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ANALOGUES OF LEVEL-N EISENSTEIN SERIES

HIROFUMI TSUMURA

We consider certain analogues of level-N Eisenstein series involving hyper-
bolic functions. By developing the method used in our previous work, we
prove some relation formulas for these series at positive integers which in-
clude our previous results corresponding to the cases of level 1 and 2. Fur-
thermore, using these results, we evaluate certain two-variable analogues of
level-N Eisenstein series.

1. Introduction

In [Tsumura 2008], we considered an analogue of the Eisenstein series defined by

Gk(i)=
∑

m∈Z\{0}

∑
n∈Z

(−1)n

sinh(mπ)(m+ ni)k
(1-1)

=

∑
m∈Z\{0}

∑
n∈Z

1
sinh((m+ ni)π)(m+ ni)k

(k ∈ N),(1-2)

where i =
√
−1 and sinh x = (ex

− e−x)/2. We evaluated G2p−1(i) (p ∈ N) in
terms of π and the lemniscate constant $ defined by

$ = 2
∫ 1

0

dx
√

1− x4
=
0(1/4)2

2
√

2π
= 2.6220575542921 . . . .

More precisely we gave

(1-3) G2p−1(i)=
2(−1)p

π

p∑
j=1

(1−21−2p+2 j )ζ(2p−2 j)
(
(−1) j G2 j (i)−2ζ(2 j)

)
,

where ζ(s) is Riemann’s zeta function and G2 j (τ ) is the ordinary Eisenstein series
defined by

(1-4) G2 j (τ )=
∑
m∈Z

∑
n∈Z

(m,n)6=(0,0)

1
(m+ nτ)2 j

MSC2010: primary 11M41; secondary 11M99.
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for j ∈N and τ ∈C with Im τ >0. Note that G2(τ ) is conditionally convergent with
respect to the order of summation as above. We can view (1-3) as a double series
analogue of the following formula given by Cauchy [1889] and Mellin [1902]:

∑
m∈Z\{0}

(−1)m

sinh(mπ)m4k−1 =
2
π

2k∑
j=0

(1−21−4k+2 j )ζ(4k−2 j)(−1) j (21−2 j
−1)ζ(2 j),

and similar formulas for the Dirichlet series involving hyperbolic functions; see,
for example, [Berndt 1977; 1978; Meyer 2000].

As another type analogue of G2 j (i), we considered

C
〈r〉
l (i)=

∑
m∈Z
m 6=0

∑
n∈Z

(coth(mπ))r

(m+ ni)l
(l ∈ N≥3, r ∈ Z≥−1),(1-5)

where coth x = (ex
+e−x)/(ex

−e−x), and evaluated them in the case l ≡ r mod 2;
see [Tsumura 2009].

In [Komori et al. 2010], using a method completely different from the one in
[Tsumura 2008; 2009], Komori, Matsumoto and the author evaluated

G
〈r〉
k (τ )=

∑
m∈Z\{0}

∑
n∈Z

1
sinh((m+ nτ)π i/τ)r (m+ nτ)k

(r, k ∈ N)(1-6)

(and more generalized double series) for any τ ∈ C with Im τ > 0.
In [Tsumura 2010] we considered analogues of level-2 Eisenstein series such as∑

m∈Z

∑
n∈Z

1
sinh((2m+ 1+ (2n+ 1)i)π/2)(2m+ 1+ (2n+ 1)i)k

,(1-7)

∑
m∈Z

∑
n∈Z

1
cosh((2m+ 1+ (2n+ 1)i)π/2)(2m+ 1+ (2n+ 1)i)k

,(1-8)

∑
m∈Z

∑
n∈Z

tanh((2m+ 1+ (2n+ 1)i)π/2)
(2m+ 1+ (2n+ 1)i)l

,(1-9)

∑
m∈Z

∑
n∈Z

coth((2m+ 1+ (2n+ 1)i)π/2)
(2m+ 1+ (2n+ 1)i)l

(1-10)

for k, l ∈ N with l ≥ 3, and evaluated them in terms of π and $ . Note that the
level-N Eisenstein series is defined by

(1-11) Gk(τ ; a mod n)=
∑
m∈Z

m≡a1 mod N

∑
n∈Z

n≡a2 mod N
(m,n) 6=(0,0)

1
(m+ nτ)k



ANALOGUES OF LEVEL-N EISENSTEIN SERIES 491

for k ∈N≥2 and a= (a1, a2)∈Z2 with 0≤ a1, a2< N , which was studied by Hecke
[Hecke 1937, Section 1] (see also, for example, [Koblitz 1993, Chapter III]).

In this paper, by developing the method used in [Tsumura 2008; 2009; 2010],
we consider analogues of level-N Eisenstein series involving hyperbolic functions,
namely

(1-12) C
〈r〉
k (τ ; a mod n)=

∑
m∈Z\{0}

m≡a1 mod N

∑
n∈Z

n≡a2 mod N

coth((m+ nτ)π i/Nτ)r

(m+ nτ)k

for k ∈N≥2, r ∈ Z and a = (a1, a2) ∈ Z2 with 0≤ a1, a2 < N . Note that (1-12) in
the case k = 2 and r = 2 is conditionally convergent with respect to the order of
summation as above. In fact, since (coth x)2 = 1+ 1/(sinh x)2, we have

C
〈2〉
2 (τ ; a mod n)=

∑
m∈Z\{0}

m≡a1 mod N

∑
n∈Z

n≡a2 mod N

(
1+

1
sinh((m+nτ)π i/Nτ)2

)
1

(m+nτ)2
.

If we divide this double series into two parts, the first is conditionally convergent
and the second is absolutely convergent. Considering (coth x)2ν , we can induc-
tively confirm that C

〈2ν〉
2 (τ ; a mod n) (ν ∈ N) is also conditionally convergent.

Outline of article. In Section 2, we state evaluation formulas for some quantities
of the form (1-12) (see Theorem 2.1, whose proof is given in Section 3). We also
evaluate (1-12) in terms of (1-11) and certain partial zeta values which will be
defined by (2-4) (see Examples 2.5 and 2.6). This subsumes previous results on
(1-5) corresponding to the case (r, N ) = (1, 1) [Tsumura 2009] and on (1-9) and
(1-10) corresponding to the cases (r, N ) = (±1, 2) [Tsumura 2010]. Here, for
example, we give a new formula corresponding to the case r = 2:

C
〈2〉
4 (i; (1, 1)mod 2)=−

5$ 4
+ 2π3

360
.

More generally, we give explicit formulas for level-N versions of these expressions
(see Example 2.6). From these results, we evaluate the level-N version of (1-6),
defined by

G
〈r〉
k (τ ; a mod n)=

∑
m∈Z\{0}

m≡a1 mod N

∑
n∈Z

n≡a2 mod N

1
sinh((m+nτ)π i/Nτ)r (m+nτ)k

(1-13)

(see Proposition 2.4; also Remark 3.9).



492 HIROFUMI TSUMURA

In Section 4, based on the results above, we evaluate a two-variable analogue of
(1-11) defined by

G̃ j,k(τ ; a mod n)=
∑
m∈Z

m≡a1 mod N

∑
n∈Z

n≡a2 mod N
(m,n) 6=(0,0)

∑
l∈Z

l≡a2 mod N
(m,l) 6=(0,0)

1
(m+lτ) j (m+nτ)k

(1-14)

for j, k ∈ N≥2. Note that in the case j = 2 or k = 2, (1-14) is conditionally con-
vergent with respect to the order of summation as above. We prove some relation
formulas among G̃ j,k(τ ; a mod n) and G

〈r〉
l (τ ; a mod n) (see Theorems 4.1 and

4.2), and evaluate G̃2p,2q(i; a mod n) (see Examples 4.3 and 4.4). For example,
we obtain

G̃4,4(i; (1, 1)mod 2)=
∑
m∈Z

m≡1 mod 2

∑
n∈Z

n≡1 mod 2

∑
l∈Z

l≡1 mod 2

1
(m+ li)4(m+ ni)4

=
$ 8

8960
−
$ 4π4

17280
+

π7

6048
.

This paper contains a lot of examples of evaluation formulas. They were checked
numerically using Mathematica 7.

2. Relation formulas for Cν
k(α)

From now on, we set N ∈N, a= (a1, a2)∈Z2 with 0≤ a1, a2 < N and τ ∈C with
Im τ > 0. For convenience, we set

a= a mod N .

Theorem 2.1. For r ∈ Z and p ∈ N, we have

(2-1) (Nτ)2p+1C
〈r+1〉
2p+1(τ ; a)

=
2i
π

p∑
ω=1

ζ(2p− 2ω)(Nτ)2ω+2C
〈r〉
2ω+2(τ ; a)+ 2ζ(2p)

(Nτ)3

π2 C
〈r−1〉
3 (τ ; a)

and

(2-2) (Nτ)2p+2C
〈r+1〉
2p+2(τ ; a)=

2i
π

p∑
ω=0

ζ(2p− 2ω)(Nτ)2ω+3C
〈r〉
2ω+3(τ ; a).

We will prove this theorem in the next section. Note that if we know the values
C
〈−1〉
3 (τ ; a) and C

〈0〉
4 (τ ; a), then we can inductively evaluate C

〈r〉
k (τ ; a) for k ∈N≥3

and r ∈ Z≥−1 with k ≡ r mod 2, as follows.
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By the definition (1-12), we can see that

(2-3) C
〈0〉
2k (τ ; a)=


G2k(τ ; a) if a1 6= 0,

G2k(τ ; a)− τ
−2k ∑

n∈Z
n≡a2 mod N

1
n2k if a1 = 0 and a2 6= 0,

N−2k
(
G2k(τ )− 2τ−2kζ(2k)

)
if a1 = a2 = 0,

for k ∈ N≥2. For simplicity, we define a certain partial zeta value by

(2-4) ζ̃ (l; a mod N ) :=
∑

n∈Z\{0}
n≡a mod N

1
nl (l ∈ N≥2).

The proof of the next proposition will be given in Section 3 as well.

Proposition 2.2. With the same notation,

C
〈−1〉
3 (τ ; a)=



iπ
Nτ

G2(τ ; a) if a1 6= 0,

iπ
Nτ

(
G2(τ ; a)− τ

−2ζ̃ (2; a2 mod N )
)

if a1 = 0 and a2 6= 0,

iπ
N 3τ

(
G2(τ )− 2τ−2ζ(2)

)
if a1 = a2 = 0.

From Theorem 2.1 and Proposition 2.2, we derive:

Theorem 2.3. For r ∈ Z≥−1 and k ∈ N≥3 with k ≡ r mod 2,

(2-5) τ kπrC
〈r〉
k (τ ; a) ∈Q

[
τ, π,

{
ζ̃ (2 j; a2 mod N ), G2 j (τ ; a)

}
j∈N

]
.

Proof. We prove (2-5) by induction on r ≥ −1. First we assume r = −1. Since
k ≡ r mod 2 with k ≥ 3, we can write k = 2p+ 3 (p ≥ 0). Hence we further use
induction on p. When p = 0, namely k = 3, we immediately obtain the assertion
from Proposition 2.2. Furthermore, by (2-2) with r =−1, we have
π

i
(Nτ)2p+3C

〈−1〉
2p+3(τ ; a)

=−(Nτ)2p+2C
〈0〉
2p+2(τ ; a)+

2i
π

p−1∑
ω=0

ζ(2p− 2ω)(Nτ)2ω+3C
〈−1〉
2ω+3(τ ; a).

Hence, by (2-3), we obtain the assertion by induction on p in the case r =−1.
Next we assume that the induction hypotheses hold for r . By multiplying the

both sides of (2-1) and of (2-2) by πr+1, we obtain the assertion in the case of
r + 1. Thus we complete the proof. �

As we noted in Section 1, using the relation 1/(sinh x)2 = (coth x)2−1 and the
binomial theorem, we have the following relation between C

〈r〉
k (τ ; a) and G

〈r〉
k (τ ; a)

defined by (1-13).
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Proposition 2.4. For ν ∈ N,

(2-6) G
〈2ν〉
k (τ ; a)=

ν∑
j=0

(
ν

j

)
(−1)ν− jC

〈2 j〉
k (τ ; a).

Therefore, for l ∈ N and ν ∈ N,

τ 2lπ2νG
〈2ν〉
2l (τ ; a) ∈Q

[
τ, π,

{
ζ̃ (2k; a2 mod N ), G2k(τ ; a)

}
k∈N

]
.(2-7)

Hence we can evaluate G
〈2ν〉
2l (τ ; a) by using the result on C

〈2 j〉
2l (τ ; a) (see below).

We will consider G
〈2ν+1〉
2l+1 (τ ; a) in Remark 3.9.

Example 2.5. In the case N = 1, we simply denote (1-12) by C
〈r〉
k (τ ). Then,

combining Theorem 2.1, Proposition 2.2 and (2-3), we obtain

C
〈−1〉
3 (τ )= i(−π3

+ 3πτ 2G2(τ ))/(3τ 3),

C
〈−1〉
5 (τ )= i(−2π5

+ 5π3τ 2G2(τ )+ 15πτ 4G4(τ ))/(15τ 5),

C
〈1〉
3 (τ )= i(−4π4

+ 15τ 2G2(τ )π
2
− 45τ 4G4(τ ))/(45τ 3π),

C
〈1〉
5 (τ )= i(−4π6

+ 7τ 2G2(τ )π
4
+ 105τ 4G4(τ )π

2
− 315τ 6G6(τ ))/(315τ 5π),

C
〈2〉
4 (τ )= (16π6

− 84τ 2G2(τ )π
4
+ 630τ 4G4(τ )π

2
− 945τ 6G6(τ ))/(945τ 4π2),

C
〈2〉
6 (τ )= (64π8

− 180τ 2G2(τ )π
6
− 945τ 4G4(τ )π

4
+ 9450τ 6G6(τ )π

2

− 14175τ 8G8(τ ))/(14175τ 6π2),

C
〈3〉
3 (τ )= i(−44π6

+189τ 2G2(τ )π
4
−945τ 4G4(τ )π

2
+945τ 6G6(τ ))/(945τ 3π3),

C
〈3〉
5 (τ )= i(−4π8

− 45τ 2G2(τ )π
6
+ 1260τ 4G4(τ )π

4
− 4725τ 6G6(τ )π

2

+ 4725τ 8G8(τ ))/(4725τ 5π3),

C
〈4〉
4 (τ )= (208π8

− 1080τ 2G2(τ )π
6
+ 8505τ 4G4(τ )π

4
− 18900τ 6G6(τ )π

2

+ 14175τ 8G8(τ ))/(14175τ 4π4),

C
〈4〉
6 (τ )= (1024π10

− 2376τ 2G2(τ )π
8
− 30690τ 4G4(τ )π

6
+ 270270τ 6G6(τ )π

4

− 623700τ 8G8(τ )π
2
+ 467775τ 10G10(τ ))/(467775τ 6π4).

The case τ = i was studied in [Tsumura 2009], and we recover the results found
there. For example,

C
〈2〉
4 (i)=

42$ 4
+ 16π4

− 84π3

945
,

C
〈4〉
4 (i)=

27$ 8
+ 567$ 4π4

+ 208π8
− 1080π7

14175π4 .
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By Proposition 2.4, we can inductively evaluate G
〈2l〉
2ν (τ ) in terms of G2 j (τ ) and

ζ(2k). This fact was already given in [Komori et al. 2010] by a totally different
method. Here we recover, for example,

G
〈2〉
4 (i)=

−21$ 4
+ 37π4

− 84π3

945
,(2-8)

G
〈4〉
4 (i)=

27$ 8
+ 252$ 4π4

− 587π8
+ 1440π7

14175π4 .(2-9)

Next we consider the case τ = ρ = e2π i/3. We recall the properties of G2k(ρ).
For the details, see [Koblitz 1993; Nesterenko and Philippon 2001; Serre 1970;
Waldschmidt 1999]; also [Komori et al. 2010]. Let

(2-10) $̃ =
0(1/3)3

24/3π
= 2.42865064788758 · · ·

which is an analogue of the lemniscate constant $ . Then we obtain G2(ρ) =

2πρ/
√

3,

(2-11) G6(ρ)=
$̃ 6

35
, G12(ρ)=

$̃ 12

7007
, G18(ρ)=

$̃ 18

1440257
, . . .

and Gk(ρ) = 0 for k ≥ 3 with 6 - k. Using these results, we can evaluate C
〈r〉
k (ρ),

similarly to the case τ = i , for example,

C
〈2〉
4 (ρ)=

−27$̃ 6
+ 16π6

− 56
√

3π5

945ρπ2 ,

C
〈4〉
4 (ρ)=

−18900$̃ 6π2
+ 7280π8

− 25200
√

3π7

496125ρπ4 .

From these results, we recover these formulas from [Komori et al. 2010]:

G
〈2〉
4 (ρ)=

−27$̃ 6
+ 37π6

− 56
√

3π5

945ρπ2 ,(2-12)

G
〈4〉
4 (ρ)=

270$̃ 6
− 587π6

+ 960
√

3π5

14175ρπ2 .(2-13)

Example 2.6. We consider the case N > 1, a1 6= 0 and a2 6= 0. We simply denote
the level-N Eisenstein series by Ga

2 j (τ ) instead of G2 j (τ ; a). Then we have the
following formulas which are explicit examples of the main result in this paper:

C
〈−1〉
3 (τ ; a)= iGa

2(τ )π/(Nτ),

C
〈−1〉
5 (τ ; a)= i(Ga

2(τ )π
3
+ 3N 2τ 2Ga

4(τ )π)/(3N 3τ 3),

C
〈1〉
3 (τ ; a)= i(Ga

2(τ )π
2
− 3N 2τ 2Ga

4(τ ))/(3Nτπ),
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C
〈1〉
5 (τ ; a)= i(Ga

2(τ )π
4
+ 15i N 2τ 2Ga

4(τ )π
2
− 45N 4τ 4Ga

6(τ ))/(45N 3τ 3π),

C
〈2〉
4 (τ ; a)= (−4Ga

2(τ )π
4
+ 30N 2τ 2Ga

4(τ )π
2
− 45N 4τ 4Ga

6(τ ))/(45N 2τ 2π2),

C
〈2〉
6 (τ ; a)= (−4Ga

2(τ )π
6
− 21N 2τ 2Ga

4(τ )π
4
+ 210N 4τ 4Ga

6(τ )π
2

− 315N 6τ 6Ga
8(τ ))/(315N 4τ 4π2),

C
〈3〉
3 (τ ; a)= i(9Ga

2(τ )π
4
− 45N 2τ 2Ga

4(τ )π
2
+ 45N 4τ 4Ga

6(τ ))/(45Nτπ3),

C
〈3〉
5 (τ ; a)= i(−Ga

2(τ )π
6
+ 28N 2τ 2Ga

4(τ )π
4
− 105N 4τ 4Ga

6(τ )π
2

+ 105N 6τ 6Ga
8(τ ))/(105N 3τ 3π3),

C
〈4〉
4 (τ ; a)= (−8Ga

2(τ )π
6
+ 63N 2τ 2Ga

4(τ )π
4
− 140N 4τ 4Ga

6(τ )π
2

+ 105N 6τ 6Ga
8(τ ))/(105N 2τ 2π4),

C
〈4〉
6 (τ ; a)= (−24Ga

2(τ )π
8
− 310N 2τ 2Ga

4(τ )π
6
+ 2730N 4τ 4Ga

6(τ )π
4

− 6300N 6τ 6Ga
8(τ )π

2
+ 4725N 8τ 8Ga

10(τ ))/(4725N 4τ 4π4).

In [Tsumura 2010], we studied the case when (N , a1, a2, τ ) = (2, 1, 1, i) and
r = ±1, based on [Katayama 1978]. In this case, as mentioned in both of these
papers, we see G(1,1)

2 (i) = −π/4, G(1,1)
4k+2(i) = 0 and G(1,1)

4k (i) ∈ Q ·$ 4k (k ∈ N),
which can be concretely calculated; for example,

G(1,1)
4 (i)=−

$ 4

48
, G(1,1)

8 (i)=
$ 8

8960
, G(1,1)

12 (i)=−
$ 12

1689600
.

Hence, by the formulas above, we can explicitly evaluate C
〈r〉
k (τ ; (1, 1)mod 2)

when k ≡ r mod 2. In particular, when r = ±1, these coincide with the results
given in [Tsumura 2010]. As examples in the cases r = 2, 4, we give

C
〈2〉
4 (i; (1, 1)mod 2)=−

5$ 4
+ 2π3

360
,

C
〈4〉
4 (i; (1, 1)mod 2)=

3$ 8
− 21$ 4π4

− 8π7

1680π4 ,

and

G
〈2〉
4 (i; (1, 1)mod 2)=

5$ 8
− 4π3

720
,(2-14)

G
〈4〉
4 (i; (1, 1)mod 2)=

9$ 8
− 28$ 4π4

+ 32π7

5040π4 .(2-15)

3. Proofs of Theorem 2.1 and Proposition 2.2

For a= (a1, a2)∈Z2 with 0≤ a1, a2 < N , we set β = (a1+a2τ)/N for simplicity.
We fix a small ε > 0. For u ∈ [1, 1+ ε], r ∈ Z and k ∈ N, we define
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D̂
〈r〉
k (τ ;β; u)=

∑∗

m∈Z

∞∑
n=1

u−n coth((m+β + nτ)π i/τ)r

sinh((m+β + nτ)π i/τ)(m+β + nτ)k
(3-1)

+

∑∗

m∈Z

∞∑
n=1

u−n coth((m+β − nτ)π i/τ)r

sinh((m+β − nτ)π i/τ)(m+β − nτ)k

+

∑∗

m∈Z

coth((m+β)π i/τ)r

sinh((m+β)π i/τ)(m+β)k
,

where
∑
∗

m∈Z

stands for the sum over m ∈ Z \ {0} if a1 = 0 and over m ∈ Z if a1 6= 0.

When u > 1, we define D̂
〈r〉
−k(τ ;β; u) for k ∈ Z≥0 by (3-1). This is well-defined

in the following sense. Since sinh(x)= 0 implies x ∈ π iZ, the equality

sinh
(
(m+β + nτ)π i

τ

)
= sinh

((
Nm+ a1+ (Nn+ a2) τ

) π i
Nτ

)
= 0 (m, n ∈ Z)

implies (a1, a2)= (0, 0) and m=0. Similarly, cosh(x)=0 implies x ∈π i/2+π iZ,
so the equality

cosh
(
(m+β + nτ) π i

τ

)
= cosh

((
Nm+ a1+ (Nn+ a2) τ

) π i
Nτ

)
= 0 (m, n ∈ Z)

implies (a1, a2)= (0, N/2) and m = 0. Hence, by the definition of
∑
∗ a few lines

above, we see that (3-1) is absolutely convergent under the conditions above, that
is, well-defined.

Since cosh(nπ i)= (−1)n and sinh(nπ i)= 0, we can rewrite (3-1) as

(3-2) D̂
〈r〉
k (τ ;β; u)=

∑∗

m∈Z

coth((m+β)π i/τ)r

sinh((m+β)π i/τ)

×

( ∞∑
n=1

(−u)−n
(

1
(m+β+nτ)k

+
1

(m+β−nτ)k

)
+

1
(m+β)k

)
.

When k ≥ 2, we see that D̂
〈r〉
k (τ ;β; u) converges absolutely and uniformly for u

in [1, 1+ ε]. Furthermore, when k = 1, we have

(3-3) D̂
〈r〉
1 (τ ;β; u)=

∑∗

m∈Z

2(m+β) coth((m+β)π i/τ)r

sinh((m+β)π i/τ)

∞∑
n=1

(−u)−n

(m+β)2− n2τ 2

+

∑∗

m∈Z

coth((m+β)π i/τ)r

sinh((m+β)π i/τ)(m+β)
,

which converges absolutely and uniformly for u in [1, 1+ε]. Hence, for any k ∈N,
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we have

(3-4) lim
u→1

D̂
〈r〉
k (τ ;β; u)= D̂

〈r〉
k (τ ;β; 1)

=

∑∗

m∈Z

∑
n∈N

coth((m+β + nτ)π i/τ)r

sinh((m+β + nτ)π i/τ)(m+β + nτ)k
.

Now we let

(3-5) Sr (θ; τ ;β)=
∑∗

m∈Z

coth((m+β)π i/τ)r e(m+β)iθ/τ

sinh((m+β)π i/τ)
.

Set A = Re(i/τ) and B = Im(i/τ). Then A > 0 because Im τ > 0. We further let
D(R) := {θ ∈ C : |θ |< R} be the closed disk of radius R, where R > 0.

Lemma 3.1. Sr (θ; τ ;β) converges absolutely for θ ∈ D (Aπ/(A+ |B|)).

Proof. Let θ ∈ D(Aπ/(A+ |B|)) and set (a, b)= (Re θ, Im θ). Then

(3-6) |a|, |b|<
Aπ

A+ |B|
.

Here we consider the order of Sr (θ; τ ;β), namely

Sr (θ; τ ;β)= O
(
e|m|Re((±θ−π)i/τ)) (|m| →∞),

which implies the maximum of two cases corresponding to ±θ . By (3-6), we have

Re((±θ −π)i/τ)= Re((±a−π ± bi)(A+ Bi))= (±a−π)A∓ bB

≤ (|a| −π)A+ |b||B|<
(

Aπ
A+ |B|

−π

)
A+

A |B|π
A+ |B|

= 0.

Therefore we have the assertion. �

As in [Tsumura 2008, § 2], we set

(3-7) H(θ; u) := −
1
2

(
eθ

eθ + u
+

e−θ

e−θ + u

)
for θ ∈ C and u ∈ [1, 1 + ε]. This function is holomorphic for θ ∈ D(π), and
satisfies

(3-8) lim
u→1

H(θ; u)=− 1
2 (θ ∈ D(π)).

We also set

(3-9) Jr (θ; τ ;β; u) := Sr (θ; τ ;β)(2H(iθ; u)+ 1).

Since Aπ/(A + |B|) ≤ π , it follows from Lemma 3.1 that Jr (θ; τ ;β; u) is
holomorphic for θ ∈ D(Aπ/(A + |B|)). Hence, for each u ∈ [1, 1+ ε], we can
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expand Jr (θ; τ ;β; u) as

(3-10) Jr (θ; τ ;β; u)=
∞∑

n=0

3〈r〉n (τ ;β; u)
θn

n!
(θ ∈ D(Aπ/(A+ |B|))).

By Cauchy’s integral theorem, for any γ ∈R with 0<γ < Aπ/(A+|B|), we have

(3-11)
|3
〈r〉
n (τ ;β; u)|

n!
≤

1
2π

∫
Cγ
|Jr (θ; τ ;β; u)||z|−n−1

|dz| ≤
Mγ

γ n (n ∈ Z≥0),

where Cγ : z = γ ei t (0≤ t ≤ 2π) and

Mγ := max
(z,u)∈Cγ×[1,1+ε]

|Jr (z; τ ;β; u)|.

Hence the right-hand side of (3-10) is uniformly convergent in u ∈ [1, 1+ ε] if
θ ∈ D(Aπ/(A+ |B|)). By (3-8) and (3-9), we have Jr (θ; τ ;β; u)→ 0 as u→ 1.
Therefore we see that

(3-12) 3〈r〉n (τ ;β; u)→ 0 (u→ 1; n ∈ Z≥0).

Lemma 3.2. For u ∈ (1, 1+ ε] and θ ∈ D(Aπ/(A+ |B|)),

(3-13) Jr (θ; τ ;β; u)=
∞∑
j=0

D̂
〈r〉
− j (τ ;β; u)

θ j

j !
,

that is, D̂
〈r〉
− j (τ ;β; u)=3

〈r〉
j (τ ;β; u), for j ∈ Z≥0.

Proof. When u > 1, from (3-7), we have (see [Tsumura 2008, Lemma 2.1])

H(iθ; u)=
∞∑

n=1

(−u)−n cos(nθ).

Therefore, from (3-5) and (3-9), we have

Jr (θ; τ ;β; u)=
∑∗

m∈Z

∞∑
n=1

(−u)−n coth((m+β)π i/τ)r e(m+β+nτ)iθ/τ

sinh((m+β)π i/τ)
(3-14)

+

∑∗

m∈Z

∞∑
n=1

(−u)−n coth((m+β)π i/τ)r e(m+β−nτ)iθ/τ

sinh((m+β)π i/τ)

+

∑∗

m∈Z

coth((m+β)π i/τ)r e(m+β)iθ/τ

sinh((m+β)π i/τ)
.

Using the Maclaurin expansion of ex and the definition of D̂
〈r〉
−k(τ ;β; u) in (3-1),

namely in (3-2), we complete the proof. �
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Lemma 3.3. For r ∈ Z and k ∈ N,

(3-15) N k+2C
〈r〉
k+2(τ ; a)=

∑∗

m∈Z

∑
n∈Z

coth((m+β + nτ)π i/τ)r

(m+β + nτ)k+2

=

[k/2]∑
j=0

D̂
〈r〉
k+1−2 j (τ ;β; 1)

(iπ/τ)2 j+1

(2 j + 1)!
.

Proof. The first equality comes from the definition (1-12) and β = (a1+ a2τ)/N .
We prove the second equality. We first assume k ∈ Z≥0. For u ∈ [1, 1+ ε], we set

(3-16) 8r (θ; k; τ ;β; u)=
∑∗

m∈Z

∞∑
n=1

(−u)−n coth((m+β)π i/τ)r e(m+β+nτ)iθ/τ

sinh((m+β)π i/τ)(m+β+nτ)k+2

+

∑∗

m∈Z

∞∑
n=1

(−u)−n coth((m+β)π i/τ)r e(m+β−nτ)iθ/τ

sinh((m+β)π i/τ)(m+β−nτ)k+2

+

∑∗

m∈Z

coth((m+β)π i/τ)r e(m+β)iθ/τ

sinh((m+β)π i/τ)(m+β)k+2 ,

which converges absolutely and uniformly in u ∈ [1, 1+ε] if θ ∈ D(Aπ/(A+|B|)).
If u > 1, it follows from Lemma 3.2 that

(3-17) 8r (θ; k; τ ;β; u)

=

∞∑
j=0

D̂
〈r〉
k+2− j (τ ;β; u)

(iθ/τ) j

j !

=

k+1∑
j=0

D̂
〈r〉
k+2− j (τ ;β; u)

(iθ/τ) j

j !
+

∞∑
j=k+2

3
〈r〉
j−k−2(τ ;β; u)

(iθ/τ) j

j !
.

By considering

lim
u→1

1
2 {8r (θ; k; τ ;β; u)−8r (−θ; k; τ ;β; u)} ,

and using (3-4) and (3-11), we can let u→ 1 on the both sides of (3-17) if θ lies
in D(Aπ/(A+ |B|)). By (3-12), we have

(3-18)
1
2

∑∗

m∈Z

∑
n∈Z

(−1)n coth((m+β)π i/τ)r
(
e(m+β+nτ)iθ/τ

− e−(m+β+nτ)iθ/τ
)

sinh((m+β)π i/τ)(m+β + nτ)k+2

=

[k/2]∑
ν=0

D̂
〈r〉
k+1−2ν(τ ;β; 1)

(iθ/τ)2ν+1

(2ν+ 1)!
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for θ ∈ D(Aπ/(A+ |B|)). Moreover, we claim that the left-hand side of (3-18) is
absolutely convergent on the region �(τ) :=

⋃
n≥1 Xn(τ ), where

Xn(τ )=

{
θ ∈ C :

∣∣∣θ − (1− 1
n

)
π

∣∣∣< Aπ
(A+ |B|)n

}
.

Actually we know that the left-hand side of (3-18) is

O
(
e|m|Re((±θ−π)i/τ)

|m+β + nτ |−k−2) (|m|, |n| →∞).

Hence we aim to prove Re((±θ −π)i/τ) < 0 for any θ ∈�(τ). In fact, for any n
and any θ ∈ Xn , we set (a, b)= (Re θ, Im θ). Then

|a|<
(

1− 1
n

)
π +

Aπ
(A+ |B|)n

and |b|<
Aπ

(A+ |B|)n
.

Hence, by recalling that A=Re(i/τ) and B = Im(i/τ), we obtain the claim, since

Re((±θ−π)i/τ)= Re((±a−π±bi)(A+Bi))= (±a−π)A∓Bb

≤ (|a|−π)A+|B| |b|<−
Aπ
n
+

A2π

(A+|B|)n
+

A|B|π
(A+|B|)n

= 0.

On the other hand, it is clear that the right-hand side of (3-18) is holomorphic for
θ ∈�(τ), so (3-18) holds for θ ∈�(τ).

Finally we claim that �(τ)⊃ [(1−1/L)π, π), where L =max (1, |B|/2A). In
order to prove this, we only have to prove Xn(τ ) ∩ Xn+1(τ ) 6= ∅ for all n ≥ L ,
because any Xn(τ ) is the disk whose center is on the real axis. More precisely, we
have to prove(

1− 1
n

)
π +

Aπ
(A+ |B|)n

≥

(
1− 1

n+1

)
π −

Aπ
(A+ |B|)(n+ 1)

,

if n ≥ L . In fact, this can be easily verified. Hence we obtain the claim. Therefore
(3-18) holds for θ ∈ [(1− 1/L)π, π). If we set θ = π on the left-hand side of
(3-18), we have ∑∗

m∈Z

∑
n∈Z

coth((m+β + nτ)π i/τ)r

(m+β + nτ)k+2 ,

which is absolutely convergent if k ≥ 1. Hence, by Abel’s theorem, (3-18) holds
for θ = π , which implies (3-15). Thus we complete the proof. �

Remark 3.4. As stated in the proof, (3-18) holds for k = 0 if θ ∈ [(1−1/L)π, π),
because the left-hand side of (3-18) converges absolutely even if k = 0 and θ is
in [(1− 1/L)π, π). We claim that (3-18) holds for θ = π when (k, r) = (0, 0).
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In fact, by setting (k, r, θ)= (0, 0, π) on the left-hand side of (3-18), we have∑∗

m∈Z

∑
n∈Z

1
(m+β+nτ)2

= N 2G2(τ ;a)−
δa1,0 N 2

τ 2 ×

{
N 2ζ̃ (2;a2 mod N ) if a2 6= 0,
2ζ(2) if a2= 0,

where δp,q is the Kronecker delta. Therefore it follows from Abel’s theorem that
(3-18) holds for k = 0 and θ = π . Hence we obtain

(3-19) D̂
〈0〉
1 (τ ;β; 1)=

N 2τ

iπ
G2(τ ; a)−

δa1,0

iπτ

{
N 2ζ̃ (2; a2 mod N ) if a2 6= 0,
2ζ(2) if a2 = 0.

For k ∈ N, we differentiate (3-18) in θ ∈ [(1− 1/L)π, π). Then

(3-20)
1
2

∑∗

m∈Z

∑
n∈Z

(−1)n coth((m+β)π i/τ)r
(
e(m+β+nτ)iθ/τ

+ e−(m+β+nτ)iθ/τ
)

sinh((m+β)π i/τ)(m+β + nτ)k+1

=

[k/2]∑
ν=0

D̂
〈r〉
k+1−2ν(τ ;β; 1)

(iθ/τ)2ν

(2ν)!
.

If k≥2, both sides on (3-20) converge absolutely and uniformly in [(1−1/L)π, π].
Hence, by letting θ→ π , we have:

Lemma 3.5. For r ∈ Z and k ∈ N with k ≥ 2,

(3-21) N k+1C
〈r+1〉
k+1 (τ ; a)=

[k/2]∑
j=0

D̂
〈r〉
k+1−2 j (τ ;β; 1)

(iπ/τ)2 j

(2 j)!
.

Letting k = 2p+µ for p ∈ N and µ ∈ {0, 1} in (3-15) and (3-21), we have

N 2p+2+µC
〈r〉
2p+2+µ(τ ; a)=

p∑
j=0

D̂
〈r〉
2p+1+µ−2 j (τ ;β; 1)

(iπ/τ)2 j+1

(2 j + 1)!
,(3-22)

N 2p+1+µC
〈r+1〉
2p+1+µ(τ ; a)=

p∑
j=0

D̂
〈r〉
2p+1+µ−2 j (τ ;β; 1)

(iπ/τ)2 j

(2 j)!
.(3-23)

Note that (3-22) also holds for p = 0 if µ = 1, because (3-15) holds for k = 1.
Here we use the following result given in our previous work.

Lemma 3.6 [Tsumura 2007, Lemma 4.4]. Let {P2h}, {Q2h}, {R2h} be sequences
satisfying

(3-24) P2h =

h∑
j=0

R2h−2 j
(iπ)2 j

(2 j)!
, Q2h =

h∑
j=0

R2h−2 j
(iπ)2 j

(2 j + 1)!
(h ∈ Z≥0).
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Then

(3-25) P2h =−2
h∑

ω=0

ζ(2h− 2ω)Q2ω (h ∈ Z≥0).

Multiply the both sides of (3-22) and (3-23) by τ 2p+2+µ and τ 2p+1+µ, respec-
tively. Then apply Lemma 3.5 with P0 = Q0 = R0 = τ

1+µD̂
〈r〉
1+µ(τ ;β; 1) and

P2h = (Nτ)2p+1+µC
〈r+1〉
2p+1+µ(τ ; a),

Q2h =
1

iπ
(Nτ)2p+2+µC

〈r〉
2p+2+µ(τ ; a),

R2h = τ
2h+1+µD̂

〈r〉
2h+1+µ(τ ;β; 1)

for h ∈ N. Then it follows from (3-25) that

(3-26) (Nτ)2p+1+µC
〈r+1〉
2p+1+µ(τ ; a)

=−2
p∑

ω=1

ζ(2p− 2ω)
1

iπ
(Nτ)2ω+2+µC

〈r〉
2ω+2+µ(τ ; a)

− 2ζ(2p)τ 1+µD̂
〈r〉
1+µ(τ ;β; 1)

for p ∈ N. In order to complete the proof of Theorem 2.1, we have to determine
D̂
〈r〉
1+µ(τ ;β; 1) for µ = 0, 1. As noted above, (3-22) holds for p = 0 when µ = 1,

namely

(3-27) N 3C
〈r〉
3 (τ ; a)= D̂

〈r〉
2 (τ ;β; 1)

iπ
τ
.

Moreover, we obtain the following.

Lemma 3.7. For r ∈ Z,

(3-28)
iπ
τ

D̂
〈r〉
1 (τ ;β; 1)= D̂

〈r−1〉
2 (τ ;β; 1)=

N 3τ

iπ
C
〈r−1〉
3 (τ ; a).

Proof. The second equality comes from (3-27) by replacing r with r − 1. So we
will prove the first equality.

As we stated in Remark 3.4, (3-18) holds for k = 0 if θ ∈ [(1 − 1/L)π, π).
Hence we see that

(3-29) 1
2

∑∗

m∈Z

∑
n∈Z

(−1)n coth((m+β)π i/τ)r
(
e(m+β+nτ)iθ/τ

− e−(m+β+nτ)iθ/τ
)

sinh((m+β)π i/τ)(m+β + nτ)2

= D̂
〈r〉
1 (τ ;β; 1)

iθ
τ
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holds for θ ∈ [(1− 1/L)π, π). On the other hand, (3-20) with r replaced by r − 1
and k by 1 becomes

(3-30) 1
2

∑∗

m∈Z

∑
n∈Z

(−1)n coth((m+β)π i/τ)r−1
(
e(m+β+nτ)iθ/τ

+e−(m+β+nτ)iθ/τ
)

sinh((m+β)π i/τ)(m+β + nτ)2

= D̂
〈r−1〉
2 (τ ;β; 1),

which also holds for θ ∈ [(1− 1/L)π, π). Now we subtract (3-30) from (3-29) of
each side. Then we have

(3-31)
1
2

∑∗

m∈Z

∑
n∈Z

(−1)n coth((m+β)π i/τ)r−11(θ)

sinh((m+β)π i/τ)(m+β + nτ)2

= D̂
〈r〉
1 (τ ;β; 1)

iθ
τ
− D̂

〈r−1〉
2 (τ ;β; 1),

where 1(θ) is equal to

coth
(
(m+β) iπ

τ

)(
e(m+β+nτ) iθ

τ − e−(m+β+nτ) iθ
τ
)
−
(
e(m+β+nτ) iθ

τ + e−(m+β+nτ) iθ
τ
)

=
1

2 sinh
(
(m+β) iπ

τ

)((e(m+β) iθ
τ +e−(m+β)

iθ
τ
)(

e(m+β)
iθ
τ eniθ

−e−(m+β)
iθ
τ eniθ)

−
(
e(m+β)

iθ
τ − e−(m+β)

iθ
τ
)(

e(m+β)
iθ
τ eniθ

+ e−(m+β)
iθ
τ eniθ))

=
i sin(nθ)

sinh((m+β)π i/τ)
.

Therefore the left-hand side of (3-31) is absolutely and uniformly convergent in
θ ∈ [(1− 1/L)π, π]. Hence, letting θ→ π on the both sides of (3-31) and noting
sin(nπ)= 0, we have

0= D̂
〈r〉
1 (τ ;β; 1)

iπ
τ
− D̂

〈r−1〉
2 (τ ;β; 1). �

Proofs of Theorem 2.1 and Proposition 2.2. Combining (3-26) and (3-28), we
obtain the proof of Theorem 2.1. Combining (3-19) and (3-28), we obtain the
proof of Proposition 2.2. �

Remark 3.8. The left-hand side of (3-29) in the case θ = π and r = 2ν (ν ∈
Z≥0) coincides with C

〈2ν〉
2 (τ ; a), which is conditionally convergent as we noted in

Section 1. Therefore, by Abel’s theorem, we can let θ → π on the both sides of
(3-29). Hence we have

(3-32) N 2C
〈2ν〉
2 (τ ; a)= D̂

〈2ν〉
1 (τ ;β; 1)

iπ
τ

(ν ∈ Z≥0).
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Therefore, by (3-28), we have

(3-33) C
〈2ν〉
2 (τ ; a)=

iπ
Nτ

C
〈2ν−1〉
3 (τ ; a).

Remark 3.9. Combining Lemmas 3.3 and 3.7, and using Examples 2.5 and 2.6,
we can inductively evaluate

D̂
〈2ν〉
2p+1(τ ;β; 1)=

∑∗

m∈Z

∑
n∈N

coth((m+β + nτ)π i/τ)2ν

sinh((m+β + nτ)π i/τ)(m+β + nτ)2p+1

= N 2p+1
∑

j∈Z\{0}
j≡a1 mod N

∑
l∈Z

l≡a2 mod N

(coth(( j + lτ)π i/Nτ))2ν

sinh(( j + lτ)π i/Nτ)( j + lτ)2p+1

in terms of G2k(τ ; a) and ζ̃ (2d; a2 mod N ) (k, d ∈ N). Therefore, by using the
relation 1/(sinh x)2 = (coth x)2− 1 repeatedly, we see that

G
〈2ν+1〉
2 j+1 (τ ; a)=

ν∑
µ=0

(
ν

µ

)
(−1)ν−µN−2 j−1D̂

〈2ν〉
2 j+1(τ ;β; 1),

which can be evaluated in terms of G2k(τ ; a) and ζ̃ (2d; a2 mod N ).

4. Two-variable analogues of level-N Eisenstein series

In this section, we aim to evaluate two-variable analogues of level-N Eisenstein
series G̃ j,k(τ ; a) ( j, k ∈ N≥2) defined by (1-14).

As well as in the previous section, we set β = (a1+ a2τ)/N (0 ≤ a1, a2 < N ).
Since Im τ > 0, namely Re(i/τ) > 0, it follows from the binomial theorem that

1
(sinh((m+β)π i/τ))2ν

= 22ν e−2ν(m+β)π i/τ

(1− e−2(m+β)π i/τ )2ν

= 22νe−2ν(m+β)π i/τ
∞∑
j=0

(
j + 2ν− 1

2ν− 1

)
e−2 j (m+β)π i/τ ,

if m > 0. By putting µ= j + ν, we conclude that this equals

(4-1)

22νe−2π iν(m+β)/τ

(2ν− 1)!

∞∑
µ=ν

(µ+ν−1) · · · (µ+1)µ(µ−1) · · · (µ−ν+1)e−2π i(µ−ν)(m+β)/τ

=
22ν

(2ν− 1)!

∞∑
µ=1

µ

ν−1∏
l=1

(µ− l)(µ+ l)e−2π iµ(m+β)/τ .
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Recall the Stirling numbers of the first kind, {c(n, k)}, defined by

Fn(X)= X (X − 1)(X − 2) · · · (X − n+ 1)=
n∑

k=0

c(n, k)X k

(see, for example, [Stanley 1997]). Using these numbers, we define {α(n, k)} by

(4-2) F̃n(X)= X
n−1∏
l=1

(X−l)(X+l)
(
=
(−1)n Fn(X)Fn(−X)

X

)
=

2n−1∑
k=0

α(n, k)X k .

Hence we have

α(n, j)= (−1)n
j+1∑
ω=0

(−1)ωc(n, j + 1−ω)c(n, ω)

for 0≤ j ≤ 2n−1. Since F̃n(−X)=−F̃n(X), we have α(n, 2 j)= 0 for 0≤ j < n.
By (4-1), we have

(4-3)
1

(sinh((m+β)π i/τ))2ν
=

22µ

(2ν−1)!

ν∑
j=1

α(ν,2 j−1)
∞∑
µ=1

µ2 j−1e−2π iµ(m+β)/τ,

when m > 0. Here we recall the summation formula from [Lipschitz 1889]:

(4-4)
∑
l∈Z

1
(z+ l)k

= (−1)k
(2π i)k

(k− 1)!

∞∑
n=1

nk−1e2π inz

for k ∈ N with k ≥ 2 and z ∈ C with Im z > 0. This formula also holds for k = 1
as follows:

(4-5) lim
L→∞

L∑
l=−L

1
z+ l

=−π i − 2π i
∞∑

n=1

e2π inz

for z ∈ C with Im z > 0 (see [Pribitkin 2002, Section 5]).
We can set z = −(m + β)/τ in (4-4), because we have Im(−(m + β)/τ) > 0.

Then we see that (4-3) is equal to

(4-6)
1

(sinh((m+β)π i/τ))2ν

=
22µ

(2ν− 1)!

ν∑
j=1

α(ν, 2 j − 1)
(2 j − 1)!
(2π i)2 j

∑
l∈Z

1
(−(m+β)/τ + l)2 j

=
22µ

(2ν− 1)!

ν∑
j=1

α(ν, 2 j − 1)
(2 j − 1)!
(2π i/τ)2 j

∑
l∈Z

1
(m+β + lτ)2 j ,
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by replacing l by −l. This holds for m > 0. When m < 0, by replacing (m, l, β)
by (−m,−l,−β) in (4-6), we have

1
(sinh((−m−β)π i/τ))2ν

=
22µ

(2ν− 1)!

ν∑
j=1

α(ν, 2 j − 1)
(2 j − 1)!
(2π i/τ)2 j

∑
l∈Z

1
(−m−β − lτ)2 j ,

which coincides with (4-6). This implies that (4-6) also holds for m < 0.
On the other hand, by (1-13), we have

G
〈2p〉
2q (τ ; a)=

∑
k∈Z\{0}

k≡a1 mod N

∑
l∈Z

l≡a2 mod N

1
sinh((k+ lτ)π i/Nτ)2p(k+ lτ)2q

= N−2q
∑∗

m∈Z

∑
n∈Z

1
sinh((m+β + nτ)π i/τ)2p(m+β + nτ)2q

= N−2q
∑∗

m∈Z

∑
n∈Z

1
sinh((m+β)π i/τ)2p(m+β + nτ)2q

for p, q ∈ N. Therefore, by (4-6) for any m ∈ Z \ {0}, we have

G
〈2p〉
2q (τ ; a)=

22p N−2q

(2p− 1)!
×

p∑
j=1

α(p, 2 j − 1)
(2 j − 1)!
(2π i/τ)2 j∑∗

m∈Z

∑
n∈Z

∑
l∈Z

1
(m+β + lτ)2 j (m+β + nτ)2q .

By (1-14) and β = (a1+ a2τ)/N , we have∑∗

m∈Z

∑
n∈Z

∑
l∈Z

1
(m+β + lτ)2 j (m+β + nτ)2q

= N 2 j+2q
(

G̃2 j,2q(τ ; a)−
δa1,0

τ 2 j+2q ζ̃ (2 j; a2 mod N )ζ̃ (2q; a2 mod N )
)
,

where ζ̃ is defined by (2-4). Combining these relations, we obtain:

Theorem 4.1. For p, q ∈ N,

(4-7) G
〈2p〉
2q (τ ; a)=

22p

(2p− 1)!

p∑
j=1

α(p, 2 j − 1)
(2 j − 1)!
(2π i/Nτ)2 j

×

(
G̃2 j,2q(τ ; a)−

δa1,0

τ 2 j+2q ζ̃ (2 j; a2 mod N )ζ̃ (2q; a2 mod N )
)
.
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By multiplying the both sides of (4-7) by τ 2qπ2p, we can inductively obtain the
following theorem by Proposition 2.4 and the fact G2k(τ ) ∈ Q[G4(τ ),G6(τ )] for
k ∈ N≥2 (see [Koblitz 1993, Chapter III, § 2]).

Theorem 4.2. For p, q ∈ N,

τ 2(p+q)G̃2p,2q(τ ; a) ∈Q
[
τ, π,

{
ζ̃ (2k; a2 mod N ), G2k(τ ; a)

}
k∈N

]
.

In particular when N = 1, put G̃2p,2q(τ )= G̃2p,2q(τ ; (0, 0)mod 1). Then

τ 2(p+q)G̃2p,2q(τ ) ∈Q
[
τ, π, G2(τ ), G4(τ ), G6(τ )

]
.

Actually, combining (4-7) and the results given in Section 2, we can concretely
evaluate G̃2p,2q(τ ; a) as follows.

Example 4.3. We set N = 1, (a1, a2)= (0, 0), p= 1, 2, q = 2 and τ = i . By (4-2),
we see that α(1, 1) = 1, α(2, 1) = −1 and α(2, 3) = 1. By substituting (2-8) and
(2-9) into (4-7), we obtain

G̃2,4(i)=−
$ 4π2

45
+

2
63
π6
−

4
45
π5,

G̃4,4(i)=
1

525
$ 8
+

2
675

$ 4π4
−

2
135

π8
+

8
189

π7.

Set τ = ρ. Then, by substituting (2-12) and (2-13) into (4-7), we obtain

G̃2,4(ρ)=
$̃ 6

35
−

2
63
π6
+

8
√

3
135

π5, G̃4,4(ρ)= ρ

(
−

2
135

π8
+

16
√

3
567

π7
)
.

Example 4.4. We set N = 2, (a1, a2) = (1, 1), p = 1, 2, q = 2 and τ = i . By
substituting (2-14) and (2-15) into (4-7), we obtain

G̃2,4(i; (1, 1)mod 2)=
$ 4π2

576
−
π5

720
,

G̃4,4(i; (1, 1)mod 2)=
$ 8

8960
−
$ 4π4

17280
+

π7

6048
.

Remark 4.5. Pasles and Pribitkin [2001] studied two-variable Lipschitz summa-
tion formulas. At present, it is unclear whether or not the results stated above can
be obtained from their formula.
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