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We generalize the concept of modulation to pseudomodulation and its sub-
classes including premodulation, generalized modulation and regular mod-
ulation. The motivation is to define the valued analogue of natural quiver,
called natural valued quiver, of an artinian algebra so as to correspond to
its valued Ext-quiver when this algebra is not k-splitting over the field k.
Moreover, we illustrate the relation between the valued Ext-quiver and the
natural valued quiver.

The interesting fact we find is that the representation categories of a
pseudomodulation and of a premodulation are equivalent respectively to
that of a tensor algebra of A-path type and of a generalized path algebra.
Their examples are given from two kinds of artinian hereditary algebras.
Furthermore, the isomorphism theorem is given for normal generalized
path algebras with finite (acyclic) quivers and normal premodulations.

We give four examples of pseudomodulations: first, group species in mu-
tation theory as a seminormal generalized modulation; second, viewing a
path algebra with loops as a premodulation with valued quiver that has no
loops; third, differential pseudomodulation and its relation with differential
tensor algebras; fourth, a pseudomodulation considered as a free graded
category.

1. Introduction

Throughout this paper, k denotes the ground field.
It is well known that for an artinian k-algebra A, one has either the Ext-quiver in

the case A is k-splitting or the valued Ext-quiver otherwise. This quiver 0 is used
to characterize the structure of A by Gabriel’s theorem when A is basic, that is, A∼=
k0/I with admissible ideal I if A is k-splitting (e.g., if k is algebraically closed).
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Motivated by it, in [Li and Lin 2012], we defined the notion of natural quiver for
any artinian algebra in order to construct the analogue of Gabriel’s theorem in the
case that A is not k-splitting and even not basic. This aim has been achieved in
the case when A is splitting over radical in [Li and Lin 2012]. The other important
piece is the relation between natural quiver and Ext-quiver of a k-splitting artinian
algebra, which is also given in [Li and Lin 2012].

However, when A is not k-splitting, the valued Ext-quiver of A cannot be com-
pared with the natural quiver of A. Hence, in the general case, we have to consider
these questions:

(i) How should the valued analogue of natural quiver of A be defined so as to
correspond to the valued Ext-quiver of A?

(ii) Following (i), what is the relationship between the valued Ext-quiver and the
valued analogue of natural quiver of A?

The first aim of this paper is to answer these questions. For this, we general-
ize the concept of modulation to pseudomodulation and its subclasses including
premodulation, generalized modulation and regular modulation, in Section 3.

For an artinian algebra A, the alteration of natural quiver corresponding to valued
Ext-quiver, called natural valued quiver, is introduced via the valued quiver of the
corresponding premodulation of A. In the case A is basic, we show in Theorem 7.4
that the natural valued quiver is pair-opposite equal to the valued Ext-quiver. More-
over, in Theorem 7.5 we obtain for any artinian algebra A the relation between its
natural valued quiver and valued Ext-quiver; this is an improvement of the relation
in [Li and Lin 2012] between the natural quiver and Ext-quiver in the case A is
over an algebraically closed field.

The representation categories of a pseudomodulation and of a premodulation
are equivalent respectively to that of a tensor algebra of A-path type and that of a
generalized path algebra (Theorem 3.2 and Corollary 5.4). We give their examples
from two kinds of artinian hereditary algebras (Corollary 3.3 and Proposition 7.1).
In Theorem 5.5, we give the isomorphism theorem for normal generalized path
algebras with finite (acyclic) quivers and normal premodulations.

The notion of modulation was introduced in [Dlab 1980; Dlab and Ringel 1976]
to characterize representations of a valued quiver over a field k, which is not nec-
essarily algebraically closed, using the method of Coxter functors in Bernstein–
Gelfand–Ponomarev theory. This aspect will be discussed for pseudomodulations
in follow up work.

Pseudomodulations, as well as generalized path algebras in [Li and Chen 2010;
Li and Lin 2012], can be used as a tool to investigate some properties of structures
and representations of an algebra when these properties are not Morita invariants,
because the (valued) natural quiver is not Morita invariant.
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Theorem 4.4 characterizes a kind of (semi)normal generalized modulation. In
Section 6, we present an interesting example of it from group species in mutation
theory [Demonet 2010].

In the theory of mutations [Ladkani 2010; Demonet 2010], it is known that
for a finite-dimensional basic hereditary algebra A ∼= k0 for a quiver 0, under
the condition the mutation can be defined, the mutation of A is isomorphic to the
path algebra of the quiver that is the mutation of 0. Since mutations are perverse
equivalent but not Morita equivalent [Ladkani 2010], it is interesting to construct
the mutation theory of finite-dimensional (nonbasic in general) algebras via semi-
normal generalized modulations, using Proposition 6.1.

In Section 6, we first suggest a method for transferring the study on path algebras
whose quiver has loops into that on generalized path algebras and premodulations
with valued quiver without loops. Second, we still have a notion of differential
pseudomodulation and give its relation with differential tensor algebras. Finally,
a k-pseudomodulation M and also the related tensor algebra of A-path-type T (M)
are equivalently considered as a free graded category T.

2. Some preliminaries

2.1. A quiver Q can be understood as two sets Q0 and Q1 together with a map
Q1→ Q0× Q0, a 7→ (t (a), h(a)), where h(a) is head of the arrow a and t (a) is
the tail of a. For each pair (i, j) ∈ Q0× Q0, we define

�(i, j)= {a ∈ Q1 | t (a)= j, h(a)= i}.

Note that Q1 is the disjoint union of all �(i, j) for i, j ∈ Q0.
Forgetting the orientation of all arrows in the quiver Q, we get the underlying

graph of Q, which is denoted by Q.

2.2. A pseudovalued graph (G,D) consists of

(i) a finite set G= {i, j, . . . } whose elements are called vertices; and

(ii) a correspondence taking any ordered pair (i, j) ∈ G × G to a nonnegative
integer di j such that if di j 6= 0 then d j i 6= 0 for any (i, j) ∈ G×G. If di j 6= 0,
such a pair (i, j) is called an edge between the vertices i and j , which is
written as

(di j , d j i )

i • • j

If di j = d j i = 1, write simply i • • j

Of course, di j = d j i when i = j .
The family D= {(di j , d j i ) : (i, j) ∈ G×G} is called a valuation of the graph G.
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Due to [Dlab and Ringel 1976; Dlab 1980], if a pseudovalued graph (G,D) is
such that there exist positive integers εi (with i ∈ G) such that di jε j = d j iεi for all
i, j ∈ G, then (G,D) is called a valued graph.

An orientation� of a valued or pseudovalued graph (G,D) is given by prescrib-
ing for each edge an ordering, indicated by an oriented edge, that is,

either
(di j , d j i )

i • •oo j or
(di j , d j i )

i • •// j

We call a valued or pseudovalued graph with orientation valued or pseudovalued
quiver, and denote one by (G,D, �).

A vertex k ∈ G in the valued quiver (G,D, �) is called a sink (or a source) if
i 6= k (respectively, j 6= k) for any oriented edge

(di j , d j i )

i • •// j .

A path of the pseudovalued quiver (G,D, �) is a sequence k1, k2, . . . , kt of ver-
tices such that there is a valued oriented edge from ks to ks+1 for s=1, 2, . . . , t−1.
Its length is the number of the valued oriented edges in this path, that is, t − 1.

2.3. From [Dlab 1980], a k-modulation M = (Fi , i M j ) of a valued graph (G,D)

is a set of division algebras {Fi }i∈G that are finite-dimensional over a common
central subfield k, together with a set {i M j }i, j∈G of Fi -F j -bimodules on which k
acts centrally, such that dim(i M j )F j = di j , dimFi (i M j )= d j i and j Mi is a dual of
the bimodule i M j in the sense that we have bimodule isomorphisms

j Mi ∼= HomFi (i M j , Fi )∼= HomF j (i M j , F j ).

The final isomorphism is from [Dlab 1980, Lemma 0.2]; there is an edge between
i and j if and only if i M j and j Mi are nonzero.

Now, let (M, �) be a pair consisting of a k-modulation M of the connected
valued graph (G,D); equivalently say, let M = (Fi , i M j ) be a k-modulation of a
valued quiver (G,D, �).

2.4. For the pair (A, AMA) formed from a k-algebra A and an A-bimodule M , we
write the n-fold A-tensor product M ⊗A M ⊗ · · ·⊗A M as Mn . Then T (A,M)=
A⊕M ⊕M2

⊕ · · · ⊕Mn
⊕ · · · as an abelian group. Let M0

= A; then T (A,M)
becomes a k-algebra with multiplication induced by the natural A-bilinear maps
M i
×M j

→ M i+ j for i ≥ 0 and j ≥ 0. We call T (A,M) the tensor algebra of M
over A.

For a k-modulation M= (Fi , i M j ) of a valued quiver (G,D, �), we get the tensor
algebra T (M) := T (F,M) for F =

⊕
i∈G Fi and M =

⊕
(i, j)∈G×G i M j , where M is

acted on by F as an F-F-bimodule through the projection maps F→ Fi for i ∈G.
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Representations are interesting because of the following:

Theorem [Dlab 1980]. Let M = (Fi , i M j ) be a k-modulation of a valued quiver
(G,D, �). Then the category rep(M) of all finite-dimensional representations is
equivalent to the category modT (M) of all finitely generated right T (M)-modules.

This result is the generalization of that for the representation category of a finite-
dimensional path algebra; see [Auslander et al. 1995, Theorem III.1.5].

Modulation and its representations will be generalized in Section 3 such that
they are only in the special case with linear spaces over division algebras.

2.5. For two rings A and B, the rank of a finitely generated left A-module (re-
spectively right B-module, A-B-bimodule) M is defined as the minimal cardinal
number of the sets generators of M as left A-module (respectively right B-module,
A-B-bimodule), which is denoted by rank AM (respectively rank MB , rank AMB).
Clearly, if M is finitely generated, such rank always exists. As a convention, the
rank of the module 0 is said to be 0.

Let X={mi }
s
i=1 be the set of generators of a finitely generated A-B-bimodule M ,

that is, M =
∑s

i=1 Ami B. If there do not exist k-linearly independent sets

{aiu ∈ A : i = 1, . . . , s; u= 1, . . . , p} and {biu ∈ B : i = 1, . . . , s; u= 1, . . . , p}

satisfying
∑

i=1,...,s;u=1,...,p aiumi biu = 0, we say the set X is A-B-linearly inde-
pendent. In this case, we call M a free A-B-bimodule with basis X .

Clearly, if M is a free A-B-bimodule with basis {mi }
s
i=1 and {b j }

t
j=1 is a k-

basis of B (respectively {a j }
t
j=1 is a k-basis of A), then M is a left free A-module

with basis {mi b j }i=1,...,s; j=1,...,t (respectively a right free B-module with basis
{a j mi }i=1,...,s; j=1,...,t ).

Each A-B-bimodule M can be realized as a right B ⊗ Aop-module. So, M is
a free A-B-bimodule M if and only if M is a free right B ⊗ Aop-module. In this
case, let M ∼=

∑
i mi (B ⊗ Aop) with basis {mi }. Let {a j } be a k-basis of A. Then

M ∼=
∑

i j mi a j ⊗ B as B-modules where mi a j := a j mi . It says that {a j mi } is a
B-basis of M =

∑
i mi (B⊗ Aop).

2.6. Coelho and Liu [2000] introduced the concept of generalized path algebra.
Here we review the different but equivalent definition given in [Li and Lin 2012].

Let Q = (Q0, Q1) be a quiver. Let A = {Ai | i ∈ Q0} be a collection of k-
algebras with identity ei ∈ Ai . Let A0 =

∏
i∈Q0

Ai be the direct product k-algebra.
Clearly, each ei is an orthogonal central idempotent of A0. Let

(1) i M j := Ai�(i, j)A j

be the free Ai -A j -bimodule with basis �(i, j). This is the free Ai ⊗k Aop
j -module

over the set �(i, j). Then, the rank of i M j as Ai -A j -bimodule is just the number
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of arrows from i to j in the quiver Q. Thus,

(2) M =
⊕

(i, j)∈Q0×Q0

Ai�(i, j)A j

is an A0-A0-bimodule. The generalized path algebra [Coelho and Liu 2000; Li
2007; Li and Lin 2012] is the tensor algebra

T (A0,M)=
∞⊕

n=0

M⊗A0 n.

Here M⊗A0 n
= M⊗A0 M⊗A0 · · ·⊗A0 M and M⊗A0 0

= A0. We denote by k(Q,A)

the generalized path algebra. We say k(Q,A) is (semi)normal if all Ai are (semi)
simple k-algebras.

3. Pseudomodulations and representations of algebras

As we have seen, modulation essentially is determined by a tensor algebra. From
this viewpoint, we will give the notion of pseudomodulation in a more general way.
Moreover, we need to restrict the definition of pseudomodulations so as to define
some special cases.

Definition. (i) A k-pseudomodulation M = (Ai , i M j ) of a pseudovalued graph
(G,D) is defined as a set of artinian k-algebras {Ai }i∈G, together with a set
{i M j }(i, j)∈G×G of finitely generated unital Ai -A j -bimodules i M j such that
rank(i M j )A j = di j and rankAi (i M j )= d j i .

(ii) A k-pseudomodulation M= (Ai , i M j ) of a pseudovalued graph (G,D) is said
to be (semi)normal if all Ai for i ∈ G are (semi)simple algebras.

(iii) For a k-pseudomodulation M = (Ai , i M j ) of a valued graph (G,D), if all
i M j are free as Ai -A j -bimodules, then this pseudomodulation is called a k-
premodulation.

(iv) If a k-pseudomodulation M = (Ai , i M j ) of a pseudovalued graph (G,D) is
such that

(3) HomAi (i M j , Ai )∼= HomA j (i M j , A j )

as A j -Ai -bimodules for any (i, j) ∈ G × G, then this pseudomodulation is
called a generalized k-modulation.

(v) For a generalized modulation M = (Ai , i M j ) of a valued graph (G,D), if all
i M j are free as Ai -A j -bimodules for i, j ∈ G, then M= (Ai , i M j ) is called a
regular k-modulation.

Trivially, a regular k-modulation is a generalized modulation and also a premod-
ulation.
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Each i M j is required to be finite generated and i M j 6= 0 (meanwhile j Mi 6= 0)
if and only if there is an edge between i and j in the (pseudo)valued graph (G,D).

Example. (i) For a k-pseudomodulation M= (Fi , i M j ) of a pseudovalued graph
(G,D), if each Fi (i ∈ G) is a division k-algebra, then M = (Fi , i M j ) is just
the modulation studied in [Dlab 1980; Dlab and Ringel 1976].

In fact, let ti j = rankFi i M j F j , dimk Fi = εi , and dimk F j = ε j . Then
di j = dim(i M j )F j = ti jεi and d j i = dimFi (i M j ) = ti jε j . Thus di jε j = d j iεi ,
which means (G,D) is a valued graph. The condition HomFi (i M j , Fi ) ∼=

HomF j (i M j , F j ) as F j -Fi -bimodules for any (i, j) ∈ G × G is ensured by
[Dlab 1980, Lemma 0.2].

Hence, the classical modulation in [Dlab 1980; Dlab and Ringel 1976] is a
special class of regular modulations.

(ii) In particular, in (i), if Fi for i ∈ G are finite extension fields of k, then M =

(Fi , i M j ) is called a k-species of the valued graph (G,D).

(iii) Moreover, in (i), if the valued graph (G,D) is given an orientation� and Fi=k
for i ∈ G, the bimodule i M j is only a k-linear space such that ti j := di j = d j i

for any pair (i, j) ∈ G×G. Then the valued quiver (G,D, �) degenerates to
a (nonvalued) quiver G = (G0,G1) whose arrow number from i to j is just
ti j if the pair (i, j) is oriented from i to j . Thus, in this case, T (M) is just the
path algebra kG.

In order to introduce representations of a pseudomodulation, the pseudovalued
graph has to be given an orientation as below.

For a k-pseudomodulation M= (Ai , i M j ) over a pseudovalued quiver (G,D, �),
we define a representation of M to be an object V= (Vi , jϕi ), where to each vertex
i ∈ G corresponds an Ai -module Vi and to each oriented edge i → j corresponds
an A j -homomorphism jϕi : Vi ⊗Ai i M j → V j . If each Vi is finitely generated as
Ai -module, this representation V= (Vi , jϕi ) is said to be finitely generated.

If in the definition above we take the case that Ai = A j =k and let dimk i M j = ti j ,
then di j = d j i = ti j and we get a representation V = (Vi , jϕi ) of the nonvalued
quiver G (that is, a representation of kG) with jϕi : Vi → V j .

A morphism α from a representation V = (Vi , jϕi ) to another representation
U = (Ui , jψi ) consists of Ai -module homomorphisms αi : Vi → Ui for all i ∈ G

preserving the structure of the objects, that is, those such that all diagrams

Vi ⊗Ai i M j
jϕi //

αi⊗Ai idi M j
��

V j

α j

��
Ui ⊗Ai i M j

jψi // U j

commute for each oriented edge i→ j .
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Let Rep(M) (respectively rep(M)) be the category consisting of all (respectively
finitely generated) representations of M.

For a k-pseudomodulation M = (Ai , i M j ) of a pseudovalued quiver (G,D, �),
we obtain the tensor algebra T (M) := T (A,M) for A =

⊕
i∈G Ai and M =⊕

(i, j)∈G×G i M j , where M is acted on by A as an A-A-bimodule through the pro-
jection maps A→ Ai for i ∈ G.

Conversely, consider a tensor algebra T (A,M) with A =
⊕

i∈I Ai and M =⊕
(i, j)∈I×I i M j and subalgebras Ai and Ai -A j -bimodules i M j for i, j ∈ I . Let

di j = rank(i M j )A j and d j i = rankAi (i M j ). Let D = {di j , d j i : (i, j) ∈ I × I }
and G = I . For any i M j 6= 0, give an oriented edge from i to j . Then we get a
pseudovalued quiver (G,D, �) and a k-pseudomodulation M= (Ai , i M j ).

We call such a tensor algebra as above an A-path-type tensor algebra [Li 2007]
on the pseudovalued quiver (G,D, �).

Therefore:

Proposition 3.1. In the way described above, pseudomodulations and tensor alge-
bras of A-path type with finitely generated bimodules can be constructed one from
another.

Clearly, representations of the classical modulations and their morphisms in
[Dlab 1980; Dlab and Ringel 1976] are respectively the special cases of that of
pseudomodulations and their morphisms given here.

The next result about k-pseudomodulation generalizes Dlab’s theorem (§ 2.4):

Theorem 3.2. Let M = (Ai , i M j ) be a k-pseudomodulation of a pseudovalued
quiver (G,D, �). Then the category Rep(M) of all representations of M is equiv-
alent to the category ModT (M) of right T (M)-modules. Similarly the category
rep(M) of finitely generated representations of M is equivalent to the category
modT (M) of finitely generated T (M)-modules.

Proof. Let V= (Vi , jϕi ) be a representation of M. Define the corresponding right
T (M)-module V as follows.

Let V =
⊕

i∈G Vi . Firstly, the right A-action on V is given via the projections
A→ Ai for i ∈ G, and then the right M-action on V is defined by the jϕi , that
is, for the oriented edge i → j , we put vi mi j = jϕi (vi ⊗ mi j ) for vi ∈ Vi and
mi j ∈ i M j , and then extend by distributivity; finally, the T (M)-action on V is
determined inductively in a unique way by the M-action, that is,

vi (mi j ⊗ · · ·⊗m pq ⊗mqs)= sϕq((vi (mi j ⊗ · · ·⊗m pq))⊗mqs).

Thus, V becomes a T (M)-module.
If α is a morphism of representations from V to U, then we can define the T (M)-

module morphism α from V to U with α(
⊕

i∈G vi ) =
⊕

i∈G αi (vi ). Thus, we get
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the functor F : Rep(M)→ modT (M) with F(V) = V and F(α) = α. In fact, for
α :V→U and β :U→W, we have β ·α={βiαi : i ∈G}; then F(β ·α)= F(β)·F(α).

Conversely, we can define the inverse functor G. For V ∈ModT (M), let Vi=V Ai .
Then V = V A =

⊕
i∈G V Ai =

⊕
i∈G Vi . When there is an oriented edge i → j ,

we have i M j 6= 0. In general, Vi · i M j = V Ai · i M j = V · i M j A j ⊂ V A j = V j .
Then, we can induce the A j -module morphisms jϕi : Vi ⊗Ai i M j → V j under this
M-action. Thus, by the definition, V = (Vi , jϕi ) is a representation of M, that is,
V ∈ Rep(M).

For V,U ∈ ModT (M) and α : V → U a T (M)-homomorphism, let αi = α|Vi .
Then αi (Vi ) = αi (V Ai ) = α(V )Ai ⊂ U Ai = Ui . From the T (M)-linearity of α,
the commutative diagram

Vi ⊗Ai i M jαi ⊗Ai 1i M j

jϕi //

��

V j

α j

��
Ui ⊗Ai i M j

jψi // U j

follows for each oriented edge i → j , where jψi is defined as similarly as jϕi .
So, α = {αi : i ∈ G} is a morphism from V to U in Rep(M). Define the functor
G satisfying G(V ) = V and G(α) = α. For α : V → U and β : U → W , it
follows that α =

⊕
i∈G αi and β =

⊕
i∈G βi . Then, β · α =

⊕
i∈G βiαi . Hence,

G(β ·α)= {βiαi : i ∈ G} = β ·α = G(β) ·G(α).
Obviously, F and G are mutual-inverse equivalence functors between Rep(M)

and ModT (M). �

Drozd and Kirichenko [1994] proved for a finite-dimensional algebra A with
radical r that if the quotient algebra A/r is separable, then A is isomorphic to a
quotient algebra of T (A/r, r/r2) by an admissible ideal I , that is, J s

⊂ I ⊂ J 2 for
a positive integer s.

Moreover, if this algebra A is hereditary, then I =0 such that A∼= T (A/r, r/r2).
Let A/r =

⊕s
i=1 Ai , where Ai are simple ideals of A/r . Then, r/r2 is an A/r -

A/r -bimodule with natural left and right module actions. Let an Ai -A j -bimodule
i M j equal Air/r2 A j for any i, j = 1, . . . s. By Proposition 3.1, the corresponding
pseudomodulation M= (Ai , i M j ) of a pseudovalued quiver (G,D, �) can be con-
structed from this tensor algebra T (A/r, r/r2), which is called the related pseudo-
modulation of the finite-dimensional hereditary A. Therefore, by Theorem 3.2:

Corollary 3.3. Let A be a finite-dimensional hereditary algebra with radical r
and let M = (Ai , i M j ) be its related pseudomodulation of a pseudovalued quiver
(G,D, �). If A/r is separable, then the representation category Rep(M) is equiv-
alent to the module category ModA, and likewise for the finitely generated rep(M)
and modA.
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4. A kind of generalized k-modulations

By the Wedderburn–Artin theorem, the center of a semisimple algebra A over an
algebraically closed field k is just the field k. Define µ : A → Endk(A) with
µ(a)= ρa , where ρa is the right translation on A by the right multiplication of a.
Obviously, ρa ∈Endk(A). It is easy to check thatµ is a monomorphism of algebras.

Define t : A→k with t (a)= tr(µ(a)). Then, t is the character of the right regular
representation of A satisfying that t (ab)= t (ba) for any a, b ∈ A. In fact, trivially,
t is k-linear and t (ab)= tr(µ(ab))= tr(µ(a)µ(b))= tr(µ(b)µ(a))= t (ba).

Lemma 4.1. Let A be a finite-dimensional simple k-algebra with k algebraically
closed and having characteristic satisfying char k -

√
dimk A. For any a 6= 0 in A,

we have t (a A) 6= 0.

Proof. By the Wedderburn–Artin theorem, A∼=Mn(k), the n×n full matrix algebra
over k for n =

√
dimk A. For simplicity, we think of a as a nonzero n× n matrix

and as right ideal of A; then a A 6= 0 consists of all n × n matrices over k whose
rows are all 0 except for some i1, i2, . . . , is-rows. Choose a matrix X = Ei1i1 in
a A with the element 1 in position (i1, i1) and 0 in all other positions. Then under
the k-basis {Ei j }

n
i, j=1 of A, we have t (X) = trµ(X) = n · 1 6= 0 since char k - n.

Therefore, we have t (a A) 6= 0. �

Lemma 4.2. Let A and B be finite-dimensional simple k-algebras with k alge-
braically closed such that char k -

√
dimk A dimk B. Then, for an A-B-bimodule M ,

we have HomA(M, A)∼= HomB(M, B) as B-A-bimodules.

Proof. First, we prove HomA(M, A AA)∼=Homk(M, k) as B-A-bimodules, where
Homk(M, k) consists of all k-homomorphism with the bimodule structure defined
by (bψa)(m)= ψ(amb) for a ∈ A, b ∈ B, m ∈ M and ψ ∈ Homk(M, k).

Indeed, for b1, b2 ∈ B and m ∈ M ,

((b1b2)ψ)(m)= ψ(mb1b2)= ψ((mb1)b2)= (b2ψ)(mb1)= (b1(b2ψ))(m);

then (b1b2)ψ = b1(b2ψ), and similarly ψ(a1a2)= (ψa1)a2 for a1, a2 ∈ A.
Now, define the map τ : A → Homk(A, k) by τ(a) = at for a ∈ A, where

at ∈ Homk(A, k) by (at)(x)= t (ax) for x ∈ A. Obviously, τ is k-linear.
Moreover, τ is injective. In fact, for a ∈ ker τ , it means that (at)(x)= 0 for any

x ∈ A; then t (ax) = 0, or say, a A ⊂ ker t for the right ideal a A of A, which is
equivalent to t (a A)= trµ(a A)= 0. Thus, a= 0 by Lemma 4.1. Hence, ker τ = 0.

Since dimk A = dimk Homk(A, k) are finite, τ is a k-linear isomorphism.
Similarly, define ta ∈Homk(A, k) by (ta)(x)= t (xa) for x ∈ A. Since t (ax)=

t (xa) for any a, x ∈ A, we get τ(a)= at = ta. It follows that A AA ∼=Homk(A, k)
via τ as A-A-bimodules. Thus, HomA(M, A AA) ∼= HomA(M,Homk(A, k)) ∼=
Homk(A⊗A M, k)∼= Homk(M, k) as B-A-bimodules, as required.
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Similarly, HomB(M, B BB)∼=Homk(M, k) holds as B-A-bimodules. Therefore,
we have HomA(M, AAA)∼= HomB(M, B BB). �

This lemma improves [Dlab 1980, Lemma 0.2].
Trivially, the condition in Lemma 4.2 is always satisfied if the field k is alge-

braically closed of characteristic 0.

Lemma 4.3. Let A and B be finite-dimensional semisimple algebras over an alge-
braically closed, characteristic 0 field k. Then, for an A-B-bimodule M , we have
HomA(M, A)∼= HomB(M, B) as B-A-bimodules.

Proof. Let A =
⊕s

i=1 Ai and B =
⊕t

j=1 B j with simple ideals Ai and B j . Then

HomA(M, A)∼=
s⊕

i=1

HomA(Ai M, Ai )∼=

s⊕
i=1

HomAi (Ai M, Ai )

∼=

s⊕
i=1

t⊕
j=1

HomAi (Ai M B j , Ai )∼=

s⊕
i=1

t⊕
j=1

HomB j (Ai M B j , B j )

∼=

t⊕
j=1

HomB j (AM B j , B j )∼= HomB(M, B). �

Applying Lemma 4.3 to Ai and i M j below and taking the definitions on page 110
into account, we obtain:

Theorem 4.4. Let M= (Ai , i M j ) be a pseudomodulation of a pseudovalued graph
(G,D) over an algebraically closed field k of characteristic 0. If all Ai for i ∈ G

are (semi)simple algebras, then M is a (semi)normal generalized modulation.

From this theorem and its proof, we see that condition (3), which is required
by the definition of the classical modulation in Section 2, is not always true for
pseudomodulations.

A pseudovalued quiver of a pseudomodulation is an analogue of natural quiver
of its corresponding tensor algebra of A-path type, similar to that of a generalized
path algebra; see Section 5 and Section 7.

5. Premodulations and generalized path algebras

In this section, we give some premodulations and their applications to generalized
path algebras and artinian algebras.

As an generalization of path algebras, normal generalized path algebras were
used in [Li 2007; Li and Chen 2010; Li and Lin 2012; Li and Wen 2008] to
characterize the structure and representations of artinian algebras via the method
of natural quivers. This, unlike the classical method, does not depend on the cor-
responding basic algebras.
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In [Dlab 1980; Dlab and Ringel 1976], k-representation types of valued quivers
were classified through the corresponding relations between valued quivers and k-
modulations. We will see that the corresponding relationship still holds between
(semi)normal generalized path algebras and (semi)normal regular k-modulations.

Lemma 5.1. Let k(Q,A) be a generalized path algebra, let M and i M j defined as
in (1) and (2), let εi = dimk Ai , and let di j = rank(i M j )A j and d j i = rankAi (i M j )

for all i, j ∈ Q0. Then, di jε j = d j iεi for any i, j ∈ Q0.

Proof. Let {ml}l∈3 be an Ai -A j -basis of i M j as a free Ai -A j -bimodule. Let {as}s∈8

and {bt }t∈9 be respectively k-bases of Ai and A j . Then, i M j is right A j -free and
left Ai -free with A j -basis {asml}s∈8,l∈3 and Ai -basis {mlbt }l∈3,t∈9 , respectively.
Thus, |8| = εi , |9| = ε j , and |8||3| = di j and |3||9| = d j i . So, |3| = di j/εi =

d j i/ε j . It follows that di jε j = d j iεi . �

By this lemma, we can get the valued quiver (Q0,D, �), the induced valued
quiver from k(Q,A); it has valuation D= {(di j , d j i ) : (i, j) ∈ Q0×Q0} and there
is just a unique oriented edge from i to j when i M j 6= 0.

By the definition on page 110 and Theorem 4.4:

Proposition 5.2. Let k(Q,A) be a generalized path algebra over a field k and let
M and i M j be defined as in (1) and (2).

(i) A k-premodulation M= (Ai , i M j ) is obtained from the induced valued quiver
(Q0,D, �) with di j = rank(i M j )A j and d j i = rankAi (i M j ) for the valuation
D= {(di j , d j i ) : (i, j) ∈ Q0× Q0};

(ii) If k is an algebraically closed field of characteristic 0 and k(Q,A) is semi-
normal, then if i M j 6= 0 (that is, if there exists an arrow from i to j), then
Hom(i M j , Ai )Ai

∼= Hom(i M j , A j )A j by Theorem 4.4, which means that in
this case, M= (Ai , i M j ) is a regular modulation.

By definition, such a k-premodulation M= (Ai , i M j ) built from the A-path alge-
bra k(Q,A) is unique. We call it the corresponding k-premodulation of k(Q,A),
and denote it by Mk(Q,A); its valued quiver is just the induced valued quiver from
k(Q,A).

Conversely, given a k-premodulation M= (Ai , i M j ) of a valued quiver (G,D, �)

with semisimple algebras Ai (i ∈G), we illustrate how to build its generalized path
algebra. In fact, we only need to set up the quiver Q for a generalized path algebra.
Let the vertex set Q0=G. For any oriented pair (i, j)∈G×G, let ti j be the number
of generators in the Ai -A j -basis of i M j as a free Ai -A j -bimodule and set ti j arrows
from i to j . Then the arrow set Q1 is given when the oriented pair (i, j) runs
over the whole set G× G. Thus the quiver Q is constructed and then the normal
path algebra k(Q,A)= T (A0,M) is obtained, where M =

⊕
i, j Ai�(i, j)A j and

A0 =
∏

i∈Q0
Ai .
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Since i M j and Ai�(i, j)A j have the same numbers of generators in their bases
as free Ai -A j -bimodules, we get i M j ∼= Ai�(i, j)A j for any (i, j) ∈ G × G

following the invariant basis property of all Ai as semisimple algebras. Hence,
the premodulation constructed from k(Q,A) in the way of Proposition 5.2 is just
M= (Ai , i M j ).

Thus, we have the following:

Theorem 5.3. Premodulations and generalized path algebras can be constructed
one from another in the way described above. When the field k is algebraically
closed of characteristic 0, (semi)normal premodulations are (semi)normal regular
modulations.

By this and Theorem 3.2, we have:

Corollary 5.4. For a generalized path algebra k(Q,A) and the corresponding k-
premodulation M = (Ai , i M j ), the categories Rep(M) and rep(M) are equivalent
to the categories Modk(Q,A) and modk(Q,A), respectively.

More concretely, using the functors in the proof of Theorem 3.2, we can give
the mutual constructions between representations of a generalized path algebra
k(Q,A) and that of its corresponding k-premodulation M= (Ai , i M j ).

We say two k-pseudomodulations M = (Ai , i M j ) of the pseudovalued quiver
(Q0,D, �) and N = (Bi , i N j ) of (P0,C, 9) are isomorphic if there exists a per-
mutation θ such that (Q0,D, �) ∼= (P0,C, 9) via θ as pseudovalued quivers,
Ai ∼= Bθ(i) as k-algebras, and i M j ∼= θ(i)Nθ( j) as bimodules for any (i, j)∈Q0×Q0.
Here, “(Q0,D, �) ∼= (P0,C, 9) via θ as pseudovalued quivers” means that they
are isomorphic via a permutation θ as directed graphs and di j = cθ(i)θ( j) and
d j i = cθ( j)θ(i) for any (i, j) ∈ Q0× Q0.

Although a pseudomodulation and tensor algebra of A-path type can be con-
structed one after another as stated in Proposition 3.1, the isomorphism condition
cannot be shifted between them. In fact, if two pseudomodulations are isomorphic,
then their related tensor algebras are isomorphic too, but the converse is not true.

For example, let1 be a quiver consisting of a unique vertex without loops and1′

be a quiver consisting of two vertices without loops and arrows. Clearly 1 6∼=1′.
For any two artinian algebras S1 and S2, we have k(1, {S1 ⊕ S2}) ∼= S1 ⊕ S2 ∼=

k(1′, {S1, S2}). However, trivially, their related premodulations Mk(1,{S1⊕S2}) and
Mk(1′,{S1,S2}) are not isomorphic.

This example means that the isomorphism theorem does not hold for generalized
path algebras in general. Now, we give some special cases of generalized path
algebras in which it does hold.

(i) The path algebras k Q and k P are isomorphic if and only if Q ∼= P as quivers
[Liu et al. 1986].
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(ii) If the finite quivers 1 and 1′ are acyclic, the normal generalized path algebras
k(1,A) and k(1′,A′) are isomorphic if and only if there is an isomorphism 1∼=

1′ via θ as quivers such that Ai ∼= A′θ(i) as algebras for i ∈ Q0 [Chen 2008].

(iii) When 1 and 1′ have oriented cycles, the isomorphism theorem for k(1,A)

and k(1′,A′) as in (ii) can also be proved using the method proving (i) in [Liu
et al. 1986] or the dual method for generalized path coalgebras given in [Li and
Liu 2008].

In summary:

Theorem 5.5 (isomorphism theorem). Two normal generalized path algebras with
finite (acyclic) quivers are isomorphic if and only if their corresponding normal k-
premodulations are isomorphic.

Another example of k-premodulation for which the isomorphism theorem holds
is the classical k-modulation; see part (i) of the example on page 111. For k-
modulations M = (Fi , i M j ) of a valued quiver (G,D, �) and M′ = (F ′s, sM ′t ) of
(G′,D′, �′) with division k-algebras Fi and F ′s , denote by T (M) and T (M′) the
corresponding tensor algebras as given in the proof of Proposition 3.1. Then as
shown in [Liu 1991], M∼=M′ if and only if T(M)∼= T(M ′).

6. Some examples from related topics

Group species. A group species [Demonet 2010] is a triple

G = (I, (0i )i∈I , (Mi j )(i, j)∈I 2)

where I is a finite set and 0i is a finite group for each i ∈ I and Mi j is a finite-
dimensional (k0i , k0 j )-bimodule for each (i, j) ∈ I 2.

A group species can be seen as a k-pseudomodulation of a pseudovalued quiver
as follows. Consider Q0 = I as the vertex set. For an ordered pair (i, j) ∈ I × I , if
Mi j 6=0, set an arrow ρi j from i to j with valuation (di j , d j i ) for di j = rank(k0i Mi j )

and d j i = rank(Mi j k0 j
). Let the arrow set Q1 consist of all such arrows. Let

D = {(di j , d j i ) for all ρi j ∈ Q1}. Thus, (Q,D) is a pseudovalued quiver with Q =

(Q0, Q1), and the group species G can be thought as of ((k0i )i∈Q0, (Mi j )(i, j)∈Q1),
a pseudomodulation of (Q,D).

In [Demonet 2010], a group species G = (I, (0i )i∈I , (Mi j )(i, j)∈I 2) is assumed
to be over a field k with char k not dividing |0i | for i ∈ I . In this case, all k0i are
semisimple algebras. By Theorem 4.4, we have this:

Proposition 6.1. Suppose k is an algebraically closed field of characteristic 0.
Then the pseudomodulation ((k0i )i∈Q0, (Mi j )(i, j)∈Q1) from a group species G =
(I, (0i )i∈I , (Mi j )(i, j)∈I 2) is a seminormal generalized modulation, where Q0 = I ,
Q1 = {(i, j) ∈ I 2

: Mi j 6= 0}.
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As mentioned in [Demonet 2010], the category of representations of a group
species is equivalent to the category of finite generated representations over its
“path algebra” (that is, its tensor algebra). According to Proposition 6.1, this state-
ment is a special case of Theorem 3.2.

The notion of group species is introduced in [Demonet 2010] with potentials
and decorated representations. In some good cases, said to be nondegenerate, their
mutations are defined in so that these mutations mimic the mutations of seeds de-
fined by Fomin and Zelevinsky [2002] for a skew-symmetrizable exchange matrix
defined from group species. When an exchange matrix can be associated to a non-
degenerate group species with potential, an interpretation of the F-polynomials and
the g-vectors in [Fomin and Zelevinsky 2007] is given in the term of the mutation
of group species with potentials and their decorated representations.

Due to Proposition 6.1, we will be motivated to generalize the conclusions in
[Demonet 2010] as said above to seminormal generalized modulation. In the theory
of mutations, one considers a finite-dimensional basic hereditary algebra A = k0.
Under the conditions in which the mutation can be defined, the mutation of A is
just isomorphic to the path algebra of the quiver that is the mutation of 0. However,
since mutations are perverse equivalent but not Morita equivalent [Ladkani 2010],
it is interesting to construct the mutation theory of finite-dimensional (possibly,
nonbasic) algebras via seminormal generalized modulations.

Path algebras with loops. As is well known, many lines of inquiry simplify if
the underlying quivers are assumed to be without loops. See for example work
on Kac’s conjectures [Kac 1980; 1983; Sevenhant and Van Den Bergh 2001] and
the mutation theory of basic algebras [Ladkani 2010]. One possible approach for
studying quivers with loops is the viewpoint of pseudomodulations.

For a quiver 0= (00, 01), divide the vertex set 00 into two parts: 00 = 0
0
0 ∪0

1
0

where 00
0 consists of all vertices without loops and 01

0 consists of all vertices with
loops. For a vertex i ∈01

0 , let8i be the subquiver consisting of all loops at i . Then
the whole set of loops in 0 is just 8=

⋃
i∈01

0
(8i )1. Define a new quiver 0̆ related

to 0 with the vertex set 0̆0 = 00 and the arrow set 0̆1 = 01\8. Clearly, this quiver
0̆ is one without loops.

The important fact is that k0 can be considered as a k-premodulation over the
quiver 0̆ without loops.

In fact, define a collection A= {Ai | i ∈ 00 = 0̆0} of k-algebras with Ai = k for
i ∈ 00

0 and Ai = k8i for i ∈ 01
0 ; let �̆(i, j)= {a ∈ 0̆1 : t (a)= j, h(a)= i}. Then,

for any i, j ∈ 0̆0 with i 6= j , i M j := Ai�̆(i, j)A j is the free Ai -A j -bimodule with
basis �̆(i, j); for any i ∈ 0̆0, i Mi := 0 and �̆(i, i)=∅. Thus, the path algebra k0
is just the generalized path algebra k(0̆,A) over the quiver 0̆ without loops.

According to Proposition 5.2, k0 = k(0̆,A) is to be considered as the premod-



120 FANG LI

ulation M = (Ai , i M j ) over the valued quiver (00,D, �) for the valuation D =

{(di j , d j i ) : (i, j)∈ 0̆0×0̆0}, with di j = |�̆(i, j)||(8i )1| and d j i = |�̆(i, j)||(8 j )1|,
and the orientation � is given from j to i for any i 6= j if |�̆(i, j)| 6= 0. Note that
the valued quiver (00,D, �) has no loops.

This discussion means one can transfer the study on path algebras with loops
into that of generalized path algebras and premodulations of valued quivers without
loops. This viewpoint gives us a new approach to those subjects whose underlying
quiver has loops.

Differential tensor algebras. In [Bautista et al. 2009], the theory of differential
tensor algebras is introduced as a natural generalization of the theory of algebras
and their module categories. It is a useful tool in establishing some deep results in
the representation theory of algebras, and has some features in common with the
original theory in terms of differential graded categories as well as with formulation
given in terms of bocses.

A tensor algebra T = T (A,M) is given the standard grading by Tl = M⊗l for
all l ≥ 0 with T0 = A.

For a graded k-algebra T , a linear transformation δ on T is said to be a dif-
ferential if it satisfies δ([T ]i ) ⊆ [T ]i+1 for all i and the Leibniz rule δ(ab) =
δ(a)b+ (−1)deg(a)aδ(b) for all homogeneous elements a, b ∈ T .

A differential tensor algebra or ditalgebra [Bautista et al. 2009] A is by defi-
nition a pair A = (T, δ), where T is a tensor algebra and δ is a differential on T
satisfying δ2

= 0.

Definition. (1) Given a k-pseudomodulation M = (Ai , i M j )i∈G of a pseudoval-
ued quiver (G,D) and its related tensor algebra of A-path type T (A,M) as in
Proposition 3.1, a linear transformation δ : T (A,M)→ T (A,M) is called a dif-
ferential on M if

(i) δ(Ai ) is contained in i Mi ;

(ii) δ(i Mi1 ⊗Ai1
· · · ⊗Ais−1 is−1 M j ) is contained in∑

l∈G
i Ml ⊗Al lMi1 ⊗Ai1

· · · ⊗Ais−1 is−1 M j

+
∑
l∈G

i Mi1 ⊗Ai1 i1 Ml ⊗Al lMi2 ⊗Ai2
· · · ⊗Ais−1 is−1 M j

+ · · ·+
∑
l∈G

i Mi1 ⊗Ai1
· · · ⊗Ais−1 is−1 Ml ⊗Al lM j ;

and the Leibniz rule δ(ab) = δ(a)b+ (−1)deg(a)aδ(b) is satisfied for all a in
i Mi1 ⊗ · · ·⊗ is−1 M j and all b in uMu1 ⊗ · · ·⊗ ut−1 Mv.

(2) A differential pseudomodulation M is by definition a pair (M, δ) with a dif-
ferential δ on M satisfying δ2

= 0.
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It is easy to check that the Leibniz rule is satisfied by all homogeneous elements
in the standard grading of T (A,M). Therefore, by Proposition 3.1, the related ten-
sor algebra T (A,M) of a differential pseudomodulation M is a differential tensor
algebra with differential δ.

Differential graded category. A category T is called a graded category (GC)
[Keller 2006; Rojter 1980] if for any objects a, b in T, the set HomT(a, b) of
morphisms is a set-theoretical union of the sets Ti (a, b) for 0 ≤ i < +∞, and
βα ∈ Ti+ j (a, c) for any α ∈ Ti (a, b) and β ∈ T j (b, c), where α is said to be of
degree i . If each set Ti (a, b) is a vector space over k and the multiplication by a
fixed morphism is a homomorphism of these spaces, then T is said to be a GC over
the field k.

For a positive integer n, a graded category T over a field k is said to be a dif-
ferential n-graded category (briefly, n-DGC) if there is a k-linear map D : T → T
for T =

⊕
a,b∈T HomT(a, b) such that D2

= 0 and D(Ti (a, b)) ⊆ Ti+n(a, b) for
each a, b ∈ T with i ≥ 0, and the Leibnitz formula

D(βα)= D(β)α+ (−1)n degββD(α)

holds for all homogeneous elements α, β ∈ T . This D is called an n-differential
of T.

From [Mac Lane 1963], we know that for any bimodule M over a category K,
one can construct a tensor category T (M) of M, that is, a graded category T (M)
such that T0=M, T1=M and Tn =M⊗K M⊗K · · ·⊗K M with n factors for n> 1.
A graded category that is a tensor algebra of a bimodule is called a semifree GC in
[Rojter 1980; Roiter and Kleiner 1975; Kleiner and Roiter 1977].

For an k-pseudomodulation M= (Aa, aMb) of a pseudovalued quiver (G,D, �)

and its related tensor algebra T (M) := T (A,M) of A-path type for A=
⊕

a∈G Aa

and M =
⊕

(a,b)∈G×Ga Mb, we can define the GC T whose objects are the vertices
in G and whose morphism set satisfies HomT(a, b) =

⋃
i≥0 Ti (a, b) for a, b ∈ G,

with

Ti (a, b)=
∑

(aα1a1α2a2···ai−1αi b)
aMa1 ⊗Aa1 a1 Ma2 ⊗Aa2

· · · ⊗Aai−1 ai−1 Mb

where the sum runs over all paths (aα1a1α2a2 · · · ai−1αi b) from a to b in the
pseudovalued quiver (G,D, �). Trivially, Ti (a, b)T j (b, c)⊆ Ti+ j (a, c).

In this case, we call it a free graded category generated by the pseudovalued
quiver (G,D, �) due to [Rojter 1980].

Hence, a k-pseudomodulation M and also the related tensor algebra of A-path-
type T (M) can equivalently be considered as this free graded category T.

However, a differential of degree n on T (M) need not be a differential of some
degree on its graded category T. For example, we give in [Li and Tan 2012] for a
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path algebra k0 the method to construct all differentials D on k0, not on its related
graded category Tk0 in general. This method requires that one finds a differential
D of degree n on k0 such that the graded category Tk0 of k0 becomes a DGC.

One is then motivated to construct differentials on a k-pseudomodulation M and
to choose them such that its corresponding graded category becomes a DGC. In
general, it is interesting to characterize differentials of some degree on an arbitrary
graded category and discuss the Lie algebra composed of all such differentials.

7. Natural valued quiver and valued Ext-quiver of an algebra

The natural quiver1A associated to an artinian algebra A is important for research
in [Li 2007; Li and Chen 2010; Li and Lin 2012] and elsewhere.

Denote by r the radical of A. Write A/r =
⊕s

i=1 Ai where Ai are two-sided
simple ideals of A/r for all i . Then, r/r2 is an A/r -bimodule by ā · (x + r2) · b̄=
axb+r2 for any ā = a+r , b̄= b+r ∈ A/r and x ∈ r . Thus, i M j = Ai ·r/r2

· A j

is a finitely generated Ai -A j -bimodule for each pair (i, j).
Define the vertex set 10 = {1, . . . , s}. For i, j ∈ 10, let rank(Ai(i M j )A j ) be

the number ti j of arrows from i to j in 1. Then 1A = (10,11) is called the
natural quiver [Li and Chen 2010] of A. Moreover, one can construct the normal
generalized path algebra k(1A,A) with A={A1, . . . , As}, which is defined as the
associated normal generalized path algebra of A. By Proposition 5.2, we can get
from k(1A,A) the corresponding normal premodulation MA, which is called the
corresponding normal premodulation of A.

For an artinian algebra A and its related normal generalized algebra k(1A,A),
there always exists by [Li 2007] a surjective homomorphism π : k(1A,A) →

T (A/r, r/r2) of algebras, and from the result in [Drozd and Kirichenko 1994], it
follows that any such algebra A with separable quotient A/r is isomorphic to a
quotient algebra of k(1A,A) by an admissible ideal.

An artinian algebra A is said to be of Gabriel-type [Li and Lin 2012] if it is a
quotient of a normal generalized path algebra. As an improvement, in [Li and Lin
2012] we showed that for an artinian k-algebra A splitting over its radical, there is
a surjective algebra homomorphism φ : k(1A,A)→ A with J s

⊆ ker(φ)⊆ J for
some positive integer s, that is, A is of Gabriel type.

Moreover, we showed in [Li and Lin 2012] that if an artinian algebra A of
Gabriel type with admissible ideal is hereditary, then A is isomorphic to its related
generalized path algebra k(1A,A). Hence, according to Corollary 5.4, we have:

Proposition 7.1. For a hereditary artinian algebra A of Gabriel-type with admis-
sible ideal and its corresponding k-premodulation M = (Ai , i M j ), the categories
Rep(M) and Mod A are equivalent and so are rep(M) and mod A.
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From the discussion above, it is better if the ideal J of k(1A,A) is admissible.
In general, this condition is not satisfied for arbitrary nonbasic algebras. Now, we
restrict to the case of basic algebras over an arbitrary field k, and generalize the
Gabriel theorem to the case of a basic algebra that is not necessarily k-splitting:

Proposition 7.2. Suppose that B is an artinian basic algebra with radical r=r(B)
over an arbitrary field k and B/r ∼= F1⊕ · · · ⊕ Fs for central division k-algebras
Fi satisfying that dimk Fi = n2

i with (ni , n j ) = 1 for any i 6= j . Then, for the
associated generalized path algebra k(1B,F) of B with F = {F1, . . . , Fs} and
the natural quiver 1B , there exists an admissible ideal I of k(1B,F) such that
B ∼= k(1B,F)/I .

Proof. By the conclusion in [Pierce 1982, p. 191], B/r is separable since dimk Fi

is finite and the center Z(Fi ) is equal to k for any i . Due to this and [Drozd and
Kirichenko 1994, Theorem 8.5.4], there is an admissible ideal I of T (B/r, r/r2)

such that B ∼= T (B/r, r/r2)/I .
Furthermore, since each Fi is a central division algebra with dimk Fi =n2

i <+∞

and (ni , n j ) = 1 for any i 6= j , it is known from [Liu et al. 2009, p. 78] that
F j ⊗ Fop

i is a central division algebra. Hence, r/r2 is a free Fi -F j -bimodule for
any i, j . Then, according to the definition of generalized path algebra, we have
k(1B,F)∼= T (B/r, r/r2). �

Definition. The natural valued quiver of an artinian algebra A is defined to be the
induced valued quiver of k(1A,A), or equivalently the valued quiver of the normal
premodulation of A.

In the meantime, from an artinian algebra A, one can define another valued
quiver (QA,E, ϒ) [Auslander et al. 1995] as follows.

Definition. For a k-artinian algebra A, let A/r =
⊕s

i=1 Ai with Ai ∼= Mni (Di ),
where Di are division k-algebras for i = 1, . . . , s. Denote by {Ti }

s
i=1 the com-

plete set of nonisomorphic simple modules of A. Define the valued Ext-quiver
(QA,E, ϒ) of A as follows:

(i) QA = {1, . . . , s}.

(ii) For i, j ∈ QA, draw an oriented edge from i to j if Ext1A(T j , Ti ) 6= 0. This
gives the orientation ϒ .

(iii) For i, j ∈ QA, if Ext1A(T j , Ti ) 6= 0, that is, there is an oriented edge from i
to j , let ei j = dimDi Ext1A(T j , Ti ) and e j i = dimDop

j
Ext1A(T j , Ti ) and define

the valuation E= {(ei j , e j i ) for all (i, j) ∈ QA×QA}.

The valued Ext-quiver is Morita invariant, but the natural valued quiver is not.
Using the notation just defined, note that Di ∼=EndA(Ti ) for i ∈QA. An artinian

algebra A is called k-splitting or splitting over the ground field k if Di ∼= k for each
i .
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For example, A is always k-splitting if the ground field k is algebraically closed.
When A is k-splitting, the valued Ext-quiver of A degenerates to a nonvalued

quiver, which is just the Ext-quiver of A. In this case, we have the following results
from [Li and Lin 2012]:

First, the vertex set of the Ext-quiver of A equals that of the natural quiver of A.
Second, ti j = dmi j/(ni n j )e, where ti j and mi j are respectively the arrow num-

bers of the natural quiver and the Ext-quiver of A from i to j , and ni = dimk Ti for
the irreducible module Ti of A at the vertex i .

Third, if A is a basic algebra, then the Ext-quiver is just the natural quiver.
Now, their analogues will be given in the case that A is non-k-splitting in general.

Lemma 7.3. Let A be an artinian algebra with radical r such that A/r=
⊕s

i=1 Ai ,
where Ai ∼= Mni (Fi ) for division k-algebras Fi for i = 1, . . . , s. Let {ui }

s
i=1 be the

complete set of primitive orthogonal idempotents of A and {Ti }
s
i=1 be the corre-

sponding complete set of nonisomorphic A-simple modules. Then

dimk(uir/r2u j )= dimk Ext1A(T j , Ti ) for i, j ∈ {1, . . . , s}.

Proof. For i, j = 1, . . . , s, let Pj → T j be a projective cover. Then there is the
exact sequence 0→ r Pj → Pj → T j → 0. Applying the functor HomA(−, Ti ),
we obtain this exact sequence of k-linear spaces:

0→ HomA(T j , Ti )→ HomA(Pj , Ti )
h
→ HomA(r Pj , Ti )→ Ext1A(T j , Ti )→ 0.

By Schur’s lemma, HomA(T j , Ti ) = F j if i = j and vanishes otherwise. Since
T j ∼= Pj/r Pj and rTi = 0 for any i, j , it follows that h must be the zero map
for i 6= j . Hence we have

(4) HomA(r Pj , Ti )∼= Ext1A(T j , Ti ).

On the other hand,

(5) HomA(r Pj , Ti )= HomA(r Pj/r2 Pj , Ti )∼= HomA/r (r Pj/r2 Pj , Ti ).

Since A/r is semisimple, r Pj/r2 Pj is a direct sum of some Tp as A/r -modules.
Thus,

(6) HomA/r (r Pj/r2 Pj , Ti )∼= HomA/r (Ti , r Pj/r2 Pj )∼= HomA(Pi , r Pj/r2 Pj ).

Using Pj = Au j for any j and [Auslander et al. 1995, Proposition I.4.9], we have
HomA(Pi , rm Pj )∼= uirmu j for any positive integer m. Via these isomorphisms for
m = 1, 2, we can get HomA(Pi , r Pj/r2 Pj ) ∼= uir/r2u j . Using this, (4), (5) and
(6), we get uir/r2u j ∼= Ext1A(T j , Ti ) as k-linear spaces. �
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This lemma’s assumptions differ from those in [Auslander et al. 1995, Propo-
sition III.1.14] in that the ground field k is arbitrary and A is not assumed to be
basic.

Now, we give the relationship between the natural valued quiver and the Ext-
valued quiver for a basic algebra B.

Two valued quivers (G,D, �) and (Q,E, ϒ) are called pair-opposite equal if
G=Q and�=ϒ and if di j = e j i and d j i = ei j for any (di j , d j i )∈D, (ei j , e j i )∈E.

From this definition, we think that two pair-opposite equal valued quivers are
indeed equal under rewriting the order of pairs of valuation.

For the radical r of B, we have B/r ∼= F1⊕· · ·⊕ Fs for division k-algebras Fi .
The normal regular modulation M = (Fi , i M j ) is constructed from k(1B,F)

with i M j = Fi (r/r2)F j as Fi -F j -bimodules for any i, j ∈10.
The natural valued quiver of B, that is, the induced valued quiver from k(1B,F),

is (10,D, �) with a unique oriented edge from i to j when i M j 6= 0 and D =

{(di j , d j i ) : (i, j) ∈10×10} for

di j = dim(i M j )F j = ti jεi and d j i = dimFi (i M j )= ti jε j ,

with ti j = dim(Fop
j ⊗Fi )i M j the arrow number from i to j in 1B , and εi = dimk Fi ,

ε j = dimk F j satisfying di jε j = d j iεi .

Theorem 7.4. The natural valued quiver (10,D, �) and the valued Ext-quiver
(Q,E, ϒ) of an artinian basic k-algebra B are pair-opposite equal.

Proof. First, 10 = Q= {1, . . . , s}.
By Lemma 7.3, there is an oriented edge from i to j in (10,D, �) if and only

if there is an oriented edge from i to j in (Q,E, ϒ), that is, �= ϒ .
In the natural quiver1B of B the arrow number ti j is equal to dimFop

j ⊗Fi i M j for
any i, j ∈10.

Let mi j = dimk(uir/r2u j ). We have uir/r2u j = Fi (r/r2)F j = i M j . Then

(7) mi j = dimFop
j ⊗Fi

(i M j ) dimk(F
op
j ⊗ Fi )= ti jεiε j

Thus

(8) dimk Ext1B(T j , Ti )= dimEndB(Ti ) Ext1B(T j , Ti ) dimk EndB(Ti )

= ei j dimk Fi = ei jεi .

By Lemma 7.3 and (8), mi j = ei jεi . Similarly, it is given that mi j = e j iε j .
By (7) and di j = ti jεi and d j i = ti jε j , we get that d j iεi = ti jε jεi = mi j = ei jεi .

Thus, d j i = ei j . Similarly, di j = e j i .
In summary, (10,D, �) and (Q,E, ϒ) are pair-opposite equal. �

We think this consequence is evidence for the notion of natural valued quiver of
an artinian algebra A as given above.
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By definition, a natural quiver and a natural valued quiver can be constructed
from each other. In general, natural valued quivers, as well as natural quivers,
would change under Morita equivalence between algebras.

Now, we discuss the relation between the natural valued quiver ((10)A,D, �)

and the valued Ext-quiver (QA,E, ϒ) for an arbitrary artinian algebra A.

Theorem 7.5. For an artinian algebra A, the natural valued quiver ((10)A,D, �)

and the valued Ext-quiver (QA,E, ϒ) satisfy the following relations.

(i) The vertex sets are equal, that is, (10)A = QA.

(ii) The orientations are the same, that is, �= ϒ .

(iii) The valuations D = {(di j , d j i ) : (i, j) ∈ (10)A× (10)A} and E = {(ei j , e j i ) :

(i, j) ∈ QA×QA} satisfy the formulas

(9) d j i = ei j n2
j

ti j

mi j
and di j = e j i n2

i
ti j

mi j

for any vertices i, j . Here, ti j is the arrow number in the natural quiver 1A

of A from i to j , mi j is the arrow number in the natural quiver 1B of the
associated basic algebra B of A from i to j and ni = dimk Si/(dimk End Si )

for the simple module Si of A at the vertex i .

Proof. (i) This is easy due to their definitions.

(ii) By Lemma 7.3, i M j = Ai (r/r2)A j 6= 0 if and only if uir/r2u j 6= 0 if and only
if Ext1A(T j , Ti ) 6=0. Then, the claim follows from the definitions of the orientations
� and ϒ .

(iii) By the proof of Lemma 5.1, di j = ti jεi and d j i = ti jε j , where ti j is the arrow
number in 1A from i to j , and εi = dimk Ai for A/rA = A1⊕ · · ·⊕ As .

First, the valued Ext-quiver (QA,E, ϒ) of A is equal to that of its associated
basic algebra B. And, by Theorem 7.4, the latter is pair-opposite equal to the
natural valued quiver ((10)B,DB, �B) of B. Hence, (QA,E, ϒ) is pair-opposite
equal to ((10)B,DB, �B). Therefore, for E = {(ei j , e j i ) : (i, j) ∈ QA × QA} and
DB = {(d B

i j , d B
ji ) : (i, j) ∈ (10)A× (10)A}, it follows that

(10) ei j = d B
ji = mi jε

B
j and e j i = d B

i j = mi jε
B
i ,

where mi j is the arrow number in the natural quiver 1B of B from i to j and
εB

i = dimk Fi for B/rB = F1⊕ · · · ⊕ Fs with division k-algebras Fi ∼= End Si for
the simple module Si of A at the vertex i for i = 1, . . . , s.

Due to the Wedderburn–Artin theorem, Ai ∼= Mni (k) ⊗ Fi for any i , where
ni = dimk Si/(dimk End Si ) is a positive integer. Then we get

(11) d j i = ti j n2
jε

B
j and di j = ti j n2

i ε
B
i
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By (10) and (11), it follows that d j i = ei j n2
j ti j/mi j and di j = e j i n2

i ti j/mi j . �

Obviously, Theorem 7.4 is just the special case of Theorem 7.5 when A is basic.
By the formula given in [Li and Lin 2012], when A is k-splitting, we have

ti j = dmi j/(ni n j )e. Then, in this case, formula (9) gives us this corollary:

Corollary 7.6. Let A be a k-splitting artinian algebra, and adopt the notation of
Theorem 7.5. Then for any vertices i, j ,

d j i = ei j n2
j

1
mi j

⌈ mi j

ni n j

⌉
and di j = e j i n2

i
1

mi j

⌈ mi j

ni n j

⌉
.
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