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Homogeneous links were introduced by Peter Cromwell, who proved that
the projection surface of these links, given by the Seifert algorithm, has
minimal genus. Here we provide a different proof, with a geometric rather
than combinatorial flavor. To do this, we first show a direct relation between
the Seifert matrix and the decomposition into blocks of the Seifert graph.
Precisely, we prove that the Seifert matrix can be arranged in a block tri-
angular form, with small boxes in the diagonal corresponding to the blocks
of the Seifert graph. Then we prove that the boxes in the diagonal have
nonzero determinant, by looking at an explicit matrix of degrees given by
the planar structure of the Seifert graph. The paper also contains a com-
plete classification of homogeneous knots of genus one.

1. Introduction

Throughout this paper, we assume that all links and diagrams are oriented. Let F
be a spanning surface for an oriented link L , and let b : F × [0, 1] → R3 be a
regular neighborhood. Identify F with F × {0}. The associated Seifert matrix
M = (ai j )1≤i, j≤n of order n is defined by the linking numbers ai j = lk(ai , a+j ),
where the ai are simple closed oriented curves in F whose homology classes form
a basis B of H1(F), and a+i = b(ai × 1) is the lifting of ai out of F, in F × {1}.
Then

n = rk H1(F)= 2g(F)+µ− 1= 1−χ(F),

where g(F) and χ(F) are the genus and Euler characteristic of F , and µ is the
number of components of the link. Homology with coefficients in Z is assumed
throughout the paper.

Let ∇L(z) and 1L(x) be the Conway and Alexander polynomials of L , in the
variables z and x respectively, as defined in [Cromwell 2004]. Upon the substitu-
tion z = x−1

− x , we have ∇L(z) = 1L(x) = det(x M − x−1 M t). Therefore the
coefficient c of the highest degree term in ∇L(z) is (−1)n det M and the degree
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of ∇L(z) is n, whenever det M does not vanish. In general deg∇L(z) ≤ n, which
provides the famous lower bound on the genus, deg∇L(z)−µ+ 1 ≤ 2g(F), and
in particular it allows us to deduce that F is a minimal genus spanning surface for
L if det M 6= 0.

Now suppose that the spanning surface F has been constructed by applying the
Seifert algorithm to a diagram D of the link L . We briefly summarize the main
features of this construction: start with a diagram D in the xy-plane. For each
Seifert circle α a Seifert disc a is built in the plane z = k, if there are exactly k
Seifert circles that contain α; we say that the height of a is k and write h(a) = k.
This collection of discs lives in the upper half-space R3

+
and they are stacked in

such a way that when viewed from above, the boundary of each disc is visible.
To complete the projection surface, insert small twisted rectangles (called bands
from now on) at the site of each crossing, choosing the half-twist according to
the corresponding crossing. Following [Cromwell 2004], we call F a projection
surface.

We can now define a graph G contained in F as follows: take a vertex in each
Seifert disc of F and, if two discs are joined by a band, join the corresponding
vertices by an edge contained in the band. Label the edge with the sign of the
associated crossing in the diagram D. This graph, called the Seifert graph of D,
is in fact a planar graph. The rank rk G of G, as defined in graph theory, is one
minus the number of vertices plus the number of edges. Since χ(F)= s(D)−c(D),
where s(D) is the number of Seifert circles and c(D) is the number of crossings
of D, it follows that rk G = rk H1(F).

In general, we can consider the decomposition G = B1∪· · ·∪Bk of the graph G
into its blocks, which are the maximal connected subgraphs without cut vertices.
The part of the projection surface (bands and Seifert discs) that corresponds to a
block Bi is a submanifold of F and will be denoted by FBi , or simply Fi . The
graph G is a deformation retract of the surface F , taking Fi onto Bi ; in particular
H1(F) ∼= H1(G) taking H1(Fi ) onto H1(Bi ) and rk G = rk H1(G), an equality
sometimes taken as a definition. Now, a basis of H1(G), hence a basis B of H1(F),
can be obtained by juxtaposing basis Bi of H1(Bi ), since the cycles in G are
precisely the cycles of its blocks [Diestel 2005, Lemma 3.1.1]. In particular, the
rank of G is the sum of the ranks of its blocks.

Let Mi , where i = 1, . . . , k, be the Seifert matrix defined by any basis Bi of
H1(Bi ) (hence of H1(Fi )). Our main result is this:

Theorem 6. Let D be a connected diagram of an oriented link L. Let G be the
corresponding Seifert graph and G = B1 ∪ · · · ∪ Bk its decomposition into blocks.
Then there is an order in the set of blocks of G for which the Seifert matrix for the
projection surface is upper block triangular. More precisely, if Mi is the Seifert
matrix that corresponds to any basis Bi of H1(Bi ), i = 1, . . . , k, there exists a
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permutation σ ∈ Sk such that the Seifert matrix takes on the form



B+σ(1) B+σ(2) . . . B+σ(k)
Bσ(1) Mσ(1) 0 . . . 0

Bσ(2) ∗ Mσ(2)
. . .

...
...

...
. . .

. . . 0
Bσ(k) ∗ . . . ∗ Mσ(k)

.
A link is homogeneous if it has a homogeneous diagram, which is a diagram

in which all the edges of each block of its Seifert graph have the same sign. Al-
ternating and positive diagrams (links) are homogeneous diagrams (links). The
knot 943 is an example of a homogeneous link that is neither positive nor alternat-
ing. Homogeneous links were introduced in [Cromwell 1989]. In knot theory the
adjective homogeneous was first applied to a certain class of braids in [Stallings
1978]. Certainly, the closure of a homogeneous braid is a homogeneous diagram,
although there are homogeneous links that cannot be presented as the closure of a
homogeneous braid, just as there are alternating links that cannot be presented as
the closure of alternating braids. In Cromwell proved the following basic result on
homogeneous links:

Theorem [Cromwell 1989; 2004]. Let D be a connected homogeneous diagram
of an oriented homogeneous link L and let G be the corresponding Seifert graph.
Then the highest degree of ∇L(z) is the rank of G. Let G = B1 ∪ · · · ∪ Bk be the
decomposition of G into blocks and Mi , i = 1, . . . , k, the corresponding Seifert
matrices. Then det Mi 6= 0 for i = 1, . . . , k, and the leading coefficient of ∇L(z) is

k∏
i=1

ε
ri
i |det Mi |

where εi is the sign of the edges in Bi and ri = rk Bi .

Corollary. A projection surface constructed from a connected homogeneous dia-
gram of an oriented link is a minimal-genus spanning surface for the link.

Cromwell’s proof is based on a previous construction of a specific resolving
tree for calculating the Conway polynomial [Cromwell 2004, Lemma 7.5.1]. This
means that no crossing is switched more than once on any path from the root of
the tree to one of its leaves. The skein relation is then considered, at both the
level of the diagram and the corresponding Seifert graph, having in mind that to
obtain terms involving powers of z when resolving the resolution tree, a crossing
must be smoothed in the diagram D, or equivalently, an edge must be deleted from
the graph G. A direct proof of the corollary has been recent and independently
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suggested by M. Hirasawa. The proof, outlined in [Abe 2011] (see also [Ozawa
2011]), is strongly based on a difficult result from [Gabai 1983], which states that
the sum of Murasugi of minimal genus surfaces is a minimal-genus surface. Hira-
sawa applies this result to the portions Fi above defined.

In this paper we give a different proof of Cromwell’s theorem, based on the close
relation between the Seifert matrix and the decomposition into blocks of the Seifert
graph stated in Theorem 6. The key point is the understanding of how the parts
of the projection surface corresponding to the blocks are geometrically positioned
among them. We remark that Theorem 6 can be useful even when the diagram is
not homogeneous. A special case, involving fibered knots of genus two formed by
plumbing Hopf bands, was already considered in [Melvin and Morton 1986]. We
deal with this topic in Section 2.

Since a homogeneous block of the Seifert graph corresponds to an alternating di-
agram, each little box in the diagonal of the Seifert matrix has nonzero determinant,
according to the work by K. Murasugi [1958a; 1958b; 1960] and independently
Crowell [1959]. Murasugi’s proof was accomplished by working on the Alexan-
der matrix of the Dehn presentation of the link, while Crowell worked with the
Wirtinger presentation of the fundamental group. In this paper we will prove this
result, the second ingredient of our argument, by looking at an explicit matrix of
degrees that uses the planar structure of the Seifert graph (Theorem 9). This will
be done in Section 3.

Section 4 contains a complete classification of genus-one homogeneous knots.

2. An order for the blocks and the Seifert matrix

The main achievement of this paper is to prove that there is a certain ordered
basis of the first homology group of the projection surface for which the Seifert
matrix has a block triangular form. We need first to prove that, in a certain sense,
there are only two types of blocks, or more precisely, there are only two possible
configurations for the portions FB associated to a block B.

Let a, b be two Seifert discs. We say that a contains b (written
a ⊃ b) if the projection onto the xy-plane of a contains that of b
(see figure). Equivalently, the Seifert circle associated to a
contains that associated to b, in the xy-plane.
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�����
�����

a
b

Remark 1. If we project the projection surface onto the xy-plane, the only self-
intersections of its boundary are given by the crossings of the original diagram D,
and they are produced by the half-twists of the bands.

In particular the arrangement on the right is not
possible. As a result we obtain the next lemma.
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Lemma 2. Let a, b be two Seifert discs connected by a band. Then exactly one of
the following three statements holds:

(1) a ⊃ b and h(b)= h(a)+ 1.

(2) b ⊃ a and h(a)= h(b)+ 1.

(3) h(a)= h(b).

The proof is easy and left to the reader. Now, we can prove that there are
basically two types of blocks. Precisely:

Theorem 3. Let D be a diagram, F its projection surface and G the corresponding
Seifert graph. Then all the Seifert discs associated to a block of G have the same
height, except possibly one of them which contains all the other, being its height
one less.

Proof. Suppose that a and b are two Seifert discs with different height connected
by a band, both associated to the same block. By Lemma 2 we may assume that
one contains the other; say a ⊃ b. It turns out that there is no other Seifert disc
associated to the block with height lower than b, since that would make the vertex
corresponding to a a cut vertex, according to Remark 1. Analogously, any other
disc above b would make (the vertex corresponding to) b a cut vertex. �

Hence we have two possible arrangements for (the Seifert discs that correspond
to) a block: type I (fried eggs type) and type II (fried eggs with a pan type). In
a type II block, the pan is the Seifert disc with lowest height. The two types of
blocks are illustrated here:

Fried eggs Fried eggs with a pan

Following Cromwell [1989] or Murasugi [1958a; 1958b] we say that a (Seifert)
circle is of type I if it does not contain any other circle; otherwise it is of type II.
When a type II circle has other circles outside, it is called a decomposing circle.
By definition, a special diagram does not contain any decomposing circle. Note
that a type II circle is the boundary of the pan of a type II block, assuming that the
diagram is connected.

Now, recall from the introduction that the part of the projection surface that
corresponds to a block Bi is denoted by Fi , which is a submanifold of F . Recall
also that, since the cycles of a graph are the cycles of its blocks, we have that a
basis of H1(F) can be obtained by juxtaposing a basis for each block.
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Remark 4. Two different Fi ’s can have at most one common Seifert disc; hence
F is the Murasugi sum of the portions Fi ’s. The proof by Hirasawa mentioned in
the introduction follows from this fact.

In order to prove the main theorem, we need the following result of graph theory:

Lemma 5. Let G be a connected finite graph with at least one cut vertex. Then
there is a block of G which has exactly one cut vertex of G.

Proof. It can be deduced from Proposition 3.1.2 of [Diestel 2005]. It follows a
direct argument: delete any cut vertex v0 of C0 = G and consider C1 = C ′1 ∪ {v0}

where C ′1 is any connected component of C0− {v0}. We remark that, under these
assumptions, the cut vertices of C1 are exactly the cut vertices of G that lie in C1,
except for v0, and that any block of C1 is a block of G. If C1 has no cut vertices,
then it is the wanted block. Otherwise we select a cut vertex v1 of C1 and consider
C2 = C ′2 ∪ {v1} where C ′2 is a connected component of C1 − {v1} with v0 /∈ C ′2.
Repeating this process, we finally get a k ∈ N such that Ck has no cut vertices,
hence being the wanted block. Otherwise we would obtain an infinite sequence of
distinct vertices {v0, v1, v2, . . . } in the finite graph G, a contradiction. �

Theorem 6. Let D be a connected diagram of an oriented link L. Let G be the
corresponding Seifert graph and G = B1 ∪ · · · ∪ Bk its decomposition into blocks.
Then there is an order in the set of blocks of G for which the Seifert matrix for the
projection surface is upper block triangular. More precisely, if Mi is the Seifert
matrix that corresponds to any basis Bi of H1(Bi ), i = 1, . . . , k, there exists a
permutation σ ∈ Sk such that the Seifert matrix takes on the form



B+σ(1) B+σ(2) . . . B+σ(k)
Bσ(1) Mσ(1) 0 . . . 0

Bσ(2) ∗ Mσ(2)
. . .

...
...

...
. . .

. . . 0
Bσ(k) ∗ . . . ∗ Mσ(k)


Proof. By Lemma 5, there exists a block B which has exactly one cut vertex. Let
D be the Seifert disc associated to the unique cut vertex in B. Translated to the
surface, this means that the geometric block FB is separated from the rest of the
surface F , with D as the unique intersection.

We may assume, by induction on the number of blocks, that the Seifert matrix
for F\(FB\D) is upper triangular for a suitable order of the rest of blocks Bi ’s.
Suppose now that the positive orientation of the disc D, that looking at F×{1}, is
upwards. Then, the basis that corresponds to the block B must be added

– at the beginning if B is of type I, or D is an egg of the type II block B,

– at the end if D is the pan of the type II block B.
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Indeed, if the positive orientation of D were downward, these statements must
be interchanged.

In the following displayed figures, the shadowed discs correspond all to the
block B; the disc D, partially shadowed, is part of the two considered blocks,
B and any other block Bi previously ordered. On D there is an oriented arrow
looking upwards, indicating the positive orientation. Suppose now that g, gi ∈

H1(F) correspond to the blocks B and Bi respectively. We have to analyze the
three possible cases:

(1) Suppose that B is of type I. We have to see that lk(g, g+i ) = 0. This can be
easily checked if Bi is of type I, or Bi is of type II and the disc D is its pan. And it
is also true if Bi is of type II being D an egg of Bi , since in this case the eggs would
be on different half parts of the pan. To see this, project both blocks B and Bi onto
the plane z = h(D) − 1, hence the Seifert discs at height h(D) are now nested
inside the pan of the block Bi (all the eggs in the same pan). By Remark 1 there
is no intersections other than those given by the half-twists of the bands, which
means that the two blocks are basically in separated half parts of the pan of Bi . In
particular, a band crossed like this is not possible:

(2) Suppose that B is of type II, and the disc D is an egg of B. As in the previous
case, we have to see that lk(g, g+i ) = 0. This can be easily checked if any other
block Bi is of type I, or (see figure below) Bi is of type II and the disc D is the
pan of Bi .

Note that D cannot be an egg of another type II block Bi . Indeed, if it were,
again by Remark 1, the pan would be the same for B and Bi , hence the blocks B
and Bi would share at least two vertices. But, by their maximality, different blocks
of G overlap in at most one vertex.

(3) Suppose that B is of type II, and the disc D is its pan. In this case we have to
see that lk(gi , g+) = 0. This can be easily checked if the block Bi is of type I, or
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the disc D is an egg of a type II block Bi . And it is also true if the disc D is the pan
of another type II block Bi , since in this case, by a similar argument to that used
in the first case, the eggs would be on different half parts of the pan, the crossed
band shown here not being possible:

�

Example 7. Suppose that we wish to find the block triangular form for the Seifert
matrix of the link shown here:

We draw the corresponding Seifert circles and Seifert graph:

We decompose the Seifert graph into blocks B1, B2 and B3, from left to right:

B1 B2 B3

Here is projection surface:

We can consider B = B1 as the block with only one cut vertex. Then, if the
positive orientation of D is upwards, for the other two blocks the suitable basis is
given by the order of blocks {B3, B2}, which gives the matrix

B+3 B+2

B3 ∗ 0

B2 ∗ ∗

Since B = B1 is a block of type II and the disc D that corresponds to the cut
vertex is a pan of B, according to the proof of Theorem 6 we must add the basis
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for B at the end, obtaining the order {B3, B2, B1} and the matrix

B+3 B+2 B+1

B3 ∗ 0 0

B2 ∗ ∗ 0

B1 ∗ ∗ ∗

3. The box matrix associated to a block

Recall from the introduction that the coefficient c of the highest degree term in
∇L(z) is equal to (−1)n det M and the degree of ∇L(z) is n = rk H1(F), whenever
det M does not vanish. By Theorem 6, det M =

∏k
i=1 det Mi where Mi is the

Seifert matrix that corresponds to the surface Fi associated to the block Bi of G.
Then, in order to prove the theorem stated in the introduction, it is enough to show
that, if Bi is a block with rank ri and all its edges have sign εi , then the determinant
of its Seifert matrix does not vanish and has sign (−εi )

ri . Indeed, since n = rk G
is the sum of the ranks ri of its blocks, we would have

c = (−1)n det M = (−1)n
k∏

i=1
det Mi

= (−1)n
k∏

i=1
(−εi )

ri |det Mi | =
k∏

i=1
ε

ri
i |det Mi | 6= 0.

Now, the part of the diagram that corresponds to a homogeneous block is al-
ternating (in fact, it is a special alternating diagram), and the result for these links
follows from [Murasugi 1960] and [Crowell 1959]. Murasugi’s proof was accom-
plished by working on the Alexander matrix of the Dehn presentation, while Crow-
ell worked with the Wirtinger presentation of the fundamental group of the link.
In fact, Crowell’s paper rests on a striking application of a graph theoretical result,
the Bott–Mayberry matrix tree theorem, an approach also explained in [Burde and
Zieschang 2003, Proposition 13.24]. In this section we will prove it (Theorems 9
and 10) by looking at an explicit matrix of degrees defined using the planar structure
of the Seifert graph.

Let D be an oriented diagram, F its projection surface and G the corresponding
Seifert graph. Let B be a block of G. A basis {g1, . . . , gr } of
H1(B) (hence of H1(FB)) can be obtained collecting the
counterclockwise oriented cycles defined by the bound-
aries of the bounded regions Ri defined by B. Let Rr+1

be the unbounded region defined by this planar graph B
(like R5 in the figure on the right).

R1

R2 R3

R4

R5
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The Seifert graph is a bipartite graph because the projection surface is orientable,
hence every circuit in the graph must have an even length. In particular, we can
choose a sign for an arbitrary vertex, and extend this labelling to the other vertices
in an alternating fashion, when moving along the edges. We also have, for each
edge e in B, its corresponding sign ε(e) (if the original diagram is homogeneous,
this sign is constant in the block). We define Ei j as the set of edges in ∂Ri ∩ ∂R j

with the sign arrangement exemplified by the figure. (The edge e belongs to Ei j

with this arrangement of signs.)

R j

e
ε ε –ε

Ri

It turns out that lk(gi , g+i )=
1
2

∑
e∈∂Ri
−ε(e) and lk(gi , g+j )=

∑
e∈Ei j

ε(e).
In particular, if the block is homogeneous, let say with sign ε, then

lk(gi , g+i )=−εki ,

where 2ki is the number of edges in ∂Ri , and

lk(gi , g+j )= ε|Ei j |.

In other words, lk(gi , g+j ) is the number (with sign ε) of the edges e in the frontier
of the regions Ri and R j , such that one leaves the −ε signed vertex on the left
when going from Ri to R j through the edge e (see figure above).

As an example, we display the Seifert matrix associated to
the graph of the previous page, assuming that the top
left vertex is labelled with sign ε; the figure on the right
shows the other vertex labels (note that this constitutes a
homogeneous block; all the edges have sign ε):

R1
R2 R3

R4

R5

ε −ε

−ε ε ε

ε
−ε −ε

−ε ε
g+1 g+2 g+3 g+4

g1 –3ε ε ε 0
g2 ε –2ε 0 ε

g3 0 ε –3ε 0
g4 ε 0 ε –2ε


The sets Ei j satisfy two properties, which will play later a central role, especially

in Theorem 9:

(1) If e ∈ ∂Ri ∩∂R j , then e ∈ Ei j ⇐⇒ e /∈ E j i , and in particular |Ei j |+ |E j i | is
the cardinal of the edges in ∂Ri ∩ ∂R j .
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(2) Consider two consecutive edges e and f in the boundary of a certain region
Ri , which separate Ri from R j and Rk respectively (see figure), with possibly
j = k. Suppose that both edges have the same sign, which is the case if we
have a homogeneous graph. Then e ∈ Ei j ⇐⇒ f ∈ Eki .

R j Rk

e f
Ri

Remark 8. For a homogeneous block with sign ε, the sum of two transposed
elements in the corresponding Seifert matrix gives

lk(gi , g+j )+ lk(g j , g+i )= ε|Ei j | + ε|E j i | = ε |∂Ri ∩ ∂R j |.

The directed dual graph. A description of the Seifert matrix corresponding to a
homogeneous block can be better understood as a certain matrix of degrees for the
oriented dual graph. To construct the directed dual graph we draw a vertex vi in
the region Ri , including a vertex vr+1 for the unbounded region Rr+1, and for each
edge e in ∂Ri ∩ ∂R j we draw an edge ē joining vi and v j , the edge ē intersecting
the original graph only in e. Moreover, the edge ē is oriented from vi to v j if (and
only if) e ∈ Ei j . The directed dual graph in the case of our running example is
exhibited in the figure, assuming the sign ε =+1 for all the edges and for the top
left vertex.

+

vr+1

Note that the edges incident at any vertex have alternative orientations, which
is equivalent to the second property of the sets Ei j ’s. In particular the degrees of
the vertices are even numbers.

We now define mi i = −ε degi and mi j = ε degi j , where degi is the number of
edges leaving (or going to) vi and degi j is the number of edges from vi to v j . It
turns out that the matrix (mi j )1≤i, j≤r+1 has determinant zero, and we obtain the
Seifert matrix of the block by just deleting its last row and column. In our running
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example, for ε =+1, we would have
–3 1 1 0 1

1 –2 0 1 0
0 1 –3 0 2
1 0 1 –2 0
1 0 1 1 –3

 .
One should note that this is essentially what Proposition 13.21 in [Burde and

Zieschang 2003] states, where the adjective special is applied to a diagram if the
union of the black regions (assuming a chessboard coloring in which the unbounded
region is white) is the image of a Seifert surface under the projection that defines
the diagram.

Properties of the matrix for a homogeneous block. Sard matrices. Let ε be a
sign, +1 or −1. A square matrix A is said to be ε-signed if its diagonal elements
have sign−ε (in particular they do not vanish) and the elements out of the diagonal
are zero or have sign ε. The matrix A is said to be row-dominant if for any row i we
have |ai i | ≥

∑
j 6=i |ai j |. The matrix A is said to be strictly ascending row-dominant

(abbreviated, sard) if A is row-dominant and, in addition, there is an order of its
rows i1 < · · ·< ir such that |air ir |> 0 and for any k ∈ {1, . . . , r − 1} we have that
|aik ik |>

∑
j 6=i1,i2,...,ik

|aik j |.
The following matrix can be seen to be (+)-signed and sard choosing the order

3, 1, 2 for its rows (note that the condition |air ir |> 0 is for sure if A is ε-signed):–3 0 3
0 –2 1
1 0 –2


Theorem 9. Let B be a homogeneous block with sign ε. Then there exists a basis
of H1(B) such that the associated Seifert matrix M is ε-signed and sard.

Proof. Consider the basis of H1(B) given by the counterclockwise oriented cycles
{g1, . . . , gr }, boundaries of the bounded regions Ri of B. Then the Seifert matrix
M = (ai j )1≤i, j≤r is obviously ε-signed since ai i = lk(gi , g+i ) = −εki where ki is
half the number of edges in the boundary of Ri , and ai j = lk(gi , g+j ) = ε|Ei j | if
i 6= j . To see that A is row-dominant note that |ai i | = ki , and on the other hand∑

j 6=i |ai j | =
∑

j 6=i |Ei j | ≤ ki , the inequality by the second property of the sets Ei j .
We finally check that the matrix M is sard, by finding an order i1 < · · · < ir

for its rows such that |aik ik | >
∑

j 6=i1,i2,...,ik
|aik j | for any k ∈ {1, . . . , r − 1}. By

the second property of the sets Ei j there is always a bounded region Ri such that
Ei,r+1 6= ∅. The corresponding row is chosen to be the first one in this order,
that is, i1 = i . Note that, since |ai i | ≥

∑
1≤ j≤r+1, j 6=i |Ei j | and Ei,r+1 6= ∅, it
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follows that |ai i |>
∑

j 6=i |ai j |. Now, when we delete the i-th row and column, the
remaining matrix corresponds to the graph that remains after deleting the region Ri

(precisely, deleting the intersection between Ri and Rr+1). The region can be also
taken in such a way that the remaining graph is still a homogeneous block, hence
the repetition of this process provides the wanted order for the rows of M . �

The determinant for a homogeneous block. In this section we will prove that,
given a block with sign ε and rank r , the determinant of the corresponding sub-
matrix is nonzero, and its sign is equal to (−ε)r . To see this we just need a purely
algebraic result due to Murasugi. For the convenience of the reader, we reproduce
here its proof in a slightly different way:

Theorem 10 [Murasugi 1960, Section 2]. Let A be a square matrix of order r ,
ε-signed and sard. Then det A< 0 if ε=+1 and r is odd, and det A> 0 otherwise.
In other words, det A does not vanish and has sign (−ε)r .

Proof. By induction on r . The case r = 1 (odd) is trivial; for A = (a) we have
det A = a, and the result follows from the fact that A is ε-signed.

Now assume the statement for cases 1 to r−1, and consider the case r . Since A
is sard, there is an order i1< · · ·< ir of the rows such that for any k ∈ {1, . . . , r−1}
we have |aik ik |>

∑
j 6=i1,i2,...,ik

|aik j |. In particular, we have

ai1i1 =−

∑
j 6=i1

ai1 j − λ

with λ 6= 0 and sign ε. We now develop the determinant by the i1-row, obtaining

det A = det

 . . .

ai11 . . . ai1i1 . . . ai1r

. . .

= x − λy,

where

x = det

 . . .

ai11 . . . −
∑

j 6=i1
ai1 j . . . ai1r

. . .


and y is the determinant of the square matrix of order r − 1, obtained by deleting
the i1-th row and column. Since this matrix is also ε-signed and sard, by induction
y = (−ε)r−1

|y| 6= 0. Moreover, if each ai1 j = 0 for j 6= i1 then x = 0 obviously;
otherwise it is a square matrix of order r , ε-signed and row-dominant, and by
Lemma 11, either x = 0 or x has sign (−ε)r . Then

det A = x − λy = (−ε)r |x | − ε|λ|(−ε)r−1
|y| = (−ε)r (|x | + |λ||y|)

and the result follows since |λ|> 0, |y|> 0 and |x | ≥ 0. �
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Lemma 11. Let A be a square matrix of order r , ε-signed and row-dominant. Then
det A ≤ 0 if ε =+1 and r is odd, and det A ≥ 0 otherwise.

Proof. For technical reasons in the induction argument, we will prove this result
for a slightly wider category of matrices, the weak ε-signed and row-dominant
matrices. For this matrices the condition of being ε-signed is relaxed for allowing
zeros in the diagonal.

We proceed by induction on r . The case r = 1 is trivial. Assume now the
statement for cases 1 to r−1, and consider the case r . Since A is weak ε-signed and
row-dominant, each diagonal element of A can be written as ai i =−

∑
j 6=i ai j−λi

with λi = 0 or with sign ε.
Let Ai be the same matrix as A except for possibly the first i elements of its

diagonal, where ai i is replaced by ai i + λi . Let A0 = A. It turns out that

det A = det Ar −

r∑
i=1

λi det
(
(Ai−1)

i
i
)
,

where the notation Bi
i is used to denote the matrix obtained from B by deleting its

i-th row and i-th column. This follows from the fact that, for k = 1, . . . , r ,

det Ak−1 = det Ak − λk det
(
(Ak−1)

k
k
)
.

Note that the determinant of Ar is equal to zero, since the sum of all the elements
of each row is zero. Moreover, each matrix (Ai−1)

i
i is also weak ε-signed and row-

dominant, and has order r − 1. By induction, its determinant is zero or has sign
(−ε)r−1. Since each λi is zero or has sign −ε, the result follows. �

Here is an application of the argument developed in this section:

Claim. Let L be an oriented link which has a special alternating diagram. Then
the leading coefficient of ∇L(z) is ±1 if and only if L is the connected sum of
(2, q)-torus links.

Proof. Assume that L is the connected sum of (2, q)-torus links. Since ∇L]L ′(z)=
∇L(z)∇L ′(z), it is enough to show that the leading coefficient of ∇L(z) is ±1 if L
is a (2, q)-torus link. The diagram of L is then of this form, or its mirror image:

It has q crossings, all with the same sign ε. The corresponding
Seifert graph, shown on the right, is a homogeneous block B with
two vertices and q edges, all of them with sign ε.

Following the process explained at the beginning of this section, we obtain
the Seifert matrix M = (mi, j )i, j=1,...,q−1 where mi,i = −ε for i = 1, . . . , q − 1,
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mi,i+1= ε for i =1, . . . , q−2, and mi, j =0 otherwise. Then the leading coefficient
of ∇L(z) is εrk B

| det M | = εq−1 since rk B = 1− v+ e = 1− 2+ q = q − 1.
Suppose now that the leading coefficient of ∇L(z) is ±1, and L has a special

alternating diagram D. Then D is the connected sum of diagrams D1, . . . , Dr ,
where each Di is a diagram (of a link L i ) such that its Seifert graph has only one
(homogeneous) block:

Clearly, L = ]r
i=1L i . Since ∇L(z)=

∏r
i=1 ∇L i (z) and ∇L(z) ∈ Z [z±1

], the leading
coefficient of each∇L i (z) is±1. Hence it is enough to prove that L is a (2, q)-torus
link assuming that the leading coefficient of ∇L(z) is ±1, and L has a diagram D
whose associated Seifert graph is a homogeneous block B, let’s say with sign ε.

We will prove that B has the desired form (reproduced on the right for con-
venience). We do this by induction on the number of edges of
B. With this aim, we order the r bounded regions of B as in the
proof of Theorem 9. The corresponding Seifert matrix A is then
ε-signed and sard, and by the proof of Theorem 10, we have

det A = (−ε)r (|x | + |λ| |y|),

where y = det A1
1 6= 0. Since the leading coefficient of ∇L(z) is ±1, we have

det A =±1; since λ and y are nonzero integers, we have y = det A1
1 =±1.

Now, according to the proof of Theorem 9, A1
1 is the Seifert matrix associated

to the diagram D′ whose Seifert graph is B ′ = B \ (R1 ∩ Rr+1), where Rr+1 is
the unbounded region of B. Since B ′ is still a homogeneous block, by induction
we have that B ′ has the form shown above and to the right, and B adds a path
connecting the two vertices of B ′ in the unbounded region of B ′:

R1 Rr+1

Let 2k be the number of edges bounding R1 in B. Then the original Seifert
matrix is

A =


k ±1 0 · · · 0
0
...

0

A1
1
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or its transpose, in any case with determinant ±k. Hence k = 1 and the result
follows. �

Corollary 12. Let L be an oriented homogeneous link. Then the leading coefficient
of ∇L(z) equals ±1 if and only if L is the Murasugi sum of connected sums of
(2, q)-torus links.

4. Homogeneous knots of genus one

We finish the paper with a complete classification of the family of homogeneous
knots of genus one. Let D be a homogeneous diagram of a homogeneous knot K of
genus one. Let F and G be respectively the projection surface and the Seifert graph
associated to the diagram D. We already know that the genus of F is exactly the
genus of the knot. Since 2g(F)+µ−1= rk G and K is a link with one component,
we deduce that G has rank two. Here are the two types of graphs:

G(a, b, c) = a b c m k = G(m, k)

Homogeneous graphs with rank two: one and two blocks

As indicated, we name them G(a, b, c) and G(m, k), respectively; the absolute
values of the integers a, b, c,m, k are the numbers of corresponding edges, and
their signs are the signs of these edges.

Note that these graphs could have some tails, but this would not affect to the
knot type. Since G(a, b, c) is homogeneous and has only one block, a, b, c must
have all the same sign; since F is orientable, they have also the same parity. On
the contrary, G(m, k) has two blocks, hence m and k can have different signs, but
both must be even because of the orientability. Note also that the second graph can
be considered a degenerated form of the first one, with b = 0.

In general, the Seifert graph does not determine the link where it comes from,
although in the first case it does. In G(a, b, c) there are exactly two trivalent ver-
tices; the corresponding Seifert circles can be one inside the other, or separated.
When viewed this in the sphere S2 there is no difference, and the corresponding
knot is the pretzel knot with diagram P(a, b, c). Moreover, since P(a, b, c) must
be a knot, the numbers a, b, c should be all odd, or exactly one of them should be
even. It follows that all of them are odd.

Now consider the graph with two blocks, G(m, k). There is only one vertex with
valence four, given the two possible configurations for the Seifert circles shown in



HOMOGENEOUS LINKS AND THE SEIFERT MATRIX 389

the figure (which illustrates the case |m| = |k| = 4):

The first configuration corresponds to a link with three components, and the
second corresponds to a knot K (see figure below). Moreover, the knot K obtained
is also a pretzel knot, given by the pretzel diagram D(m, k) = P(m, ε, |k|. . ., ε),
where m and k are even integers and ε is the sign of k. For example, D(4,−2)=
P(4,−1,−1) is the example in the right diagram:

What we have done is to prove the following result:

Theorem 13. A genus-one knot is homogeneous if and only if it belongs to one of
the two following classes of knots:

(1) Pretzel knots with diagram P(a, b, c), where a, b, c are odd integers with the
same sign.

(2) Pretzel knots with diagram D(m, k) = P(m, ε, |k|. . ., ε), where m and k are
nonzero even integers and ε = k/|k| is the sign of k.

This classification and some partial information from the Jones polynomial al-
low us to give another proof of the following result:

Corollary 14 [Cromwell 1989]. Pretzel knots P(p,−q,−r) with 3 ≤ p ≤ q ≤ r ,
all of them odd, are not homogeneous.

In the original proof, Cromwell calculated the Homfly polynomial P(v, z) =∑r
i=0 αi (v)zi and checked that αr (v) contains terms of both signs [Cromwell 1989,

Theorem 10]. But, for homogeneous links, these coefficients are all nonnegative
or all nonpositive, according to a result [ibid, Corollary 4.3] due to Traczyk.

Proof. We want to prove that the knot K defined by a pretzel diagram P(p,−q,−r)
is not homogeneous. First note that K has genus one, since the projection surface
defined by the diagram P(p,−q,−r) has Euler characteristic −1, hence genus
one, and K is not the trivial knot; for example, according to [Manchón 2003,
Theorem 2, case (iv)(a)], the span of its Jones polynomial (with normalization
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−t−1/2
− t1/2) is p + q + r − min{p, q − 1}, which is different from one since

3≤ p ≤ q, r .
Now, the lowest degree and the coefficient of the highest degree term of the Jones

polynomial tell us that K does not belong to any of the two classes of homogeneous
knots of genus one given by Theorem 13, as the following table shows:

Knot diagram Lowest degree Coefficient of the
highest degree term

P(p,−q,−r)
3≤ p < q ≤ r 1/2 −1

3≤ p = q ≤ r −1/2

P(a, b, c)
0≤ a, b, c −3/2− a− b− c

a, b, c ≤ 0 1/2 1

m, k > 0 −m− 1/2

D(m, k)
m < 0, k > 0 1/2 1

m > 0, k < 0 k−m− 1/2

m, k < 0 k− 1/2 �

Note that the Conway polynomial together with the span of the Jones polynomial
are not enough in order to prove Corollary 14. According to the values displayed
in the following table, we have for example that the knots defined by the diagrams
P(3,−45,−91) and P(11, 23, 101) share Conway polynomial and the span of
their Jones polynomials, and the same happens to the pair of knots defined by the
diagrams P(11,−15,−15) and D(−4, 26).

Knot diagram Conway polynomial
1+ λz2, where λ is

Jones polynomial span

P(p,−q,−r)
3≤ p < q ≤ r

(qr − pq − pr + 1)/4
q + r

3≤ p = q ≤ r q + r + 1

P(a, b, c)
0≤ a, b, c

(ab+ ac+ bc+ 1)/4
1+ a+ b+ c

a, b, c ≤ 0 1− a− b− c

m, k > 0 1+m+ k

D(m, k)
m < 0, k > 0

mk/4
k−m

m > 0, k < 0 m− k

m, k < 0 1−m− k
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We also have the following result (as above, the Jones polynomial of the pretzel
links and their spans have been calculated following [Manchón 2003]):

Corollary 15. At least one of the extreme coefficients of the Jones polynomial of a
homogeneous knot of genus one is −1.

Finally, we remark that Stoimenow [2008] has showed that a genus-two homo-
geneous knot is alternating or positive. Jong and Kishimoto [2009] have studied
genus-two positive knots extensively.
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