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For mean curvature flows in Euclidean spaces, Brian White proved a regu-
larity theorem which gives C2,α estimates in regions of spacetime where the
Gaussian density is close enough to 1. This is proved by applying Huisken’s
monotonicity formula. Here we will consider mean curvature flows in semi-
Euclidean spaces, where each spatial slice is an m-dimensional graph in
Rm+n

n satisfying a gradient bound stronger than the spacelike condition.
By defining a suitable quantity to replace the Gaussian density ratio, we
prove monotonicity theorems similar to Huisken’s and use them to prove a
regularity theorem similar to White’s.

1. Introduction

A mean curvature flow can roughly be described as a family of submanifolds
M= {M(t)}t∈I evolving with velocity equal to the mean curvature vector on each
M(t). Let M be such a flow, where each spatial slice M(t) is assumed to be an
m-dimensional submanifold of a Euclidean space. For spacetime points (y, s), the
Gaussian density ratio is given by∫

M(t)

1
(4π(s− t))m/2

exp
(
−
|x − y|2

4(s− t)

)
dx

for times t < s. Huisken [1990] proved an important monotonicity formula, which
roughly says that this will be nonincreasing with respect to t on mean curvature
flows. A local version of this formula was proved by Ecker [2004, Proposition
4.17]. One application of these monotonicity formulas is the proof of Brian White’s
[2005] local regularity theorem for mean curvature flows in Euclidean spaces. This
theorem says that such a flow will be smooth in regions of spacetime where the
Gaussian density ratios are close enough to 1.

Our goal is to prove a similar regularity theorem, but now for spacelike mean
curvature flows in semi-Euclidean spaces. We will assume that these flows are
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graphs and that they satisfy some uniform gradient bound stronger than the space-
like condition. Roughly, we will prove that if such a flow is smooth on an interval
(0, T ) then it can be extended smoothly to time T (see Theorem 16). This should
be compared to [White 2005, Theorem 3.5]. We prove this by defining a quantity
that has similar properties to the Gaussian density ratio. This quantity is chosen
in such a way that the evolution equations for spacelike mean curvature flows will
allow us to prove monotonicity formulas similar to Huisken’s and Ecker’s. The
proof of the regularity theorem itself is then similar to the proofs in [White 2005]
and [Ecker 2004], with some adjustments.

The main differences between this case and the Euclidean case are caused by
the semi-Euclidean metric. Obviously the mean curvature flow system is only par-
abolic when the spacelike condition is satisfied. Therefore any gradient estimates
are only useful if they are stronger than the spacelike condition. This is why we will
always assume such a bound on the gradient.1 This assumption is also useful when
defining our replacement for the Gaussian density ratio. For example, we need the
gradient bound to guarantee that this quantity is finite on a smooth flow (since we
need the eigenvalues of the induced metric to stay uniformly away from zero). We
will frequently need this assumption, used with inequality (4), to get the uniform
bounds needed to use the dominated convergence theorem (such arguments here
are more difficult than in the Euclidean case, and therefore will be explained in
more detail).

Other difficulties due to the semi-Euclidean metric appear in the proofs of the
monotonicity and regularity theorems. For example, Ecker’s local formula involves
a nice localisation function which is not useful in the semi-Euclidean case, thus
making our proof of local monotonicity slightly more awkward (see Theorem 10
and compare to [Ecker 2004, Proposition 4.17]). We also get different signs in the
evolution equations for various quantities, so that the inequalities seen in the Eu-
clidean case are often reversed here (see Equation (8), for example). The results of
this are seen in the monotonicity theorems, where we see that certain quantities are
nondecreasing, but where the corresponding quantities in the Euclidean case would
be nonincreasing (also see Theorem 13, where the inequality in the assumption is
the reverse of what we get in the Euclidean case).

The results proved in this paper formed part of the author’s Ph.D. thesis at
Durham University, under the supervision of Wilhelm Klingenberg.

2. Preliminaries

Notation. We will attempt to keep our notation as close to the notation in [White
2005] as possible, so that the similarities are clear. When N ≥ 2, RN will be

1For a case where such an estimate holds, see the appendix of [Thorpe 2011].
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Euclidean space with elements denoted by x and with the usual norm |x |. B N
R (x)

will be the ball of radius R and centre x . We will denote by RN ,1 the spacetime
RN
×R with elements X = (x, t) and parabolic norm ‖X‖ =max{|x |, |t |1/2}. We

write B N ,1
R (X)= B N

R (x)×(t−R2, t+R2) and U N ,1
R (X)= B N

R (x)×(t−R2, t]. The
function τ :RN ,1

→R will be the projection τ(x, t)= t onto the time axis. For any
λ> 0, we define the parabolic dilation Dλ :R

N ,1
→RN ,1 by Dλ(x, t)= (λx, λ2t).

Note that ‖DλX‖ = λ‖X‖. For subsets U of RN ,1 and functions f from U into
some Euclidean space, we define

d(X,U )= inf{‖X − Y‖ | Y /∈U } and ‖ f ‖p,α =
∑

k+2h≤p

‖Dk(∂t)
h f ‖0,α,

(for 0 < α < 1 and nonnegative integers p) where [ f ]α = supX 6=Y∈U | f (X) −
f (Y )|/‖X − Y‖α and ‖ f ‖0,α = supU | f | + [ f ]α, and where we have used the
notation ∂t f = ∂ f/∂t , ∂A f = ∂ f/∂x A, D = (∂1, . . . , ∂N ). In the obvious way,
we also define the parabolic C p norm by ‖ f ‖p =

∑
k+2h≤p supU |D

k(∂t)
h f |. If

we say that a sequence of functions converges in C p or C p,α on some set, we just
mean that it converges on that set with respect to the corresponding norm.

Semi-Euclidean spaces. For integers m ≥ 2 and n ≥ 1, it will be convenient here
for us to consider the space Rm+n with elements denoted by x = (x̂, x̃), where
x̂ ∈ Rm and x̃ ∈ Rn . With this notation, we can define the semi-Euclidean spaces
Rm+n

n = (Rm+n, 〈 · , · 〉) with metric tensor 〈x, y〉 = x̂ · ŷ − x̃ · ỹ. If we use the
summation convention with indices i, j = 1, . . . ,m and ν, γ =m+ 1, . . . ,m+ n,
then 〈x, y〉 = x i yi

− xγ yγ and we denote by ḡ the corresponding diagonal matrix
with ḡi j = δi j , ḡνγ =−δνγ .

Let M be a submanifold of Rm+n
n ; then we can take the induced metric g on M

in the usual way, and we say that M is spacelike if g is positive definite. The corre-
sponding Levi-Civita connections (denoted ∇̄ and ∇) are defined in the usual way,
and the second fundamental form on M is given by B(V,W ) = ∇̄V W −∇V W =
(∇̄V W )⊥ for tangent vector fields V,W on M (where ⊥ denotes projection to
normal spaces of M in Rm+n

n ). Taking the trace of this (with respect to the induced
metric g) gives the mean curvature vector H = traceg B of this submanifold. We
can also define the gradient (gradM ), divergence (divM ) and induced Laplace op-
erator (1M ) on this submanifold, all taken with respect to the induced metric; see
[O’Neill 1983] for details.

If� is a domain in Rm and F :�→Rm+n
n is an embedding such that M = F(�)

is a spacelike submanifold of Rm+n
n , then it is not difficult to check that the mean

curvature is given by

(1) H = (gi j∂i j F)⊥ =
1

√
det g

∂i
(√

det ggi j∂ j F
)
=1M F,
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where gi j =
〈
∂i F, ∂ j F

〉
gives the induced metric. This is proved as in the Euclidean

case; see [Ecker 2004, Appendix A].

3. Graphic mean curvature flows

We will consider graphic flows of the form

(2) M= {(x̂, u(x̂, t), t) | x̂ ∈�, t ∈ I } ⊂ Rm+n
n ×R,

where� is some domain in Rm , I is some time interval in R (not necessarily open)
and u :�× I → Rn . When we say that such a flow M is smooth (or locally C2,α,
etc.), we mean that the function u has that property. We will also discuss sequences
MJ of such flows (where J = 1, 2, . . . ). When we talk about convergence of MJ

in some space of functions, we actually mean convergence of the corresponding
u J .

On each spatial slice M(t)={x ∈Rm+n
n | (x, t)∈M}, we take the metric induced

from Rm+n
n and assume that it is spacelike. It will be convenient for us to use the

following norm for the differential map Du(x, t) : Rm
→ Rn ,

|||Du|||(x, t)= sup
v∈Rm ,|v|=1

|Du(x, t)(v)|.

Here | · | denotes the usual Euclidean norm, and D is taken with respect to the space
variables only (as usual). It is possible to show that |||Du|||2 will be equal to the
largest eigenvalue of DuT Du at each point, and that |||Du||| ≤ |Du| ≤

√
m|||Du|||.

Using the obvious relationship between |||Du||| and the eigenvalues of the induced
metric, we see that the graph will be spacelike if and only if |||Du||| < 1. If � is
convex and |||Du|||2 < 1− κ then it is easy to check that, for any t ∈ I ,2

(3) |u(x̂, t)− u(ŷ, t)| ≤ sup
�

|||Du( · , t)||| |x̂ − ŷ| ≤ (1− κ)1/2|x̂ − ŷ|,

and then, whenever s ≥ t are both in I ,

(4) |u(x̂, t)− u(ŷ, s)| ≤ |u(x̂, t)− u(ŷ, t)| + |u(ŷ, t)− u(ŷ, s)|

≤ (1− κ)1/2|x̂ − ŷ| + (s− t) sup(t,s) |∂t u(ŷ, · )|.

We denote by H(x, t) the mean curvature vector at the point x of the spatial slice
M(t). We will consider graphic flows that satisfy the quasilinear system

(5) ∂t u = ĝi j (Du)∂i j u

2To prove this, take x̂ ∈ � and let h ∈ Rm be such that x̂ + δh ∈ � for all δ ∈ [0, 1]. Then
|u(x̂+h)−u(x̂)|= |(

∫ 1
0 Du(x̂+δh)dδ)·h|≤

∫ 1
0 |Du(x̂+δh)·h|dδ=|h|

∫ 1
0 |Du(x̂+δh)·h|/|h|dδ≤

|h| sup� |||Du|||.
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on �× I , where ĝi j = δi j − ∂i uν∂ j uν gives the components of the induced metric
on each spatial slice. This system will be parabolic because the spacelike condition
implies that ĝ = I − DuT Du will be positive definite.

Proposition 1. Let M be a graph as in (2), and let I be open. Then M is a mean
curvature flow in Rm+n

n ×R if and only if the function u satisfies the system (5).

Proof. If (5) holds then, to show that we have a mean curvature flow, it is enough
to get parametrisations F of our spatial slices with ∂t F = H . In other words, for
each s ∈ I , we hope to find φ such that F(x̂, t) = (φ(x̂, t), u(φ(x̂, t), t)) satisfies
∂t F(x̂, t) = H(F(x̂, t), t) for times t close to s. But we know that the mean
curvature of our graph is (0, ĝi j∂i j u)⊥, and that ∂t u = ĝi j∂i j u. These facts and the
chain rule applied to F imply that we need ∂t F = (∂tφ, Du∂tφ)+ (0, ∂t u) to be
equal to (0, ∂t u)⊥. This is equivalent to the system ∂tφ

j
= ∂t u ·∂ j uĝi j (Du)|(φ(x̂,t),t)

for j = 1, . . . ,m. By thinking of x̂ as being fixed, we can think of this as a system
of ordinary differential equations and solve for some φ(t) with initial condition
φ(s) = x̂ , for any x̂ ∈ �. By the usual existence and uniqueness theorems [Lee
2003, Theorem 17.15], solutions φx̂,s(t) will exist for each x̂ ∈� and s ∈ I . If we
write φx̂,s(t) = φs(x̂, t), then φs( · , s) is the identity, φs is defined on some open
set E ⊂ � × I containing � × {s}, and each φs( · , t) will be a diffeomorphism
[Lee 2003, Problem 17-15]. Then φs is the required function, so we have a mean
curvature flow.

Conversely, if M is a mean curvature flow then we take F = (F̂, F̃) such
that ∂t F = H and F(x̂, t) = (F̂(x̂, t), u(F̂(x̂, t), t)). By the chain rule, this
gives ∂t F(x̂, t) = (I, Du(F̂(x̂, t), t)) · ∂t F̂(x̂, t)+ (0, ∂t u(F̂(x̂, t), t)). The left-
hand side is a normal vector and the first term on the right-hand side is tangen-
tial, therefore ∂t F(x̂, t) = (0, ∂t u)⊥|(F̂(x̂,t),t). We already know that ∂t F(x̂, t) =
H(F(x̂, t), t), but the mean curvature at F(x̂, t) is given by (0, ĝi j∂i j u)⊥|(F̂(x̂,t),t).
Hence (0, ∂t u)⊥ = (0, ĝi j∂i j u)⊥, and from here it is easy to check that we must
have ∂t u = ĝi j∂i j u. �

Assumption 2. M is a graphic flow, as in (2), where� is a convex, smooth domain
in Rm , and where the smooth function u :�× I → Rn satisfies the system (5) and
the inequality |||Du|||2 ≤ 1− κ for some constant κ > 0.

For such flows, and for times t on the interior of I , we can use the parametrisa-
tion F from the proof of Proposition 1 to prove the following facts. Note that we
will repeatedly use the fact that ∂t F = H =1M(t)F , by Equation (1), and we will
write g = (gi j ) = (

〈
∂i F, ∂ j F

〉
) for the induced metric on spatial slices. The first

fact is a version of the divergence theorem on mean curvature flows,∫
M(t)
〈H, V 〉 =

∫
M(t)

〈
1M(t)F, V

〉
=−

∫
M(t)

divM(t)V
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for vector fields V with compact support on M(t), where the integrals are taken over
the spatial slice with respect to the induced metric g.3 If f (x, t) is a real-valued
function defined on the flow then

(6)
d f
dt
= ∂t f +〈ḡD f, H〉 and 1M(t) f = 〈H, ḡD f 〉+ divM(t) (ḡD f ) ,

where ḡ is the matrix defined in the previous section. The second equation here,
along with the divergence theorem above, gives

(7)
∫

M(t)

(
φ1M(t)η− η1M(t)φ

)
= 0,

whenever φ and η are C2 on M(t) with φ having compact support. Finally, using
the usual formula for differentiating determinants, we have the following evolution
equation on mean curvature flows,

(8)
d
dt

√
det g =−

√
det g 〈H, H〉 ≥ 0.

Definition 3. Let X0 = (x0, t0) ∈Rm+n,1. Define 8X0 :R
m+n
× (−∞, t0)→R by

8X0(x, t)=
1

(4π(t0− t))m/2
exp

(
−
〈x − x0, x − x0〉

4(t0− t)

)
.

Let M be a graphic flow in Rm+n
n ×R, as in (2). For times t < t0, we define

2(M, X0, t)=
∫

x∈M(t)
8X0(x, t).

We see that

(9)
∂8X0

∂t
=

m8X0

2(t0− t)
−
〈x − x0, x − x0〉8X0

4(t0− t)2
, ḡD8X0 =−

(x − x0)8X0

2(t0− t)
.

These equations, combined with (6), give

(10)
(

d
dt
+1M(t)

)
8X0

= ∂t8X0 + 2
〈
ḡD8X0, H

〉
+ divM(t)(ḡD8X0)

= ∂t8X0 + divM(t)(ḡD8X0)+

〈
(ḡD8X0)

⊥, (ḡD8X0)
⊥
〉

8X0

−

〈
H −

(ḡD8X0)
⊥

8X0

, H −
(ḡD8X0)

⊥

8X0

〉
8X0 +〈H, H〉8X0 .

3Whenever it will not cause confusion, we will write integrals of the form
∫

x∈M(t) f (x, t) dx as∫
M(t) f to save space. Such integrals are always taken relative to the induced metric from Rm+n

n .
Similarly, we write 1M(t) f (x, t) as 1M(t) f when the meaning is clear.
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But the first three terms on the right-hand side of this equation add up to 0 since,
by (9),

divM(t)(ḡD8X0)=
−m8X0

2(t0− t)
+

8X0

4(t0− t)2
〈
(x − x0)

>, (x − x0)
>
〉
,〈

(ḡD8X0)
⊥, (ḡD8X0)

⊥
〉

8X0

=
8X0

4(t0− t)2
〈
(x − x0)

⊥, (x − x0)
⊥
〉
.

Now we use this, and the evolution equation for
√

det g, to differentiate the
integral

∫
x∈M(t)8X0(x, t)φ(x, t) when φ is some nonnegative C2 function where

each φ( · , t) has compact support on M(t).

d
dt

∫
M(t)

8X0φ

=

∫
M(t)

(
φ

d8X0

dt
+8X0

dφ
dt
−〈H, H〉φ8X0

)
=

∫
M(t)

8X0

( d
dt
−1M(t)

)
φ+

(( d
dt
+1M(t)

)
8X0 −〈H, H〉8X0

)
φ

=

∫
M(t)

8X0

( d
dt
−1M(t)

)
φ−

〈
H −

(ḡD8X0)
⊥

8X0

, H −
(ḡD8X0)

⊥

8X0

〉
φ8X0,

where we have used (7) and then (10). By (9) this gives:

(11)
d
dt

∫
M(t)

8X0φ =

∫
M(t)

8X0

( d
dt
−1M(t)

)
φ

−

∫
M(t)

〈
H −

(x − x0)
⊥

2(t0− t)
, H −

(x − x0)
⊥

2(t0− t)

〉
φ8X0 .

This will be very useful later, and it is our first step towards the proof of mono-
tonicity formulas. It is important to remember that the second term on the right-
hand side is nonnegative (since the flow is spacelike, which means that normal
vectors will be timelike or zero). This is unlike the Euclidean case, where the
corresponding term would be nonpositive.

Proposition 4. Let M be as in Assumption 2, but with � = Rm and I = (−∞, T ]
for T > 0. If , for every point (x, t) on the flow, we have

(12) H(x, t)=
x⊥

2t
,

then M∩ {X | τ(X)≤ 0} is invariant under parabolic dilations.

Proof. The idea (as for a similar result in [Ilmanen 1997]) is to assume that there is
some point Y = (y, t) on M′=M∩{X |τ(X)≤0}, but not on DλM′ for some λ. Then
we take a compactly supported C2 function φ with φ(y)= 1 and φ= 0 on DλM(t).
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The transformation formula for integrals gives
∫

DλM(t) φ=λ
m
∫

M(t/λ2)
φ(λx). Then

our evolution equation for
√

det g implies that
d

dλ

∫
DλM(t)

φ

λm

=

∫
x∈M(t/λ2)

(
2t
λ3φ(λx)

〈
H,

x⊥

2t/λ2

〉
+Dφ(λx) ·x−

2t
λ2 Dφ(λx) ·H+

m
λ
φ(λx)

)
,

where we have used Equation (12) to get H = x⊥/(2t/λ2) on M(t/λ2), and the
fact that ∂t F = H . We can deal with the first term by using the divergence theorem
(and the fact that H is a normal vector) to get∫

x∈M(t/λ2)

〈
H, φ(λx)x⊥

〉
=−

∫
x∈M(t/λ2)

divM(t/λ2)(φ(λx)x),

and by using the fact that divM(t/λ2)(φ(λx)x)=mφ(λx)+λDφ(λx)·x>. It follows
that

d
dλ

∫
DλM(t)

φ = 0,

so
∫

DλM φ remains constant as λ varies. The contradiction proves our claim. �

Proposition 5. Let X, Y ∈ Rm+n,1, s < τ(Y ) and λ > 0; then

2(Dλ(M− X), Y, s)=2(M, X + D1/λY, τ (X)+ s/λ2).

Proof. If M is given by u : �× I → Rn and if X = (x̂, x̃, t), then Dλ(M− X) is
given by uλ,X ( · , · ) = λ(u( · /λ+ x̂, · /λ2

+ t)− x̃) on Dλ(�× I − (x̂, t)). Then
the transformation rule for integrals gives the expected result. �

4. Monotonicity for entire flows

Given a flow satisfying Assumption 2, we say that it is an entire flow if � = Rm

and I = (−∞, T ] for some T ∈ (−∞,∞]. If M is such an entire flow, then
2(M, X0, t) is finite at points X0 = (x0, t0) = (x̂0, u(x̂0, t0), t0) on M for times
t < t0. To prove this, we use

√
det ĝ < 1 and the fact that inequality (4) gives a

bound on the exponent in 8X0 on the flow,

(13) −
〈x− x0, x− x0〉

4(t0− t)
≤
−κ|x̂− x̂0|

2

4(t0− t)
+
(1−κ)1/2 sup(t,t0) |∂t u(x̂0, · )||x̂− x̂0|

2

+
(t0− t)2 sup(t,t0) |∂t u(x̂0, · )|

2

4(t0− t)
.

Here we can use the fact that u is smooth, so the time derivative in this inequality
will be bounded on (t, t0) by some constant. Also, the fact that t < t0 is fixed means
that t0− t > 0 will be constant. This means that, for large |x̂− x̂0|, the first term in
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the right-hand side of (13) will dominate. So we have a bound on 2(M, X0, t) by
some integral known to be finite, being given by the usual formula for Gaussian
integrals,

∫
Rm exp(−Ai j yi y j/2)dy =

√
(2π)m/ det(Ai j ). (Here the matrix Ai j is

constant, symmetric and positive definite. Almost all of the bounds on integrals
that we use will follow from this.)

The simplest example is a nonmoving plane, where each spatial slice is a space-
like plane (independent of time). Then Du is constant and ∂t u = 0. Obviously this
implies that |u(x̂, t)− u(x̂0, t0)|2 = |Du · (x̂ − x̂0)|

2
= (x̂ − x̂0)

T DuT Du(x̂ − x̂0),
where we know that ĝ= I −DuT Du. For any point X0 = (x̂0, u(x̂0, t0), t0) on the
flow, we then see that

2(M, X0, t)=
∫

Rm

1
(4π(t0− t))m/2

exp
(
−
(x̂ − x̂0)

T ĝ(x̂ − x̂0)

4(t0− t)

)√
det ĝ d x̂ = 1,

where we again use the Gaussian integral formula. Therefore 2 is equal to 1 on
nonmoving planes.

Theorem 6. Let M be an entire flow satisfying Assumption 2, and let the mean
curvature H be uniformly bounded on M. Then

d
dt
2(M, X0, t)=−

∫
x∈M(t)

〈
H(x, t)+

(x − x0)
⊥

2(t0− t)
, H(x, t)+

(x − x0)
⊥

2(t0− t)

〉
8X0

when X0 = (x0, t0) ∈M and t < t0.

This theorem gives us a monotonicity formula, similar to Huisken’s, for entire
spacelike mean curvature flows. It tells us that 2 will be nondecreasing with
respect to the time variable on such flows (since the right-hand side in the formula
is nonnegative, by the spacelike condition). This is different to the Euclidean case,
where the Gaussian density ratio would be nonincreasing. The proof of this theo-
rem should be compared to the one in [Ecker 2004, p. 55]. We could even weaken
the assumption on H , but for now it is enough to assume that it is bounded.

Proof. For each R > 0 we can choose (as in [Ecker 2004, proof of Theorem 4.13])
functions χm

R :R
m
→R such that χBm

R (0)≤χ
m
R ≤χBm

2R(0) and R|Dχm
R |+R2

|D2χm
R |≤

C for some constant C .4 Using these functions, we define χR :R
m+n
n →R by taking

χR(x)= χR(x̂, x̃)= χm
R (x̂) for any x = (x̂, x̃). We apply (11) with φ = χR to get

(14)
d
dt

∫
M(t)

8X0χR =−

∫
M(t)

〈
H +

(x − x0)
⊥

2(t0− t)
, H +

(x − x0)
⊥

2(t0− t)

〉
8X0χR

+

∫
M(t)

8X0

(
d
dt
−1M(t)

)
χR.

4For a set K , we denote by χK the characteristic function of K .
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Using (6), the Schwarz inequality and the bounds on the eigenvalues of ĝ (from
the assumed bound on the gradient), we have5

(15)
∣∣∣∣( d

dt
−1M(t)

)
χR

∣∣∣∣≤ |ĝ−1(Du)| · |D2χm
R | ≤ C0(κ)

C
R2χBm

2R(0)−Bm
R (0),

where we have also used the fact that χm
R is constant outside Bm

2R(0)− Bm
R (0).

Now we will restrict to any fixed bounded time interval I ′ = [a, b] ⊂ (−∞, t0),
considering only times t ∈ I ′. The first thing to note here is that we have positive
upper and lower bounds, independent of t (but depending on I ′), on both t0− t and
1/(t0− t). Next we note that the flow is smooth on (−∞, t0] (by our assumptions
in the statement of the theorem) and X0 = (x̂0, u(x̂0, t0), t0) lies on the flow, so
we have sup[t,t0] |∂t u(x̂0, · )| ≤ sup[a,t0] |∂t u(x̂0, · )|, where sup[a,t0] |∂t u(x̂0, · )| is a
finite constant independent of t ∈ I ′. We can use this to apply inequality (4) to
bound the exponent of 8X0 on our flow, getting

−
〈x − x0, x − x0〉

4(t0− t)
≤
−κ|x̂ − x̂0|

2

4(t0− a)
+
(t0− a) sup[a,t0] |∂t u(x̂0, · )|

2

4

+
(1− κ)1/2 sup[a,t0] |∂t u(x̂0, · )|

2
|x̂ − x̂0|.

We denote the right-hand side of this inequality by Q(|x̂ − x̂0|), where the coef-
ficients of the polynomial Q depend on I ′ and x̂0 but are independent of t ∈ I ′.
Also, using the Schwarz and triangle inequalities, with the assumed bounds on H
and |||Du||| (and hence on the eigenvalues of ĝ), it is not difficult to see that we
have −

〈
H + (x − x0)

⊥/2(t0− t), H + (x − x0)
⊥/2(t0− t)

〉
≤ P(|x̂ − x̂0|) on our

flow, where P is some polynomial with coefficients again independent of t ∈ I ′.
Now we recall (14) and use it to get∣∣∣∣ d
dt

∫
M(t)

8X0
χR +

∫
M(t)

〈
H +

(x − x0)
⊥

2(t0− t)
, H +

(x − x0)
⊥

2(t0− t)

〉
8X0

∣∣∣∣
≤

∣∣∣∣∫
M(t)

8X0

( d
dt
−1M(t)

)
χR

∣∣∣∣
+

∣∣∣∣∫
M(t)

〈
H +

(x − x0)
⊥

2(t0− t)
, H +

(x − x0)
⊥

2(t0− t)

〉
8X0(1−χR)

∣∣∣∣
≤

∫
Rm

C0C
R2

χBm
2R(0)−Bm

R (0)

(4π(t0− b))m/2
exp

(
Q(|x̂ − x̂0|)

)
dx̂

+

∫
Rm

P(|x̂ − x̂0|)
(1−χBm

R (0))

(4π(t0− b))m/2
exp

(
Q(|x̂ − x̂0|)

)
dx̂,

5From now on, C( · , . . . , · ) will always denote a positive constant depending on the quantities in
parentheses.
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where we have used all of the inequalities above, as well as
√

det ĝ ≤ 1. Both
integrands in the right-hand side are bounded by an integrable function independent
of R (since Q is dominated by the −|x̂ − x̂0|

2 term and P is just a polynomial).
Both integrands converge pointwise to zero on Rm as R →∞, which allows us
to apply the dominated convergence theorem to see that the right-hand side of this
inequality converges to zero. Since the right-hand side is independent of t ∈ I ′,
this convergence is uniform. So we have

lim
R→∞

d
dt

∫
M(t)

8X0χR =−

∫
M(t)

〈
H +

(x − x0)
⊥

2(t0− t)
, H +

(x − x0)
⊥

2(t0− t)

〉
8X0 .

The uniform convergence allows us to swap the order of the limit and the derivative
on the left-hand side to get

−

∫
M(t)

〈
H +

(x − x0)
⊥

2(t0− t)
, H +

(x − x0)
⊥

2(t0− t)

〉
8X0 =

d
dt

∫
M(t)

8X0,

where we have again used a dominated convergence argument (involving Q, etc.)
and the fact that χm

R converges to 1 pointwise. Since we can do this for any such
I ′, the equation above holds for all t < t0. �

Corollary 7. Let M be as in Theorem 6, then 2(M, X, t) ≤ 1 for all X ∈ M and
all t < τ(X). Also, 2(M, X, t)= 1 for all X ∈M and all t < τ(X) if and only if M

is a nonmoving plane.

Proof. Let Y = (y, s) ∈ M, then we claim that limt→s 2(M, Y, t) = 1. We prove
this by considering dilations of the flow using Proposition 5.

2(M, Y, t)=2(D1/(s−t)1/2(M− Y ), 0,−1)(16)

and, since the flow is smooth at Y , the flows D1/(s−t)1/2(M − Y ) converge to a
nonmoving plane as t → s. To understand why, write λ =

√
s− t and let each

D1/λ(M − Y ) be given by the graph of a function uλ. If (M − Y ) is the graph
of a function u, then uλ(ẑ, r) = u(λẑ, λ2r)/λ and the definition of the derivative
(with respect to λ) gives limλ→0 uλ(ẑ, r)= Du(0, 0) · ẑ+0 ·2r∂t u(0, 0). Therefore
D1/λ(M− Y ) converges pointwise to a nonmoving plane as λ→ 0.

We easily see that

Duλ(ẑ, r)= Du(λẑ, λ2r)→ Du(0, 0),

so det ĝ(Duλ) converges to det ĝ(Du(0, 0)). Also,

sup
[−1,0]
|∂t uλ(0, · )| = λ sup

[−λ2,0]
|∂t u(0, · )| → 0

as λ→ 0. We can use these facts to apply the dominated convergence theorem to
2(D1/λ(M− Y ), 0,−1), by again using inequality (4) in the usual way to get an
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upper bound on the exponent of 80( · ,−1) on each D1/λ(M− Y ),

−|x̂ |2+ |uλ(x̂,−1)|2

4
≤
−|x̂ |2+

(
(1− κ)1/2|x̂ | + sup[−1,0] |∂t uλ(0, · )|

)2

4

≤
−κ|x̂ |2+ 2(1− κ)1/2|x̂ | + 1

4
,

whenever λ is small enough that sup[−1,0] |∂t uλ(0, · )| ≤ 1. Now we have a bound
(for all small λ) on the integrands of each 2(D1/λ(M− Y ), 0,−1) by some inte-
grable function. We can therefore apply the dominated convergence theorem to get
2(D1/λ(M−Y ), 0,−1)→ 1 as λ→ 0, since2 is always equal to 1 on nonmoving
planes. This fact and (16) give2(M, Y, t)→1 as t→ s. The monotonicity theorem
tells us that 2(M, Y, t) is nondecreasing with respect to t < s and therefore must
be ≤ 1.

For the second part of the corollary, if 2(M, Y, t) ≡ 1 then the monotonicity
formula gives

0=
d
dt
2(M, Y, t)=−

∫
M(t)

〈
H +

(x − y)⊥

2(s− t)
, H +

(x − y)⊥

2(s− t)

〉
8Y ,

and therefore (since normal vectors are timelike or zero) we have

H(x, t)=−(x − y)⊥/2(s− t).

This means that the flow M′ = (M− Y )∩ {X | τ(X) ≤ 0} satisfies (12) and must
be invariant under parabolic dilations. As λ→∞, the flows DλM′ again converge
to a nonmoving plane, which must be equal to M′. This is true for all Y ∈M with
τ(T ) < T = sup I , so M must be a nonmoving plane. �

5. Local monotonicity

If a flow satisfying Assumption 2 has I = [a, b), then Proposition 17 (given in the
Appendix) implies that we can extend it continuously to [a, b]. Taking a subset
of � if necessary (remember that we are interested in local theorems here), the
following assumption will hold.

Assumption 8. With M as in Assumption 2, �× I is bounded and u is continuous
on its closure.

Now we will prove a kind of local monotonicity theorem, which will be used
to prove a local regularity theorem later. We will need to define a local version of
2. We can choose a C2 function φ :Rm

→R which satisfies χBm
1/2(0) ≤ φ ≤ χBm

1 (0)

and |D2φ| ≤ C1, where C1 is some positive constant depending only on m. Then,
for any spacetime point X0 = (x̂0, x̃0, t0) and any ρ > 0, we define a function on
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Rm+n by

φρ,X0(x)= φρ,X0(x̂, x̃)= φ
( x̂− x̂0

ρ

)
,

which will satisfy χBm
ρ/2(x̂0)×Rn ≤φρ,X0 ≤χBm

ρ (x̂0)×Rn and |D2φρ,X0 |≤C1/ρ
2. It will

also be convenient now for us to define the sets Qm,n,1
ρ (X)= Bm

ρ (x̂)×Rn
×(t−ρ2, t)

and Pm,n,1
ρ (X)= Bm

ρ (x̂)×Rn
×(t−ρ2, t+ρ2) for any spacetime point X= (x̂, x̃, t).

Definition 9. Let M be a graphic flow in Rm+n
n ×R, as in (2). If X0 ∈ Rm+n,1 and

ρ > 0 are such that Qm,n,1
ρ (X0)⊂�×Rn

× I then we define

2(M, X0, t, ρ)=
∫

x∈M(t)
8X0(x, t)φρ,X0(x)

for t < τ(X0) in I .

As in Proposition 5, we can prove

(17) 2(Dλ(M− X), Y, t, ρ)=2(M, X + D1/λY, τ (X)+ t/λ2, ρ/λ).

By the dominated convergence theorem, we easily see that 2(M, X, s, ρ) is con-
tinuous with respect to X ∈M. Now we can prove a local monotonicity theorem.
We will use the notation M̄ for the closure of M.

Theorem 10. Let M satisfy Assumption 8, and let ρ > 0. Then there exist positive
constants C2 and δ < ρ2 such that, whenever X0 ∈ M̄ is such that Qm,n,1

ρ (X0) ⊂

�× Rn
× I , the function t 7→ 2(M, X0, t, ρ)+ C2t will be nondecreasing with

respect to t ∈ (τ (X0)− δ, τ (X0)).

Note that C2 and δ will be independent of such points X0, but will depend on
M and ρ.

Proof. We know from (11) that

(18)
d
dt
2(M, X0, t, ρ)≥

∫
M(t)

8X0

(
d
dt
−1M(t)

)
φρ,X0 .

As in the proof of Theorem 6, it is easy to check that
∣∣(d/dt −1M(t))φρ,X0

∣∣ ≤
C3χBm

ρ (x̂0)×Rn−Bm
ρ/2(x̂0)×Rn , where C3 =C3(κ, ρ) is constant. Let x̂, ŷ ∈ �̄ and t < s

in Ī be such that ρ/2 < |x̂ − ŷ| < ρ. Then, by (3) and the triangle inequality, we
have

(19) −|x̂ − ŷ|2+ |u(x̂, s)− u(ŷ, t)|2

≤−κ|x̂ − ŷ|2+ 2(1− κ)1/2|x̂ − ŷ‖u(x̂, s)− u(x̂, t)| + |u(x̂, s)− u(x̂, t)|2

≤−κρ2/4+ 2(1− κ)1/2ρ|u(x̂, s)− u(x̂, t)| + |u(x̂, s)− u(x̂, t)|2.
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But, by uniform continuity of u (since it is continuous on the closure of �× I ), we
can take δ > 0 (not depending on x̂, ŷ, s, t) such that the right-hand side of (19)
will be ≤ −κρ2/8 whenever |t − s| < δ.6 Taking s = τ(X0) and combining the
above inequalities with the fact that

√
det ĝ ≤ 1 gives∣∣∣∣∫

M(t)
8X0

(
d
dt
−1M(t)

)
φρ,X0

∣∣∣∣≤ ∫
�

C3χBm
ρ (x̂0)−Bm

ρ/2(x̂0)

(4π(τ(X0)− t))m/2
exp

(
−ρ2κ/32
τ(X0)− t

)
,

for 0 < τ(X0)− t < δ. Taking t → τ(X0) in the right-hand side shows that it is
bounded by some finite constant C4 for these values of t . Therefore

d
dt
2(M, X0, t, ρ)≥−C4

for t ∈ (τ (X0)− δ, τ (X0)), proving the theorem. �

Corollary 11. Let M be as in Theorem 10. If X0 ∈ M̄ and ρ0 > 0 are such that
Qm,n,1
ρ0

(Y )⊂�×Rn
× I for all Y ∈ Qm,n,1

ρ0
(X0), and if

lim
t→τ(X0)

2(M, X0, t, ρ0) > 1− ε

for some ε > 0, then there exists ρ ∈ (0, ρ0) such that

2(M, Y, t, ρ0)≥ 1− ε

for all Y ∈ Qm,n,1
ρ (X0)∩M and all t ∈ (τ (Y )− ρ2, τ (Y )).

Proof. Let limt→τ(X0)2(M, X0, t, ρ0)≥ 1− ε+η for some η > 0 (the limit exists
in R∪{∞} by the local monotonicity theorem). Then there must exist ρ1 ∈ (0, ρ0]

such that 2(M, X0, τ (X0)− ρ
2
1 , ρ0) > 1− ε + η/2. We can choose ρ1 to be as

small as we like, so we take ρ2
1 to be less than both δ(M, ρ0) and η/4C2(M, ρ0)

(with δ and C2 as in Theorem 10). By continuity, there will exist ρ ∈ (0, ρ1) such
that, for all Y ∈ Qm,n,1

ρ (X0)∩M,

2(M, Y, τ (X0)− ρ
2
1 , ρ0) > 1− ε+ η/4

and (τ (Y )− ρ2, τ (Y )) ⊂ (τ (X0)− ρ
2
1 , τ (X0)) ⊂ (τ (X0)− δ, τ (X0)). So we can

apply Theorem 10 to 2(M, Y, t, ρ0) for t ∈ (τ (Y )− ρ2, τ (Y )) to get

2(M, Y, τ (X0)− ρ
2
1 , ρ0)+C2(τ (X0)− ρ

2
1)≤2(M, Y, t, ρ0)+C2t

for all such Y and t , which in turn implies

2(M, Y, t, ρ0)≥ C2(τ (X0)− t − ρ2
1)+ 1− ε+ η/4≥ 1− ε+ (η/4− ρ2

1C2),

where the last term is positive by our choice of ρ1. �

6Uniform continuity implies that, for any ε > 0, there exists δ > 0 such that ‖(x̂, s)− (ŷ, t)‖< δ
implies |u(x̂, s)− u(ŷ, t)|< ε. Taking x̂ = ŷ and a small enough ε here proves our claim.
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Proposition 12. Let M satisfy Assumption 8, and let X0 and ρ be as in Theorem 10.
Then limt→τ(X0)2(M, X0, t, ρ)= limt→τ(X0)2(M, X0, t). In particular, the limit
on the left-hand side is independent of ρ.

Proof. It is easy to see that, if we write X0 = (x̂0, u(x̂0, t0), t0),

0≤2(M, X0, t)−2(M, X0, t, ρ)

=

∫
�

exp
(
−|x̂ − x̂0|

2
+ |u(x̂, t)− u(x̂0, t0)|2

4(t0− t)

)
(4π(t0− t))m/2

(
1−φ

(
x̂− x̂0
ρ

))√
det ĝ d x̂ .

But
√

det ĝ < 1 and 1−φ((x̂ − x̂0)/ρ) is at most 1 and vanishes for x̂ ∈ Bm
ρ/2(x̂0).

Thus we only need to consider |x̂ − x̂0| ≥ ρ/2 and, as in inequality (19), we get

−|x̂ − x̂0|
2
+ |u(x̂, t)− u(x̂0, t0)|2

≤−κ|x̂ − x̂0| + 2(1− κ)1/2|x̂ − x̂0‖u(x̂0, t)− u(x̂0, t0)| + |u(x̂0, t)− u(x̂0, t0)|2

≤−κρ2/4+ 2(1− κ)1/2 diam�|u(x̂0, t)− u(x̂0, t0)| + |u(x̂0, t)− u(x̂0, t0)|2,

which is≤−κρ2/8 when we take |u(x̂0, t)−u(x̂0, t0)| small enough (by continuity)
by taking t close enough to t0. Therefore, for such t , we have

2(M, X0, t)−2(M, X0, t, ρ)≤
∫
�

exp
(
(−κρ2/8)/4(t0− t)

)
(4π(t0− t))m/2

dx̂,

which converges to 0 as t→ t0. �

6. Local regularity

In [White 2005], a regularity theorem for mean curvature flows in Euclidean spaces
is proved. To do this, a kind of local C2,α norm is used (defined at each point of
a flow and denoted by K2,α). For a sequence of C2,α flows, denoted by MJ , if
this norm is uniformly bounded on compact subsets as J →∞ then a version of
the Arzelà–Ascoli theorem [White 2005, Theorem 2.6] gives local parabolic C2

convergence of a subsequence to some locally C2,α flow. However, the definition
of this norm involves rotations, which would cause problems in the semi-Euclidean
case (because of the spacelike condition and because the mean curvature flow sys-
tem is not preserved by such rotations). It is convenient for us to define a slightly
different quantity with similar properties. The idea will be to use the gradient
bound (from the spacelike assumption) to ignore the first few terms in the C2,α

norm, thus removing the need to translate and rotate in the definition of K2,α.
Suppose that we have a spacelike, graphic flow M (as in (2), not necessarily a

mean curvature flow) and X ∈�×Rn
× I . For any α∈ (0, 1), we define G2,α(M, X)



478 BENJAMIN STUART THORPE

to be the infimum of the numbers λ > 0 such that

(20) [Duλ,X |U m,1]α +‖D2uλ,X |U m,1‖0,α +‖∂t uλ,X |U m,1‖0,α ≤ 1,

where uλ,X is the function whose graph gives the flow Dλ(M− X), and uλ,X |U m,1

is the restriction to U m,1
= Bm

1 (0)× (−1, 0]. This will be finite when the flow is
smooth (to understand why, see how each term in (20) is affected by dilations). It is
important to note that, for any X = (x̂, x̃, t), G2,α(M, X) is independent of x̃ (since
the definition only involves derivatives of u). We will also need the obvious facts
that this quantity will be zero on nonmoving planes and that G2,α(Dλ(M−X), 0)=
G2,α(M, X)/λ.

The most important property of G2,α is a version of the Arzelà–Ascoli theorem.
Roughly, if we have a sequence of smooth spacelike flows MJ , each containing the
origin and with G2,α(MJ , · ) uniformly bounded on compact subsets of spacetime
as J →∞, then we have local parabolic C2 convergence of some subsequence to
a locally C2,α limit flow. Comparing G2,α to K2,α and applying Theorem 2.6 of
[White 2005] gives us this fact, but we will still explain in detail in Proposition 19
in a special case (the only case that we need). Furthermore, if each of the flows
satisfies the system (5) then so will the limit (by the C2 convergence). This limit
must then be smooth by induction, since a Ck,α solution to the system must be
Ck+1,α, by the usual theorems for linear equations; see [Friedman 1964, Chapter
3], for example.

Theorem 13. Let α, κ ∈ (0, 1) be given. Then there exist positive constants ε and
C5 such that if

(a) M is as in Assumption 2, with sup I = 0 ∈ I and with u(0, 0)= 0, and

(b) ρ0 > 1 is such that Qm,n,1
ρ0

(Y )⊂�×Rn
× I and

2(M, Y, t, ρ0)≥ 1− ε

for all Y ∈ Qm,n,1
1 (0)∩M and all t ∈ (τ (Y )− 1, τ (Y )),

then supX∈Qm,n,1
1 (0) G2,α(M, X)d(X, Pm,n,1

1 (0))≤ C5.

It is important to notice that the constants ε and C5 will depend on κ, α,m, n, but
will be independent of M. Also, since G2,α scales like the reciprocal of parabolic
distance, the inequality in the conclusion of the theorem is invariant under parabolic
dilations. This is the most important theorem of this section and is a version of
White’s local regularity theorem. The proof should be compared to those of [White
2005, Theorem 3.1] and [Ecker 2004, Theorem 5.6]. As in this latter reference,
we use the local version of 2. As in [White 2005], we aim for bounds on the C2,α
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norm and use the Schauder estimates,7 rather than aiming for bounds on the second
fundamental form and using related interior estimates as in [Ecker 2004].

Proof. Let ε̄ be the infimum of numbers ε > 0 for which the theorem fails (i.e., for
which no such C5 exists). We need ε̄ >0, so we assume ε̄=0 to get a contradiction.
We take a sequence εJ→ ε̄ with εJ >ε̄. Then there exist sequences MJ and ρJ >1,
satisfying all of the assumptions of the theorem (with the same α and κ), but with
εJ ,MJ , ρJ in place of ε,M, ρ0, and with

γJ = sup
X∈Qm,n,1

1 (0)

d(X, Pm,n,1
1 (0))G2,α(MJ , X)→∞

as J →∞. Each γJ is finite since MJ is smooth. For each J we can choose YJ

in Qm,n,1
1 (0) such that G2,α(MJ , YJ )d(YJ , Pm,n,1

1 (0))≥ γJ/2, and we can assume
that YJ ∈MJ .8 We define λJ = G2,α(MJ , YJ ) and consider the flows9

M̃J = DλJ (MJ − YJ ),

which all contain the origin (in spacetime). Then G2,α(M̃J , 0) = 1 for all J and
DλJ (P

m,n,1
1 (0)− YJ )= Pm,n,1

λJ
(−DλJ YJ ). But now

γJ

2
≤ G2,α(MJ , YJ )d(YJ , Pm,n,1

1 (0))= 1× d(0, Pm,n,1
λJ

(−DλJ YJ )),

so d(0, Pm,n,1
λJ

(−DλJ YJ ))→∞ since γJ →∞ as J →∞. Let X be a point in
Qm,n,1
λJ

(−DλJ YJ ). Then

d(X, Pm,n,1
λJ

(−DλJ YJ ))G2,α(M̃J , X)≤ γJ ≤ 2d(0, Pm,n,1
λJ

(−DλJ YJ )),

from which we obtain

G2,α(M̃J , X)≤
2d(0, Pm,n,1

λJ
(−DλJ YJ ))

d(X, Pm,n,1
λJ

(−DλJ YJ ))
.

The triangle inequality gives ‖0−Y‖≤‖0−X‖+‖Y−X‖, and taking the supremum
over all Y /∈ Pm,n,1

λJ
(−DλJ YJ ) gives

d(X, Pm,n,1
λJ

(−DλJ YJ ))≥ d(0, Pm,n,1
λJ

(−DλJ YJ ))−‖X‖,

7Note that White uses the Schauder estimates for the heat equation but, since we do not want to
rotate our flows, we have to use a more general version of the Schauder estimates.

8Remember that G2,α(M, (x̂, x̃, t)) is independent of x̃ , and so is d((x̂, x̃, t), Pm,n,1
1 (0)).

9Note that the flows MJ and M̃J will be graphs of functions u J and ũ J on sets �J × IJ and
�̃J × ĨJ respectively, where sup IJ = 0⇒ sup ĨJ = τ(−DλJ YJ ) > 0.
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which leads to

(21) G2,α(M̃J , X)≤
2

1−‖X‖/d(0, Pm,n,1
λJ

(−DλJ YJ ))
,

whenever the right-hand side is positive. Since d(0, Pm,n,1
λJ

(−DλJ YJ ))→∞, this
inequality tells us that G2,α(M̃J , X) is uniformly bounded (as J→∞) on compact
subsets of spacetime with τ(X) ≤ 0.10 This allows us to apply Proposition 19 to
the sequence M̃J ∩ {X | τ(X) ≤ 0} to get parabolic C2 convergence, on compact
subsets of Rm

× (−∞, 0], of a subsequence to a limit flow M′. We can assume
that this subsequence is our original sequence, and will therefore continue to use
the notation M̃J . The limit M′ will be a smooth entire graphic flow defined on
Rm
× (−∞, 0] (since λJ →∞). It will be the graph of a function u′ satisfying the

system (5) (since the convergence is C2). Also, since the gradient bound is unaf-
fected by parabolic dilations, sup |||Du′|||2 ≤ 1− κ . Proposition 19 tells us that M′

has uniformly bounded mean curvature. This allows us to apply the monotonicity
theorem and related results to the flow.

Now we use the assumption that2(MJ , Y, s, ρJ )≥1−εJ for Y ∈Qm,n,1
1 (0)∩MJ

and s ∈ (τ (Y )− 1, τ (Y )). By (17), this is equivalent to the inequality

2(M̃J , Y, s, λJρJ )≥ 1− εJ

for Y ∈Qm,n,1
λJ

(−DλJ YJ )∩M̃J and s ∈ (τ (Y )−λ2
J , τ (Y )). Given Z = (ẑ, u′(ẑ, t), t)

in M′, with s < t < 0, we can take a sequence Z J = (ẑ, ũ J (ẑ, t), t) ∈ M̃J with
Z J → Z . Then, for large enough J , the fact that d(0, Pm,n,1

λJ
(−DλJ YJ ))→ ∞

implies that Z J (which is bounded since it converges) will be in Qm,n,1
λJ

(−DλJ YJ ).
Obviously we will have s ∈ (τ (Z J ) − λ

2
J , τ (Z J )) for all large J . This gives

2(M̃J , Z J , s, λJρJ )≥ 1− εJ . We see easily that 2(M̃J , Z J , s, λJρJ ) equals

(22)
∫
�̃J

exp
(
−|x̂−ẑ|2+|ũ J (x̂, s)−ũ J (ẑ, t)|2

4(t−s)

)
(4π(t−s))m/2

φ

(
x̂−ẑ
λJρJ

)√
det ĝ(Dũ J (x̂, s)) dx̂,

where the integral can be thought of as an integral over Rm since φ has compact
support. By the C2 convergence ũ J → u′ and the fact that ρJλJ →∞ with φ ≡ 1
in some ball with centre 0, the integrands above will converge pointwise to the
integrand in2(M′, Z , s). But we have φ≤ 1,

√
det ĝ≤ 1 and t−s> 0 independent

10For example, for any such compact set we can assume G2,α(M̃J , X) ≤ 4 for all X in this set
by assuming ‖X‖ ≤ R and taking J so large that d(0, Pm,n,1

λJ
(−DλJ YJ ))≥ 2R.
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of J , as well as

−|x̂− ẑ|2+|ũ J (x̂, s)− ũ J (ẑ, t)|2 ≤−κ|x̂− ẑ|2+ (t−s)2 sup(s,t) |∂t ũ J (ẑ, · )|2

+ 2(1−κ)1/2|x̂ − ẑ|(t − s) sup(s,t) |∂t ũ J (ẑ, · )|

by inequality (4). By the parabolic C2 convergence, we can assume for large J
that sup(s,t) |∂t ũ J (ẑ, · )| is arbitrarily close to sup(s,t) |∂t u′(ẑ, · )|, which is finite (by
smoothness of u′) and independent of J . These inequalities combine to give a
bound on the integrands of (22) by some function that is independent of J and
integrable over Rm . This allows us to apply the dominated convergence theorem to
get 2(M′, Z , s)←2(M̃J , Z J , s, λJρJ )≥ 1−εJ → 1− ε̄. So, for all Z ∈M′ with
s<τ(Z)< 0, we have2(M′, Z , s)≥ 1− ε̄. Now, since we assumed ε̄= 0, the fact
that M′ is entire with2(M′, Z , s)≥ 1 implies by Corollary 7 that2(M′, Z , s)≡ 1.
Therefore M′ must be a nonmoving plane.

Let u′ be as above and consider the linear operator with constant coefficients
∂t − ĝi j (Du′)∂i j applied to ũ J . The system (5) and the fact that ∂i j u′ = ∂t u′ = 0
then give (∂t−ĝi j (Du′)∂i j )(ũ J−u′)= (ĝi j (Dũ J )−ĝi j (Du′))∂i j ũ J . For U m,1

2 (0)⊂
Rm
×(−∞, 0], the Schauder estimates for linear parabolic equations [Krylov 1996,

Theorem 8.11.1] tell us that

‖(ũ J − u′)|U m,1
2 (0)‖2,α

≤ C6
(
‖(∂t − ĝi j (Du′)∂i j )(ũ J − u′)|U m,1

4 (0)‖0,α + supU m,1
4 (0) |ũ J − u′|

)
= C6

(
‖(ĝi j (Dũ J )− ĝi j (Du′))∂i j ũ J |U m,1

4 (0)‖0,α + supU m,1
4 (0) |ũ J − u′|

)
,

whenever J is large enough that U m,1
6 (0) ⊂ �̃J × ĨJ , and where the constant C6

will depend on m, n, α, κ . But both terms on the right-hand side converge to 0 as
J →∞, since ∂i j ũ J is bounded in C0,α on compact subsets (by inequality (21))
and since (ĝi j (Dũ J )− ĝi j (Du′))→ 0 in C1 on compact sets. This means that,
on U m,1

2 (0), the convergence ũ J → u′ is C2,α. In particular, the terms of the C2,α

norm of ũ J involved in the definition of G2,α(M̃J , 0)will converge to 0 (since these
terms are zero on u′). This finally gives a contradiction because we dilated in such
a way that G2,α(M̃J , 0)= 1, which implies that [Dũ J ]α+‖D2ũ J‖0,α+‖∂t ũ J‖0,α

is bounded from below, independently of J , on U m,1
2 (0). Therefore ε̄ > 0. �

Corollary 14. Let ε and C5 be as in Theorem 13. Let M satisfy Assumption 2, with
X0 ∈M and τ(X0)= sup I .11 Suppose that ρ0 > ρ > 0 are such that Qm,n,1

ρ0
(Y )⊂

�×Rn
× I and

2(M, Y, s, ρ0)≥ 1− ε,

11By these assumptions, the flow will be smooth at time τ(X0), since we are taking X0 to be a
point on the flow.
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for all Y ∈ Qm,n,1
ρ (X0)∩M and all s ∈ (τ (Y )− ρ2, τ (Y )). Then

sup
M∩Qm,n,1

ρ (X0)

G2,α(M, · )d( · , Pm,n,1
ρ (X0))≤ C5.

Proof. This follows easily from Theorem 13 after taking the dilation D1/ρ(M−X0)

and applying (17). �

The next corollary should be compared to Theorem 3.5 of [White 2005].

Corollary 15. Let M satisfy Assumption 8. Let X0 lie in the closure M̄ such that
τ(X0)= sup I .12 Suppose ρ0 > ρ > 0 are such that Qm,n,1

ρ0
(Y )⊂�×Rn

× I and

2(M, Y, s, ρ0)≥ 1− ε,

for all Y ∈ Qm,n,1
ρ (X0)∩M and all s ∈ (τ (Y )− ρ2, τ (Y )). Then M̄ will be smooth

in some spacetime neighbourhood of X0.

Proof. We take a sequence X J → X0 (as J →∞) in M with τ(X J ) < τ(X0) and
with x̂ J = x̂0. For large J , ‖X J − X0‖< ρ/2 and we define

MJ = {Y ∈M | τ(Y )≤ τ(X J )}.

Now 2(MJ , Y, s, ρ0) ≥ 1− ε for Y ∈ Qm,n,1
ρ/2 (X J ) ∩MJ ⊂ Qm,n,1

ρ (X0) ∩M and
s ∈ (τ (Y )− ρ2/4, τ (Y ))⊂ (τ (Y )− ρ2, τ (Y )). Then, by Corollary 14,

sup
MJ∩Qm,n,1

ρ/2 (X J )

G2,α(MJ , · )d( · , Pm,n,1
ρ/2 (X J ))≤ C5

for large J . This gives a C2,α bound on each MJ in some fixed spacetime neigh-
bourhood of X0. Then, since τ(X J ) → τ(X0), we see that M̄ is C2,α in this
neighbourhood and therefore smooth. �

Theorem 16. Let M be a spacelike graphic mean curvature flow in Rm+n
n × R,

given by a smooth function u : �× (0, T )→ Rn with |||Du|||2 ≤ 1− κ for some
positive constant κ . Then M can be extended smoothly to the time T .

Proof. We can extend u continuously to T , thanks to Proposition 17, and let
X0 = (x̂0, u(x̂0, T ), T ) for any x̂0 ∈ �. By Proposition 1, u satisfies system
(5). We can take a convex, bounded neighbourhood �0 ⊂ � of x̂0 and some
t0 ∈ (0, T ). Then the flow M0 given by the restriction of u to �0 × (t0, T ) will
satisfy Assumption 8. Choosing ρ0 > 0 to be sufficiently small, we first apply
Theorem 18 and Proposition 12 to get limt→T 2(M0, X0, t, ρ0) > 1− ε. Then we
can apply Corollary 11, which allows us to use Corollary 15 to get smoothness of
M̄0 in a neighbourhood of X0. We can do this at any x̂0 ∈�, and therefore M can
be extended smoothly to T . �

12By these assumptions, M̄ is continuous at time τ(X0) but not necessarily smooth, since we only
assume X0 to be on the closure and not necessarily on the flow itself.
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Appendix

Proposition 17. Suppose that M is as in Assumption 2, with I = [a, b). Then u
can be extended to a continuous function on �×[a, b].

Proof. Take the linear operator P = ∂t − ĝi j (Du)∂i j . Using Pu = 0, applying
Theorem 2.14 of [Lieberman 1996] (in particular, the comment that follows it) on
cylinders in �× (a, b) tells us that, for any x̂ ∈�, u(x̂, · ) is uniformly continuous
on some interval with supremum b. It can therefore be extended continuously to
[a, b]. On �×[a, b) we have |u(x̂, t)−u(ŷ, t)| ≤ (1−κ)1/2|x̂− ŷ|, so taking the
limit of this as t→ b gives continuity of the extension with respect to x̂ . �

Theorem 18. Suppose that M satisfies Assumption 8, with I = (0, T ). For any
X0 = (x̂0, u(x̂0, T ), T ) with x̂0 ∈�, we will have limt→T 2(M, X0, t)≥ 1.

It is important to remember that we are not assuming the flow to be smooth on
�× (0, T ], only continuous. The proof of this theorem is roughly the same as the
proofs of similar results in [Wang 2001].

Proof. We will first define a function on the flow, ζ =1+log(1/κm/2)−log (cosh θ),
where θ is the hyperbolic angle defined on page 3 of [Li and Salavessa 2011].13

An evolution equation discussed in Sections 4 and 5 of the same work tells us that( d
dt
−1M(t)

)
ζ ≥ κ|B|2,

where |B|2 is the norm of the second fundamental form on the spatial slices. We
note that there exist constants C7,C8 > 0 (depending on κ) such that C7|B|2 ≤
|D2u|2≤C8|B|2.14 Another useful fact is that, by the assumption |||Du|||2≤ 1−κ ,
there exists a constant C9(κ) > 0 such that if v ∈ Rm+n

n is any tangent vector to
M(t) then 〈v, v〉 ≤ |v|2 ≤ C9 〈v, v〉. If we use φρ,X0 from Definition 9 for small
enough ρ, (11) gives

d
dt

∫
M(t)

8X0ζφρ,X0 ≥

∫
M(t)

8X0

( d
dt
−1M(t)

)
(ζφρ,X0).

It is easy to check, as in [Ecker 2004, Lemma 3.14], that we have the product rule( d
dt
−1M(t)

)
(φρ,X0ζ )

= ζ
( d

dt
−1M(t)

)
φρ,X0+φρ,X0

( d
dt
−1M(t)

)
ζ −2

〈
gradM(t)φρ,X0, gradM(t)ζ

〉
.

13At a point on M, cosh θ is just the value of 1/
√

det ĝ at the corresponding point in �× I .
14We can write |B|2 = |〈Bi j , Bkl 〉ĝik ĝ jl

|; see [Li and Salavessa 2011] for details. |D2u| just
denotes the Euclidean norm of D2u, and to prove the inequality we need the fact that the eigenvalues
of DuT Du are bounded above and below. Compare to [Ilmanen 1997, p. 31].
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By Young’s inequality,〈
gradM(t)φρ,X0, gradM(t)ζ

〉
=

〈
gradM(t)φρ,X0√

φρ,X0

,
√
φρ,X0gradM(t)ζ

〉
≤

1
2ε
|gradM(t)φρ,X0 |

2

φρ,X0

+
ε

2
φρ,X0 |gradM(t)ζ |

2

≤
1
ε

C10
|Dφρ,X0 |

2

φρ,X0

+
ε

2
C9φρ,X0

〈
gradM(t)ζ, gradM(t)ζ

〉
,

where C10(κ)>0 and ε is any positive number. Since φρ,X0 is compactly supported
on the flow, Example 3.16 of [Ecker 2004]15 implies that

|Dφρ,X0 |
2/φρ,X0 ≤ 2 max |D2φρ,X0 |,

where we remember that |D2φρ,X0 |< C1/ρ
2. Using facts from [Li and Salavessa

2011] (see Equation 3.9 and the first inequality for |B|2 in the proof of Proposition
5.2 there), we see that

〈
gradM(t)ζ, gradM(t)ζ

〉
≤ C11|B|2 for some constant C11(κ).

So there exist constants C12,C13,C14 > 0 (depending on κ, ρ) such that

2
〈
gradM(t)φρ,X0, gradM(t)ζ

〉
≤

C12

ε
+ εC13φρ,X0 |B|

2,( d
dt
−1M(t)

)
φρ,X0 ≤ C14,

where we prove the second inequality as in Theorem 6. Combining all of the
inequalities above,

d
dt

∫
M(t)

8X0ζφρ,X0 ≥

∫
M(t)

8X0

(
κφρ,X0 |B|

2
−C15C14−

C12

ε
− εC13φρ,X0 |B|

2
)

=
κ

2

∫
M(t)

8X0φρ,X0 |B|
2
−C162(M, X0, t),

where we use the fact that ζ is clearly less than or equal to some constant C15(κ)

and choose ε = κ/2C13 and C16 = C15C14+C12/ε. We can use this to prove the
theorem. We assume that limt→T 2(M, X0, t) < 1 and hope to get a contradiction.
So for t close enough to τ(X0) = T (say t ∈ (T − δ, T ) for some δ > 0) we can
assume that

d
dt

∫
M(t)

8X0ζφρ,X0 ≥
κ

2

∫
M(t)

8X0φρ,X0 |B|
2
−C16.(23)

We can see how this inequality is affected by parabolic dilations, Dλ for λ > 1, by
using the transformation formula for integrals, and by noting that ζ involves first

15
|Dφ|2/φ ≤ 2 max |D2φ| for compactly supported C2 functions.
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derivatives and |B| involves second derivatives. We get

d
ds

∫
Dλ(M−X0)(s)

80ζφλρ,0 ≥−
C16

λ2 +
κ

2

∫
Dλ(M−X0)(s)

80|B|2φλρ,0

for s ∈ (−λ2δ, 0), remembering that λ > 1. We now take τ < δ/2 and integrate
with respect to s over the interval (−δ/2− τ,−δ/2) to get[∫

Dλ(M−X0)(s)
80ζφλρ,0

]−δ/2
−δ/2−τ

≥−
C16τ

λ2 +
κ

2

∫
−δ/2

−δ/2−τ

∫
Dλ(M−X0)(s)

80|B|2φλρ,0.

The left-hand side and the first term on the right-hand side clearly have limit zero
as λ→∞. Therefore we must have

∫
−δ/2
−δ/2−τ

∫
Dλ(M−X0)(s)

80|B|2φλρ,0 → 0. As
in [Wang 2001, p. 26], we can use the integral mean value theorem to choose
sequences λJ →∞, τJ → 0 and sJ ∈ [−δ/2− τJ ,−δ/2] such that∫

DλJ (M−X0)(sJ )

80|B|2φλJρ,0→ 0 as J →∞.

We have δ/2≤ |sJ | ≤ δ, so

80(x̂, x̃, sJ )=
exp

(
(−|x̂ |2+ |x̃ |2)/4|sJ |

)
(4π |sJ |)m/2

≥
exp

(
−|x̂ |2/2δ

)
(4πδ)m/2

.

The function φλJρ,0 is zero outside Bm
λJρ
(0)×Rn and equals 1 inside Bm

λJρ/2(0)×Rn .
For any R > 0 we can take J large enough that Bm

R (0)× Rn
⊂ Bm

λJρ/2(0)× Rn ,
implying that

exp(−R2/2δ)
(4πδ)m/2

∫
DλJ (M−X0)(sJ )∩Bm

R (0)×Rn
|B|2 ≤

∫
DλJ (M−X0)(sJ )

80φρλJ ,0|B|
2.

We therefore have

(24)
exp(−R2/2δ)
(4πδ)m/2

∫
DλJ (M−X0)(sJ )∩Bm

R (0)×Rn
|B|2→ 0 as J →∞.

Now let us consider the functions ũ J (x̂) whose graphs give the spatial slices
DλJ (M− X0)(sJ ). The fact that λJ →∞ tells us that, for any R > 0, we can take
J large enough that Bm

R (0) is contained in the domain of ũ J . Since we also have a
uniform bound on the gradients Dũ J , the usual Arzelà–Ascoli theorem argument
gives a subsequence (which we continue to denote by ũ J ) converging pointwise on
Rm , and uniformly on each Bm

R (0), to some limit ũ. Define

v
kγ
J = ∂k ũγJ and ckγ

J =
1

vol(Bm
R (0))

∫
Bm

R (0)
v

kγ
J ,
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and take a convergent subsequence ckγ
J → ckγ (since the sequence is bounded, by

the gradient bound on ũ J ). Apply the Poincaré inequality to get∫
Bm

R (0)
|v

kγ
J − ckγ

J |
2
≤ C17

∫
Bm

R (0)
|Dvkγ

J |
2
≤ C17

∫
Bm

R (0)
|D2ũ J |

2
→ 0,

where the last step uses (24) and |D2ũ J |
2
≤ C8|B|2. So vkγ

J − ckγ
J → 0 with

respect to the L2 norm on Bm
R (0). Now we can assume that the derivatives of our

sequence converge pointwise almost everywhere to constants. These constants will
be the weak derivatives of ũ, which therefore must be linear. Since this holds for
any R, and since 2 is equal to 1 on nonmoving planes, we can use this to apply
the dominated convergence theorem to see that

1≤ lim
J→∞

2(DλJ (M− X0), 0, sJ )

= lim
J→∞

2(M, X0, T + sJ/λ
2
J )= lim

t→T
2(M, X0, t),

contradicting the assumption that limt→T 2(M, X0, t) < 1. �

We only need the next proposition in the proof of Theorem 13. First we note
that a bound on G2,α on some subset of spacetime implies a bound on [Du]α +
[D2u]α + sup |D2u| + [∂t u]α + sup |∂t u| on a subset of Rm,1. If the flow contains
the origin, then inequality (4) and the spacelike assumption give a bound on |Du|
and on |u| on this subset, and therefore a bound on ‖u‖2,α.

Proposition 19. The sequence M̃J ∩{X | τ(X)≤ 0}, from the proof of Theorem 13,
has a convergent subsequence (this is parabolic C2 convergence on compact sub-
sets). The limit is a smooth entire flow M′, defined on Rm

× (−∞, 0], satisfying
Assumption 2, with uniformly bounded mean curvature vector.

Proof. Let ũ J , M̃J , etc. be exactly as in the proof of Theorem 13. Then, since
λJ →∞ and sup ĨJ ≥ 0, any compact subset of Rm

× (−∞, 0] will be contained
in the domain of ũ J for large enough J . By inequality (21), G2,α(M̃J , · ) will be
uniformly bounded on compact subsets of spacetime with τ(X) ≤ 0, as J →∞.
Therefore we get uniform bounds on ‖ũ J‖2,α on compact subsets of Rm

×(−∞, 0].
We can use this to prove convergence of a subsequence by following the same steps
as in the proof of the Arzelà–Ascoli theorem. We use the Cantor diagonalization
process to choose a pointwise convergent subsequence on Rm

× (−∞, 0], and
then the C2,α estimates imply C2 convergence on compact subsets. The limit M′

is clearly C2,α and therefore smooth by the usual induction argument (since the
system (5) holds on M′). Also, the C2,α bound implies a uniform bound on the
mean curvature of M′. �
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