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We present examples of domains that do not admit any complete Kähler
metric with bisectional curvature bounded between prescribed two negative
constants by a modification of a method of P. Yang.

1. Introduction

Yang [1976] showed that the polydiscs of complex dimension at least two do not
admit any complete Kähler metrics with their holomorphic bisectional curvature
bounded between two negative constants. He also pointed out that the same argu-
ment applies to the bounded symmetric domains with rank higher than one; these
domains therefore do not admit such metrics with the same curvature condition. On
the other hand the Poincaré–Bergman metric of the unit ball is a complete Kähler
metric with its bisectional curvature bounded between two negative constants. Thus
the following question [Yau 1982] seems natural:

Which complex manifolds admit a complete Kähler metric with bisectional
curvature bounded between two negative constants?

Yang’s original interest was linked with a question on the holomorphic universal
covering manifold of a compact Kähler manifold with negative curvature, it was
conjectured that it should be biholomorphic to a bounded domain. Since such a
universal cover was shown to be a Stein manifold by Greene and Wu [1971;1979]
during that period, Yang’s work was a natural one in the sense that he investigated
the curvature of possible Kähler metrics on bounded symmetric domains. On the
other hand, the question posed above seems, in its own right, to contain sufficient
significance to deserve further study. Incidentally, the method developed in [Yang
1976], since it is the almost unique one known to this day, also seems worth deeper
investigation.
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Indeed, Seshadri and Zheng [2008] investigated this line of thought and showed
that Yang’s method works not only for domains but also for product manifolds.
It occurred to us that it is meaningful to investigate whether there are manifolds
which do not admit complete Kähler metrics with negative bisectional curvature
that are neither biholomorphic to product nor homogeneous manifolds. In fact
the main purpose of this paper is to present a modification of Yang’s method and
applications, and the following theorems:

Theorem 1.1. There exists a domain � in C2 satisfying the following properties:

(i) � is a bounded pseudoconvex domain with smooth boundary.

(ii) Aut� does not act transitively on �.

(iii) � is not biholomorphic to the product of complex manifolds.

(iv) � does not admit complete Kähler metric with bisectional curvature bounded
between two negative constants.

Theorem 1.2. Let � = {(z, w) ∈ C2
: |z| < 1, |w| < r(z)}, where r : D→ R is a

smooth positive function on D such that ∂2

∂z∂z
1

r(z)2 < 0. Then � cannot admit any
complete Kähler metric with bisectional curvature bounded between two negative
constants.

The rest of the paper is organized as follows: Section 2 introduces some basic
facts and terminology. In Section 3, our modification of Yang’s proof is presented
with a proof of Theorem 1.1. In Section 4, we give yet another modification of
Yang’s method and the proof of Theorem 1.2.

2. Preliminary and fundamental facts

First, we introduce some facts and terminology. Let (M, J, h) be a Kähler manifold
M of dimension n with a Kähler metric h and a complex structure J . The curvature
tensor R on (M, J, h) is given by

Ri jkl =
∂2hi j

∂zk∂zl
−

n∑
α,β=1

hαβ
∂hiβ

∂zk

∂hαj

∂zl

in local coordinates (z1, . . . , zn). The bisectional curvature B(X, Y ) for X, Y in
Tp M at p ∈ M is given by

B(X, Y )= R(X, JX, Y, JY )
h(X, X)h(Y, Y )

.

In terms of local coordinates,

B(X, Y )=−

∑n
i, j,k,l=1 Ri jkl X i X j YkY l∑n

i, j=1 hi j X i X j
∑n

i, j=1 hi j Yi Y j



NEGATIVELY PINCHED BISECTIONAL CURVATURE 203

where

X = Re
n∑

j=1

X j
∂

∂z j
and Y = Re

n∑
j=1

Y j
∂

∂z j
.

The following well known theorems will play important roles in our exposition:

Theorem 2.1 (generalization of Schwarz’s lemma [Yau 1978]). Let (M, g) be a
complete Kähler manifold with Ricci curvature bounded below by a constant −k
and let (N , h) be a Hermitian manifold with bisectional curvature bounded above
by a negative constant−K . Then every holomorphic mapping f :M→ N satisfies

f ∗h ≤ k
K

g.

Theorem 2.2 (generalized maximum principle [Omori 1967; Yau 1975]). Let M
be a complete Riemannian manifold with Ricci curvature bounded below. Then for
every C2 function f : M→ R that is bounded from above, there exists a sequence
{pk}

∞

k=0 in M such that

lim
k→∞
|grad f (pk)| = 0, lim sup

k→∞
4 f (pk)≤ 0 and lim

k→∞
f (pk)= sup

M
f.

For Dr = {z ∈ C : |z|< r}, denote by

gr =
r2 dz dz
(r2− |z|2)2

the Poincaré metric on Dr with curvature −4. Let D be the unit disc and g the
Poincaré metric on D. Denote by Dn the n-dimensional polydisc. Let gradh and
4h be the gradient and the Laplacian with respect to the Riemannian metric h.

3. A modified proof of the theorem of Paul Yang

We begin this section by proving Yang’s theorem again, using a modification of
his method; our modification lies in that we do not use integrals.

Theorem 3.1 [Yang 1976]. The polydisc Dn (n ≥ 2) and bounded symmetric do-
mains with rank ≥ 2 do not admit any complete Kähler metrics with its bisectional
curvature bounded between two negative constants.

Proof. For simplicity, we will prove the result for D2. However, the same proof
can be applied to higher-dimensional polydiscs and bounded symmetric domains
with rank ≥ 2. Suppose that there exists a complete Kähler metric h on D2 with
−d ≤ B(X, Y )≤−c< 0 for any X , Y , where c, d are positive constants. Fix z ∈ D
and define iz : D→ D2 by iz(w) = (z, w). By Theorem 2.1, we have i∗z h ≤ 4

c g;
that is,

h22(z, w)≤
4
c

1
(1− |w|2)2

.
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Define F : D→ R by F(z) = h22(z, 0). Then F is a smooth, positive, bounded
function. We will induce a contradiction by calculating the Laplacian of F :

4g F(z)= (1− |z|2)2
∂2 F
∂z∂z

(z)

= (1− |z|2)2
(

R1122(z, 0)+
2∑

α,β=1

hαβ
∂h2β

∂z
∂hα2

∂z

)
≥ c(1− |z|2)2h22(z, 0)h11(z, 0).

From Schwarz’s lemma applied to π : D2
→ D, π(z, w) = z, we get π∗g ≤ 2d

4 h,
that is, (1− |z|2)2h11(z, w)≥ 2/d . So

4g F ≥ 2c
d

F.

Since4g log F =4g F/|F |−| gradg F |2/|F |2 and log F is a well defined bounded
function, by the almost maximum principle (Theorem 2.2) there exists a sequence
{pk}

∞

n=1 in D such that

lim
k→∞

F(pk)=sup
D

F, lim
k→∞
|gradglog F(pk)|=0 and lim sup

k→∞
4glog F(pk)≤0.

But this contradicts lim supk→∞4g log F(pk)≥ 2c/d . �

Though clear, the crux of the above argument can be summarized as follows:

Proposition 3.2. Let � be a domain in Cn . Suppose that there exist an embedding

ι : D2
→�, ι(z, w)= (z, w, 0, . . . , 0)

and a projection
π :�→ D, π(z1, z2, . . . , zn)= z1.

Then for any constants c > d > 0, there is no complete Kähler metric on � with

−c ≤ Bisec≤−d.

Example 3.3. Let � = {(z, w, u) ∈ C2
: |z| < 1, |w| < α, |z +w| < β}. If α ≥ 1

and β ≥ 2, then � does not have any complete Kähler metrics with bisectional
curvature bounded between two negative constants. This � is a nonproduct and
nonhomogeneous analytic polyhedron that is not biholomorphic to the bidisc: If
� were a product manifold, � would be biholomorphic to D2 by the Riemann
mapping theorem. However, � cannot be biholomorphic to D2 [Fridman 1978].
Likewise, � is not homogeneous; if it were, then it would be biholomorphic to D2

[Kim 1992].
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For a sequence of domains {�p}
∞

p=1, it is possible that �p does not admit any
complete Kähler metrics with bisectional curvature bounded between two negative
constants for all p, but that {�p} converges to the ball as p→∞.

Corollary 3.4. For any 0< r < 1 and positive constants 0< c < d ,

�= {(z, w) ∈ C×Cn
: |z|2+ |w|2 < 1, |z|< r}

does not admit complete Kähler metric with

−d < Bisec<−c.

Proof. The mapping

(z, w) 7→
( 1

r
z,

1
√

1− r2
w
)

sends � to {(z, w) ∈C×Cn
: r2
|z|2+ (1−r2)|w|2 < 1, |z|< 1}. So an embedding

and a projection like in Proposition 3.2 exist. �

Remark 3.5. In contrast, the sequence of domains {�m}
∞

m=1, where the domain
�m = {(z, w) ∈Cn

: |z|2+|w|2m < 1} has a complete Kähler metric with sectional
curvature bounded between two negative constants for all m, converges to the
bidisc. Bland [1986] proved that the Kähler–Einstein metric on �m has sectional
curvature bounded between two negative constants. However we could find another
complete Kähler metric explicitly which has sectional curvature bounded between
two negative constants.

On �m = {(z, w) ∈ Cn
: |z|2+ |w|2m < 1}, let

gm(z, w)=−∂∂ log ρ(z, w), where ρ(z, w)= (1− |z|2)
1
m − |w|2.

Then gm is a complete Kähler metric on �m . The metric gm(z, w) is given by

1
m (1− |z|

2)
1
m−2

((1− |z|2)
1
m − |w|2)2

(
(1− |z|2)

1
m − |w|2+ 1

m |z|
2
|w|2 wz(1− |z|2)

wz(1− |z|2) m(1− |z|2)2

)
,

where

det gm =

1
m (1− |z|

2)
2
m−2

((1− |z|2)
1
m − |w|2)3

,

and the inverse g−1
m (z, w) is

(1− |z|2)
1
m − |w|2

(1− |z|2)
1
m

(
m(1− |z|2)2 −wz(1− |z|2)
−wz(1− |z|2) (1− |z|2)

1
m − |w|2+ 1

m |z|
2
|w|2

)
.
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This metric gm is invariant with respect to the automorphisms

fα(z, w)=
(
α− z
1−αz

,
(1−α2)

1
2m

(1−αz)
1
m

w

)
for α ∈ D,

so it is enough to calculate the section curvature at (0, w). By calculation,

2mg2
11 > R1111 = 2g2

11(|w|
2
+m(1− |w|2)) > 2g2

11,

R2222 = 2g2
22,

R1122 = R2211 = R1221 = R2112 = g11g22,

and the other Ri jkl are zero at (0, w). This implies that

−2m < sectional curvature of �m <−
1
2 .

However the lower bound on the sectional curvature of this metric and of the
Kähler–Einstein metric depends on m and goes to−∞ as m→∞. So this question
is still open:

If �m has a complete Kähler metric with −d < (bi)sect < −c for some
constants c, d > 0 for all m and converges to � as m→∞, then does �
have a complete Kähler metric with −d < (bi)sect<−c?

Proof of Theorem 1.1. For ε > 0, α < 1, let

(3-1) �ε =
{
(z, w) ∈ C2

: |z|2+αe−1/(|w|2−ε) < 1, |w|> 1/
√
ε
}

∪
{
(z, w) ∈ C2

: |z|< 1, |w| ≤ 1/
√
ε
}

Then �ε is a nonhomogeneous, nonproduct, bounded pseudoconvex domain with
smooth boundary. The points (z, w)∈∂�with |w|2>ε are strongly pseudoconvex.
By dilating (z, w) 7→ (z, w/

√
ε), we see that �ε is biholomorphic to{

(z, w) ∈ C2
: |z|2+α2 exp(1− 1/(ε|w|2− ε)) < 1, |z|< 1

}
∪ D2.

Therefore we can apply Proposition 3.2. �

4. Further modification

We now find more examples of domain that do not admit complete Kähler metric
with bisectional curvature bounded between two negative constants. The domains
we look for will be different from analytic polyhedra. We will achieve this by
modifying Yang’s method one more time.

Proof of Theorem 1.2. Suppose that there exists a complete Kähler metric h on
� with −d ≤ B(X, Y ) ≤ −c < 0 for any X, Y for some positive constants c, d.
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Define iz : Dr(z)→ � by iz(w) = (z, w). By Schwarz’s lemma, i∗z h ≤ 4
c gr(z). So

h22(z, w)≤
4
c r(z)2/(r(z)2− |w|2)2. Define F : D→ R by

F(z)= r(z)2h22(z, 0).

Then F is a smooth, positive, bounded function. We have

∂F
∂z
(z)= ∂r2

∂z
(z)h22(z, 0)+ r(z)2

∂h22

∂z
(z, 0)

and

∂2 F
∂z∂z

= r2 ∂
2h22

∂z∂z
+
∂2r2

∂z∂z
h22+ 2 Re

(
∂r2

∂z
∂h22

∂z

)
= r2 ∂

2h22

∂z∂z
+
∂2r2

∂z∂z
h22+ 2 Re

(
∂r2

∂z
1
r2

(
∂F
∂z
−
∂r2

∂z
h22

))
= r2 ∂

2h22

∂z∂z
+

(
∂2r2

∂z∂z
−

2
r2

∣∣∣∂r2

∂z

∣∣∣2)h22+
2
r2 Re

(
∂r2

∂z
∂F
∂z

)
= r2 ∂

2h22

∂z∂z
− r4 ∂

2r−2

∂z∂z
h22+

2
r2 Re

(
∂r2

∂z
∂F
∂z

)
.

Thus

4g F ≥ c(1− |z|2)2r2h22h11− (1− |z|
2)2r2 ∂

2r−2

∂z∂z
F + 2(1−|z|2)2

r2 Re
(
∂r2

∂z
∂F
∂z

)
≥

2c
d

F − (1− |z|2)2r2 ∂
2r−2

∂z∂z
F + 2(1−|z|2)2

r2 Re
(
∂r2

∂z
∂F
∂z

)
.

So if r satisfies ∂2r−2

∂z∂z < 0, then the desired result follows by the almost maximum
principle as in the previous modification of Yang’s proof. �

Corollary 4.1. Let � is the domain in the Theorem 1.2. Suppose 1/r(z)2 = ρ(|z|)
for some positive function ρ on [0, 1] and suppose

t
dρ
dt
(t)

is a decreasing function. Then � does not admit any complete Kähler metrics with
bisectional curvature bounded between any two prescribed negative constants.

Proof. This follows by

∂2r−2

∂z∂z
=

d2ρ

dt2 +
1
t

dρ
dt
=

1
t

( d
dt

(
t dρ

dt

))
. �

Typical examples of ρ and � satisfying the conditions in Corollary 4.1 are:

Example 4.2. Let ρ(t)= exp(−t) and

�= {(z, w) ∈ C2
: |z|< 1, |w|2 < exp(|z|)}.
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Example 4.3. Let ρ(t)= α− t2 and

�= {(z, w) ∈ C2
: |z|< 1, |w|2(α− |z|2) < 1}.

If we take α > 1, then � is a bounded domain.

Remark 4.4. If
∂2r−2

∂z∂z
< 0 then ∂2r2

∂z∂z
>

2
r2

∣∣∣∂r2

∂z

∣∣∣2.
Notice that the domains given in Theorem 1.2 are in fact pseudoconcave.

The domains in Theorem 1.2 converge to
{
(z, w) ∈ C2

: |z|2+α exp
(
−1
|w|2

)
< 1

}
as ε→ 0, which does not admit a complete Kähler metric with −d < Bisec <−c
for some constants c, d > 0:

Corollary 4.5. Let � =
{
(z, w) ∈ C2

: |z|2 + αexp
(
−1
|w|2

)
< 1

}
, for some constant

α > 1. For any positive constants c < d, such that c/d > (2 logα)−1, � cannot
admit a complete Kähler metric with

−d ≤ Bisec≤−c.

Proof. Notice that

�= {(z, w) ∈ C2
: |z|< 1, |w|< r(z)}

where r(z)= 1/(logα− log(1− |z|2))
1
2 . Since ∂

2r−2

∂z∂z
=

1
(1−|z|2)2

, we obtain for

F : D→ R, F(z)= r(z)2h22(z, 0)

the inequality

4g F(z)≥ 2c
d

F(z)− F
logα−log(1−|z|2)

−
2(1−|z|2)

logα−log(1−|z|2)
Re
(

z ∂F
∂z
(z)
)
.

Since

0< 2(1−|z|2)
logα−log(1−|z|2)

≤
1

logα

and lim|z|→1 1/(logα− log(1−|z|2))= 0, for c/d > (2 logα)−1, the desired result
follows by the almost maximum principle. �
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