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In memory of the late Professor Hyo Chul Myung.

A quasitoric manifold is a 2n-dimensional compact smooth manifold with
a locally standard action of an n-dimensional torus whose orbit space is a
simple polytope. We classify quasitoric manifolds with second Betti number
β2 = 2 topologically. Interestingly, they are distinguished by their cohomol-
ogy rings up to homeomorphism.

1. Introduction

The notion of a quasitoric manifold was introduced by Davis and Januszkiewicz
[1991]. A quasitoric manifold M is a 2n-dimensional compact smooth manifold
with a locally standard action of an n-dimensional torus T n = (S1)n , whose orbit
space can be identified with an n-dimensional simple polytope P . Here, the orbit
map π : M → P maps every k-dimensional orbit to a point in the interior of a
codimension-k face of P for k = 0, . . . , n. A typical example of a quasitoric
manifold is a complex projective space CPn of complex dimension n with the
standard T n-action whose orbit space is the n-simplex 1n .

A quasitoric manifold is a topological analogue of a nonsingular projective toric
variety. A toric variety X of complex dimension n is a normal algebraic variety
which admits an action of an algebraic torus (C∗)n having a dense orbit. We call a
nonsingular compact toric variety a toric manifold. Note that we have the restricted
action of T n = (S1)n ⊂ (C∗)n on a toric manifold X . One can easily show that
this action is locally standard, and if X is projective, then there is a moment map
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whose image is a simple convex polytope. Hence, all projective toric manifolds
are quasitoric manifolds. However, the converse is not always true. For instance,
CP2 # CP2 with an appropriate T 2-action is a quasitoric manifold over11×11 but
not a toric manifold, because there is no almost complex structure on CP2 # CP2.
Therefore, the notion of a quasitoric manifold can be regarded as a topological
generalization of that of a projective toric manifold in algebraic geometry.

We shall investigate quasitoric manifolds M with second Betti number β2 = 2.
As will be remarked in Section 3, the orbit space of M can be identified with
a product of two simplices. The classification of projective toric manifolds with
β2 = 2 as varieties was completed by Kleinschmidt [1988]. More generally, toric
manifolds over a product of simplices were studied by Dobrinskaya [2001] and
Choi et al. [2010a]. These toric manifolds are known as generalized Bott manifolds.
In particular, toric manifolds with β2=2 are two-stage generalized Bott manifolds,
which will be explained in Section 3. It is shown in [Choi et al. 2010b] that all two-
stage generalized Bott manifolds are classified by their cohomology rings, which
gives the smooth classification of toric manifolds with β2 = 2.

The purpose of this paper is to classify quasitoric manifolds with β2 = 2 up to
homeomorphism. For this, we show that if the cohomology ring of a quasitoric
manifold is isomorphic to that of a two-stage generalized Bott manifold, then the
quasitoric manifold is homeomorphic to a two-stage generalized Bott manifold. We
also show that for a polytope which is the product of two simplices there are only
finitely many quasitoric manifolds over the polytope, which are not homeomorphic
to generalized Bott manifolds. As we will see in the paragraph after (3-1) on
page 25, any quasitoric manifold with β2 = 2 can be written as Ma,b for some
a ∈ Zm and b ∈ Zn , where the orbit space of Ma,b is 1n ×1m . Then we have the
following topological classification.

Theorem 1.1. Any quasitoric manifold with second Betti number β2= 2 is homeo-
morphic to either a two-stage generalized Bott manifold or to Ms,r , where s :=
(2, . . . , 2, 0, . . . , 0) ∈ Zm and r := (1, . . . , 1, 0, . . . , 0) ∈ Zn have at most

⌊m+1
2

⌋
and

⌊ n+1
2

⌋
nonzero components, respectively. Moreover, if n or m is 1, then Ms,r

is a two-stage generalized Bott manifold, or CPm+n # CPm+n , or M2,(1,0,...,0).

More precise classification results are summarized in Section 8. Note that there
is an interesting quasitoric manifold over 1n ×11 which is homeomorphic to a
generalized Bott manifold, but has no T n+1-invariant almost complex structure;
namely, M2,(1,0) is such a quasitoric manifold that is homeomorphic to a general-
ized Bott manifold M2,(0,0), as we will see in Lemma 5.4.

Furthermore, we can show that Ma,b and Ma′,b′ with Ma,b/T and Ma′,b′/T
combinatorially equivalent to 1n × 1m are homeomorphic if and only if their
cohomology rings are isomorphic as graded rings. In addition, the combinatorial
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types of certain polytopes are completely determined by the cohomology rings of
quasitoric manifolds over those polytopes, see [Choi et al. 2010c]. Products of
simplices belong to the class of polytopes that have this property. That is, for a
quasitoric manifold M , if the cohomology ring of M is isomorphic to that of Ma,b,
then the orbit space of M is combinatorially equivalent to the orbit space of Ma,b.

As a consequence, we have the following main theorem of this paper, which
does not include any assumption on the type of the base polytope:

Theorem 1.2. Two quasitoric manifolds with β2=2 are homeomorphic if and only
if their cohomology rings are isomorphic as graded rings.

This research is motivated by the cohomological rigidity problem for quasitoric
manifolds which asks whether the homeomorphism types of quasitoric manifolds
are distinguished by their cohomology rings or not, see [Masuda and Suh 2008]
for the problem and other related problems. In general, the cohomological rigidity
problem is rather bold because the cohomology ring as an invariant is not sufficient
to determine topological types of manifolds. Indeed, many classical results such as
[Hsiang 1966] provide many examples of pairs of manifolds which are homotopic
but not homeomorphic. However, many 2n-dimensional manifolds do not have T n-
symmetry, and, so far, there is no counterexample for the cohomological rigidity
problem. On the contrary, some affirmative partial evidence is given by recent pa-
pers such as [Masuda and Panov 2008; Choi et al. 2010b; Choi and Suh 2011; Choi
and Masuda 2009] and others. Theorem 1.2 also gives another affirmative partial
answer to the rigidity problem. For more information about rigidity problem, we
refer the reader to the survey paper [Choi et al. 2011].

This paper is organized as follows. In Section 2, we recall general facts on
quasitoric manifolds and moment angle manifolds. In Section 3, we introduce
generalized Bott manifolds, and deal with the cohomology rings of quasitoric man-
ifolds with β2 = 2. We find a necessary and sufficient condition for a quasitoric
manifold to be equivalent to a generalized Bott manifold in some specific cases
in Section 4. In Sections 5 and 6, we prove Theorem 1.1, and prepare to prove
Theorem 1.2 by classifying quasitoric manifolds Ma,b and Ms,r up to homeomor-
phism. In Section 7, we give a full proof of Theorem 1.2. In the final section, we
give the complete topological classification of quasitoric manifolds with β2 = 2.

2. Preliminaries

An n-dimensional (combinatorial) polytope is called simple if exactly n facets
(codimension-one face) meet at each vertex. Let P be a simple polytope of di-
mension n with d facets, and let F(P) = {F1, . . . , Fd} be the set of facets of P .
Now consider a map

λ : F(P)→ Zn
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which satisfies the following nonsingularity condition:

(2-1)
λ(Fi1), . . . , λ(Fiα ) form a part of an integral basis of Zn

whenever the intersection Fi1 ∩ · · · ∩ Fiα is nonempty.

Such λ is called a characteristic function, and λ(Fi ) is called a facet vector of Fi .
For a characteristic function λ : F(P)→Zn and a face F of P , we denote by T (F)
the subgroup of T n corresponding to the unimodular subspace of Zn spanned by
λ(Fi1), . . . , λ(Fiα ), where F = Fi1 ∩ · · · ∩ Fiα .

Given a characteristic function λ on P , we construct a manifold

(2-2) M(λ) := T n × P/∼,
where (t, p)∼ (s, q) if and only if p = q and t−1s ∈ T (F(p)), where F(p) is the
face of P which contains p ∈ P in its relative interior. The standard T n-action on
T n induces a free action of T n on T n×P , which descends to an effective action on
M(λ) whose orbit space is P . Since this action is locally standard, M(λ) is indeed
a quasitoric manifold over P .

Two quasitoric manifolds M1 and M2 over P are said to be equivalent if there
is a θ -equivariant homeomorphism f : M1→M2, that is, f (gm)= θ(g) · f (m) for
g ∈ T n and m ∈M1, which covers the identity map on P for some automorphism θ

of T n . It is obvious from the definition of the equivalence that M(λ1) and M(λ2)

are equivalent if there is an automorphism σ ∈ Aut(Zn) = GL(Z, n) such that
λ1 = σ ◦ λ2. By Davis and Januszkiewicz [1991], every quasitoric manifold is
represented by a pair of P and λ up to equivalence.

Note that one may assign an n× d matrix 3 to a characteristic function λ by

3= (λ(F1) · · · λ(Fd))= (A|B),
where A is an n × n matrix and B is an n × (d − n) matrix. We call 3 a char-
acteristic matrix. By additionally setting F1 ∩ · · · ∩ Fn 6= ∅, we may assume that
the matrix A = (λ(F1), . . . , λ(Fn)) is invertible from the nonsingularity condition
(2-1). Moreover, the inverse A−1 belongs to GL(Z, n). Thus, up to equivalence,
the corresponding matrix 3 can be represented by (En|A−1 B), where En is the
identity matrix of size n.

Remark 2.1. Let 3 be the above characteristic matrix corresponding to a qua-
sitoric manifold M . If we let

Dk,n := diag(1, . . . , 1,−1, 1, . . . , 1)

be the diagonal n×n matrix whose k-th diagonal entry is −1 and the others are 1,
then the matrix Dk,n3D`,d is the matrix obtained from 3 by changing the signs of
k-th row and `-th column, where 1≤ k ≤ n and 1≤ `≤ d. Since two vectors λ(Fi )

and −λ(Fi ) determine the same circle subgroup of T n , the sign of a facet vector
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does not affect the corresponding quasitoric manifold from the construction (2-2).
Thus 3D`,d is still a characteristic matrix corresponding to M . Hence Dk,n3D`,d

can also be a characteristic matrix corresponding to M , up to equivalence, because
Dk,n ∈ GL(Z, n).

Let Z[v1, . . . , vd ] denote the polynomial ring in d variables vi over Z with
deg vi = 2. We identify each Fi ∈ F(P) with the indeterminate vi . The face
ring (or Stanley–Reisner ring) Z(P) of P is the quotient ring

Z(P)= Z[v1, . . . , vd ]/IP ,

where IP is the ideal generated by the monomials vi1 · · · vi` with Fi1∩· · ·∩Fi` =∅.
Let M be a quasitoric manifold over P with projection π : M → P and the

characteristic function λ. Then one can find an isomorphism between Z(P) and
the equivariant cohomology ring of M with Z coefficients,

H∗T (M)∼= Z[v1, . . . , vd ]/IP = Z(P),

where v j is the equivariant Poincaré dual of the codimension two invariant sub-
manifold M j = π−1(F j ) in M . Note that H∗T (M) is not only a ring but also a
H∗(BT ) = Z[t1, . . . , tn]-module via the map p∗, where p : ET ×T M → BT is
the natural projection, and p∗ takes ti to θi := λi1v1+ · · · + λidvd ∈ Z(P), where
λ(Fi ) = (λ1i , . . . , λni )

T ∈ Zn for i = 1, . . . , n. Since everything has vanishing
odd degrees, H∗T (M) is a free H∗(BT )-module. Hence the kernel of the mor-
phism Z(P)= H∗T (M)→ H∗(M) is the ideal Jλ of Z(P) generated by θ1, . . . , θn .
Therefore, we have

(2-3) H∗(M)= Z[v1, . . . , vd ]/(IP + Jλ).

See [Davis and Januszkiewicz 1991] for more details of the previous argument.
Now let P be an n-dimensional simple polytope with d facets. Davis and

Januszkiewicz [1991] constructed a T d -manifold ZP that is now called the moment
angle manifold of P . Let F(P)= {F1, . . . , Fd} be the set of facets of P . For each
facet Fi let TFi denote the one-dimensional coordinate subgroup of T F(P) ∼= T d

corresponding to Fi . We assign to every face F = Fi1 ∩ · · · ∩ Fi` the coordinate
subtorus

TF =
∏̀
j=1

TFi j
⊂ T d .

Then the moment angle manifold of P can be constructed as

ZP = T d × Pn/∼,



24 SUYOUNG CHOI, SEONJEONG PARK AND DONG YOUP SUH

where (t1, p)∼ (t2, q) if and only if p = q and t1t−1
2 ∈ TF(p). From the definition

of ZP , we can see easily that ZP1×P2 =ZP1× ZP2 for any simple polytopes P1 and
P2.

Example 2.2. It is not so hard to see that the moment angle manifold Z1n of an
n-simplex is homeomorphic to a sphere S2n+1, hence Z1n×1m = S2n+1× S2m+1.

Let us fix a characteristic function λ on P , and let M(λ) be the quasitoric mani-
fold constructed in (2-2). There is a natural identification ψk : Zk→Hom(S1, T k)

given by (a1, . . . , ak) 7→ (t 7→ (ta1, . . . , tak )) for any positive integer k. Hence
the characteristic matrix3 corresponding to λ induces a surjective homomorphism
λ : T d→T n by λ(ψd(ei )(t))=ψn(λ(Fi ))(t) for t ∈ S1, where ei is the standard i-th
basis vector of Zd for i = 1, . . . , d . Then ker λ is a (d−n)-dimensional subtorus of
T d . From the nonsingularity condition (2-1), ker λ meets every isotropy subgroup
at the unit. Thus ker λ acts freely on ZP , and the map

(λ, id) : T d × Pn→ T n × Pn

induces a principal T d−n-bundle ZP over M(λ). We thus have:

Proposition 2.3 [Buchstaber and Panov 2002, Proposition 6.5]. The subtorus ker λ
acts freely on ZP , thereby defining a principal T d−n-bundle ZP → M(λ).

Let M(λ1) and M(λ2) be two quasitoric manifolds over a simple polytope P .
If a self map ϕ of the moment angle manifold ZP is θ -equivariant, that is, there
exists an isomorphism θ : ker λ1 → ker λ2 such that ϕ(t · x) = θ(t) · ϕ(x) for all
t ∈ ker λ1 and x ∈ZP , then there is a natural induced map ϕ from M(λ1) to M(λ2):

ZP
ϕ //

/ker λ1
��

ZP

/ker λ2
��

M(λ1)
ϕ

// M(λ2)

Thus if we construct a θ -equivariant homeomorphism ϕ from the moment angle
manifold ZP to itself, then the induced map ϕ is a homeomorphism from M(λ1)

to M(λ2).

3. Quasitoric manifolds with β2 = 2

The main interest of the present paper is focused on quasitoric manifolds with
second Betti number β2 = 2. Let P be an `-dimensional simple polytope with d
facets, and let M be a quasitoric manifold over P with the characteristic function λ.
Since Jλ consists of ` linear combinations of v1, . . . , vd and IP does not contain a
linear combination in (2-3), we can see that the second Betti number of M is d−`.
Thus if P supports a quasitoric manifold with β2 = 2, then it has exactly `+ 2
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facets, and hence P is combinatorially equivalent to a product of two simplices as
is well-known, see chapter 6 in [Grünbaum 2003]. Therefore we may assume that
P =1n ×1m .

Now consider a quasitoric manifold M of dimension 2(n+m) over 1n ×1m .
Consider the facets of 1n ×1m in the following order:

F1×1m, . . . , Fn ×1m,1n ×G1, . . . ,1
n ×Gm, Fn+1×1m,1n ×Gm+1,

where Fi ’s are the facets of 1n and G j ’s are the facets of 1m . Then the first
(n+m) facets meet at a vertex. Thus, by Remark 2.1, the characteristic matrix 3
corresponding to M is of the form

(3-1) 3= (En+m |3∗)=



1 −1 −b1
. . . 0

...
...

1 −1 −bn

1 −a1 −1

0
. . .

...
...

1 −am −1


up to equivalence, where 1−a j bi =±1 for i = 1, . . . , n and j = 1, . . . ,m because
of the nonsingularity condition (2-1) of the characteristic function. From now on
we denote such M by Ma,b for a = (a1, . . . , am) and b = (b1, . . . , bn). Hence,
from (2-3), the cohomology ring of Ma,b with Z coefficients is

(3-2) H∗(Ma,b)= Z[x1, x2]
/〈

x1

n∏
i=1

(x1+ bi x2), x2

m∏
j=1

(a j x1+ x2)

〉
.

A (complex) generalized Bott tower of height h, or an h-stage generalized Bott
tower, is a sequence

Bh
πh−→ Bh−1

πh−1−→ · · · π2−→ B1
π1−→ B0 = {a point}

of manifolds Bi = P
(
C⊕⊕`i

j=1 ξi, j
)
, where ξi, j is a complex line bundle, C is the

trivial complex line bundle over Bi−1 for each i = 1, . . . , h, and P(·) stands for
the projectivization. We call Bi the i-stage generalized Bott manifold.

The Whitney sum of ` complex line bundles admits a canonical T `-action. As-
sume Bi−1 admits an effective T

∑i−1
k=1 `k -action. Since H 1(Bi−1) = 0, it lifts to an

action on ξi =⊕`i
j=1 ξi, j ; see [Hattori and Yoshida 1976]. Moreover, it commutes

with the canonical T `i -action on ξi , and hence, it induces an effective T
∑i

k=1 `k -
action on B j . Thus, we can define an effective half-dimensional torus action on Bh

inductively. One can show that this action is locally standard and its orbit space is
a product of h simplices

∏h
i=11

`i . Thus a two-stage generalized Bott manifold is
a quasitoric manifold over P =1`1 ×1`2 and has β2 = 2.
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Remark 3.1. In fact, a generalized Bott manifold is not only a quasitoric manifold
but also a (projective) toric manifold. All toric manifolds admit T n-invariant com-
plex structures. Hence, by Choi et al. [2010a, Theorem 6.4], all toric manifolds
over a product of simplices are generalized Bott manifolds.

We already know a necessary and sufficient condition for a quasitoric manifold
M to be equivalent to a generalized Bott manifold by the following proposition.

Proposition 3.2 [Choi et al. 2010a]. Let M be a quasitoric manifold over the poly-
tope P =∏h

i=11
`i , and let3∗ be an h×h vector matrix associated with M.1 Then

M is equivalent to a generalized Bott manifold if and only if 3∗ is conjugate to an
h× h lower triangular vector matrix.

Moreover, the following theorem gives a smooth classification of two-stage gen-
eralized Bott manifolds.

Theorem 3.3 [Choi et al. 2010b]. Let B2 = P(⊕m
i=0γ

ui ) and B ′2 = P(⊕m
i=0γ

u′i ),
where u0 = u′0 = 0 and γ ui denotes the complex line bundle over B1 =CPn whose
first Chern class is ui ∈ H 2(B1). Then the following are equivalent:

(1) There exists ε =±1 and w ∈ H 2(B1) such that
m∏

i=0

(1+ ε(u′i +w))=
m∏

i=0

(1+ ui ) in H∗(B1).

(2) B2 and B ′2 are diffeomorphic.

(3) H∗(B2) and H∗(B ′2) are isomorphic as graded rings.

When a quasitoric manifold M is equivalent to a two-stage generalized Bott
manifold, we may assume that M = Ma,0. In this case, M is a CPm-bundle over
CPn , and H∗(Ma,0) is of the form

(3-3) H∗(Ma,0)= Z[x1, x2]
/〈

x1
n+1, x2

m∏
j=1

(a j x1+ x2)

〉
.

If a quasitoric manifold M with β2 = 2 is not equivalent to a generalized Bott
manifold, then we may assume that M = Ma,b for some nonzero vectors a and b
by Proposition 3.2. Then a j bi = 2 for some i and j . Without loss of generality, we
may assume that a j is 0 or±2 and bi is 0 or±1. Note that the signs of nonzero a j ’s
and bi ’s are the same and, by Remark 2.1, Ma,b is equivalent to M−a,−b.2 Hence,

1In fact, 3∗ is a (
∑h

i=1 `i )× h matrix. Then 3∗ can be viewed as an h× h vector matrix whose
entries in the i-th row are vectors in Z`i . A more precise description of (a transpose version of) 3∗
is explained on page 114 in [Choi et al. 2010a].

2We can see this easily by the following steps; 1) change the signs of the first n row vectors of the
characteristic matrix (3-1), 2) change the signs of the first n column vectors and the (n+m + 2)-nd
of the resulting matrix. Then we can obtain the characteristic matrix corresponding to M−a,−b.
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we may assume that the nonzero a j is 2, and the nonzero bi is 1. Now let s be the
number of a j = 2 for j = 1, . . . ,m and r the number of bi = 1 for i = 1, . . . , n.
Then, the cohomology ring of Ma,b is isomorphic to

(3-4) Z[x1, x2]
/〈

xn+1−r
1 (x1+ x2)

r , xm+1−s
2 (2x1+ x2)

s 〉
for some 1≤ r ≤ n and 1≤ s ≤ m.

We close this section by giving another construction of quasitoric manifolds
over 1n ×1m from the moment angle manifold Z1n×1m .

Remark 3.4. Note that the moment angle manifold Z1n×1m is

S2n+1× S2m+1 = {(w, z) ∈ Cn+1×Cm+1 : |w| = 1, |z| = 1
}
,

which has the standard T n+m+2-action of the componentwise complex multiplica-
tion. Let λ be a characteristic function corresponding to Ma,b, and let Ka,b be the
image of the homomorphism µ : T 2→ T n+m+2 defined by

(3-5)



1 b1
...

...

1 bn

1 0
a1 1
...

...

am 1
0 1


.

Then the action of the two-torus Ka,b on S2n+1× S2m+1 defined by

µ(t1, t2) ·
(
(w1, . . . , wn+1), (z1, . . . , zm+1)

)
= ((t1tb1

2 w1, . . . , t1tbn
2 wn, t1wn+1), (t

a1
1 t2z1, . . . , tam

1 t2zm, t2zm+1)
)

is free because of the nonsingularity condition (2-1) of λ. Moreover, this action is
exactly equal to the (ker λ)-action on Z1n×1m , where a homomorphism λ is defined
on page 24, and the quasitoric manifold Ma,b is the orbit space Z1n×1m/Ka,b with
the action of T n+m defined by

(t1, . . . , tn+m) ·
[
(w1, . . . , wn+1), (z1, . . . , zm+1)

]
= [(t1w1, . . . , tnwn, wn+1), (tn+1z1, . . . , tn+mzm, zm+1)

]
.

See [Choi et al. 2010a] for more details.
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In other words, the subtorus Ka,b ⊂ T n+m+2 is represented by the unimodu-
lar subgroup of Zn+m+2 spanned by the two vectors (1, . . . , 1, a1, . . . , am, 0) and
(b1, . . . , bn, 0, 1, . . . , 1). Note that these two vectors generate the null space of the
matrix

(3-6)



1 −1 −b1
. . .

... 0
...

1 −1 −bn

−a1 1 −1

0
...

. . .
...

−am 1 −1


which is obtained from the matrix 3 in (3-1) by changing the order of the facets
of 1n ×1m to

F1×1m, . . . , Fn ×1m, Fn+1×1m,1n ×G1, . . . ,1
n ×Gm,1

n ×Gm+1.

4. Quasitoric manifolds equivalent to a generalized Bott manifold

Recall that the cohomological rigidity problem asks whether two quasitoric man-
ifolds are homeomorphic if their cohomology rings are isomorphic. As an inter-
mediate step toward the answer to the question for quasitoric manifolds home-
omorphic to generalized Bott manifolds, we can ask the following question: is
a quasitoric manifold over a product of simplices equivalent (or homeomorphic)
to a generalized Bott manifold if its cohomology ring is isomorphic to that of a
generalized Bott manifold? When the orbit space is 11 ×11, then the answer is
affirmative by Choi and Suh [2011]. Assume that a two-stage generalized Bott
manifold is a CPm-bundle over CPn . In this section we answer to this question
for m > 1 case. For the case of m = 1, we will show in the next section that
if a quasitoric manifold M has the cohomology ring of the type (3-3), then M is
homeomorphic (but not necessarily equivalent) to a generalized Bott manifold.

Proposition 4.1. Let M be a quasitoric manifold over1n×1m with m>1. If there
is a generalized Bott tower B2→ CPn→ B0 such that the fiber of B2→ CPn has
complex dimension m and H∗(B2)∼=H∗(M), then M is equivalent to a generalized
Bott manifold.

Proof. From (3-3), the cohomology ring of B2 can be given by

H∗(B2)= Z[x1, x2]
/〈

x1
n+1, x2

m∏
j=1

(a j x1+ x2)

〉
,
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and from (3-2), the cohomology ring of M can be given by

H∗(M)= Z[y1, y2]
/〈

y1

n∏
i=1

(y1+ di y2), y2

m∏
j=1

(c j y1+ y2)

〉
.

For simplicity, let I⊂ Z[x1, x2] be the ideal generated by the homogeneous poly-
nomials x1

n+1 and x2
∏m

j=1(a j x1 + x2) and let J ⊂ Z[y1, y2] be also the ideal
generated by the homogeneous polynomials

y1

n∏
i=1

(y1+ di y2) and y2

m∏
j=1

(c j y1+ y2).

Then we have H∗(B2)= Z[x1, x2]/I and H∗(M)= Z[y1, y2]/J.
From the hypothesis, there is a ring isomorphism φ : H∗(B2)→ H∗(M) which

preserves the grading. Then the map φ lifts to a grading preserving isomorphism
φ :Z[x1, x2]→Z[y1, y2] with φ(I)=J. Note that if we let φ(xi )= gi1 y1+gi2 y2,
i = 1, 2, and denote the matrix of φ by G, then

det G = det
(

g11 g12

g21 g22

)
=±1.

We prove the proposition by showing that either

c1 = · · · = cm = 0 or d1 = · · · = dn = 0.

Then, by Proposition 3.2, M is equivalent to a generalized Bott manifold. We
consider the three cases (1) n < m, (2) n = m, and (3) 1< m < n separately.

Case 1: n < m. Since φ(I)= J and m > n, we have

(4-1) φ(xn+1
1 )= αy1

n∏
i=1

(y1+ di y2),

where α is an integer. Then the set of prime divisors of xn+1
1 is mapped by φ to the

set of prime divisors of αy1
∏n

i=1(y1 + di y2). Since x1 is the only prime divisor
of xn+1

1 , we must have α 6= 0 and di = 0 for all i , which proves the proposition in
this case.

Case 2: n = m. Since φ(I)= J and n = m, we have

(4-2) φ(xn+1
1 )= αy1

n∏
i=1

(y1+ di y2)+α′y2

n∏
j=1

(c j y1+ y2),

where α and α′ are integers.

(i) If α is zero, then by an argument similar to the one in Case 1, we have α′ 6= 0
and c j = 0 for all j , which proves the proposition.
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(ii) If α′ is zero, then an argument similar to the one in Case 1 shows that α 6= 0
and di = 0 for all i , which proves the proposition.

(iii) Now assume that neither α nor α′ is zero. Plugging φ(x1) = g11 y1 + g12 y2

into (4-2), we have

(4-3) (g11 y1+ g12 y2)
n+1 = αy1

n∏
i=1

(y1+ di y2)+α′y2

n∏
j=1

(c j y1+ y2).

Then we can see that α = gn+1
11 and α′ = gn+1

12 by comparing the coefficients of
yn+1

1 and yn+1
2 on both sides of (4-3). Hence we have

(4-4) (g11 y1+ g12 y2)
n+1 = gn+1

11 y1

n∏
i=1

(y1+ di y2)+ gn+1
12 y2

n∏
j=1

(c j y1+ y2)

as polynomials. Plug y1 = y2 = 1 and y1 = 1, y2 =−1 into (4-4) to get the system
of equations

(g11+ g12)
n+1 = gn+1

11

n∏
i=1

(1+ di )+ gn+1
12

n∏
j=1

(c j + 1)

(g11− g12)
n+1 = gn+1

11

n∏
i=1

(1− di )− gn+1
12

n∏
j=1

(c j − 1).

(4-5)

Note that 1−di c j =±1 for all 1≤ i, j ≤ n from the nonsingularity condition (2-1).
If we show that di c j = 0 for all 1 ≤ i, j ≤ n, then we are done. Indeed, if c j0 6= 0
for some 1 ≤ j0 ≤ n, then di c j0 = 0 for all 1 ≤ i ≤ n implies that di = 0 for all
1≤ i ≤ n. Otherwise c j = 0 for all 1≤ j ≤ n, which proves the proposition.

We will now show that di c j = 0 for all 1 ≤ i, j ≤ n. Suppose not, that is,
di0c j0 6= 0 for some 1 ≤ i0, j0 ≤ n. Then from the nonsingularity condition we
have di0c j0 = 2. For simplicity we may assume that d1c1 = 2, so either d1 = 1 and
c1= 2, or d1= 2 and c1= 1 (up to equivalence). But these two cases are symmetric
because n = m. Thus it is enough to consider the case d1 = 1 and c1 = 2.

Since 1−di c j =±1 for all 1≤ i, j ≤ n, we have that di = 1 or 0 for i = 2, . . . , n
and c j = 2 or 0 for j = 2, . . . , n. Plug these into (4-5) to get

(g11+ g12)
n+1 = 2r gn+1

11 + 3s gn+1
12 ,(4-6)

(g11− g12)
n+1 =−gn+1

12 (−1)n+1−s(4-7)

for some 1 ≤ r, s ≤ n. From (4-7), we have g11 = 0 or g11 = 2g12. If we have
g11 = 0, then (4-6) implies gn+1

12 = 3s gn+1
12 . Therefore g12 = 0, which contradicts

det(G) 6= 0. Otherwise, that is if g11= 2g12, then by plugging g11= 2g12 into (4-6)
we have

3n+1gn+1
12 = 2r+n+1gn+1

12 + 3s gn+1
12 .
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Therefore, g12 is zero and so is g11, which also contradicts det(G) 6= 0. These
contradictions arise because we assumed that di0c j0 = 2 for some 1 ≤ i0, j0 ≤ n.
This shows that di c j = 0 for all 1≤ i, j ≤ n.

Case 3: 1< m < n. Since n > m, we have

(4-8) φ(x2

m∏
j=1

(a j x1+ x2))= αy2

m∏
j=1

(c j y1+ y2)

for some nonzero integer α. Plugging φ(xi )= gi1 y1+ gi2 y2 into (4-8), we have

(4-9) (g21 y1+g22 y2)

m∏
j=1

(
(a j g11+g21)y1+(a j g12+g22)y2

)=αy2

m∏
j=1

(c j y1+y2).

Comparing the coefficients of yn+1
2 on both sides of (4-9), we see that

α = g22

m∏
j=1

(a j g12+ g22)

and we have

(4-10) (g21 y1+ g22 y2)

m∏
j=1

(
(a j g11+ g21)y1+ (a j g12+ g22)y2

)
= g22

m∏
j=1

(a j g12+ g22)y2

m∏
j=1

(c j y1+ y2).

By comparing the coefficients of ym+1
1 on both sides, we get

g21

m∏
j=1

(a j g11+ g21)= 0.

If g21 = 0, then det(G) = g11g22 = ±1, and hence g11 = ±1. If a j g11 + g21 = 0
for some 1≤ j ≤ m, then

det(G)= g11g22− g12g21 = g11(g22+ a j g12)=±1.

Hence g11 =±1 in this case too.
As in Case 2, it is enough to show that di c j = 0 for all 1≤ i ≤ n and 1≤ j ≤m.

Suppose otherwise, that is, di0c j0 = 2 as before.

(i) Suppose c j0 = 2. Then di0 = 1, and c j = 0 or 2 for all 1≤ j ≤m and di = 0 or
1 for all 1≤ i ≤ n. Let s be the number of c j ’s equal to 2.

(i-1) First consider the case 0 < s < m. In this case we may assume c1 = 2 and
cm = 0 for simplicity. Since φ(xn+1

1 ) ∈ J, we have

(4-11) φ(xn+1
1 )= αy1

n∏
i=1

(y1+ di y2)+ f (y1, y2)y2

m∏
j=1

(c j y1+ y2),
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where α is an integer and f (y1, y2) is a homogeneous polynomial of degree n−m.
Plugging φ(x1)= g11 y1+ g12 y2 into (4-11), we have

(4-12) (g11 y1+ g12 y2)
n+1 = αy1

n∏
i=1

(y1+ di y2)+ f (y1, y2)y2

m∏
j=1

(c j y1+ y2).

If α = 0, then g11 = 0, so c j = 0 for all j = 1, . . . ,m. This is a contradiction to
the assumption c1 = 1. Hence α 6= 0. Comparing the coefficients of yn+1

1 on both
sides of (4-12), we can see that α = gn+1

11 and we have

(4-13) (g11 y1+g12 y2)
n+1 = gn+1

11 y1

n∏
i=1

(y1+di y2)+ f (y1, y2)y2

m∏
j=1

(c j y1+ y2),

as polynomials in y1 and y2. Since cm = 0, comparing the coefficients of yn
1 y2 on

both sides of (4-13), we get the equation

(4-14) (n+ 1)gn
11g12 = gn+1

11 (d1+ · · ·+ dn).

Since g11 = ±1 and di = 0 or 1 with d1 + · · · + dn ≤ n, the last equation gives a
contradiction. So s < m cannot happen.

(i-2) Now suppose s = m, that is, c1 = · · · = cm = 2. In this case there is a ring
isomorphism ψ from the cohomology ring

H∗(M)= Z[y1, y2]
/〈

yn+1−r
1 (y1+ y2)

r , y2(2y1+ y2)
m 〉

to the ring
Z[Y1, Y2]

/〈
Y n+1−r

1 (Y1+ Y2)
r , Y m

2 (2Y1+ Y2)
〉

given by ψ(y1)=−Y1, ψ(y2)= 2Y1+ Y2. In other words, if s = m, then H∗(M)
is isomorphic to a ring

Z[y1, y2]
/〈

y1

n∏
i=1

(y1+ di y2), y2

m∏
j=1

(c j y1+ y2)

〉
with c1 = 2, c2 = · · · = cm = 0. We are thus in the s = 1 case. But by the previous
argument this induces a contradiction.

(ii) Suppose c j0 = 1. Then di0 = 2. As before let r be the number of c j equal to 1.

(ii-1) First consider the case when 0 < r < m. In this case we may assume that
c1 = 1 and cm = 0. By the same argument as above, (4-13) and (4-14) also hold.
Since g11 = ±1, we have (n + 1)g12 = g11(d1 + · · · + dn) = 2g11s, where s is
the number of di ’s equal to 2, and 0 < s ≤ n. This equality holds if and only if
g11= g12, s= (n+1)/2, and n is odd. By plugging y1= 1 and y2=−1 into (4-13),
we have 0= gn+1

11
∏n

i=1(1−di )which is a contradiction. This shows that 0< r <m
is impossible.
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(ii-2) Now suppose r =m, that is, c1=· · ·= cm = 1. Then by the ring isomorphism
given by ψ(y1)=−Y1 and ψ(y2)= Y1+ Y2, H∗(M) is isomorphic to the ring

Z[Y1, Y2]
/〈

Y n+1−s
1 (Y1+ 2Y2)

s, Y m
2 (Y1+ Y2)

〉
,

which brings us to the case when r = 1. By the previous argument, this case also
induces a contradiction.

We thus have proved that di c j = 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, which proves
the proposition. �

5. Quasitoric manifolds over 1n×11

In this section, we restrict our attention to the case where the orbit space is1n×11.

Example 5.1 [Davis and Januszkiewicz 1991]. Projective toric manifolds over
11 ×11 are Hirzebruch surfaces 6a = P(C⊕ γ⊗a) for a ∈ Z, where γ is the
tautological line bundle over CP1. By Hirzebruch [1951], 6a is diffeomorphic to
6b if and only if a is congruent to b modulo 2. Hence a projective toric manifold
over 11×11 is diffeomorphic to CP1×CP1 or CP2 # CP2. On the other hand,
CP2 # CP2 is the unique quasitoric manifold over11×11 which is not a projective
toric manifold. Hence there are only three topological types of quasitoric manifolds
over 11×11: CP1×CP1, CP2 # CP2, and CP2 # CP2.

Let M be a quasitoric manifold over 1n ×11. As in Section 3, we order the
facets of 1n ×11 as follows:

(5-1) F1×11, . . . , Fn ×11,1n ×G1, Fn+1×11,1n ×G2,

where Fi ’s are facets of1n and Gi are facets of11. Up to equivalence of quasitoric
manifolds we may assume that the characteristic function λ on the ordered facets
gives the following (n+ 1)× (n+ 3) matrix

(5-2) 3=


1 · · · 0 0 −1 −b1
...
. . .

...
...

...
...

0 · · · 1 0 −1 −bn

0 · · · 0 1 −a −1

 ,
namely, λ(Fi ×11)= ei for 0≤ i ≤ n, λ(1n ×G1)= en+1,

λ(Fn+1×11)= (−1, . . . ,−1,−a)T and λ(1n×G2)= (−b1, . . . ,−bn,−1)T .

We denote such M by Ma,b for b = (b1, . . . , bn) ∈ Zn . Moreover, by the nonsin-
gularity condition (2-1), we have abi = 0 or 2 for i = 1, . . . , n.

We first consider the case abi = 0 for all i = 1, . . . , n. Then either a = 0
or (b1, . . . , bn) is a zero vector. Then Ma,b is equivalent to a generalized Bott
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manifold by Proposition 3.2. More precisely, Ma,0 = P(C⊕ γ⊗a)→ CPn , and
M0,b = P(C⊕ (⊕n

j=1 γ
⊗b j ))→ CP1. In this case, Ma,b is a projective toric man-

ifold. Here we classify all projective toric manifolds over 1n ×11 smoothly.

Proposition 5.2. Let n be a positive integer greater than 1.

(1) Let Ma,0 denote the two-stage generalized Bott manifold

Ma,0 = B2
π2−→ B1

π1−→ B0 = {a point},
where B1 = CPn , B2 = P(C⊕ γ⊗a), and γ is the tautological line bundle over
CPn . Then Ma,0 is diffeomorphic to Ma′,0 if and only if |a| = |a′|.
(2) Let M0,b denote the two-stage generalized Bott manifold

M0,b = B2
π2−→ B1

π1−→ B0 = {a point},
where B1 = CP1, B2 = P

(
C⊕ (⊕n

i=1 γ
⊗bi
))

for b= (b1, . . . , bn) ∈ Zn , and γ is
the tautological line bundle over CP1. Then M0,b is diffeomorphic to M0,b′ if and
only if there is ε =±1 such that ε

∑n
i=1 bi ≡∑n

i=1 b′i (mod n+ 1).

Proof. (1) Note that

H∗(Ma,0)= Z[x1, x2]
/〈

xn+1
1 , x2(ax1+ x2)

〉
,

and π∗2 (H
∗(B1))∼= Z[x1]/xn+1

1 ⊂ H∗(Ma,0). By Theorem 3.3, Ma,0 and Ma′,0 are
diffeomorphic if and only if there exist ε =±1 and w ∈ Z such that

(1+ εwx1)(1+ ε(a+w)x1)= (1+ a′x1)

in Z[x1]/xn+1
1 . Hence, we have ε(a+2w)= a′ and w(a+w)x2

1 = 0. Since n > 1,
x2

1 6= 0 in Z[x1]/xn+1
1 . Therefore w(a+w)= 0, hence w is either 0 or −a. In any

case, we obtain a′ =±a.

(2) Note that

H∗(M0,b)= Z[x1, x2]
/〈

x1

n∏
i=1

(x1+ bi x2), x2
2

〉
and π∗2 (H

∗(B1)) ∼= Z[x2]/x2
2 ⊂ H∗(M0,b). By Theorem 3.3, M0,b and M0,b′ are

diffeomorphic if and only if there exist ε =±1 and w ∈ Z such that

n∏
i=0

(1+ ε(bi +w)x2)=
n∏

i=0

(1+ b′i x2)

in Z[x2]/x2
2 , where b0 = b′0 = 0. Since x2

2 = 0 we only have the condition
ε
∑n

i=1 bi + (n+ 1)w =∑n
i=1 b′i . �
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Now, we consider the case abi = 2 for some i . In this case, Ma,b cannot be
equivalent to a generalized Bott manifold. However, as we will see later, they can
be homeomorphic to generalized Bott manifolds. Note that, by Remark 2.1, we
may assume that a and the nonzero bi ’s have the positive sign. If abi = 2 for some
i = 1, . . . , n, then a must be either 1 or 2.

Let s be the number of the nonzero bi ’s. Then, by (3-2), we have

H∗(Ma,b)= Z[x1, x2]
/〈

xn+1−s
1 (x1+ bx2)

s, x2(ax1+ x2)
〉
,

where ab = 2.
Here, we classify all quasitoric manifold which are not equivalent to projective

toric manifolds over 1n ×11 topologically. To do this, we prepare two lemmas.

Lemma 5.3. For any b ∈ Zn , M1,b is homeomorphic to either CPn+1 # CPn+1 or
CPn+1 # CPn+1.

Proof. Let N be a quasitoric manifold over an (n + 1)-dimensional polytope P
with the characteristic function λ. Let F1, . . . , Fn+1 be the facets of P meeting at
a vertex q of P . Then from the nonsingularity condition (2-1) we have

det(λ(F1), . . . , λ(Fn+1))=±1.

Let vc(P) be the vertex cut of P about the vertex q of P , and let G be the new
facet of vc(P) obtained from the vertex cut. Let F1, . . . , Fn+1 still denote the facets
surrounding the facet G as in Figure 1. If we extend the characteristic function λ
to the facets of vc(P), then the corresponding quasitoric manifold over vc(P) is a
connected sum of N with CPn+1 or CPn+1.

F1

F2

F3

G

vc(P)

=
F1

F2

F3

b
q

P

# b
F1

F2

1n

Figure 1. The vertex cut of a polytope P .

Recall the ordering (5-1) of the facets of1n×11. Since1n×11 can be viewed
as a vertex cut of 1n+1, the condition

det(λ(F1×11), . . . , λ(Fn ×11), λ(Fn+1×11))=−a =−1
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implies that the characteristic function λ can be considered as the one extended
from a characteristic function on 1n+1. Therefore M1,b is homeomorphic to either
CPn+1 # CPn+1 or CPn+1 # CPn+1. �

As we have seen in Remark 3.4, the moment angle manifold Z1n×11 is

S2n+1× S3 = {(w, z) ∈ Cn+1×C2 : |w| = 1, |z| = 1
}

and the subtorus ker λ⊂ T n+3 is represented by the unimodular subgroup of Zn+3

spanned by (1, . . . , 1, a, 0) and (b1, . . . , bn, 0, 1, 1). In this section, we denote the
subtorus ker λ by Ka,b.

Assume that we have two quasitoric manifolds Ma,b and Ma′,b′ . If there is a
θ -equivariant homeomorphism ϕ from Z1n×11 with the action of the subgroup
Ka,b ⊂ T n+3 to Z1n×11 with the action of the subgroup Ka′,b′ ⊂ T n+3, where θ is
an isomorphism from Ka,b to Ka′,b′ , then ϕ induces a homeomorphism

ϕ : Ma,b = Z1n×11/Ka,b→ Ma′,b′ = Z1n×11/Ka′,b′ .

Lemma 5.4. Let n > 1, b= (b, . . . , b, 0, . . . , 0) ∈ Zn , and ab = 2. Then we have

(1) Ma,(b,0,...,0) is homeomorphic to Ma,(b,...,b), and

(2) Ma,b is either homeomorphic to Ma,0 if s is even, or Ma,(b,0,...,0) if s is odd,
where s is the number of b’s in b.

In particular, if n is even, then Ma,b is homeomorphic to Ma,0.

Proof. (1) Let b = (b, 0, . . . , 0) and b′ = (b, . . . , b). Then, by (3-5), there are
isomorphisms µ : T 2→ Ka,b ⊂ T n+3 and µ′ : T 2→ Ka,b′ ⊂ T n+3 defined by

1 b
1 0
...
...

1 0
a 1
0 1


and



1 b
...
...

1 b
1 0
a 1
0 1


,

respectively. We set (w, z) = (w1, . . . , wn+1, z1, z2) ∈ S2n+1 × S3 ⊂ Cn+1 ×C2.
We define an isomorphism

θ : Ka,b→ Ka,b′, µ(t1, t2) 7→ µ′(t1tb
2 , t−1

2 )

and a map ϕ : S2n+1× S3→ S2n+1× S3 by

ϕ(w1, . . . , wn+1, z1, z2)= (wn+1, w2, . . . , wn, w1, z1, z2).
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Let us check that ϕ is θ -equivariant:

ϕ(µ(t1, t2) · (w, z))
= ϕ(t1tb

2w1, t1w2, . . . , t1wn+1, ta
1 t2z1, t2z2)

= (t1wn+1, t1w2, . . . , t1wn, t1tb
2w1, ta

1 t2z1, t−1
2 z2)

= (t1tb
2 (t
−1
2 )bwn+1, . . . , t1tb

2 (t
−1
2 )bwn, t1tb

2w1, (t1tb
2 )

at−1
2 z1, t−1

2 z2)

= µ′(t1tb
2 , t−1

2 ) ·ϕ(w, z)
= θ(µ(t1, t2)) ·ϕ(w, z)

because ab = 2. Hence ϕ is a θ -equivariant homeomorphism which induces a
homeomorphism ϕ : Ma,b→ Ma,b′ .

(2) By Lemma 5.3, M1,b is homeomorphic to CPn+1 # CPn+1 or CPn+1 # CPn+1.
Note that M1,0=CPn+1 # CPn+1. If n is even, CPn+1 has an orientation-reversing
self-homeomorphism. Thus CPn+1 # CPn+1 is homeomorphic to CPn+1 # CPn+1.
So each M1,b is homeomorphic to M1,0. If n is odd, then we have

H∗(M1,b)=
{

H∗(CPn+1 # CPn+1) if s is even,

H∗(CPn+1 # CPn+1) if s is odd.

We note that H∗(M1,0) and H∗(M1,(2,0,...,0)) are not isomorphic as graded rings.
(We refer the reader to the proof of Theorem 5.5 below.) Therefore, the man-
ifold M1,b is either homeomorphic to M1,0 = CPn+1 # CPn+1 if s is even, or
M1,(2,0,...,0) = CPn+1 # CPn+1 if s is odd.

Now, consider the case a= 2. Let b= (1, . . . , 1, 0, . . . , 0), where the first s ele-
ments are 1, b′= 0, and b′′= (1, 0, . . . , 0). Then, by (3-5), there are isomorphisms
µ : T 2 → K2,b ⊂ T n+3, µ′ : T 2 → K2,b′ ⊂ T n+3, and µ′′ : T 2 → K2,b′′ ⊂ T n+3

defined by 

1 1
...
...

1 1
1 0
...
...

1 0
2 1
0 1


,


1 0
...
...

1 0
2 1
0 1

 and



1 1
1 0
...
...

1 0
2 1
0 1


,

respectively.
If s is even, we define an isomorphism θ : K2,b→ K2,b′ by

θ(µ(t1, t2))= µ′(t−1
1 , t−1

2 )
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and a map ϕ : S2n+1× S3→ S2n+1× S3 by

(w, z) 7→(z1w1+ z2w2,−z2w1+ z1w2, . . . ,

− z2ws−1+ z1ws, ws+1, . . . , wn+1, z1, z2).

This map is well-defined because (z1wk−1+ z2wk,−z2wk−1+ z1wk) comes from
the multiplication of quaternion numbers z1+ z2 j and wk−1 + wk j for even k
with 2≤ k ≤ s. Then this map ϕ is θ -equivariant because

ϕ(µ(t1, t2) · (w, z))

= ϕ(t1t2w1, . . . , t1t2ws, t1ws+1, . . . , t1wn+1, t2
1 t2z1, t2z2)

= (t−1
1 (z1w1+ z2w2), t−1

1 (−z2w1+ z1w2), . . . ,

t−1
1 (−z2ws−1+ z1ws), t−1

1 ws+1, . . . , t−1
1 wn+1, t−2

1 t−1
2 z1, t−1

2 z2
)

= µ′(t−1
1 , t−1

2

) ·ϕ(w, z)
= θ(µ(t1, t2)) ·ϕ(w, z).

Hence ϕ induces a homeomorphism ϕ : M2,b→ M2,b′ .
If s is odd, we define an isomorphism θ : K2,b→ K2,b′′ by

θ(µ(t1, t2))= µ′′(t−1
1 , t−1

2 )

and a map ϕ : S2n+1× S3→ S2n+1× S3 by

(w, z) 7→(w1, z1w2+ z2w3,−z2w2+ z1w3, . . . ,

− z2ws−1+ z1ws, ws+1, . . . , wn+1, z1, z2).

Then this map ϕ is also θ -equivariant because

ϕ(µ(t1, t2) · (w, z))

= ϕ(t1t2w1, . . . , t1t2ws, t1ws+1, . . . , t1wn+1, t2
1 t2z1, t2z2)

= (t−1
1 t−1

2 w1, t−1
1 (z1w2+ z2w3), t−1

1 (−z2w2+ z1w3), . . . ,

t−1
1 (−z2ws−1+ z1ws), t−1

1 ws+1, . . . , t−1
1 wn+1, t−2

1 t−1
2 z1, t−1

2 z2
)

= µ′′(t−1
1 , t−1

2

) ·ϕ(w, z)
= θ(µ(t1, t2)) ·ϕ(w, z).

Hence ϕ induces a homeomorphism ϕ : M2,b→ M2,b′′ . �

Now, we are ready to prove the following topological classification of quasitoric
manifolds over 1n ×11 which are not projective toric manifolds.

Theorem 5.5. Let n > 1, b = (b, . . . , b, 0, . . . , 0) ∈ Zn , and ab = 2. Then the
homeomorphism classes of quasitoric manifolds Ma,b are represented by
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(1) M1,0 and M2,0, if n is even, or

(2) M1,0, M2,0, M1,(2,0,...,0) and M2,(1,0,...,0), if n is odd.

Furthermore, the cohomology rings of the different classes are distinct.

Proof. By Lemma 5.4, each quasitoric manifold over 1n ×11 is homeomorphic
to one of the given manifolds. Hence, it is enough to show the last statement.

We note that, by Proposition 5.2, the cohomology rings of M1,0 and M2,0 are
distinct. Thus, it suffices to show that if n is odd and a′b′ = 2, then we have
H∗(Ma,0) 6∼= H∗(Ma′,(b′,0,...,0)) and H∗(M1,(2,0,...,0)) 6∼= H∗(M2,(1,0,...,0)).

We denote M = M1,(2,0,...,0) and N = M2,(1,0,...,0). Then

H∗(M)= Z[x1, x2]/〈xn
1 (x1+ 2x2), x2(x1+ x2)〉,

H∗(N )= Z[y1, y2]/〈yn
1 (y1+ y2), y2(2y1+ y2)〉.

We first claim that H∗(Ma,0) is neither isomorphic to H∗(M) nor H∗(N ) if n
is odd and greater than 1. Since x1x2 = −x2

2 and xn+1
1 = −2x2xn

1 in H∗(M), for
any linear element cx1+ dx2 ∈ H∗(M), we have

(cx1+ dx2)
n+1 =

n+1∑
i=0

(
n+ 1

i

)
(cx1)

i (dx2)
n+1−i

= (cx1)
n+1+

n∑
i=0

(−1)i
(

n+ 1
i

)
ci dn+1−i xn+1

2

= 2cn+1xn+1
2 +

n∑
i=0

(
n+ 1

i

)
(−c)i dn+1−i xn+1

2

= (cn+1+ (−c+ d)n+1)xn+1
2

in H∗(M). Since xn+1
2 does not vanish in H∗(M), (cx1+ dx2)

n+1 cannot be zero
in H∗(M) for odd n > 1. Similarly, we can see that

(cy1+ dy2)
n+1 = 1

2

(
cn+1+ (c− 2d)n+1)yn+1

1

cannot be zero in H∗(N ) for odd n>1. Since there is a linear element in H∗(Ma,0)

whose (n+ 1)-st power vanishes, H∗(Ma,0) can neither be isomorphic to H∗(M)
nor H∗(N ) for odd n > 1.

We finally claim that H∗(M) is not isomorphic to H∗(N ). Suppose that there
is a grading preserving isomorphism

φ : H∗(M)= Z[x1, x2]/IM → H∗(N )= Z[y1, y2]/IN
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which lifts to a grading preserving isomorphism φ : Z[x1, x2] → Z[y1, y2] with
φ(IM)= IN . Since φ(IM)= IN and n > 1, we have

(5-3) φ(x2(x1+ x2))= αy2(2y1+ y2),

where α is a nonzero integer. The prime divisors of the left hand side of (5-3)
generate Z[x1, x2] as a Z-algebra, whereas the prime divisors of the right hand
side of (5-3) do not generate Z[y1, y2]. Therefore, H∗(M) and H∗(N ) cannot be
isomorphic. �

Corollary 5.6. Two quasitoric manifolds over1n×11 are homeomorphic if their
cohomology rings are isomorphic as graded rings. In particular,

(1) if n is even, then M is homeomorphic to a generalized Bott manifold Ma,0 or
to M0,b,

(2) if n is odd, then M is homeomorphic to a generalized Bott manifold, or to
M1,(2,0,...,0) ∼= CPn+1 # CPn+1, or to M2,(1,0,...,0).

Proof. Let M and N be quasitoric manifolds over 1n ×11. Assume that we have
H∗(M)∼= H∗(N ). When n = 1, M is homeomorphic to N by Example 5.1.

Now consider the case when n > 1. If M is equivalent to a generalized Bott
manifold M0,b, then so is N by Proposition 4.1, so M and N are homeomorphic
by Theorem 3.3.

If M is equivalent to a generalized Bott manifold Ma,0, then N := Ma′,b′ must
be homeomorphic to a generalized Bott manifold Ma′,0 because H∗(Ma,0) cannot
be isomorphic to H∗(Ma′,(b′,0,...,0)) as in the proof of Theorem 5.5. Therefore M
and N are homeomorphic by Theorem 3.3.

If neither M nor N is equivalent to a generalized Bott manifold, then the asser-
tion is true by Theorem 5.5.

Hence, for any case, M is homeomorphic to N . The latter statement of the
corollary immediately follows Theorem 5.5. �

The above corollary proves a part of Theorem 1.1.

Example 5.7. There are quasitoric manifolds homeomorphic but not equivalent
to generalized Bott manifolds. For example, M2,(1,1,0,...,0) is homeomorphic to
a generalized Bott manifold M2,(0,...,0). But M2,(1,1,0,...,0) is not equivalent to a
generalized Bott manifold by Proposition 3.2.

6. Quasitoric manifolds over 1n×1m with n,m > 1

Let Ma,b be a quasitoric manifold over 1n × 1m with n,m > 1, as defined in
Section 3, whose characteristic matrix is of the form (3-6). Define two vectors s
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and r by

(6-1) s := (2, . . . , 2︸ ︷︷ ︸
s

, 0, . . . , 0) ∈ Zm and r := (1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0) ∈ Zn,

where 1 ≤ s ≤ m and 1 ≤ r ≤ n. If a quasitoric manifold M with β2 = 2 is not
equivalent to a generalized Bott manifold, then M is equivalent to Ms,r for some
s and r .

In this section we prove Theorem 1.1 and Theorem 1.2 when n,m > 1. In
doing so, we follow the same strategy as in Section 5. Assume that we have two
quasitoric manifolds Ma,b and Ma′,b′ . If there is a θ -equivariant homeomorphism ϕ

from Z1n×1m with the subtorus Ka,b⊂T n+m+2-action to Z1n×1m with the subtorus
Ka′,b′ ⊂ T n+m+2-action, where θ is an isomorphism from Ka,b to Ka′,b′ , then ϕ
induces a homeomorphism

ϕ : Ma,b′ = Z1n×1m/Ka,b→ Ma′,b′ = Z1n×1m/Ka′,b′ .

Lemma 6.1. Two quasitoric manifolds Ms,r and Ms′,r ′ are homeomorphic if the
two pairs (s, r) and (s′, r ′) satisfy

s = s ′ or s+ s ′ = m+ 1 and r = r ′ or r + r ′ = n+ 1

where s, s′ ∈ Zm and r, r ′ ∈ Zn are vectors as in (6-1).

Proof. As we have seen in Remark 3.4, the moment angle manifold Z1n×1m is

S2n+1× S2m+1 = {(w, z) ∈ Cn+1×Cm+1 : |w| = 1, |z| = 1
}
,

and the subtorus Ks,r in T n+m+2 is represented by the unimodular subgroup of
Zn+m+2 spanned by

us := (1, . . . , 1︸ ︷︷ ︸
n+1

, 2, . . . , 2︸ ︷︷ ︸
s

, 0, . . . , 0) and vr := (1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
m+1

).

That is, there is an isomorphism µ : T 2→ Ks,r defined by the matrix
(

uT
s vT

r
)
.

First consider the case when s = s′, r ≤ ⌊n+1
2

⌋
, and r ′ = n + 1− r . Then we

have an isomorphism µ′ : T 2→ Ks′,r ′ defined by the matrix
(

uT
s vT

n+1−r

)
.

We set (w, z)= (w1, . . . , wn+1, z1, . . . , zm+1)∈ S2n+1× Sm+1⊂Cn+1×Cm+1.
Now we define an isomorphism θ : Ks,r → Ks′,r ′ by µ(t1, t2) 7→ µ′

(
t1t2, t−1

2

)
and

a map ϕ : S2n+1× S2m+1→ S2n+1× S2m+1 by

ϕ(w1, . . . , wn+1, z1, . . . , zm+1)

= (wr+1, . . . , wn+1, w1, . . . , wr , z1, . . . , zs, zs+1, . . . , zm+1).
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Let us check that ϕ is θ -equivariant:

ϕ(µ(t1, t2) · (w, z))= ϕ(t1t2w1, . . . , t1t2wr , t1wr+1, . . . , t1wn+1,

t2
1 t2z1, . . . , t2

1 t2zs, t2zs+1, . . . , t2zm+1)

= (t1wr+1, . . . , t1wn+1, t1t2w1, . . . , t1t2wr ,

t2
1 t2z1, . . . , t2

1 t2zs, t−1
2 zs+1, . . . , t−1

2 zm+1
)

= µ′(t1t2, t−1
2

) ·ϕ(w, z)= θ(µ(t1, t2)) ·ϕ(w, z).

Hence ϕ induces a homeomorphism ϕ from Ms,r to Ms′,r ′ .
We now consider the case when s ≤ ⌊m+1

2

⌋
, s ′ = m + 1− s, and r = r ′. Then

we have an isomorphism µ′′ : T 2→ Ks′,r ′ defined by the matrix
(

uT
m+1−2 vT

r
)
.

We define an isomorphism θ : Ks,r→ θ(Ks′,r ′) by θ(µ(t1, t2)) 7→µ′′
(
t−1
1 , t2

1 t2
)
,

and a map φ by

ϕ(w1, . . . , wn+1, z1, . . . , zm+1)

= (w1, . . . , wr , wr+1, . . . , wn+1, zs+1, . . . , zm+1, z1, . . . , zs).

Then,

ϕ(µ(t1, t2) · (w, z))= (t1t2w1, . . . , t1t2wr , t−1
1 wr+1, . . . , t−1

1 wn+1,

t2zs+1, . . . , t2zm+1, t2
1 t2z1, . . . , t2

1 t2zs
)

= µ′′(t−1
1 , t2

1 t2
) ·ϕ(w, z)= θ(µ(t1, t2)) ·ϕ(w, z).

Thus ϕ is a θ -equivariant homeomorphism which induces a homeomorphism ϕ

from Ms,r to Ms′,r ′ .
Finally, we note that the case when r = n+1−r ′ and s=m+1−s ′ immediately

follows from the composition of the above two cases. �

Theorem 6.2. Let Ms,r and Ms′,r ′ be quasitoric manifolds as defined above. Then
the following are equivalent:

(1) s = s ′ or s+ s ′ = m+ 1, and r = r ′ or r + r ′ = n+ 1.

(2) H∗(Ms,r) and H∗(Ms′,r ′) are isomorphic.

(3) Ms,r and Ms′,r ′ are homeomorphic.

Proof. By Lemma 6.1, it suffices to show that (2) implies (1). Let I ⊂ Z[x1, x2]
and J⊂ Z[y1, y2] be the homogeneous ideals

I= 〈xn+1−r
1 (x1+ x2)

r , xm+1−s
2 (2x1+ x2)

s 〉,
J= 〈yn+1−r ′

1 (y1+ y2)
r ′, ym+1−s′

2 (2y1+ y2)
s′ 〉.

Then we have

H∗(Ms,r)= Z[x1, x2]/I and H∗(Ms′,r ′)= Z[y1, y2]/J.
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Then the cohomology ring isomorphism φ : H∗(Ms,r) → H∗(Ms′,r ′) lifts to a
grading preserving isomorphism φ : Z[x1, x2] → Z[y1, y2] with φ(I) = J. We
divide the proof into three cases: (1) n > m, (2) n < m, and (3) n = m.

Case 1: n > m. Since φ(xm+1−s
2 (2x1+ x2)

s) ∈ J and n > m, we have

(6-2) φ(xm+1−s
2 (2x1+ x2)

s)= αym+1−s′
2 (2y1+ y2)

s′

for some nonzero integer α. Comparing the multiplicities of the prime divisors of
both sides of (6-2), we can easily see that s = s ′ or s = m+ 1− s ′. Thus φ(x2) is
either ±y2 or ±(2y1+ y2). Then we obtain the following four cases: when s = s ′,{

φ(x1)=∓(y1+ y2) and φ(x2)=±y2, (i)
φ(x1)=±y1 and φ(x2)=±y2, (ii)

and when s+ s ′ = m+ 1,{
φ(x1)=∓(y1+ y2) and φ(x2)=±(2y1+ y2), (iii)
φ(x1)=∓y1 and φ(x2)=±(2y1+ y2). (iv)

One can check that cases (i) and (iii) imply that r + r ′ = n+ 1 and cases (ii) and
(iv) imply that r = r ′, which proves the implication (2)⇒ (1) in this case.

Case 2: n < m. This case is quite analogous to Case 1, so we skip the proof.

Case 3: n = m. Since φ(I)= J, we have

φ(xn+1−r
1 (x1+ x2)

r )= αyn+1−r ′
1 (y1+ y2)

r ′ +α′yn+1−s′
2 (2y1+ y2)

s′,

φ(xn+1−s
2 (2x1+ x2)

s)= βyn+1−r ′
1 (y1+ y2)

r ′ +β ′yn+1−s′
2 (2y1+ y2)

s′,
(6-3)

where α, α′, β, and β ′ are integers. Note that either α or α′ is nonzero, and either
β or β ′ is nonzero. We first show that α′ and β are zero and then prove the theorem
in this case.

Let G be the matrix of φ. Plugging φ(xi ) = gi1 y1+ gi2 y2, i = 1, 2, into (6-3),
we have

(6-4) (g11 y1+ g12 y2)
n+1−r ((g11+ g21)y1+ (g12+ g22)y2)

r =
αyn+1−r ′

1 (y1+ y2)
r ′ +α′yn+1−s′

2 (2y1+ y2)
s′

and

(6-5) (g21 y1+ g22 y2)
n+1−s((2g11+ g21)y1+ (2g12+ g22)y2)

s =
βyn+1−r ′

1 (y1+ y2)
r ′ +β ′yn+1−s′

2 (2y1+ y2)
s′,

where the determinant of G is ±1.
Suppose that none of α, α′, β, and β ′ are zero. Then by comparing the coeffi-

cients of yn+1
1 and yn+1

2 on both sides of (6-4), we have α= gn+1−r
11 (g11+g21)

r and
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α′ = gn+1−r
12 (g12+ g22)

r . By comparing the coefficients of yn+1
1 and yn+1

2 on both
sides of (6-5), we have β = gn+1−s

21 (2g11 + g21)
s and β ′ = gn+1−s

22 (2g12 + g22)
s .

Hence we have a system of polynomial equations:

(6-6) (g11 y1+ g12 y2)
n+1−r ((g11+ g21)y1+ (g12+ g22)y2)

r

= gn+1−r
11 (g11+ g21)

r yn+1−r ′
1 (y1+ y2)

r ′

+ gn+1−r
12 (g12+ g22)

r yn+1−s′
2 (2y1+ y2)

s′,

(6-7) (g21 y1+ g22 y2)
n+1−s((2g11+ g21)y1+ (2g12+ g22)y2)

s

= gn+1−s
21 (2g11+ g21)

s yn+1−r ′
1 (y1+ y2)

r ′

+ gn+1−s
22 (2g12+ g22)

s yn+1−s′
2 (2y1+ y2)

s′ .

We first show that α′= 0. Plug y1= 1 and y2=−1 into (6-6) to get the equation

(6-8) (g11−g12)
n+1−r ((g11+g21)−(g12+g22))

r =gn+1−r
12 (g12+g22)

r (−1)n+1−s′ .

Since we assume that α′ is not zero, g12(g12+ g22) 6= 0. Then, by (6-8), we have(
g11
g12
− 1

)n+1−r (
g11+g21
g12+g22

− 1
)r

= (−1)n+1−s′ .

Thus g11/g12 = 2 or 0, and (g11+ g21)/(g12+ g22) = 2 or 0. In these cases, both
g11 and g21 are even, which contradicts det(G)=±1. Hence, α′ is zero.

We next show that β = 0. Plug y1= 1 and y2=−2 into (6-7) to get the equation

(6-9) (g21−2g22)
n+1−s((2g11+g21)−2 (2g12+g22))

s=gn+1−s
21 (2g11+g21)

s(−1)r
′
.

Since we assume that β is not zero, g21(2g11+ g21) 6= 0. Then, by (6-9), we have(
1− 2g22

g21

)n+1−s (
1− 2(2g12+ g22)

2g11+ g21

)s

= (−1)r
′
.

Thus g22/g21 = 0 or 1, and (2g12 + g22)/(2g11 + g21) = 0 or 1. In these cases,
det G 6= ±1 which is a contradiction. Hence, β is zero.

Now we will show that s = s ′ or s + s ′ = m + 1, and r = r ′ or r + r ′ = n+ 1.
Since both α′ and β are zero, we have

φ(xn+1−r
1 (x1+ x2)

r )= αyn+1−r ′
1 (y1+ y2)

r ′,

φ(xn+1−s
2 (2x1+ x2)

s)= β ′yn+1−s′
2 (2y1+ y2)

s′ .

Hence, by using the same argument as in Case 1, we can show that s = s ′ or
s+ s ′ = m+ 1, and r = r ′ or r + r ′ = n+ 1. �
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Lemma 6.3. If n 6=m, then two quasitoric manifolds Ms,r and Mr ′,s′ are not home-
omorphic for any chosen vectors s, r ′ ∈ Zm and r, s′ ∈ Zn as in (6-1). That is,

s := (2, . . . , 2︸ ︷︷ ︸
s

, 0, . . . , 0), r ′ := (1, . . . , 1︸ ︷︷ ︸
r ′

, 0, . . . , 0) ∈ Zm,

r := (1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0), s′ := (2, . . . , 2︸ ︷︷ ︸
s′

, 0, . . . , 0) ∈ Zn.

Proof. It is enough to show the case when n < m. First let I ⊂ Z[x1, x2] and
J⊂ Z[y1, y2] be the homogeneous ideals

I= 〈xn+1−r
1 (x1+ x2)

r , xm+1−s
2 (2x1+ x2)

s 〉,
J= 〈yn+1−s′

1 (y1+ 2y2)
s′, ym+1−r ′

2 (y1+ y2)
r ′ 〉.

Then we have H∗(Ms,r)= Z[x1, x2]/I and H∗(Mr ′,s′)= Z[y1, y2]/J.
Suppose that Ms,r and Mr ′,s′ are homeomorphic for some vectors s, r ′ ∈ Zm

and r, s′ ∈ Zn . Then the ring isomorphism φ : H∗(Ms,r)→ H∗(Mr ′,s′) lifts to a
grading preserving isomorphism φ : Z[x1, x2] → Z[y1, y2] with φ(I)= J. Then

φ(xn+1−r
1 (x1+ x2)

r )= αyn+1−s′
1 (y1+ 2y2)

s′

for some nonzero integer α. But this is a contradiction because the prime divisors
of the left hand side generate Z[x1, x2] as a Z-algebra, whereas the prime divisors
of the right hand side do not generate Z[y1, y2].

Therefore, there is no isomorphism between H∗(Ms,r) and H∗(Mr ′,s′), so Ms,r
and Mr ′,s′ are not homeomorphic. �

Theorem 6.4. Two quasitoric manifolds over 1n ×1m with n,m > 1 are homeo-
morphic if and only if their cohomology rings are isomorphic as graded rings.

Proof. Let M and N be quasitoric manifolds over1n×1m , with H∗(M)∼=H∗(N ).
If M is equivalent to a generalized Bott manifold, then N is also equivalent to a

generalized Bott manifold by Proposition 4.1, so M and N are homeomorphic by
Theorem 3.3.

If M is equivalent to Ms,r , then N is equivalent to either Ms′,r ′ or Mr ′,s′ by
Proposition 4.1. But by Lemma 6.3, N must be equivalent to Ms′,r ′ . Thus M and
N are homeomorphic by Theorem 6.2.

Hence, in any case, M is homeomorphic to N . �

Corollary 6.5. Let N (n,m) be the number of quasitoric manifolds over 1n ×1m

which are not homeomorphic to generalized Bott manifolds.

(1) When n = m, N (n, n)= ⌊n+1
2

⌋× ⌊n+1
2

⌋
.

(2) When n 6= m and n,m > 1, N (n,m)= 2
⌊n+1

2

⌋× ⌊m+1
2

⌋
.

(3) N (n, 1)= 0 for even n and N (n, 1)= 2 for odd n ≥ 3.



46 SUYOUNG CHOI, SEONJEONG PARK AND DONG YOUP SUH

Proof. This follows from Corollary 5.6, Theorem 6.2, and Lemma 6.3. �

7. Proof of Theorem 1.2

A simple polytope P is said to be cohomologically rigid if there exists a quasitoric
manifold M over P , and whenever there exists a quasitoric manifold N over an-
other polytope Q with a graded ring isomorphism H∗(M) ∼= H∗(N ) there is a
combinatorial equivalence P ≈ Q. By Choi et al. [2010c], a product of simplices
is cohomologically rigid.

Let M and M ′ be quasitoric manifolds with β2 = 2. Then they are supported by
the polytopes combinatorially equivalent to products of two simplices, say1n×1m

and 1n′ × 1m′ , respectively. Since products of simplices are cohomologically
rigid, if H∗(M)= H∗(M ′), then {n,m} = {n′,m′}. In other words, two quasitoric
manifolds over distinct products of simplices cannot have the same cohomology
rings.

By Corollary 5.6 and Theorem 6.4, all quasitoric manifolds over a certain prod-
uct of two simplices are classified by their cohomology rings. Hence, all quasitoric
manifolds with β2 = 2 are classified by their cohomology rings as graded rings.

8. Classification of quasitoric manifolds with β2 = 2

Let u = (u1, . . . , uk), u′ = (u′1, . . . , u′k) ∈ Zk and let ` be a positive integer. We
define u is equivalent to u′ with respect to `, denote it by u∼` u′, if there is ε=±1
and w ∈ Z such that

k∏
i=1

(1+ ui x)= (1+ εwx)
k∏

i=1

(1+ ε(u′i +w)x) in Z[x]/x`+1.

Then from Theorem 3.3, Example 5.1, Corollary 5.6, and Theorems 6.2 and 6.4,
we have the following topological classification.

Theorem 8.1. (1) The homeomorphism classes of quasitoric manifolds over the
polytope 1n ×1m with n 6= m (n,m > 1) are represented by:

• M0,0 = CPn ×CPm , a trivial generalized Bott manifold.

• Ma,0 for a ∈ (Zm − 0)/∼n , nontrivial generalized Bott manifolds.

• M0,b for b ∈ (Zn − 0)/∼m , nontrivial generalized Bott manifolds.

• Ms,r for s := (2, . . . , 2, 0, . . . , 0) ∈ Zm and r := (1, . . . , 1, 0, . . . , 0) ∈ Zn ,

• Ms,r for s := (1, . . . , 1, 0, . . . , 0) ∈ Zm and r := (2, . . . , 2, 0, . . . , 0) ∈ Zn ,

where the number of nonzero components in s, respectively r , is positive and less
than or equal to

⌊m+1
2

⌋
, respectively

⌊ n+1
2

⌋
.
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(2) The homeomorphism classes of quasitoric manifold over 1n ×1n (n > 1) are
represented by:

• M0,0 = CPn ×CPn .

• Ma,0 for a ∈ (Zn − 0)/∼n .

• Ms,r for s := (2, . . . , 2, 0, . . . , 0) ∈ Zn and r := (1, . . . , 1, 0, . . . , 0) ∈ Zn ,

where the number of nonzero components in s and r are positive and less than or
equal to

⌊ n+1
2

⌋
.

(3) The homeomorphism classes of quasitoric manifolds over 11 ×1n (n > 1 is
odd) are represented by:

• M0,0 = CP1×CPn .

• Ma,0 for a ∈ N.

• M0,b for b ∈ (Zn − 0)/∼1 (see Proposition 5.2).

• CPn+1 # CPn+1.

• M2,(1,0,...,0).

(4) The homeomorphism classes of quasitoric manifolds over 11×1n (n is even)
are represented by:

• M0,0 = CP1×CPn .

• Ma,0 for a ∈ N.

• M0,b for b ∈ (Zn − 0)/∼1 (see Proposition 5.2).

(5) The homeomorphism classes of quasitoric manifolds over 11 ×11 are repre-
sented by:

• M0,0 = CP1×CP1.

• M0,1 = CP2 # CP2.

• M2,1 = CP2 # CP2.
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