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R-GROUPS AND PARAMETERS

DUBRAVKA BAN AND DAVID GOLDBERG

Let G be a p-adic group, SO3,.+1, Sp;,, Oz or U,. Let & be an irreducible
discrete series representation of a Levi subgroup of G. We prove the con-
jecture that the Knapp-Stein R-group of & and the Arthur R-group of &
are isomorphic. Several instances of the conjecture were established earlier:
for archimedean groups by Shelstad; for principal series representations by
Keys; for G = SO;,+1 by Ban and Zhang; and for G = SO, or Sp,, in the
case when r is supercuspidal, under an assumption on the parameter, by
Goldberg.

1. Introduction

Central to representation theory of reductive groups over local fields is the study
of parabolically induced representations. In order to classify the tempered spec-
trum of such a group, one must understand the structure of parabolically induced
from discrete series representations, in terms of components, multiplicities, and
whether or not components are elliptic. The Knapp—Stein R-group gives an ex-
plicit combinatorial method for conducting this study. On the other hand, the local
Langlands conjecture predicts the parametrization of such nondiscrete tempered
representations, in L-packets, by admissible homomorphisms of the Weil-Deligne
group which factor through a Levi component of the Langlands dual group. Arthur
[1989] gave a conjectural description of the Knapp—Stein R-group in terms of the
parameter. This conjecture generalizes results of Shelstad [1982] for archimedean
groups, as well as those of Keys [1987] in the case of unitary principal series of
certain p-adic groups. In [Ban and Zhang 2005] this conjecture was established
for odd special orthogonal groups. In [Goldberg 2011] the conjecture was estab-
lished for induced from supercuspidal representations of split special orthogonal
or symplectic groups, under an assumption on the parameter. In the current work,
we complete the conjecture for the full tempered spectrum of all these groups.
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Let F be a nonarchimedean local field of characteristic zero. We denote by G a
connected reductive quasi-split algebraic group defined over F. We let G = G (F),
and use similar notation for other groups defined over F. Fix a maximal torus 7' of
G, and a Borel subgroup B = T'U containing T. We let €(G) be the equivalence
classes of irreducible admissible representations of G, €,(G) the tempered classes,
€,(G) the discrete series, and °€(G) the irreducible unitary supercuspidal classes.
We make no distinction between a representation 7 and its equivalence class.

Let P = M N be a standard, with respect to B, parabolic subgroup of G. Let
A = Ay be the split component of M, and let W = W (G, A) = Ng(A)/M be the
Weyl group for this situation. For o € €(M) we let Indg (o) be the representation
unitarily induced from o ® 1. Thus, if V is the space of o, we let

V(o)={feC™(G,V)| f(mng)=8p(m)'/*f(g)forallme M, ne N, g G},

with §p the modulus character of P. The action of G is by the right regular rep-
resentation, so (Indg (0)(x)f)(g) = f(gx). Then any 7w € €,(G) is an irreducible
component of Indg (o) for some choice of M and o € é,(M). In order to deter-
mine the component structure of Indg (0), Knapp and Stein, in the archimedean
case, and Harish-Chandra in the p-adic case, developed the theory of singular
integral intertwining operators, leading to the theory of R-groups, due to Knapp
and Stein [1971] in the archimedean case and Silberger [1978; 1979] in the p-adic
case. We describe this briefly and refer the reader to the introduction of [Goldberg
1994] for more details. The poles of the intertwining operators give rise to the
zeros of Plancherel measures. Let ® (P, A) be the reduced roots of A in P. For
a € O(P,A) and o € é,(M) we let iy (o) be the rank one Plancherel measure
associated to o and . We let A’ = {a € ®(P, A) | uy (o) = 0}. For w € W and
o € € (M) we let wo (m) = o (w™'mo). (Note, we make no distinction between
w € W and its representative in Ng(A).) We let

W(o)={we W]|wo ~o},

and let W' be the subgroup of W (o) generated by those w, with & € A’. We let
Ro)={we W) | wA"=A}={w e W) | wa > 0foralla € A’}. Let
%(0) = Endg (Ind$ (0)).

Theorem 1 [Knapp and Stein 1971; Silberger 1978; 1979]. For any o € €,(M),
we have W(o) = R(o) x W', and €(0) ~ C[R(0)],, the group algebra of R(o)
twisted by a certain 2-cocycle 1.

Thus R(o), along with 1, determines how many inequivalent components appear
in Indg (o) and the multiplicity with which each one appears. Furthermore Arthur
shows C[R(0)], also determines whether or not components of Indg (o) are elliptic
(and hence whether or not they contribute to the Plancherel formula) [Arthur 1993].
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Arthur [1989] conjectured a construction of R (o) in terms of the local Langlands
conjecture. Let Wy be the Weil group of F and W = W x SL,(C) the Weil-
Deligne group. Suppose ¥ : W, — LM parametrizes the L-packet, H,/,(M ), of
M containing 0. Here ‘M = M x Wy is the Langlands L-group, and M is the
complex group whose root datum is dual to that of M. Then

VW — M~ LG

must be a parameter for an L-packet Ty, (G) of G. The expectation is that ITy (G)
consists of all irreducible components of Indg (o) for all o’ € Iy, (M). We let
Sy = Zs(Im ), and take SI‘Z to be the connected component of the identity. Let
Ty be a maximal torus in S° Set Wy = W(Sy, Ty), and W; = W(Sy, Ty).
Then Ry = Wy /Wy is called the R-group of the packet ITy (G). By duality we
can identify Wy, w1th a subgroup of W. With this identification, we let Wy, , =
Wy NW(o) and WIZ’O = Wfb’ N W (o). We then set

Ryo=Wyo/Wy,.
We call Ry, , the Arthur R-group attached to ¥ and o.
Conjecture 2. For any o € €2(M), we have R(0) > Ry ;.

In [Ban and Zhang 2005], the first named author and Zhang proved this con-
jecture in the case G = SO;, 1. In [Goldberg 2011] the second named author
confirmed the conjecture when o is supercuspidal, and G = SO, or Sp,,,, with a
mild assumption on the parameter . Here, we complete the proof of the conjecture
for Sp,,,, or O,, under assumptions given in Section 2.3.

This work is based on the classification of discrete series for classical p-adic
groups of Mceglin and Tadi¢ [2002], and on the results of Meeglin [2002; 2007b].
Subsequent to our submission, Arthur’s unfinished book has become available in
preprint form [Arthur 2011]. In this long awaited and impressive work, he uses
the trace formula to classify the automorphic representations of special orthogonal
and symplectic groups in terms of those of GL(n). An important ingredient in
this work is a formulation of the classification at the local places. The results for
irreducible tempered representations are obtained from the classification of discrete
series using R-groups. Our result on isomorphism of R-groups and their dual
version for SO(2n + 1, F) and Sp(2n, F) (see Theorem 7) also appear in Arthur’s
work [2011, page 346]. Arthur’s proof differs significantly from the one we use
here. We work with a rather concrete description of parameters based on Jordan
blocks and L-functions, while Arthur works in the general context of his theory.

We now describe the contents of the paper in more detail. In Section 2 we
introduce our notation and discuss the classification of €, (M) for our groups, due to
Meeglin and Tadié, as well as preliminaries on Knapp—Stein and Arthur R-groups.
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In Section 3 we consider the parameters ¥ and compute their centralizers. In
Section 4 we turn to the case of G = O»,,. Here we show the Arthur R-group agrees
with the generalization of the Knapp—Stein R-group as discussed in [Goldberg and
Herb 1997]. In Section 5 we complete the proof of the theorem for the induced
from discrete series representations of Sp,,, SO2,11, or Oy,.

In Section 6, we study R-groups for unitary groups. These groups are interesting
for us because they are not split and the action of the Weil group on the dual group
is nontrivial. In addition, the classification of discrete series and description of
L-parameters is completed [Mceglin 2007b].

The techniques used here can be used for other groups. In particular we should
be able to carry out this process for similitude groups and G,. Furthermore, the
techniques of computing the Arthur R-groups will apply to G Spin groups, as well,
and may shed light on the Knapp—Stein R-groups in this case. We leave all of this
for future work.

2. Preliminaries

2.1. Notation. Let F be a nonarchimedean local field of characteristic zero. Let
Gn,n€Z%, be Sp2n, F), SO2n+1, F) or SO(2n, F). We define G to be the
trivial group. For G = G,, or G = GL(n, F), fix the minimal parabolic subgroup
consisting of all upper triangular matrices in G and the maximal torus consisting
of all diagonal matrices in G. If §;, §, are smooth representations of GL(m, F),
GL(n, F), respectively, we define

81 x 8 =Ind%(8; ® 82)

where G = GL(m +n, F) and P = MU is the standard parabolic subgroup of G
with Levi factor M = GL(m, F) x GL(n, F). Similarly, if § is a smooth represen-
tation of GL(m, F) and o is a smooth representation of G,,, we define

530 =IndS"" (5 ®0)

where P = MU is the standard parabolic subgroup of G, with Levi factor M =
GL(m, F) x G,. We denote by €,(G) the set of equivalence classes of irreducible
square integrable representations of G and by %€ (G) the set of equivalence classes
of irreducible unitary supercuspidal representations of G.

We say that a homomorphism 4 : X — GL(d, C) is symplectic (respectively,
orthogonal) if & fixes an alternating form (respectively, a symmetric form) on
GL(d, C). We denote by S, the standard a-dimensional irreducible algebraic rep-
resentation of SL(2, C). Then

" orthogonal for a odd,
symplectic  for a even.

)



R-GROUPS AND PARAMETERS 285

Let p be an irreducible supercuspidal unitary representation of GL(d, F). Ac-
cording to the local Langlands correspondence for GL, [Harris and Taylor 2001;
Henniart 2000], attached to p is an L-parameter ¢ : Wr — GL(d, C). Suppose
0 = p. Then ¢ = ¢ and one of the Artin L-functions L (s, Sym2<p) or L(s, /\zgo) has
a pole. The L-function L (s, Sym?¢) has a pole if and only if ¢ is orthogonal. The
L-function L(s, /\z(p) has a pole if and only if ¢ is symplectic. From [Henniart
2010] we know

) L(s, N¢) = L(s, p, \?), and L(s, Sym>¢) = L(s, p, Sym?),

where L(s, p, /\2) and L(s, p, Symz) are the Langlands L-functions as defined in
[Shahidi 1981].

Let p be an irreducible supercuspidal unitary representation of GL(d, F) and
a € Z%. We define §(p, a) to be the unique irreducible subrepresentation of

|(a—1)/2 |(a—3)/2 % |(—(a—1))/2;

ol X pl e X Pl

see [Zelevinsky 1980].

2.2. Jordan blocks. We now review the definition of Jordan blocks from [Mceglin
and Tadi¢ 2002]. Let G be Sp(2n, F), SO2n+1, F) or O(2n, F). Ford € N, let
rq denote the standard representation of GL(d, C). Define
r _ [N forG=Sp@n. F),0Qn. F).

4= Symzrd for G =SOQ2n+1, F).
Let o be an irreducible discrete series representation of G,. Denote by Jord(o)
the set of pairs (p, a), where p € 0%(GL(d,O, F)), p= p,and a € Z*, such that
(J-1) a isevenif L(s, p, Ry,) has a pole at s = 0 and odd otherwise,
(J-2) §(p, a) x o is irreducible.

For p € %¢(GL(d,, F)), p = p, define
Jord,(0) ={a | (p,a) € Jord(o)}.

Let G denote the complex dual group of G. Then G = SO(@2n + 1, C) for
G = Sp(2n, F), G = Sp(2n,C) for G =SO(2n + 1, F) and G = O(2n, C) for
G=0(Cn,F).

Lemma 3. Let o be an irreducible discrete series representation of G,. Let p be

an irreducible supercuspidal self-dual representation of GL(d,, F) and a € Z™.
Then (p, a) € Jord(o) if and only if the following conditions hold:

(J-1") p® S, is of the same type as G,
(J-2) 6(p,a) x o is irreducible.
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Proof. We will prove that (J-1) < (J-1"). We know from [Shahidi 1990] that one
and only one of the two L-functions L(s, p, /\2) and L(s, p, Symz) has a pole at
s = 0. Suppose G = Sp(2n, F) or O(2n, F). We consider L(s, p, /\2). It has
a pole at s = 0 if and only if the parameter p : Wr — GL(d,, C) is symplectic.
According to (1), this is equivalent to p® S, being orthogonal for a even. Therefore,
for (p,a) € Jord(o), a is even if and only if p ® S, is orthogonal. For G =
SO(2n + 1, F), the arguments are similar. O

2.3. Assumptions. In this paper, we use the classification of discrete series for
classical p-adic groups of Meeglin and Tadi¢ [Meeglin and Tadi¢ 2002], so we
have to make the same assumptions as there. Let o be an irreducible supercuspidal
representation of G, and let p be an irreducible self-dual supercuspidal represen-
tation of a general linear group. We make the following assumption:

(BA) vt D/2 5 5 o reduces for

max Jord, (o) if Jord,(0) # @,
a= 0 if L(s, p, Rq,) has a pole at s =0 and Jord, (o) = &,

—1 otherwise.
Moreover, there are no other reducibility points in R.

In addition, we assume that the L-parameter of o is given by

3) vo= P ¢S

(p,a)elord(o)

Here, ¢, denotes the L-parameter of p given in [Harris and Taylor 2001; Henniart
2000].

Moeeglin [2007a], assuming certain Fundamental Lemmas, proved the validity
of the assumptions for SO(2n + 1, F) and showed how Arthur’s results imply the
Langlands classification of discrete series for SO(2n + 1, F).

2.4. The Arthur R-group. let G = G x Wy be the L-group of G, and suppose
LM is the L-group of a Levi subgroup, M, of G. Then M is a Levi subgroup of
LG (see [Borel 1979, Section 3] for the definition of parabolic subgroups and Levi
subgroups of “G). Suppose v is an A-parameter of G which factors through ‘M,

v : Wp x SL(2, C) x SL(2, C) — ‘M c G.

Then we can regard i as an A-parameter of M. Suppose, in addition, the image
of ¥ is not contained in a smaller Levi subgroup (i.e., ¥ is an elliptic parameter
of M).
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Let Sy be the centralizer in G of the image of ¢ and Sf/)/ its identity component.
If T, is a maximal torus of Sg, define

Wy = Ns, (Ty)/Zs,(Ty), Wy =N (Ty)/Zsy (Ty), Ry =Wy /Wy

Lemma 2.3 of [Ban and Zhang 2005] and the discussion on page 326 of [Ban and
Zhang 2005] imply that Wy, can be identified with a subgroup of W (G, A).

Let o be an irreducible unitary representation of M. Assume o belongs to the
A-packet [Ty, (M). If W(o) ={w € W(G, A) |wo =o'}, we let

Wyo=WyNW(o), Wy, =W)NnW(o),

and take Ry o = Wy o/ Wl?,’g as the Arthur R-group.

3. Centralizers

Let G be Sp(2n, F),SO(2n+1, F)or O(2n, F). Let G be the complex dual group
of G. Let
¥ Wp xSLQ2,C) x SL2,C) — G Cc GL(N, C)

be an A-parameter. We consider i as a representation. Then i is a direct sum
of irreducible subrepresentations. Let ¥y be an irreducible subrepresentation. For
m e N, set

myo=vyo®---DYy.

m times

If ¥y % Vo, then it can be shown using the bilinear form on G that Vo is also
a subrepresentation of . Therefore, ¥ decomposes into a sum of irreducible
subrepresentations

V=M ©@my) ® - ® (e © M) ® My 1Y ® - - & my,

where ¥; 2 ¥, ¥ # 1%' for i # j. In addition, ¥; 2 V; fori = 1, ...,k and
Vi = fori =k+1,..., 1 If ¢; =, then v; factors through a symplectic or
orthogonal group. In this case, if v; is not of the same type as G, then m; must be
even. This follows again using the bilinear form on G.

We want to compute Sy and Wy,. First, we consider the case ¥ = m or
W = myo ®mry, where ¥ is irreducible. The following lemma is an extension of
Proposition 6.5 of [Gross and Prasad 1992]. A part of the proof was communicated
to us by Joe Hundley.

Lemma 4. Let G be Sp(2n, F), SO2n+1, F) or O(2n, F). Let
Yo : Wr x SL(2, C) x SL(2, C) — GL(dp, C)

be an irreducible parameter.
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(1) Suppose Yo 2 l/~/0 and Y = myrg H lefo. Then Sy, = GL(m, C) and Ry = 1.
(i) Suppose Yo = Vo and Y = mry. Suppose Vg is of the same type as G. Then

R~ Zy form even,
|1 form odd.

(i) Suppose Vo = Vo and v = mry. Suppose Y is not of the same type as G.
Then m is even, Sy, = Sp(m, C) and Ry, = 1.

Proof. (1) The proof of the statement is the same as in [Gross and Prasad 1992].

(i1) and (iii) Suppose G = Sp(2n, F) or SO(2n + 1, F). Let V and Vj denote the
spaces of the representations ¥ and vy, respectively. Denote by (, ) the ¥ -invariant
bilinear form on V and by (, )¢ the ¥p-invariant bilinear form on Vj. There exists
an isomorphism V — Vp & --- @ Vj. Equivalently, V = W ® Vj, where W is
a finite dimensional vector space with trivial Wr x SL(2, C) x SL(2, C)-action.
The space W can be identified with Hom, xs1.(2,c)xsL,c)(Vo, V). Then the map
w (024 V() — Vis

[®@vi—>1(v), [eHomwy,xsLe2.c)xsLe,c)(Vo, V), ve V.

We claim there exists a nondegenerate bilinear form (, )y on W such that (, ) =
(,)w ® (, )o in the sense that

(Li®v,L®vy) = (l1, L)w(vi, v2)o forall l1,l,eW, vy, v € V.

The key ingredient is Schur’s lemma, or rather, the variant thereof stating that
every invariant bilinear form on V) is a scalar multiple of (, )o. Given any [y, [; in

Homw, xsLe,0)xsLe,c) (Vo, V),
(l1(v1), 12(v2))

is an invariant bilinear form on V, and therefore it is equal to c(, ), for some
constant c. We can define ([, [o)w by

iy < 0D 22)

(v, v2)o
because Schur’s lemma tells us that the right-hand side is independent of vy, v, in
Vo. This proves the claim. Observe that if ¥ is not of the same type as i, the
form (, )w is alternating, while in the case when vy and i are of the same type,
the form (, ) is symmetric.

Now, Imy ={I,, ® g | g € Im 9} and

Zouv,o(Imy) ={g®z| g eGL(m,C),z e (Al | A C*}}
={g®14, | g € GL(m, C)}.
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Let us denote by W the group of matrices in GL(W) which preserve (, )w, i.e.,
W = Sp(m, C) if (,)w is an alternating form and W = O(m,C) if (,)w is a
symmetric form. Then

Sy =ZaLwoyImy)NG={g®1I; | g €W, det(g ® Ig) = 1}.

It follows that in case (iii) we have Sy, = Sp(m, C), Sf/)f =Sy and Ry, = 1.
In case (ii), W = O(m, C). Since det(g ® I,,) = (det g)%, it follows

~ O(@m,C), djeven,
Y = 1s0(m, C). dyodd.

In the case G =SO(2n+1, F), ¥ is symplectic and dy is even. Then Sy, = O (m, C)
and Sf;/ = SO(m, C). If m is even, this implies Ry = Z,. For m odd, Wy, = Wg
and Ry = 1.

In the case G = Sp(2n, F), we have G = SOR2n+1,C) and mdy =2n+1. It
follows that m and dy are both odd. Then Sy = SO(m, C), Sf/)/ =Sy and Ry, = 1.

The case G = O (2n, F) is similar, but simpler, because there is no condition on
determinant. It follows that Sy, = O(m, C). This implies Ry, = Z» for m even and
Ry =1 for m odd. U

Lemma 5. Let G be Sp(2n, F),SO(2n+1, F) or O(2n, F). Let
¥ : Wp x SL(2,C) x SL(2,C) - G

be an A-parameter. We can write \ in the form

p q
@ y= (@(miwi@mi&»)@( a 2ml-w,->
i=1 i=p+1
ea( . <2mi+1)«/f,~)ee( &y 2ml-wl-),
i=q+1 i=r+1
where \; is irreducible fori € {1, ..., s}, and
Vi EV, Vi 2 fori,je{l,....s}, i # ],
1/&'%&1‘ fOl”iE{l,...,p},
Vi Z U forie{p+1,..., s},

Y; not of the same type as G forie{p+1,...,q},
/8 ofthesametypeasé forie{g+1,...,s}.

Letd =5 —r. Then
Ry, =78,
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Proof. Set W; = m;y; @ m;y; for all i € {1, ..., p}, and W; = m;y; for all i €
{p+1, ..., s}. Denote by Z; the centralizer of the image of W; in the corresponding
GL. Then

Zarwo(my)=Z x---x Z; and Sy = ZeLwv.o(Imy)NG.

Lemma 4 tells us the factors corresponding to i € {1, ..., g} do not contribute to
Ry . In addition, we can see from the proof of Lemma 4 that these factors do not
appear in determinant considerations. Therefore, we can consider only the factors
corresponding to i € {g +1,..., s} Let£ =7,y x --- X Z; and ¥ =%NG. In
the same way as in the proof of Lemma 4, we obtain

(5) g);{(gq-‘rl’---»gs)|gi€0(2mi+1ac)’ ie{q+1’---ar}v
g €0@m,0,ie(r+1,...s), ] (detg)™ =1},
i=q+1

for G =SO(2n + 1, F) or Sp(2n, F). For G = O(2n, F), we omit the condition
on determinant. If G =SO(2n+1, F), thenfori e {g+1, ..., s}, ¥; is symplectic
and dim v; is even. Therefore, the product in (5) is always equal to 1.

Now, for G =SO(2n+1, F) and G = O(2n, F), we have

r S
= [[ o@2m;+1,C)x [ 0@2m;,C).
i=q+1 i=r+1
It follows that Ry = [[i_, . I x [[1o, 11 22 = z4.
It remains to consider G = Sp(2n, F), G =SO2n + 1, C). We have
q r P
i=1 i=q+1 i=1

Since the total sum is odd, we must have r > ¢ and dim y; odd, for some i €
{g+1,...,r}. Without loss of generality, we may assume dim v, odd. Then

$=S0Q2my41+1,C)x [[ 0@mi+1,C)x [[ 0Q2m;,C).
i=q+2 i=r+1

It follows Ry =1 x [Ti_, 1 1 x [Ti—y Z2 = Z5. O

4. Even orthogonal groups

4.1. R-groups for nonconnected groups. In this section, we review some results
of [Goldberg and Herb 1997]. Let G be a reductive F-group. Let G° be the
connected component of the identity in G. We assume that G/G" is finite and
abelian.
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Let 7 be an irreducible unitary representation of G. We say that 7 is discrete
series if the matrix coefficients of 7 are square integrable modulo the center of G.

We will consider the parabolic subgroups and the R-groups as defined in [Gold-
berg and Herb 1997]. Let P® = M°U be a parabolic subgroup of G°. Let A be
the split component in the center of M°. Define M = C;(A) and P = MU. Then
P is called the cuspidal parabolic subgroup of G lying over P°. The Lie algebra
£(G) can be decomposed into root spaces with respect to the roots ¢ of £(A),

LGC)=LM) DY L(GC)a.
acd

Let o be an irreducible unitary representation of M. We denote by ry0 5,(0) the
restriction of o to MY, Then, by Lemma 2.21 of [Goldberg and Herb 1997], o
is discrete series if and only if any irreducible constituent of ry0 5, (0) is discrete
series. Now, suppose o is discrete series. Let op be an irreducible constituent of
ryo. (o). Then oy is discrete series and we have the Knapp—Stein R-group R(oy)
for igo p0(00) [Knapp and Stein 1971; Silberger 1978]. We review the definition
of R(0g). Let W(G°, A) = Ngo(A)/ M and Wg0(0p) = {w € W (M) | woy = o).
For w € Wgo(0p), we denote by d(w, op) the normalized standard intertwining
operator associated to w (see [Silberger 1979]). Define

Wgo (00) ={w € Wgo(op) | A(w, op) is a scalar}.

Then Wgo (09) = W(®) is generated by reflections in a set @ of reduced roots of
(G, A). Let ®* be the positive system of reduced roots of (G, A) determined by
P and let <I>;r =®; NdT. Then

R(00) = {w € Wgo(op) | wB € T forall g € &}
and WGO(O'()) = R(G()) X W(CDI).
For the definition of R(o), we follow [Goldberg and Herb 1997]. Define
Ng(o)={g € No(M) | go =0},
Wg(o) = Ng(o)/M, and
R(o) ={w e Wg(o) |wp € ®* forall B € d/}.

For w € Wg(0), let d(w, o) denote the intertwining operator on i y (o) defined
in [Goldberg and Herb 1997, page 135]. Then the {(w, o), w € R(0), form a basis
for the algebra of intertwining operators on i, (o), by Theorem 5.16 of [Goldberg
and Herb 1997]. In addition, W5 (o) = R(o) X W(®). For w € W (o), A(w, o)
is a scalar if and only if w € W (®); see [Goldberg and Herb 1997, Lemma 5.20].

4.2. Even orthogonal groups. Let G = O(2n, F) and G = SO(2n, F). Then
G=G"%{1, s}, where s = diag(],,_l, ((1) é), In_l) and it acts on G by conjugation.
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(a) Let

M° = (diag(g1, ..., & h, "¢, .., "g7") | & € GL(n;, F), h € SO(2m, F))
>~ GL(ny, F) x - - - x GL(n,, F) x SO(2m, F),

where m > 1 and n; +---+n, +m = n. Then M° is a Levi subgroup of GO. The
split component of M? is

A= {diagilnys ooy ALy Ty A7 s oo AT L) | A € FX).
Then M = Cg(A) is equal to

(6) M ={diag(gi,...,&rh, rgr_l,..., rgl_l) | ¢i € GL(n;, F),h € OQ2m, F)}
~ GL(n;, F) x - -- x GL(n,, F) x O(2m, F).

Let 1 € €2(M). Then7m = p1 ® --- ® px ® o, where p; € €,(GL(n;, F)) and
o €é(02m, F)). Letmg = p1 ® - - - ® pr @ 0p be an irreducible component of
ryo. (). If sog = 0, then Wi () = Wio(mo) and R(r) = R(mp). In this case,
ry0, p () = mo, by Lemma 4.1 of [Ban and Jantzen 2003], and p; % o is reducible
if and only if p; X oy is reducible, by Proposition 2.2 of [Goldberg 1995]. Then
Theorem 6.5 of [Goldberg 1994] tells us that R(;r) = Zg, where d is the number
of inequivalent p; with p; x o reducible.

Now, consider the case soy Z op. It follows from Lemma 4.1 of [Ban and
Jantzen 2003] that 7 =1, p0(7o). Then ig p () =i po(o) and we know from
Theorem 3.3 of [Goldberg 1995] that R(w) = Z‘zi, where d = d; + d», d; is the
number of inequivalent p; such that n; is even and p; < o is reducible, and d» is
the number of inequivalent p; such that n; is odd and p; = p;. Moreover, Corollary
3.4 of [Goldberg 1995] implies if n; is odd and p; = p;, then p; x o is reducible.
Therefore, we see that R(r) = Z‘Zi, where d is the number of inequivalent p; with
0; X o reducible.

In the case m = 1, since

SOQ. F) = {(“ 9]) (a E FXH,
0a
we have

Moz{diag(gl,...,g,,a,a_l, tgr_l,..., Tgl_l)|g,- €GL®n;, F),a € F*}
=GL(n;, F) x---xGL(®@n,, F) x GL(, F),

and this case is described in (b).
(b) Let M be a Levi subgroup of G° of the form

M° = (diag(g1, ..., &, "¢ ..., g7 ") | & € GL(n;, F)}
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where ny + - - - +n, = n. The split component of M is
A={diaghiluy, ..oy hodyy, 27 s oo AT L) [ A € FX)
and M = Cg(A) = MP. Therefore,

(7 M = (diag(gi, ..., g "¢ .-, "er") | & € GL(ny, F))
=GL(n, F) x---xGL®n,, F).

Letn =01 ®--- Qo Q1 € €(M), where 1 denotes the trivial representation of
the trivial group. Since M = M°, we can apply directly Theorem 3.3 of [Goldberg
1995]. It follows R(mw) = Zg , where d = d| + d», d, is the number of inequivalent
pi such that n; is even and p; % 1 is reducible, and d; is the number of inequivalent
pi such that n; is odd and p; = p;. As above, it follows from Corollary 3.4 of
[Goldberg 1995] that if n; is odd and p; = p;, then p; X o is reducible. Again, we
obtain R(w) = Z‘zl, where d is the number of inequivalent p; with p; x ¢ reducible.

We summarize the above considerations in the following lemma. Observe that
the group O (2, F) does not have square integrable representations. It also does not
appear as a factor of cuspidal Levi subgroups of O (2n, F'). We call a subgroup M
defined by (6) or (7) a standard Levi subgroup of O(2n, F).

Lemma 6. Let G = O(2n, F) and consider a standard Levi subgroup of G of the
form
M=GL0n;, F) x---xGL(n,, F) x O2m, F),

wherem >0,m#1,n+---+n.+m=n.Letn Zp1 Q- Qpr Qo € €r(M).

Then R(m) = Z‘ZJ , where d is the number of inequivalent p; with p; X o reducible.

5. R-groups of discrete series

Let G be Sp(2n, F), SO2n + 1, F) or O(2n, F).

Theorem 7. Let w be an irreducible discrete series representation of a standard
Levi subgroup M of G,. Let ¢ be the L-parameter of w. Then Ry, = R(7).

Proof. We can write  in the form
() T=@"6)® - ®(®")®0

where o is an irreducible discrete series representation of G,, and 6; (i =1,...,r)
is an irreducible discrete series representation of GL(#n;, F) such that §; 2 §; for
i # j. As explained in Section 4, if G, = O(2n, F), then m # 1.

Let ¢; denote the L-parameter of §; and ¢, the L-parameter of o. Then the
L-parameter ¢ of 7 is

=M1 ®m@1) D ® (Mo ®m,¢r) D @5



294 DUBRAVKA BAN AND DAVID GOLDBERG

Each ¢; is irreducible. The parameter ¢, is of the form ¢, = ¢| @ - - - ® ¢ where
¢! are irreducible, ¢; = ¢! and ¢ 2 @] for i # j. In addition, ¢/ factors through a
group of the same type as f;,,. The sets {¢; |i =1,...,r}and {¢; |i=1,...,5s)}
can have nonempty intersection. After rearranging the indices, we can write ¢ as

h q k
9= (@(mi%‘ EBmi@i)) ® < ay) 2mi(pi> ® ( b 2mi(pi>
i=1

i=h+1 i=q+1

r 1
@( . <2m,-+1><pl~>ea( ey <pi>,
i=k+1 i=r+1
where ¢, =€Bf.:k 419 and
0i Zoj, 0i 2@ fori, je{l,...,1}, i #],
©i Z i fori e{l,...,h},
@i = ¢i forie{h+1,...,1},

@; not of the same type as G forie th+1,...,q},
@; of the same type as G forie {g+1,... k}.

Letd =k —g. Lemma 5 implies R, = Zg. In addition, Ry » = R,.
On the other hand, we know that R(7r) = Z5, where c is cardinality of the set

C={ief{l,...,r}|d; xo isreducible}.

This follows from [Goldberg 1994] for G = SO(2n + 1, F) and G = Sp(2n, F),
and from Lemma 6 for G = O(2n, F). We want to show C = {g + 1, ...,k}.
For any i € {1,...,1}, ¢; is an irreducible representation of Wy x SL(2, C) and
therefore it can be written in the form ¢; = ¢! ® S,,, where ¢! is an irreducible
representation of Wr and S, is the standard irreducible a;-dimensional algebraic
representation of SL(2, C). For i € {1, ..., r}, this parameter corresponds to the
representation & (p;, a;). Therefore, the representation §; in (8) is §; = §(p;, a;).
From (3), we have

)
wa:@(pi: @ §0p®Sa.

i=k+1 (p,a)elord(o)

Forie{h+1,..., g}, ¢; is not of the same type as G and 8 (p;, a;) o is irreducible.
Forie{g+1,...,k}, ¢ is of the same type as G. Now, Lemma 3 tells us (pi,ai) e
Jord(o) if and only if 6(p;, ;) % o is irreducible. Therefore, §(p;, a;) X o is
irreducible fori € {k+1, ..., r} and §(p;, a;) ¥ o isreducible fori € {g+1, ..., k}.
It follows C ={g+1,...,k} and R(w) = Zg = Ry, finishing the proof. O



R-GROUPS AND PARAMETERS 295

6. Unitary groups

Let E/F be a quadratic extension of p-adic fields. Fix 6 € Wg\ Wg. Let G=U (n)
be a unitary group defined with respect to E/F, U(n) C GL(n, E). Let

1
-1

We have
LG = GL(n, C) x Wp,

where W acts trivially on GL(n, C) and the action of w € Wp\ Wg on g e GL(n, C)
is given by w(g) = J, ‘g~ 1J L.

6.1. L-parameters for Levi subgroups. Suppose we have a Levi subgroup M =
ResE/F GLk XU(l). Then

Lo — {(g h) ‘g,h € GL(k, C), m € GL(l, a:)}.

Direct computation shows that the action of w € Wr \ Wg on M? is given by

Jk Z‘h—l]k—l

w((*))= m !

Jk lg—l Jk—l

Let 7 be a discrete series representation of GL(k, E) = (Resg,r GLi)(F) and
7 a discrete series representation of U (/). Let ¢, : Wg x SL(2, C) — GL(k, C) be
the L-parameter of = and ¢, : Wr x SL(2, C) — GL(l, C) x Wp the L-parameter
of . Write

@r(w, x) = (¢, (w, x),w), we Wr,xeSLQ2,0C).

According to [Borel 1979, Sections 4, 5 and 8], there exists a unique (up to
equivalence) L-parameter ¢ : Wy x SL(2, C) — M such that

¢((w, x)) = (pz (W), *, *, W) for all w e Wg, x € SL(2, 0),

9
© p((w, x)) = (%, @, (w, x), %, w) forall we Wg,xe€SL(2,C).

We will define a map ¢ : Wi x SL(2, C) — M satisfying (9) and show that ¢ is
a homomorphism. Define

(10)  @((w, x)) = (pr (w, x), @L(w, x), 0 OwO ", )", w),
we Wg,x e SL(2,0)
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and
e(0, 1) = (" 0l 0, 1), 0. (6%, )14, 0).

Note that
P (0%, 1) = (¢.(0, 1), 0) (¢l (0, 1), 6)

= (g, (0. ), V("9 0. )77, 6%)
= (@, (0. D "¢, (0. 1) I, 6%).
It follows that
(11) 9LO. Dol @, D T =l (0%, 1).
Similarly, for w € Wg, x € SL(2, C),

P (OwO ™", x) = (0, D (w, x) (0, 1)
= (¢ (0, 1), 0) (gL (w, x), w)(1, 0™ (@, (6, D7, 1)
= (9.0, ), D, " (w, )" I owo (L0, D7, 1)
= (@, (0. DI "¢ (w, )" Il 0, 1) owe™
and thus
(12) oL (0, DI "ol (w, )7 T ek, DT =gl (Bwe ™!, x).
Now,
ACRICINY)
= (/7 0l @. D, o (0%, 1) U, 0) (I, 0000, 1), 02 (0%, D7 Uk, 6)
= (I 0L, 1), 0r (0%, D)7 Ik, 1) (ke (0%, 1), i 00, D17 07t 67)
= (px (0>, 1), L (0%, 1),' 02 (0%, D", 0%) = (67, 1),
using (11) and (10). Further, for w € Wg, x € SL(2, C), we have

96, Do, x)p®, 1)

= (T @i 0. 1), 9r (0, )7 Ik, 0) (0 (w, x), @ (w, ), @ (OO, x) ™", w)
(L1 1L, 07 (e 0L, DT I e (0%, 1), 1)

= (I @l 0, 1), e (0%, D7V, 1)

Tz QWO ) I T el (w, )T T T (w, )T I Bwe )
(S @0, D7 I o (67, 1), 1)
= (¢ (OwO™", x), gL (OWO ™", x), 07 (O*wH ™2, x) ", Owo 1)
= pOwd ™!, x).
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Here, we use (12) and JZ2 = (J; 1)? = (= 1)*7, so
t¢n(92, 1)71.]1(./1( tgon(w,x)fl.]k_ljk_l tgﬂn(@z, )= t(pn(92w072,x)*1_

In conclusion, ¢ (02, 1) = ¢(@, 1)? and ¢(Owo ™!, x) = @@, De(w, x)p@, 1)~
Since ¢ is clearly multiplicative on Wg x SL(2, C), it follows that ¢ is a homo-
morphism. Therefore, ¢ is the L-parameter for 7 ® 7.

6.2. The coefficients L,. Let ¢ : Wg x SL(2,C) — GLi(C) be an irreducible
L-parameter. Assume ¢ = '(?¢)~!. Let X be a nonzero matrix such that

‘o@wo™!, )" = Xlp(w, x)X,

for all w € Wg, x € SL(2, C). We proceed similarly as in [Mceglin 2002, p. 190].
By taking transpose and inverse,

eOwo™, x) = "X"p(w, x) XL
Next, we replace w by Qw6 ~!. This gives
0%, Dow, x)pB 2, 1) = "X'pOwd ", x) VX 1 ="XXow, x) X' X,

for all w € Wg, x € SL(2, C). Since ¢ is irreducible, go(@‘z, 1)'X X~ !is a constant.
Define

(13) o=@ 2 DIXX
As in [Meeglin 2002], we can show that A, = %1.

Lemma 8. Let ¢ : Wg — GL;(C) be an irreducible L-parameter such that ¢ =
1@p)~1. Let S, be the standard a-dimensional irreducible algebraic representation
of SL(2,C). Then®("(¢ ® S,) N =9 ® S, and

hpws, = (=1 hy.
Proof. We know that S 1 = §,. Let ¥ be a nonzero matrix such that
"Sa) I =Y IS, ()Y,

for all x € SL(2,C). Then'Y =Y fora odd and 'Y = —Y for a even. Let X be a
nonzero matrix such that

‘pOwd )T =X o)X,
for all w € Wg. We have
@ ®Sa(@wo ™, x) ™ = (pOwod ™)) @ (Se(x)™h)
=X 'ow)X)® (Y ' S,(x)Y)
=X®Y) @8, (w,x)QXQY).
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It follows that ? (‘(¢ ® S,) " H = ¢ ® S, and
Apos, = (@@ S0 D)'(XQY)(X®Y)™!
= (@O H'XX HR (YY) = ()4, O
6.3. Centralizers. Let p: Wr xSL(2, C) — LG be an L-parameter. Denote by ¢f

the restriction of ¢ to Wg x SL(2, C). Then ¢ is arepresentation of Wg x SL(2, C)
on V = C". Write ¢ as a sum of irreducible subrepresentations

YE=mp1®--- Dmy,

where m; is the multiplicity of ¢; and ¢; 2 ¢; for i # j. It follows from [Mceglin
2002] that S, the centralizer in G of the image of ¢, is given by

I

(14) = ]—[ C(mig;),
where

GL(m;,C) ifg;i 2 %4,

Cimigi)) =10(m;,C) ifg; =g, Ay = (1",

Sp(m;, C)  ifgi = G, Ay, = (=)
6.4. Coefficients A,. Let LM = GL;(C) x GL4(C) x W, where the action of
w € Wr\ Wg on GL (C) x GL;(C) is given by

w(g, h, Dw™ =, T g e T D,

For n = %1, we denote by R, the representation of “M on Endc (C*) given by

Ry((g,h, 1) - X =gXh™",

R,((1,1,0))- X = nJi "X Jy.

Let 7 denote the nontrivial element in Gal(E/F). Let p be an irreducible unitary
supercuspidal representation of GL(k, E). Assume p = *p. Then precisely one of
the two L-functions L(s, p, Ry) and L(s, p, R_;) has a pole at s = 0. Denote by
A, the value of 1 such that L(s, p, R;) has a pole at s = 0.

Lemma 9. Assume that p is an irreducible unitary supercuspidal representation
of GL(k, E) such that p = " p. Let ¢, be the L-parameter of p. Then Ly, = A,.

Proof. As shown in Section 6.1, the parameter ¢ : Wr — LM corresponding to
¢, : Wg — GLi(C) is given by

_ @p(w)
(15) p(w) = (( t(pp(ewe_l)_l> ) w> )
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for w € Wg, and

J_l
16 0) = k o).
e 0= (" 1y 014)9)

From [Henniart 2010], we have L(s, p, R;) = L(s, R, o). Therefore, L(s, R;,00)
has a pole at s = 0. Then R, o ¢ contains the trivial representation, so there exists
nonzero X € M (C) such that (R;, o ¢)(w) - X = X for all w € Wp. In particular,
(15) implies that for w € W,

0,(W)X ', (wo ™ =X

SO
(17) (W)X = X", @wo )",

Therefore, X is a nonzero intertwining operator between ¢, and ’ (Q(pp)_l. From
(13), we have

(18) 007 XX =2, .
Now, since (R, 0 ¢)(0) - X = X, we have from (16)
X'p,(0%) = 1,X.

By transposing and multiplying by X!, we obtain

0p(0%) =2, XX\,
We compare this to (18). It follows A,, = A,. O
6.5. Jordan blocks for unitary groups. For the unitary group U (n), define

R;=R,, where n=(-1)".

Let o be an irreducible discrete series representation of U (n). Denote by Jord (o)
the set of pairs (p, a), where p € O%(GL(dp, E)), p= *p,and a € ZT, such that
(p, a) satisfies properties (J-1) and (J-2) from Section 2.2.

Lemma 10. Let p be an irreducible supercuspidal representation of GL(d, E)
such that ¢, = 9(7)'/), where ¢, is the L-parameter for p. Then the condition (J-1)
is equivalent to

(J_l//) )‘(Dp@Sa — (_1)n+1.
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Proof. The condition (J-1) says that a is even if L(s, p, Ryz) has a pole at s =0 and
odd otherwise. Observe that

L(s, p, Ry) has apole at s =0 <=1, = (—=1)"
& hg,s, = (D" (=D

(=D g even,

= A =
#o®Sa {(—1)" a odd.

From this, it is clear that (J-1) is equivalent to (J-1"). O

6.6. R-groups for unitary groups.

Lemma 11. Let o be an irreducible discrete series representation of U (n) and let
6 = 8(p, a) be an irreducible discrete series representation of GL(l, E), | = da,
d = dim(p). Let ¢, and ¢ be the L-parameters of p and m = § ® o, respectively.
Then Ry » = R(m).

Proof. Let ¢, be the L-parameter of o. Then
YE ;‘/’p@)Sa@ 9$p®Sa @ ((pa)E-

This is a representation of Wg x SL(2,C) on V = C"*+2 . Write (¢, )£ as a sum of
irreducible components,

(¢a)E=¢1®"‘®¢m-

Each component appears with multiplicity one. The centralizer S, is given by (14).
If 9, 2 °%,, then

m
S, = GL(1, C) x GL(1, C) x [ [ GL(1, ©).
i=1
This implies R, = 1. On the other hand, § x o is irreducible, so R(w) = 1. It
follows Ry » = R(m).
Now, consider the case ¢, = 9%. If o, ® S, €{g1,...,¢n}, then

m—1 m—1
S, Z0(3.C)x [[GL(I.C) and S)=S0@3,C)x []GL(1, ).

i=1 i=1

This gives W, = Wg and R, = 1. Since ¢, ® S; € {¢1, ..., ¢n}, the condition
(J-2) implies that § x o is irreducible. Therefore, R(7) =1= Ry 7.
It remains to consider the case ¢, = 950 and ¢, ® S; ¢ {¢1, ..., ¢m}. Then

(p, a) does not satisfy (J-1”) or (J-2). Assume first that (p, a) does not satisfy
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(J-1"). Then § x o is irreducible, so R(;r) = 1. Since (p, a) does not satisfy (J-17),
we have A, g5, = (—1)" = (—1)"*?. Then, by (14),

m
S, =8p(2,0) x [ [GL(, ©).
i=1
It follows R, ; = 1 = R(m).
Now, assume that (p, a) satisfies (J-1"), but does not satisfy (J-2). Then A, gs, =
(_1)n—1 — (_1)n+2[—1’ SO

S, = 0Q2,0) x [ [GL(1,©)
i=1

and R, ; = Z5. Since (p, a) does not satisfy (J-2), § x o is reducible and hence
R(m)=72=Ry 5. [l
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