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Let (M, π) be a Poisson manifold. A Poisson submanifold P ⊂ M gives
rise to a Lie algebroid AP → P . Formal deformations of π around P are
controlled by certain cohomology groups associated to AP . Assuming that
these groups vanish, we prove that π is formally rigid around P; that is,
any other Poisson structure on M, with the same first-order jet along P ,
is formally Poisson diffeomorphic to π . When P is a symplectic leaf, we
find a list of criteria that are sufficient for these cohomological obstructions
to vanish. In particular, we obtain a formal version of the normal form
theorem for Poisson manifolds around symplectic leaves.

1. Introduction

A Poisson bracket on a manifold M is a Poisson algebra structure on the space
of smooth functions on M , that is, a Lie bracket { · , · } on C∞(M) satisfying the
derivation property

(1) { f, gh} = { f, g}h+{ f, h}g for all f, g, h ∈ C∞(M).

Equivalently, it can be given by a bivector π ∈ X2(M) that satisfies [π, π] = 0.
The two definitions are related by the formula

〈π, d f ∧ dg〉 = { f, g} for all f, g ∈ C∞(M).

An immersed submanifold ι : P → M is called a Poisson submanifold of M if π
is tangent to P . This ensures that π|P is a Poisson structure on P for which the
restriction map

ι∗ : C∞(M)→ C∞(P)

is a Lie algebra homomorphism. We regard the Poisson algebra (C∞(P), { · , · })
as the 0th-order approximation of the Poisson structure on M . If P is embedded,
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then P is a Poisson submanifold if and only if its vanishing ideal

I (P)= { f ∈ C∞(M) | ι∗( f )= 0}

is an ideal in the Lie algebra (C∞(M), { · , · }). Assuming that P is also closed1,
we have a canonical identification of Poisson algebras

(C∞(P), { · , · })= (C∞(M)/I (P), { · , · }).

This gives a recipe for constructing higher-order approximations. For example, the
first-order approximation fits into an exact sequence of Poisson algebras

(2) 0→ (I (P)/I 2(P), { · , · })

→ (C∞(M)/I 2(P), { · , · })→ (C∞(P), { · , · })→ 0.

The Poisson algebra structures in this sequence depend only on j1
|Pπ , the first jet

of π along P . A better way to describe (2) is using the language of Lie algebroids.
As explained in Section 2, the extension (2) gives rise to a Lie algebroid structure
AP on T ∗P M that fits into a short exact sequence of Lie algebroids

(3) 0→ TP◦→ AP → T ∗P→ 0,

where TP◦ ⊂ T ∗P M = AP is the annihilator of TP and T ∗P is the cotangent Lie
algebroid of (P, { · , · }). In particular, we obtain a representation of AP on TP◦,
and thus also on its symmetric powers Sk(TP◦).

We study formal rigidity of Poisson structures around Poisson submanifolds. In
general, deformation and rigidity problems in Poisson geometry are controlled by
the Poisson cohomology groups H•π (M), which are the cohomology of the complex
of multivector fields (X•(M), dπ ), where

dπ := [π, · ].

For a Poisson submanifold P , this dπ induces a differential on X•(M)|P , the
complex of multivector fields along M . The corresponding cohomology, denoted
by H•π (M, P), is called the Poisson cohomology relative to P [Ginzburg and Lu
1992]. The formal rigidity of Poisson structures around Poisson submanifolds is
controlled by a version of this cohomology with coefficients. Lie algebroids pro-
vide the right setting to make this precise; that is, the relative Poisson cohomology
groups can be computed as the cohomology of the Lie algebroid AP

H•π (M, P)= H•(AP),

1Since we study local properties of (M, π) around P , only the condition that P is embedded is
essential; closeness can be achieved by replacing M with a tubular neighborhood of P .
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and the cohomology groups of AP with coefficients in Sk(TP◦), which we denote
by H•(AP;S

k(TP◦)), control formal rigidity (see Section 2 for the definition of
Lie algebroid cohomology).

Our main result is the following:

Theorem 1.1. Let π1 and π2 be two Poisson structures on M , such that P ⊂ M
is an embedded Poisson submanifold for both, and such that they have the same
first-order jet along P. If their common algebroid AP has the property that

H 2(AP;S
k(TP◦))= 0 for all k ≥ 2,

then the two structures are formally Poisson diffeomorphic. More precisely, there
exists a diffeomorphism

ψ :U→ V,

with dψ|TP M = idTP M , where U and V are open neighborhoods of P , such that
π1|U and ψ∗(π2|V) have the same infinite jet along P:

j∞
|P (π1|U)= j∞

|P (ψ
∗(π2|V)).

Applying Theorem 1.1 to the linear Poisson structure on the dual of a compact,
semisimple Lie algebra, we obtain the following result.

Corollary 1.2. Let g be a semisimple Lie algebra of compact type and consider πlin

the linear Poisson structure on g∗. Let S(g)⊂ g∗ be the sphere in g∗ centered at 0,
of radius 1 with respect to some invariant inner product. Then S(g) is a Poisson
submanifold, and any Poisson structure π1 defined in some open neighborhood of
S(g), such that

j1
|S(g)(πlin)= j1

|S(g)(π1),

is formally Poisson diffeomorphic to πlin.

The symplectic leaves of (M, π) are Poisson submanifolds of a special type.
Recall that a Poisson manifold carries a canonical singular foliation whose leaves
are the maximal integral submanifolds of the distribution π ](T ∗M). Such a leaf S
has a natural symplectic structure given by ωS := π

−1
|S . If (S, ωS) ⊂ (M, π) is an

embedded symplectic leaf, then the Lie algebroid extension (3) — which encodes
only the first-order jet π along S — can be used to construct a second Poisson
structure π1

S , called the first-order approximation of π around S, defined on some
open neighborhood of S and having the same first jet as π along S.

In [Crainic and Mărcuţ 2010] we obtained a normal form theorem for Poisson
structures around symplectic leaves: we proved that, under some assumptions on
the first jet of π along S, the Poisson structures π and π1

S are Poisson diffeomorphic
around S. Our goal is to give a formal version of this result, which we state below
in its most general form (observe that it is a direct consequence of Theorem 1.1).
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Theorem 1.3. Let (M, π) be a Poisson manifold and S ⊂ M an embedded sym-
plectic leaf. If the cohomology groups

H 2(AS,Sk(TS◦))

vanish for all k ≥ 2, then π is formally Poisson diffeomorphic to its first-order
approximation around S.

In many cases we show that these cohomological obstructions vanish, and we
obtain the following corollaries.

Corollary 1.4. Let (M, π) be a Poisson manifold and S ⊂ M an embedded sym-
plectic leaf. Assume that the Poisson homotopy cover of S is a smooth principal
bundle with vanishing second de Rham cohomology group, and that its structure
group G satisfies

H 2
diff(G,Sk(g))= 0 for all k ≥ 2,

where g is the Lie algebra of G, and H•diff(G,Sk(g)) denotes the differentiable
cohomology of G with coefficients in the k-th symmetric power of the adjoint rep-
resentation. Then π is formally Poisson diffeomorphic to its first-order approxima-
tion around S.

Since the differentiable cohomology of compact groups vanishes, we obtain the
following immediate corollary.

Corollary 1.5. Let (M, π) be a Poisson manifold and S ⊂ M an embedded sym-
plectic leaf. If the Poisson homotopy cover of S is a smooth principal bundle with
vanishing second de Rham cohomology group and compact structure group, then
π is formally Poisson diffeomorphic to its first-order approximation around S.

The next consequence is bit more technical:

Corollary 1.6. Let (M, π) be a Poisson manifold and S ⊂ M an embedded sym-
plectic leaf whose isotropy Lie algebra is reductive. If the abelianization algebroid

Aab
S := AS/[TS◦,TS◦]

is integrable by a simply connected principal bundle with compact structure group
and vanishing second de Rham cohomology group, then π is formally Poisson
diffeomorphic to its first-order approximation around S.

Corollary 1.7. Let (M, π) be a Poisson manifold and S ⊂ M an embedded sym-
plectic leaf through x ∈ M. If the isotropy Lie algebra at x is semisimple, π1(S, x)
is finite, and π2(S, x) is torsion, then π is formally Poisson diffeomorphic to its
first-order approximation around S.
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Some related results. The first-order approximation of a Poisson manifold (M, π)
around a one-point leaf x (a zero of π ) is the linear Lie–Poisson structure on g∗x ,
the dual of the isotropy Lie algebra at x . Formal linearization in this setup was
proven by Weinstein [1983] for semisimple gx . This case is also covered by our
Corollary 1.7. Under the stronger assumption that gx is semisimple of compact
type, Conn [1985] proved that a neighborhood of x is in fact Poisson diffeomorphic
to an open neighborhood of 0 in the local model g∗x .

Vorobjev [2001] constructed the first-order approximation around arbitrary sym-
plectic leaves (see [Crainic and Mărcuţ 2010] for a more geometrical approach).

A weaker version of our Theorem 1.1 — of which we became aware only at the
end of this research — was stated by Itskov et al. [1998]. They work around com-
pact symplectic leaves instead of embedded Poisson submanifolds, proving that for
each k, there exists a diffeomorphism that identifies the Poisson structures up to
order k [Itskov et al. 1998, Theorem 7.1]. Compactness of the leaf is nevertheless
too strong an assumption for formal equivalence. For example, they conclude in
their Corollary 7.4 that hypotheses similar to those in our Corollary 1.7 imply
the vanishing of the cohomology groups H 2(AS,Sk(TS◦)), but also remark that
compactness of the leaf is incompatible with these assumptions (it forces S to be
a point).

To prove Theorem 1.1, we reduce it to a result on the equivalence of Maurer–
Cartan elements in complete graded Lie algebras, which we prove in the Appendix.
The same criteria for equivalence of Maurer–Cartan elements, but in the context
of differential graded algebras, can be found in [Abad et al. 2010, Appendix A].

To prove the vanishing of the cohomological obstructions, and the corollaries
listed above, we use techniques such as Whitehead’s Lemma for semisimple Lie
algebras and spectral sequences for Lie algebroids, but also the more powerful
techniques developed in [Crainic 2003], such as the Van Est map and vanishing of
cohomology of proper groupoids.

Theorem [Crainic and Mărcuţ 2010, main result]. Let (M, π) be a Poisson man-
ifold and S ⊂ M an embedded symplectic leaf ; π is Poisson diffeomorphic to its
first-order approximation around S if the following conditions are satisfied:

• the Poisson homotopy cover P of S is smooth;

• H 2
dR(P)= 0;

• the structure group of P is compact;

• S is compact.

The first three conditions are the hypotheses of Corollary 1.5. So, giving up on
compactness of the leaf, we still conclude that π and its first-order approximation
are formally Poisson diffeomorphic. Nevertheless, the conditions of Corollary 1.5
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are too strong in the formal setting; they force the semisimple part of the isotropy
Lie algebra to be compact. Thus we consider the more technical Corollary 1.6 to
be the correct analog in the formal category of the normal form theorem in [Crainic
and Mărcuţ 2010]. In fact, Corollary 1.5 is a consequence of Corollary 1.6; it is
precisely the case when the semisimple part of the isotropy Lie algebra is compact.

2. The first-order data

We recall some definitions; for more on Lie algebroids, see [Mackenzie 1987].

Definitions 2.1. A Lie algebroid over a manifold B is a vector bundle A → B
endowed with a Lie bracket [ · , · ] on its space of sections 0(A) and a vector bundle
map ρ :A→ TB, called the anchor, which satisfy the Leibniz identity:

[α, fβ] = f [α, β] + Lρ(α)( f )β for all f ∈ C∞(B), α, β ∈ 0(A).

A representation of A is a vector bundle E→ B endowed with a bilinear map

∇ : 0(A)×0(E)→ 0(E),

satisfying

∇f α(s)= f∇α(s), ∇α( f s)= f∇α(s)+ Lρ(α)( f )s,

and the flatness condition

∇α∇β(s)−∇β∇α(s)=∇[α,β](s).

The cohomology of a Lie algebroid (A, [ · , · ], ρ) with coefficients in a rep-
resentation (E,∇) is defined by the complex �•(A, E) := 0(3•A∗ ⊗ E) with
differential given by the classical Koszul formula:

d∇ω(α0, . . . , αq)=
∑

i

(−1)i∇αi

(
ω(α1, . . . , α̂i , . . . , αq)

)
+

∑
i< j

(−1)i+ jω
(
[αi , α j ], . . . , α̂i , . . . , α̂ j , . . . , αq

)
.

The corresponding cohomology groups are denoted by H•(A, E).

To a Poisson manifold (M, π) one can associate a Lie algebroid structure on the
cotangent bundle T ∗M , with anchor given by π viewed as a bundle map

π ] : T ∗M→ TM

and bracket uniquely determined by

[d f, dg] := d{ f, g} for all f, g ∈ C∞(M);

see [Vaisman 1994] for details.
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Let P ⊂ M be an embedded Poisson submanifold. Since π is tangent to P , it is
easy to see that the algebroid structure can be restricted to P , in the sense that there
is a unique Lie algebroid structure on AP := T ∗P M with anchor π ]

|P and bracket
such that the restriction map 0(T ∗M)→ 0(AP) is a Lie algebra homomorphism.
The dual of the inclusion TP⊂ TP M gives a map AP→ T ∗P that is a Lie algebroid
homomorphism, where T ∗P is the cotangent Lie algebroid of (P, π|P). This way
we obtain the extension of Lie algebroids from the introduction:

(4) 0→ (TP◦, [ · , · ])→ (AP , [ · , · ])→ (T ∗P, [ · , · ])→ 0.

This short exact sequence implies that TP◦ is an ideal in (AP , [ · , · ]); therefore

∇ : 0(AP)×0(TP◦)→ 0(TP◦), ∇α(η) := [α, η]

defines a representation of AP on TP◦, and thus on its symmetric powers Sk(TP◦).
The resulting cohomology groups are the obstructions appearing in Theorems 1.1
and 1.3. The Lie algebroid structures on AP and the sequence (4) depend only on
the first jet of π along P (that is, the brackets and anchors can be expressed in
terms of π|P and the first-order derivatives of π restricted to P).

Remark 2.2. We regard the Lie algebroid AP as the first-order approximation of
the Poisson bracket at P . To justify this interpretation, fix a Poisson structure πP

on P , where P ⊂M is a closed embedded submanifold. Then there is a one-to-one
correspondence between Poisson algebra structures on the commutative algebra
C∞(M)/I 2(P), which fit into the short exact sequence

(5) 0→ (I (P)/I 2(P), { · , · })

→ (C∞(M)/I 2(P), { · , · })→ (C∞(P), { · , · })→ 0,

and Lie algebroid structures on AP := T ∗P M , which fit into a sequence of the form

(6) 0→ (TP◦, [ · , · ])→ (AP , [ · , · ])→ (T ∗P, [ · , · ])→ 0.

The exterior derivative induces a map

d : C∞(M)/I 2(P)→ 0(AP),

and the correspondence between the brackets is uniquely determined by the fact
that this is a Lie algebra homomorphism.

Example 2.3. Consider P := R2 as the submanifold {z = 0} ⊂ M := R3. We
construct a first-order extension of the trivial Poisson structure on P to M , that is,
a Poisson algebra structure on the commutative algebra

C∞(M)/I 2(P)= C∞(M)/(z2)= C∞(P)⊕ zC∞(P)
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with the property that { f, g} ∈ (z), for all f, g ∈ C∞(M)/(z2). Explicitly, define

{ f, g} = z
(∂ f
∂x
∂g
∂y
−
∂ f
∂y
∂g
∂x
+ x

∂ f
∂x
∂g
∂z
− x

∂ f
∂z
∂g
∂x

)
mod (z2).

A straightforward computation yields that { · , · } satisfies the Jacobi identity, and
therefore we have an extension of Poisson algebras

0→ zC∞(P)→ C∞(P)⊕ zC∞(P)→ C∞(P)→ 0,

where the Poisson bracket on P is zero. The total space of the corresponding Lie
algebroid AP is R3

×P→ P . The bracket is given on the global frame dx|P , dy|P ,
dz|P by

[dx|P , dy|P ] = dz|P , [dy|P , dz|P ] = 0, [dx|P , dz|P ] = xdz|P ,

and extended bilinearly to all sections, since the anchor is zero.
Nevertheless, there is no Poisson structure on M (nor on any open neighborhood

of P) that has this Poisson algebra as its first-order approximation. Assume, to the
contrary, that on some open neighborhood U of P such a Poisson structure exists.
Then it must have the form

{x, y} = z+ z2h, {y, z} = z2k, {x, z} = xz+ z2l,

for some smooth functions h, k, l defined on U. Computing the Jacobiator of x , y,
and z, we obtain

J = {x, {y, z}}+{z, {x, y}}+{y, {z, x}} = z2((2−x)k(x, y, 0)+1
)
+ z3a(x, y, z),

where a is a smooth function. In particular, we see that J cannot vanish, since

∂2 J
∂z2 (2, y, 0)= 2 6= 0.

This example shows that not everything that looks like the first jet of a Poisson
structure around P (that is, an extension of the form (6) or (5)) comes from an
actual Poisson structure.

On the other hand, if P is a symplectic manifold, the situation changes for
the better; every “first jet” of a Poisson structure can be extended to a Poisson
structure around P . More precisely, consider (S, ωS) a symplectic manifold, with
S⊂M embedded, and an algebroid structure on AS := T ∗S M that fits into the exact
sequence

0→ TS◦→ AS→ T ∗S→ 0.

Then, using a tubular neighborhood E :TS M/TS→M , one can construct a Poisson
structure π1

S = π
1
S(AS, ωS,E) on some open neighborhood of S, from which we

recover the first-order data: it has (S, ωS) as a symplectic leaf, and the algebroid
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structure induced on T ∗S M is AS . This Poisson structure was first constructed by
Vorobjev [2001]; we also recommend [Crainic and Mărcuţ 2010] for some different
approaches. Applied to different tubular neighborhoods, this construction produces
Poisson structures which, when restricted to small enough neighborhoods of S, are
Poisson diffeomorphic [Vorobjev 2001]. So the isomorphism class of the germ
around S of π1

S doesn’t depend on E.
We can view the whole story from a different perspective; start with a Poisson

structure π on M , for which (S, ωS) is an embedded symplectic leaf, and denote as
usual by AS the Lie algebroid on T ∗S M . For E a tubular neighborhood of S, we call
π1

S = π
1
S(AS, ωS,E) the first-order approximation of π around S. The first-order

approximation is defined on some open neighborhood of S in M , and it plays the
role of a local normal form for π around S.

3. The formal equivalence theorem

The algebra of formal vector fields. Take the graded Lie algebra (X•(M), [ · , · ])
of multivector fields on M , with the Nijenhuis–Schouten bracket and deg(W ) =

k − 1 for W ∈ Xk(M). For a closed, embedded submanifold P ⊂ M , denote by
X•P(M) the following subalgebra of multivector fields tangent to P:

X•P(M) := {u ∈ X•(M) | u|P ∈ X•(P)}.

The vanishing ideal I (P)⊂ C∞(M) of P induces a filtration F on X•P(M):

X•P(M)⊃ F•0 ⊃ F•1 ⊃ . . .F
•

k ⊃ F•k+1 ⊃ . . . ,

F•k = I k+1(P)X•(M), k ≥ 0.

It is readily checked that

(7) [Fk,Fl] ⊂ Fk+l, [X
•

P(M),Fk] ⊂ Fk .

Let X̂•P(M) be the completion of X•P(M) with respect to the filtration F, defined
by the projective limit

X̂•P(M) := lim
←−

X•P(M)/F
•

k .

By (7), it follows that X̂•P(M) inherits a graded Lie algebra structure, such that, for
k ≥ 0, the natural maps

j k
|P : X̂

•

P(M)→ X•P(M)/F
•

k

are Lie algebra homomorphisms. The algebra (X̂•P(M), [ · , · ]) is called the algebra
of formal multivector fields along P . Consider also the homomorphism

j∞
|P : X

•

P(M)→ X̂•P(M).
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From a version of Borel’s Theorem (see, for example, [Moerdijk and Reyes 1991])
about the existence of a smooth section with a specified infinite jet along a sub-
manifold, it follows that j∞

|P is surjective. Observe that X̂•P(M) inherits a filtration
F̂ from X•P(M), given by

F̂•k = j∞
|P F•k,

that satisfies the corresponding equations (7).
The adjoint action of an element X ∈ F̂1

1

adX : X̂
•

P(M)→ X̂•P(M), adX (Y ) := [X, Y ]

increases the degree of the filtration by 1. Therefore the partial sums

n∑
i=0

adi
X

i !
(Y )

are constant modulo F̂k for n ≥ k and all Y ∈ X̂•P(M). This and the completeness
of the filtration on F̂ show that the exponential of adX

eadX : X̂•P(M)→ X̂•P(M), eadX (Y ) :=
∑
n≥0

adn
X

n!
(Y )

is well-defined. It is readily checked that eadX is a graded Lie algebra isomorphism
with inverse e− adX and that it preserves the filtration. We need the following geo-
metric interpretation of these isomorphisms.

Lemma 3.1. For every X ∈ F̂1
1, there exists ψ : M→ M a diffeomorphism of M ,

with ψ|P = idP and dψ|P = idTP M , such that for every W ∈ X•P(M), we have

j∞
|P (ψ

∗(W ))= eadX ( j∞
|P (W )).

Proof. By Borel’s Theorem, there is a vector field V on M such that X = j∞
|P (V ).

We claim that V can be chosen to be complete. Let g be a complete metric on
M and let φ : M → [0, 1] be a smooth function that satisfies φ = 1 on the set
{x | gx(Vx , Vx) ≤

1
2} and φ = 0 on the set {x | gx(Vx , Vx) ≥ 1}. Since V|P = 0, it

follows that φV has the same germ as V around P , and therefore j∞
|P (φV ) = X .

On the other hand, since φV is bounded, it is complete, so replace V by φV .
We show that ψ :=FlV , the flow of V at time 1, satisfies all requirements. Since

j1
|P(V )= 0, it is clear that ψ|P = idP and dψ|P = idTP M .

Consider W ∈X•P(M), and denote by Ws := Fl∗sV (W ) the pullback of W by the
flow of V at time s. Since Ws satisfies the differential equation dWs/ds=[V,Ws],
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a simple computation gives

d
ds

( k∑
i=0

(−s)i adi
V

i !
(Ws)

)
=
(−s)k adk+1

V

k!
(Ws).

This shows that the sum
k∑

i=0

(−s)i adi
V

i !
(Ws)

modulo Fk+1 is independent of s, and therefore

W −
k∑

i=0

(−1)i adi
V

i !
(ψ∗(W )) ∈ Fk+1.

Applying j∞
|P to this equation yields

j∞
|P (W )−

k∑
i=0

(−1)i adi
X

i !
j∞
|P (ψ

∗(W )) ∈ F̂k+1,

and hence we conclude

j∞
|P (W )= e− adX j∞

|P (ψ
∗(W )). �

The cohomology of the restricted algebroid. Let (M, π) be a Poisson manifold
and P ⊂ M a closed, embedded Poisson submanifold. The cohomologies we are
considering are all versions of the Poisson cohomology H•π (M), computed by the
complex X•(M) of multivector fields on M and differential dπ = [π, · ]. Since P
is a Poisson submanifold, we have that [π, I (P)X•(M)] ⊂ I (P)X•(M), and more
generally, it follows that I k(P)X•(M) forms a subcomplex. Taking consecutive
quotients, we obtain the complexes(

I k(P)X•(M)/I k+1(P)X•(M), dk
π

)
,

with differential dk
π induced by [π, · ]. For k=0, we obtain the Poisson cohomology

relative to P . Observe that the differential on these complexes depends only on the
first jet of π along P , and therefore, following the philosophy of Section 2, it can
be described only in terms of the algebroid AP .

Proposition 3.2. The following two complexes are isomorphic:(
I k(P)X•(M)/I k+1(P)X•(M), dk

π

)
∼=
(
�•(AP ,Sk(TP◦)), d∇k

)
for all k ≥ 0.

Proof. Since the space of sections of TP◦ is spanned by differentials of elements
in I (P), it is easy to see that the map given by

τk : I k(P)X•(M)→�•(AP ,Sk(TP◦))= 0(3•(TP M)⊗Sk(TP◦)),
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τk( f1 . . . fk W )=W|P ⊗ d f1|P � · · ·� d fk|P ,

where f1, . . . , fk ∈ I (P) and W ∈X•(M), is well-defined and surjective. Also, its
kernel is precisely I k+1(P)X•(M). Hence, it remains to prove that

(8) τk([π,W ])= d∇k (τk(W )) for all W ∈ I k(P)X•(M).

Recall that the algebroid AP has anchor ρ = π ]
|P and bracket determined by

[dφ|P , dψ|P ]P := d{φ,ψ}|P for all φ,ψ ∈ C∞(M).

Also, for k = 0, we have that ∇0 is given by

∇
0
: 0(AP)×C∞(P)→ C∞(P), ∇0

η(h)= Lρ(η)(h).

Since both differentials dπ and d∇k act by derivations and ∇k is obtained by ex-
tending ∇1 by derivations, it suffices to prove (8) for φ ∈C∞(M) and X ∈X1(M)
(with k = 0), and for f ∈ I (P) (with k = 1).

Let φ ∈ C∞(M) and η ∈ 0(AP). Since π is tangent to P , we obtain

τ0([π, φ])(η)= [π, φ]|P(η)= dφ|P(π
]
|P(η))= Lρ(η)(τ0(φ))= d∇0(τ0(φ))(η).

Let X ∈X1(M) and φ,ψ ∈C∞(M), and define η := dφ|P for θ := dψ|P ∈0(AP).
Then

τ0([π, X ])(η, θ)= [π, X ]|P(dφ|P , dψ|P)

=
(
{X (φ), ψ}+ {φ, X (ψ)}− X ({φ,ψ})

)
|P

= π
]
|P(dφ|P)(X |P(dψ|P))

−π
]
|P(dψ|P)(X |P(dφ|P))− X |P(d{φ,ψ}|P)

= Lρ(η)(τ0(X)(θ))− Lρ(θ)(τ0(X)(η))− τ0(X)([η, θ]P)

= d∇0(τ0(X))(η, θ),

and thus (8) holds for X .
Consider now f ∈ I (P) and η := dφ|P ∈0(AP), with φ ∈C∞(M). The formula

defining τk implies that for every W ∈ I k(P)X•(M), we have

τk(idφ(W ))= idφ|P τk(W ).

Using this, the following computation finishes the proof:

τ1([π, f ])(η)= τ1([π, f ](dφ))= τ1({φ, f })= d{φ, f }|P

= [η, d f|P ]P =∇1
η(τ ( f ))= d∇1(τ ( f ))(η). �



EQUIVALENCE OF POISSON STRUCTURES AROUND POISSON SUBMANIFOLDS 451

Proof of Theorem 1.1. By replacing M with a tubular neighborhood of P , we can
assume that P is closed in M . Write

γ := j∞
|P π1, γ ′ := j∞

|P π2 ∈ X̂2
P(M).

By Proposition 3.2, we can recast the hypothesis as

[γ, γ ] = 0, [γ ′, γ ′] = 0, γ − γ ′ ∈ F̂1, H 2(F̂•k/F̂
•

k+1, dγ )= 0,

for all k ≥ 1, where dγ := adγ . All these conditions are expressed in terms of the
graded Lie algebra L• := X̂•+1

P (M), with a complete filtration F̂. Theorem A.5
in the Appendix shows that there exists a formal vector field X ∈ F̂1

1 such that
γ = eadX (γ ′). By Lemma 3.1, there exists a diffeomorphism ψ of M , such that
j∞
|P (ψ

∗(W ))= eadX j∞
|P (W ), for all W ∈ X•P(M). This concludes the proof, since

j∞
|P (ψ

∗(π2))= eadX j∞
|P (π2)= eadX (γ ′)= γ = j∞

|P (π1).

Existence of Poisson structures with a specified infinite jet. This proof can be
applied to obtain a result on existence of Poisson bivectors with a specified infinite
jet. Let S be a closed embedded submanifold of M . An element π̂ ∈ X̂2

S(M),
satisfying [π̂ , π̂ ] = 0, is called a formal Poisson bivector. Observe that

π̂|S := π̂ mod F̂0 ∈ X2(S)

is a Poisson structure on S. We call S a symplectic leaf on π̂ if π̂|S is nondegenerate.
Assuming that S is a symplectic leaf of π̂ , by the discussion in Section 2, the first
jet of π̂ ,

j1
|S(π̂)= π̂ mod F̂1,

determines a Lie algebroid AS on T ∗S M , and thus can be used to construct a Poisson
bivector π1

S on some open neighborhood U of S, whose first jet coincides with that
of π̂ . If the cohomology groups

H 2(AS;S
k(TS◦))

vanish for all k ≥ 2, then by the proof of Theorem 1.1, there exists a formal vector
field X ∈ F̂1

1 such that eadX ( j∞
|S π

1
S)= π̂ . By Lemma 3.1, we find a diffeomorphism

ψ :U→U such that

j∞
|S (ψ

∗(π1
S))= eadX ( j∞

|S π
1
S)= π̂ .

Thus π := ψ∗(π1
S) gives a Poisson structure defined on an open neighborhood of

S whose infinite jet is π̂ . Hence we have proved the following statement.
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Corollary 3.3. Let π̂ ∈ X̂2
S(M) be a formal Poisson structure for which S is a

symplectic leaf. If for any k ≥ 2, the algebroid AS induced by j1
|Sπ̂ satisfies

H 2(AS;S
k(TS◦))= 0,

then there exists a Poisson structure π defined on some open neighborhood of S
such that π̂ = j∞

|S π .

4. Proofs of the criteria

Here we explain and prove the corollaries from the Introduction.

Integration of Lie algebroids and differentiable cohomology. We recall some
properties of Lie groupoids and Lie algebroids; see [Mackenzie 1987; Moerdijk
and Mrčun 2003] for the general theory. A Lie groupoid over a manifold B is
denoted by G, the source and target maps by s, t : G→ B, and the unit map by
u : B → G. To a Lie groupoid G one can associate a Lie algebroid A(G)→ B,
which is the infinitesimal counterpart of G. A Lie algebroid A is called integrable
if A ∼= A(G) for some Lie groupoid G. The relation between Lie algebroids and
Lie groupoids is similar to that between Lie algebras and Lie groups, the most
significant difference being that not every Lie algebroid is integrable.

Recall that a transitive Lie algebroid is a Lie algebroid A→ B with surjective
anchor. For example, if S ⊂ M is a symplectic leaf of a Poisson manifold (M, π),
then the Lie algebroid AS is transitive. A Lie groupoid G is called transitive if
the map (s, t) : G→ M × M is a surjective submersion. The Lie algebroid of a
transitive Lie groupoid is transitive. Conversely, if the base B of a transitive Lie
algebroid A is connected, and A is integrable, then any Lie groupoid G integrating
it is transitive. Every transitive Lie groupoid is a gauge groupoid; that is, it is of
the form P×G P , where G is a Lie group and p : P→ B is a principal G-bundle.
For P one can take any s-fiber s−1(x) of G for x ∈ B, and G := s−1(x)∩ t−1(x).
We can recover A from P as follows: as a bundle A = TP /G, the Lie bracket is
induced by the identification

0(A)= X(P)G,

and the anchor is given by dp. We will also say, about a principle G-bundle P
for which A u T P/G, that it integrates A. As for Lie algebras, if a transitive Lie
algebroid with connected base is integrable, then, up to isomorphism, there exists
a unique 1-connected principal bundle integrating it [Mackenzie 1987].

Let S ⊂ M be a symplectic leaf of a Poisson manifold (M, π), and assume
that the transitive algebroid AS is integrable. The connected and simply connected
principal bundle P → S for which P ×G P integrates AS is called the Poisson
homotopy cover of S. We say that P is smooth if AS is integrable; this terminology
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is justified by the fact that P exists also in the nonintegrable case as a topological
principal bundle over S [Crainic and Fernandes 2003].

Let A be a transitive Lie algebroid with connected base space B, and denote
by g ⊂ A the kernel of the anchor. On each fiber of g, the Lie bracket restricts
to a Lie algebra structure (gx , [ · , · ]x), and this Lie algebra is called the isotropy
Lie algebra at x . In the integrable case, when A= A(G), the isotropy Lie algebra
coincides with the Lie algebra of the isotropy group Gx := s−1(x)∩ t−1(x). In the
case of a symplectic leaf S ⊂ M of a Poisson manifold, the kernel of the anchor of
the Lie algebroid AS is given by g := TS◦.

A Lie groupoid G is called proper if (s, t) : G→ B× B is a proper map.
A representation of a Lie groupoid G over B is a vector bundle E → B and

a smooth linear action g : Ex → Ey for every arrow g : x → y satisfying the
obvious identities. A representation E of G can be differentiated to a representation
of its Lie algebroid A(G) on the same vector bundle E . If the s-fibers of G are
connected and simply connected, then every representation of A(G) comes from
a representation of G [Crainic and Fernandes 2003, Proposition 2.2], and in our
applications this is usually the case.

The differentiable cohomology of a Lie groupoid G with coefficients in a rep-
resentation E → B is computed by the complex C

p
diff(G; E) of smooth maps

c : G(p)→ E , where

G(p) := {(g1, . . . , gp) ∈ Gp
| s(gi )= t (gi+1), i = 1, . . . , p− 1}

with c(g1, . . . , gp) ∈ Et (g1), and with differential given by

dc(g1, . . . , gp+1)= g1c(g2, . . . , gp+1)

+

p∑
i=1

(−1)i c(g1, . . . , gi gi+1, . . . , gp+1)+ (−1)p+1c(g1, . . . , gp).

The resulting cohomology groups are denoted H•diff(G, E). For more details on this
subject, see [Haefliger 1979].

In the following proposition we list some results from [Crainic 2003] that are
needed in the proofs of the corollaries from the Introduction.

Proposition 4.1. Let G be a Lie groupoid over B with Lie algebroid A, and let
E→ B be a representation of G.

(1) If the s-fibers of G are cohomologically 2-connected, then

H 2(A; E)∼= H 2
diff(G; E).

(2) If G is proper, then H 2
diff(G; E)= 0.

(3) If G is transitive, then H 2
diff(G; E) ∼= H 2

diff(Gx ; Ex), where x ∈ B and Gx :=

s−1(x)∩ t−1(x).
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Proof. (1) is a particular case of [Crainic 2003, Theorem 4], and (2) follows from
[Crainic 2003, Proposition 1]. Since G is transitive, it is Morita equivalent to Gx

[Moerdijk and Mrčun 2003]; by [Crainic 2003, Theorem 1], a Morita equivalence
induces an isomorphism in cohomology, and this proves (3). �

Proof of Corollary 1.2. Recall that the cotangent Lie algebroid of (g∗, πlin) is
isomorphic to the action Lie algebroid g n g∗→ g∗ for the coadjoint action of g

on g∗, and that it is integrable by the action groupoid G ng∗, where G denotes the
compact, connected and simply connected Lie group of g. Also, the symplectic
leaves of (g∗, πlin) are the orbits of the action of G. So, because S(g) is G-
invariant, it is a union of symplectic leaves, and therefore a Poisson submanifold.
The algebroid AS(g) is isomorphic to the action algebroid g n S(g), and therefore
it is integrable by the action groupoid G n S(g). Since G is simply connected, it
follows that H 2

d R(G) = 0 [Duistermaat and Kolk 2000, Theorem 1.14.2]. On the
other hand, all s-fibers of GnS(g) are diffeomorphic to G, and so the assumptions
of Proposition 4.1(1) are satisfied, and therefore, for any representation E→S(g)

of G n S(g), we have

H 2(g n S(g); E)∼= H 2
diff(G n S(g); E).

Since G n S(g) is compact, it is proper, and hence by Proposition 4.1(2), we have
H 2

diff(GnS(g); E)= 0 for every representation E . Now the corollary follows from
Theorem 1.1. �

Proof of Corollary 1.4. Denote by P the Poisson homotopy cover of S with struc-
ture group G. By hypothesis, P is smooth, simply connected and with vanishing
second de Rham cohomology group. Let G := P ×G P be the gauge groupoid
of P . Since every s-fiber of G is diffeomorphic to P , G satisfies the assumptions
of Proposition 4.1(1), and therefore

H 2(AS;S
k(TS◦))∼= H 2

diff(G;S
k(TS◦)).

Since G is transitive, by Proposition 4.1(3), we have

H 2
diff(G;S

k(TS◦))∼= H 2
diff(G;S

k(Tx S◦)).

Since Tx S◦∼=g as G representations (both integrate the adjoint representation of g),
the proof follows from Theorem 1.3. �

Proof of Corollary 1.5. This follows from Corollary 1.4, because the differentiable
cohomology of compact Lie groups vanishes, by Proposition 4.1(2). �

Proof of Corollary 1.6. Let x ∈ S, and denote by gx := Tx S◦ the isotropy Lie
algebra of the transitive algebroid AS . By hypothesis, gx is reductive; that is, it
splits as a direct product of a semisimple Lie algebra and its center gx = sx ⊕ zx ,



EQUIVALENCE OF POISSON STRUCTURES AROUND POISSON SUBMANIFOLDS 455

where sx = [gx , gx ] and zx = Z(gx) is the center of gx . Since g = TS◦ is a Lie
algebra bundle, it follows that this splitting is in fact global:

g= [g, g]⊕ Z(g)= s⊕ z.

Since s= [g, g] is an ideal of AS , we obtain a short exact sequence of algebroids

0→ s→ AS→ Aab
S → 0,

with Aab
S = AS/[g, g]. Similar to the spectral sequence for Lie algebra extensions

[Hochschild and Serre 1953], there is a spectral sequence for extensions of Lie
algebroids [Mackenzie 1987, Theorem 5.5 and the remark following it], which in
our case converges to H•(AS;S

k(g)), with

E p,q
2 = H p(Aab

S ; Hq(s;Sk(g)))⇒ H p+q(AS;S
k(g)).

Since s is in the kernel of the anchor, Hq(s;Sk(g)) is indeed a vector bundle,
with fiber Hq(s;Sk(g))x = Hq(sx ;S

k(gx)), and it inherits a representation of Aab
S .

Since sx is semisimple, by the Whitehead Lemma we have that H 1(sx ;S
k(gx))=0

and H 2(sx ;S
k(gx))= 0. Therefore,

(9) H 2(AS;S
k(g))∼= H 2(Aab

S ;S
k(g)s),

where Sk(gx)
sx is the sx -invariant part of Sk(gx). By hypothesis, Aab

S is integrable
by a principle bundle Pab that is simply connected and that has vanishing second
de Rham cohomology and compact structure group T . Therefore, by (9) and by
applying Proposition 4.1(1), (2) and (3), we obtain that

H 2(AS;S
k(g))∼= H 2(Aab

S ;S
k(g)s)∼= H 2

diff(P
ab
×T Pab

;Sk(g)s)

∼= H 2
diff(T ;S

k(gx)
sx )= 0.

Theorem 1.3 finishes the proof. �

Proof of Corollary 1.7. Assume that gx is semisimple, π1(S, x) is finite, and
π2(S, x) is a torsion group. With the notation above, we have Aab

S
∼= TS. Also,

TS is integrable, and the simply connected principal bundle integrating it is S̃,
the universal cover of S. Finiteness of π1(S) is equivalent to compactness of the
structure group of S̃. By the Hurewicz theorem, we have H2(S̃,Z) ∼= π2(S̃), and
since π2(S̃) = π2(S) is torsion, we have H 2

dR(S̃) = 0. So the result follows from
Corollary 1.6. �

Appendix: Equivalence of MC-elements in complete GLAs

Here we discuss some general facts about graded Lie algebras endowed with a
complete filtration, with the aim of proving a criterion for equivalence of Maurer–
Cartan elements (Theorem A.5), which is used in the proof of Theorem 1.1. Some
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of the constructions given here can be also found in [Bursztyn et al. 2009, Ap-
pendix B.1] in the more general setting of differential graded Lie algebras with
a complete filtration. In fact, all our constructions can be adapted to this setup,
including in particular Theorem A.5. The analog of Theorem A.5 in the case of
differential graded associative algebras is in [Abad et al. 2010, Appendix A].

Definitions A.1. (1) A graded Lie algebra (L•, [ · , · ]) (or GLA) consists of a
Z-graded vector space L• endowed with a graded bracket [ · , · ] :Lp

×Lq
→

Lp+q , which is graded commutative and satisfies the graded Jacobi identity:

[X, Y ] = −(−1)|X ||Y |[Y, X ], [X, [Y, Z ]] = [[X, Y ], Z ] + (−1)|X ||Y |[Y, [X, Z ]].

(2) An element γ ∈L1 satisfying [γ, γ ] = 0 is called a Maurer–Cartan element.

(3) A filtration on a GLA is a decreasing sequence of homogeneous subspaces

L• ⊃ F0L• ⊃ · · · ⊃ FnL• ⊃ Fn+1L• ⊃ · · ·

satisfying

[FnL,FmL] ⊂ Fn+mL, [L,FnL] ⊂ FnL.

(4) A filtration FL is called complete if L is isomorphic to the projective limit
lim
←−

L/FnL.

An example of a GLA with a complete filtration appeared in Section 3: starting
from a manifold M and a closed embedded submanifold P ⊂ M , we constructed
(X̂•+1

P (M), [ · , · ]), the algebra of formal vector fields along P , with filtration given
by the powers of the vanishing ideal of P . So, the index of the filtration plays the
role of the order to which elements vanish along P .

For a general GLA with a complete filtration FL, define the order of an element
as follows:

O : L→ {0, 1, . . . ,∞},

O(X)=


0 if X ∈ L\F1L,

n if X ∈ FnL\Fn+1L,

∞ if X = 0.

The order has the following properties, which follow from those of the filtration:

• O(X)=∞ if and only if X = 0,

• O(X + Y )≥ O(X)∧O(Y )2,

• O(αX)≥ O(X) for all α ∈ R,

• O([X, Y ])≥ O(X)+O(Y ).

2u ∧ v denotes min{u, v}.
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The completeness assumption on the filtration implies the following property:

Lemma A.2. Let {Xn}n≥0 ∈ L be a sequence of elements such that

lim
n→∞

O(Xn)=∞.

Then there exists a unique element X ∈ L, denoted X :=
∑

n≥0 Xn , such that

X −
n∑

k=0

Xk ∈ FmL,

for all n big enough.

Note that g(L) := F1L0 forms a Lie subalgebra of L0. Elements X ∈ g(L)

satisfy O(adX (Y )) ≥ O(Y )+ 1 for all Y ∈ L, and therefore, by Lemma A.2, the
exponential of adX is well defined, and it is a GLA-automorphism of L•, written

Ad(eX ) : L•→ L•, Ad(eX )Y := eadX (Y )=
∑
n≥0

adn
X

n!
(Y ).

By Lemma A.2, the Campbell–Hausdorff formula converges for all X, Y ∈ g(L):

(10) X ∗ Y = X + Y +
∑
k≥1

(−1)k

k+1
Dk(X, Y ),

where

Dk(X, Y )=
∑

li+mi>0

ad l1
X

l1!
◦

ad m1
Y

m1!
◦ . . . ◦

ad lk
X

lk !
◦

ad mk
Y

mk !
(X).

We use the notation G(L)={eX
| X ∈g(L)}; that is, G(L) is the same space as g(L),

but we denote its elements by eX . The universal properties of the Campbell–
Hausdorff formula (10) imply that G(L) endowed with the product eX eY

= eX∗Y

forms a group. Also, Ad gives an action of G(L) on L by graded Lie algebra
automorphisms, which preserves the order:

• Ad(eX∗Y )= Ad(eX eY )= Ad(eX ) ◦Ad(eY ),

• Ad(eX )([U, V ])= [Ad(eX )U,Ad(eX )V ],

• O(Ad(eX )(U ))= O(U ),

for all X, Y ∈ g(L) and all U, V ∈ L.
For later use, we give the following straightforward estimates:

Lemma A.3. For all X, Y, X ′, Y ′ ∈ g(L) and U ∈ L, we have

(1) O(X ∗ Y − X ′ ∗ Y ′)≥ O(X − X ′)∧O(Y − Y ′) and

(2) O(Ad(eX )U −Ad(eY )U )≥ O(X − Y ).
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Let γ be an MC-element. Notice that [γ, γ ] = 0 implies that dγ := adγ is
a differential on L•. The fact that FkL are ideals implies that (FkL•, dγ ) are
subcomplexes of (L•, dγ ). The induced differential on the consecutive complexes
depends only on γ modulo F1, and their cohomology groups are denoted

H n
γ (FkL•/Fk+1L•).

Ad(eX )γ is again an MC-element for eX
∈ G(L), and we call γ and Ad(eX )γ

gauge equivalent. The next Lemma gives a linear approximation of the action G(L)

on MC-elements.

Lemma A.4. For γ an MC-element and eX
∈ G(L), we have

O(Ad(eX )γ − γ + dγ X)≥ 2O(X).

We have the following criterion for gauge equivalence.

Theorem A.5. Let (L•, [ · , · ]) be a GLA with a complete filtration FnL, and let
γ, γ ′ be two Maurer–Cartan elements. If O(γ−γ ′)≥ 1, and if for all q ≥O(γ−γ ′)

we have
H 1
γ (FqL•/Fq+1L•)= 0,

then γ and γ ′ are gauge equivalent; that is, there exists an element eX
∈G(L) such

that γ = Ad(eX )γ ′.

Proof. Define p := O(γ − γ ′). By hypothesis, for q ≥ p, we can find homotopy
operators

hq
1 : FqL1

→ FqL0 and hq
2 : FqL2

→ FqL1

such that hq
1(Fq+1L1)⊂ Fq+1L0, hq

2(Fq+1L2)⊂ Fq+1L1 and

(dγ hq
1 + hq

2dγ − I d)(FqL1)⊂ Fq+1L1.

We first prove an estimate. Let q ≥ p, and let γ̃ be an MC-element such that
O(γ̃ − γ ) ≥ q . Then for X̃ := hq

1(γ̃ − γ ), we claim that the following estimates
hold:

(11) O(X̃)≥ q, O(Ad(e X̃ )γ̃ − γ )≥ q + 1.

The first follows by the properties of hq
1 , and to prove the second we compute:

O(Ad(e X̃ )γ̃ − γ )≥ O(Ad(e X̃ )γ̃ − γ̃ + dγ̃ (X̃))∧O(γ̃ − dγ̃ (X̃)− γ )

≥ 2O(X̃)∧O([γ − γ̃ , X̃ ])∧O(γ̃ − γ − dγ (X̃))

≥ 2q ∧ (O(γ − γ̃ )+O(X̃))∧O(γ̃ − γ − dγ (X̃))

≥ 2q ∧O((I d − dγ hq
1)(γ̃ − γ )),
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where for the second inequality we use Lemma A.4. The last term can be evaluated
as follows:

O((I d − dγ hq
1)(γ̃ − γ ))≥ O((I d − dγ hq

1 − hq
2dγ )(γ̃ − γ ))∧O(hq

2(dγ (γ̃ − γ )))

≥ (q + 1)∧O(hq
2(dγ (γ̃ − γ ))).

Since dγ (γ̃ − γ )=− 1
2 [γ̃ − γ, γ̃ − γ ], we have O(dγ (γ̃ − γ ))≥ 2q ≥ q + 1, so

O((I d − dγ hq
1)(γ̃ − γ ))≥ q + 1,

and this proves (11).
We construct a sequence of MC-elements {γk}k≥0 and a sequence of group ele-

ments {eXk }k≥1 ∈ G(L) by the following recursive formulas:

γ0 := γ
′,

Xk := h p+k−1
1 (γk−1− γ ) for k ≥ 1,

γk := Ad(eXk )γk−1 for k ≥ 1.

To show that these formulas do indeed give well-defined sequences, we have to
check that γk−1− γ ∈ Fp+k−1L1. This holds for k = 1, and in general it follows
by applying the estimate (11) inductively at each step k ≥ 1 to γ̃ = γk−1 and
q = p+ k− 1, to obtain

O(Xk)≥ p+ k− 1, O(γk − γ )≥ p+ k.

Using Lemma A.3(1), we obtain

O(Xk ∗ Xk−1 · · · ∗ X1− Xk−1 · · · ∗ X1)≥ O(Xk)≥ p+ k− 1,

and therefore by Lemma A.2, the product Xk ∗ Xk−1 ∗ · · · ∗ X1 converges to some
element X . Applying Lemma A.3(1) k times, we obtain

O(Xk ∗ Xk−1 · · · ∗ X1)≥ O(Xk)∧O(Xk−1)∧ · · · ∧O(X1)≥ 1,

and thus X ∈ g(L). On the other hand, we have

O(Ad(eX )γ ′− γ )≥ O(Ad(eX )γ ′− γk)∧O(γk − γ )

≥ O(Ad(eX )γ ′−Ad(eXk∗···∗X1)γ ′)∧ (p+ k)

≥ O(X − Xk ∗ · · · ∗ X1)∧ (p+ k),

where for the last estimate we used Lemma A.3(2). If we let k→∞, we obtain
the conclusion: Ad(eX )γ ′ = γ . �
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