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SPECTRAL THEORY FOR LINEAR RELATIONS
VIA LINEAR OPERATORS

DANA GHEORGHE AND FLORIAN-HORIA VASILESCU

We develop a spectral theory for closed linear operators of the form T :
D(T ) ⊂ X 7→ X/X0, where X is a complex Banach space and X0 a closed
vector subspace of it. This approach, essentially expressed in terms of linear
operators, provides a better understanding of the spectral theory for closed
linear relations.

1. Introduction

As in the case of linear operators, the spectral theory of linear relations, including
the associated analytic functional calculus, is an important tool for studying various
properties of these objects and for deriving some of their applications. Results
related to the spectral theory of linear relations and its applications can be found
in [Baskakov and Chernyshov 2002; Baskakov and Zagorskiı̆ 2007; Cross 1998;
Favini and Yagi 1993; Favini and Yagi 1999] and elsewhere.

In this paper we emphasize the strong connection between the spectral theory
of closed linear relations and that of some closed linear operators. As a matter of
fact, we develop a spectral theory for a certain class of linear operators, obtaining
as consequences most of the main spectral properties of linear relations.

Our concept of spectrum is equivalent to that of extended spectrum of a linear
relation, as given by [Baskakov and Chernyshov 2002, Definition 1.5]; see also
[Cross 1998, Section VI.4], where it is called augmented spectrum. In particular,
the point ∞ is in the spectrum unless the quotient range operator is an ordinary
everywhere-defined bounded operator (see Proposition 11).

Let us introduce some notation and definitions.
Let X be a complex Banach space and let B(X) denote the Banach algebra of

all bounded linear operators from X into X . Let also X0 ⊂ X be a closed vector
subspace, and let J0 : X 7→ X/X0 be the canonical projection. The identity operator
on X will be usually denoted by I .
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We are interested in linear operators of the form T : D(T )⊂ X 7→ X/X0, where
D(T ) is, of course, the domain of T . (The use of such operators is inspired by
the works [Albrecht and Vasilescu 1986; Waelbroeck 1982]; see also [Gheorghe
and Vasilescu 2009].) Such an operator is said to be a quotient range operator.
Although X/X0 is itself a Banach space, its quotient space form plays an important
role in what follows. As a matter of fact, the class of closed quotient range operators
is in one-to-one correspondence with the class of closed linear relations (see the
definition below), and they have important similar properties. Note that the formula
T : D(T ) ⊂ X 7→ X/X0 implies that T is a quotient range operator, and in such
situations the expression “quotient range” will be often omitted.

If T : D(T )⊂ X 7→ X/X0, we denote, as usual, by N (T ), R(T ) and G(T ) the
null-space, the range and the graph of T . Let R0(T ) be given by R(T )= R0(T )/X0,
and G0(T ) = {(x, y) ∈ X × X; x ∈ D(T ), J0(y) = T (x)}, which are called, with
the terminology of [Albrecht and Vasilescu 1986], the lifted range and lifted graph,
respectively.

Following Arens [1961], any linear subspace Z of X × X is called a linear
relation in X . Given a linear relation Z ⊂ X × X , we associate it, as usual (see
[Arens 1961; Cross 1998]), with the following subspaces:

D(Z)= {u ∈ X; (u, v) ∈ Z for some v ∈ X}, N (Z)= {u ∈ D(Z); (u, 0) ∈ Z},

R(Z)= {v ∈ X; (u, v) ∈ Z for some u ∈ X}, M(Z)= {v ∈ R(Z); (0, v) ∈ Z}.

The left two are called the domain of Z , the range of Z ; the right are the kernel
of Z and the multivalued part of Z . When M(Z) = {0}, then Z is the graph of a
linear operator. We often identify the relation given by the graph of an operator
with the operator itself.

Given an arbitrary relation Z ⊂ X × X , to avoid any confusion with the inverse
of an operator, we will denote the reverse relation {(y, x) ∈ X × X; (x, y) ∈ Z}
by Z†.

The strong connection between linear relations and quotient range operators is
well known and easily explained; see [Cross 1998; Gheorghe and Vasilescu 2009]
for example. Namely, given an operator T : D(T )⊂ X 7→ X/X0, the space ZT =

G0(T )⊂ X×X is a linear relation. Conversely, given a linear relation Z ⊂ X×X ,
with M(T ) closed (which is automatic in the framework which will be used in the
sequel), the linear operator Q Z : D(Z) 7→ X/M(Z), given by Q Z (x)= y+M(Z)
whenever (x, y) ∈ Z , is a quotient range operator. Moreover, this correspondence
is one-to-one. This connection will be exploited to develop a spectral theory for
linear relations. The simple but crucial remark leading to this development is that
for a closed relation Z ⊂ X×X , the reverse relation Z† is (the graph of) a bounded
operator if and only if the operator Q Z : D(Z) 7→ X/M(Z) has a bounded inverse.
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Given a linear relation Z and a complex number λ ∈ C, we consider the linear
relations λI−Z={(u, λu−v); (u, v)∈ Z} and (λI−Z)†={(λu−v, u); (u, v)∈ Z}
(see Section 5). If we assume that Z is closed, N (λI−Z)={0} and R(λI−Z)= X ,
then we have that (λI − Z)† is (the graph of) a closed everywhere-defined linear
operator (which is, in general, neither surjective nor injective; see Example 32),
and hence (λI−Z)† ∈B(X). Because the bounded operator (λI−Z)† exists if and
only if the operator λJZ−Q Z : D(Z)⊂ X 7→ X/M(Z) has a bounded inverse (see
Remark 4(ii)), where JZ : X 7→ X/M(Z) is the canonical projection, the spectral
theory of these objects can be simultaneously developed. However, in our opinion,
the spectral theory of quotient range operators is easier to handle.

Our main tool is an analytic functional calculus for quotient range operators,
defined in Section 2 by using the classical Riesz–Dunford–Waelbroeck integral
formula; see [Dunford and Schwartz 1958; Waelbroeck 1954]. A similar formula,
valid for linear relations, is also used in [Baskakov and Chernyshov 2002]. Never-
theless, an analytic functional calculus in its full generality seems to appear only
in the present work.

The analytic functional calculus allows us to recapture, in terms of operators,
most of the main spectral properties known for linear relations; see especially
[Cross 1998; Baskakov and Chernyshov 2002]. Among some simplifications, we
mention that our approach avoids the use of the concept of pseudoresolvent, as well
as that of invariant subspace, as done in [Baskakov and Chernyshov 2002]. Other
differences between our approach and that of the quoted works will be discussed in
due course. We should also mention that a calculus with the exponential function
and with fractional powers has been already used in [Favini and Yagi 1993] to
obtain a Hille–Yoshida–Phillips-type theorem for linear relations.

The paper is organized as follows. In Section 2, we introduce a notion of spec-
trum for quotient range operators (equivalent to that for linear relations) in the
Riemann sphere C∞, and construct a functional calculus with analytic functions in
neighborhoods of this spectrum. As mentioned above, our Theorem 16, asserting
in particular the multiplicativity of the analytic functional calculus, seems to be
new in this context (as well as in that of linear relations). In Section 3, we study
quotient range operators with unbounded spectrum and nonempty resolvent set.
The existence of a spectral decomposition corresponding to separate parts of the
spectrum as well as a spectral mapping theorem are presented herein. In Section 4,
we study the class of quotient range operators for which the point∞ is an isolated
point of the spectrum. In Section 5, we investigate some connections between the
analytic functional calculus and the Arens polynomial calculus [Arens 1961].
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2. Spectrum and analytic functional calculus for closed quotient range
operators

As in the introduction, X denotes a complex Banach space, X0 a closed vector
subspace of it, and J0 : X 7→ X/X0 the canonical projection. The symbol C∞

denotes the one-point compactification of C. We designate by B(X, Y ) the Banach
space of all bounded linear operators from X into another Banach space Y . As
usually, B(X, X) is denoted by B(X).

Let T : D(T ) ⊂ X 7→ X/X0 be a closed linear operator. We denote by ρA(T )
the Arens resolvent set of T , that is, the set of those λ ∈C such that (λJ0−T )−1

∈

B(X/X0, X). The Arens spectrum of T is the set σA(T ) := C \ ρA(T ). Because
λJ0−T : D(T )⊂ X 7→ X/X0 is closed, we have λ ∈ ρA(T ) if and only if λJ0−T
is bijective.

Remark 1. Given two complex Banach spaces X1, X2, we denote by X1 ⊕ X2

their direct sum, endowed with a convenient norm, compatible with the norms of
X1, X2.

Let T j : D(T j )⊂ X j 7→ X j/X0 j for j = 1, 2 be quotient range operators. Then
the map

T1⊕ T2 : D(T1)⊕ D(T2)⊂ X1⊕ X2 7→ (X1/X01)⊕ (X2/X02)

may be regarded as a quotient range operator, provided we identify the Banach
space (X1/X01)⊕(X2/X02) with the Banach space (X1⊕X2)/(X01⊕X02), using
the natural isomorphism

V : (X1/X01)⊕ (X2/X02) 7→ (X1⊕ X2)/(X01⊕ X02)(1)

given by the assignment

(X1/X01)⊕ (X2/X02) 3 (x1+ X01)⊕ (x2+ X02) 7→

x1⊕ x2+ X01⊕ X02 ∈ (X1⊕ X2)/(X01⊕ X02).

We write
T1⊕q T2 := V (T1⊕ T2).

In particular, given T : D(T ) ⊂ X 7→ X/X0 closed such that there are closed
vector subspaces X1, X2 of X and X01, X02 of X0 with X = X1⊕ X2, X0= X01⊕

X02, D(T )= (D(T )∩X1)⊕(D(T )∩X2), and closed operators T j : D(T j )⊂ X j 7→

X j/X0 j with D(T j )= D(T )∩ X j for j = 1, 2 and T (x1⊕ x2)= V (T1x1⊕ T2x2)

for all x1⊕ x2 ∈ D(T1)⊕ D(T2), we have T = T1⊕q T2.

Definition 2. Let T : D(T )⊂ X 7→ X/X0 be closed.
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(1) Assume σA(T ) bounded, and let m ≥ 0 be an integer. The point ∞ is said
to be m-regular for T if the set {λ1−m(λJ0− T )−1 J0; |λ| ≥ r} is bounded in
B(X) for some r > supλ∈σA(T ) |λ|.

(2) If∞ is not 0-regular we put σ(T )= σA(T )∪ {∞}.

(3) Assume∞ to be 0-regular and X0 6= {0}. If T = T0⊕q T1, T0 : {0} ⊂ X0 7→

X0/X0 = {0}, we put σ(T )= σA(T )∪ {∞}; otherwise, σ(T )= σA(T ).

(4) If∞ is 0-regular and X0 = {0}, we put σ(T )= σA(T ).

The set σ(T ) is called the spectrum of T , and the set ρ(T )= C∞ \σ(T ) is called
the resolvent set of T .

The set σ(T ) is nonempty except for X0 = X = {0} (see Proposition 7), but
it may be equal to C∞. For practical reasons, in this paper we work only with
(quotient range) operators with nonempty resolvent set.

Example 3. The well-known fact that any continuous linear operator on a Banach
space X has a bounded spectrum is no longer true in the case of quotient range
operators, as we can see in the following example.

Let X be the Hilbert space of all square-summable complex sequences, let
A ∈B(X) be the shift

A((x1, x2, x3, . . . )= (0, x1, x2, . . . )

and let
X0 = {(x1, x2, 0, 0, . . . ) : x1, x2 ∈ C}.

Consider the operator T defined by T x = Ax + X0 for x ∈ X . Clearly T is con-
tinuous and thus closed. We will show that σ(T ) is unbounded. Let λ ∈ C. We
have

x ∈ N (λJ0− T )⇐⇒ λx − Ax + y = 0 for some y ∈ X0,

⇐⇒

−λx1 = y1,

x1− λx2 = y2,

xk − λxk+1 = 0 for k ≥ 2

 for some y1, y2 ∈ C.

For |λ|> 1 and x1, x2 ∈ C consider x3 =−x1/λ
2
− x2/λ. Then

(−x1/λ, x3, x3/λ, . . . , x3/λ
k, . . . ) ∈ N (λJ0− T ),

which implies that N (λJ0− T ) 6= {0} for |λ|> 1. Consequently,

{λ ∈ C : |λ|> 1} ⊂ σ(T ),

so σ(T ) is unbounded.
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Remark 4. (i) For a closed operator T : D(T ) ⊂ X 7→ X — in particular for
an everywhere defined bounded operator on X — Definition 2 provides the usual
definition of the spectrum. Note that the density of D(T ) in X is not required. For
instance, if A is the operator from Example 3, which is injective, and T = A−1,
then T is not densely defined but 0 /∈ σ(T ), so ρ(T ) 6=∅.

Note also that if 0 : {0} ⊂ X 7→ X , we have σ(0)=C∞ if X 6= {0} and σ(0)=∅
if X = {0}, by Definition 2.

If X0 = X 6= {0} and 0 : {0} ⊂ X 7→ X/X0 = {0}, then 0 is a quotient range
operator, whose Arens spectrum is empty, and σ(T )= {∞}, by Definition 2.

(ii) Let Z ⊂ X × X be a closed relation. It is clear that the subspace M(Z) ⊂ X
is closed. As in the introduction, we consider the (quotient range) operator Q Z :

D(Z) 7→ X/M(Z) given by Q Z (x) = y + M(Z) whenever (x, y) ∈ Z , which is
closed.

Let JZ : X 7→ X/M(Z) be the canonical projection. Given λ ∈ C, the operator
λJZ−Q Z is again closed. If (λI−Z)† ∈B(X), then λJZ−Q Z has an everywhere-
defined, and hence bounded, inverse. Indeed, (λI − Z)† exists if and only if for
every u ∈ X we can find a unique x ∈ X such that (x, y) ∈ Z and λx − y = u for
some y ∈ X . Moreover, x = 0 if and only if u ∈M(Z). Hence λJZ x−Q Z x = JZ u,
showing that λJZ − Q Z is bijective.

Conversely, if Q Z is closed, then Z is closed. In addition, if λJZ − Q Z is
bijective, for every u ∈ X we put x = (λJZ−Q Z )

−1 JZ u. Then we have λx− y= u
for some y ∈ X with (x, y)∈ Z , and so (λI−Z)† does exist. Evidently, (λI−Z)†=
(λJZ − Q Z )

−1 JZ .
From this discussion it clearly follows that we may define the Arens resolvent

set and Arens spectrum of a closed relation Z ⊂ X × X by the equalities ρA(Z)=
ρA(Q Z ) and σA(Z)=σA(Q Z ), respectively. Similarly, we may define the resolvent
set and spectrum of a closed relation Z ⊂ X × X via the equalities ρ(Z)= ρ(Q Z )

and σ(Z) = σ(Q Z ). Consequently, most of the spectral properties obtained for a
quotient range operator can be translated into properties for linear relations. This
definition of the spectrum of a linear relation coincides with the corresponding
definition [Cross 1998, Definition VI.4.1] or [Baskakov and Chernyshov 2002,
Definition 1.5], because the condition lim|λ|→∞(λI − Z)† = 0 is equivalent to the
fact that∞ is a 0-regular point for Q Z .

In fact, given an integer m ≥ 0, we may say that the point∞ is m-regular for
the closed linear relation Z if∞ is m-regular for the operator Q Z .

As an example, if Z = {0} × X (X 6= {0}), then D(Z) = {0}, M(Z) = X and
Q Z : {0} ⊂ X 7→ X/X = {0}. Therefore, σ(Z)= σ(Q Z )= {∞}, as in (i).

Definition 5. Let T :D(T )⊂ X 7→ X/X0 be closed, with ρA(T ) 6=∅. The function

ρA(T ) 3 λ 7→ (λJ0− T )−1 J0 ∈B(X)
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is called the resolvent (function) of T . We also put R(λ, T )= (λJ0− T )−1 J0.

As in the case of linear relations (see [Cross 1998; Favini and Yagi 1993]), we
have a resolvent equation, which is very useful for the construction of the analytic
functional calculus.

Lemma 6. If λ,µ ∈ ρA(T ), then

R(µ, T )− R(λ− T )= (λ−µ)R(µ, T )R(λ, T ).

Proof. Indeed, for all λ,µ ∈ ρA(T ), we have the identity

(µJ0− T )−1 J0− (λJ0− T )−1 J0 = (λ−µ)(µJ0− T )−1 J0(λJ0− T )−1 J0,

which is easily checked. �

As in the case of ordinary operators, the resolvent set is open and the resolvent
function is holomorphic on it.

Proposition 7. The resolvent sets ρA(T ) and ρ(T ) are open subsets of C and C∞

respectively, and the resolvent function λ 7→ R(λ, T ) is holomorphic on ρA(T ),
with values in B(X), having an analytic extension to ρ(T ), whenever∞ ∈ ρ(T ).
In particular, the spectrum σ(T ) is a closed subset of C∞, which is nonempty
provided X0 6= X or X = X0 6= {0}.

Proof. We may assume ρ(T ) 6= ∅. The proof is similar to the corresponding one
for linear relations; see for instance [Cross 1998, Section VI.1]. Because of some
differences, we shall sketch an appropriate proof.

Let λ0 ∈ ρ(T ). We show that there exists a neighborhood V ⊂ C∞ of λ0 such
that V ⊂ ρ(T ). We have the following situations.

First, if λ0 = ∞, it follows from Definition 2 that there exists r > 0 such that
{|λ|> r} ⊂ ρ(T ).

Second, assume λ0 ∈ ρA(T ) and that R(λ0, T ) 6= 0. Then, if |λ − λ0| <

‖R(λ0, T )‖−1, then λ ∈ ρ(T ) and

R(λ, T )= R(λ0, T )(I + (λ− λ0)R(λ0, T ))−1,

implying, in particular, the holomorphy of R(λ, T ) in this open disc.
Third, next assume R(λ0, T ) = 0. Then J0 = 0, and so X = X0. Moreover,

R(λ, T )= 0 for all λ ∈ C.
If X = X0 = {0}, then ρA(T )= C, ρ(T )= C∞ by Definition 2.
If X = X0 6= {0}, then D(T )={0} (otherwise ρ(T )=∅) and ρA(T )=ρ(T )=C,

again by Definition 2.
Note that the assumption X = X0 6= {0} implies σ(T ) 3 {∞}. Finally, suppose

that X0 6= X and σ(T ) = ∅. Then R(λ, T ) is analytic in C and has an analytic
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extension at∞. By Liouville’s theorem, it follows that R(λ, T ) is a constant oper-
ator, say C0. Since∞ is a 0-regular point of T , we must have C0 = 0. Therefore,
as above, X = X0, which is not possible. �

Remark 8. If σA(T ) is bounded, according to Proposition 7 we have a develop-
ment in B(X) of the form

R(λ, T )=
∞∑

k=−∞

λkCk,

where the series is uniformly convergent when r1 ≤ |λ| ≤ r2 for fixed r2 ≥ r1 >

supλ∈σA(T ) |λ|. This representation shows that ∞ is m-regular for some integer
m ≥ 0 if and only if Ck = 0 for all k ≥ m. In particular, if m ≥ 2, the point∞ is
m-regular for T if and only if∞ is a pole of R(λ, T ) of order ≤m−1. As already
noted,∞ is a 0-regular point of T if and only if limλ→∞ R(λ, T )= 0, while∞ is
a 1-regular point if and only if limλ→∞ R(λ, T ) exists in B(X).

Henceforth, to avoid quotient range operators with empty spectrum, we assume
that either X0 6= X or X = X0 6= {0}, if not otherwise specified.

Definition 9. Let T : D(T )⊂ X 7→ X/X0 be closed, with ∅ 6= ρ(T ).

(i) We denote by O(T ) the set of all complex-valued functions f , each of them
defined and analytic in an open set containing σ(T ) and depending on f .
By identifying any two functions equal in a neighborhood of σ(T ) (that is,
considering O(T ) as the set of germs of analytic functions in neighborhoods
of σ(T )), we may and will regard O(T ) as an algebra.

(ii) Let F⊂C∞ be closed and let U be an open neighborhood of F . An admissible
contour surrounding F in U is a finite system of rectifiable Jordan curves 0,
positively oriented, which is the boundary of an open set 1 ⊂ 1 ⊂ U , with
1⊃ F . Note that 0 ∩ F =∅ and that 0 is a compact set in C.

(iii) We define the analytic functional calculus for the quotient range operator T
as follows. Let f ∈ O(T ). We set

f (T ) :=

{
(2π i)−1

∫
0

f (λ)R(λ, T )dλ if∞ /∈ σ(T ),

f (∞)I + (2π i)−1
∫
0

f (λ)R(λ, T )dλ if∞∈ σ(T ),

where0 is an admissible contour surrounding σ(T ) in the domain of definition
of f .

Remark. Via Proposition 7, f (T ) is a continuous linear operator on X that does
not depend on 0.

The next result seems to be new even in the context of linear relations.
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Proposition 10. For every quotient range closed operator T with ∅ 6= ρ(T ), the
map f 7→ f (T ) of O(T ) into B(X) is an algebra morphism. If σ(T ) 3 ∞, this
morphism is unital.

Proof. Clearly the map f 7→ f (T ) is linear. To prove the multiplicativity of the
application f 7→ f (T ), we follow the lines of [Vasilescu 1982, Proposition III.3.4],
via Lemma 6.

Consider first the case∞∈ σ(T ).
Let f, g ∈ O(T ) and let U ⊂ C∞ be open in the domain of definition of both

f, g, with σ(T ) ⊂ U . Let 1 and 11 be open sets such that their boundaries 0
and 01, respectively, are admissible contours surrounding σ(T ) in U , and such
that σ(T )⊂1⊂1⊂11 ⊂11 ⊂U . Then we have

f (T )g(T )

= f (∞)g(∞)I+ f (∞) 1
2π i

∫
01

g(µ)R(µ, T )dµ+g(∞) 1
2π i

∫
0

f (λ)R(λ, T )dλ

+
1

2π i

∫
0

f (λ)R(λ, T )dλ 1
2π i

∫
01

g(µ)R(µ, T )dµ

= f (∞)g(∞)I+ f (∞) 1
2π i

∫
01

g(µ)R(µ, T )dµ+g(∞) 1
2π i

∫
0

f (λ)R(λ, T )dλ

+
1

2π i

∫
0

f (λ)
( 1

2π i

∫
01

(µ− λ)−1g(µ)(R(λ, T )− R(µ, T ))dµ
)

= f (∞)g(∞)I + 1
2π i

∫
0

f (λ)g(λ)R(λ, T )dλ= ( f g)(T ),

via Lemma 6 and the Cauchy formula at infinity for analytic functions.
If∞ /∈ σ(T ), the proof is similar and will be omitted.
If σ(T ) 3∞, by letting p0 be the constant polynomial equal to 1, we may take

as 0 the boundary of a closed disc in ρ(T ) (negatively oriented). Since R(λ, T ) is
analytic in ρ(T ), it follows that

∫
0

R(λ, T )dλ= 0, so p0(T )= I . �

The next result corresponds to [Baskakov and Chernyshov 2002, Lemma 2.2],
whose proof uses an ergodic theorem from [Hille and Phillips 1957]. We give a
direct proof based on Proposition 10.

Proposition 11. Given a closed operator T : D(T ) ⊂ X 7→ X/X0, the spectrum
σ(T ) is a bounded subset of C if and only if X0 = 0 and T ∈B(X).

Proof. We use some ideas from [Vasilescu 1982, Lemma III.3.5]; see also [Hille
and Phillips 1957].

Assume σ(T ) bounded, and fix an r > 0 such that σ(T ) ⊂ {λ ∈ C; |λ| < r}.
From the analyticity of the resolvent function (Proposition 7), it follows that there
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exists a sequence (Cn)n≥0 ⊂B(X) such that

R(λ, T )=
∞∑

n=0

λ−nCn uniformly with respect to |λ| ≥ r.

The operator C0, given by the equality C0 = limλ→∞ R(λ, T ), is necessarily 0
because∞ is 0-regular

We define the bounded linear operators

E = 1
2π i

∫
|λ|=r

R(λ, T )dλ and A = 1
2π i

∫
|λ|=r

λR(λ, T )dλ.

Because
1

2π i

∫
|λ|=r

λndλ=
{

0 if n 6= −1,
1 if n =−1,

we have

1
2π i

∫
|λ|=r

λk R(λ, T )dλ= 1
2π i

∫
|λ|=r

λk
∞∑

n=0

λ−nCndλ

=

∞∑
n=0

( 1
2π i

∫
|λ|=r

λk−ndλ
)

Cnr = Ck+1

for all integers k ≥ 0. Consequently C1= E and An
=Cn+1. The same proposition

shows that E2
= E and An E = E An

= An . On the other hand, if |λ| ≥ r , then

λ−1 I + λ−2 A+ · · · = (λI − A)−1,

which implies that

(2) R(λ, T )= E(λI − A)−1.

Let
X1 = (I − E)(X) and X2 = E(X).

Hence X = X1⊕ X2 because E is a projection. Setting A2 = A|X2 and using the
fact that AE = E A, we have

(λI − A)−1
|X2 = (λI2− A2)

−1,

whenever |λ| ≥ r , where I2 is the identity on X2. This together with (2) implies

(3)
R(λ, T )(X1)⊂ X1, R(λ, T )|X1 = 0|X1,

R(λ, T )(X2)⊂ X2, R(λ, T )|X2 = (λI2− A2)
−1
|X2,

whenever |λ| ≥ r .



SPECTRAL THEORY FOR LINEAR RELATIONS VIA LINEAR OPERATORS 359

Set 01 = 0|X1 . Let u ∈ D(T ) and let v ∈ X with J0v = T u. Then we have
R(λ, T )(λu − v) = u for a fixed λ with |λ| ≥ r . Write u = u1+ u2, v = v1+ v2,
with u j , v j ∈ X j for j = 1, 2. Using (3), we have in fact that

R(λ, T )(λu1− v1)= 0= u1 and R(λ, T )(λu2− v2)= u2.

These relations imply that

v1 ∈ N (01)= X1,(4)

(λI2− A2)
−1(λu2− v2)= u2,(5)

From (5) we obtain that A2u2 = v2. This calculation shows that D(T )⊂ {0}⊕ X2,
and that T (0⊕ u2)= v1+ A2u2+ X0 whenever 0⊕ u2 ∈ D(T ).

If u = 0, then we may take as v ∈ X with J0v = T u = 0 any vector v ∈ X0. The
decomposition 0 = u1 + u2 shows that u1 = u2 = 0. Then, from (4) and (5) we
derive v1 ∈ X1 and v2 = 0. Therefore, X0 ⊂ X1. As T (01v1⊕ 0) = 0 = v1 + X0

for every v1 ∈ X1, we must have X0 = X1.
In fact, D(T ) = {0} ⊕ X2. Indeed, if A2u2 = v2 for some u2 ∈ X2, taking into

account (5), we have

(λI2− A2)
−1(λu2− v2)= u2 = R(λ, T )(λu2− v2) ∈ D(T ).

In summary, we have now two closed vector subspaces X1 and X2 of X with
X = X1 ⊕ X2, the operator 01 ∈ B(X1), an operator A2 ∈ B(X2), X0 = X1,
D(T ) = {0} ⊕ X2, and T : {0} ⊕ X2 7→ (X1 ⊕ X2)/X1 is given by T (0⊕ x2) =

0⊕ A2x2 + X1 for all 0⊕ x2 ∈ {0} ⊕ X2. Setting T1 : {0} ⊂ X1 7→ X1/X1 = {0}
and T2 = A2 : X2 7→ X2, we obtain T = T1⊕q T2. Assuming X1 6= {0}, we must
have σ(T ) 3 {∞} via Definition 2, which is not possible. Therefore, which is not
possible. Therefore, X1 = {0}, and so T = A2 ∈B(X2)=B(X).

Conversely, the conditions in the statement from above are obviously sufficient
to insure the boundedness of the spectrum of T . �

Remark 12. From the previous proof it follows that if∞ is 0-regular for T , then
T = T1⊕q T2, where T1 : {0}⊂ X1 7→+X1/X1={0}, and T2 : X2 7→ X2 is bounded.

Corollary 13. Let T : D(T )⊂ X 7→ X/X0 be closed. Then σ(T )= σA(T ) if and
only if T ∈B(X), and σ(T )= σA(T )∪ {∞} otherwise.

In particular, if T : D(T ) ⊂ X 7→ X is a closed operator, the spectrum of T is
a bounded subset of C if and only if T ∈B(X).

The next result is related to [Baskakov and Chernyshov 2002, Lemma 2.2].

Corollary 14. Let Z ⊂ X×X be a closed relation. The spectrum of Z is a bounded
subset of C if and only if Z is the graph of an operator in B(X).
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The spectrum of a direct sum of two quotient range operators behaves as one
expects (see also Lemma 2.1 from [Baskakov and Chernyshov 2002], in the context
of linear relations):

Corollary 15. If T : D(T )⊂ X 7→ X/X0 is closed and has the form T = T1⊕q T2,
then σ(T )= σ(T1)∪ σ(T2).

Proof. Note that J0 = J01 ⊕q J02, where J0 j : X j 7→ X j/X0 j are the canonical
projections for j = 1, 2. We have to show that ρ(T )= ρ(T1)∩ρ(T2). We have the
following cases.

First, fix λ ∈ ρ(T )∩C. Setting S = λJ0−T, S j = λJ0 j −T j , j = 1, 2, we have
to show that S= S1⊕q S2 is bijective if and only if both S1, S2 are bijective, which
is routine and is left to the reader. In fact, we obtain that

(6) (λJ0− T )−1
= ((λJ01− T1)

−1
⊕ (λJ02− T2)

−1)V−1,

where V is given by (1). Therefore,

(7) R(λ, T )= R(λ, T1)⊕ R(λ, T2).

This clearly shows that σA(T )= σA(T1)∪ σA(T2).
Second, we have only to note that T ∈B(X) if and only if T j ∈B(X j ) ( j =1, 2),

which easily leads to the equality σ(T )= σ(T1)∪ σ(T2), via Corollary 13. �

A general result concerning the existence of an analytic functional calculus for
quotient range closed operators is the following.

Theorem 16. For every quotient range closed operator T with ∅ 6= ρ(T ), the map
f 7→ f (T ) of O(T ) into B(X) is a unital algebra morphism. If σ(T ) is bounded,
then T ∈B(X) and p1(T )= T , where p1(λ)= λ for all λ ∈ C.

Proof. If σ(T ) is unbounded, the assertion follows from Proposition 10. If σ(T )
is bounded, then T ∈B(X) by Proposition 11, and the assertion is classical. �

Remark 17. (i) For every f ∈ O(T ), we have

f (T )|X0 =

{
f (T )|{0} = 0 if∞ /∈ σ(T ),
f (∞)I if∞∈ σ(T ).

Indeed, we clearly have∫
0

f (λ)R(λ, T )dλ=
(∫

0

f (λ)(λJ0− T )−1dλ
)

J0,

for each admissible contour 0 surrounding σ(T ), which in turn implies the
desired equalities.
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This remark also shows that f (T )(X0) ⊂ X0 for every f ∈ O(T ). This
allows us to define an operator f ◦(T ) ∈B(X/X0), given by

f ◦(T )(x + X0) := f (T )x + X0 for x ∈ X,

for all f ∈ O(T ). In other words, f ◦(T )J0 = J0 f (T ) for all f ∈ O(T ).

(ii) If∞ is an isolated point of σ(T ), then E = (2π i)−1
∫
0

f (λ)R(λ, T )dλ is a
projection, where 0 is a contour surrounding σA(T ).

(iii) If Z ⊂ X× X is a closed relation with nonempty resolvent set, we may define
the operator f (Z) := f (Q Z ) for every analytic function from O(Z) := O(Q Z )

(see Remark 4(ii)). This provides an analytic functional calculus for Z , whose
properties are easily derived from those valid for Q Z (see also [Baskakov and
Chernyshov 2002, formula (2.8)] for a similar but partial approach.)

3. Quotient range operators with unbounded spectrum

As before, let X be a complex Banach space, let X0 be a closed vector subspace
of X , and let J0 : X 7→ X/X0 be the canonical projection. Let also T : D(T ) ⊂
X 7→ X/X0 be closed. We may consider on D(T ) the graph norm given by

‖x‖T := ‖x‖+ inf
J0 y=T x

‖y‖ for x ∈ D(T ).

It is well known that when endowed with this norm, the vector space D(T ) becomes
a Banach space; see for instance [Cross 1998, Section IV.3]. With the terminology
from [Waelbroeck 1982], (D(T ), ‖ · ‖T ) becomes a Banach subspace of X , which
will be occasionally denoted by DT .

It is obvious that the maps T : DT 7→ X/X0 and JT : DT 7→ X/X0, with
JT = J0|DT , are continuous.

Throughout this section, T : D(T ) ⊂ X 7→ X/X0 will be a closed (quotient
range) operator, with∞∈ σ(T ) and a nonempty resolvent set.

Lemma 18. For every function f ∈O(T ) and each admissible contour 0 surround-
ing σ(T ), the map

X 3 x 7→
∫
0

f (λ)R(λ, T )xdλ

has values into the Banach space DT and is continuous.
In particular, if f (∞)= 0, then f (T ) is a continuous operator from X into DT .

Proof. Indeed, R(λ, T )= (λJ0−T )−1 J0 : X 7→DT is in B(X, DT ) for all λ∈ρ(T ),
and hence

2π i( f (T )− f (∞))=
∫
0

f (λ)(λJ0− T )−1 J0dλ ∈B(X, DT ),
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which implies the assertions. �

We recall that for any quotient range operator T and each function f ∈ O(T ),
we denote by f ◦(T ) the operator induced by f (T ) in X/X0; see Remark 17(i).

Lemma 19. Let f ∈ O(T ) be such that f1(λ) = λ f (λ) ∈ O(T ). Then T f (T ) =
J0 f1(T )= f ◦1 (T )J0.

Proof. It is clear that f (∞)= 0. Let 0 be an admissible contour surrounding σ(T )
in the domain of definition of f . We have

T ( f (T )x)= 1
2π i

∫
0

f (λ)T (λJ0− T )−1 J0xdλ

= J0

(
−

1
2π i

∫
0

f (λ)xdλ+ 1
2π i

∫
0

λ f (λ)(λJ0− T )−1 J0xdλ
)

= J0( f1(T )x)= f ◦1 (T )J0x,

because −(1/2π i)
∫
0

f (λ)dλ= f1(∞). �

Remark 20. With the notation from the previous lemma, if x ∈ D(T ) and y ∈ X
satisfy J0 y = T x , then f1(T )x = f (T )y. Indeed,

f1(T )x = f1(∞)x +
1

2π i

∫
0

λ f (λ)(λJ0− T )−1 J0xdλ

=
1

2π i

∫
0

f (λ)(λJ0− T )−1 J0 ydλ= f (T )y,

because (1/2π i)
∫
0

f (λ)xdλ=− f1(∞)x , as noticed before.

Lemma 21. For all f ∈ O(T ) and x ∈ D(T ), we have T f (T )x = f ◦(T )T x.

Proof. Because the function λ f (λ) is not necessarily in O(T ), we need an argument
different from that in the proof of Lemma 19.

If (x, y) ∈ G0(T ), then J0 y = T x . Therefore, for a fixed λ ∈ ρ(T ),

(8) T R(λ, T )x =−J0x + λJ0(λJ0− T )−1 J0x = J0 R(λ, T )y.

Let 0 be an admissible contour surrounding σ(T ) in the domain of f ∈ O(T ),
positively oriented. We have, via (8), that

T
∫
0

f (λ)R(λ, T )xdλ= J0

∫
0

f (λ)R(λ, T )ydλ,

implying T f (T )x = J0 f (T )y. Consequently,

T f (T )x = J0 f (T )y = f ◦(T )J0 y = f ◦(T )T x for all x ∈ D(T ). �
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The next result is a version of the idempotent theorem in the context of quo-
tient range operators. For a similar result in the context of linear relations, see
[Baskakov and Chernyshov 2002, Theorem 2.3]. Unlike the result there, our proof
uses essentially Theorem 16.

Theorem 22. Let T : D(T ) ⊂ X 7→ X/X0 be a quotient range operator with
σ(T )3∞ and assume that there are two nonempty disjoint closed sets F, H ⊂C∞

such that σ(T )= F∪H. Then there exist closed vector subspaces X F and X H with
X = X F ⊕ X H , and operators TF : D(TF ) ⊂ X F 7→ X F/X0F and TH : D(TH ) ⊂

X H 7→ X H/X0H , where X0F ⊂ X F , X0H ⊂ X H and X0 = X0F ⊕ X0H , such that
D(T )= D(TF )⊕ D(TH ) and T = TF ⊕q TH .

In addition, σ(TF )= F and σ(TH )= H.

Proof. To fix the ideas, assume that ∞ ∈ F . We choose open sets U and V in
C∞ such that U ⊃ F , V ⊃ H and U ∩ V = ∅. Then the characteristic functions
χU and χV of the sets U and V respectively, restricted to U ∪ V , are analytic. We
put PF = χU (T ) and PH = χV (T ). Since χ2

U = χU , and by a similar relation
for χV , the operators PF and PH are projections via Proposition 10. Moreover,
PF PH = PH PF = 0 and PF + PH = I .

In fact, since∞∈ F , we have

PF = I + 1
2π i

∫
0F

R(λ, T )dλ, and PH =
1

2π i

∫
0H

R(λ, T )dλ,

where 0F and 0H are admissible contours surrounding F and H in U and V ,
respectively.

Note that PH |X0 = 0 and PF |X0 is the identity on X0; see Remark 17(i).
Lemma 21 shows that if x ∈ D(T ), then PF x ∈ D(T ), and T PF x = P◦F T x ,

where P◦F =χ
◦

U (T ). Similarly, PH x ∈ D(T ) and T PH x = P◦H T x . This also shows
that D(T )= (D(T )∩ PF (X))⊕ (D(T )∩ PF (H)).

Let X F = PF (X) and X H = PH (X). Obviously, X = X F ⊕ X H . We have
X0 ⊂ X F , and we put X0F = X0 and X0H = {0}.

Let TF = T |(D(T )∩X F ). For each x ∈ D(TF ) := D(T ) ∩ X F , Lemma 21 gives
TF x ∈ X F/X0F . Similarly, if TH =T |(D(T )∩X H ) for each x ∈D(TH ) :=D(T )∩X H ,
we have TH x ∈ X H/X0H = X H . Consequently,

T (xF ⊕ xH )= TF (xF )⊕ TH (xH ) ∈ (X F/(X0F )⊕ (X H/(X0H )

for all xF ∈ D(TF ) and xH ∈ D(TH ), and so T = TF ⊕q TH .
Let us show that σ(TF )⊂ F .
Let µ ∈ C \ F . With no loss of generality we may suppose that µ /∈ U . Then

the function fµ(λ)= (µ−λ)−1χU (λ) is analytic in U ∪V , null at infinity, and we
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may define the operator

fµ(T )=
1

2π i

∫
0F

fµ(λ)R(λ, T )dλ= PF fµ(T ).

Because we have (µ−λ) fµ(λ)=χU (λ), it follows that µ fµ(T )− f1,µ(T )= PF ,
where f1,µ(λ)= λ fµ(λ) ∈ O(T ).

Let us show that µJF − TF is injective, where JF : X F 7→ X F/X0 is J0|X F .
Assuming that for an x ∈ D(TF ) one has µJF x = TF x , and fixing an y ∈ X F with
JF y = TF x , we have µx − y ∈ X0. Because fµ(∞)= 0, we infer that

0= fµ(T )(µx − y)= 1
2π i

∫
0F

fµ(λ)(λJ0− T )−1 J0(µx − y)dλ

=
1

2π i

∫
0F

((χU (λ)R(λ, T )x + f1,µ(λ)R(λ, T )x − fµ(λ)(λJ0− T )−1 J0 y)dλ

= PF x = x,

where we have used the equality f1,µ(T )x = fµ(T )y, via Remark 28.
Let us show that µJF − TF is surjective. Let y = PF y ∈ X F . Note that y =

µ fµ(T )y − f1,µ(T )y, as we have seen above. Moreover, by Lemma 19 J0 y =
µJ0 fµ(T )y−T fµ(T )y. Therefore, (µJF−TF )

−1 exists for all µ /∈U . Since U is
an arbitrary open neighborhood of F , it follows that (µJF−TF )

−1 JF = fµ(T )|X F

for all µ /∈ F .
We show now that σ(TH )⊂ H . First of all, we identify the space (X H+X0)/X0

with X H , and so J0|X H = IH , where IH is the identity on X H . Note also that
TH : D(TH ) 7→ X H is a simply closed operator.

Fixing µ ∈ C \ H , we may suppose that µ /∈ V . Then the function gµ(λ) =
(µ − λ)−1χV (λ) is analytic in U ∪ V , null at infinity, and we can consider the
operator gµ(T )= PH gµ(T ).

Because we have (µ−λ)gµ(λ)=χV (λ), it follows that µgµ(T )−g1,µ(T )= PH ,
where g1,µ(λ)= λgµ(λ) ∈ O(T ).

Proceeding as in the previous case, we derive that µIH −TH : D(TH ) 7→ X H is
bijective. In fact, (µIH − TH )

−1
= gµ(T )|X H for all µ /∈ H . We omit the details.

We have only to note that

‖gµ(T )|X H‖ ≤
1

2π dist(µ, 0H )

∫
0H

‖R(λ, T )‖|dλ|,

implying that∞ is 0-regular for TH . In other words, σ(TH )⊂ H .
Since we already have σ(TF ) ⊂ F and σ(TH ) ⊂ H , it suffices to prove that

σ(TF )∪ σ(TH )= σ(T ). Indeed, this follows from Corollary 15, showing that we
must have σ(TF )= F and σ(TH )= H . �
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A result similar to [Baskakov and Chernyshov 2002, Theorem 2.3] follows
directly from the previous theorem:

Corollary 23. Let Z ⊂ X × X be a closed relation with σ(Z) 3 ∞. Assume that
there are two nonempty disjoint closed sets F, H ⊂ C∞ such that σ(Z) = F ∪ H.
Then we have a decomposition Z = Z F ⊕ Z H with Z F and Z H closed relations
and σ(Z F )= F and σ(Z H )= H.

We end this section with a version of the spectral mapping theorem. A similar
result valid for linear relations can be found in [Baskakov and Chernyshov 2002,
Theorem 2.5], whose proof uses Gelfand’s theory (see also Corollary 10 there).
Our proof is different and is based on Theorems 16 and 22.

Theorem 24. For every f ∈ O(T ), we have σ( f (T ))= f (σ (T )).

Proof. Fix an f ∈ O(T ). Let µ /∈ f (σ (T )) with µ 6= ∞. Then the function
gµ(λ)= (µ− f (λ))−1 is in O(T ). It is plain that (µI − f (T ))gµ(T )= I , showing
that gµ(T )= (µI − f (T ))−1, and so σ( f (T ))⊂ f (σ (T )) (that it is 0-regular for
f (T ) is obvious).

Conversely, let µ0 ∈ f (σ (T )), so µ0= f (λ0) for some λ0 ∈ σ(T ). Assume that
µ0 /∈ σ( f (T )).

In the case λ0 6= ∞, we consider the function h(λ) = (λ0 − λ)
−1(µ0 − f (λ)),

which can be clearly extended at λ= λ0, and this extension belongs to O(T ). Note
that λ0h(T )− h1(T )= µ0 I − f (T ), where h1(λ)= λh(λ) ∈ O(T ). Therefore,

(9) λ0h(T )(µ0 I − f (T ))−1
− h1(T )(µ0 I − f (T ))−1

= I.

This shows that for each v ∈ X we have

(λ0 J0− T )h(T )(µ0 I − f (T ))−1v = J0v

via Lemma 19. Therefore, λ0 J0− T is surjective.
Further, let x ∈ X be such that (λ0 J0− T )x = 0, and let y ∈ X with J0 y = T x .

Using (9), we have

x = (µ0 I − f (T ))−1(λ0h(T )− h1(T )x)= (µ0 I − f (T ))−1h(T )(λ0x − y)= 0

via Remark 20, and that J0(λ0x − y) = 0 and h(∞) = 0; see also Remark 17(i).
This shows that λ0 J0 − T is injective too. Consequently, λ0 J0 − T is invertible,
which is not possible.

In the case that λ0 = ∞, and there exists a sequence (λm)m≥1 in σA(T ) such
that limm→∞ λm = λ0, then f (λm) ∈ σ( f (T )) for all m ≥ 1 by the first part of the
proof, implying f (∞) ∈ σ( f (T )).

Finally, if∞ is an isolated point of σ(T ), then, according to Theorem 22, there
is a decomposition X = X1⊕X∞, and setting T∞= T |D(T )∩X∞ , we have σ(T∞)=
{∞}. Because we have σ( f (T∞)) ⊂ f (σ (T∞)) = { f (∞)} by the first part of the
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proof, we must actually have σ( f (T∞)) = { f (∞)} since σ( f (T∞)) is nonempty.
Consequently, f (∞) ∈ σ( f (T )), as a consequence of Corollary 15 and of the
equality f (T )= f (T1)⊕q f (T∞), where T1 = T |X1 ∈B(X1). �

Theorem 2.5 from [Baskakov and Chernyshov 2002] is then a consequence of
the preceding theorem:

Corollary 25. If Z is a closed relation with nonempty resolvent set and unbounded
spectrum, we have σ( f (Z))= f (σ (Z)) for all f ∈ O(Z).

Using Theorem 24, we get the superposition of the analytic functional calculus:

Proposition 26. Let f ∈ O(T ) and let g ∈ O( f (T )). Then we have g ◦ f ∈ O(T )
and (g ◦ f )(T )= g( f (T )).

Proof. The property g ◦ f ∈ O(T ) follows easily from Theorem 24. The proof
of the equality (g ◦ f )(T ) = g( f (T )) follows the lines of the similar assertion in
[Vasilescu 1982, Theorem III.3.10(4)]. Specifically, we may choose an admissible
contour 0 surrounding σ(T ) such that 01 = f (0) surrounds σ( f (T )). Then

g( f (T ))= 1
2π i

∫
01

g(µ)R(µ, f (T ))dµ

=
1

2π i

∫
01

g(µ)
(
(µ− f (∞))−1 I+ 1

2π i

∫
0

(µ− f (λ)−1)R(λ, T )dλ
)

dµ

= g( f (∞))I+ 1
2π i

∫
0

( 1
2π i

∫
01

g(µ)(µ− f (λ)−1)dµ
)

R(λ, T )dλ

= g( f (∞))I+ 1
2π i

∫
0

g( f (λ))R(λ, T )dλ= (g◦ f )(T ),

which proves the result. �

A result similar to [Baskakov and Chernyshov 2002, Corollary 2.4] can be also
obtained with our techniques:

Proposition 27. We have σ(T ) = {∞} if and only if there is a quasinilpotent
operator Q ∈ B(X) such that T : R(Q) 7→ X/N (Q), T (Qx) = x + N (Q) for
x ∈ X.

Proof. Assume σ(T ) = {∞}. If h(λ) = λ−1 (λ 6= 0), we have h ∈ O(T ) and
h(∞)= 0. Therefore, by Lemma 19, h(T )x ∈ D(T ) for all x ∈ X , and T h(T )x =
J0h1(T )x = J0x , where h1(λ) = 1 for all λ. Hence h(T ) = T−1 J0, showing that
D(T ) = R(h(T )) and N (h(T )) = X0. We have only to remark that σ(h(T )) =
h({∞})= {0}, showing that Q = h(T ) is quasinilpotent.

Conversely, if there is a quasinilpotent operator Q ∈B(X) such that T : R(Q) 7→
X/N (Q), T (Qx)= x+N (Q) for x ∈ X , then one has (λJ0−T )−1(y+N (Q))=
(λQ− I )−1 Qy for all y ∈ X and λ ∈ C. Hence, σ(T )= {∞}.

Note also that R(λ, T )= (λQ− I )−1 Q, λ ∈ C. �
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Remark 28. The spectrum of the relation Z ⊂ X × X is equal to {∞} if and only
if Z is the reverse of the graph of a quasinilpotent operator Q ∈ B(X). This can
be deduced either from the previous result or directly, from the fact that Z† is a
bounded operator and the equality

(λ−1 I − Z†)† = λI + λ2(λI − Z)† for λ 6= 0;

see for instance [Sandovici 2006, (2.1.2)] or [Baskakov and Chernyshov 2002,
Corollary 2.4].

4. Quotient range operators with bounded Arens spectrum

In this section we study those quotient range operators for which the point ∞ is
isolated and m-regular, for some integer m ≥ 1. We discuss the case m = 0 in
Remark 12. Similar results for linear relations can be also found in [Baskakov and
Chernyshov 2002, Section 3]. We start with a version of Proposition 27.

Proposition 29. Let T :D(T )⊂ X 7→ X/X0 be closed with σ(T )={∞}. The point
∞ is m-regular for T for some integer m ≥ 1 if and only if there exists Q ∈B(X)
such that Qm+1

= 0, and T : R(Q) 7→ X/N (Q) is given by T (Qx) = x + N (Q)
for all x ∈ X.

Proof. The condition is sufficient by Proposition 27. Let us prove its necessity.
With the notation from Remark 8, because σ(T )= {∞} and so R(λ, T ) should

be of the form −
∑
∞

k=0 λ
kCk for all λ ∈ C, we must have Ck = 0 for all k ≥ m.

Therefore, R(λ, T )=−
∑m−1

k=0 λ
kCk . For the rest of the proof, we sketch an alge-

braic argument.
For any two distinct points λ and µ in C, the resolvent equation shows that

(µ− λ)

m−1∑
k=0

∑
p+q=k

λpµqC pCq =−

m−1∑
k=0

(λk
−µk)Ck .

Hence ∑
p+q=k−1

(λ−µ)λpµqC pCq = (λ
k
−µk)Ck

whenever 1≤ k ≤m−1, implying by recurrence C0Ck−1=Ck , and so Ck =Ck+1
0 .

Therefore, taking Q = C0, we must have Qm+1
= Cm = 0.

Finally, since R(λ, T ) = Q(λQ − I )−1, we infer the equality, T−1 J0 = Q,
showing that X0= N (Q), D(T )= R(Q), and T Qx = x+N (Q) for all x ∈ X . �

The next result is related to [Baskakov and Chernyshov 2002, Theorem 3.1].

Theorem 30. Let T : D(T ) ⊂ X 7→ X/X0 be closed, with σA(T ) bounded and
∞ ∈ σ(T ). The point∞ is m-regular for some integer m ≥ 1 if and only if there
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are closed vector subspaces X1 and X2 of X with X = X1 ⊕ X2, an operator
A1 ∈B(X1) with Am+1

1 = 0, another operator A2 ∈B(X2), with X0= N (A1)⊕{0},
D(T ) = R(A1)⊕ X2, and T = T1 ⊕q T2, where T1(A1x1) = x1 + N (A1) for all
x1 ∈ X1, and T2 = A2.

In addition, σA(T )= σ(A2).

Proof. Assume that T is closed, with σA(T ) bounded, such that the point∞ is m-
regular for some integer m ≥ 1. Then σ(T )= F ∪{∞}, where F := σA(T ). Since
F is bounded, according to Theorem 22 and Proposition 27, there exist closed
vector subspaces X F and X∞ with X = X F ⊕ X∞, and operators TF : X F 7→ X F

and T∞ : D(T∞)⊂ X∞ 7→ X∞/X0∞, with σ(TF )= F and σ(T∞)= {∞}, where
X0∞=N (Q∞)= X0, D(T∞)= R(Q∞)⊕X F , and Q∞∈B(X∞) is quasinilpotent.
Moreover, T∞(Q∞x)= x + N (Q∞) for all x ∈ X∞, and T = T∞⊕q TF . In fact,
since∞ is m-regular for T , it is also m-regular for T∞. Therefore, Qm+1

∞
= 0 by

Proposition 29. The assertion from the statement is obtained for A1 = Q∞ and
A2 = TF .

Conversely, if T = T1⊕q T2 with the stated properties, then σ(T1) = {∞} and
∞ is m-regular for T2 by Proposition 29, and so σA(T ) = σ(T2) is bounded and
∞ is m-regular also for T , by (7). �

A part of [Baskakov and Chernyshov 2002, Theorem 3.1] is now obtained as a
consequence of the previous theorem.

Corollary 31. Given a closed linear relation Z ⊂ X × X with σA(Z) a bounded
subset of C and∞ not 0-regular, the set {|λ|1−m

‖(λ− Z)†‖; |λ| ≥ r} is bounded
for an integer m ≥ 1 and some r > sup{|λ|; λ ∈ σA(Z)} if and only if there exist
closed linear subspaces X1 and X2 with X1⊕ X2 = X , and operators A1 ∈B(X1)

with Am+1
1 = 0, and A2 ∈B(X2), such that

Z = G(A1)
†
⊕G(A2).

In this case, one has σA(Z)= σ(A2).

Example 32. Let P ∈ B(X) be a proper projection, and let Z = G(P)†. Clearly
Z†
= P and thus 0∈ ρ(Z), and so Z† is neither injective nor surjective. In fact, we

can now easily compute the spectrum of Z . Setting X1 = N (P) and X2 = R(P),
we have that X = X1⊕ X2. Therefore Z = G(01)

†
⊕G(I2), where 01 is the null

operator on X1 and I2 is the identity on X2. Using Corollary 31, it follows that
σ(Z)= σ({0})∪ σ(I2)= {∞}∪ {1}.

Remark 33. Let Z be a densely defined closed linear relation such that, for some
r > 0, we have {λ; |λ| > r} ⊂ ρA(Z) and R = {(λI − Z)†; |λ| > r} is a bounded
subset of B(X). Then σA(Z) is bounded, possibly empty. Let us show that σA(Z)
is nonempty. If ∞ is 0-regular, the assertion follows via Corollary 14 (see also
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Remark 12). Assuming that σA(Z) is empty and∞ is not 0-regular, Corollary 31
shows that σ(A2) is empty, leading to X2= {0}, and A2

1= 0. Since D(Z)= R(A1)

is dense, the closure of R(A1) should be equal to X . Therefore A1 = 0 implying
R(A1) = {0}, and so X = {0}, which is not possible. Consequently, σA(Z) is
nonempty.

One can see that the conditions from above on Z are more general than those
from [Cross 1998, Theorem VI.3.3], leading to the same conclusion.

5. Applications to Arens polynomial calculus

Given the linear relations Z , Z1, Z2 in X × X , and α ∈ C, we may consider, as
usual (see e.g., [Arens 1961; Cross 1998]), the following linear relations in X . The
composition of Z1 and Z2:

Z1 ◦ Z2 = {(u, w) ∈ X × X; (u, v) ∈ Z2, (v,w) ∈ Z1 for some v ∈ X},

which will be also denoted by Z1 Z2. The sum of Z1 and Z2:

Z1+ Z2 = {(u, v+w); u ∈ D(Z1)∩ D(Z2), (u, v) ∈ Z1, (u, w) ∈ Z2}.

The product of Z by a number α ∈ C:

αZ = {(u, αv); (u, v) ∈ Z} = α I ◦ Z ,

where we identify the operator α I with its graph. Note that Z1 + Z2 is not an
algebraic sum and that 0Z is the null operator on D(Z).

For a linear relation Z ⊂ X × X we write

Zn
:= Z ◦ Z ◦ · · · ◦ Z︸ ︷︷ ︸

n
for n ∈ N∗.

If p(z) = α0+ α1z + · · · + αnzn for z ∈ C, following Arens [1961] we define the
relation

pA(Z) := α0 I +α1 Z + · · ·+αn Zn.

Remark 34. Let Z , Z1 and Z2 be linear relations defined on a linear space X . The
following assertions, which are well known, follow by a simple calculation.

(i) For any ξ, η ∈ C, one has that (ξ I − Z)(ηI − Z)= (ηI − Z)(ξ I − Z).

(ii) (Z1 Z2)
†
= Z†

2 Z†
1 .

We recall that the symbol σA(Z) denotes the Arens spectrum of the linear rela-
tion Z ; see Remark 4(ii). We also define ρA(Z) := C \ σA(Z).

The next proposition enables us to apply the results from the previous sections
to linear relations of the form pA(Z); see also [Kascic 1968, Theorem 3.16].
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Proposition 35. If Z is a closed linear relation on the Banach space X such that
ρA(Z) 6=∅ and p is a polynomial, then pA(Z) is a closed linear relation on X.

Proof. Fix a λ∈ ρA(Z), so (λI−Z)† ∈B(X). Using [Brezis 1983, Theorem III.9],
we obtain that (λI − Z)† is continuous from (X, σ (X, X ′)) to (X, σ (X, X ′)).
Therefore we can finish by applying [Kascic 1968, Theorem 3.16]. �

The next results show that the functional calculus introduced in Theorem 16
agrees, in some sense, with the Arens polynomial calculus.

Remark 36. Let Z be a closed linear relation in X such that σ(Z) = {∞} and
the point∞ is m-regular for some integer m ≥ 1. Let us compute pA(Z), where
p(z) = α0 + α1z + · · · + αnzn for z ∈ C. According to Corollary 31 (see also
Remark 12), there exists Q ∈ B(X) such that Qm+1

= 0 and Z = G(Q)†. Hence
Z k
= G(Qk)† for all integers k ≥ 0. In particular, Z k

= G(0)† if k ≥ m + 1. In
other words, pA(Z)= pA(G(Q)†). Therefore, if n = 0 we have pA(Z)= α0G(I );
if 1≤ n ≤ m we have

pA(Z)= α0G(I )+α1G(Q)†+ · · ·+αnG(Qn)†

= {(x0, α0x0+α1x1+ · · ·+αnxn); x0 = Qx1 = · · · = Qnxn};

and if n ≥ m+ 1,

pA(Z)= {(0, α1x1+ · · ·+αm xm + ym); Qx1 = · · · = Qnxn = 0, ym ∈ X},

Proposition 37. Let Z be a closed linear relation in X such that the point ∞ is
m-regular for Z for some integer m ≥ 1. Then there exist closed linear subspaces
X1 and X2 with X1 ⊕ X2 = X , and operators A1 ∈ B(X1) with Am+1

1 = 0, and
A2 ∈B(X2), such that

pA(Z)= pA(G(A1)
†)⊕G(pA(A2)),

with pA(G(A1)
†) computed as in Remark 36.

Proof. If Z = Z1 ⊕ Z2, then pA(Z) = pA(Z1) ⊕ pA(Z2). In particular, using
Z1=G(A1)

† and Z2=G(A2) obtained by Corollary 31 (see also Remark 12), we
deduce the formula from the statement. Clearly, the computation of pA(G(A1)

†)

is given by Remark 36 for Q = A1. �

Proposition 38. Let Z be a closed linear relation with σ(Z)3∞, and let f ∈O(Z).
Assume that fn(λ) = λ

n f (λ) ∈ O(Z), where n ≥ 1 is an integer. Then we have
( f (Z)x, (p f )(Z)x) ∈ pA(Z) for all polynomials p of degree n and all vectors
x ∈ X.

Proof. Set fk(λ)= λ
k f (λ) ∈ O(Z) for 1≤ k ≤ n. It follows, as in Lemma 19, that

( f (Z)x, f1(Z)x) ∈ Z . Similarly, ( fk−1(Z)x, fk(Z)x) ∈ Z for all k = 2, . . . , n.
Consequently, ( f (Z)x, fk(Z)x) ∈ Z k for all k = 1, . . . , n.
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If p(z)= a0+ a1z+ · · ·+ anzn (z ∈ C), then

( f (Z)x, (p f )(Z)x)= ( f (Z)x, a0 f (Z)x + a1 f1(Z)x + · · ·+ an fn(Z)x ∈ pA(Z).
�

We have the following spectral mapping theorem for polynomials.

Proposition 39. Let Z be a closed linear relation on the Banach space X such that
ρ(Z) 6=∅ and let p be a nonconstant polynomial.

(i) σA(pA(Z))= p(σA(Z)).

(ii) If ∞ ∈ σ(pA(Z)), then ∞ ∈ σ(Z). Conversely, if ∞ ∈ σ(Z) and ∞ is not
isolated in σ(Z), then∞∈ σ(pA(Z)).

Proof. (i) This part follows with minor changes as [Arens 1961, Theorem 2.5]. For
this reason, we omit the details.

(ii) Assume that∞∈ σ(pA(Z)). Assuming∞ /∈ σ(Z), we deduce that Z =G(T ),
with T ∈B(X), via Corollary 14. In this case, as we have pA(Z)=G(pA(T )) and
pA(T ) ∈B(X), we infer that∞ /∈ σ(pA(Z)), which is not possible.

Conversely, assume that ∞ ∈ σ(Z) and that ∞ is not isolated in σ(Z). Then
we can find a sequence (λn)n in σ(Z) such that limn→∞ λn = ∞. Since µn =

pA(λn)∈ σ(p(Z)) for all n by (i), it follows that∞= limn→∞ µn ∈ σ(pA(Z)). �

Remark. If Z = {0} × X and p(z) = α0, then σ(Z) = {∞}, while σ(pA(Z)) =
σ(α0 I )={α0}. In other words, there is a linear relation Z with∞ isolated in σ(Z)
such that∞ /∈ σ(pA(Z)) for some polynomial pA.
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