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YUAN LI, ERCAI CHEN AND WEN-CHIAO CHENG

We define topological conditional pressure on a Borel subset and investi-
gate its properties. We then estimate the supremum of metric conditional
entropy with potential energy. The usual basic properties hold for this topo-
logical conditional pressure. In particular, we find a variational inequality
that is an extension of the variational principle for topological pressure.

1. Introduction

A dynamical system is a pair (X, T ) in which X is a set (called a phase space) and
T is a group or semigroup of self transformations of X . In the most classical case,
these are the iterations of a single transformation. Usually, the space X is endowed
with a structure that the acting transformations must respect.

Entropy is an important notion in dynamical systems. Kolomogorov and Sinai
developed the metric or measure-theoretic entropy of a transformation based on
Shannon’s information theory in 1959. Topological entropy was first introduced in
1965 by Adler, Konheim and McAndrew and defined by Bowen later on a metric
space. Measure-theoretic entropy measures the maximal loss of information in the
iteration of finite partitions in a measure-preserving transformation. Topological
entropy, on the other hand, measures the maximal exponential growth rate of orbits
for an arbitrary topological dynamical system. These two notions are connected
by a variational principle. This relation, which states that the topological entropy
is the supremum of the metric entropies for all invariant probability measures of a
given topological system, has gained a lot of attention. Good references for those
entropy invariants are [Katok and Hasselblatt 1995; Walters 1982], which contain
many of the early references.

Researchers have recently characterized the local structure of maps by defining
entropy pairs, entropy tuples, entropy sets, or entropy points in both topological and
measure-theoretical situations. Several studies examine the connection between
measure-theoretic entropy notions and topological entropy ones. These studies
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investigate their local behavior, and in many cases, establish new variational prin-
ciples. See [Downarowicz and Serafin 2002; Huang and Ye 2006; Huang et al.
2006; Romagnoli 2003] for related propositions and results.

Topological pressure is a natural generalization of topological entropy. Ruelle
[1973] first introduced the concept of topological pressure for additive potentials,
and applied this concept to expansive dynamical systems and formulated a vari-
ational principle for topological pressure. Walters [1975] later generalized these
results to continuous maps on compact metric spaces. For an arbitrary set, we
emphasize that it need not be invariant or compact, as it generalizes the notion
of topological pressure proposed by Pesin and Pitskel’ [1984], and the notions
of lower and upper capacity topological pressures introduced by Pesin [1988].
Propositions and applications to various types of entropy and pressure are dis-
cussed in [Ledrappier 1979; Mihailescu and Urbański 2004; Misiurewicz 1976;
Mummert 2007]. Theories of topological pressure, variational principle, and equi-
librium states play a fundamental role in statistical mechanics, ergodic theory, and
dynamical systems. See [Bowen 1975; Ruelle 1978; Walters 1982].

Assume that G is a closed T -invariant subset of T , that is, T−1G = G and
consider the partition 〈G〉 = {G, X \G}, the supremum of the conditional entropy
hµ(T | 〈G〉) as estimated in [Cheng 2008]. This paper extends the conditional
entropy to topological conditional pressure and estimates the supremum of a spe-
cial kind of conditional entropy with a potential function by calculating this new
pressure. Assume that (X, d) is a compact metric space and denote the closed T -
invariant subspaces of X by G. We first review the definition of conditional metric
entropy given the partition 〈G〉 = {G, X \G} and discuss some basic propositions.
We then present an estimate of an upper bound and lower bound for this conditional
entropy with potential energy using the topological conditional pressure restricted
on G and the closure of the complement of G. The resulting variational inequal-
ity derived is based on the methods of P. Walters [1982; 1975]. Then, using the
results of [Pesin and Pitskel’ 1984; Pesin 1988] and one more condition, the main
variational inequality also holds for any T -invariant Borel subset G.

2. Basic notation and statement of results

The general conditional entropy of an ergodic theory is usually defined as follows.
Let (X,B, µ) be a probability space. Let

α = {A1, A2, . . . , Am} and β = {B1, B2, . . . , Bn}

be finite partitions of X . Then Walters [1982] gives the equality

Hµ(α |β)=−
n∑

i=1

µ(Bi )

m∑
j=1

µ(Bi ∩ A j )

µ(Bi )
log

µ(Bi ∩ A j )

µ(Bi )
.
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Next, let T : (X,B, µ)→ (X,B, µ) be a measure-preserving map of probability
space (X,B, µ) (that is, if A ∈ B, then T−1 A ∈ B and µ(T−1 A) = µ(A)), and
define αn

=
∨n−1

i=0 T−iα. Then, investigate the conditional entropy of any finite
partition α with respect to the partition 〈G〉 = {G, X \G}, where G is a subset of
X and X \G is the complement of G.

If G is a T -invariant subset of X , that is, if T−1G = G, then the sequence
an = Hµ(αn

| 〈G〉) is subadditive. Thus, the conditional entropy of α given 〈G〉 is
the value

hµ(T | 〈G〉, α)= lim
n→∞

1
n

Hµ(αn
| 〈G〉)= inf

n

1
n

Hµ(αn
| 〈G〉)

and the conditional entropy of T with respect to µ and 〈G〉 is

hµ(T | 〈G〉)= sup
α

hµ(T | 〈G〉, α),

where α is any finite partition of X . If 〈G〉 = {X, φ}, then hµ(T | X) = hµ(T ) is
the usual measure-theoretic entropy.

The basic properties of conditional entropy hµ(T | 〈G〉), such as power rule,
product rule and affinity, are stated as follows; see [Cheng 2008]. A simple example
is the subshift of finite type on symbolic dynamics with two-sided shift.

Lemma 2.1. hµ(T | 〈G〉) is a measure-theoretic conjugacy invariant.

Lemma 2.2. hµ(T r
| 〈G〉)= r · hµ(T | 〈G〉) for each positive integer r .

Lemma 2.3. Let (X1,B1,m1) and (X2,B2,m2) be probability spaces and let T1 :

X1→ X1 and T2 : X2→ X2 be measure-preserving maps. Then

hµ(T1× T2 | 〈G1×G2〉)= hm1(T1 | 〈G1〉)+ hm2(T2 | 〈G2〉),

where µ= m1×m2 and Gi is a Ti -invariant subspace of X i for i = 1, 2.

Lemma 2.4. Let T be a measure-preserving map of the probability space (X,B,µ)
and G be a T -invariant subset of X. Then the map µ→ hµ(T | 〈G〉, α) is affine,
where α is any finite partition of X. Hence, so is the map µ→ hµ(T | 〈G〉). In
other words, for all 0< λ < 1 and invariant measures µ1 and µ2, we have

hλµ1+(1−λ)µ2(T | 〈G〉)= λ · hµ1(T | 〈G〉)+ (1− λ) · hµ2(T | 〈G〉)

Next, recall the notion of topological entropy by using spanning sets and separated
sets.

Let ε > 0 and n ∈N\{0}. Let B(x, n, ε) denote Bowen’s ball of order n, radius
ε and center x :

B(x, n, ε) := {y ∈ X | d(T k(x), T k(y)) < ε for all 06 k < n}.
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A set E ⊂ X is said to be a (n, δ)-spanning subset of K if K ⊂
⋃

x∈E B(x, n, δ),
and a (n, δ)-separated subset of K if for all x, y ∈ E , there exists a nonnegative
k < n such that d(T k(x), T k(y))> δ. Use the notation r(n, δ, K ) for the minimal
cardinality of a (n, δ)-spanning subset of a set K ⊂ X and the notation s(n, δ, K )
for the maximal cardinality of a (n, δ)-separated subset of K .

Topological conditional pressure is defined as follows: Let (X, d) be a compact
metric space, C(X, R) be the space of real-valued continuous functions of X , and
T : X → X be a continuous map. For ϕ ∈ C(X, R), G a closed subset of X , and
n ≥ 1, let

∑n−1
i=0 ϕ(T

i x)= (Snϕ)(x) Set

Pn(T, ϕ, ε,G)= sup
{∑

z∈E

ε(Snϕ)(z) : E is an (n, ε)-separated subset of G
}
,

P(T, ϕ, ε,G)= lim sup
n→∞

1
n

log Pn(T, ϕ, ε,G).

It is easy to show that P(T, ϕ, ε,G) is an increasing function of ε. Therefore,
the topological conditional pressure of T with respect to ϕ and G can be defined
as follows:

PG(T, ϕ)= lim
ε→0

P(T, ϕ, ε,G).

This real-valued function ϕ is called a potential function and
∫
ϕd µ is a potential

energy. If ϕ = 0, then PG(T, ϕ) is reduced to the topological entropy on G, that
is, htop(T | G). If G =∅, we define P∅(T, ϕ)= 0.

The basic proposition concerning topological conditional pressure is the power
rule.

Lemma 2.5. For any positive integer k, let G be a closed subset of X. Then

PG(T k, Skϕ)= k PG(T, ϕ),

where (Skϕ)(x)=
∑k−1

i=0 ϕ(T
i x).

Proof. For any fixed positive integer k, if E is an (n, ε)-separated set of G with
respect to T k , then E should be an (nk, ε)-separated subset of G with respect to T .
Thus, it follows that

Pn(T k, Skϕ, ε,G)

= sup
E

{∑
z∈E

e
∑n−1

i=0
∑k−1

j=0 ϕ(T
j (T ki (z))

:

E is an (n, ε)-separated subset of G with respect to T k
}

≤ sup
E

{∑
z∈E

e
∑nk−1

j=0 ϕ((T ki+ j (z))
:

E is an (nk, ε)-separated subset of G with respect to T
}

= Pnk(T, ϕ, ε,G).
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This implies that

(2-1) P(T k, Skϕ, ε,G)≤ k P(T, ϕ, ε,G),

which gives the inequality

PG(T k, Skϕ)≤ k PG(T, ϕ).

To show the reverse inequality, for any ε > 0, we choose δ > 0 small enough
so that d(x, y) 6 δ implies max16i6k−1 d(T i x, T i y) < ε. If E is a (nk, ε)-
separated subset of X for T , then E is a (n, δ)-separated subset of X for T k . Hence
Pnk(T, ϕ, ε,G)6 Pn(T k, Skϕ, δ,G). Therefore

PG(T k, Skϕ)> k PG(T, ϕ). �

If ϕ = 0, then PG(T, ϕ) is equal to the topological entropy htop(T | G), which
measures the orbit structure complexity of the map. The conditional entropy and
topological entropy concentrated on G are related as follows.

Theorem 2.1 (variational inequality for conditional entropy [Cheng 2008]). Let
T : X → X be a continuous map of a compact metric space X and let G be a
closed T -invariant subspace. Then

htop(T | G)≤ sup
µ∈M(X,T )

hµ(T | 〈G〉)≤ htop(T | G)+ htop(T | cl(X \G)),

where M(X, T ) is the collection of all invariant measures µ under T and cl(X \G)
is the closure of X \G.

If this closed T -invariant subset G is the whole space X , then X \G =∅. This
allows the classical variational principle to be stated as

htop(T )= sup
µ∈M(X,T )

hµ(T ),

where htop(T ) is the topological entropy of T , hµ(T ) is the measure-theoretic
entropy of T , and M(X, T ) is the collection of all invariant measures µ under T .

3. The compact case

Let (X, d) be a compact metric space, let C(X, R) be the space of real-valued
continuous functions of X and let T : X → X be a continuous map. This section
provides a proof of the variational inequality.

Lemma 3.1 [Walters 1982]. Let a1, . . . , ak be given real numbers. If pi > 0 and∑k
i=1 pi = 1, then

k∑
i=1

pi (ai − log pi )6 log
( k∑

i=1

eai
)
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and equality holds if and only if

pi =
eai∑k

i=1 eai
.

Lemma 3.2 [Walters 1982]. Assume that 1 < q < n for 0 6 j 6 q − 1, and set
a( j)= [(n− j)/q], where [b] denotes the integer part of b.

(1) Fix 06 j 6 q − 1. Then

{0, 1, 2, . . . , n− 1} =
{

j + rq + i | 06 r 6 a( j), 06 i 6 q − 1
}
∪ S,

where S = {0, 1, . . . , j − 1, j + a( j)q, j + a( j)q + 1, . . . , n − 1} and the
cardinality of S is at most 2q.

(2) The numbers { j + rq | 0 6 j 6 q − 1, 0 6 r 6 a( j)− 1} are all distinct and
are all no greater than n− q.

For (X,B) a measurable space, we denote by M(X) the collection of all Borel
probability measures on (X,B).

Lemma 3.3 [Pesin 1988]. Let X be a compact metric space and µ ∈ M(X).

(1) If x ∈ X and δ > 0, there exists δ′ < δ such that µ(∂B(x; δ′)) = 0, where ∂B
denotes the boundary of set B.

(2) If δ > 0, there is a finite partition ξ = {A1, A2, . . . , Ak} of (X,B, µ) such that
diam(A j ) < δ and µ(∂A j )= 0 for each j = 1, 2, . . . , k.

Lemma 3.4 [Pesin 1988]. Let (X, d) be a compact metric space, let µi ∈ M(X)
for 16 i 6 n, and suppose pi ≥ 0 satisfy

∑n
i=1 pi = 1. Then

H∑n
i=1 piµi

(ξ)>
n∑

i=1

pi Hµi (ξ).

Again, we follow Walter’s proof of the standard variational principle and simply
call them the SVP arguments (as in [Walters 1982, pages 218–221]), but we must
make some modifications to obtain the variational inequality.

Theorem 3.1. Let T : X→ X be a continuous map of a compact metric space, let
ϕ ∈ C(X, R), and let G be a closed T -invariant subset of X (that is, T−1G = G).
Then

PG(T, ϕ)≤ sup
µ∈M(X,T )

{hµ(T | 〈G〉)+
∫
ϕdµ} ≤max{PG(T, ϕ), PX\G(T, ϕ)}.

Proof. We follow the SVP argument.
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Let ε>0. We want to findµ∈M(X, T )with hµ(T |〈G〉)+
∫
ϕdµ≥ PG(T, ϕ, ε),

which clearly implies

PG(T, ϕ)≤ sup
µ∈M(X,T )

{hµ(T | 〈G〉)+
∫
ϕdµ}.

Let En be an (n, ε) separated set of G with

log
∑
y∈En

e(snϕ)(y) ≥ log Pn(T, ϕ, ε,G)− 1.

Let σn ∈ M(G) be the atomic measure concentrated on En by the formula

σn =

∑
y∈En

e(snϕ)(y) · δy∑
z∈En

e(snϕ)(z)
.

Let µn ∈ M(G) be defined by

µn =
1
n

∑
σn ◦ T−i .

Since M(G) is compact, it is possible to choose a subsequence {n j } of natural
numbers such that

lim
j→∞

1
n j

log Pn j (T, ϕ, ε,G)= P(T, ϕ, ε,G)

and µn j converges in M(G) to some µ ∈ M(G). Thus, µ ∈ M(G, T )⊆ M(X, T ).
We shall show hµ(T | 〈G〉)+

∫
ϕdµ≥ P(T, ϕ, ε,G).

By Lemma 3.3, we can choose a partition ξ = {A1, A2, . . . , Ak} of X such that
diam(A j ) < ε and µ(∂Ai ) = 0 for 1 6 i 6 k. Since each element of

∨n−1
j=0 T− jξ

contains at most one element of En ,

Hσn

(n−1∨
j=0

T− jξ

∣∣∣ 〈G〉)+ ∫ snϕdσn = Hσn

(n−1∨
j=0

T− jξ
)
+

∫
snϕdσn

=

∑
y∈En

σn(y)((snϕ)(y)− log(σn(y)))

= log
∑
y∈En

e(snϕ)(y).

Fix natural members q and, n with 1 6 q 6 n and, using Lemma 3.2, define a( j)
for 06 j 6 q − 1, by a( j)= [(n− j)/q]. Fix 06 j 6 q − 1. Note that

n−1∨
j=0

T− jξ =

a( j)−1∨
r=0

T−(rq+ j)
q−1∨
i=0

T−i
∨

∨
l∈S

T−lξ
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and S has a cardinality of at most 2q . Therefore

log
∑
y∈En

e(Snϕ)(y)

= Hσn

(n−1∨
j=0

T− jξ

∣∣∣ 〈G〉)+ ∫ Snϕdσn

≤

a( j)−1∑
r=0

Hσn

(
T−(rq+ j)

q−1∨
i=0

T−iξ

∣∣∣ 〈G〉)+ Hσn

(∨
k∈S

T−kξ

∣∣∣ 〈G〉)+ ∫ Snϕdσn

=

a( j)−1∑
r=0

Hσn

(
T−(rq+ j)

q−1∨
i=0

T−iξ

∣∣∣ 〈G〉)+ Hσn

(∨
k∈S

T−kξ
)
+

∫
Snϕdσn

≤

a( j)−1∑
r=0

Hσn

(
T−(rq+ j)

q−1∨
i=0

T−iξ

∣∣∣ 〈G〉)+ 2q log k+
∫

Snϕdσn

≤

a( j)−1∑
r=0

Hσn◦T−(rq+ j)

(q−1∨
i=0

T−iξ

∣∣∣ 〈G〉)+ 2q log k+
∫

Snϕdσn.

Summing this over j from 0 to q − 1 leads to

q log
∑
y∈En

e(snϕ)(y) ≤

n−1∑
p=0

Hσn◦T−p

(q−1∨
i=0

T−iξ

∣∣∣ 〈G〉)+ 2q2 log k+ q
∫

Snϕdσn.

Now, after dividing this by n and using Lemma 3.4, we have

(3-1)
q
n

log
∑
y∈En

e(snϕ)(y) ≤ Hµn

(q−1∨
i=0

T−iξ

∣∣∣ 〈G〉)+ 2q2

n
log k+ q

∫
ϕdµn.

Because µ(∂Ai )= 0 for all i , we have by [Cheng 2008, Lemma 3.6] that

lim
j→∞

Hµn j

(q−1∨
i=0

T−iξ

∣∣∣ 〈G〉)= Hµ
(q−1∨

i=0

T−iξ

∣∣∣ 〈G〉).
Then, replacing n by n j in (3-1) and letting j go to infinity, we obtain

q P(T, ϕ, ε,G)≤ Hµ
(q−1∨

i=0

T−iξ

∣∣∣ 〈G〉)+ q
∫
ϕdµ.

Dividing by q and letting q→∞ yields

P(T, ϕ, ε,G)≤ hµ(T | 〈G〉, ξ)+
∫
ϕdµ≤ hµ(T | 〈G〉)+

∫
ϕdµ,
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which implies that
PG(T, ϕ)≤ hµ(T | 〈G〉)+

∫
ϕdµ

and completes the SVP argument.
Now, for any µ∈M(X, T ), let η be a partition of (X,B, µ) and let Gc

= X \G.
Then

Hµ
(n−1∨

i=0

T−iη

∣∣∣ 〈G〉)
=−µ(G)

∑
C∈
∨n−1

i=0 T−iη

µ(C
⋂

G)
µ(G)

log
µ(C

⋂
G)

µ(G)

−µ(Gc)
∑

C∈
∨n−1

i=0 T−iη

µ(C
⋂

Gc)

µ(Gc)
log

µ(C
⋂

Gc)

µ(Gc)

= µ(G)HµG

(n−1∨
i=0

T−iη
)
+µ(Gc)HµGc

(n−1∨
i=0

T−iη
)
,

where µG and µGc denotes the conditional probability measures induced by µ on
G and Gc, respectively. So, µG ∈ M(G, T ), and µGc ∈ M(Gc, T ) ⊂ M(Gc, T ).
Thus, we have

hµ(T | 〈G〉, η)= µ(G)hµG (T, η)+µ(G
c)hµGc (T, η)

≤ µ(G)hµG (T )+µ(G
c)hµGc (T ),

which implies

hµ(T | 〈G〉)≤ µ(G)hµG (T )+µ(G
c)hµGc (T ).

On the other hand, for all ε > 0 there is a partition η such that

hµG (T )≤ hµG (T, η)+ ε/2.

Similarly, there is a partition ξ such that

hµGc (T )≤ hµGc (T, ξ)+ ε/2.

Therefore, we can construct a partition ζ = η∨ ξ such that

hµG (T )≤ hµG (T, ζ )+ ε/2,

hµGc (T )≤ hµGc (T, ζ )+ ε/2.

Then
µ(G)hµG (T )≤ µ(G){hµG (T, ζ )+ ε/2},

µ(Gc)hµGc (T )≤ µ(Gc){hµGc (T, ζ )+ ε/2},
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which implies that

µ(G)hµG (T )+µ(G
c)hµGc (T )≤ hµ(T | 〈G〉).

Thus,
hµ(T | 〈G〉)= µ(G)hµG (T )+µ(G

c)hµGc (T ).

On the other hand, for G is a closed T -invariant subset of X , it is not hard to
show that T Gc ⊆ Gc. Thus, the topological pressure on the compact subset Gc is
well defined. Since∫

ϕdµ=
∫

G
ϕdµ+

∫
Gc
ϕdµ= µ(G)

∫
G
ϕdµG +µ(Gc)

∫
Gc
ϕdµGc .

by the SVP argument and Lemma 2.5, we obtain

µ(G)hµG (T )+µ(G)
∫

G
ϕdµG ≤ µ(G)PG(T, ϕ),

µ(Gc)hµGc (T )+µ(Gc)

∫
Gc
ϕdµGc ≤ µ(Gc)PGc(T, ϕ).

Combining these two, we obtain

µ(G)hµG (T )+µ(G
c)hµGc (T )+

∫
ϕdµ≤ µ(G)PG(T, ϕ)+µ(Gc)PGc(T, ϕ),

which implies, as desired,

hµ(T |〈G〉)+
∫
ϕdµ≤max{PG(T, ϕ), PX\G(T, ϕ)} for any µ∈M(X, T ). �

If this closed T -invariant subset G represents the whole space X , then X \G is
empty. This allows the following lemma, which is the usual variational principle
of topological pressure.

Lemma 3.5. Let T : X → X be a continuous map of a compact metric space X
and let ϕ be any real-valued continuous function of X. Then

P(T, ϕ)= sup
µ∈M(X,T )

{
hµ(T )+

∫
ϕd µ

}
,

where M(X, T ) is the collection of all invariant measures µ under T .

4. The noncompact case

Using different definitions of topological pressure, an even more general variational
inequality can be obtained, one that is also true for any T -invariant Borel subset G
of X (that is, T−1G = G). First, we define the topological pressure of any subset.
The following notations come from [Pesin and Pitskel’ 1984; Pesin 1988].
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Let X be a compact metric space, let Y ⊂ X , and let T : Y → Y be a contin-
uous mapping. Let U be a finite open cover of X . Denote by Wm(U) the set of
collections of length m of elements of cover U : U = Ui0Ui1 · · ·Uim−1 . For any
real-valued continuous function ϕ of X , set

Z(U )= {x ∈ Z : T k(x) ∈Uik , k = 0, . . . ,m− 1},

and

Smϕ(U )= sup
{m−1∑

k=0

ϕ(T k(x)) : x ∈ Z(U )
}
.

If Z(U ) = ∅, we assume that Smϕ(U ) = −∞. Set W(U) =
⋃

m>0 Wm(U). We
will say that 0 ⊂W(U) covers Z if Z ⊂

⋃
U∈0 Z(U ). The number of elements of

collection U will be denoted by m(U ). Put

M(U, λ, Z , ϕ, N )= inf
0⊂W(U)

{∑
U∈0

exp(−λm(U )+ Sm(U )ϕ(U ))
}
,

where 0 covers Z and for every U ∈0 and m(U )> N . It is readily verified that the
function M(U, λ, Z , ϕ, N ) increases monotonically with the growth of N . Then
define

m(U, λ, Z , ϕ)= lim
N→∞

M(U, λ, Z , ϕ, N ).

For any fixed subset Z , let PZ (U, ϕ) = inf{λ : m(U, λ, Z , ϕ) = 0}. The topo-
logical pressure of any set Z with respect to T is defined by

PZ (T, ϕ)= lim
diam U→0

PZ (U, ϕ).

Given a T -invariant subset Z , denote by M(Z , T )⊂ M(X, T ) the set of measures
µ for which µ(Z) = 1 for all µ ∈ M(X, T ). For x ∈ X and n > 0, define the
probability measure

En(x) :=
1
n

n−1∑
k=0

δT k(x),

where δx is the δ-measure supported at the point x . Denote by V (x) the set of limit
measures of the sequence of measures En(x). It is easy to see that V (x)⊂M(X, T )
for any x ∈ X .

Lemma 4.1. Assume that (X, d) is a compact metric space, T : X → X is a
continuous map, G is a T -invariant Borel subset of X (that is, T−1G = G), and
µ ∈ M(G, T ). If we consider T |G : G→ G, then hµ(T |G)= hµ(T | 〈G〉).
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Proof. Let η be a partition of X and let Gc
= X \G. Then

Hµ
(n−1∨

i=0

T−iη | 〈G〉
)

=−µ(G)
∑

C∈
∨n−1

i=0 T−iη

µ(C ∩G)
µ(G)

log
µ(C ∩G)
µ(G)

−µ(Gc)
∑

C∈
∨n−1

i=0 T−iη

µ(C ∩Gc)

µ(Gc)
log

µ(C ∩Gc)

µ(Gc)

=−µ(G)
∑

C∈
∨n−1

i=0 T−iη

µ(C ∩G)
µ(G)

log
µ(C ∩G)
µ(G)

=−

∑
C∈
∨n−1

i=0 T−iη

µ(C ∩G) logµ(C ∩G)

= Hµ
(n−1∨

i=0

T−iη

∣∣∣G
)
,

which implies that hµ(T |G)= hµ(T | 〈G〉). �

Theorem 4.1. Let T : X→ X be a continuous map of a compact metric space, let
ϕ ∈ C(X, R), and let G be a T -invariant Borel subset of X (that is, T−1G = G).
Suppose that for each x ∈ G, the intersection V (x)∩M(G, T ) is nonempty. Then

PG(T, ϕ)≤ sup
µ∈M(X,T )

{hµ(T | 〈G〉)+
∫
ϕdµ} ≤max{PG(T, ϕ), PGc(T, ϕ)},

where Gc is the complement of G, that is, Gc
= X \G.

Proof. On the one hand, the combination of [Pesin and Pitskel’ 1984, Lemma 4.1
and Theorem 2] indicates that

PG(T, ϕ)≤ sup
µ∈M(X,T )

{hµ(T | 〈G〉)+
∫
ϕdµ}.

On the other hand, by an argument similar to that of Theorem 3.1, we have

hµ(T | 〈G〉)= µ(G)hµG (T )+µ(G
c)hµGc (T )

and ∫
ϕdµ= µ(G)

∫
G
ϕdµG +µ(Gc)

∫
Gc
ϕdµGc .

Therefore, from [Pesin and Pitskel’ 1984, Theorem 1], we can obtain that

hµG (T )+
∫

G
ϕdµG ≤ PG(T, ϕ)
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and

hµGc (T )+
∫

Gc
ϕdµGc ≤ PGc(T, ϕ). �
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