible self-dual supercuspidal representation of a general linear group. We make the following assumption:
(BA) $\nu^{ \pm(a+1) / 2} \rho \rtimes \sigma$ reduces for

$$
a= \begin{cases}\max \operatorname{Jord}_{\rho}(\sigma) & \text { if } \operatorname{Jord}_{\rho}(\sigma) \neq \varnothing \\ 0 & \text { if } L\left(s, \rho, R_{d_{\rho}}\right) \text { has a pole at } s=0 \text { and } \operatorname{Jord}_{\rho}(\sigma)=\varnothing \\ -1 & \text { otherwise }\end{cases}
$$

Moreover, there are no other reducibility points in \mathbb{R}.
In addition, we assume that the L-parameter of σ is given by

$$
\begin{equation*}
\varphi_{\sigma}=\bigoplus_{(\rho, a) \in \operatorname{Jord}(\sigma)} \varphi_{\rho} \otimes S_{a} \tag{3}
\end{equation*}
$$

Here, φ_{ρ} denotes the L-parameter of ρ given in [Harris and Taylor 2001; Henniart 2000].

Moglin [2007a], assuming certain Fundamental Lemmas, proved the validity of the assumptions for $\mathrm{SO}(2 n+1, F)$ and showed how Arthur's results imply the Langlands classification of discrete series for $\mathrm{SO}(2 n+1, F)$.
2.4. The Arthur \boldsymbol{R}-group. Let ${ }^{L} G=\hat{G} \rtimes W_{F}$ be the L-group of G, and suppose ${ }^{L} M$ is the L-group of a Levi subgroup, M, of G. Then ${ }^{L} M$ is a Levi subgroup of ${ }^{L} G$ (see [Borel 1979, Section 3] for the definition of parabolic subgroups and Levi subgroups of ${ }^{L} G$). Suppose ψ is an A-parameter of G which factors through ${ }^{L} M$,

$$
\psi: W_{F} \times \operatorname{SL}(2, \mathbb{C}) \times \operatorname{SL}(2, \mathbb{C}) \longrightarrow{ }^{L_{M}} \subset{ }^{L} G .
$$

Then we can regard ψ as an A-parameter of M. Suppose, in addition, the image of ψ is not contained in a smaller Levi subgroup (i.e., ψ is an elliptic parameter of M).

Let S_{ψ} be the centralizer in \hat{G} of the image of ψ and S_{ψ}^{0} its identity component. If T_{ψ} is a maximal torus of S_{ψ}^{0}, define

$$
W_{\psi}=N_{S_{\psi}}\left(T_{\psi}\right) / Z_{S_{\psi}}\left(T_{\psi}\right), \quad W_{\psi}^{0}=N_{S_{\psi}^{0}}\left(T_{\psi}\right) / Z_{S_{\psi}^{0}}\left(T_{\psi}\right), \quad R_{\psi}=W_{\psi} / W_{\psi}^{0}
$$

Lemma 2.3 of [Ban and Zhang 2005] and the discussion on page 326 of [Ban and Zhang 2005] imply that W_{ψ} can be identified with a subgroup of $W(G, A)$.

Let σ be an irreducible unitary representation of M. Assume σ belongs to the A-packet $\Pi_{\psi}(M)$. If $W(\sigma)=\{w \in W(G, A) \mid w \sigma \cong \sigma\}$, we let

$$
W_{\psi, \sigma}=W_{\psi} \cap W(\sigma), \quad W_{\psi, \sigma}^{0}=W_{\psi}^{0} \cap W(\sigma)
$$

and take $R_{\psi, \sigma}=W_{\psi, \sigma} / W_{\psi, \sigma}^{0}$ as the Arthur R-group.

3. Centralizers

Let G be $\operatorname{Sp}(2 n, F), \mathrm{SO}(2 n+1, F)$ or $O(2 n, F)$. Let \hat{G} be the complex dual group of G. Let

$$
\psi: W_{F} \times \mathrm{SL}(2, \mathbb{C}) \times \mathrm{SL}(2, \mathbb{C}) \longrightarrow \hat{G} \subset \mathrm{GL}(N, \mathbb{C})
$$

be an A-parameter. We consider ψ as a representation. Then ψ is a direct sum of irreducible subrepresentations. Let ψ_{0} be an irreducible subrepresentation. For $m \in \mathbb{N}$, set

$$
m \psi_{0}=\underbrace{\psi_{0} \oplus \cdots \oplus \psi_{0}}_{m \text { times }}
$$

If $\psi_{0} \not \not \tilde{\psi}_{0}$, then it can be shown using the bilinear form on \hat{G} that $\tilde{\psi}_{0}$ is also a subrepresentation of ψ. Therefore, ψ decomposes into a sum of irreducible subrepresentations

$$
\psi=\left(m_{1} \psi_{1} \oplus m_{1} \tilde{\psi}_{1}\right) \oplus \cdots \oplus\left(m_{k} \psi_{k} \oplus m_{k} \tilde{\psi}_{k}\right) \oplus m_{k+1} \psi_{k+1} \oplus \cdots \oplus m_{l} \psi_{l}
$$

where $\psi_{i} \nexists \psi_{j}, \psi_{i} \nsubseteq \tilde{\psi}_{j}$ for $i \neq j$. In addition, $\psi_{i} \nexists \tilde{\psi}_{i}$ for $i=1, \ldots, k$ and $\psi_{i} \cong \tilde{\psi}_{i}$ for $i=k+1, \ldots, l$. If $\psi_{i} \cong \tilde{\psi}_{i}$, then ψ_{i} factors through a symplectic or orthogonal group. In this case, if ψ_{i} is not of the same type as \hat{G}, then m_{i} must be even. This follows again using the bilinear form on \hat{G}.

We want to compute S_{ψ} and W_{ψ}. First, we consider the case $\psi=m \psi_{0}$ or $\psi=m \psi_{0} \oplus m \tilde{\psi}_{0}$, where ψ_{0} is irreducible. The following lemma is an extension of Proposition 6.5 of [Gross and Prasad 1992]. A part of the proof was communicated to us by Joe Hundley.

Lemma 4. Let G be $\operatorname{Sp}(2 n, F), \mathrm{SO}(2 n+1, F)$ or $O(2 n, F)$. Let

$$
\psi_{0}: W_{F} \times \mathrm{SL}(2, \mathbb{C}) \times \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{GL}\left(d_{0}, \mathbb{C}\right)
$$

be an irreducible parameter.
(i) Suppose $\psi_{0} \nexists \tilde{\psi}_{0}$ and $\psi=m \psi_{0} \oplus m \tilde{\psi}_{0}$. Then $S_{\psi} \cong \operatorname{GL}(m, \mathbb{C})$ and $R_{\psi}=1$.
(ii) Suppose $\psi_{0} \cong \tilde{\psi}_{0}$ and $\psi=m \psi_{0}$. Suppose ψ_{0} is of the same type as \hat{G}. Then

$$
R_{\psi} \cong \begin{cases}\mathbb{Z}_{2} & \text { for } m \text { even } \\ 1 & \text { for } m \text { odd }\end{cases}
$$

(iii) Suppose $\psi_{0} \cong \tilde{\psi}_{0}$ and $\psi=m \psi_{0}$. Suppose ψ_{0} is not of the same type as \hat{G}. Then m is even, $S_{\psi} \cong \operatorname{Sp}(m, \mathbb{C})$ and $R_{\psi}=1$.

Proof. (i) The proof of the statement is the same as in [Gross and Prasad 1992].
(ii) and (iii) Suppose $G=\operatorname{Sp}(2 n, F)$ or $\operatorname{SO}(2 n+1, F)$. Let V and V_{0} denote the spaces of the representations ψ and ψ_{0}, respectively. Denote by \langle,$\rangle the \psi$-invariant bilinear form on V and by \langle,\rangle_{0} the ψ_{0}-invariant bilinear form on V_{0}. There exists an isomorphism $V \rightarrow V_{0} \oplus \cdots \oplus V_{0}$. Equivalently, $V \cong W \otimes V_{0}$, where W is a finite dimensional vector space with trivial $W_{F} \times \operatorname{SL}(2, \mathbb{C}) \times \operatorname{SL}(2, \mathbb{C})$-action. The space W can be identified with $\operatorname{Hom}_{W_{F} \times \operatorname{SL}(2, \mathbb{C}) \times \operatorname{SL}(2, \mathbb{C})}\left(V_{0}, V\right)$. Then the map $W \otimes V_{0} \rightarrow V$ is

$$
l \otimes v \mapsto l(v), \quad l \in \operatorname{Hom}_{W_{F} \times \operatorname{SL}(2, \mathbb{C}) \times \operatorname{SL}(2, \mathbb{C})}\left(V_{0}, V\right), v \in V_{0} .
$$

We claim there exists a nondegenerate bilinear form \langle,\rangle_{W} on W such that $\langle\rangle=$, $\langle,\rangle_{W} \otimes\langle,\rangle_{0}$ in the sense that

$$
\left\langle l_{1} \otimes v_{1}, l_{2} \otimes v_{2}\right\rangle=\left\langle l_{1}, l_{2}\right\rangle_{W}\left\langle v_{1}, v_{2}\right\rangle_{0} \quad \text { for all } l_{1}, l_{2} \in W, v_{1}, v_{2} \in V_{0} .
$$

The key ingredient is Schur's lemma, or rather, the variant thereof stating that every invariant bilinear form on V_{0} is a scalar multiple of \langle,\rangle_{0}. Given any l_{1}, l_{2} in $\operatorname{Hom}_{W_{F} \times \operatorname{SL}(2, \mathbb{C}) \times \operatorname{SL}(2, \mathbb{C})}\left(V_{0}, V\right)$,

$$
\left\langle l_{1}\left(v_{1}\right), l_{2}\left(v_{2}\right)\right\rangle
$$

is an invariant bilinear form on V_{0} and therefore it is equal to $c\langle,\rangle_{0}$, for some constant c. We can define $\left\langle l_{1}, l_{2}\right\rangle_{W}$ by

$$
\left\langle l_{1}, l_{2}\right\rangle_{W}=\frac{\left\langle l_{1}\left(v_{1}\right), l_{2}\left(v_{2}\right)\right\rangle}{\left\langle v_{1}, v_{2}\right\rangle_{0}}
$$

because Schur's lemma tells us that the right-hand side is independent of v_{1}, v_{2} in V_{0}. This proves the claim. Observe that if ψ_{0} is not of the same type as ψ, the form \langle,\rangle_{W} is alternating, while in the case when ψ_{0} and ψ are of the same type, the form \langle,\rangle_{W} is symmetric.

Now, $\operatorname{Im} \psi=\left\{I_{m} \otimes g \mid g \in \operatorname{Im} \psi_{0}\right\}$ and

$$
\begin{aligned}
Z_{\mathrm{GL}(N, \mathbb{C})}(\operatorname{Im} \psi) & =\left\{g \otimes z \mid g \in \mathrm{GL}(m, \mathbb{C}), z \in\left\{\lambda I_{d_{0}} \mid \lambda \in \mathbb{C}^{\times}\right\}\right\} \\
& =\left\{g \otimes I_{d_{0}} \mid g \in \mathrm{GL}(m, \mathbb{C})\right\} .
\end{aligned}
$$

Let us denote by \mathscr{W} the group of matrices in $\operatorname{GL}(W)$ which preserve \langle,\rangle_{W}, i.e., $\mathscr{W}=\operatorname{Sp}(m, \mathbb{C})$ if \langle,\rangle_{W} is an alternating form and $\mathscr{W}=O(m, \mathbb{C})$ if \langle,\rangle_{W} is a symmetric form. Then

$$
S_{\psi}=Z_{\mathrm{GL}(N, \mathbb{C})}(\operatorname{Im} \psi) \cap \hat{G}=\left\{g \otimes I_{d_{0}} \mid g \in \mathscr{W}, \operatorname{det}\left(g \otimes I_{d_{0}}\right)=1\right\} .
$$

It follows that in case (iii) we have $S_{\psi} \cong \operatorname{Sp}(m, \mathbb{C}), S_{\psi}^{0}=S_{\psi}$ and $R_{\psi}=1$.
In case (ii), $\mathscr{W}=O(m, \mathbb{C})$. Since $\operatorname{det}\left(g \otimes I_{d_{0}}\right)=(\operatorname{det} g)^{d_{0}}$, it follows

$$
S_{\psi} \cong \begin{cases}O(m, \mathbb{C}), & d_{0} \text { even } \\ \mathrm{SO}(m, \mathbb{C}), & d_{0} \text { odd }\end{cases}
$$

In the case $G=\mathrm{SO}(2 n+1, F), \psi_{0}$ is symplectic and d_{0} is even. Then $S_{\psi} \cong O(m, \mathbb{C})$ and $S_{\psi}^{0} \cong \mathrm{SO}(m, \mathbb{C})$. If m is even, this implies $R_{\psi} \cong \mathbb{Z}_{2}$. For m odd, $W_{\psi}=W_{\psi}^{0}$ and $R_{\psi}=1$.

In the case $G=\operatorname{Sp}(2 n, F)$, we have $\hat{G}=\operatorname{SO}(2 n+1, \mathbb{C})$ and $m d_{0}=2 n+1$. It follows that m and d_{0} are both odd. Then $S_{\psi} \cong \mathrm{SO}(m, \mathbb{C}), S_{\psi}^{0}=S_{\psi}$ and $R_{\psi}=1$.

The case $G=O(2 n, F)$ is similar, but simpler, because there is no condition on determinant. It follows that $S_{\psi} \cong O(m, \mathbb{C})$. This implies $R_{\psi} \cong \mathbb{Z}_{2}$ for m even and $R_{\psi}=1$ for m odd.

Lemma 5. Let G be $\operatorname{Sp}(2 n, F), \mathrm{SO}(2 n+1, F)$ or $O(2 n, F)$. Let

$$
\psi: W_{F} \times \operatorname{SL}(2, \mathbb{C}) \times \operatorname{SL}(2, \mathbb{C}) \rightarrow \hat{G}
$$

be an A-parameter. We can write ψ in the form

$$
\begin{align*}
\psi \cong\left(\bigoplus_{i=1}^{p}\left(m_{i} \psi_{i} \oplus m_{i} \tilde{\psi}_{i}\right)\right) \oplus(& \left.\bigoplus_{i=p+1}^{q} 2 m_{i} \psi_{i}\right) \tag{4}\\
& \oplus\left(\bigoplus_{i=q+1}^{r}\left(2 m_{i}+1\right) \psi_{i}\right) \oplus\left(\bigoplus_{i=r+1}^{s} 2 m_{i} \psi_{i}\right),
\end{align*}
$$

where ψ_{i} is irreducible for $i \in\{1, \ldots, s\}$, and

$$
\begin{array}{cl}
\psi_{i} \nsubseteq \psi_{j}, \psi_{i} \nsubseteq \tilde{\psi}_{j} & \text { for } i, j \in\{1, \ldots, s\}, i \neq j, \\
\psi_{i} \nsubseteq \tilde{\psi}_{i} & \text { for } i \in\{1, \ldots, p\}, \\
\psi_{i} \cong \tilde{\psi}_{i} & \text { for } i \in\{p+1, \ldots, s\}, \\
\psi_{i} \text { not of the same type as } \hat{G} & \text { for } i \in\{p+1, \ldots, q\}, \\
\psi_{i} \text { of the same type as } \hat{G} & \text { for } i \in\{q+1, \ldots, s\} .
\end{array}
$$

Let $d=s-r$. Then

$$
R_{\psi} \cong \mathbb{Z}_{2}^{d} .
$$

Proof. Set $\Psi_{i}=m_{i} \psi_{i} \oplus m_{i} \tilde{\psi}_{i}$ for all $i \in\{1, \ldots, p\}$, and $\Psi_{i}=m_{i} \psi_{i}$ for all $i \in$ $\{p+1, \ldots, s\}$. Denote by Z_{i} the centralizer of the image of Ψ_{i} in the corresponding GL. Then

$$
Z_{\mathrm{GL}(N, C)}(\operatorname{Im} \psi)=Z_{1} \times \cdots \times Z_{s} \quad \text { and } \quad S_{\psi}=Z_{\mathrm{GL}(N, C)}(\operatorname{Im} \psi) \cap \hat{G} .
$$

Lemma 4 tells us the factors corresponding to $i \in\{1, \ldots, q\}$ do not contribute to R_{ψ}. In addition, we can see from the proof of Lemma 4 that these factors do not appear in determinant considerations. Therefore, we can consider only the factors corresponding to $i \in\{q+1, \ldots, s\}$. Let $\mathscr{\mathscr { L }}=Z_{q+1} \times \cdots \times Z_{s}$ and $\mathscr{\mathscr { L }}=\mathscr{L} \cap \hat{G}$. In the same way as in the proof of Lemma 4, we obtain

$$
\begin{align*}
& \mathscr{S} \cong\left\{\left(g_{q+1}, \ldots, g_{s}\right) \mid g_{i} \in O\left(2 m_{i}+1, \mathbb{C}\right), i \in\{q+1, \ldots, r\},\right. \tag{5}\\
& \left.g_{i} \in O\left(2 m_{i}, \mathbb{C}\right), i \in\{r+1, \ldots, s\}, \prod_{i=q+1}^{s}\left(\operatorname{det} g_{i}\right)^{\operatorname{dim} \psi_{i}}=1\right\},
\end{align*}
$$

for $G=\mathrm{SO}(2 n+1, F)$ or $\operatorname{Sp}(2 n, F)$. For $G=O(2 n, F)$, we omit the condition on determinant. If $G=\mathrm{SO}(2 n+1, F)$, then for $i \in\{q+1, \ldots, s\}, \psi_{i}$ is symplectic and $\operatorname{dim} \psi_{i}$ is even. Therefore, the product in (5) is always equal to 1 .

Now, for $G=\mathrm{SO}(2 n+1, F)$ and $G=O(2 n, F)$, we have

$$
\mathscr{S} \cong \prod_{i=q+1}^{r} O\left(2 m_{i}+1, \mathbb{C}\right) \times \prod_{i=r+1}^{s} O\left(2 m_{i}, \mathbb{C}\right) .
$$

It follows that $R_{\psi} \cong \prod_{i=q+1}^{r} 1 \times \prod_{i=r+1}^{s} \mathbb{Z}_{2} \cong \mathbb{Z}_{2}^{d}$.
It remains to consider $G=\operatorname{Sp}(2 n, F), \hat{G}=\operatorname{SO}(2 n+1, \mathbb{C})$. We have

$$
\sum_{i=1}^{q} 2 m_{i} \operatorname{dim} \psi_{i}+\sum_{i=q+1}^{r}\left(2 m_{i}+1\right) \operatorname{dim} \psi_{i}+\sum_{i=1}^{p} 2 m_{i} \operatorname{dim} \psi_{i}=2 n+1 .
$$

Since the total sum is odd, we must have $r>q$ and $\operatorname{dim} \psi_{i}$ odd, for some $i \in$ $\{q+1, \ldots, r\}$. Without loss of generality, we may assume $\operatorname{dim} \psi_{q+1}$ odd. Then

$$
\mathscr{S} \cong \mathrm{SO}\left(2 m_{q+1}+1, \mathbb{C}\right) \times \prod_{i=q+2}^{r} O\left(2 m_{i}+1, \mathbb{C}\right) \times \prod_{i=r+1}^{s} O\left(2 m_{i}, \mathbb{C}\right) .
$$

It follows $R_{\psi} \cong 1 \times \prod_{i=q+2}^{r} 1 \times \prod_{i=r+1}^{s} \mathbb{Z}_{2} \cong \mathbb{Z}_{2}^{d}$.

4. Even orthogonal groups

4.1. R-groups for nonconnected groups. In this section, we review some results of [Goldberg and Herb 1997]. Let G be a reductive F-group. Let G^{0} be the connected component of the identity in G. We assume that G / G^{0} is finite and abelian.

Let π be an irreducible unitary representation of G. We say that π is discrete series if the matrix coefficients of π are square integrable modulo the center of G.

We will consider the parabolic subgroups and the R-groups as defined in [Goldberg and Herb 1997]. Let $P^{0}=M^{0} U$ be a parabolic subgroup of G^{0}. Let A be the split component in the center of M^{0}. Define $M=C_{G}(A)$ and $P=M U$. Then P is called the cuspidal parabolic subgroup of G lying over P^{0}. The Lie algebra $\mathscr{L}(G)$ can be decomposed into root spaces with respect to the roots Φ of $\mathscr{L}(A)$,

$$
\mathscr{L}(G)=\mathscr{L}(M) \oplus \sum_{\alpha \in \Phi} \mathscr{L}(G)_{\alpha} .
$$

Let σ be an irreducible unitary representation of M. We denote by $r_{M^{0}, M}(\sigma)$ the restriction of σ to M^{0}. Then, by Lemma 2.21 of [Goldberg and Herb 1997], σ is discrete series if and only if any irreducible constituent of $r_{M^{0}, M}(\sigma)$ is discrete series. Now, suppose σ is discrete series. Let σ_{0} be an irreducible constituent of $r_{M^{0}, M}(\sigma)$. Then σ_{0} is discrete series and we have the Knapp-Stein R-group $R\left(\sigma_{0}\right)$ for $i_{G^{0}, M^{0}}\left(\sigma_{0}\right)$ [Knapp and Stein 1971; Silberger 1978]. We review the definition of $R\left(\sigma_{0}\right)$. Let $W\left(G^{0}, A\right)=N_{G^{0}}(A) / M^{0}$ and $W_{G^{0}}\left(\sigma_{0}\right)=\left\{w \in W_{G}(M) \mid w \sigma_{0} \cong \sigma_{0}\right\}$. For $w \in W_{G^{0}}\left(\sigma_{0}\right)$, we denote by $\mathscr{A}\left(w, \sigma_{0}\right)$ the normalized standard intertwining operator associated to w (see [Silberger 1979]). Define

$$
W_{G^{0}}^{0}\left(\sigma_{0}\right)=\left\{w \in W_{G^{0}}\left(\sigma_{0}\right) \mid \mathscr{A}\left(w, \sigma_{0}\right) \text { is a scalar }\right\} .
$$

Then $W_{G^{0}}^{0}\left(\sigma_{0}\right)=W\left(\Phi_{1}\right)$ is generated by reflections in a set Φ_{1} of reduced roots of (G, A). Let Φ^{+}be the positive system of reduced roots of (G, A) determined by P and let $\Phi_{1}^{+}=\Phi_{1} \cap \Phi^{+}$. Then

$$
R\left(\sigma_{0}\right)=\left\{w \in W_{G^{0}}\left(\sigma_{0}\right) \mid w \beta \in \Phi^{+} \text {for all } \beta \in \Phi_{1}^{+}\right\}
$$

and $W_{G^{0}}\left(\sigma_{0}\right)=R\left(\sigma_{0}\right) \ltimes W\left(\Phi_{1}\right)$.
For the definition of $R(\sigma)$, we follow [Goldberg and Herb 1997]. Define

$$
\begin{aligned}
N_{G}(\sigma) & =\left\{g \in N_{G}(M) \mid g \sigma \cong \sigma\right\}, \\
W_{G}(\sigma) & =N_{G}(\sigma) / M, \quad \text { and } \\
R(\sigma) & =\left\{w \in W_{G}(\sigma) \mid w \beta \in \Phi^{+} \text {for all } \beta \in \Phi_{1}^{+}\right\} .
\end{aligned}
$$

For $w \in W_{G}(\sigma)$, let $\mathscr{A}(w, \sigma)$ denote the intertwining operator on $i_{G, M}(\sigma)$ defined in [Goldberg and Herb 1997, page 135]. Then the $\mathscr{A}(w, \sigma), w \in R(\sigma)$, form a basis for the algebra of intertwining operators on $i_{G, M}(\sigma)$, by Theorem 5.16 of [Goldberg and Herb 1997]. In addition, $W_{G}(\sigma)=R(\sigma) \ltimes W\left(\Phi_{1}\right)$. For $w \in W_{G}(\sigma), \mathscr{A}(w, \sigma)$ is a scalar if and only if $w \in W\left(\Phi_{1}\right)$; see [Goldberg and Herb 1997, Lemma 5.20].
4.2. Even orthogonal groups. Let $G=O(2 n, F)$ and $G^{0}=\operatorname{SO}(2 n, F)$. Then $G=G^{0} \rtimes\{1, s\}$, where $s=\operatorname{diag}\left(I_{n-1},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), I_{n-1}\right)$ and it acts on G^{0} by conjugation.
(a) Let

$$
\begin{aligned}
M^{0} & =\left\{\operatorname{diag}\left(g_{1}, \ldots, g_{r}, h,{ }^{\tau} g_{r}^{-1}, \ldots,{ }^{\tau} g_{1}^{-1}\right) \mid g_{i} \in \operatorname{GL}\left(n_{i}, F\right), h \in \mathrm{SO}(2 m, F)\right\} \\
& \cong \operatorname{GL}\left(n_{1}, F\right) \times \cdots \times \operatorname{GL}\left(n_{r}, F\right) \times \mathrm{SO}(2 m, F)
\end{aligned}
$$

where $m>1$ and $n_{1}+\cdots+n_{r}+m=n$. Then M^{0} is a Levi subgroup of G^{0}. The split component of M^{0} is

$$
A=\left\{\operatorname{diag}\left(\lambda_{1} I_{n_{1}}, \ldots, \lambda_{r} I_{n_{r}}, I_{2 m}, \lambda_{r}^{-1} I_{n_{r}}, \ldots, \lambda_{1}^{-1} I_{n_{1}}\right) \mid \lambda_{i} \in F^{\times}\right\}
$$

Then $M=C_{G}(A)$ is equal to

$$
\begin{align*}
M & =\left\{\operatorname{diag}\left(g_{1}, \ldots, g_{r}, h,{ }^{\tau} g_{r}^{-1}, \ldots,{ }^{\tau} g_{1}^{-1}\right) \mid g_{i} \in \mathrm{GL}\left(n_{i}, F\right), h \in O(2 m, F)\right\} \tag{6}\\
& \cong \operatorname{GL}\left(n_{1}, F\right) \times \cdots \times \operatorname{GL}\left(n_{r}, F\right) \times O(2 m, F)
\end{align*}
$$

Let $\pi \in \mathscr{E}_{2}(M)$. Then $\pi \cong \rho_{1} \otimes \cdots \otimes \rho_{k} \otimes \sigma$, where $\rho_{i} \in \mathscr{E}_{2}\left(\operatorname{GL}\left(n_{i}, F\right)\right)$ and $\sigma \in \mathscr{E}_{2}(O(2 m, F))$. Let $\pi_{0} \cong \rho_{1} \otimes \cdots \otimes \rho_{k} \otimes \sigma_{0}$ be an irreducible component of $r_{M^{0}, M}(\pi)$. If $s \sigma_{0} \cong \sigma_{0}$, then $W_{G}(\pi)=W_{G^{0}}\left(\pi_{0}\right)$ and $R(\pi)=R\left(\pi_{0}\right)$. In this case, $r_{M^{0}, M}(\pi)=\pi_{0}$, by Lemma 4.1 of [Ban and Jantzen 2003], and $\rho_{i} \rtimes \sigma$ is reducible if and only if $\rho_{i} \rtimes \sigma_{0}$ is reducible, by Proposition 2.2 of [Goldberg 1995]. Then Theorem 6.5 of [Goldberg 1994] tells us that $R(\pi) \cong \mathbb{Z}_{2}^{d}$, where d is the number of inequivalent ρ_{i} with $\rho_{i} \rtimes \sigma$ reducible.

Now, consider the case $s \sigma_{0} \not \not \sigma_{0}$. It follows from Lemma 4.1 of [Ban and Jantzen 2003] that $\pi=i_{M, M^{0}}\left(\pi_{0}\right)$. Then $i_{G, M}(\pi)=i_{G, M^{0}}\left(\pi_{0}\right)$ and we know from Theorem 3.3 of [Goldberg 1995] that $R(\pi) \cong \mathbb{Z}_{2}^{d}$, where $d=d_{1}+d_{2}, d_{1}$ is the number of inequivalent ρ_{i} such that n_{i} is even and $\rho_{i} \rtimes \sigma$ is reducible, and d_{2} is the number of inequivalent ρ_{i} such that n_{i} is odd and $\rho_{i} \cong \tilde{\rho}_{i}$. Moreover, Corollary 3.4 of [Goldberg 1995] implies if n_{i} is odd and $\rho_{i} \cong \tilde{\rho}_{i}$, then $\rho_{i} \rtimes \sigma$ is reducible. Therefore, we see that $R(\pi) \cong \mathbb{Z}_{2}^{d}$, where d is the number of inequivalent ρ_{i} with $\rho_{i} \rtimes \sigma$ reducible.

In the case $m=1$, since

$$
\mathrm{SO}(2, F)=\left\{\left.\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) \right\rvert\, a \in F^{\times}\right\},
$$

we have

$$
\begin{aligned}
M^{0} & =\left\{\operatorname{diag}\left(g_{1}, \ldots, g_{r}, a, a^{-1},{ }^{\tau} g_{r}^{-1}, \ldots,{ }^{\tau} g_{1}^{-1}\right) \mid g_{i} \in \operatorname{GL}\left(n_{i}, F\right), a \in F^{\times}\right\} \\
& \cong \operatorname{GL}\left(n_{1}, F\right) \times \cdots \times \operatorname{GL}\left(n_{r}, F\right) \times \operatorname{GL}(1, F)
\end{aligned}
$$

and this case is described in (b).
(b) Let M^{0} be a Levi subgroup of G^{0} of the form

$$
M^{0}=\left\{\operatorname{diag}\left(g_{1}, \ldots, g_{r},{ }^{\tau} g_{r}^{-1}, \ldots,{ }^{\tau} g_{1}^{-1}\right) \mid g_{i} \in \operatorname{GL}\left(n_{i}, F\right)\right\}
$$

where $n_{1}+\cdots+n_{r}=n$. The split component of M^{0} is

$$
A=\left\{\operatorname{diag}\left(\lambda_{1} I_{n_{1}}, \ldots, \lambda_{r} I_{n_{r}}, \lambda_{r}^{-1} I_{n_{r}}, \ldots, \lambda_{1}^{-1} I_{n_{1}}\right) \mid \lambda_{i} \in F^{\times}\right\}
$$

and $M=C_{G}(A)=M^{0}$. Therefore,

$$
\begin{align*}
M & =\left\{\operatorname{diag}\left(g_{1}, \ldots, g_{r},{ }^{\tau} g_{r}^{-1}, \ldots,{ }^{\tau} g_{1}^{-1}\right) \mid g_{i} \in \operatorname{GL}\left(n_{i}, F\right)\right\} \tag{7}\\
& \cong \operatorname{GL}\left(n_{1}, F\right) \times \cdots \times \operatorname{GL}\left(n_{r}, F\right) .
\end{align*}
$$

Let $\pi \cong \rho_{1} \otimes \cdots \otimes \rho_{k} \otimes 1 \in \mathscr{E}_{2}(M)$, where 1 denotes the trivial representation of the trivial group. Since $M=M^{0}$, we can apply directly Theorem 3.3 of [Goldberg 1995]. It follows $R(\pi) \cong \mathbb{Z}_{2}^{d}$, where $d=d_{1}+d_{2}, d_{1}$ is the number of inequivalent ρ_{i} such that n_{i} is even and $\rho_{i} \rtimes 1$ is reducible, and d_{2} is the number of inequivalent ρ_{i} such that n_{i} is odd and $\rho_{i} \cong \tilde{\rho}_{i}$. As above, it follows from Corollary 3.4 of [Goldberg 1995] that if n_{i} is odd and $\rho_{i} \cong \tilde{\rho}_{i}$, then $\rho_{i} \rtimes \sigma$ is reducible. Again, we obtain $R(\pi) \cong \mathbb{Z}_{2}^{d}$, where d is the number of inequivalent ρ_{i} with $\rho_{i} \rtimes \sigma$ reducible.

We summarize the above considerations in the following lemma. Observe that the group $O(2, F)$ does not have square integrable representations. It also does not appear as a factor of cuspidal Levi subgroups of $O(2 n, F)$. We call a subgroup M defined by (6) or (7) a standard Levi subgroup of $O(2 n, F)$.
Lemma 6. Let $G=O(2 n, F)$ and consider a standard Levi subgroup of G of the form

$$
M \cong \mathrm{GL}\left(n_{1}, F\right) \times \cdots \times \mathrm{GL}\left(n_{r}, F\right) \times O(2 m, F),
$$

where $m \geq 0, m \neq 1, n_{1}+\cdots+n_{r}+m=n$. Let $\pi \cong \rho_{1} \otimes \cdots \otimes \rho_{k} \otimes \sigma \in \mathscr{E}_{2}(M)$. Then $R(\pi) \cong \mathbb{Z}_{2}^{d}$, where d is the number of inequivalent ρ_{i} with $\rho_{i} \rtimes \sigma$ reducible.

5. \boldsymbol{R}-groups of discrete series

Let G be $\operatorname{Sp}(2 n, F), \mathrm{SO}(2 n+1, F)$ or $O(2 n, F)$.
Theorem 7. Let π be an irreducible discrete series representation of a standard Levi subgroup M of G_{n}. Let φ be the L-parameter of π. Then $R_{\varphi, \pi} \cong R(\pi)$.

Proof. We can write π in the form

$$
\begin{equation*}
\pi \cong\left(\otimes^{m_{1}} \delta_{1}\right) \otimes \cdots \otimes\left(\otimes^{m_{r}} \delta_{r}\right) \otimes \sigma \tag{8}
\end{equation*}
$$

where σ is an irreducible discrete series representation of G_{m} and $\delta_{i}(i=1, \ldots, r)$ is an irreducible discrete series representation of $\operatorname{GL}\left(n_{i}, F\right)$ such that $\delta_{i} \not \equiv \delta_{j}$ for $i \neq j$. As explained in Section 4, if $G_{n}=O(2 n, F)$, then $m \neq 1$.

Let φ_{i} denote the L-parameter of δ_{i} and φ_{σ} the L-parameter of σ. Then the L-parameter φ of π is

$$
\varphi \cong\left(m_{1} \varphi_{1} \oplus m_{1} \tilde{\varphi}_{1}\right) \oplus \cdots \oplus\left(m_{r} \varphi_{r} \oplus m_{r} \tilde{\varphi}_{r}\right) \oplus \varphi_{\sigma} .
$$

Each φ_{i} is irreducible. The parameter φ_{σ} is of the form $\varphi_{\sigma}=\varphi_{1}^{\prime} \oplus \cdots \oplus \varphi_{s}^{\prime}$ where φ_{i}^{\prime} are irreducible, $\varphi_{i}^{\prime} \cong \tilde{\varphi}_{i}^{\prime}$ and $\varphi_{i}^{\prime} \not \equiv \varphi_{i}^{\prime}$ for $i \neq j$. In addition, φ_{i}^{\prime} factors through a group of the same type as \hat{G}_{n}. The sets $\left\{\varphi_{i} \mid i=1, \ldots, r\right\}$ and $\left\{\varphi_{i}^{\prime} \mid i=1, \ldots, s\right\}$ can have nonempty intersection. After rearranging the indices, we can write φ as

$$
\begin{aligned}
\varphi \cong\left(\bigoplus_{i=1}^{h}\left(m_{i} \varphi_{i} \oplus m_{i} \tilde{\varphi}_{i}\right)\right) \oplus\left(\bigoplus_{i=h+1}^{q} 2 m_{i} \varphi_{i}\right) & \oplus\left(\bigoplus_{i=q+1}^{k} 2 m_{i} \varphi_{i}\right) \\
& \oplus\left(\bigoplus_{i=k+1}^{r}\left(2 m_{i}+1\right) \varphi_{i}\right) \oplus\left(\bigoplus_{i=r+1}^{l} \varphi_{i}\right)
\end{aligned}
$$

where $\varphi_{\sigma}=\bigoplus_{i=k+1}^{l} \varphi_{i}$ and

$$
\begin{array}{cl}
\varphi_{i} \not \equiv \varphi_{j}, \varphi_{i} \nsupseteq \tilde{\varphi}_{j} & \text { for } i, j \in\{1, \ldots, l\}, i \neq j, \\
\varphi_{i} \not \tilde{\varphi}_{i} & \text { for } i \in\{1, \ldots, h\}, \\
\varphi_{i} \cong \tilde{\varphi}_{i} & \text { for } i \in\{h+1, \ldots, l\}, \\
\varphi_{i} \text { not of the same type as } \hat{G} & \text { for } i \in\{h+1, \ldots, q\}, \\
\varphi_{i} \text { of the same type as } \hat{G} & \text { for } i \in\{q+1, \ldots, k\} .
\end{array}
$$

Let $d=k-q$. Lemma 5 implies $R_{\varphi} \cong \mathbb{Z}_{2}^{d}$. In addition, $R_{\varphi, \pi} \cong R_{\varphi}$.
On the other hand, we know that $R(\pi) \cong \mathbb{Z}_{2}^{c}$, where c is cardinality of the set

$$
C=\left\{i \in\{1, \ldots, r\} \mid \delta_{i} \rtimes \sigma \text { is reducible }\right\} .
$$

This follows from [Goldberg 1994] for $G=\mathrm{SO}(2 n+1, F)$ and $G=\operatorname{Sp}(2 n, F)$, and from Lemma 6 for $G=O(2 n, F)$. We want to show $C=\{q+1, \ldots, k\}$. For any $i \in\{1, \ldots, l\}, \varphi_{i}$ is an irreducible representation of $W_{F} \times \operatorname{SL}(2, \mathbb{C})$ and therefore it can be written in the form $\varphi_{i}=\varphi_{i}^{\prime} \otimes S_{a_{i}}$, where φ_{i}^{\prime} is an irreducible representation of W_{F} and $S_{a_{i}}$ is the standard irreducible a_{i}-dimensional algebraic representation of $\operatorname{SL}(2, \mathbb{C})$. For $i \in\{1, \ldots, r\}$, this parameter corresponds to the representation $\delta\left(\rho_{i}, a_{i}\right)$. Therefore, the representation δ_{i} in (8) is $\delta_{i}=\delta\left(\rho_{i}, a_{i}\right)$. From (3), we have

$$
\varphi_{\sigma}=\bigoplus_{i=k+1}^{l} \varphi_{i}=\bigoplus_{(\rho, a) \in \operatorname{Jord}(\sigma)} \varphi_{\rho} \otimes S_{a}
$$

For $i \in\{h+1, \ldots, q\}, \varphi_{i}$ is not of the same type as \hat{G} and $\delta\left(\rho_{i}, a_{i}\right) \rtimes \sigma$ is irreducible. For $i \in\{q+1, \ldots, k\}, \varphi_{i}$ is of the same type as \hat{G}. Now, Lemma 3 tells us $\left(\rho_{i}, a_{i}\right) \in$ $\operatorname{Jord}(\sigma)$ if and only if $\delta\left(\rho_{i}, a_{i}\right) \rtimes \sigma$ is irreducible. Therefore, $\delta\left(\rho_{i}, a_{i}\right) \rtimes \sigma$ is irreducible for $i \in\{k+1, \ldots, r\}$ and $\delta\left(\rho_{i}, a_{i}\right) \rtimes \sigma$ is reducible for $i \in\{q+1, \ldots, k\}$. It follows $C=\{q+1, \ldots, k\}$ and $R(\pi) \cong \mathbb{Z}_{2}^{d} \cong R_{\varphi, \pi}$, finishing the proof.

6. Unitary groups

Let E / F be a quadratic extension of p-adic fields. Fix $\theta \in W_{F} \backslash W_{E}$. Let $G=U(n)$ be a unitary group defined with respect to $E / F, U(n) \subset \mathrm{GL}(n, E)$. Let

$$
J_{n}=\left(\begin{array}{llll}
& & & 1 \\
& & & \\
& & 1 & \\
& . & & \\
& & &
\end{array}\right)
$$

We have

$$
{ }^{L} G=\operatorname{GL}(n, \mathbb{C}) \rtimes W_{F},
$$

where W_{E} acts trivially on $\operatorname{GL}(n, \mathbb{C})$ and the action of $w \in W_{F} \backslash W_{E}$ on $g \in \operatorname{GL}(n, \mathbb{C})$ is given by $w(g)=J_{n}{ }^{t} g^{-1} J_{n}^{-1}$.
6.1. L-parameters for Levi subgroups. Suppose we have a Levi subgroup $M \cong$ $\operatorname{Res}_{E / F} \mathrm{GL}_{k} \times U(l)$. Then

$$
{ }^{L} M^{0}=\left\{\left.\left(\begin{array}{ll}
{ }^{g} & \\
& \\
&
\end{array}\right) \right\rvert\, g, h \in \operatorname{GL}(k, \mathbb{C}), m \in \mathrm{GL}(l, \mathbb{C})\right\} .
$$

Direct computation shows that the action of $w \in W_{F} \backslash W_{E}$ on ${ }^{L} M^{0}$ is given by

$$
w\left(\left(\begin{array}{lll}
{ }^{g} & & \\
& & \\
& & h
\end{array}\right)\right)=\left(\begin{array}{lll}
J_{k}^{t} h^{-1} J_{k}^{-1} & & \\
& & J_{l}{ }^{t} m^{-1} J_{l}^{-1} \\
\\
& & \\
& & J_{k}^{t} g^{-1} J_{k}^{-1}
\end{array}\right)
$$

Let π be a discrete series representation of $\operatorname{GL}(k, E)=\left(\operatorname{Res}_{E / F} \mathrm{GL}_{k}\right)(F)$ and τ a discrete series representation of $U(l)$. Let $\varphi_{\pi}: W_{E} \times \operatorname{SL}(2, \mathbb{C}) \rightarrow \operatorname{GL}(k, \mathbb{C})$ be the L-parameter of π and $\varphi_{\tau}: W_{F} \times \operatorname{SL}(2, \mathbb{C}) \rightarrow \operatorname{GL}(l, \mathbb{C}) \rtimes W_{F}$ the L-parameter of τ. Write

$$
\varphi_{\tau}(w, x)=\left(\varphi_{\tau}^{\prime}(w, x), w\right), \quad w \in W_{F}, x \in \operatorname{SL}(2, \mathbb{C})
$$

According to [Borel 1979, Sections 4, 5 and 8], there exists a unique (up to equivalence) L-parameter $\varphi: W_{F} \times \operatorname{SL}(2, \mathbb{C}) \rightarrow{ }^{L} M$ such that

$$
\begin{array}{ll}
\varphi((w, x))=\left(\varphi_{\pi}(w), *, *, w\right) & \text { for all } w \in W_{E}, x \in \operatorname{SL}(2, \mathbb{C}) \\
\varphi((w, x))=\left(*, \varphi_{\tau}^{\prime}(w, x), *, w\right) & \text { for all } w \in W_{F}, x \in \operatorname{SL}(2, \mathbb{C}) \tag{9}
\end{array}
$$

We will define a map $\varphi: W_{F} \times \mathrm{SL}(2, \mathbb{C}) \rightarrow{ }^{L} M$ satisfying (9) and show that φ is a homomorphism. Define

$$
\begin{align*}
\varphi((w, x))=\left(\varphi_{\pi}(w, x), \varphi_{\tau}^{\prime}(w, x),{ }^{t} \varphi_{\pi}\left(\theta w \theta^{-1}, x\right)^{-1},\right. & w) \tag{10}\\
& w \in W_{E}, x \in \operatorname{SL}(2, \mathbb{C})
\end{align*}
$$

and

$$
\varphi((\theta, 1))=\left(J_{k}^{-1}, \varphi_{\tau}^{\prime}(\theta, 1),{ }^{t} \varphi_{\pi}\left(\theta^{2}, 1\right)^{-1} J_{k}, \theta\right) .
$$

Note that

$$
\begin{aligned}
\varphi_{\tau}\left(\theta^{2}, 1\right) & =\left(\varphi_{\tau}^{\prime}(\theta, 1), \theta\right)\left(\varphi_{\tau}^{\prime}(\theta, 1), \theta\right) \\
& =\left(\varphi_{\tau}^{\prime}(\theta, 1), 1\right)\left(J_{l}{ }^{t} \varphi_{\tau}^{\prime}(\theta, 1)^{-1} J_{l}^{-1}, \theta^{2}\right) \\
& =\left(\varphi_{\tau}^{\prime}(\theta, 1) J_{l}{ }^{t} \varphi_{\tau}^{\prime}(\theta, 1)^{-1} J_{l}^{-1}, \theta^{2}\right) .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\varphi_{\tau}^{\prime}(\theta, 1) J_{l}{ }^{t} \varphi_{\tau}^{\prime}(\theta, 1)^{-1} J_{l}^{-1}=\varphi_{\tau}^{\prime}\left(\theta^{2}, 1\right) \tag{11}
\end{equation*}
$$

Similarly, for $w \in W_{E}, x \in \operatorname{SL}(2, \mathbb{C})$,

$$
\begin{aligned}
\varphi_{\tau}\left(\theta w \theta^{-1}, x\right) & =\varphi_{\tau}(\theta, 1) \varphi_{\tau}(w, x) \varphi_{\tau}(\theta, 1)^{-1} \\
& =\left(\varphi_{\tau}^{\prime}(\theta, 1), \theta\right)\left(\varphi_{\tau}^{\prime}(w, x), w\right)\left(1, \theta^{-1}\right)\left(\varphi_{\tau}^{\prime}(\theta, 1)^{-1}, 1\right) \\
& =\left(\varphi_{\tau}^{\prime}(\theta, 1), 1\right)\left(J_{l}{ }^{t} \varphi_{\tau}^{\prime}(w, x)^{-1} J_{l}^{-1}, \theta w \theta^{-1}\right)\left(\varphi_{\tau}^{\prime}(\theta, 1)^{-1}, 1\right) \\
& =\left(\varphi_{\tau}^{\prime}(\theta, 1) J_{l}{ }^{t} \varphi_{\tau}^{\prime}(w, x)^{-1} J_{l}^{-1} \varphi_{\tau}^{\prime}(\theta, 1)^{-1}, \theta w \theta^{-1}\right)
\end{aligned}
$$

and thus

$$
\begin{equation*}
\varphi_{\tau}^{\prime}(\theta, 1) J_{l}{ }_{l}^{t} \varphi_{\tau}^{\prime}(w, x)^{-1} J_{l}^{-1} \varphi_{\tau}^{\prime}(\theta, 1)^{-1}=\varphi_{\tau}^{\prime}\left(\theta w \theta^{-1}, x\right) \tag{12}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\varphi(\theta, & 1) \varphi(\theta, 1) \\
& =\left(J_{k}^{-1}, \varphi_{\tau}^{\prime}(\theta, 1),{ }^{t} \varphi_{\pi}\left(\theta^{2}, 1\right)^{-1} J_{k}, \theta\right)\left(J_{k}^{-1}, \varphi_{\tau}^{\prime}(\theta, 1),{ }^{t} \varphi_{\pi}\left(\theta^{2}, 1\right)^{-1} J_{k}, \theta\right) \\
& =\left(J_{k}^{-1}, \varphi_{\tau}^{\prime}(\theta, 1),{ }^{t} \varphi_{\pi}\left(\theta^{2}, 1\right)^{-1} J_{k}, 1\right)\left(J_{k} \varphi_{\pi}\left(\theta^{2}, 1\right), J_{l}{ }^{t} \varphi_{\tau}^{\prime}(\theta, 1)^{-1} J_{l}^{-1}, J_{k}^{-1}, \theta^{2}\right) \\
& =\left(\varphi_{\pi}\left(\theta^{2}, 1\right), \varphi_{\tau}^{\prime}\left(\theta^{2}, 1\right),{ }^{t} \varphi_{\pi}\left(\theta^{2}, 1\right)^{-1}, \theta^{2}\right)=\varphi\left(\theta^{2}, 1\right)
\end{aligned}
$$

using (11) and (10). Further, for $w \in W_{E}, x \in \operatorname{SL}(2, \mathbb{C})$, we have

$$
\begin{aligned}
\varphi(& \theta, 1) \varphi(w, x) \varphi(\theta, 1)^{-1} \\
= & \left(J_{k}^{-1}, \varphi_{\tau}^{\prime}(\theta, 1),{ }^{t} \varphi_{\pi}\left(\theta^{2}, 1\right)^{-1} J_{k}, \theta\right)\left(\varphi_{\pi}(w, x), \varphi_{\tau}^{\prime}(w, x),{ }^{t} \varphi_{\pi}\left(\theta w \theta^{-1}, x\right)^{-1}, w\right) \\
& \cdot\left(1,1,1, \theta^{-1}\right)\left(J_{k}, \varphi_{\tau}^{\prime}(\theta, 1)^{-1}, J_{k}^{-1 t} \varphi_{\pi}\left(\theta^{2}, 1\right), 1\right) \\
= & \left(J_{k}^{-1}, \varphi_{\tau}^{\prime}(\theta, 1),{ }^{t} \varphi_{\pi}\left(\theta^{2}, 1\right)^{-1} J_{k}, 1\right) \\
& \cdot\left(J_{k} \varphi_{\pi}\left(\theta w \theta^{-1}, x\right) J_{k}^{-1}, J_{l}^{t} \varphi_{\tau}^{\prime}(w, x)^{-1} J_{l}^{-1}, J_{k}{ }^{t} \varphi_{\pi}(w, x)^{-1} J_{k}^{-1}, \theta w \theta^{-1}\right) \\
& \cdot\left(J_{k}, \varphi_{\tau}^{\prime}(\theta, 1)^{-1}, J_{k}^{-1}{ }^{t} \varphi_{\pi}\left(\theta^{2}, 1\right), 1\right) \\
= & \left(\varphi_{\pi}\left(\theta w \theta^{-1}, x\right), \varphi_{\tau}^{\prime}\left(\theta w \theta^{-1}, x\right),{ }^{t} \varphi_{\pi}\left(\theta^{2} w \theta^{-2}, x\right)^{-1}, \theta w \theta^{-1}\right) \\
= & \varphi\left(\theta w \theta^{-1}, x\right) .
\end{aligned}
$$

Here, we use (12) and $J_{k}^{2}=\left(J_{k}^{-1}\right)^{2}=(-1)^{k-1}$, so

$$
{ }^{t} \varphi_{\pi}\left(\theta^{2}, 1\right)^{-1} J_{k} J_{k}{ }^{t} \varphi_{\pi}(w, x)^{-1} J_{k}^{-1} J_{k}^{-1}{ }^{t} \varphi_{\pi}\left(\theta^{2}, 1\right)={ }^{t} \varphi_{\pi}\left(\theta^{2} w \theta^{-2}, x\right)^{-1} .
$$

In conclusion, $\varphi\left(\theta^{2}, 1\right)=\varphi(\theta, 1)^{2}$ and $\varphi\left(\theta w \theta^{-1}, x\right)=\varphi(\theta, 1) \varphi(w, x) \varphi(\theta, 1)^{-1}$.
Since φ is clearly multiplicative on $W_{E} \times \operatorname{SL}(2, \mathbb{C})$, it follows that φ is a homomorphism. Therefore, φ is the L-parameter for $\pi \otimes \tau$.
6.2. The coefficients λ_{φ}. Let $\varphi: W_{E} \times \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{GL}_{k}(\mathbb{C})$ be an irreducible L-parameter. Assume $\varphi \cong{ }^{t}\left({ }^{\theta} \varphi\right)^{-1}$. Let X be a nonzero matrix such that

$$
{ }^{t} \varphi\left(\theta w \theta^{-1}, x\right)^{-1}=X^{-1} \varphi(w, x) X,
$$

for all $w \in W_{E}, x \in \operatorname{SL}(2, \mathbb{C})$. We proceed similarly as in [Mœglin 2002, p. 190]. By taking transpose and inverse,

$$
\varphi\left(\theta w \theta^{-1}, x\right)={ }^{t} X^{t} \varphi(w, x)^{-1 t} X^{-1}
$$

Next, we replace w by $\theta w \theta^{-1}$. This gives $\varphi\left(\theta^{2}, 1\right) \varphi(w, x) \varphi\left(\theta^{-2}, 1\right)={ }^{t} X^{t} \varphi\left(\theta w \theta^{-1}, x\right)^{-1 t} X^{-1}={ }^{t} X X^{-1} \varphi(w, x) X^{t} X^{-1}$, for all $w \in W_{E}, x \in \operatorname{SL}(2, \mathbb{C})$. Since φ is irreducible, $\varphi\left(\theta^{-2}, 1\right)^{t} X X^{-1}$ is a constant. Define

$$
\begin{equation*}
\lambda_{\varphi}=\varphi\left(\theta^{-2}, 1\right)^{t} X X^{-1} . \tag{13}
\end{equation*}
$$

As in [Moglin 2002], we can show that $\lambda_{\varphi}= \pm 1$.
Lemma 8. Let $\varphi: W_{E} \rightarrow \mathrm{GL}_{k}(\mathbb{C})$ be an irreducible L-parameter such that $\varphi \cong$ ${ }^{t}\left({ }^{\theta} \varphi\right)^{-1}$. Let S_{a} be the standard a-dimensional irreducible algebraic representation of $\operatorname{SL}(2, \mathbb{C})$. Then ${ }^{\theta}\left({ }^{t}\left(\varphi \otimes S_{a}\right)^{-1}\right) \cong \varphi \otimes S_{a}$ and

$$
\lambda_{\varphi \otimes S_{a}}=(-1)^{a+1} \lambda_{\varphi} .
$$

Proof. We know that ${ }^{t} S_{a}^{-1} \cong S_{a}$. Let Y be a nonzero matrix such that

$$
{ }^{t} S_{a}(x)^{-1}=Y^{-1} S_{a}(x) Y,
$$

for all $x \in \operatorname{SL}(2, \mathbb{C})$. Then ${ }^{t} Y=Y$ for a odd and ${ }^{t} Y=-Y$ for a even. Let X be a nonzero matrix such that

$$
{ }^{t} \varphi\left(\theta w \theta^{-1}\right)^{-1}=X^{-1} \varphi(w) X,
$$

for all $w \in W_{E}$. We have

$$
\begin{aligned}
{ }^{t}\left(\varphi \otimes S_{a}\left(\theta w \theta^{-1}, x\right)\right)^{-1} & \left.\left.={ }^{t} \varphi\left(\theta w \theta^{-1}\right)^{-1}\right) \otimes{ }^{t}{ }^{t} S_{a}(x)^{-1}\right) \\
& =\left(X^{-1} \varphi(w) X\right) \otimes\left(Y^{-1} S_{a}(x) Y\right) \\
& =(X \otimes Y)^{-1}\left(\varphi \otimes S_{a}(w, x)\right) \otimes(X \otimes Y) .
\end{aligned}
$$

It follows that ${ }^{\theta}\left({ }^{t}\left(\varphi \otimes S_{a}\right)^{-1}\right) \cong \varphi \otimes S_{a}$ and

$$
\begin{aligned}
\lambda_{\varphi \otimes S_{a}} & =\left(\varphi \otimes S_{a}\left(\theta^{-2}, 1\right)\right)^{t}(X \otimes Y)(X \otimes Y)^{-1} \\
& \left.=\left(\varphi\left(\theta^{-2}\right)^{t} X X^{-1}\right) \otimes\left({ }^{t} Y Y^{-1}\right)\right)=(-1)^{a+1} \lambda_{\varphi} .
\end{aligned}
$$

6.3. Centralizers. Let $\varphi: W_{F} \times \operatorname{SL}(2, \mathbb{C}) \rightarrow{ }^{L} G$ be an L-parameter. Denote by φ_{E} the restriction of φ to $W_{E} \times \operatorname{SL}(2, \mathbb{C})$. Then φ_{E} is a representation of $W_{E} \times \operatorname{SL}(2, \mathbb{C})$ on $V=\mathbb{C}^{n}$. Write φ_{E} as a sum of irreducible subrepresentations

$$
\varphi_{E}=m_{1} \varphi_{1} \oplus \cdots \oplus m_{l} \varphi_{l},
$$

where m_{i} is the multiplicity of φ_{i} and $\varphi_{i} \not \not \varphi_{j}$ for $i \neq j$. It follows from [Mœglin 2002] that S_{φ}, the centralizer in \hat{G} of the image of φ, is given by

$$
\begin{equation*}
S_{\varphi} \cong \prod_{i=1}^{l} C\left(m_{i} \varphi_{i}\right), \tag{14}
\end{equation*}
$$

where

$$
C\left(m_{i} \varphi_{i}\right)= \begin{cases}\mathrm{GL}\left(m_{i}, \mathbb{C}\right) & \text { if } \varphi_{i} \not{ }^{\theta} \widetilde{\varphi}_{i}, \\ O\left(m_{i}, \mathbb{C}\right) & \text { if } \varphi_{i} \cong{ }^{\theta} \widetilde{\varphi_{i}}, \lambda_{\varphi_{i}}=(-1)^{n-1}, \\ \operatorname{Sp}\left(m_{i}, \mathbb{C}\right) & \text { if } \varphi_{i} \cong{ }^{\theta} \widetilde{\varphi_{i}}, \lambda_{\varphi_{i}}=(-1)^{n} .\end{cases}
$$

6.4. Coefficients λ_{ρ}. Let ${ }^{L} M=\mathrm{GL}_{k}(\mathbb{C}) \times \mathrm{GL}_{k}(\mathbb{C}) \rtimes W_{F}$, where the action of $w \in W_{F} \backslash W_{E}$ on $\mathrm{GL}_{k}(\mathbb{C}) \times \mathrm{GL}_{k}(\mathbb{C})$ is given by

$$
w(g, h, 1) w^{-1}=\left(J_{n}{ }^{t} h^{-1} J_{n}^{-1}, J_{n}{ }^{t} g^{-1} J_{n}^{-1}, 1\right) .
$$

For $\eta= \pm 1$, we denote by R_{η} the representation of ${ }^{L} M$ on $\operatorname{End}_{\mathbb{C}}\left(\mathbb{C}^{k}\right)$ given by

$$
\begin{aligned}
& R_{\eta}((g, h, 1)) \cdot X=g X h^{-1}, \\
& R_{\eta}((1,1, \theta)) \cdot X=\eta J_{k}^{t} X J_{k} .
\end{aligned}
$$

Let τ denote the nontrivial element in $\operatorname{Gal}(E / F)$. Let ρ be an irreducible unitary supercuspidal representation of $\operatorname{GL}(k, E)$. Assume $\rho \cong{ }^{\tau} \tilde{\rho}$. Then precisely one of the two L-functions $L\left(s, \rho, R_{1}\right)$ and $L\left(s, \rho, R_{-1}\right)$ has a pole at $s=0$. Denote by λ_{ρ} the value of η such that $L\left(s, \rho, R_{\eta}\right)$ has a pole at $s=0$.

Lemma 9. Assume that ρ is an irreducible unitary supercuspidal representation of $\operatorname{GL}(k, E)$ such that $\rho \cong{ }^{\tau} \tilde{\rho}$. Let φ_{ρ} be the L-parameter of ρ. Then $\lambda_{\varphi_{\rho}}=\lambda_{\rho}$.

Proof. As shown in Section 6.1, the parameter $\varphi: W_{F} \rightarrow{ }^{L} M$ corresponding to $\varphi_{\rho}: W_{E} \rightarrow \mathrm{GL}_{k}(\mathbb{C})$ is given by

$$
\varphi(w)=\left(\left(\begin{array}{ll}
\varphi_{\rho}(w) & \tag{15}\\
& { }^{t} \varphi_{\rho}\left(\theta w \theta^{-1}\right)^{-1}
\end{array}\right), w\right),
$$

for $w \in W_{E}$, and

$$
\varphi(\theta)=\left(\left(\begin{array}{ll}
J_{k}^{-1} & \tag{16}\\
& t \\
& \varphi_{\rho}\left(\theta^{2}\right)^{-1} J_{k}
\end{array}\right), \theta\right)
$$

From [Henniart 2010], we have $L\left(s, \rho, R_{\eta}\right)=L\left(s, R_{\eta} \circ \varphi\right)$. Therefore, $L\left(s, R_{\lambda_{\rho}} \circ \varphi\right)$ has a pole at $s=0$. Then $R_{\lambda_{\rho}} \circ \varphi$ contains the trivial representation, so there exists nonzero $X \in M_{k}(\mathbb{C})$ such that $\left(R_{\lambda_{\rho}} \circ \varphi\right)(w) \cdot X=X$ for all $w \in W_{F}$. In particular, (15) implies that for $w \in W_{E}$,

$$
\varphi_{\rho}(w) X^{t} \varphi_{\rho}\left(\theta w \theta^{-1}\right)=X
$$

so

$$
\begin{equation*}
\varphi_{\rho}(w) X=X^{t} \varphi_{\rho}\left(\theta w \theta^{-1}\right)^{-1} \tag{17}
\end{equation*}
$$

Therefore, X is a nonzero intertwining operator between φ_{ρ} and ${ }^{t}\left({ }^{\theta} \varphi_{\rho}\right)^{-1}$. From (13), we have

$$
\begin{equation*}
\varphi_{\rho}\left(\theta^{-2}\right)^{t} X X^{-1}=\lambda_{\varphi_{\rho}} \tag{18}
\end{equation*}
$$

Now, since $\left(R_{\lambda_{\rho}} \circ \varphi\right)(\theta) \cdot X=X$, we have from (16)

$$
{ }^{t} X^{t} \varphi_{\rho}\left(\theta^{2}\right)=\lambda_{\rho} X
$$

By transposing and multiplying by X^{-1}, we obtain

$$
\varphi_{\rho}\left(\theta^{2}\right)=\lambda_{\rho}{ }^{t} X X^{-1}
$$

We compare this to (18). It follows $\lambda_{\varphi_{\rho}}=\lambda_{\rho}$.
6.5. Jordan blocks for unitary groups. For the unitary group $U(n)$, define

$$
R_{d}=R_{\eta}, \quad \text { where } \quad \eta=(-1)^{n}
$$

Let σ be an irreducible discrete series representation of $U(n)$. Denote by $\operatorname{Jord}(\sigma)$ the set of pairs (ρ, a), where $\rho \in{ }^{0} \mathscr{E}\left(\operatorname{GL}\left(d_{\rho}, E\right)\right), \rho \cong{ }^{\tau} \tilde{\rho}$, and $a \in \mathbb{Z}^{+}$, such that (ρ, a) satisfies properties (J-1) and (J-2) from Section 2.2.

Lemma 10. Let ρ be an irreducible supercuspidal representation of $\operatorname{GL}(d, E)$ such that $\varphi_{\rho} \cong{ }^{\theta} \widetilde{\varphi}_{\rho}$, where φ_{ρ} is the L-parameter for ρ. Then the condition $(\mathrm{J}-1)$ is equivalent to
$\left(\mathrm{J}-1^{\prime \prime}\right) \lambda_{\varphi_{\rho} \otimes S_{a}}=(-1)^{n+1}$.

Proof. The condition (J-1) says that a is even if $L\left(s, \rho, R_{d}\right)$ has a pole at $s=0$ and odd otherwise. Observe that

$$
\begin{aligned}
L\left(s, \rho, R_{d}\right) \text { has a pole at } s=0 & \Longleftrightarrow \lambda_{\varphi_{\rho}}=(-1)^{n} \\
& \Longleftrightarrow \lambda_{\varphi_{\rho} \otimes S_{a}}=(-1)^{n}(-1)^{a+1} \\
& \Longleftrightarrow \lambda_{\varphi_{\rho} \otimes S_{a}}= \begin{cases}(-1)^{n+1} & a \text { even, } \\
(-1)^{n} & a \text { odd } .\end{cases}
\end{aligned}
$$

From this, it is clear that ($\mathrm{J}-1$) is equivalent to $\left(\mathrm{J}-1^{\prime \prime}\right)$.

6.6. R-groups for unitary groups.

Lemma 11. Let σ be an irreducible discrete series representation of $U(n)$ and let $\delta=\delta(\rho, a)$ be an irreducible discrete series representation of $\mathrm{GL}(l, E), l=d a$, $d=\operatorname{dim}(\rho)$. Let φ_{ρ} and φ be the L-parameters of ρ and $\pi=\delta \otimes \sigma$, respectively. Then $R_{\varphi, \pi} \cong R(\pi)$.

Proof. Let φ_{σ} be the L-parameter of σ. Then

$$
\varphi_{E} \cong \varphi_{\rho} \otimes S_{a} \oplus{ }^{\theta} \widetilde{\varphi}_{\rho} \otimes S_{a} \oplus\left(\varphi_{\sigma}\right)_{E} .
$$

This is a representation of $W_{E} \times \operatorname{SL}(2, \mathbb{C})$ on $V=\mathbb{C}^{n+2 l}$. Write $\left(\varphi_{\sigma}\right)_{E}$ as a sum of irreducible components,

$$
\left(\varphi_{\sigma}\right)_{E}=\varphi_{1} \oplus \cdots \oplus \varphi_{m} .
$$

Each component appears with multiplicity one. The centralizer S_{φ} is given by (14). If $\varphi_{\rho} \not ¥^{\theta} \widetilde{\varphi}_{\rho}$, then

$$
S_{\varphi} \cong \mathrm{GL}(1, \mathbb{C}) \times \mathrm{GL}(1, \mathbb{C}) \times \prod_{i=1}^{m} \mathrm{GL}(1, \mathbb{C})
$$

This implies $R_{\varphi}=1$. On the other hand, $\delta \rtimes \sigma$ is irreducible, so $R(\pi)=1$. It follows $R_{\varphi, \pi} \cong R(\pi)$.

Now, consider the case $\varphi_{\rho} \cong{ }^{\theta} \widetilde{\varphi}_{\rho}$. If $\varphi_{\rho} \otimes S_{a} \in\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}$, then

$$
S_{\varphi} \cong O(3, \mathbb{C}) \times \prod_{i=1}^{m-1} \mathrm{GL}(1, \mathbb{C}) \quad \text { and } \quad S_{\varphi}^{0} \cong \mathrm{SO}(3, \mathbb{C}) \times \prod_{i=1}^{m-1} \mathrm{GL}(1, \mathbb{C})
$$

This gives $W_{\varphi}=W_{\varphi}^{0}$ and $R_{\varphi}=1$. Since $\varphi_{\rho} \otimes S_{a} \in\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}$, the condition (J-2) implies that $\delta \rtimes \sigma$ is irreducible. Therefore, $R(\pi)=1=R_{\varphi, \pi}$.

It remains to consider the case $\varphi_{\rho} \cong{ }^{\theta} \widetilde{\varphi}_{\rho}$ and $\varphi_{\rho} \otimes S_{a} \notin\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}$. Then (ρ, a) does not satisfy ($\mathrm{J}-1^{\prime \prime}$) or ($\mathrm{J}-2$). Assume first that (ρ, a) does not satisfy
$\left(\mathrm{J}-1^{\prime \prime}\right)$. Then $\delta \rtimes \sigma$ is irreducible, so $R(\pi)=1$. Since (ρ, a) does not satisfy $\left(\mathrm{J}-1^{\prime \prime}\right)$, we have $\lambda_{\varphi_{\rho} \otimes S_{a}}=(-1)^{n}=(-1)^{n+2 l}$. Then, by (14),

$$
S_{\varphi} \cong \operatorname{Sp}(2, \mathbb{C}) \times \prod_{i=1}^{m} \mathrm{GL}(1, \mathbb{C})
$$

It follows $R_{\varphi, \pi}=1=R(\pi)$.
Now, assume that (ρ, a) satisfies ($\mathrm{J}-1^{\prime \prime}$), but does not satisfy (J-2). Then $\lambda_{\varphi_{\rho} \otimes S_{a}}=$ $(-1)^{n-1}=(-1)^{n+2 l-1}$, so

$$
S_{\varphi} \cong O(2, \mathbb{C}) \times \prod_{i=1}^{m} \mathrm{GL}(1, \mathbb{C})
$$

and $R_{\varphi, \pi} \cong \mathbb{Z}_{2}$. Since (ρ, a) does not satisfy (J-2), $\delta \rtimes \sigma$ is reducible and hence $R(\pi) \cong \mathbb{Z}_{2} \cong R_{\varphi, \pi}$.

Acknowledgments

We thank Guy Henniart, Joe Hundley and Freydoon Shahidi for valuable comments. Ban thanks Werner Müller and the Mathematical Institute of the University of Bonn for their hospitality during her three-month research stay, where a part of this work was done.

References

[Arthur 1989] J. Arthur, "Unipotent automorphic representations: conjectures", pp. 13-71 in Orbites unipotentes et représentations, II: Groupes p-adiques et réels, Astérisque 171-172, Soc. Math. France, Paris, 1989. MR 91f:22030 Zbl 0728.22014
[Arthur 1993] J. Arthur, "On elliptic tempered characters", Acta Math. 171:1 (1993), 73-138. MR 94i: 22038 Zbl 0822.22011
[Arthur 2011] J. Arthur, "The endoscopic classification of representations: orthogonal and symplectic groups", preprint, University of Toronto, 2011, available at http://www.claymath.org/cw/arthur/ pdf/Book.pdf.
[Ban and Jantzen 2003] D. Ban and C. Jantzen, "Degenerate principal series for even-orthogonal groups", Represent. Theory 7 (2003), 440-480. MR 2004k:22020 Zbl 1054.22015
[Ban and Zhang 2005] D. Ban and Y. Zhang, "Arthur R-groups, classical R-groups, and Aubert involutions for SO(2n+1)", Compos. Math. 141:2 (2005), 323-343. MR 2006d:22019 Zbl 1131.11033
[Borel 1979] A. Borel, "Automorphic L-functions", pp. 27-61 in Automorphic forms, representations and L-functions, 2 (Corvallis, OR, 1977), edited by A. Borel and W. Casselman, Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, RI, 1979. MR 81m:10056 Zbl 0412.10017
[Goldberg 1994] D. Goldberg, "Reducibility of induced representations for $\operatorname{Sp}(2 n)$ and $\mathrm{SO}(n)$ ", Amer. J. Math. 116:5 (1994), 1101-1151. MR 95g:22016 Zbl 0851.22021
[Goldberg 1995] D. Goldberg, "Reducibility for non-connected p-adic groups, with G° of prime index", Canad. J. Math. 47:2 (1995), 344-363. MR 96d:22003 Zbl 0835.22015
[Goldberg 2011] D. Goldberg, "On dual R-groups for classical groups", pp. 159-185 in On certain L-functions, edited by J. Arthur et al., Clay Math. Proc. 13, Amer. Math. Soc., Providence, RI, 2011. MR 2767516 Zbl 05932913
[Goldberg and Herb 1997] D. Goldberg and R. Herb, "Some results on the admissible representations of non-connected reductive p-adic groups", Ann. Sci. École Norm. Sup. (4) 30:1 (1997), 97-146. MR 98b:22033 Zbl 0874.22016
[Gross and Prasad 1992] B. H. Gross and D. Prasad, "On the decomposition of a representation of SO_{n} when restricted to $\mathrm{SO}_{n-1} "$, Canad. J. Math. 44:5 (1992), 974-1002. MR 93j:22031 Zbl 0787.22018
[Harris and Taylor 2001] M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies 151, Princeton University Press, Princeton, NJ, 2001. MR 2002m:11050 Zbl 1036.11027
[Henniart 2000] G. Henniart, "Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique", Invent. Math. 139:2 (2000), 439-455. MR 2001e:11052 Zbl 1048.11092
[Henniart 2010] G. Henniart, "Correspondance de Langlands et fonctions L des carrés extérieur et symétrique", Int. Math. Res. Not. 2010:4 (2010), 633-673. MR 2011c:22028 Zbl 1184.22009
[Keys 1987] C. D. Keys, " L-indistinguishability and R-groups for quasisplit groups: unitary groups in even dimension", Ann. Sci. École Norm. Sup. (4) 20:1 (1987), 31-64. MR 88m:22042 Zbl 0634. 22014
[Knapp and Stein 1971] A. W. Knapp and E. M. Stein, "Intertwining operators for semisimple groups", Ann. of Math. (2) 93:3 (1971), 489-578. MR 57 \#536 Zbl 0257.22015
[Mœglin 2002] C. Mœglin, "Sur la classification des séries discrètes des groupes classiques padiques: paramètres de Langlands et exhaustivité", J. Eur. Math. Soc. 4:2 (2002), 143-200. MR 2003g: 22021 Zbl 1002.22009
[Mœglin 2007a] C. Mœglin, "Classification des séries discrètes pour certains groupes classiques p-adiques", pp. 209-245 in Harmonic analysis, group representations, automorphic forms and invariant theory, edited by J.-S. Li et al., Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 12, World Scientific, Hackensack, NJ, 2007. MR 2009i:22023
[Mœglin 2007b] C. Mœglin, "Classification et changement de base pour les séries discrètes des groupes unitaires p-adiques", Pacific J. Math. 233:1 (2007), 159-204. MR 2009d:22022 Zbl 1157. 22010
[Mœglin and Tadić 2002] C. Mœglin and M. Tadić, "Construction of discrete series for classical p-adic groups", J. Amer. Math. Soc. 15:3 (2002), 715-786. MR 2003g:22020 Zbl 0992.22015
[Shahidi 1981] F. Shahidi, "On certain L-functions", Amer. J. Math. 103:2 (1981), 297-355. MR 82i: 10030 Zbl 0467.12013
[Shahidi 1990] F. Shahidi, "A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups", Ann. of Math. (2) 132:2 (1990), 273-330. MR 91m:11095 Zbl 0780.22005
[Shelstad 1982] D. Shelstad, " L-indistinguishability for real groups", Math. Ann. 259:3 (1982), 385430. MR 84c:22017 Zbl 0506.22014
[Silberger 1978] A. J. Silberger, "The Knapp-Stein dimension theorem for p-adic groups", Proc. Amer. Math. Soc. 68:2 (1978), 243-246. MR 58 \#11245 Zbl 0348.22007
[Silberger 1979] A. J. Silberger, Introduction to harmonic analysis on reductive p-adic groups, Math. Notes 23, Princeton Univ. Press, Princeton, NJ, 1979. MR 81m:22025 Zbl 0458.22006
[Zelevinsky 1980] A. V. Zelevinsky, "Induced representations of reductive p-adic groups, II: On irreducible representations of GL(n)", Ann. Sci. École Norm. Sup. (4) 13:2 (1980), 165-210. MR 83g: 22012 Zbl 0441.22014

Received February 25, 2011. Revised August 30, 2011.
Dubravka Ban
Department of Mathematics
Southern IlLinois University
Carbondale, IL 62901
United States
dban@math.siu.edu

David Goldberg
Department of Mathematics
Purdue University
West Lafayette, IN 47907-1395
United States
goldberg @ math.purdue.edu

PACIFIC JOURNAL OF MATHEMATICS

http://pacificmath.org
Founded in 1951 by
E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

EDITORS

V. S. Varadarajan (Managing Editor)

Department of Mathematics University of California
Los Angeles, CA 90095-1555
pacific@math.ucla.edu

Vyjayanthi Chari	Darren Long	Sorin Popa
Department of Mathematics	Department of Mathematics	Department of Mathematics
University of California	University of California	University of California
Riverside, CA 92521-0135	Santa Barbara, CA 93106-3080	Los Angeles, CA 90095-1555
chari@math.ucr.edu	long@ math.ucsb.edu	popa@ math.ucla.edu
Robert Finn	Jiang-Hua Lu	Jie Qing
Department of Mathematics Stanford University	Department of Mathematics	Department of Mathematics
Stanford, CA 94305-2125	The University of Hong Kong	University of California
finn@math.stanford.edu	Pokfulam Rd., Hong Kong	Santa Cruz, CA 95064
Kefeng Liu	jhlu@ maths.hku.hk	qing @cats.ucsc.edu
Department of Mathematics	Alexander Merkurjev	Jonathan Rogawski
University of California	Department of Mathematics	Department of Mathematics
Los Angeles, CA 90095-1555	University of California	University of California
liu@math.ucla.edu	Los Angeles, CA 90095-1555	Los Angeles, CA 90095-1555
	merkurev@ math.ucla.edu	jonr@ math.ucla.edu

PRODUCTION

pacific@math.berkeley.edu

Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA
UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or pacificmath.org for submission instructions.
The subscription price for 2012 is US $\$ 420 /$ year for the electronic version, and $\$ 485 /$ year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company, 11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

[^1]
PACIFIC JOURNAL OF MATHEMATICS

Volume 255 No. 2 February 2012
On the local Langlands correspondences of DeBacker-Reeder and 257 Reeder for $\operatorname{GL}(\ell, F)$, where ℓ is prime
Moshe Adrian
R-groups and parameters 281
Dubravka Ban and David Goldberg
Finite-volume complex-hyperbolic surfaces, their toroidal 305
compactifications, and geometric applications
Luca Fabrizio Di Cerbo
Character analogues of Ramanujan-type integrals involving the Riemann 317
Ξ-function
Atul Dixit
Spectral theory for linear relations via linear operators 349
Dana Gheorghe and Florian-Horia Vasilescu
Homogeneous links and the Seifert matrix 373
Pedro M. González Manchón
Quantum affine algebras, canonical bases, and q-deformation of 393 arithmetical functions
Henry H. Kim and Kyu-Hwan Lee
Dirichlet-Ford domains and arithmetic reflection groups 417Grant S. Lakeland
Formal equivalence of Poisson structures around Poisson submanifolds 439
IOAN MĂRCUȚ
A regularity theorem for graphic spacelike mean curvature flows 463
Benjamin Stuart Thorpe
Analogues of level- N Eisenstein series 489
Hirofumi Tsumura

[^0]: Dubravka Ban was supported in part by NSF grant DMS-0601005 and by a Research Fellowship of the Alexander von Humboldt Foundation.
 MSC2010: 11F70, 22E35, 22E50.
 Keywords: R-groups, reducibility of induced representations, classical groups.

[^1]: PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
 at the University of California, Berkeley 94720-3840
 A NON-PROFIT CORPORATION
 Typeset in LATEX
 Copyright ©2012 by Pacific Journal of Mathematics

