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We study two operations on 3-dimensional small covers called connected
sum and surgery. These operations correspond to combinatorial opera-
tions on (Z2)

3-colored simple convex polytopes. Then we show that each
3-dimensional small cover can be constructed from T 3, RP3 and S1 × RP2

with two different (Z2)
3-actions by using these operations. This is a gener-

alization of the results of Izmest’ev and Nishimura, and an improvement of
the results of Kuroki and Lü and Yu.

1. Introduction

Davis and Januszkiewicz [1991] introduced a small cover as an n-dimensional
closed manifold Mn with a locally standard (Z2)

n-action whose orbit space is a
simple convex polytope P , where Z2 is the quotient additive group Z/2Z. They
showed that there exists a one-to-one correspondence between small covers and
(Z2)

n-colored polytopes [ibid., Proposition 1.8]. Here a pair (P, λ) is called a
(Z2)

n-colored polytope when P is an n-dimensional simple convex polytope with
the set of facets F and a function λ : F→ (Z2)

n satisfying the condition that

(?) if F1 ∩ · · · ∩ Fn 6=∅, then {λ(F1), . . . , λ(Fn)} is linearly independent.

We say that two (Z2)
n-colored polytopes (P1, λ1) and (P2, λ2) are equivalent

when there exists a combinatorial equivalence of polytopes φ : P1 → P2 such
that λ2φ = θλ1 for some θ ∈ Aut(Z2)

n . The n-dimensional torus T n and the real
projective space RPn with the standard (Z2)

n-actions are examples of small covers
over the n-cube I n and the n-simplex 1n , respectively.

In this paper we are interested in constructions of 3-dimensional small covers M3

from basic small covers by using some operations. Izmest’ev [2001] studied a class
of 3-dimensional small covers that are called linear models and correspond to 3-
colored polytopes. He introduced two operations on linear models called connected
sum ] and surgery \ and proved the following theorem.
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Keywords: small cover, equivariant surgery, connected sum, 3-polytope.

177



178 YASUZO NISHIMURA

Theorem 1.1 [Izmest’ev 2001, Theorem 3]. Each linear model M3 can be con-
structed from T 3 using the operations ], \ and \−1, where \−1 is the inverse of \.

In [Nishimura 2004], we generalized Theorem 1.1 to orientable small covers
M3 that correspond to 4-colored polytopes. We introduced a new operation called
the Dehn surgery \D , and showed that each orientable small cover M3 can be
constructed from T 3 and RP3 by using four operations ], \, \−1 and \D [ibid.,
Theorem 1.10]. Later Lü and Yu [2011] considered a construction of general small
covers M3. They introduced new operations ]e, ]eve, ]1 and ] c©

i for i ≥ 3 and
showed the following theorem.

Theorem 1.2 [Lü and Yu 2011, Theorem 1.2]. Each small cover M3 can be con-
structed from RP3 and S1

×RP2 with a certain (Z2)
3-action using the operations

], \−1, ]e, ]eve, ]1, ] c©
4 and ] c©

5 .

Operations appeared in Theorem 1.2 are all “nondecreasing”, that is, they do
not decrease the number of faces of an orbit polytope. In other words the surgery
\ is not used in Theorem 1.2, unlike in Theorem 1.1. Kuroki [2010] pointed out
that the operations \D , ]e and ]eve can be obtained as compositions of ] and \ such
as \D

= \ ◦ ]RP3, ]e
= \ ◦ ] and ]eve

= \2
◦ ] [ibid., Theorem 4.1]. Therefore

our result in [Nishimura 2004] can be improved as follows: Each orientable small
cover M3 can be constructed from RP3 and T 3 by using three operations ], \ and
\−1; see [Kuroki 2010, Corollary 4.4]. Moreover Theorem 1.2 can be rewritten by
using \ instead of ]e and ]eve as follows [Kuroki 2010, Corollary 4.8]: Each small
cover M3 can be constructed from RP3 and S1

×RP2 with a certain (Z2)
3-action

by using six operations ], \, \−1, ]1, ] c©
4 and ] c©

5 . Then a problem arises:

Problem 1.3 [Kuroki 2010, Problem 5.2]. What are basic small covers from which
we can construct all 3-dimensional small covers using the operations ], \ and \−1?

We give a solution to this problem, our main result:

Theorem 1.4. Every small cover M3 can be constructed from T 3, RP3 and
S1
×RP2 with two different (Z2)

3-actions by using two operations ] and \.

In this theorem we do not use the inverse surgery \−1. As a corollary we obtain
improvements of Theorem 1.1 and our previous result in [Nishimura 2004].

Corollary 1.5. (1) Each linear model M3 can be constructed from T 3 by using
two operations ] and \.

(2) Each orientable small cover M3 can be constructed from T 3 and RP3 by
using two operations ] and \.

These results are equivariant analogues of the well-known result [Kirby 1978]
that “each closed 3-manifold can be constructed from the 3-sphere by using Dehn
surgeries”.
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This paper is organized as follows. In Section 2, we briefly recall the definition
and basic facts about small covers, and we introduce some basic 3-dimensional
small covers. In Section 3, we establish several operations on (Z2)

3-colored poly-
topes. In Section 4, we discuss the constructions of (Z2)

3-colored polytopes, and
prove Theorem 1.4. In Section 5, we follow the point of view of Lü and Yu, and
discuss a nondecreasing construction of small covers by using the inverse surgery
\−1 instead of the surgery \. We will point out in Remark 5.5 that there is a gap in
the proof of [Lü and Yu 2011, Theorem 1.2] and improve their result as follows.

Theorem 1.6. (1) Each linear model M3 can be constructed from T 3 by using
three operations ], ]e and \−1.

(2) Each orientable small cover M3 can be constructed from T 3 and RP3 by
using three operations ], ]e and \−1.

(3) Each small cover M3 can be constructed from RP3 and S1
×RP2 with two

different (Z2)
3-actions by using four operations ], ]e, \−1 and ] c©

4 .

In Section 6 we shall make a remark on a 2-torus manifold, which is an object
of a little wider class than small covers. If objects are expanded to this class, then
the argument becomes easier. We prove the following theorem.

Theorem 1.7. (1) Each linear model of a locally standard 2-torus manifold over
D3 can be constructed from S3 by using inverse surgery \−1.

(2) Each orientable locally standard 2-torus manifold over D3 can be constructed
from S3 by using two surgeries \−1 and \D and the blow up ]RP3.

(3) Each locally standard 2-torus manifold over D3 can be constructed from S3

by using the inverse surgery \−1 and connecting RP3, S1
×Z2 S2, S1

×RP2

with certain (Z2)
3-actions by operations ] and ]e.

2. Basics of small covers

Here we recall definitions and basic facts on small covers; for details, see [Davis
and Januszkiewicz 1991]. Let P be an n-dimensional simple convex polytope with
facets (that is, codimension-one faces) F = {F1, . . . , Fm}. A small cover M over
P is an n-dimensional closed manifold with a locally standard (Z2)

n-action whose
orbit space is P . For a facet F of P , we define λ(F) to be the generator of the
isotropy subgroup at x ∈ π−1(int F) where π : M → P is the orbit projection.
Then a function λ :F→ (Z2)

n is called a characteristic function of M if it satisfies
the condition (?).

Therefore λ is a kind of face-coloring of P . We call a function λ : F→ (Z2)
n

satisfying (?) a (Z2)
n-coloring of P . We say that two (Z2)

n-colored polytopes
(P1, λ1) and (P2, λ2) are equivalent when there exists a combinatorial equivalence
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of polytopes φ : P1→ P2 such that λ2φ = θλ1 for some θ ∈Aut(Z2)
n . Conversely,

given a simple convex polytope P and a (Z2)
n-coloring λ : F→ (Z2)

n , we can
construct a small cover M whose characteristic function is the given λ as

M(P, λ) := P × (Z2)
n/∼ ,

where (x, t)∼ (y, s) is defined as x = y ∈ P and s− t is contained in the subgroup
generated by λ(F1), . . . , λ(Fk) such that x ∈ int(F1 ∩ · · · ∩ Fk). We say that two
small covers Mi over Pi for i = 1, 2 are GL(n,Z2)-equivalent on a combinatorial
equivalence of polytopes φ : P1→ P2 when there exists a θ -equivariant homeomor-
phism f :M1→M2 such that π2◦ f =φ◦π1 and f (g ·x)= θ(g)· f (x) for g∈ (Z2)

n

and x ∈ M1 and for some θ ∈ Aut(Z2)
n . Moreover we say that two small covers

are equivalent when they are GL(n,Z2)-equivalent on some combinatorial equiv-
alence of polytopes φ : P1→ P2. In [Lü and Masuda 2009], this equivalence and
a GL(n,Z2)-equivalence on the identity are called a weakly equivariantly home-
omorphism and D-J equivalence, respectively. Davis and Januszkiewicz [1991,
Proposition 1.8] proved that a small cover M over P with a characteristic function
λ is D-J equivalent to M(P, λ). Therefore we can identify an equivalence class of a
small cover M(P, λ)with the equivalence class of a (Z2)

n-colored polytope (P, λ).

Example 2.1. The real projective space RPn and the n-dimensional torus T n with
the standard (Z2)

n-actions are examples of small covers over the n-simplex 1n

and the n-cube I n respectively. Figure 1 shows their characteristic functions on the
polytopes (Schlegel diagram) in the case n= 3, where {α, β, γ } is a basis of (Z2)

3.
We notice that a (Z2)

n-coloring on 1n is unique up to equivalence. Therefore we
denote the colored simplex by 1n by omitting coloring.

An n-dimensional small cover M(P, λ) with an n-coloring λ (that is, λ(F) is a
basis of (Z2)

n) is called a linear model. An example of a linear model is the torus
T n shown in Example 2.1. Obviously an n-coloring of P (that is, a linear model)
is unique up to equivalence. In case n = 3, it is well known that a simple convex
polytope is 3-colorable if and only if each face contains an even number of edges.

Figure 1. Characteristic functions of RP3 and T 3.
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Figure 2. Three types of (Z2)
3-coloring on the 3-sided prism

P3(3)= I ×12; λ1, λ2 and λ3, respectively.

In [Nakayama and Nishimura 2005, Theorem 1.7], we gave a criterion for a
small cover to be orientable. We recall the criterion in the case n = 3.

Theorem 2.2. A 3-dimensional small cover M(P, λ) is orientable if and only if
λ(F) is contained in {α, β, γ, α+β + γ } for a suitable basis {α, β, γ } of (Z2)

3.

From this theorem, the small covers RP3 and T 3 given in Figure 1 are both
orientable. We call a (Z2)

3-coloring satisfying the orientability condition in this
theorem an orientable coloring of P . Since each triple of {α, β, γ, α+ β + γ } is
linearly independent, an orientable coloring is just an ordinary 4-coloring.

Example 2.3. We consider small covers on the 3-sided prism P3(3) = I ×12.
There exist three types of (Z2)

3-coloring on P3(3) shown in Figure 2 up to equiva-
lence. The first example M(P3(3), λ1) is homeomorphic to S1

×RP2. The second
example M(P3(3), λ2) is also homeomorphic to S1

× RP2 but not equivariantly
homeomorphic to M(P3(3), λ1); see [Lü and Yu 2011, Lemmas 4.2 and 4.3]. The
last example M(P3(3), λ3) is orientable and homeomorphic to RP3 ]RP3, where
] is the connected sum (see the following section).

Example 2.4. It is easily verified that there exist four types of (Z2)
3-coloring on the

3-cube I 3
= P3(4). One of them is the 3-colored cube already seen in Figure 1,

and is denoted by (I 3, λ0). The other three types are shown in Figure 3. The

Figure 3. Three types of (Z2)
3-coloring on the 3-cube I 3; λ1, λ2

and λ3, respectively (except the 3-colored cube of Figure 1).
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associated small covers are homeomorphic to S1
×K , a twisted K -bundle over S1,

and a twisted T 2-bundle over S1 according to λ1, λ2 and λ3, respectively, where
K = RP2 ] RP2 is Klein’s bottle; for precise statements, see [Lü and Yu 2011,
Lemmas 5.3 and 5.4].

Remark 2.5. Lü and Yu [2011] discussed D-J equivalence classes of 3-dimensional
small covers. Therefore they wrote that there exist five and seven types of (Z2)

3-
coloring on P3(3) and I 3, respectively. In this paper we discuss our equivalence
(weakly equivariantly homeomorphism) classes instead of D-J equivalence classes
in order to argue simply. The difference between the D-J equivalence and our
equivalence does not affect the discussion on the following sections.

3. Operations on small covers

From this point on, we assume that n=3 and that (P, λ) is a pair of a 3-dimensional
simple convex polytope P and a (Z2)

3-coloring λ, and {α, β, γ } is a basis of (Z2)
3.

We call a 3-dimensional simple convex polytope a 3-polytope for simplicity. From
Steinitz’s theorem (see for example [Grünbaum 2003]), combinatorially equiva-
lent classes of 3-polytopes bijectively correspond to 3-connected 3-valent simple
planner graphs, that is, the 1-skeletons of polytopes. Here a graph 0 is called k-
connected, l-valent and simple if 0 is connected after cutting any (k − 1) edges,
the degree of each vertex is l, and there is no loop and no multiedge, respectively.
Here, we recall some operations on (Z2)

3-colored polytopes (or small covers) that
were introduced in [Izmest’ev 2001; Lü and Yu 2011; Nishimura 2004].

Definition 3.1 (connected sum ]). The operation ] in Figure 4 (from left to right) is
called the connected sum (at vertices) and its inverse (from right to left) is denoted
by ]−1. These operations also can be defined for noncolored polytopes. Note that
P1 ] P2 is also a 3-polytope for any 3-polytopes P1 and P2 from Steinitz’s theorem.
The operation ] corresponds to the connected sum M(P1, λ1) ]M(P2, λ2) around
fixed points of them; see [Davis and Januszkiewicz 1991, 1.11] or [Izmest’ev 2001,
Definition 3]. We say that (P, λ) is decomposable (as a (Z2)

3-colored polytope)
when there exist two (Z2)

3-colored polytopes (Pi , λi ) for i=1, 2 such that (P, λ)=
(P1, λ1) ] (P2, λ2). Similarly we say that P is decomposable as a noncolored
polytope when P = P1 ] P2 as noncolored polytopes for some P1 and P2.

Specifically the connected sum with 13 on polytopes, denoted by ]13 (and
often called the cutting vertex or bistellar 0-move), corresponds to the operation
called the blow up on small covers; see Figure 5. Its inverse ]−113 (often called
the bistellar 2-move) is called the blow down.

Definition 3.2 (surgery \). The operation \ in Figure 6 (from left to right) is called
the surgery along an edge e and its inverse \−1 (from right to left) is called the
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Figure 4. Connected sum ] and its inverse ]−1.

Figure 5. Blow up ]13 and blow down ]−113.

Figure 6. Surgery \ and its inverse \−1.

inverse surgery along a pair of edges e1 and e2. The operations \ and \−1 both
correspond to the ordinary surgeries on small covers; see [Izmest’ev 2001]. In the
previous papers [Izmest’ev 2001; Kuroki 2010; Lü and Yu 2011; Nishimura 2004],
surgeries \ and \−1 were not distinguished but instead were denoted by the same
symbol \.

We do not allow the surgeries \ and \−1 when the 3-connectedness of the 1-
skeleton of P is destroyed after doing it, that is, the following cases respectively:

Case \. If and only if F2 and F4 are adjacent to a same face except F1 and F3

(involving the case when F1 or F3 is a quadrilateral),

Case \−1. If and only if F ′1 is adjacent to F ′3.

Definition 3.3 (connected sum along edges ]e). The operation ]e in Figure 7 (from
left to right) is called the connected sum along edges and its inverse is denoted
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Figure 7. Connected sum along edges ]e and its inverse (]e)−1.
The figure also shows that ]e

= \ ◦ ].

Figure 8. Cutting edge ]e P3(3) and Dehn surgery \D
= ]e13.

by (]e)−1. We notice that the operation ]e is obtained as the composition ]e
= \◦]

as shown in the same figure; see [Kuroki 2010, Theorem 4.1(2)]. The operation ]e

corresponds to the connected sum around the circle π−1(e) of each small cover,
where π : M→ P is the projection; see [Lü and Yu 2011].

Specifically the operations ]e P3(3) (along a vertical edge in Figure 2) and ]e13

are often called the cutting edge and the bistellar 1-move, respectively; see Figure 8.
The former (left figure) corresponds to a blow up along the circle π−1(e) on a small
cover. In this figure we can choose not only β + γ but also α+ β + γ as a color
of the center square when ∗ = 0. The latter operation ]e13

= \ ◦ ]13 corresponds
to the Dehn surgery of type 2

1 on a small cover; see [Nishimura 2004] or [Kuroki
2010, 3.5]. This operation is denoted by \D and is called the Dehn surgery. This
operation can be done along an edge e that satisfies the condition

∑
e

λ(F) :=
∑

{F∈F | e∩F 6=∅}
λ(F)= 0.
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We call such an edge a 0-sum edge (or a 4-colored edge in orientable case). Note
that the Dehn surgery \D does not change the number of faces, and is invertible
because (\D)−1

= \D .

From Steinitz’s theorem, a 3-polytope P is decomposable as a noncolored poly-
tope if and only if there exist three edges such that they are not adjacent to each
other and the 1-skeleton of P becomes disconnected after cutting them. Obviously
if an orientable (4-)colored polytope P is decomposable as a noncolored polytope,
then (P, λ) is also decomposable as a (Z2)

3-colored polytope. However we need
to pay a little attention to nonorientable colored polytopes. We say that (P, λ)
is quasidecomposable when there exist two (Z2)

3-colored polytopes (P1, λ1) and
(P2, λ2) such that either (P, λ)= (P1, λ1)](P2, λ1) or (P, λ)= (P1, λ1)]

e(P2, λ2),
except when P = P1 ]

e 13(= \D P1).

Remark 3.4. If the 1-skeleton of a 3-polytope P becomes disconnected after cut-
ting three edges {e′, e′′, e′′′}, then these three edges are not adjacent to each other
or meet at a vertex. In fact, if a pair {e′, e′′} of these three edges is adjacent to
each other and the other edge e′′′ is not adjacent to e′ ∩ e′′, then the 1-skeleton of
P becomes disconnected after cutting the edge e′′′ and the edge that is adjacent to
e′ ∩ e′′ and different from e′ and e′′. This contradicts the 3-connectedness of the
1-skeleton of P .

Proposition 3.5. Let (P, λ) be a (Z2)
3-colored polytope, but not P3(3). If P is

decomposable as a noncolored polytope, then (P, λ) is quasidecomposable.

Proof. It is sufficient to treat the case that P is indecomposable as a (Z2)
3-colored

polytope. Since P is decomposable as a noncolored polytope, there exist three
nonadjacent edges such that P becomes disconnected after cutting them. Because
of the assumption, colors of the three faces adjacent to these edges are not linearly
independent as shown in the first figure of Figure 9.

Figure 9. A decomposition of a polytope along a 3-cycle of 2-
independent faces.
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Since P 6= P3(3), P has at least six faces so we may assume that there are
at least two distinct faces under the pillar (the Fi ) in the first figure. We first
assume that F ′2 = F ′3 (equivalently e21 = e31 because if it is not so, the 1-skeleton
of P becomes disconnected after cutting these two edges). Then the 1-skeleton
of P becomes disconnected after cutting three edges e1, e23 and e32. Since P is
indecomposable as a (Z2)

3-colored polytope and the color of F3 is α + β, these
three edges actually meet at a vertex F ′1 ∩ F2 ∩ F3; see Remark 3.4. It should be
F ′1 = F ′2 = F ′3 and it is a triangle. This contradicts the assumption that there are
at least two faces under the pillar. Therefore, F ′2 6= F ′3. By a similar method, we
can prove that F ′i for i = 1, 2, 3 are distinct faces. Note that if F3 ∩ F ′3 6= ∅, it is
clear that F1 ∩ F ′1 = F2 ∩ F ′2 = ∅. Therefore we can assume that F3 ∩ F ′3 = ∅ by
changing the role of the Fi if necessary.

Now we can do the surgery \−1 along edges e1 and e32 (see the second figure).
Moreover \−1 P can be decomposed into two (Z2)

3-colored polytopes P1 and P2

by cutting three nonadjacent edges e′1, e2 and e31 (see the third figure). Therefore
we have \−1 P = P1 ] P2 or equivalently P = P1 ]

e P2. �

The surgery \ and the Dehn surgery \D are not allowed along an edge of a
quadrilateral and a triangle respectively, and the inverse surgery \−1 is not allowed
along a pair of adjacent edges. The following is a key lemma.

Lemma 3.6. Suppose (P, λ) is a (Z2)
3-colored polytope. Suppose that the 3-

connectedness of the 1-skeleton of P is destroyed after doing surgeries \−1 or \D ,
but not the trivial prohibited cases above. Then (P, λ) is quasidecomposable. In
particular, when (P, λ) is (orientable) 4-colored, (P, λ) is decomposable as a
(Z2)

3-colored polytope.

Proof. From Proposition 3.5, it is suffices to prove that (P, λ) is decomposable as
a noncolored polytope:

Case \−1. When the inverse surgery \−1 is not allowed in the right figure of
Figure 6, F ′1 is adjacent to F ′3. Then cutting the three nonadjacent edges e1, e2

and F ′1∩ F ′3 makes the 1-skeleton of P disconnected. Thus, P is decomposable as
a noncolored polytope.

Case \D . Since \D
= (]−113) ◦ \−1 and there is no obstacle for the blow down

]−113, the allowance of \D depends only on that of \−1. �

4. Constructions of small covers

In this section we discuss constructions of (Z2)
3-colored polytopes (that is, small

covers) by using two operations ] and \. Henceforth polytopes are considered as
(Z2)

3-colored polytopes. Izmest’ev [2001] proved the following theorem, which
is a combinatorial translation of Theorem 1.1.
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Theorem 4.1. Each 3-colored polytope (P3, λ) can be constructed from (I 3, λ0)

by using three operations ], \ and \−1.

We start from linear models and consider constructions of orientable small cov-
ers (that is, 4-colored polytopes). Let F be an l-gonal face of P . We say that F
is j -independent (for j = 2 or 3) when the rank of {λ(F1), . . . , λ(Fl)} is j , where
F1, . . . , Fl are faces adjacent to F . In the case of orientable small covers, a j-
independent face is a face such that the number of colors of adjacent faces is j (for
j = 2 or 3). Similarly we say that an edge of P is j -colored (for j = 3 or 4) when
the number of colors of the four faces adjacent to this edge is j .

Proposition 4.2. Each 4-colored polytope (P3, λ) can be constructed from 3-
colored polytopes and 13 by using two operations ] and \D .

Proof. By induction on the number of faces of P , it is sufficient to prove that

(∗)
each 4-colored polytope P 6=13 can be decomposed into two polytopes
after doing the Dehn surgery \D(= (\D)−1) finitely many times.

Assume that P is 4-colored and not 13. Then there exists a 3-independent face.
Let F be a 3-independent face whose the number of edges is minimum among 3-
independent faces of P , and let k be this number. We prove (∗) by induction on k.
If k = 3 (that is, F is a triangle), then we get a colored decomposition P = P ′ ]13

immediately. We assume k ≥ 4. Since F is a 3-independent face, there exists a
4-colored edge e of F ; see Figure 10.

We note that there exists no triangular face of P because k ≥ 4. If the Dehn
surgery \D is not allowed along an edge, then P decomposes into two polytopes
by ] or ]e from Lemma 3.6. Therefore we may assume that the Dehn surgery \D is
allowed along every 4-colored edge of F . If the 3-independence of F is preserved
under the Dehn surgery \D along some edge of F , then we can reduce P to \D P .
Because \D P has a (k−1)-gonal 3-independent face, the proof ends by induction
on k. Therefore it is sufficient to show the existence of such an edge.

In Figure 10 we assume that F becomes 2-independent after doing \D along
the edge e. Then an adjacent face of F that is painted as β must be unique, and
the other faces are painted by α and γ alternatively such as ∗ = γ, . . . , ? = α. In

Figure 10. A 4-colored edge e of a 3-independent face F .
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particular when k = 4 (or even), the contradiction arises because ∗ = ?. When
k ≥ 5 and this situation arises, we can do the Dehn surgery \D along the edge e′

(or e′′) preserving the 3-independence of F . �

Remark 4.3. In the proof of Proposition 4.2 when we ignore the colors of P , the
Dehn surgery \D can be continued until a triangle appears for all faces. This leads
to a well-known fact that “each 3-polytope is bistellarly equivalent to each other”
or equivalently “the PL-homeomorphism class of S2 is unique”; see [Moise 1977].

Combining Proposition 4.2 and Theorem 4.1 and noting that \D
= \◦(]13), we

have the following corollary immediately; see [Nishimura 2004, Theorem 1.10]
and [Kuroki 2010, Corollary 4.4].

Corollary 4.4. Each 4-colored polytope (P3, λ) can be constructed from (I 3, λ0)

and 13 by using three operations ], \ and \−1.

Next we consider a construction of all (Z2)
3-colored polytopes. We recall the

basic fact that each 3-polytope has a face with less than six edges; see for example
[Grünbaum 2003]. Such a face is called a small face, and otherwise a big face. If
each small face can be compressed so that the number of faces of P decreases, then
we can reduce all (Z2)

3-colored polytopes to some basic polytopes by induction
on the number of faces. At first we compress 3-independent small faces.

Proposition 4.5. Let P be a (Z2)
3-colored polytope other than 13 and P3(3) as

noncolored polytopes. If there exists a 3-independent small face of P , then either
P or \D P is quasidecomposable.

Proof. If there exists a triangular face of P other than 13 and P3(3), then P is
decomposable as a noncolored polytope and so (P, λ) is quasidecomposable from
Proposition 3.5. Therefore we can assume that P has no triangular face. Let F be
a 3-independent small face of P .

Case: F is a quadrilateral. The situation around F is shown as left of Figure 11
where ai , b j ∈ Z2 with b2a3 = 0 and at least one of a1 and b1 is nonzero. By
a symmetry we may assume that a1 = 1. Since a triangular face of P does not
exist, we can always do (]e)−1 P3(3) for F along either the horizontal edges (when
a3b1 = 0) or the vertical edges (when b1 = 1, b2 = 0), as shown in Figure 8.
Therefore P = P ′ ]e P3(3), so P is quasidecomposable.

Case: F is a pentagon. The situation around F is shown as right of Figure 11,
where ai , b j , ck ∈ Z2 with a2b3+ b2 = 1, b2c3+ b3 = 1 and at least one of a1, b1

and c1 is nonzero. We prove that there exists a 0-sum edge of F such that F is
transformed by \D P into a 3-independent quadrilateral. Then \D P is quasidecom-
posable from the earlier case. Here if the Dehn surgery \D along this edge is not
allowed, then P is quasidecomposable from Lemma 3.6.
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Figure 11. (Z2)
3-colorings around a quadrilateral and a pentagon.

(i) The case a1 = 1 (the case c1 = 1 can be treated similarly).
If a2 = 1, then e2 is a 0-sum edge. If c1 = 0 or b1+ b2 = 1, then the Dehn

surgery \D along the edge e2 preserves the 3-independence of F because the
rank of {λ(F1), λ(F3), λ(F4), λ(F5)} is three. If c1 = 1 and b1 = b2 = 0, then
we have b3 = 1. Therefore, e3 is a 0-sum edge and {λ(F1), λ(F2), λ(F5)} is
linearly independent. If c1 = 1 and b1 = b2 = 1, then we have b3 = 0 and
c3 = 1. Therefore, e1 is a 0-sum edge and {λ(F2), λ(F3), λ(F4)} is linearly
independent. In all cases the Dehn surgery \D along a certain edge preserves
the 3-independence of F .

If a2 = 0, then we have b2 = 1 and b3 + c3 = 1. Therefore we obtain∑
e4
λ(F) = (b1+ c1)α and

∑
e5
λ(F) = (b1+ c1+ 1)α, so either e4 or e5 is

a 0-sum edge. Since {λ(F1), λ(F2), λ(F3)} is linearly independent, the Dehn
surgery \D along e4 or e5 preserves the 3-independence of F . This establishes
the statement for the case when a1 = 1 or c1 = 1.

(ii) The case a1 = c1 = 0.
Because of the assumption, b1=1. We have a2b3+b2=1, b2c3+b3=1 and
{λ(F1), λ(F2), λ(F4)} is linearly independent. In this case, since

∑
e3
λ(F)=

(a2+b2+1)β+(b3+1)γ = a2(1+b3)β+b2c3γ and
∑

e5
λ(F)= (b2+1)β+

(b3 + c3 + 1)γ = a2b3β + c3(1+ b2)γ , it is easy to check that either e3 or
e5 is a 0-sum edge. Then the Dehn surgery \D along e3 or e5 preserves the
3-independence of F . �

Remark 4.6. In the proposition above, we get a decomposition P = P ′ ]13 when
P has a 3-independent triangle, P = P ′ ]e P3(3) or P ′ ] P3(3) when P has a 3-
independent quadrilateral, P = \D(P ′ ]e P3(3)) or \D(P ′ ] P3(3)) when P has a
3-independent pentagon and \D is allowed, and otherwise P = P ′ ] P ′′ or P ′ ]e P ′′.
In all cases, P ′ has fewer faces than P .
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Figure 12. The compression of a 2-independent quadrilateral.

Proposition 4.7. Let P be a (Z2)
3-colored polytope other than 13, P3(3) and

I 3 as noncolored polytopes. If there exists a 2-independent small face of P , then
either P or \−1 P is quasidecomposable.

Proof. Assume that P 6=13, P3(3), I 3. If there exists a triangular face of P , then
P is decomposable as a noncolored polytope and so (P, λ) is quasidecomposable
from Proposition 3.5. More precisely, in this case P is expressed as one of P ′]13,
P ′ ] P3(3) and P = P ′ ]e P3(3) (along a horizontal edge in Figure 2). Therefore
we can assume that P has no triangular face. Let F be a 2-independent small face
of P . We note that (P, λ) is quasidecomposable when the inverse surgery \−1 is
not allowed in the following discussion by Lemma 3.6.

Case: F is a quadrilateral. Because P 6= I 3, it easily follows from Steinitz’s
theorem that the number of quadrilaterals adjacent to F is at most two. Then, the
situation around F is shown as one of three figures in Figure 12 where ?= β or 0
and N = α or 0. If F1 and F2 are quadrilateral (see the third figure), then P can
be decomposed into the connected sum of a certain polytope P ′ and I 3 with a
certain coloring because the 1-skeleton of P becomes disconnected after cutting
three edges e′14, e′23 and e34 (see the fact mentioned before Remark 3.4). If F2 is
quadrilateral and F1 and F3 have both at least five edges (the second figure), then
we can do the surgery \−1 along edges e′ and e14 because λ(F ′), λ(F1) and λ(F4)

are linearly independent. This leads to the third figure, so \−1 P is decomposable
(that is, P is quasidecomposable). More precisely (P, λ)= (P ′, λ′) ]e (I 3, λ′′) for
some (Z2)

3-colored polytope (P ′, λ′) and a (Z2)
3-coloring λ′′ on I 3. If F is not

adjacent to a quadrilateral (the first figure), then we can do the surgery \−1 along
edges e and e23 because λ(F ′), λ(F2) and λ(F3) are linearly independent. This
leads to the second figure. Therefore \−1 P is quasidecomposable.

Case: F is a pentagon. The situation around F is shown as the first figure in
Figure 13. We can assume that P has no triangle and no quadrilateral from the
previous case and the proof of Proposition 4.5. We do the surgery \−1 along the
edges e and e′ and divide F into a triangle and a quadrilateral (the second figure).
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Figure 13. The compression of a 2-independent pentagon.

Since \−1 P has a triangular face, it is quasidecomposable from Proposition 3.5.
More precisely, \−1 P = P ′ ]e P3(3) along the edge e′′ (see the third figure). �

Remark 4.8. When F is a pentagon in the proof of Proposition 4.7, although the
compression of the triangle of \−1 P does not change the number of faces compared
with that of P , a pentagon F is transformed into a quadrilateral by this step (see the
third figure in Figure 13). Then we apply the argument the first case in the proof
of Proposition 4.7 to this quadrilateral so that the number of faces in the resulting
polytope is one less than the number of faces in P .

In consequence of Propositions 4.5 and 4.7, we can reduce any (Z2)
3-colored

polytope to13, I 3 and P3(3)with a certain coloring by using the surgeries \−1 and
\D
= (]−113)◦\−1 (without \) and the inverses of connected sums ] and ]e(= \◦]).

From Examples 2.3 and 2.4 the possible colorings on P3(3) and I 3 are only three
and four types, respectively. We notice that (I 3, λi ) = (P3(3), λi ) ]

e (P3(3), λi )

for i = 1, 2, 3 along vertical edges and (P3(3), λ3)=1
3]13. Therefore there exist

four basic (Z2)
3-colored polytopes: (I 3, λ0) (3-colored),13 (orientable 4-colored),

(P3(3), λ1) (nonorientable 4-colored) and (P3(3), λ2) (nonorientable 5-colored).
Since the surgeries \ and \−1 preserves the number of colors of faces, and the
connected sum ] increases the number of faces, it is clear that these four polytopes
can not be constructed from others by using only ], \ and \−1. Therefore:

Theorem 4.9. Each (Z2)
3-colored polytope (P3, λ) can be constructed from 13,

(I 3, λ0), (P3(3), λ1) and (P3(3), λ2) by using two operations ] and \.

The topological translation of this theorem is Theorem 1.4 shown in the intro-
duction. We restrict the theorem above to 3- and 4-colored polytopes, and obtain
improvements of Theorem 4.1 and Corollary 4.4, respectively:

Corollary 4.10. (1) Each 3-colored polytope (P3, λ) can be constructed from
(I 3, λ0) by using two operations ] and \.

(2) Each 4-colored polytope (P3, λ) can be constructed from 13 and (I 3, λ0) by
using two operations ] and \.
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5. Nondecreasing constructions of small covers

Since the operations \ and its inverse \−1 both correspond to surgeries on small
covers, from Izmest’ev’s point of view in [2001], we used the surgeries \ and \−1

in the previous section. However Lü and Yu [2011] considered a “nondecreasing”
construction by only operations that do not decrease the number of faces. Therefore
they did not use \ in [2011]. To overcome some obstacles, they introduced new
operations ]eve, ]1 and ] c©

i , with the following result:

Theorem 5.1 [Lü and Yu 2011, Theorem 1.1]. Each (Z2)
3-colored polytope (P3,λ)

can be constructed from 13 and (P3(3), λ2) by using seven operations ], ]e, ]eve,
\−1, ]1, ] c©

4 and ] c©
5 .

However there is a gap in the proof of their paper, which we will point out. In
this section we also consider a nondecreasing construction of small covers in their
point of view. At first we start with 3-colored polytopes (that is, linear models).
Izmest’ev [2001] claimed that each 3-colored polytope can be constructed from
3-colored prisms P3(2l) by using ] and \−1 in the proof of Theorem 4.1. From
the relation P3(2l) = I 3 ]e

· · · ]e I 3, we can obtain a construction of 3-colored
polytopes as follows.

Proposition 5.2. Each 3-colored polytope (P3, λ) can be constructed from (I 3, λ0)

by using three operations ], ]e and \−1.

Above, we use the operation ]e instead of \ used in Theorem 4.1. Then we can
also use the Dehn surgery \D and its inverse because of the relations \D

= ]e13

and (\D)−1
= \D . Applying Proposition 4.2 to the proposition above, we have this:

Proposition 5.3. Each 4-colored polytope (P3, λ) can be constructed from13 and
(I 3, λ0) by using three operations ], ]e and \−1.

However, the operations ], ]e and \−1 are not enough to construct all (Z2)
3-

colored polytopes. To analyze the “nondecreasing” construction of general (Z2)
3-

colored polytopes, we first prove the following lemma.

Lemma 5.4. Let (P, λ) be a (Z2)
3-colored polytope and e be an edge of P but

not an edge of a quadrilateral. Suppose that the 3-connectedness of the 1-skeleton
of P is destroyed after doing surgery \ along the edge e. Then (P, λ) is quasi-
decomposable.

Proof. In Figure 6, we assume that the surgery \ destroys the 3-connectedness
of the 1-skeleton of P . Then there exists a face F such that F ∩ F2 6= ∅ and
F ∩ F4 6= ∅; see Figure 14. Since neither F1 nor F3 is a quadrilateral, R = Q
and R′ = Q′ cannot both hold simultaneously (in particular P 6= P3(3)). By a
symmetry we can assume that R 6= Q, that is, e1 is not adjacent to e2. When e′1 is
adjacent to e4 (that is, when R′ = Q′), the 1-skeleton of P becomes disconnected
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Figure 14. Obstacle to surgery \ (correctly, F is a convex polygon).

after cutting the three nonadjacent edges e1, e2, e′. Therefore P is decomposable
as a noncolored polytope, so P is quasidecomposable from Proposition 3.5. Hence
we assume that e′1 is not adjacent to e4 (that is, R′ 6= Q′). We do the inverse surgery
\−1 along the pair of edges {e′i , e4} where i = 3 when λ(F) is either α or α + β,
and i = 1 when it is not so. If the inverse surgery \−1 is not allowed, then (P, λ) is
quasidecomposable from Lemma 3.6. Otherwise, the graph of \−1 P becomes dis-
connected after cutting the three nonadjacent edges e2, ei (where i = 1, 3) and the
edge constructed by gluing e′i and e4 by \−1, and {λ(F), λ(F2), λ(Fi )} is linearly
independent. Therefore \−1 P is decomposable as a (Z2)

3-colored polytope such
as \−1 P = P1]P2, or equivalently P = P1]

e P2. Thus, P is quasidecomposable. �

Remark 5.5. Izmest’ev [2001] used the lemma above only when F4 in Figure 14 is
a quadrilateral. In this case, P is always decomposable as a noncolored polytope.
Lü and Yu [2011] claimed without proof that this argument can be generalized to
every case under the hypothesis of Lemma 5.4 (see [ibid., Proposition 2.5]), and
proved Theorem 5.1 using this claim when F4 is also a pentagon. However their
claim is incorrect; see Figure 15. This gap in their proof of Theorem 5.1 is filled by
using Lemma 5.4 instead of using [Proposition 2.5]. Furthermore, Theorem 5.1 is
improved by replacing ]1 with ] c©

3 as follows: Each (Z2)
3-colored polytope (P3, λ)

can be constructed from 13 and (P3(3), λ2) by using seven operations ], ]e, ]eve,
\−1 and ] c©

i for i = 3, 4, 5.

Figure 15. A counterexample of [Lü and Yu 2011, Proposition 2.5].
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Figure 16. Another compression of a 2-independent pentagon.
In the first figure we may assume that F3 is not a quadrilateral
by replacing it by F2 if necessary because there is no pair of
quadrilaterals adjacent to each other in P . Then we can do the
surgery \ along the edge e3 and transform F into a triangle (the
second figure). Here when the surgery \ is not allowed, P is
quasidecomposable from Lemma 5.4. Then the triangle can be
compressed by (]e)−1 P3(3) along the edge e (which is also the
composition of \−1 along e′, e′′ and ]−1 P3(3) at v) and we have
P = \−1(P ′ ]e P3(3)) in the third figure.

From the discussion of Propositions 4.5 and 4.7, the number of faces of (Z2)
3-

colored polytopes can be reduced by using the inverses of ] and ]e when P has a
3-independent small face (see Remark 4.6 and \D

= (]e13)−1), or a 2-independent
triangle (P = P ′ ] P3(3) or P ′ ]e P3(3) along a horizontal edge), or a pair of
2-independent quadrilaterals adjacent to each other (P = P ′ ] I 3 or P ′ ]e I 3).
Moreover, each 2-independent pentagon can be compressed by using the surgery
\ as shown in Figure 16.

In general when colors of two faces on ends of a common edge of big faces
coincide, we can do the surgery \ along this edge and decrease the number of faces.
In such a way, we reduce the number of faces of P by using \, ]−1 and (]e)−1.
Here, we denote an ultimate polytope obtained by these operations by P̃ . By the
argument as above, P̃ satisfies the conditions that

(1) P̃ is not quasidecomposable,

(2) each small face of P̃ is an isolated 2-independent quadrilateral, and

(3) the colors of any two faces on the end of every edge that is adjacent to big
faces do not coincide.

There are many polytopes satisfying this condition; see Figure 17. Such a poly-
tope P̃ is called irreducible. To reduce P̃ we need a coloring change operation ] c©

4
introduced in [Lü and Yu 2011].
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Figure 17. Example of an irreducible polytope; truncated octahe-
dron with a (Z2)

3-coloring; see [Lü and Yu 2011, Example 2.1].

Figure 18. Coloring change ] c©
i for 2-independent i-gon.

Definition 5.6. The operation in Figure 18 is called the coloring change ] c©
i for a

2-independent i-gon. This operation is defined as the connected sum along faces to
an i-gonal prism P3(i). In particular, ] c©

3 = ]
1(P3(3), λ2); see [Lü and Yu 2011].

It is clear that ] c©
i is invertible because (] c©

i )
−1
= ]

c©
i .

By using the operation ] c©
4 , we can change a color of each 2-independent quadri-

lateral F of an irreducible polytope P̃ , and compress it by the surgery \ as the
following way. The situation around F is shown as Figure 19. Here Fi for 1≤ i ≤4
are all big faces, and F5 6= F6 because F1 is not a quadrilateral. Moreover F5 is
not adjacent to F6 because P̃ is not decomposable as a noncolored polytope. After
changing color of F as λ(F5) by the operation ] c©

4 , if the surgery \ along the edge e5

is allowed, then we can do it and reduce the number of faces of P̃ . If this surgery
is not allowed, then F5 is adjacent to F2 or F3. In this case F6 is not adjacent to
F3 and F4. Therefore we can do the surgery \ along e6 after changing color of F
as λ(F6) by the operation ] c©

4 , and reduce the number of faces of P̃ .
Moreover the 3-colored cube (I 3, λ0) is obtained by this operation from other

basic polytopes such as ] c©
4 (I

3, λi ) for i = 1 or 3. Therefore we have an improve-
ment of Theorem 5.1 as follows.

Theorem 5.7. Each (Z2)
3-colored polytope (P3, λ) can be constructed from 13,

(P3(3), λ1) and (P3(3), λ2) by using four operations ], ]e, \−1 and ] c©
4 .
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Figure 19. Compression of an isolated 2-independent quadrilateral.

The topological translations of Propositions 5.2 and 5.3 and Theorem 5.7 are
stated in Theorem 1.6.

6. Locally standard 2-torus manifolds over D3

A 2-torus manifold Mn is an n-dimensional closed smooth manifold with an effec-
tive action of (Z2)

n; see [Lü 2009; Lü and Masuda 2009] for details. If the action
is locally standard, then the orbit space Q is a nice manifold with corners. When
Q is a simple convex polytope, M is a small cover.

We consider the case that Q is a 3-dimensional disc D3 with a simple cell de-
composition of the boundary ∂D3, that is, a locally standard 2-torus manifold
over D3. This class is a little wider than 3-dimensional small covers. In fact the
1-skeleton of Q is a 2-connected 3-valent planar graph. This graph is simple and
3-connected if and only if Q is a simple convex polytope. In this category there is
no obstacle to surgeries. Therefore the argument in the previous section becomes
easy.

Example 6.1. In Figure 20 we show the characteristic functions of S3 with the stan-
dard (Z2)

3-action and three different (Z2)
3-colorings of the 2-sided prism P3(2),

respectively. The associated 2-torus manifolds M(P3(2), λi ) are homeomorphic to
S1
×S2, the S2-bundle over S1 characterized by the conjugation z 7→ z̄ on S2

=CP1

Figure 20. The (Z2)
3-colored simple cell decompositions of D3;

�, (P3(2), λ0), (P3(2), λ1) and (P3(2), λ2).
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Figure 21. Blow up ]P3(2) and its inverse. In particular
](P3(2), λ0) (when ∗ = 0) is identified with the inverse surgery
\−1 along a pair of adjacent edges. In [Kuroki 2010] the blow
down ]−1 P3(2) is written by \0.

and S1
× S2 respectively as i = 0, 1, 2. We denote M(P3(2), λ1) by S1

×Z2 S2,
where the Z2-action on S1

× S2 is given as t · (s, z)= (−s, z̄).

Remark 6.2. We can easily verify the following relations:

(1) ]� is trivial and ]e
�= \.

(2) ]P3(2) (or ]e P3(2) along the horizontal edge) is a blow up shown in Figure 21
and ]e P3(2) (along the vertical edge) is trivial.

(3) \2(I 3, λ0)= (P3(2), λ0) and \(P3(2), λ0)=�.

(4) \(P3(3), λ1)= (P3(2), λ1) and \(P3(3), λ3)= (P3(2), λ2).

(5) \D13
= (P3(2), λ2).

Assume that Q 6= P3(2) and the 1-skeleton of Q is 2-connected but not 3-
connected. There exist two edges e1 and e2 such they are not adjacent to each
other and the 1-skeleton of Q becomes disconnected after cutting them. Then, the
1-skeleton of Q becomes disconnected after cutting e1 and other two edges that are
adjacent to a vertex of e2; see Remark 3.4. Here we can choose these three edges
such that they do not adjoin one vertex because Q is not P3(2). Therefore we have
a decomposition Q = Q′ ]Q′′ for some Q′, Q′′ 6= �, that is, Q is decomposable as
a (Z2)

3-colored cell decomposition of D3. Applying (3), (4) and (5) of Remark 6.2
to Theorem 4.9, we obtain the following corollary immediately.

Corollary 6.3. Each (Z2)
3-colored cell decomposition of D3 can be constructed

from 13, (I 3, λ0), (P3(3), λ1) and (P3(3), λ2) by using two operations ] and \.

In the category of 2-torus manifolds, there is no obstacle to surgeries and blow
downs. Therefore we need not consider the case that surgeries are not allowed (for
example, Lemmas 3.6 and 5.4), and obtain the following theorem.

Theorem 6.4. (1) Each 3-colored cell decomposition of D3 can be constructed
from � by using the inverse surgery \−1.

(2) Each 4-colored cell decomposition of D3 can be constructed from � by using
the inverse surgery \−1, the Dehn surgery \D(= ]e13) and the blow up ]13.
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(3) Each (Z2)
3-colored cell decomposition of D3 can be constructed from � by

using the inverse surgery \−1 and connecting13, (P3(2), λ1) and (P3(3), λ2)

by the operations ] and ]e.

Proof. Let (Q, λ) be a (Z2)
3-colored cell decomposition of D3 but not �. If

a 2-gonal face appears in the following discussion, then (P3(2), λ1) is separated
from Q or we do the surgery \ and this 2-gon is compressed such as Figure 21
immediately.

First, each 3-colored cell decomposition except � can be done by the surgery \
along some edge. Clearly, this operation decreases the number of faces.

Second, in the proof of Proposition 4.2, the Dehn surgery \D can be continued
until a triangle appears because there is no obstacle to \D . Therefore each 4-colored
cell decomposition of D3 can be reduced to a 3-colored cell decomposition by using
\D and the blow down ]−113.

Third, since there is no obstacle to the surgeries \ and \D in this category, in the
proofs of Propositions 4.5 and 4.7, we need not consider a quasidecomposition
by prohibition of surgeries. By Proposition 4.5, when Q has a 3-independent
small face, Q can be reduced by one of the blow downs ]−113, ]−1 P3(3) and
(]e)−1 P3(3) and the Dehn surgery \D; see Remark 4.6. By Proposition 4.7, when
Q has a 2-independent triangle, the number of faces of Q can be reduced by the
blow downs ]−1 P3(3) or (]e)−1 P3(3) (along a horizontal edge in Figure 2). Since
each 2-independent quadrilateral (or pentagon) has a 3-colored edge, we can do
the surgery \ along this edge in this category and decrease the number of faces.
Therefore either Q or \D Q can be expressed as one of \−1 Q′, 13 ]Q′, P3(2)]Q′,
P3(3) ] Q′ or P3(3) ]e Q′ for some Q′ such that the number of faces of Q′ is less
than that of Q.

From the relations (3), (4) and (5) in Remark 6.2, (P3(2), λi ) for i = 0, 2
and (P3(3), λ j ) for j = 1, 3 can be constructed from �,13, (P3(2), λ1) and
(P3(3), λ2) by using ], ]e and \−1. Here ] (or ]e) and \−1 (or \D) are commutative
in this category such as ](P3(2), λ2)=\

D
◦]13 or ](P3(3), λ1)=\

−1
◦](P3(2), λ1)

and so on. Therefore Q can be constructed from Q′ by using operations \−1,
\D
= ]e13, ]13, ](P3(2), λ1), ](P3(3), λ2) and ]e(P3(3), λ2). For example,

if \D Q can be expressed as (P3(3), λ1) ] Q′, then Q = \D((P3(3), λ1) ] Q′) =
13]e(\−1

◦ (P3(2), λ1) ]Q′). By induction on the number of faces of Q, the proof
is complete. �

The topological translation of Theorem 6.4 is stated in Theorem 1.7.
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