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O-OPERATORS ON ASSOCIATIVE ALGEBRAS AND
ASSOCIATIVE YANG–BAXTER EQUATIONS

CHENGMING BAI, LI GUO AND XIANG NI

An O-operator on an associative algebra is a generalization of a Rota–Baxter
operator that plays an important role in the Hopf algebra approach of
Connes and Kreimer to the renormalization of quantum field theory. It
is also the associative analog of an O-operator on a Lie algebra in the study
of the classical Yang–Baxter equation. We introduce the concept of an ex-
tended O-operator on an associative algebra whose Lie algebra analog has
been applied to generalized Lax pairs and PostLie algebras. We study alge-
braic structures coming from extended O-operators. Continuing the work of
Aguiar deriving Rota–Baxter operators from the associative Yang–Baxter
equation, we show that its solutions correspond to extended O-operators
through a duality. We also establish a relationship of extended O-operators
with the generalized associative Yang–Baxter equation.

1. Introduction

1a. Motivation. The interaction between studies in pure mathematics and math-
ematical physics has long been a rich source of inspirations that benefited both
fields. One such instance can be found in the seminal work of Connes and Kreimer
[Connes and Kreimer 2000; Kreimer 1999] on their Hopf algebra approach to the
renormalization of quantum field theory. There a curious algebraic identity of linear
operators appeared that turned out to be investigated concurrently in the contexts
of operads, associative Yang–Baxter equation [Aguiar 2000a; 2000b; 2001], and
commutative algebra [Guo and Keigher 2000a; 2000b; Guo 2000], under the name
of the Baxter identity (later called the Rota–Baxter identity). It originated in the
probability study of G. Baxter [1960] and was influenced by the combinatorial
interests of G.-C. Rota [1969a; 1969b; 1995]. Connes and Kreimer’s discovery of
the connection between Rota–Baxter operators and quantum field theory inspired

C. Bai is supported by NSFC grants 10621101 and 10920161, NKBRPC grant 2006CB805905 and
SRFDP grant 200800550015. L. Guo is supported by NSF grant DMS 0505445 and DMS-1001855
and thanks the Chern Institute of Mathematics at Nankai University for hospitality.
Li Guo is the corresponding author.
MSC2010: primary 16W99, 17A30; secondary 57R56.
Keywords: O-operator, Rota–Baxter operator, Yang–Baxter equation, bimodule.
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numerous studies to better understand the role played by the Rota–Baxter iden-
tity in quantum field theory renormalization, as well as in applying the idea of
renormalization to study divergency in mathematics [Ebrahimi-Fard et al. 2004;
Ebrahimi-Fard et al. 2006; Guo and Zhang 2008; Manchon and Paycha 2010].

In this paper we consider a generalization of the Rota–Baxter operator in the
relative context called the O-operator. It came from another connection between
Rota–Baxter operators (on Lie algebras) and mathematical physics. In special
cases, the Rota–Baxter identity for Lie algebras coincides with the operator form of
the classical Yang–Baxter equation, named after the well-known physicists Yang
[1967] and Baxter [1972]. The connection has its origin in the work of Semenov-
Tyan-Shanskiı̆ [1983] and its extension led to the concept of O-operators [Bai 2007;
Bordemann 1990; Kupershmidt 1999]. The relation defining an O-operator was
also called the Schouten curvature by Kosmann-Schwarzbach and Magri [1988],
and is the algebraic version of the contravariant analog of the Cartan curvature of
the Lie algebra-valued one-form on a Lie group.

Back to associative algebras, the first connection between Rota–Baxter opera-
tors and an associative analog of the classical Yang–Baxter equation was made by
Aguiar [2000a; 2000b], who showed that a solution of the associative Yang–Baxter
equation (AYBE) gives rise to a Rota–Baxter operator of weight zero.

Our study of this connection in this paper was motivated by the O-operator ap-
proach to the classical Yang–Baxter equation, but we go beyond what was known
in the Lie algebra case. On one hand, we generalize the concept of a Rota–
Baxter operator to that of an O-operator (of any weight)1 and further to extended
O-operators. On the other hand, we investigate the operator properties of the as-
sociative Yang–Baxter equation motivated by the study in the Lie algebra case.
Through this approach, we show that the operator property of solutions of the
associative Yang–Baxter equation is to a large extent characterized by O-operators.
This generalization in the associative context, motivated by Lie algebra studies,
has in turn motivated us to establish a similar generalization for Lie algebras and
to apply it to generalized Lax pairs, classical Yang–Baxter equations and PostLie
algebras [Bai et al. 2010b; 2011; Vallette 2007].

Our approach connects (extended) O-operators to solutions of the AYBE and
its generalizations, and therefore [Bai 2010] to the construction of antisymmetric
infinitesimal bialgebras and their related Frobenius algebras. The latter plays an
important role in topological field theory [Runkel et al. 2007]. In particular, we
are able to reverse the connection made by Aguiar and derive, from a Rota–Baxter

1In the weight zero case, this has been considered by Uchino [2008] under the name “generalized
Rota–Baxter operator”. In the general case, the term “relative Rota–Baxter operator” is also used
[Bai et al. 2010a].
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operator of any weight, a solution of the AYBE and hence give an antisymmetric
infinitesimal bialgebra. For further details, see [Bai et al. 2012, Section 4].

1b. Rota–Baxter algebras and Yang–Baxter equations.

Notation. In the rest of this paper, k denotes a field. By an algebra we mean an
associative (not necessarily unitary) k-algebra, unless otherwise stated.

Definition 1.1. Let R be a k-algebra and let λ ∈ k be given. If a k-linear map
P : R→ R satisfies the Rota–Baxter relation

(1-1) P(x)P(y)= P(P(x)y)+ P(x P(y))+ λP(xy) for all x, y ∈ R,

then P is called a Rota–Baxter operator of weight λ and (R, P) is called a Rota–
Baxter algebra of weight λ.

For simplicity, we will only discuss the case of Rota–Baxter operators of weight
zero in the introduction.

Relation (1-1) still makes sense when R is replaced by a k-module with any
binary operation. If the binary operation is the Lie bracket and if the Lie algebra
is equipped with a nondegenerate symmetric invariant bilinear form, then a skew-
symmetric solution of the classical Yang–Baxter equation

(1-2) [r12, r13] + [r12, r23] + [r13, r23] = 0.

is just a Rota–Baxter operator of weight zero. We refer the reader to [Bai 2007;
Ebrahimi-Fard 2002; Semenov-Tyan-Shanskiı̆ 1983] for further details.

We will consider the following associative analog of the classical Yang–Baxter
equation (1-2).

Definition 1.2. Let A be a k-algebra. An element r ∈ A⊗ A is called a solution
of the associative Yang–Baxter equation in A if it satisfies the relation

(1-3) r12r13+ r13r23− r23r12 = 0,

called the associative Yang–Baxter equation (AYBE). Here, for r =
∑

i ai ⊗ bi ∈

A⊗ A, we denote

(1-4) r12 =
∑

i

ai ⊗ bi ⊗ 1, r13 =
∑

i

ai ⊗ 1⊗ bi , r23 =
∑

i

1⊗ ai ⊗ bi .

Both (1-3) and the associative analog

(1-5) r13r12− r12r23+ r23r13 = 0

of (1-2) were introduced by Aguiar [2000a; 2000b; 2001]. In fact, (1-3) is just
(1-5) in the opposite algebra [Aguiar 2001]. When r is skew-symmetric it is easy
to see that (1-3) comes from (1-5) under the operation σ13(x⊗ y⊗ z)= z⊗ y⊗ x .
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While (1-5) was emphasized by Aguiar in the works above, we will work with (1-3)
for notational convenience and to be consistent with some of the earlier works on
connections with antisymmetric infinitesimal bialgebras [Bai 2010] and associative
D-bialgebras [Zhelyabin 1997].

Theorem 1.3 [Aguiar 2000b]. Let A be a k-algebra. If r =
∑

i ai ⊗ bi ∈ A⊗ A is
a solution of (1-5) in A, the map

P : A→ A, x 7→
∑

i
ai xbi

defines a Rota–Baxter operator of weight zero on A.

The theorem is obtained by replacing the tensor symbols in

r13r12− r12r23+ r23r13

=

∑
i, j

ai a j ⊗ b j ⊗ bi −
∑
i, j

ai ⊗ bi a j ⊗ b j +
∑
i, j

a j ⊗ ai ⊗ bi b j = 0

by x and y in A.

1c. O-operators. We will introduce an extended O-operator as a generalization of a
Rota–Baxter operator and the associative analog of an O-operator on a Lie algebra.
We then extend the connections of Rota–Baxter algebras with associative Yang–
Baxter equations to those of O-operators. This study is motivated by the relation-
ship between O-operator and the classical Yang–Baxter equation in Lie algebras
[Bai 2007; Bai et al. 2010b; Bordemann 1990; Kupershmidt 1999]

Let (A, · ) be a k-algebra. Let (V, `, r) be an A-bimodule, consisting of a com-
patible pair of a left A-module (V, `) given by ` : A→ Endk(V ) and a right A-
module (V, r) given by r : A→Endk(V ); see Section 2a for the precise definition.
Fix a κ ∈ k. A pair (α, β) of linear maps α, β : V → A is called an extended
O-operator with modification β of mass κ if

κ`(β(u))v = κur(β(v)) and

α(u) ·α(v)−α(l(α(u))v+ ur(α(v)))= κβ(u) ·β(v) for all u, v ∈ V .

When β = 0 or κ = 0, we obtain the concept of an O-operator α satisfying

(1-6) α(u) ·α(v)= α(`(α(u))v)+α(ur(α(v))) for all u, v ∈ V .

When V is taken to be the A-bimodule (A, L , R), where L , R : A → Endk(A)
are given by the left and right multiplications, an O-operator α : V → A of weight
zero is just a Rota–Baxter operator of weight zero. To illustrate the close relation-
ship between O-operators and solutions of the AYBE (1-3), we give the following
reformulation of a part of Corollary 3.6. See Section 3 for general cases.



O-OPERATORS AND YANG–BAXTER EQUATIONS 261

Let k be a field whose characteristic is not 2. Let A be a k-algebra that we for
now assume to have finite dimension over k. Let

σ : A⊗ A→ A⊗ A, a⊗ b 7→ b⊗ a,

be the switch operator and let

t : Homk(A∗, A)→ Homk(A∗, A)

be the transpose operator. Then the natural bijection

φ : A⊗ A→ Homk(A∗,k)⊗ A→ Homk(A∗, A)

is compatible with the operators σ and t . Let Sym2(A⊗A) and Alt2(A⊗A) (respec-
tively Homk(A∗, A)+ and Homk(A∗, A)−) be the eigenspaces for the eigenvalues
1 and −1 of σ on A ⊗ A (respectively of t on Homk(A∗, A)). Then we have a
commutative diagram of bijective linear maps given by

(1-7)

A⊗ A // φ // //
��

����

Homk(A∗, A)
��

����
Alt2(A⊗ A)⊕Sym2(A⊗ A) // φ // // Homk(A∗, A)−⊕Homk(A∗, A)+,

which preserves the factorizations. Define Hombim(A∗, A)+ to be the subset of
Homk(A∗, A)+ consisting of A-bimodule homomorphisms from A∗ to A, both of
which are equipped with the natural A-bimodule structures. Let

Sym2
bim(A⊗ A) := φ−1(Hombim(A∗, A)+)⊆ Sym2(A⊗ A).

Then we have this (see Corollary 3.6):

Theorem 1.4. An element r= (r−, r+)∈Alt2(A⊗A)⊕Sym2
bim(A⊗A) is a solution

of the AYBE (1-3) if and only if the pair φ(r) = (φ(r)−, φ(r)+) = (φ(r−), φ(r+))
is an extended O-operator with modification φ(r+) of mass κ =−1. In particular,
when r+ is zero, an element r = (r−, 0) = r− ∈ Alt2(A⊗ A) is a solution of the
AYBE if and only if the pair φ(r)= (φ(r)−, 0)= φ(r−) is an O-operator of weight
zero given by (1-6) when (V, `, r) is the dual bimodule (A∗, R∗, L∗) of (A, L , R).

Let MO(A∗, A) denote the set of extended O-operators (α, β) from A∗ to A
of mass κ = −1. Let O(A∗, A) denote the set of O-operators α : A∗ → A of
weight 0. Let AYB(A) denote the set of solutions of the AYBE (1-3) in A. Let
SAYB(A) denote the set of skew-symmetric solutions of the AYBE (1-3) in A.
Then Theorem 1.4 means that the bijection in (1-7) restricts to bijections in the
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following commutative diagram:

Alt2(A⊗ A)⊕Sym2
bim(A⊗ A)

**
φ

** **
Homk(A∗, A)−⊕Hombim(A∗, A)+

AYB(A)
⋂
(Alt2(A⊗ A)⊕Sym2

bim(A⊗ A))
**

φ

** **

?�

OO

MO(A∗, A)
⋂
(Homk(A∗, A)−⊕Hombim(A∗, A)+)

?�

OO

SAYB(A)
?�

OO

**
φ

** **
O(A∗, A)

⋂
Homk(A∗, A)−
?�

OO

1d. Layout of the paper. In Section 2, we introduce extended O-operators and
study their connection with the associativity of certain products. Section 3 es-
tablishes the relationship of extended O-operators with associative and extended
associative Yang–Baxter equations. Section 4 introduces the concept of the gener-
alized associative Yang–Baxter equation (GAYBE) and considers its relationship
with extended O-operators.

2. O-operators and extended O-operators

We give background notation in Section 2a before introducing the concept of an
extended O-operator in Section 2b. We then show in Section 2c and 2d that ex-
tended O-operators can be characterized by the associativity of a multiplication
derived from this operator.

2a. Bimodules, A-bimodule k-algebras and matched pairs of algebras.

Definition 2.1. Let (A, · ) be a k-algebra.

(i) An A-bimodule is a k-module V and linear maps `, r : A→ Endk(V ) such
that (V, `) defines a left A-module, (V, r) defines a right A-module and the
two module structures on V are compatible in the sense that

(`(x)v)r(y)= `(x)(vr(y)) for all x, y ∈ A, v ∈ V .

If we want more precision, we denote an A-bimodule V by the triple (V, `, r).
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(ii) A homomorphism between two A-bimodules (V1, `1, r1) and (V2, `2, r2) is a
k-linear map g : V1→ V2 such that

g(`1(x)v)= `2(x)g(v) and g(vr1(x))= g(v)r2(x) for all x ∈ A, v ∈ V1.

For a k-algebra A and x ∈ A, define the left and right actions

L(x) : A→ A, L(x)y= xy and R(x) : A→ A, y R(x)= yx for all y ∈ A.

Further define

L= L A : A→Endk(A), x 7→ L(x) and R= RA : A→Endk(A), x 7→ R(x).

Obviously, (A, L , R) is an A-bimodule.
For a k-module V , let V ∗ := Homk(V,k) denote the dual k-module. Denote

the usual pairing between V ∗ and V by

〈 · , · 〉 : V ∗× V → k, 〈u∗, v〉 = u∗(v) for all u∗ ∈ V ∗ and v ∈ V .

Proposition 2.2 [Bai 2010]. Let A be a k-algebra and let (V, `, r) be an A-
bimodule. Define the linear maps `∗, r∗ : A→ Endk(V ∗) by

〈u∗`∗(x), v〉 = 〈u∗, `(x)v〉 and 〈r∗(x)u∗, v〉 = 〈u∗, vr(x)〉

for all x ∈ A, u∗ ∈ V ∗ and v ∈ V . Then (V ∗, r∗, `∗) is an A-bimodule, called the
dual bimodule of (V, `, r).

Let (A∗, R∗, L∗) denote the dual A-bimodule of the A-bimodule (A, L , R).
We next extend the concept of a bimodule to that of an A-bimodule algebra by

replacing the k-module V by a k-algebra R.

Definition 2.3. Let (A, · ) be a k-algebra with multiplication · and let (R, ◦ ) be
a k-algebra with multiplication ◦ . Let `, r : A→ Endk(R) be two linear maps.
We call R (or the triple (R, `, r) or the quadruple (R, ◦ , `, r)) an A-bimodule k-
algebra if (R, `, r) is an A-bimodule that is compatible with the multiplication ◦
on R. More precisely, we have, for all x, y ∈ A and v,w ∈ R

`(x · y)v = `(x)(`(y)v), `(x)(v ◦w)= (`(x)v) ◦w,(2-1)

vr(x · y)= (vr(x))r(y), (v ◦w)r(x)= v ◦ (wr(x)),(2-2)

(`(x)v)r(y)= `(x)(vr(y)), (vr(x)) ◦w = v ◦ (`(x)w).(2-3)

Obviously, for any k-algebra (A, · ), the triple (A, · , L , R) is an A-bimodule
k-algebra. An A-bimodule k-algebra R need not be a left or right A-algebra since
we do not assume that A · 1 is in the center of R. For example, the A-bimodule
k-algebra (A, L , R) is an A-algebra if and only if A is a commutative ring.

An A-bimodule k-algebra is a special case of a matched pair as introduced in
[Bai 2010]. It is easy to get the following result, which is a generalization of the
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classical result between bimodule structures on V and semidirect product algebraic
structures on A⊕ V .

Proposition 2.4. If (R, ◦ , `, r) is an A-bimodule k-algebra, then the direct sum
A⊕ R of vector spaces is turned into a k-algebra (the semidirect sum) by defining
multiplication in A⊕ R by

(x1, v1) ∗ (x2, v2)= (x1 · x2, `(x1)v2+ v1r(x2)+ v1 ◦ v2)

for all x1, x2 ∈ A and v1, v2 ∈ R.

We denote this algebra by A n`,r R or simply A n R.

2b. Extended O-operators. We first define an O-operator before introducing an
extended O-operator through an auxiliary operator.

Definition 2.5. Let (A, · ) be a k-algebra and (R, ◦ , `, r) be an A-bimodule k-
algebra. A linear map α : R→ A is called an O-operator of weight λ∈k associated
to (R, ◦ , `, r) if α satisfies

(2-4) α(u) ·α(v)= α(`(α(u)v))+α(ur(α(v)))+ λα(u ◦ v) for all u, v ∈ V .

Remark 2.6. Under our assumption that k is a field, the nonzero weight can
be normalized to weight 1. In fact, for a nonzero weight λ ∈ k, if α is an O-
operator of weight λ associated to an A-bimodule k-algebra (R, ◦ , `, r), then α is
an O-operator of weight 1 associated to (R, λ◦ , `, r) and α/λ is an O-operator of
weight 1 associated to (R, ◦ , `, r).

When the multiplication on the A-bimodule k-algebra happens to be trivial, an
O-operator is just a generalized Rota–Baxter operator defined in [Uchino 2008].
Further, an O-operator associated to (A, L , R) is just a Rota–Baxter operator on A.
An O-operator can be viewed as the relative version of a Rota–Baxter operator in
that the domain and range of an O-operator might be different. Thus an O-operator
is also called a relative Rota–Baxter operator.

We now further generalize the concept of an O-operator.

Definition 2.7. Let (A, · ) be a k-algebra.

(i) Let κ ∈ k and let (V, `, r) be an A-bimodule. A linear map (respectively an
A-bimodule homomorphism) β : V → A is called a balanced linear map of
mass κ (respectively balanced A-bimodule homomorphism of mass κ) if

(2-5) κ`(β(u))v = κur(β(v)) for all u, v ∈ V .

(ii) Let κ, µ ∈ k and let (R, ◦ , `, r) be an A-bimodule k-algebra. A linear map
(respectively an A-bimodule homomorphism) β : R→ A is called a balanced
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linear map of mass (κ, µ) (respectively a balanced A-bimodule homomor-
phism of mass (κ, µ)) if (2-5) holds and

(2-6) µ`(β(u ◦ v))w = µur(β(v ◦w)) for all u, v, w ∈ R.

Clearly, if κ = 0 and µ = 0, then (2-5) and (2-6), respectively, impose no re-
striction. So any A-bimodule homomorphism is balanced of mass (κ, µ)= (0, 0).
For a nonzero mass, we have the following examples.

Example 2.8. Let A be a k-algebra.

(i) The identity map β = id : (A, L , R)→ A is a balanced A-bimodule homo-
morphism (of any mass (κ, µ)).

(ii) Any A-bimodule homomorphism β : (A, L , R)→ A is balanced (of any mass
(κ, µ)).

(iii) Let r ∈ A⊗ A be symmetric. If r regarded as a linear map from (A∗, R∗, L∗)
to A is an A-bimodule homomorphism, then r is a balanced A-bimodule ho-
momorphism (of any mass κ). See Lemma 3.2.

We can now introduce our first main concept in this paper.

Definition 2.9. Let (A, · ) be a k-algebra and let (R, ◦ , `, r) be an A-bimodule
k-algebra.

(i) Let λ, κ, µ∈k. Fix a balanced A-bimodule homomorphism β : (R, `, r)→ A
of mass (κ, µ). A linear map α : R→ A is called an extended O-operator of
weight λ with modification β of mass (κ, µ) if, for all u, v ∈ R,

(2-7) α(u) ·α(v)−α(`(α(u))v+ur(α(v))+λu ◦v)= κβ(u) ·β(v)+µβ(u ◦v).

(ii) We also let (α, β) denote an extended O-operator α with modification β.

(iii) When (V, `, r) is an A-bimodule, we regard V as an A-bimodule k-algebra
with the zero multiplication. Then λ and µ are irrelevant. We then call the
pair (α, β) an extended O-operator with modification β of mass κ .

We note that, when the modification β is the zero map (and hence κ and µ are
irrelevant), then α is the O-operator defined in Definition 2.5.

2c. Extended O-operators and associativity. The study of classical Yang–Baxter
equations often gives rise to the study of additional Lie structures derived from
a given Lie algebra [Bai et al. 2010b; Semenov-Tyan-Shanskiı̆ 1983]. Similar
derived structures in an associative algebra have also appeared in the study of den-
driform algebras and Rota–Baxter algebras [Aguiar 2000b; Bai 2010; Loday and
Ronco 2004]. Here we study derived structures arising from O-operators.
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Let (A, · ) be a k-algebra and (R, ◦ , `, r) be an A-bimodule k-algebra. Let
δ± : R→ A be two linear maps and λ ∈ k. We now consider the associativity of
the multiplication

(2-8) u � v := `(δ+(u))v+ ur(δ−(v))+ λu ◦ v for all u, v ∈ R,

and several other related multiplications. This will be applied in the Section 4.
Let the characteristic of the field k be different from 2. Set

(2-9) α := (δ++ δ−)/2 and β := (δ+− δ−)/2,

called the symmetrizer and antisymmetrizer of δ± respectively. Note that δ± can
be recovered from α and β by δ± = α±β.

Lemma 2.10. Let (A, · ) be a k-algebra and (R, ◦ , `, r) be an A-bimodule k-
algebra. Let α : R → A be a linear map and let λ be in k. Then the operation
given by

(2-10) u ∗α v := `(α(u))v+ ur(α(v))+ λu ◦ v for all u, v ∈ R

is associative if and only if

(2-11) `(α(u) ·α(v)−α(u ∗α v))w = ur(α(v) ·α(w)−α(v ∗α w))

for all u, v, w ∈ R.

Proof. It is straightforward to check that, for any u, v, w ∈ R, we have

(u ∗α v) ∗α w− u ∗α (v ∗α w)

= ur(α(v) ·α(w)−α(v ∗α w))− `(α(u) ·α(v)−α(u ∗α v))w. �

Corollary 2.11. Let k be a field of characteristic not equal to 2. Let (A, · ) be a
k-algebra and (R, ◦ , `, r) be an A-bimodule k-algebra. Let δ± : R→ A be two
linear maps and λ ∈ k. Let α and β be their symmetrizer and antisymmetrizer
defined by (2-9). If β is a balanced linear map of mass κ = 1, that is,

(2-12) `(β(u))v = ur(β(v)) for all u, v ∈ R,

then the operation � in (2-8) defines an associative product on R if and only if α
satisfies (2-11).

Proof. The conclusion follows from Lemma 2.10 since in this case, for any u, v∈ R,

u � v = `(δ+(u))v+ ur(δ−(v))+ λu ◦ v = `(α(u))v+ ur(α(v))+ λu ◦ v. �

Obviously, if α is an O-operator of weight λ associated to an A-bimodule k-
algebra (R, ◦ , `, r), then (2-11) holds. Thus the operation on R defined by (2-8)
is associative.
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Theorem 2.12. Let k have characteristic not equal to 2. Let (A, · ) be a k-algebra
and (R, ◦ , `, r) be an A-bimodule k-algebra. Let δ± : R→ A be two linear maps
and λ ∈ k. Let α and β be the symmetrizer and antisymmetrizer of δ±.

(i) Suppose that β is a balanced linear map of mass (κ, µ) and α satisfies (2-7).
Then the product ∗α is associative.

(ii) Suppose β is a balanced A-bimodule homomorphism of mass (−1,±λ), that
is, β satisfies (2-5) with κ =−1, (2-6) with µ=±λ and

(2-13) β(`(x)u)= x ·β(u) and β(ur(x))= β(u) · x for all x ∈ A, u ∈ R.

Then α is an extended O-operator of weight λ with modification β of mass
(κ, µ)= (−1,±λ) if and only if δ± is an O-operator of weight 1 associated to
a new A-bimodule k-algebra (R, ◦±, `, r):

(2-14) δ±(u) · δ±(v)= δ±(`(δ±(u))v+ ur(δ±(v))+ u ◦± v) for all u, v ∈ R,

where the associative products ◦± = ◦λ,β,± on R are defined by

(2-15) u ◦± v = λu ◦ v∓ 2`(β(u))v for all u, v ∈ R.

In item (i) we do not assume that β is an A-bimodule homomorphism. Thus α
need not be an extended O-operator.

Proof. (i) The conclusion follows from Lemma 2.10.

(ii) It is straightforward to show that (R, ◦±, `, r) equipped with the product ◦± is
an A-bimodule k-algebra. Moreover, for any u, v ∈ R,

(α±β)(u) · (α±β)(v)− (α±β)(`((α±β)(u))v+ ur((α±β)(v))+ u ◦± v)

= α(u) ·α(v)+β(u) ·β(v)−α(`(α(u))v+ ur(α(v))+ λu ◦ v)∓ λβ(u ◦ v)

± (β(u) ·α(v)−β(ur(α(v)))+α(u) ·β(v)−β(`(α(u))v)) by (2-12)

= α(u) ·α(v)+β(u) ·β(v)−α(`(α(u))v+ ur(α(v))+ λu ◦ v)∓ λβ(u ◦ v)

by (2-13).

Therefore the conclusion holds. �

We close this section with an obvious corollary of Theorem 2.12 by taking R=V
with the zero multiplication.

Corollary 2.13. Let A be a k-algebra and (V, `, r) be an A-bimodule. Let α, β :
V → A be two linear maps such that β is a balanced A-bimodule homomorphism.
Then α is an extended O-operator with modification β of mass κ = −1 if and
only if α± β is an O-operator of weight 1 associated to an A-bimodule k-algebra
(V, ?±, `, r), that is, for all u, v ∈ V ,

(α±β)(u) · (α±β)(v)= (α±β)(`((α±β)(u))v+ ur((α±β)(v))+ u ?± v),
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where the associative algebra products ?± on V are defined by

u ?± v =∓2`(β(u))v for all u, v ∈ V .

2d. The case of O-operators and Rota–Baxter operators. Suppose (A, · ) is a k-
algebra. Then (A, · , L , R) is an A-bimodule k-algebra. Theorem 2.12 can be
easily restated in this case. But we are mostly interested in the case of µ= 0 when
(2-7) takes the form

(2-16) α(x)·α(y)−α(α(x)·y+x ·α(y)+λx ·y)= κβ(x)·β(y) for all x, y ∈ A.

We list the following special cases for later reference. If λ= 0, then (2-16) gives

(2-17) α(x) ·α(y)−α(α(x) · y+ x ·α(y))= κβ(x) ·β(y) for all x, y ∈ A.

If in addition, β = id, then (2-17) gives

(2-18) α(x) ·α(y)−α(α(x) · y+ x ·α(y))= κx · y for all x, y ∈ A.

If furthermore κ =−1, then (2-18) becomes

(2-19) α(x) ·α(y)−α(α(x) · y+ x ·α(y))=−x · y for all x, y ∈ A.

By Lemma 2.10 and Theorem 2.12, we reach the following conclusion.

Corollary 2.14. Let (A, · ) be a k-algebra. Let α, β : A→ A be two linear maps
and λ ∈ k.

(i) For any κ ∈ k, let β be balanced of mass (κ, 0) and let α be an extended
O-operator of weight λ with modification β of mass (κ, µ)= (κ, 0), that is, α
satisfies (2-16). Then the product ∗α on A is associative.

(ii) If β is an A-bimodule homomorphism, then α and β satisfy (2-17) for κ =−1
if and only if r± = α ± β is an O-operator of weight 1 associated to a new
A-bimodule k-algebra (A, ?±, L , R):

r±(x) · r±(y)= r±(r±(x) · y+ x · r±(y)+ x ?± y) for all x, y ∈ A,

where the associative products ?± on A are defined by

x ?± y =∓2β(x) · y for all x, y ∈ A.

Let (A, · ) be a k-algebra and let (A, · , L , R) be the corresponding A-bimodule
k-algebra. In this case, β = id clearly satisfies the conditions of Theorem 2.12 and
(2-7) takes the form

(2-20) α(x) ·α(y)−α(α(x) · y+ x ·α(y)+ λx · y)= κ̂x · y for all x, y ∈ A,

where κ̂ = κ +µ. Thus we have the following consequence of Theorem 2.12.
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Corollary 2.15. Let κ̂ = −1± λ. Then α : A→ A satisfies (2-20) if and only if
α± 1 is a Rota–Baxter operator of weight λ∓ 2.

When λ = 0, this fact can be found in [Ebrahimi-Fard 2002]. As noted there, the
Lie algebraic version of (2-20) in this case, namely (2-19), is the operator form of
the modified classical Yang–Baxter equation [Semenov-Tyan-Shanskiı̆ 1983].

3. Extended O-operators and EAYBE

Here we study the relationship between extended O-operators and associative Yang–
Baxter equations. We start with introducing various concepts of the associative
Yang–Baxter equation (AYBE) in Section 3a. We then establish connections be-
tween O-operators in different generalities and solutions of these variations of
AYBE in different algebras. The relationship between O-operators on a k-algebra
A and solutions of AYBE in A is considered in Section 3b. We then consider in
Section 3c the relationship between an extended O-operator and solutions of AYBE
and extended AYBE in an extension algebra of A. We finally consider the special
case of Frobenius algebras in Section 3d.

3a. Extended associative Yang–Baxter equations. We define variations of the as-
sociative Yang–Baxter equation to be satisfied by two tensors from an algebra. We
then study the linear maps from these two tensors in preparation for the relationship
between O-operators and solutions of these associative Yang–Baxter equations.

Let A be a k-algebra. Let r =
∑

i ai ⊗ bi ∈ A ⊗ A. We continue to use the
notations r12, r13 and r23 defined in (1-4). We similarly define

r21 =
∑

i

bi ⊗ ai ⊗ 1, r31 =
∑

i

bi ⊗ 1⊗ ai , r32 =
∑

i

1⊗ bi ⊗ ai .

Equip A⊗ A⊗ A with the product of the tensor algebra. In particular,

(a1⊗a2⊗a3)(b1⊗b2⊗b3)= (a1b1)⊗(a2b2)⊗(a3b3) for all ai , bi ∈ A, i=1, 2, 3.

Definition 3.1. Fix ε ∈ k.

(i) The equation

(3-1) r12r13+ r13r23− r23r12 = ε(r13+ r31)(r23+ r32)

is called the extended associative Yang–Baxter equation of mass ε (or ε-
EAYBE in short).

(ii) Let A be a k-algebra. An element r ∈ A⊗A is called a solution of the ε-EAYBE
in A if it satisfies (3-1).
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When ε = 0 or r is skew-symmetric in the sense that σ(r)=−r for the switch
operator σ : A⊗ A→ A⊗ A (and hence r13 = −r31), then the ε-EAYBE is the
same as the AYBE in (1-3):

(3-2) r12r13+ r13r23− r23r12 = 0.

Let A be a k-algebra with finite k-dimension. For r ∈ A⊗ A, define a linear
map Fr : A∗→ A by

(3-3) 〈v, Fr (u)〉 = 〈u⊗ v, r〉 for all u, v ∈ A∗.

This defines a bijective linear map F : A⊗A→Homk(A∗, A) and thus allows us to
identify r with Fr , which we still denote by r for simplicity of notation. Similarly
define a linear map r t

: A∗→ A by

(3-4) 〈u, r t(v)〉 = 〈r, u⊗ v〉.

Obviously r is symmetric or skew-symmetric in A⊗ A if and only if, as a linear
map, r = r t or r =−r t , respectively. Suppose that the characteristic of k is not 2
and define

(3-5) α = αr = (r − r t)/2 and β = βr = (r + r t)/2,

called the skew-symmetric part and the symmetric part of r , respectively. Then
r = α+β and r t

=−α+β.

Lemma 3.2. Let (A, · ) be a k-algebra with finite k-dimension. Let s ∈ A⊗ A be
symmetric. Then the following conditions are equivalent.

(i) s is invariant, that is,

(3-6) (id⊗L(x)− R(x)⊗ id)s = 0 for all x ∈ A.

(ii) s regarded as a linear map from (A∗, R∗, L∗) to A is balanced, that is,

(3-7) R∗(s(a∗))b∗ = a∗L∗(s(b∗)) for all a∗, b∗ ∈ A∗.

(iii) s regarded as a linear map from (A∗, R∗, L∗) to A is an A-bimodule homo-
morphism, that is,

(3-8) s(R∗(x)a∗)= x · s(a∗), s(a∗L∗(x))= s(a∗) · x for all x ∈ A, a∗ ∈ A∗.

Proof. (i)⇐⇒ (ii). Since s ∈ A⊗ A is symmetric, for any x ∈ A, a∗, b∗ ∈ A∗,

〈(id⊗L(x)− R(x)⊗ id)s, a∗⊗ b∗〉 = 〈s, a∗⊗ L∗(x)b∗〉− 〈s, R∗(x)a∗⊗ b∗〉

= 〈x · s(a∗), b∗〉− 〈a∗, s(b∗) · x〉

= 〈R∗(s(a∗))b∗− a∗L∗(s(b∗)), x〉.
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So s is invariant if and only if s regarded as a linear map from (A∗, R∗, L∗) to A
is balanced.

(i)⇐⇒ (iii). For any x ∈ A, a∗, b∗ ∈ A∗,

〈(id⊗L(x)− R(x)⊗ id)s, a∗⊗ b∗〉 = 〈s, a∗⊗ L∗(x)b∗〉− 〈s, R∗(x)a∗⊗ b∗〉

= 〈x · s(a∗)− s(R∗(x)a∗), b∗〉,

〈(id⊗L(x)− R(x)⊗ id)s, a∗⊗ b∗〉 = 〈s, a∗⊗ L∗(x)b∗〉− 〈s, R∗(x)a∗⊗ b∗〉

= 〈s(L∗(x)b∗)− s(b∗) · x, a∗〉

by the symmetry of s ∈ A⊗ A. So s is invariant if and only if s regarded as a linear
map from (A∗, R∗, L∗) to A is an A-bimodule homomorphism. �

Remark 3.3. The invariant condition in item (i) also arises in the construction of
a coboundary antisymmetric infinitesimal bialgebra in the sense of [Bai 2010]; see
also [Bai et al. 2012].

3b. Extended O-operators from EAYBE. We first state the following special case
of Corollary 2.13.

Corollary 3.4. Let k be a field of characteristic not equal to 2. Let A be a k-
algebra with finite k-dimension and r ∈ A⊗ A. Let α and β be defined by (3-5).
Suppose β is a balanced A-bimodule homomorphism. These two statements are
equivalent:

(i) The map α is an extended O-operator with modification β of mass −1:

(3-9) α(a∗) ·α(b∗)−α(R∗(α(a∗))b∗+ a∗L∗(α(b∗)))=−β(a∗) ·β(b∗)

for all a∗, b∗ ∈ A∗.

(ii) The map r (respectively−r t ) is an O-operator of weight 1 associated to a new
A-bimodule k-algebra (A∗, ◦+, R∗, L∗) (respectively (A∗, ◦−, R∗, L∗)):

(3-10) r(a∗) · r(b∗)= r(R∗(r(a∗))b∗+ a∗L∗(r(b∗))+ a∗ ◦+ b∗)

for all a∗, b∗ ∈ A∗, (respectively

(3-11) (− r t)(a∗) · (−r t)(b∗)

= (−r t)(R∗((−r t)(a∗))b∗+ a∗L∗((−r t)(b∗))+ a∗ ◦− b∗),

for all a∗, b∗ ∈ A∗), where the associative algebra products ◦± on A∗ are
defined by

(3-12) a∗ ◦± b∗ =∓2R∗(β(a∗))b∗ for all a∗, b∗ ∈ A∗.
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In the theory of integrable systems [Kosmann-Schwarzbach 1997; Semenov-
Tyan-Shanskiı̆ 1983], modified classical Yang–Baxter equation usually refers to
(the Lie algebraic version of) (2-19) and (3-9).

The following theorem establishes a close relationship between extended O-
operators on a k-algebra A and solutions of the AYBE in A.

Theorem 3.5. Let k be a field of characteristic not equal to 2. Let A be a k-
algebra with finite k-dimension and let r ∈ A⊗ A, which is identified as a linear
map from A∗ to A.

(i) Then r is a solution of the AYBE in A if and only if r satisfies

(3-13) r(a∗) · r(b∗)= r(R∗(r(a∗))b∗− a∗L∗(r t(b∗))) for all a∗, b∗ ∈ A∗.

(ii) Define α and β by (3-5). Suppose that the symmetric part β of r is invariant.
Then r is a solution of EAYBE of mass (κ + 1)/4:

r12r13+ r13r23− r23r12 =
1
4(κ + 1)(r13+ r31)(r23+ r32)

if and only if α is an extended O-operator with modification β of mass κ:

α(a∗) ·α(b∗)−α(R∗(α(a∗))b∗+ a∗L∗(α(b∗)))= κβ(a∗) ·β(b∗)

for all a∗, b∗ ∈ A∗.

Proof. (i) Write r =
∑

i, j ui ⊗ v j . For any a∗, b∗, c∗ ∈ A∗, we have

〈r12 ·r13, a∗⊗b∗⊗c∗〉 =
∑
i, j

〈ui ·u j , a∗〉〈vi , b∗〉〈v j , c∗〉

=

∑
j

〈r t(b∗)·u j , a∗〉〈v j , b∗〉 = 〈r(a∗L∗(r t(b∗))), c∗〉,

〈r13 ·r23, a∗⊗b∗⊗c∗〉 =
∑
i, j

〈ui , a∗〉〈u j , b∗〉〈vi ·v j , c∗〉

=

∑
j

〈u j , b∗〉〈r(a∗)·v j , c∗〉 = 〈r(a∗)·r(b∗), c∗〉,

〈−r23 ·r12, a∗⊗b∗⊗c∗〉 = −
∑
i, j

〈ui , a∗〉〈u j ·vi , b∗〉〈v j , c∗〉

= −

∑
j

〈u j ·r(a∗), b∗〉〈v j , c∗〉 = 〈−r(R∗(r(a∗))b∗), c∗〉.

Therefore r is a solution of the AYBE in A if and only if r satisfies (3-13).
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(ii) By the proof of item (i), we see that, for any a∗, b∗, c∗ ∈ A∗,

〈α(a∗) ·α(b∗)−α(R∗(α(a∗))b∗+ a∗L∗(α(b∗)))− κβ(a∗) ·β(b∗), c∗〉

= 〈α(a∗) ·α(b∗)−α(R∗(α(a∗))b∗+ a∗L∗(α(b∗)))

+β(a∗) ·β(b∗)− (κ + 1)β(a∗) ·β(b∗), c∗〉

= 〈r12 · r13+ r13 · r23− r23 · r12, a∗⊗ b∗⊗ c∗〉− (κ + 1)〈β13 ·β23, a∗⊗ b∗⊗ c∗〉

= 〈r12 ·r13+r13 ·r23−r23 ·r12− (κ+1)1
2(r13+r31) ·

1
2(r23+r32), a∗⊗b∗⊗c∗〉.

So r is a solution of the EAYBE of mass (κ+ 1)/4 if and only if α is an extended
O-operator with modification β of mass κ . �

In the case when κ =−1, we have this:

Corollary 3.6. Let k be a field of characteristic not equal to 2. Let A be a k-
algebra with finite k-dimension and let r ∈ A⊗ A. Define α and β by (3-5).

(i) If β is invariant, then the following conditions are equivalent.

(a) r is a solution of the AYBE in A.
(b) r satisfies (3-10), that is, r is an O-operator of weight 1 associated to the

A-bimodule k-algebra (A∗, ◦+, R∗, L∗), where A∗ is equipped with the
associative algebra structure ◦+ defined by (3-12). (With−r t instead of r ,
replace (3-10) by (3-11) and ◦+ with ◦−.)

(c) α is an extended O-operator with modification β of mass −1.
(d) For any a∗, b∗ ∈ A∗,

(3-14) (α±β)(a∗ ∗ b∗)= (α±β)(a∗) · (α±β)(b∗),

where

a∗ ∗ b∗ = R∗(r(a∗))b∗− a∗L∗(r t(b∗)) for all a∗, b∗ ∈ A∗.

(ii) If r is skew-symmetric, then r is a solution of the AYBE in A if and only if
r : A∗→ A is an O-operator of weight zero.

Proof. If the symmetric part β of r is invariant, then by Lemma 3.2, for any
a∗, b∗ ∈ A∗, we have

r(a∗) · r(b∗)− r(R∗(r(a∗))b∗− a∗L∗(r t(b∗)))

= r(a∗) · r(b∗)− r(R∗(r(a∗))b∗+ a∗L∗(r(b∗))− 2a∗L∗(β(b∗)))

= r(a∗) · r(b∗)− r(R∗(r(a∗))b∗+ a∗L∗(r(b∗))+ a∗ ◦+ b∗),

where the product ◦+ is defined by (3-12). Therefore by Corollary 3.4, r is a
solution of the AYBE if and only if item (b) or (c) holds. Moreover, since for any



274 CHENGMING BAI, LI GUO AND XIANG NI

a∗, b∗ ∈ A∗, we have

R∗(r(a∗))b∗− a∗L∗(r t(b∗))= R∗(r(a∗))b∗+ a∗L∗(r(b∗))+ a∗ ◦+ b∗

= R∗((−r t)(a∗))b∗+ a∗L∗((−r t)(b∗))+ a∗ ◦− b∗,

(3-14) is just a reformulation of (3-10) and (3-11). So r is a solution of the AYBE
if and only if item (c) holds.

(ii) This is the special case of item (i) when β = 0. �

3c. EAYBEs from extended O-operators. We now establish the relationship be-
tween an extended O-operator α : V → A in general and the AYBE and EAYBE.
For this purpose we prove that an extended O-operator α : V → A naturally gives
rise to an extended O-operator on a larger associative algebra A associated to the
dual bimodule (A∗, R∗A, L∗A). We first introduce some notation.

Definition 3.7. Let A be a k-algebra and let (V, `, r) be an A-bimodule, both
with finite k-dimension. Let (V ∗, r∗, `∗) be the dual A-bimodule and let A =

A nr∗,`∗ V ∗. Identify a linear map γ : V → A as an element in A⊗A through the
injective map

(3-15) Homk(V, A)∼= A⊗ V ∗ ↪→A⊗A.

Denote

(3-16) γ̃± := γ ± γ
21,

where γ 21
= σ(γ )∈ V ∗⊗ A⊂A⊗A with σ : A⊗V ∗→ V ∗⊗ A, a⊗u∗ 7→ u∗⊗a

being the switch operator.

Lemma 3.8. Let A be a k-algebra and let (V, `, r) be an A-bimodule, both with
finite k-dimension. Suppose that β : V → A is a linear map that is identified as an
element in A⊗A by (3-15). Define β̃+ by (3-16). Then β̃+, identified as a linear
map from A∗ to A, is a balanced A-bimodule homomorphism from (A∗, R∗A, L∗A)
to (A, LA, RA) if and only if β : V → A is a balanced A-bimodule homomorphism
from (V, `, r) to (A, L A, RA).

Proof. For the linear map β̃+ :A∗→A, we have β̃+(a∗)= β∗(a∗) for a∗ ∈ A∗ and
β̃+(u)= β(u) for u ∈ V , where β∗ : A∗→ V ∗ is the dual linear map associated to
β given by

〈β∗(a∗), v〉 = 〈a∗, β(v)〉 for all a∗ ∈ A∗, v ∈ V .

First suppose that β : (V, `, r)→ A is a balanced A-bimodule homomorphism. Let
b∗ ∈ A∗ and v ∈ V . Then

R∗A(β̃+(a
∗
+ u))(b∗+ v)

= R∗A(β
∗(a∗))b∗+ R∗A(β

∗(a∗))v+ R∗A(β(u))b
∗
+ R∗A(β(u))v,
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and

(a∗+ u)L∗A(β̃+(b
∗
+ v))

= a∗L∗A(β
∗(b∗))+ a∗L∗A(β(v))+ uL∗A(β

∗(b∗))+ uL∗A(β(v)).

On the other hand, for any x ∈ A, w∗ ∈ V ∗,

〈R∗A(β
∗(a∗))b∗− a∗L∗A(β

∗(b∗)), x〉 = 〈b∗, x ·β∗(a∗)〉− 〈a∗, β∗(b∗) · x〉 = 0,

〈R∗A(β
∗(a∗))b∗− a∗L∗A(β

∗(b∗)), w∗〉 = 〈b∗, w∗ ·β∗(a∗)〉− 〈a∗, β∗(b∗) ·w∗〉

= 0,

〈R∗A(β
∗(a∗))v− a∗L∗A(β(v)), x〉 = 〈v, x ·β∗(a∗)〉− 〈a∗, β(v) · x〉

= 〈a∗, β(vr(x))−β(v) · x〉 = 0,

〈R∗A(β
∗(a∗))v− a∗L∗A(β(v)), w

∗
〉 = 〈v,w∗ ·β∗(a∗)〉− 〈a∗, β(v) ·w∗〉 = 0,

〈R∗A(β(u))b
∗
− uL∗A(β

∗(b∗)), x〉 = 〈b∗, x ·β(u)〉− 〈u, β∗(b∗) · x〉

= 〈b∗, x ·β(u)−β(l(x)u)〉 = 0,

〈R∗A(β(u))b
∗
− uL∗A(β

∗(b∗)), w∗〉 = 〈b∗, w∗ ·β(u)〉− 〈u, β∗(b∗) ·w∗〉 = 0,

〈R∗A(β(u))v− uL∗A(β(v)), w
∗
〉 = 〈v,w∗ ·β(u)〉− 〈u, β(v) ·w∗〉

= 〈`(β(u))v− ur(β(v)), w∗〉 = 0,

〈R∗A(β(u))v− uL∗A(β(v)), x〉 = 〈v, x ·β(u)〉− 〈u, β(v) · x〉 = 0.

Therefore, R∗A(β̃+(a
∗
+u))(b∗+v)= (a∗+u)L∗A(β̃+(b

∗
+v)). Since β̃+ ∈A⊗A

is symmetric, by Lemma 3.2, β̃+ when identified as a linear map from A∗ to A is
a balanced A-bimodule homomorphism from (A∗, R∗A, L∗A) to (A, LA, RA).

Conversely, if β̃+ identified as a linear map from A∗ to A is a balanced A-
bimodule homomorphism from (A∗, R∗A, L∗A) to (A, LA, RA), then

R∗A(β̃+(u))v = uL∗A(β̃+(v)) ⇐⇒ `(β(u))v = ur(β(v)),

β̃+(R∗A(x)v)= x · β̃+(v) ⇐⇒ β(`(x)v)= x ·β(v),

β̃+(uL∗A(x))= β̃+(u) · x ⇐⇒ β(ur(x))= β(u) · x

for any u, v ∈ V, x ∈ A. So β : (V, `, r)→ (A, L A, RA) is a balanced A-bimodule
homomorphism. �

Theorem 3.9. Let A be a k-algebra and let (V, `, r) be an A-bimodule, both with
finite k-dimension. Let α, β : V → A be two k-linear maps. Let α̃− and β̃+
be defined by (3-15) and identified as linear maps from A∗ to A. Then α is an
extended O-operator with modification β of mass κ if and only if α̃− is an extended
O-operator with modification β̃+ of mass κ .
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Proof. For any a∗ ∈ A∗ and v ∈ V , we have α̃−(a∗)= α∗(a∗) and α̃−(v)=−α(v),
where α∗ : A∗→ V ∗ is the dual linear map of α. Suppose that α is an extended
O-operator with modification β of mass κ . Then for any a∗, b∗ ∈ A∗ and u, v ∈ V ,
we have

α̃−(u+a∗) · α̃−(v+b∗)− α̃−(R∗A(α̃−(u+a∗))(v+b∗)+ (u+a∗)L∗A(α̃−(v+b∗)))

= α(u) ·α(v)−α(`(α(u))v)−α(ur(α(v)))− r∗(α(u))α∗(b∗)+α∗(R∗A(α(u))b
∗)

−α∗(uL∗A(α
∗(b∗)))−α∗(a∗)`∗(α(v))−α∗(R∗A(α

∗(a∗))v)+α∗(a∗L∗A(α(v))).

On the other hand, for any w ∈ V we have

〈−r∗(α(u))α∗(b∗)+α∗(R∗A(α(u))b
∗)−α∗(uL∗A(α

∗(b∗))), w〉

= 〈b∗, α(w) ·α(u)−α(`(α(w))u+wr(α(u))〉 = 〈b∗, κβ(w) ·β(u)〉

= 〈b∗, κβ(wr(β(u)))〉 = 〈κr∗(β(u))β∗(b∗), w〉.

Therefore

−r∗(α(u))α∗(b∗)+α∗(R∗A(α(u))b
∗)−α∗(uL∗A(α

∗(b∗)))= κr∗(β(u))β∗(b∗).

Similarly, we have

−α∗(a∗)`∗(α(v))−α∗(R∗A(α
∗(a∗))v)+α∗(a∗L∗A(α(v)))= κβ

∗(a∗)`∗(β(v)).

So

α̃−(u+ a∗) · α̃−(v+ b∗)− α̃−(R∗A(α̃−(u+ a∗))(v+ b∗)

+ (u+ a∗)L∗A(α̃−(v+ b∗)))

= κβ(u) ·β(v)+ κr∗(β(u))β∗(b∗)+ κβ∗(a∗)`∗(β(v))

= κβ(u) ·β(v)+ κβ(u) ·β∗(b∗)+ κβ∗(a∗) ·β(v)= κβ̃+(u+ a∗)β̃+(v+ b∗).

If κ = 0, then this equation implies that α̃− is an O-operator of weight zero. If
κ 6= 0, then β is a balanced A-bimodule homomorphism, which, according to
Lemma 3.8, implies that β̃+ from (A∗, R∗A, L∗A) to A is a balanced A-bimodule
homomorphism. So α̃− is an extended O-operator with modification β̃+ of mass κ .

Conversely, suppose α̃− is an extended O-operator with modification β̃+ of mass
κ . If κ 6= 0, then β̃+ from (A∗, R∗A, L∗A) to A is a balanced A-bimodule homo-
morphism, which by Lemma 3.8 implies that β from (V, `, r) to A is a balanced
A-bimodule homomorphism. Moreover, for any u, v ∈ V we have

(3-17) α̃−(u) · α̃−(v)− α̃−(R∗A(α̃−(u))v+ uL∗A(α̃−(v)))= κβ̃+(u)β̃+(v),

which implies that α is an extended O-operator with modification β of mass κ . If
κ = 0, then (3-17) for κ = 0 implies that α is an O-operator of weight zero. �



O-OPERATORS AND YANG–BAXTER EQUATIONS 277

By Theorem 3.9, the results from the previous sections on O-operators on A can
be applied to general O-operators.

Corollary 3.10. Let A be a k-algebra and let V be an A-bimodule, both with finite
k-dimension.

(i) Suppose the characteristic of the field k is not 2. Let α, β : V → A be linear
maps that are identified as elements in (Anr∗,`∗V ∗)⊗(Anr∗,`∗V ∗). Then α is
an extended O-operator with modification β of mass k if and only if (α−α21)±

(β +β21) is a solution of the EAYBE of mass (κ + 1)/4 in A nr∗,`∗ V ∗.

(ii) Let α : V → A be a linear map identified as an element in (A nr∗,`∗ V ∗)⊗
(A nr∗,`∗ V ∗). Then α is an O-operator of weight zero if and only if α−α21 is
a skew-symmetric solution of the AYBE in (3-2) in A nr∗,`∗ V ∗. In particular,
a linear map P : A→ A is a Rota–Baxter operator of weight zero if and only
if r = P − P21 is a skew-symmetric solution of the AYBE in A nR∗,L∗ A∗.

(iii) Let α, β : V → A be two linear maps identified as elements in (Anr∗,`∗ V ∗)⊗
(A nr∗,`∗ V ∗). Then α is an extended O-operator with modification β of mass
−1 if and only if (α−α21)±(β+β21) is a solution of the AYBE in Anr∗,`∗ V ∗.

(iv) Let α : A→ A be a linear map identified as an element in (A nR∗,L∗ A∗)⊗
(A nR∗,L∗ A∗). Then α satisfies (2-19) if and only if (α−α21)± (id+ id21) is
a solution of the AYBE in A nR∗,L∗ A∗.

(v) Let P : A→ A be a linear map identified as an element of A nR∗,L∗ A∗. Then
P is a Rota–Baxter operator of weight λ 6= 0 if and only if 2/λ(P−P21)+2 id
and (2/λ)(P − P21)− 2 id21 are both solutions of the AYBE in A nR∗,L∗ A∗.

Proof. (i) This follows from Theorem 3.9 and Theorem 3.5.

(ii) This follows from Theorem 3.9 for κ = 0 (or β = 0) and Corollary 3.6.

(iii) This follows from Theorem 3.9 for κ =−1 and Corollary 3.6.

(iv) This follows from item (iii) in the case that (V, r, `)= (A, L , R) and β = id.

(v) By [Ebrahimi-Fard 2002] (see also the discussion after Corollary 2.15), P is
a Rota–Baxter operator of weight λ 6= 0 if and only if 2P/λ+ id is an extended
O-operator with modification id of mass−1 from (A, L , R) to A, that is, 2P/λ+id
satisfies (2-19). Then the conclusion follows from item (iv). �

3d. O-operators and AYBE on Frobenius algebras. Here we consider the rela-
tionship between O-operators and solutions of the AYBE on Frobenius algebras.

Definition 3.11. (i) Let A be a k-algebra and let B( · , · ) : A ⊗ A → k be a
nondegenerate bilinear form. Let ϕ : A→ A∗ denote the induced injective
linear map defined by

(3-18) B(x, y)= 〈ϕ(x), y〉 for all x, y ∈ A.
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(ii) A Frobenius k-algebra is a k-algebra (A, · ) together with a nondegenerate
bilinear form B( · , · ) : A⊗ A→ k that is invariant in the sense that

B(x · y, z)= B(x, y · z) for all x, y, z ∈ A.

We use (A, · , B) to denote a Frobenius k-algebra.

(iii) A Frobenius k-algebra is called symmetric if

B(x, y)= B(y, x) for all x, y ∈ A.

(iv) A linear map β : A→ A is called self-adjoint with respect to a bilinear form
B if for any x, y ∈ A, we have B(β(x), y)= B(x, β(y)), and skew-adjoint if
B(β(x), y)=−B(x, β(y)).

A symmetric Frobenius k-algebra is also simply called a symmetric k-algebra
[Brauer and Nesbitt 1937]. We will not use this term to avoid confusion with the
symmetrization of the tensor algebra. Frobenius algebras have found applications
in broad areas of mathematics and physics. See [Bai 2010; Yamagata 1996] for
further details.

It is easy to get the following result.

Proposition 3.12 [Yamagata 1996]. Let A be a symmetric Frobenius k-algebra
with finite k-dimension. Then the A-bimodule (A, L , R) is isomorphic to the A-
bimodule (A∗, R∗, L∗).

The following statement gives a class of symmetric Frobenius algebras from
symmetric, invariant tensors.

Corollary 3.13. Let (A, · ) be a k-algebra with finite k-dimension. Let s ∈ A⊗ A
be symmetric and invariant. Suppose that s regarded as a linear map from A∗→ A
is invertible. Then s−1

: A→ A∗ regarded as a bilinear form B( · , · ) : A⊗ A→ k

on A through (3-18) for ϕ = s−1 is symmetric, nondegenerate and invariant. Thus
(A, · , B) is a symmetric Frobenius algebra.

Proof. Since s is symmetric and s regarded as a linear map from A∗ to A is
invertible, B( · , · ) is symmetric and nondegenerate. On the other hand, since s
is invariant, (3-7) holds by Lemma 3.2. Thus, for any x, y, z ∈ A and a∗= s−1(x),
b∗ = s−1(y) and c∗ = s−1(z), we have

B(x · y, z)= 〈c∗, s(a∗) · s(b∗)〉 = 〈c∗L∗(s(a∗)), b∗〉

= 〈R∗(s(c∗))a∗, b∗〉 = 〈a∗, s(b∗) · s(c∗)〉 = B(x, y · z),

that is, B( · , · ) is invariant. So the conclusion follows. �

Lemma 3.14. Let (A, · , B) be a symmetric Frobenius k-algebra with finite k-
dimension. Suppose that β : A→ A is an endomorphism of A that is self-adjoint
with respect to B. Then β̃ = βϕ−1

: A∗ → A regarded as an element of A ⊗ A
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is symmetric, where ϕ : A→ A∗ is defined by (3-18). Moreover, β is a balanced
A-bimodule homomorphism if and only if β̃ is.

Proof. Since β is self-adjoint with respect to B, it is easy to show that β̃ regarded
as an element of A⊗ A is symmetric. Moreover, for any a∗, b∗ ∈ A∗, z ∈ A and
x = ϕ−1(a∗), y = ϕ−1(b∗), we have

〈R∗(β̃(a∗))b∗, z〉 = 〈R∗(β(x))ϕ(y), z〉 = B(y, z ·β(x)),

〈a∗L∗(β̃(b∗)), z〉 = 〈ϕ(x)L∗(β(y)), z〉 = B(x, β(y) · z)

= B(β(y), z · x)= B(y, β(z · x)).

Thus β̃ satisfies (3-7) if and only if β(z · x) = z · β(x) for any x, z ∈ A. On the
other hand,

〈R∗(β̃(a∗))b∗, z〉 = 〈R∗(β(x))ϕ(y), z〉 = B(y, z ·β(x))

= B(β(x), y · z)= B(x, β(y · z)),

〈a∗L∗(β̃(b∗)), z〉 = 〈ϕ(x)L∗(β(y)), z〉 = B(x, β(y) · z).

Therefore, β̃ satisfies (3-7) if and only if β(y · z)= β(y) · z for any y, z ∈ A. Hence
β is an A-bimodule homomorphism if and only if β̃ is. �

If β = id, the lemma above states that ϕ−1
: A∗→ A is a balanced A-bimodule

homomorphism.

Corollary 3.15. Let (A, · , B) be a symmetric Frobenius k-algebra of finite k-
dimension and let ϕ : A → A∗ be the linear map defined by (3-18). Suppose
β ∈ A⊗ A is symmetric. Then β regarded as a linear map from (A∗, R∗, L∗) to
A is a balanced A-bimodule homomorphism if and only if β̂ = βϕ : A→ A is a
balanced A-bimodule homomorphism.

Proof. In fact, β̂=βϕ is self-adjoint with respect to B( · , · ) since for any x, y ∈ A,

〈β, ϕ(x)⊗ϕ(y)〉 = 〈β, ϕ(y)⊗ϕ(x)〉 ⇐⇒ 〈β(ϕ(x)), ϕ(y)〉 = 〈β(ϕ(y)), ϕ(x)〉

⇐⇒ B(β̂(x), y)= B(β̂(y), x).

So the conclusion follows from Lemma 3.14. �

Theorem 3.16. Let k be a field of characteristic not equal to 2. Let (A, · , B) be a
symmetric Frobenius algebra of finite k-dimension. Suppose that α and β are two
endomorphisms of A and that β is self-adjoint with respect to B.

(i) α is an extended O-operator with modification β of mass κ if and only if α̃ :=
α ◦ϕ−1

: A∗→ A is an extended O-operator with modification β̃ := β ◦ϕ−1
:

A∗→ A of mass κ , where the linear map ϕ : A→ A∗ is defined by (3-18).
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(ii) Suppose that in addition, α is skew-adjoint with respect to B. Then α̃ regarded
as an element of A⊗ A is skew-symmetric and

(a) r±= α̃± β̃ regarded as an element of A⊗ A is a solution of the EAYBE of
mass (κ+1)/4 if and only if α is an extended O-operator with modification
β of mass k;

(b) if κ =−1, then r± = α̃± β̃ regarded as an element of A⊗ A is a solution
of the AYBE if and only if α is an extended O-operator with modification
β of mass −1; and

(c) if κ = 0, then α̃ regarded as an element of A⊗ A is a solution of the AYBE
if and only if α is a Rota–Baxter operator of weight zero.

Proof. (i) Since B is symmetric and invariant, for any x, y, z ∈ A, we have

B(x · y, z)= B(x, y · z)⇐⇒ 〈ϕ(x · y), z〉 = 〈ϕ(x), y · z〉

⇐⇒ ϕ(x R(y))= ϕ(x)L∗(y),
(3-19)

B(z, x · y)= B(y · z, x)⇐⇒ 〈ϕ(z), x · y〉 = 〈ϕ(y · z), x〉

⇐⇒ R∗(y)ϕ(z)= ϕ(L(y)z).
(3-20)

On the other hand, since ϕ is invertible, for any a∗, b∗ ∈ A∗, there exist x, y ∈ A
such that ϕ(x)= a∗, ϕ(y)= b∗. So according to (3-19) and (3-20), the equation

α̃(a∗) · α̃(b∗)− α̃(ϕ(α̃(a∗) ·ϕ−1(b∗)+ϕ−1(a∗) · α̃(b∗)))= κβ̃(a∗) · β̃(b∗),

is equivalent to

α̃(a∗) · α̃(b∗)− α̃(R∗(α̃(a∗))b∗+ a∗L∗(α̃(b∗)))= κβ̃(a∗) · β̃(b∗).

By Lemma 3.14, β : A→ A is a balanced A-bimodule homomorphism if and
only if β̃ : A∗→ A is. So α is an extended O-operator with modification β of mass
κ if and only if α̃ is an extended O-operator with modification β̃ of mass κ .

(i) If α is skew-adjoint with respect to B, then

〈α(x), ϕ(y)〉+ 〈ϕ(x), α(y)〉 = 0 for all x, y ∈ A.

Hence 〈α̃(a∗), b∗〉 + 〈a∗, α̃(b∗)〉 = 0 for any a∗, b∗ ∈ A∗. So α̃ regarded as an
element of A⊗ A is skew-symmetric.

By Theorem 3.5, item (a) holds. By Corollary 3.6, items (b) and (c) hold. �

Corollary 3.17. Let k be a field of characteristic not equal to 2. Let A be a k-
algebra of finite k-dimension and let r ∈ A⊗ A. Define α, β ∈ A⊗ A by (3-5).
Then r = α+ β. Let B : A⊗ A→ k be a nondegenerate symmetric and invariant
bilinear form. Define the linear map ϕ : A→ A∗ by (3-18).
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(i) Suppose that β ∈ A⊗ A is invariant. Then r is a solution of the EAYBE of
mass (κ+1)/4 if and only if α̂ = αϕ : A→ A is an extended O-operator with
modification β̂ = βϕ : A→ A of mass k.

(ii) Suppose that β ∈ A ⊗ A is invariant. Then r is a solution of the AYBE if
and only if α̂ = αϕ : A → A is an extended O-operator with modification
β̂ = βϕ : A → A of mass −1. If in addition, β = 0, that is, r is skew-
symmetric, then r is a solution of the AYBE if and only if α̂ = r̂ = rϕ : A→ A
is a Rota–Baxter operator of weight zero.

Proof. By the proof of Corollary 3.15, we show that β̂ = βϕ is self-adjoint with
respect to B( · , · ) since β ∈ A⊗ A is symmetric. Similarly, since α ∈ A⊗ A is
skew-symmetric, α̂=αϕ is skew-adjoint with respect to B( · , · ). So the conclusion
follows from Theorem 3.16. �

4. Extended O-operators
and the generalized associative Yang–Baxter equation

We define the generalized associative Yang–Baxter equation and study its relation-
ship with extended O-operators.

4a. Generalized associative Yang–Baxter equation. We adapt the same notation
as in Definition 3.1.

The following proposition (also see [Aguiar 2000a, Proposition 5.1]) is related
to the construction of variations of bialgebras under the names of associative D-
bialgebras [Zhelyabin 1997], balanced infinitesimal bialgebras (in the opposite al-
gebras) [Aguiar 2001] and antisymmetric infinitesimal bialgebras [Bai 2010].

Proposition 4.1 [Aguiar 2000a; 2001; Bai 2010]. Let A be a k-algebra with finite
k-dimension and let r ∈ A⊗ A. Define 1 : A→ A⊗ A by

(4-1) 1(x)= (id⊗L(x)− R(x)⊗ id)r for all x ∈ A.

Then

(4-2) 1∗ : A∗⊗ A∗ ↪→ (A⊗ A)∗→ A∗

defines an associative multiplication on A∗ if and only if r is a solution of the
equation

(4-3) (id⊗ id⊗L(x)−R(x)⊗id⊗ id)(r12r13+r13r23−r23r12)=0 for all x ∈ A.

Definition 4.2. Let A be a k-algebra. Equation (4-3) is called the generalized
associative Yang–Baxter equation (GAYBE). An element r ∈ A⊗A satisfying (4-3)
is called a solution of the GAYBE in A.
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Lemma 4.3. Let (A, · ) be a k-algebra with finite k-dimension. Let r ∈ A ⊗ A.
The multiplication ∗ on A∗ defined by (4-2) is also given by

(4-4) a∗ ∗ b∗ = R∗(r(a∗))b∗− L∗(r t(b∗))a∗ for all a∗, b∗ ∈ A∗.

Proof. Let {e1, . . . , en} be a basis of A and {e∗1, . . . , e∗n} be its dual basis. Suppose
that r =

∑
i, j ai, j ei ⊗ e j and ei · e j =

∑
k ck

i, j ek . Then for any k and l, we have

e∗k ∗ e∗l =
∑

s

〈e∗k ⊗ e∗l ,1(es)〉e∗s

=

∑
s

〈e∗k ⊗ e∗l , (id⊗L(es)− R(es)⊗ id)r〉e∗s

=

∑
s,t

(ak,t cl
s,t − ck

t,sat,l)e∗s = R∗(r(e∗k ))e
∗

l − L∗(r t(e∗l ))e
∗

k . �

This lemma suggests that we apply the approach considered in Section 2b. More
precisely, we take the A-bimodule k-algebra (R, ◦ , `, r) to be (A∗, R∗, L∗) with
the zero multiplication and set

(4-5) δ+ = r and δ− =−r t .

Assume that k has characteristic not equal to 2 and define

(4-6) α = (r − r t)/2 and β = (r + r t)/2,

that is, α and β are the skew-symmetric part and the symmetric part of r . So
r = α+β and r t

=−α+β.

Proposition 4.4. Let k have characteristic not equal to 2. Let (A, · ) be a k-
algebra with finite k-dimension and r ∈ A ⊗ A. Let α and β be given by (4-6).
Suppose that β is a balanced A-bimodule homomorphism, that is, β satisfies (3-6).
If α is an extended O-operator with modification β of any mass κ ∈ k, then the
product defined by (4-4) defines a k-algebra structure on A∗ and r is a solution of
the GAYBE.

Proof. By applying Theorem 2.12 to the A-bimodule k-algebra (R, ◦ , `, r) we
constructed before the proposition, we see that the product defined by (4-4) is
associative. Then r is a solution of the GAYBE by Lemma 4.3. �

Corollary 4.5. Under the assumptions of Proposition 4.4, a solution of the EAYBE
of any mass κ ∈ k is also a solution of the GAYBE.

Proof. Let r be a solution of the EAYBE of mass κ . Define α and β by (4-6). Then
by Theorem 3.5, α is an extended O-operator with modification β of mass 4κ − 1.
Hence by Proposition 4.4, r is a solution of the GAYBE. �
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4b. GAYBE and extended O-operators. We now consider the operator form of
GAYBE with emphasis on its relationship with extended O-operators.

Lemma 4.6. Let A be a k-algebra and (V, `, r) be a bimodule. Let α : V → A be
a linear map. Then the product

(4-7) u ∗α v := `(α(u))v+ ur(α(v)) for all u, v ∈ V,

defines a k-algebra structure on V if and only if

(4-8) `
(
α(u)·α(v)−α(u∗αv)

)
w=ur

(
α(v)·α(w)−α(v∗αw)

)
for all u, v∈V .

Proof. It follows from Lemma 2.10 by setting (R, `, r)= (V, `, r) and λ= 0. �

Theorem 4.7. Let A be a k-algebra and (V, `, r) be an A-bimodule, both of finite
dimension over k. Let α : V → A be a linear map. Using the same notation as in
Definition 3.7, α̃− identified as an element of A⊗A is a skew-symmetric solution
of the GAYBE (4-3) if and only if (4-8) and the equations

α(u) ·α(`(x)v)−α(u ∗α (`(x)v))= α(ur(x)) ·α(v)−α((ur(x)) ∗α v),(4-9)

α(u) ·α(vr(x))−α(u ∗α (vr(x)))= (α(u) ·α(v)) · x −α(u ∗α v) · x,(4-10)

α(`(x)u) ·α(v)−α((`(x)u) ∗α v)= x · (α(u) ·α(v))− x ·α(u ∗α v)(4-11)

hold for any u, v ∈ V, x ∈ A.

Proof. By Proposition 4.1, Lemma 4.3 and Lemma 4.6, we see that α̃− ∈A⊗A is
a skew-symmetric solution of the GAYBE (4-3) if and only if for any u, v, w ∈ V
and a∗, b∗, c∗ ∈ A∗,

R∗A
(
α̃−(u+ a∗) · α̃−(v+ b∗)− α̃−(R∗A(α̃−(u+ a∗))(v+ b∗)

+ (u+ a∗)L∗A(α̃−(v+ b∗)))
)
(w+ c∗)

= (u+ a∗)L∗A
(
α̃−(v+ b∗) · α̃−(w+ c∗)− α̃−(R∗A(α̃−(v+ b∗))(w+ c∗)

+ (v+ b∗)L∗A(α̃−(w+ c∗)))
)
,

By the proof of Theorem 3.9, the equation above is equivalent to

R∗A
(
α(u) ·α(v)−α(`(α(u))v)−α(ur(α(v)))− r∗(α(u))α∗(b∗)+α∗(R∗A(α(u))b

∗)

−α∗(uL∗A(α
∗(b∗)))−α∗(a∗)`∗(α(v))−α∗(R∗A(α

∗(a∗))v)+α∗(a∗L∗A(α(v)))
)
w

+ R∗A
(
α(u) ·α(v)−α(`(α(u))v)−α(ur(α(v)))− r∗(α(u))α∗(b∗)+α∗(R∗A(α(u))b

∗)

−α∗(uL∗A(α
∗(b∗)))−α∗(a∗)`∗(α(v))−α∗(R∗A(α

∗(a∗))v)+α∗(a∗L∗A(α(v)))
)
c∗

= uL∗A
(
α(v) ·α(w)−α(`(α(v))w)−α(vr(α(w)))− r∗(α(v))α∗(c∗)+α∗(R∗A(α(v))c

∗)

−α∗(vL∗A(α
∗(c∗)))−α∗(b∗)`∗(α(w))−α∗(R∗A(α

∗(b∗))w)+α∗(b∗L∗A(α(w)))
)

+a∗L∗A(α(v) ·α(w)−α(`(α(v))w)−α(vr(α(w)))− r∗(α(v))α∗(c∗)+α∗(R∗A(α(v))c
∗)

−α∗(vL∗A(α
∗(c∗)))−α∗(b∗)`∗(α(w))−α∗(R∗A(α

∗(b∗))w)+α∗(b∗L∗A(α(w)))).
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By suitable choices of u, v, w ∈ V and a∗, b∗, c∗ ∈ A∗, we find that this equation
holds if and only if the following equations hold:

R∗A(α(u) ·α(v)−α(`(α(u))v+ ur(α(v))))w

= uL∗A(α(v) ·α(w)−α(`(α(v))w+ vr(α(w))))

(take a∗ = b∗ = c∗ = 0),

(4-12)

R∗A(−r∗(α(u))α∗(b∗)+α∗(R∗A(α(u))b
∗)−α∗(uL∗A(α

∗(b∗))))w

= uL∗A(−α
∗(b∗)`∗(α(w))−α∗(R∗A(α

∗(b∗))w)+α∗(b∗L∗A(α(w))))

(take v = a∗ = c∗ = 0),

(4-13)

R∗A(−α
∗(a∗)`∗(α(v))−α∗(R∗A(α

∗(a∗))v)+α∗(a∗L∗A(α(v))))w

= a∗L∗A(α(v) ·α(w)−α(`(α(v))w)−α(vr(α(w))))

(take u = b∗ = c∗ = 0),

(4-14)

R∗A(α(u) ·α(v)−α(`(α(u))v)−α(ur(α(v))))c∗

= uL∗A(−r∗(α(v))α∗(c∗)+α∗(R∗A(α(v))c
∗)−α∗(vL∗A(α

∗(c∗))))

(take w = a∗ = b∗ = 0),

(4-15)

R∗A(−r∗(α(u))α∗(b∗)+α∗(R∗A(α(u))b
∗)−α∗(uL∗A(α

∗(b∗))))c∗ = 0

(take v = w = a∗ = 0),

(4-16)

R∗A(−α
∗(a∗)`∗(α(v))−α∗(R∗A(α

∗(a∗))v)+α∗(a∗L∗A(α(v))))c
∗

= a∗L∗A(−r∗(α(v))α∗(c∗)+α∗(R∗A(α(v))c
∗)−α∗(vL∗A(α

∗(c∗))))

(take u = w = b∗ = 0),

(4-17)

a∗L∗A(−α
∗(b∗)`∗(α(w))−α∗(R∗A(α

∗(b∗))w)+α∗(b∗L∗A(α(w))))= 0

(take u = v = c∗ = 0).

(4-18)

Thus we just need to prove

(i) (4-12)⇐⇒ (4-8), (ii) (4-13)⇐⇒ (4-9),

(iii) (4-14)⇐⇒ (4-10), (iv) (4-15)⇐⇒ (4-11),

(v) both sides of (4-17) equal zero, (vi) (4-16) and (4-18) hold.

The proofs of these statements are similar. So we just prove that (4-13) holds if
and only if (4-9) holds. Let LHS and RHS denote the left-hand side and right-hand
side of (4-13). Then for any x ∈ A and s∗ ∈ V ∗, we have

〈LHS, s∗〉 = 〈RHS, s∗〉 = 0.
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Further

〈LHS, x〉 = 〈w,−r∗(x)(r∗(α(u))α∗(b∗))

+ r∗(x)α∗(R∗A(α(u))b
∗)− r∗(x)α∗(uL∗A(α

∗(b∗)))〉

= 〈−α((wr(x))r(α(u)))+α(wr(x)) ·α(u), b∗〉

− 〈α∗(b∗) ·α(wr(x)), u〉

= 〈−α((wr(x))r(α(u)))+α(wr(x)) ·α(u)−α(`(α(wr(x)))u), b∗〉,

〈RHS, x〉 = 〈u,−(α∗(b∗)`∗(α(w)))`∗(x)

−α∗(R∗A(α
∗(b∗))w)`∗(x)+α∗(b∗L∗A(α(w)))`

∗(x)〉

= 〈−α(`(α(w))(`(x)u)), b∗〉

− 〈α(`(x)u) ·α∗(b∗), w〉+ 〈α(w) ·α(`(x)w), b∗〉

= 〈−α(`(α(w))(`(x)u))−α(wr(α(`(x)u)))+α(w) ·α(`(x)u), b∗〉.

So (4-13) holds if and only if (4-9) holds. �

Equations (4-9)–(4-11) in Theorem 4.7 can be regarded as an operator form of
GAYBE. To get a more manageable form, we restrict below to the case of extended
O-operators.

Corollary 4.8. Let (A, · ) be a k-algebra with finite k-dimension.

(i) Let (R, ◦ , `, r) be an A-bimodule k-algebra with finite k-dimension. Let
α, β : R → A be two linear maps such that α is an extended O-operator
of weight λ with modification β of mass (κ, µ), that is, β is an A-bimodule
homomorphism and the conditions (2-5) and (2-6) in Definition 2.7 hold,
and α and β satisfy (2-7). Then α − α21, when identified as an element of
(Anr∗,`∗ R∗)⊗(Anr∗,`∗ R∗), is a skew-symmetric solution of the GAYBE (4-3)
if and only if

λ`(α(u ◦ v))w = λur(α(v ◦w)) for all u, v, w ∈ R,(4-19)

λα(u(vr(x)))= λα(u ◦ v) · x for all u, v ∈ R, x ∈ A,(4-20)

λα((`(x)u) ◦ v)= λx ·α(u ◦ v) for all u, v ∈ R, x ∈ A.(4-21)

In particular, when λ= 0, that is, α is an extended O-operator of weight zero
with modification β of mass (κ, µ), then α − α21 identified as an element of
(Anr∗,`∗ R∗)⊗(Anr∗,`∗ R∗) is a skew-symmetric solution of the GAYBE (4-3).

(ii) Let (R, ◦ , `, r) be an A-bimodule k-algebra with finite k-dimension. Let
α : R → A be an O-operator of weight λ. Then α − α21 identified as an
element of (A nr∗,`∗ R∗)⊗ (A nr∗,`∗ R∗) is a skew-symmetric solution of the
GAYBE if and only if (4-19)–(4-21) hold.
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(iii) Let (V, `, r) be a bimodule of A with finite k-dimension. Let α, β : V → A be
two linear maps such that α is an extended O-operator with modification β of
mass κ . Then α−α21 identified as an element of (Anr∗,`∗ V ∗)⊗(Anr∗,`∗ V ∗)
is a skew-symmetric solution of the GAYBE.

(iv) Let α : A→ A be a linear endomorphism of A. Suppose that α satisfies (2-18).
Then α− α21 identified as an element of (A nR∗,L∗ A∗)⊗ (A nR∗,L∗ A∗) is a
skew-symmetric solution of the GAYBE.

(v) Let (R, ◦ , `, r) be an A-bimodule k-algebra of finite k-dimension. Let α, β :
R→ A be two linear maps such that α is an extended O-operator with modifi-
cation β of mass (κ, µ)= (0, µ), that is, β is an A-bimodule homomorphism
and the condition (2-6) in Definition 2.7 holds, and α and β satisfy

α(u) ·α(v)−α(`(α(u))v+ ur(α(v)))= µβ(u ◦ v) for all u, v ∈ R.

Then α − α21 identified as an element of (A nr∗,`∗ R∗)⊗ (A nr∗,`∗ R∗) is a
skew-symmetric solution of the GAYBE.

Proof. (i) Since α is an extended O-operator of weight λ with modification β of
mass (κ, µ), by Theorem 4.7, α−α21 identified as an element of (A nr∗,`∗ R∗)⊗
(A nr∗,`∗ R∗) is a skew-symmetric solution of the GAYBE (4-3) if and only if

−λ`(α(u ◦ v))w+ κ`(β(u) ·β(v))w+µ`(β(u ◦ v))w(4-22)

=−λur(α(v ◦w))+ κur(β(v) ·β(w))+µur(β(v ◦w)),

−λα((ur(x)) ◦ v)+ κβ(ur(x)) ·β(v)+µβ((ur(x)) ◦ v)(4-23)

=−λα(u ◦ (l(x)v))+ κβ(u) ·β(`(x)v)+µβ(u ◦ (`(x)v)),

−λα(u ◦ (vr(x)))+ κβ(u) ·β(vr(x))+µβ(u ◦ (vr(x)))(4-24)

=−λα(u ◦ v) · x + κ(β(u) ·β(v)) · x +µβ(u ◦ v) · x,

−λα((`(x)u) ◦ v)+ κβ(`(x)u) ·β(v)+µβ((`(x)u) ◦ v)(4-25)

=−λx ·α(u ◦ v)+ κx · (β(u) ·β(v))+µx ·β(u ◦ v)

for any u, v ∈ R, x ∈ A. Since β is an A-bimodule homomorphism and the con-
ditions (2-5) and (2-6) in Definition 2.7 hold, we have (4-19) holds if and only if
(4-22) holds, (4-20) holds if and only if (4-24) holds, (4-21) holds if and only if
(4-25) holds and (4-23) holds automatically.

(ii) This follows from item (i) by setting κ = µ= 0.

(iii) This follows from item (i) by setting λ= µ= 0.

(iv) This follows from item (iii) for (V, `, r)= (A, L , R) and β = id.

(v) This follows from item (i) by setting λ= κ = 0. �
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BOTANY OF IRREDUCIBLE AUTOMORPHISMS
OF FREE GROUPS

THIERRY COULBOIS AND ARNAUD HILION

We give a classification of iwip (i.e., fully irreducible) outer automorphisms
of the free group, by discussing the properties of their attracting and re-
pelling trees.

1. Introduction

An outer automorphism 8 of the free group FN is fully irreducible (abbreviated as
iwip) if no positive power8n fixes a proper free factor of FN . Being an iwip is one
(in fact the most important) of the analogs for free groups of being pseudo-Anosov
for mapping classes of hyperbolic surfaces. Another analog of pseudo-Anosov is
the notion of an atoroidal automorphism: an element 8 ∈ Out(FN ) is atoroidal
or hyperbolic if no positive power 8n fixes a nontrivial conjugacy class. Bestvina
and Feighn [1992] and Brinkmann [2000] proved that 8 is atoroidal if and only if
the mapping torus FN o8 Z is Gromov-hyperbolic.

Pseudo-Anosov mapping classes are known to be “generic” elements of the map-
ping class group (in various senses). Rivin [2008] and Sisto [2011] recently proved
that, in the sense of random walks, generic elements of Out(FN ) are atoroidal iwip
automorphisms.

Bestvina and Handel [1992] proved that iwip automorphisms have the key prop-
erty of being represented by (absolute) train-track maps.

A pseudo-Anosov element f fixes two projective classes of measured foliations
[(F+, µ+)] and [(F−, µ−)]:

(F+, µ+) · f = (F+, λµ+) and (F−, µ−) · f = (F−, λ−1µ−),

where λ > 1 is the expansion factor of f . Alternatively, considering the dual R-
trees T+ and T−, we get:

T+ · f = λT+ and T− · f = λ−1T−.

We now discuss the analogous situation for iwip automorphisms. The group
of outer automorphisms Out(FN ) acts on the outer space CVN and its boundary
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∂CVN . Recall that the compactified outer space CVN = CVN ∪ ∂CVN is made
up of (projective classes of) R-trees with an action of FN by isometries which is
minimal and very small. See [Vogtmann 2002] for a survey on outer space. An
iwip outer automorphism 8 has north-south dynamics on CVN : it has a unique
attracting fixed tree [T8] and a unique repelling fixed tree [T8−1] in the boundary
of outer space (see [Levitt and Lustig 2003]):

T8 ·8= λ8T8 and T8−1 ·8=
1

λ8−1
T8−1,

where λ8 > 1 is the expansion factor of 8 (i.e., the exponential growth rate of
nonperiodic conjugacy classes).

Contrary to the pseudo-Anosov setting, the expansion factor λ8 of 8 is typi-
cally different from the expansion factor λ8−1 of 8−1. More generally, qualitative
properties of the fixed trees T8 and T8−1 can be fairly different. This is the purpose
of this paper to discuss and compare the properties of 8, T8 and T8−1 .

First, the free group, FN , may be realized as the fundamental group of a surface
S with boundary. It is part of folklore that, if 8 comes from a pseudo-Anosov
mapping class on S, then its limit trees T8 and T8−1 live in the Thurston boundary
of Teichmüller space: they are dual to a measured foliation on the surface. Such
trees T8 and T8−1 are called surface trees and such an iwip outer automorphism 8

is called geometric (in this case S has exactly one boundary component).
The notion of surface trees has been generalized (see for instance [Bestvina

2002]). An R-tree which is transverse to measured foliations on a finite CW-
complex is called geometric. It may fail to be a surface tree if the complex fails to
be a surface.

If8 does not come from a pseudo-Anosov mapping class and if T8 is geometric
then8 is called parageometric. For a parageometric iwip8, Guirardel [2005] and
Handel and Mosher [2007] proved that the repelling tree T8−1 is not geometric.
So we have that, 8 comes from a pseudo-Anosov mapping class on a surface with
boundary if and only if both trees T8 and T8−1 are geometric. Moreover in this
case both trees are indeed surface trees.

In [Coulbois and Hilion 2010] we introduced a second dichotomy for trees in
the boundary of outer space with dense orbits. For a tree T , we consider its limit set
�⊆ T (where T is the metric completion of T ). The limit set � consists of points
of T with at least two pre-images by the map Q : ∂FN → T̂ = T ∪ ∂T introduced
in [Levitt and Lustig 2003]; see Section 4A. We are interested in the two extremal
cases: A tree T in the boundary of outer space with dense orbits is of surface type
if T ⊆ � and T is of Levitt type if � is totally disconnected. As the terminology
suggests, a surface tree is of surface type. Trees of Levitt type where discovered
by Levitt [1993].
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Combining together the two sets of properties, we introduced in [Coulbois and
Hilion 2010] the following definitions. A tree T in ∂CVN with dense orbits is

• a surface tree if it is both geometric and of surface type;

• Levitt if it is geometric and of Levitt type;

• pseudo-surface if it is not geometric and of surface type;

• pseudo-Levitt if it is not geometric and of Levitt type

The following theorem is the main result of this paper.

Theorem 5.2. Let 8 be an iwip outer automorphism of FN . Let T8 and T8−1 be
its attracting and repelling trees. Then exactly one of the following occurs

(1) The trees T8 and T8−1 are surface trees. Equivalently, 8 is geometric.

(2) The tree T8 is Levitt (i.e., geometric and of Levitt type), and the tree T8−1 is
pseudo-surface (i.e., nongeometric and of surface type). Equivalently, 8 is
parageometric.

(3) The tree T8−1 is Levitt (i.e., geometric and of Levitt type), and the tree T8 is
pseudo-surface (i.e., nongeometric and of surface type). Equivalently, 8−1 is
parageometric.

(4) The trees T8 and T8−1 are pseudo-Levitt (nongeometric and of Levitt type).

Case (1) corresponds to toroidal iwips whereas cases (2), (3) and (4) corresponds
to atoroidal iwips. In case (4) the automorphism 8 is called pseudo-Levitt.

Gaboriau, Jaeger, Levitt and Lustig [Gaboriau et al. 1998] introduced the notion
of an index ind(8), computed from the rank of the fixed subgroup and from the
number of attracting fixed points of the automorphisms ϕ in the outer class 8.
Another index for a tree T in CVN has been defined and studied by Gaboriau and
Levitt [1995]; we call it the geometric index indgeo(T ). Finally in [Coulbois and
Hilion 2010] we introduced and studied the Q-index indQ(T ) of an R-tree T in the
boundary of outer space with dense orbits. The two indices indgeo(T ) and indQ(T )
describe qualitative properties of the tree T [Coulbois and Hilion 2010]. We define
these indices and recall our botanical classification of trees in Section 4A.

The key to prove Theorem 5.2 is this:

Propositions 4.2 and 4.4. Let 8 be an iwip outer automorphism of FN . Let T8
and T8−1 be its attracting and repelling trees. Replacing 8 by a suitable power,
we have

2 ind(8)= indgeo(T8)= indQ(T8−1).

We prove this proposition in Sections 4B and 4C.
To study limit trees of iwip automorphisms, we need to state that they have the

strongest mixing dynamical property, which is called indecomposability.
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Theorem 2.1. Let 8 ∈ Out(FN ) be an iwip outer automorphism. The attracting
tree T8 of 8 is indecomposable.

The proof of this theorem is quite independent of the rest of the paper and is the
purpose of Section 2. The proof relies on a key property of iwip automorphisms:
they can be represented by (absolute) train-track maps.

2. Indecomposability of the attracting tree of an iwip automorphism

Following [Guirardel 2008], a (projective class of) R-tree T ∈CVN is indecompos-
able if for all nondegenerate arcs I and J in T , there exists finitely many elements
u1, . . . , un in FN such that

(2-1) J ⊆
n⋃

i=1
ui I

and

(2-2) ∀i = 1, . . . , n− 1, ui I ∩ ui+1 I is a nondegenerate arc.

The main purpose of this section is to prove this result:

Theorem 2.1. Let 8 ∈ Out(FN ) be an iwip outer automorphism. The attracting
tree T8 of 8 is indecomposable.

Before proving this theorem in Section 2C, we collect the results we need from
[Bestvina and Handel 1992] and [Gaboriau et al. 1998].

2A. Train-track representative of 8. The rose RN is the graph with one vertex
∗ and N edges. Its fundamental group π1(RN , ∗) is naturally identified with the
free group FN . A marked graph is a finite graph G with a homotopy equivalence
τ : RN → G. The marking τ induces an isomorphism

τ∗ : FN = π1(RN , ∗)
∼=
→ π1(G, v0),

where v0 = τ(∗).
A homotopy equivalence f : G → G defines an outer automorphism of FN .

Indeed, if a path m from v0 to f (v0) is given, a 7→ m f (a)m−1 induces an auto-
morphism ϕ of π1(G, v0), and thus of FN through the marking. Another path m′

from v0 to f (v0) gives rise to another automorphism ϕ′ of FN in the same outer
class 8.

A topological representative of 8 ∈ Out(FN ) is an homotopy equivalence f :
G→ G of a marked graph G, such that

(i) f maps vertices to vertices,

(ii) f is locally injective on any edge, and

(iii) f induces 8 on FN ∼= π1(G, v0).
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Let e1, . . . , ep be the edges of G (an orientation is arbitrarily given on each edge,
and e−1 denotes the edge e with the reverse orientation). The transition matrix of
the map f is the p× p nonnegative matrix M with (i, j)-entry equal to the number
of times the edge ei occurs in f (e j ) (we say that a path (or an edge) w of a graph
G occurs in a path u of G if it is w or its inverse w−1 is a subpath of u).

A topological representative f : G→ G of 8 is a train-track map if, moreover,

(iv) for all k ∈ N, the restriction of f k on any edge of G is locally injective, and

(v) any vertex of G has valence at least 3.

According to [Bestvina and Handel 1992, Theorem 1.7], an iwip outer automor-
phism8 can be represented by a train-track map, with a primitive transition matrix
M (i.e., there exists k ∈N such all the entries of Mk are strictly positive). Thus the
Perron–Frobenius theorem applies. In particular, M has a real dominant eigenvalue
λ > 1 associated to a strictly positive eigenvector u = (u1, . . . , u p). Indeed, λ is
the expansion factor of 8: λ = λ8. We turn the graph G to a metric space by
assigning the length ui to the edge ei (for i = 1, . . . , p). Since, with respect to this
metric, the length of f (ei ) is λ times the length of ei , we can assume that, on each
edge, f is linear of ratio λ.

We define the set L2( f ) of paths w of combinatorial length 2 (i.e., w = ee′,
where e, e′ are edges of G, e−1

6= e′) which occurs in some f k(ei ) for some k ∈N

and some edge ei of G:

L2( f )= {ee′ : ∃ei edge of G, ∃k ∈ N such that ee′ is a subpath of f k(ei
±1)}.

Since the transition matrix M is primitive, there exists k ∈N such that for any edge
e of G, for any w ∈ L2( f ), w occurs in f k(e).

Let v be a vertex of G. The Whitehead graph Wv of v is the unoriented graph
defined as follows:

• The vertices of Wv are the edges of G with v as terminal vertex.

• There is an edge in Wv between e and e′ if e′e−1
∈ L2( f ).

As remarked in [Bestvina et al. 1997, Section 2], if f : G → G is a train-track
representative of an iwip outer automorphism 8, any vertex of G has a connected
Whitehead graph. We summarize the previous discussion:

Proposition 2.2. Let 8 ∈ Out(FN ) be an iwip outer automorphism. There exists
a train-track representative f : G → G of 8, with primitive transition matrix M
and connected Whitehead graphs of vertices. The edge ei of G is isometric to the
segment [0, ui ], where u = (u1, . . . , u p) is a Perron–Frobenius eigenvector of M.
The map f is linear of ratio λ on each edge ei of G.

Remark 2.3. Let f :G→G be a train-track map, with primitive transition matrix
M and connected Whitehead graphs of vertices. Then for any path w= ab in G of
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combinatorial length 2, there exist w1= a1b1, . . . , wq = aqbq ∈L2( f ) (a, b, ai , bi

edges of G) such that

• ai+1 = b−1
i , i ∈ {1, . . . , q − 1}, and

• a = a1 and b = bq .

2B. Construction of T8. Let 8 ∈ Out(FN ) be an iwip automorphism, and let
T8 be its attracting tree. Following [Gaboriau et al. 1998], we recall a concrete
construction of the tree T8.

We start with a train-track representative f :G→G of 8 as in Proposition 2.2.
The universal cover G̃ of G is a simplicial tree, equipped with a distance d0

obtained by lifting the distance on G. The fundamental group FN acts by deck
transformations, and thus by isometries, on G̃. Let f̃ be a lift of f to G̃. This lift
f̃ is associated to a unique automorphism ϕ in the outer class 8, characterized by

(2-3) ∀u ∈ FN ,∀x ∈ G̃, ϕ(u) f̃ (x)= f̃ (ux).

For x, y ∈ G̃ and k ∈ N, we define:

dk(x, y)=
d0( f̃ k(x), f̃ k(y))

λk .

The sequence of distances dk is decreasing and converges to a pseudo-distance d∞
on G̃. Identifying points x, y in G̃ which have distance d∞(x, y) equal to 0, we
obtain the tree T8. The free group FN still acts by isometries on T8. The quotient
map p : G̃→ T8 is FN -equivariant and 1-Lipschitz. Moreover, for any edge e of
G̃, for any k ∈ N, the restriction of p to f k(e) is an isometry. Through p the map
f̃ factors to a homothety H of T8, of ratio λ8:

∀x ∈ G̃, H(p(x))= p( f̃ (x)).

Property (2-3) leads to

(2-4) ∀u ∈ FN ,∀x ∈ T8, ϕ(u)H(x)= H(ux).

2C. Indecomposability of T8. We say that a path (or an edge) w of the graph G
occurs in a path u of the universal cover G̃ of G if w has a lift w̃ that occurs in u.

Lemma 2.4. Let I be a nondegenerate arc in T8. There exists an arc I ′ in G̃ and
an integer k such that

• p(I ′)⊆ I , and

• any element of L2( f ) occurs in H k(I ′).
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Proof. Let I ⊂ T8 be a nondegenerate arc. There exists an edge e of G̃ such that
I0 = p(e) ∩ I is a nondegenerate arc: I0 = [x, y]. We choose k1 ∈ N such that
d∞(H k1(x), H k1(y)) > L where

L = 2 max{ui = |ei | | ei edge of G}.

Let x ′, y′ be the points in e such that p(x ′) = x , p(y′) = y, and let I ′ be the arc
[x ′, y′]. Since p maps f k1(e) isometrically into T8, we obtain that

d0( f k1(x ′), f k1(y′))≥ L .

Hence there exists an edge e′ of G̃ contained in [ f k1(x ′), f k1(y′)]. Moreover, for
any k2 ∈ N, the path f k2(e′) isometrically injects in [H k1+k2(x), H k1+k2(y)]. We
take k2 big enough so that any path in L2( f ) occurs in f k2(e′). Then k = k1+ k2

is suitable. �

Proof of Theorem 2.1. Let I, J be two nontrivial arcs in T8. We have to prove
that I and J satisfy properties (2-1) and (2-2). Since H is a homeomorphism, and
because of (2-4), we can replace I and J by H k(I ) and H k(J ), accordingly, for
some k ∈ N.

We consider an arc I ′ in G̃ and an integer k ∈N as given by Lemma 2.4. Let x, y
be the endpoints of the arc H k(J ): H k(J )= [x, y]. Let x ′, y′ be points in G̃ such
that p(x ′)= x , p(y′)= y, and let J ′ be the arc [x ′, y′]. According to Remark 2.3,
there exist w1, . . . , wn such that

• wi is a lift of some path in L2( f ),

• J ′ ⊆
⋃n

i=1wi , and

• wi ∩wi+1 is an edge.

Since Lemma 2.4 ensures that any element of L2( f ) occurs in H k(I ′), we deduce
that H k(I ) and H k(J ) satisfy properties (2-1) and (2-2). �

3. Index of an outer automorphism

An automorphism ϕ of the free group FN extends to a homeomorphism ∂ϕ of the
boundary at infinity ∂FN . We denote by Fix(ϕ) the fixed subgroup of ϕ. It is a
finitely generated subgroup of FN and thus its boundary ∂Fix(ϕ) naturally embeds
in ∂FN . Elements of ∂Fix(ϕ) are fixed by ∂ϕ and they are called singular. Non-
singular fixed points of ∂ϕ are called regular. A fixed point X of ∂ϕ is attracting
(resp. repelling) if it is regular and if there exists an element u in FN such that
ϕn(u) (resp. ϕ−n(u)) converges to X . The set of fixed points of ∂ϕ is denoted by
Fix(∂ϕ).

Following Nielsen, fixed points of ∂ϕ have been classified by Gaboriau, Jaeger,
Levitt and, Lustig:
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Proposition 3.1 [Gaboriau et al. 1998, Proposition 1.1]. Let ϕ be an automorphism
of the free group FN , and X a fixed point of ∂ϕ. Exactly one of the following occurs:

(1) X is in the boundary of the fixed subgroup of ϕ.

(2) X is attracting.

(3) X is repelling. �

We denote by Att(ϕ) the set of attracting fixed points of ∂ϕ. The fixed subgroup
Fix(ϕ) acts on the set Att(ϕ) of attracting fixed points.

In [Gaboriau et al. 1998] the following index of the automorphism ϕ is defined:

ind(ϕ)= 1
2 #(Att(ϕ)/Fix(ϕ))+ rank(Fix(ϕ))− 1

If ϕ has a trivial fixed subgroup, the above definition is simpler:

ind(ϕ)= 1
2 #Att(ϕ)− 1.

Let u be an element of FN and let iu be the corresponding inner automorphism
of FN :

∀w ∈ FN , iu(w)= uwu−1.

The inner automorphism iu extends to the boundary of FN as left multiplication
by u:

∀X ∈ ∂FN , ∂iu(X)= u X.

The group Inn(FN ) of inner automorphisms of FN acts by conjugacy on the auto-
morphisms in an outer class 8. Following Nielsen, two automorphisms, ϕ, ϕ′ ∈8
are isogredient if they are conjugated by some inner automorphism iu :

ϕ′ = iu ◦ϕ ◦ iu−1 = iuϕ(u)−1 ◦ϕ.

In this case, the actions of ∂ϕ and ∂ϕ′ on ∂FN are conjugate by the left multi-
plication by u. In particular, a fixed point X ′ of ∂ϕ′ is a translate X ′ = u X of a
fixed point X of ∂ϕ. Two isogredient automorphisms have the same index: this
is the index of the isogrediency class. An isogrediency class [ϕ] is essential if it
has positive index: ind([ϕ]) > 0. We note that essential isogrediency classes are
principal in the sense of [Feighn and Handel 2011], but the converse is not true.

The index of the outer automorphism8 is the sum, over all essential isogrediency
classes of automorphisms ϕ in the outer class 8, of their indices, or alternatively:

ind(8)=
∑

[ϕ]∈8/Inn(FN )

max(0; ind(ϕ)).

We adapt the notion of forward rotationless outer automorphism of [Feighn and
Handel 2011] to our purpose. We denote by Per(ϕ) the set of elements of FN fixed
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by some positive power of ϕ:

Per(ϕ)=
⋃

n∈N∗

Fix(ϕn);

and by Per(∂ϕ) the set of elements of ∂FN fixed by some positive power of ∂ϕ:

Per(∂ϕ)=
⋃

n∈N∗

Fix(∂ϕn).

Definition 3.2. An outer automorphism 8 ∈ Out(FN ) is FR if:

(FR1) for any automorphism ϕ ∈8, Per(ϕ)= Fix(ϕ) and Per(∂ϕ)= Fix(∂ϕ), and

(FR2) if ψ is an automorphism in the outer class 8n for some n > 0, with ind(ψ)
positive, then there exists an automorphism ϕ in 8 such that ψ = ϕn .

Proposition 3.3. Let 8 ∈ Out(FN ). There exists k ∈ N∗ such that 8k is FR.

Proof. By [Levitt and Lustig 2000, Theorem 1] there exists a power8k with (FR1).
An automorphism ϕ ∈ Aut(FN ) with positive index ind(ϕ) > 0 is principal in the
sense of [Feighn and Handel 2011, Definition 3.1]. Thus our property (FR2) is a
consequence of the forward rotationless property of [loc. cit., Definition 3.13]. By
[loc. cit., Lemma 4.43] there exists a power 8k` which is forward rotationless and
thus which satisfies (FR2). �

4. Indices

4A. Botany of trees. We recall in this section the classification of trees in the
boundary of outer space, given in [Coulbois and Hilion 2010].

Gaboriau and Levitt [1995] introduced an index for a tree T in CVN , we call it
the geometric index and denote it by indgeo(T ). It is defined using the valence of
the branch points, of the R-tree T , with an action of the free group by isometries:

indgeo(T )=
∑

[P]∈T/FN

indgeo(P).

where the local index of a point P in T is

indgeo(P)= #(π0(T r {P})/Stab(P))+ 2 rank(Stab(P))− 2.

Gaboriau and Levitt proved that the geometric index of a geometric tree is equal
to 2N − 2 and that for any tree in the compactification of outer space CVN the
geometric index is bounded above by 2N−2. Moreover, they proved that the trees
in CVN with geometric index equal to 2N − 2 are precisely the geometric trees.

If, moreover, T has dense orbits, Levitt and Lustig [2003; 2008] defined the
map Q : ∂FN → T̂ , characterized as follows:
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Proposition 4.1. Let T be an R-tree in CVN with dense orbits. There exists a
unique map Q : ∂FN → T̂ such that for any sequence (un)n∈N of elements of FN

which converges to X ∈ ∂FN , and any point P ∈ T , if the sequence of points
(un P)n∈N converges to a point Q ∈ T̂ , then Q(X)= Q. Moreover, Q is onto.

Let us consider the case of a tree T dual to a measured foliation (F, µ) on a
hyperbolic surface S with boundary (T is a surface tree). Let F̃ be the lift of F to
the universal cover S̃ of S. The boundary at infinity of S̃ is homeomorphic to ∂FN .
On the one hand, a leaf ` of F̃ defines a point in T . On the other hand, the ends
of ` define points in ∂FN . The map Q precisely sends the ends of ` to the point
in T . The Poincaré–Lefschetz index of the foliation F can be computed from the
cardinal of the fibers of the map Q. This leads to the following definition of the
Q-index of an R-tree T in a more general context.

Let T be an R-tree in CVN with dense orbits. The Q-index of the tree T is
defined by

indQ(T )=
∑

[P]∈T̂ /FN

max(0; indQ(P)),

where the local index of a point P in T is

indQ(P)= #(Q−1
r (P)/Stab(P))+ 2 rank(Stab(P))− 2

with Q−1
r (P)= Q−1(P)r ∂Stab(P) the regular fiber of P .

Levitt and Lustig [2003] proved that points in ∂T have exactly one pre-image
by Q. Thus, only points in T contribute to the Q-index of T .

We proved in [Coulbois and Hilion 2010] that the Q-index of an R-tree in the
boundary of outer space with dense orbits is bounded above by 2N − 2. And it is
equal to 2N − 2 if and only if it is of surface type.

The botanical classification in [Coulbois and Hilion 2010] of a tree T with a
minimal very small indecomposable action of FN by isometries is as follows:

geometric not geometric
indgeo(T )= 2N−2 indgeo(T ) < 2N−2

Surface type: indQ(T )= 2N−2 surface pseudo-surface
Levitt type: indQ(T ) < 2N−2 Levitt pseudo-Levitt

The following remark is not necessary for the sequel of the paper, but may help
the reader’s intuition.

Remark. In [Coulbois et al. 2008a; 2008b], in collaboration with Lustig, we de-
fined and studied the dual lamination of an R-tree T with dense orbits:

L(T )= {(X, Y ) ∈ ∂2 FN | Q(X)= Q(Y )}.
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The Q-index of T can be interpreted as the index of this dual lamination.
Using the dual lamination, with Lustig [Coulbois et al. 2009], we defined the

compact heart K A ⊆ T (for a basis A of FN ). We proved that the tree T is com-
pletely encoded by a system of partial isometries SA = (K A, A). We also proved
that the tree T is geometric if and only if the compact heart K A is a finite tree (that
is to say the convex hull of finitely many points). In [Coulbois and Hilion 2010]
we used the Rips machine on the system of isometries SA to get the bound on the
Q-index of T . In particular, an indecomposable tree T is of Levitt type if and only
if the Rips machine never halts.

4B. Geometric index. As in Section 2B, an iwip outer automorphism 8 has an
expansion factor λ8> 1, an attracting R-tree T8 in ∂CVN . For each automorphism
ϕ in the outer class8 there is a homothety H of the metric completion T̄8, of ratio
λ8, such that

(4-1) ∀P ∈ T8, ∀u ∈ FN , H(u P)= ϕ(u)H(P).

In addition, the action of 8 on the compactification of Culler and Vogtmann’s
outer space has north-south dynamics and the projective class of T8 is the attracting
fixed point [Levitt and Lustig 2003]. Of course the attracting trees of 8 and 8n

(n > 0) are equal.
For the attracting tree T8 of the iwip outer automorphism8, the geometric index

is well understood.

Proposition 4.2 [Gaboriau et al. 1998, Section 4]. Let 9 be an iwip outer auto-
morphism. There exists a power 8=9k (k > 0) of 9 such that

2 ind(8)= indgeo(T8),

where T8 is the attracting tree of 8 (and of 9). �

4C. Q-index. Let8 be an iwip outer automorphism of FN . Let T8 be its attracting
tree. The action of FN on T8 has dense orbits.

Let ϕ an automorphism in the outer class 8. The homothety H associated to
ϕ extends continuously to an homeomorphism of the boundary at infinity of T8
which we still denote by H . We get from Proposition 4.1 and identity (4-1):

(4-2) ∀X ∈ ∂FN , Q(∂ϕ(X))= H(Q(X)).

We are going to prove that the Q-index of T8 is twice the index of 8−1. As
mentioned in the introduction for geometric automorphisms both these numbers are
equal to 2N −2 and thus we restrict to the study of nongeometric automorphisms.
For the rest of this section we assume that 8 is nongeometric. This will be used
in two ways:
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• The action of FN on T8 is free.

• For any ϕ in the outer class 8, all the fixed points of ϕ in ∂FN are regular.

Let CH be the center of the homothety H . The following Lemma is essentially
contained in [Gaboriau et al. 1998], although the map Q is not used there.

Lemma 4.3. Let 8 ∈ Out(FN ) be a FR nongeometric iwip outer automorphism.
Let T8 be the attracting tree of 8. Let ϕ ∈ 8 be an automorphism in the outer
class8, and let H be the homothety of T8 associated to ϕ, with CH its center. The
Q-fiber of CH is the set of repelling points of ϕ.

Proof. Let X ∈ ∂FN be a repelling point of ∂ϕ. By definition there exists an
element u ∈ FN such that the sequence (ϕ−n(u))n converges towards X . By (4-1),

ϕ−n(u)CH = ϕ
−n(u)H−n(CH )= H−n(uCH ).

The homothety H−1 is strictly contracting and therefore the sequence of points
(ϕ−n(u)CH )n converges towards CH . By Proposition 4.1 we get that Q(X)= CH .

Conversely let X ∈ Q−1(CH ) be a point in the Q-fiber of CH . Using the iden-
tity (4-2), ∂ϕ(X) is also in the Q-fiber. The Q-fiber is finite by [Coulbois and Hilion
2010, Corollary 5.4], X is a periodic point of ∂ϕ. Since8 satisfies property (FR1),
X is a fixed point of ∂ϕ. From [Gaboriau et al. 1998, Lemma 3.5], attracting fixed
points of ∂ϕ are mapped by Q to points in the boundary at infinity ∂T8. Thus X
has to be a repelling fixed point of ∂ϕ. �

Proposition 4.4. Let 8 ∈ Out(FN ) be a FR nongeometric iwip outer automor-
phism. Let T8 be the attracting tree of 8. Then

2 ind(8−1)= indQ(T8).

Proof. To each automorphism ϕ in the outer class 8 is associated a homothety H
of T8 and the center CH of this homothety. As the action of FN on T8 is free, two
automorphisms are isogredient if and only if the corresponding centers are in the
same FN -orbit.

The index of 8−1 is the sum over all essential isogrediency classes of automor-
phism ϕ−1 in 8−1 of the index of ϕ−1. For each of these automorphisms the index
2 ind(ϕ−1) is equal by Lemma 4.3 to the contribution #Q−1(CH ) of the orbit of CH

to the Q index of T8.
Conversely, let now P be a point in T8 with at least three elements in its Q-fiber.

Let ϕ be an automorphism in 8 and let H be the homothety of T8 associated to ϕ.
For any integer n, the Q-fiber Q−1(H n(P)) = ∂ϕn(Q−1(P)) of H n(P) also has at
least three elements. By [Coulbois and Hilion 2010, Theorem 5.3] there are finitely
many orbits of such points in T8 and thus we can assume that H n(P) = wP for
some w ∈ FN and some integer n > 0. Then P is the center of the homothety
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w−1 H n associated to iw−1 ◦ ϕn . Since 8 satisfies property (FR2), P is the center
of a homothety u H associated to iu ◦ϕ for some u ∈ FN . This concludes the proof
of the equality of the indices. �

This proposition can alternatively be deduced from the techniques of [Handel
and Mosher 2011].

5. Botanical classification of irreducible automorphisms

Theorem 5.1. Let 8 be an iwip outer automorphism of FN . Let T8 and T8−1 be
its attracting and repelling trees. Then, the Q-index of the attracting tree is equal
to the geometric index of the repelling tree:

indQ(T8)= indgeo(T8−1).

Proof. First, if8 is geometric, then the trees T8 and T8−1 have maximal geometric
indices 2N−2. On the other hand the trees T8 and T8−1 are surface trees and thus
their Q-indices are also maximal:

indgeo(T8)= indQ(T8)= indgeo(T8−1)= indQ(T8−1)= 2N − 2.

We now assume that 8 is not geometric and we can apply Propositions 4.2 and
4.4 to get the desired equality. �

From Theorem 5.1 and from the characterization of geometric and surface-type
trees by the maximality of the indices we get

Theorem 5.2. Let 8 be an iwip outer automorphism of FN . Let T8 and T8−1 be
its attracting and repelling trees. Then exactly one of the following occurs:

(1) T8 and T8−1 are surface trees.

(2) T8 is Levitt and T8−1 is pseudo-surface.

(3) T8−1 is Levitt and T8 is pseudo-surface.

(4) T8 and T8−1 are pseudo-Levitt.

Proof. The trees T8 and T8−1 are indecomposable by Theorem 2.1 and thus they
are either of surface type or of Levitt type by [Coulbois and Hilion 2010, Proposi-
tion 5.14]. Recall, from [Gaboriau and Levitt 1995] (see also [Coulbois and Hilion
2010, Theorem 5.9] or [Coulbois et al. 2009, Corollary 6.1]) that T8 is geometric
if and only if its geometric index is maximal:

indgeo(T8)= 2N − 2.

From [Coulbois and Hilion 2010, Theorem 5.10], T8 is of surface type if and only
if its Q-index is maximal:

indQ(T8)= 2N − 2.



304 THIERRY COULBOIS AND ARNAUD HILION

The theorem now follows from Theorem 5.1. �

Let 8 ∈ Out(FN ) be an iwip outer automorphism.
The outer automorphism 8 is geometric if both its attracting and repelling trees

T8 and T8−1 are geometric. This is equivalent to saying that 8 is induced by a
pseudo-Anosov homeomorphism of a surface with boundary; see [Guirardel 2005]
and [Handel and Mosher 2007]. This is case (1) of Theorem 5.2.

The outer automorphism8 is parageometric if its attracting tree T8 is geometric
but its repelling tree T8−1 is not. This is case (2) of Theorem 5.2.

The outer automorphism 8 is pseudo-Levitt if both its attracting and repelling
trees are not geometric. This is case (4) of Theorem 5.2

We now bring expansion factors into play. An iwip outer automorphism 8 of
FN has an expansion factor λ8 > 1: it is the exponential growth rate of (nonfixed)
conjugacy classes under iteration of 8.

If 8 is geometric, the expansion factor of 8 is equal to the expansion factor of
the associated pseudo-Anosov mapping class and thus λ8 = λ8−1 .

Handel and Mosher [2007] proved that if 8 is a parageometric outer automor-
phism of FN then λ8 >λ8−1 (see also [Behrstock et al. 2010]). Examples are also
given by Gautero [2007].

For pseudo-Levitt outer automorphisms of FN nothing can be said on the com-
parison of the expansion factors of the automorphism and its inverse. On one hand,
Handel and Mosher [2007, Introduction] gave an explicit example of a nongeomet-
ric automorphism with λ8=λ8−1 : thus this automorphism is pseudo-Levitt. On the
other hand, there are examples of pseudo-Levitt automorphisms with λ8 > λ8−1 .
Let ϕ ∈ Aut(F3) be the automorphism such that

ϕ : a 7→ b
b 7→ ac
c 7→ a

and ϕ−1
: a 7→ c

b 7→ a
c 7→ c−1b

Let8 be its outer class. Then86 is FR, has index ind(86)= 3
2 < 2. The expansion

factor is λ8 ' 1,3247. The outer automorphism 8−3 is FR, has index ind(8−3)=
1
2 < 2. The expansion factor is λ8−1 ' 1,4655 > λ8. The computation of these
two indices can be achieved using the algorithm of [Jullian 2009].

Now that we have classified outer automorphisms of FN into four categories,
questions of genericity naturally arise. In particular, is a generic outer automor-
phism of FN iwip, pseudo-Levitt and with distinct expansion factors? This was
suggested in [Handel and Mosher 2007], in particular for statistical genericity:
given a set of generators of Out(FN ) and considering the word metric associated
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to it, is it the case that

lim
k→∞

#(pseudo-Levitt iwip with λ8 6= λ8−1)∩ B(k))
#B(k)

= 1,

where B(k) is the ball of radius k, centered at 1, in Out(FN )?

5A. Botanical memo. In this section we give a glossary of our classification of
automorphisms for the working mathematician.

For a FR iwip outer automorphism8 of FN , we used 6 indices which are related
in the following way:

2 ind(8)= indgeo(T8) = indQ(T8−1),

2 ind(8−1)= indgeo(T8−1)= indQ(T8).

All these indices are bounded above by 2N − 2. We sum up our Theorem 5.2 in
the following table.

Automorphisms Trees Indices

8 geometric ⇔ T8 and T8−1 geometric ⇔ ind(8)= ind(8−1)= N−1
m m

8−1 geometric T8 surface
m

T8−1 surface

8 parageometric ⇔


T8 geometric
and
T8−1 nongeometric

⇔


ind(8)= N−1
and
ind(8−1) < N−1

m

T8 Levitt
m

T8−1 pseudo-surface

8 pseudo-Levitt ⇔ T8, T8−1 nongeometric
m m

8−1 pseudo-Levitt T8 pseudo-Levitt ⇔


ind(8) < N−1
and
ind(8−1) < N−1m

T8−1 pseudo-Levitt
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A NOTE ON INVERSE CURVATURE FLOWS IN
ASYMPTOTICALLY ROBERTSON–WALKER SPACETIMES

CLAUS GERHARDT

We prove that the leaves of the rescaled curvature flow considered in earlier
work converge to the graph of a constant function.

1. Introduction

In [Gerhardt 2004] and [Gerhardt 2006a, Chapter 7] we considered the inverse
mean curvature flow in a Lorentzian manifold N = N n+1 which we called an
asymptotically Robertson–Walker space, and which is defined by the following
conditions:

Definition 1.1. A cosmological spacetime N , dim N = n+1, is said to be asymp-
totically Robertson–Walker (ARW) with respect to the future, if a future end of
N , N+, can be written as a product N+ = [a, b) × S0, where S0 is a compact
Riemannian space, and there exists a future directed time function τ = x0 such
that the metric in N+ can be written as

(1-1) ds̆2
= e2ψ̃{

−
(
dx0)2

+ σi j (x0, x) dx i dx j},
where S0 corresponds to x0

= a, ψ̃ is of the form

(1-2) ψ̃(x0, x)= f (x0)+ψ(x0, x),

and we assume that there exists a positive constant c0 and a smooth Riemannian
metric σ i j on S0 such that

(1-3) lim
τ→b

eψ = c0 and lim
τ→b

σi j (τ, x)= σ i j (x),

and

(1-4) lim
τ→b

f (τ )=−∞.

This work was supported by the DFG.
MSC2010: 35J60, 53C21, 53C44, 53C50, 58J05.
Keywords: Lorentzian manifold, mass, cosmological spacetime, general relativity, inverse curvature

flow, ARW spacetimes.
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Without loss of generality we shall assume c0= 1. Then N is ARW with respect
to the future if the metric is close to the Robertson–Walker metric

(1-5) ds2
= e2 f {

−
(
dx0)2

+ σ i j (x) dx i dx j}
near the singularity τ = b. By close we mean that the derivatives of arbitrary order
with respect to space and time of the conformal metric e−2 f ğαβ in (1-1) should
converge to the corresponding derivatives of the conformal limit metric in (1-5)
when x0 tends to b. We emphasize that in our terminology Robertson–Walker
metric does not imply that (σ i j ) is a metric of constant curvature, it is only the
spatial metric of a warped product.

We assume, furthermore, that f satisfies the following five conditions:

(1-6) − f ′ > 0.

There exists ω ∈ R such that

(1-7) n+ω− 2> 0 and lim
τ→b
| f ′|2e(n+ω−2) f

= m > 0.

Set γ̃ = 1
2(n+ω− 2), then the limit

(1-8) lim
τ→b

(
f ′′+ γ̃ | f ′|2

)
exists and

(1-9) |Dm
τ ( f ′′+ γ̃ | f ′|2)| ≤ cm | f ′|m for all m ≥ 1,

as well as

(1-10) |Dm
τ f | ≤ cm | f ′|m for all m ≥ 1.

We call N a normalized ARW spacetime if

(1-11)
∫

S0

√
det σ i j = |Sn

|.

Remark 1.2. (i) If these assumptions are satisfied, then we proved in [Gerhardt
2004] that the range of τ is finite, hence, we shall assume without loss of generality
that b = 0, that is,

(1-12) a < τ < 0.

(ii) Any ARW spacetime can be normalized as one easily checks. For normalized
ARW spaces the constant m in (1-7) is defined uniquely and can be identified with
the mass of N , see [Gerhardt 2006b].

(iii) In view of the assumptions on f the mean curvature of the coordinate slices
Mτ = {x0

= τ } tends to∞ if τ goes to zero.
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(iv) ARW spaces satisfy a strong volume decay condition, see [Gerhardt 2008,
Definition 0.1].

(v) Similarly one can define N to be ARW with respect to the past. In this case the
singularity would lie in the past, correspond to τ = 0, and the mean curvature of
the coordinate slices would tend to −∞.

We assume that N satisfies the timelike convergence condition. Consider the
future end N+ of N and let M0 ⊂ N+ be a spacelike hypersurface with positive
mean curvature H̆|M0 > 0 with respect to the past directed normal vector ν̆—we
shall explain in Section 2 why we use the symbols H̆ and ν̆ and not the usual ones
H and ν. Then, as we have proved in [Gerhardt 2008], the inverse mean curvature
flow

(1-13) ẋ =−H̆−1 ν̆

with initial hypersurface M0 exists for all time, is smooth, and runs straight into
the future singularity.

If we express the flow hypersurfaces M(t) as graphs over S0

(1-14) M(t)= graph u(t, · ),

then one of the main results in our former paper was:

Theorem 1.3. (i) Let N satisfy the above assumptions, then the range of the time
function x0 is finite, that is, we may assume that b = 0. Set

(1-15) ũ = ueγ t ,

where γ = 1
n γ̃ , then there are positive constants c1, c2 such that

(1-16) −c2 ≤ ũ ≤−c1 < 0,

and ũ converges in C∞(S0) to a smooth function, if t goes to infinity. We shall also
denote the limit function by ũ.

(ii) Let ği j be the induced metric of the leaves M(t), then the rescaled metric

(1-17) e
2
n t ği j

converges in C∞(S0) to

(1-18) (γ̃ 2m)
1
γ̃ (−ũ)

2
γ̃ σ i j .

(iii) The leaves M(t) get more umbilical if t tends to infinity, namely,

(1-19) H̆−1∣∣h̆ j
i −

1
n H̆δ j

i

∣∣≤ ce−2γ t .
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In case n+ω− 4> 0, we even get a better estimate

(1-20)
∣∣h̆ j

i −
1
n H̆δ j

i

∣∣≤ ce−
1

2n (n+ω−4)t
.

The results for the mean curvature flow have recently also been proved for other
inverse curvature flows, where the mean curvature is replaced by a curvature func-
tion F of class (K ∗) homogeneous of degree 1, which includes the n-th root of the
Gaussian curvature, see Kröner [2011].

In this note we want to prove that the functions in (1-15) converge to a constant.
This result will also be valid when, instead of the mean curvature, other curvature
functions F homogeneous of degree one will be considered satisfying

(1-21) F(1, . . . , 1)= n

provided the rescaled functions in (1-15) can be estimated as in (1-16) and converge
in C3(S0). For simplicity we shall formulate the result only for the solution in
Theorem 1.3, but it will be apparent from the proof that the result is also valid for
different curvature functions.

Theorem 1.4. The functions ũ in (1-15) converge to a constant.

2. Proof of Theorem 1.4

When we proved the convergence results for the inverse mean curvature flow
in [Gerhardt 2004], we considered the flow hypersurfaces to be embedded in N
equipped with the conformal metric

(2-1) ds2
=−

(
dx0)2

+ σi j (x0, x) dx i dx j .

Though, formally, we have a different ambient space we still denote it by the
same symbol N and distinguish only the metrics ğαβ and ḡαβ

(2-2) ğαβ = e2ψ̃ ḡαβ

and the corresponding geometric quantities of the hypersurfaces h̆ i j , ği j , ν̆, respec-
tively h i j , gi j , ν, and so on.

The second fundamental forms h̆ j
i and h j

i are related by

(2-3) eψ̃ h̆ j
i = h j

i + ψ̃αν
αδ

j
i

and, if we define F by

(2-4) F = eψ̃ H̆ ,

then

(2-5) F = H − nṽ f ′+ nψανα,
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where

(2-6) ṽ = v−1,

and

(2-7) v2
= 1− σ i j uuu j ≡ 1− |Du|2.

The evolution equation can be written as

(2-8) ẋ =−F−1ν,

since

(2-9) ν̆ = e−ψ̃ν.

The flow (2-8) can also be considered to comprise more general curvature functions
F by assuming that F = F

(
ȟi

j

)
, where ȟi

j is an abbreviation for the right-hand side
of (2-3). Stipulating that indices of tensors will be raised or lowered with the help
of the metric

(2-10) gi j =−ui u j + σi j ,

we may also consider F to depend on

(2-11) ȟ i j = h i j − ṽ f ′gi j +ψαν
αgi j

and we define accordingly

(2-12) F i j
=
∂F
∂ ȟ i j

.

Now, let us prove Theorem 1.4. We use the relation

(2-13) ṽ2
= 1+‖Du‖2 = 1+ g i j ui u j

and shall prove that

(2-14) lim
t→∞

(
‖Du‖2

)′e2γ t
= 2γ∆ũ ũ,

where

(2-15) ũ = lim
t→∞

ueγ t ,

as well as

(2-16) lim
t→∞

(
ṽ2)′e2γ t

=−2γ ‖Dũ‖2

yielding

(2-17) −∆ũ ũ = ‖Dũ‖2
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on the compact limit hypersurface M . Since ũ is strictly negative we then conclude

(2-18)
∫

M
‖Dũ‖2ũ−1

= 0,

hence ‖Dũ‖ = 0.
Let us first derive (2-14). Using

(2-19) ġi j =−2F−1h i j ,

see [Gerhardt 2006a, Lemma 2.3.1], where we write gi j = gi j (t, ξ), ξ = (ξ i ) are
local coordinates for S0, and where

(2-20) ġi j =
∂gi j

∂t
= u̇i u j + ui u̇ j + σ̇i j u̇,

and σ̇i j is defined by

(2-21) σ̇i j =
∂σi j

∂u
,

we deduce

(2-22)
(
‖Du‖2

)′
=
(
g i j ui u j

)′
= 2g i j u̇i u j − ġi j ui u j

= 2F−1 H + g i j σ̇i j u̇− ġi j ui u j

= 2F−1 H + ṽF−1g i j σ̇i j + 2F−1h i j ui u j

= 2F−1 H + ṽF−1σ i j σ̇i j + ṽ
3 F−1σ̇i j ǔi ǔ j

+ 2F−1h i j ui u j ,

where we used the relation

(2-23) g i j
= σ i j

+ ṽ2ǔi ǔ j

and where ǔi is defined by

(2-24) ǔi
= σ i j u j .

The last two terms on the right-hand side of (2-22) are an o
(
e−2γ t

)
, thus we

have

(2-25)
(
‖Du‖2

)′
= 2F−1(H + ṽ 1

2σ
i j σ̇i j

)
+ o

(
e−2γ t).

On the other hand,

(2-26) h i j ṽ =−u i j + h̄ i j ,

where h̄ i j is the second fundamental form of the slices {x0
= const}

(2-27) h̄ i j =−
1
2 σ̇i j
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and we infer

H ṽ =−∆u+ g i j h̄ i j =−∆u+ H̄ + ṽ2h̄ i j ǔi ǔ j .(2-28)

Combining (2-22), (2-27) and (2-28) we obtain

(2-29)
(
‖Du‖2

)′
= 2F−1(H − ṽ H̄

)
+ o

(
e−2γ t)

= 2F−1(H − H̄
)
+ o

(
e−2γ t)

=−2F−1∆u+ o
(
e−2γ t).

In view of [Gerhardt 2006a, Lemma 7.3.4], the estimates for h i j , u, and ψ , and the
homogeneity of F , we have

(2-30) lim
t→∞

F(−u)= nγ̃−1
= γ−1,

hence we deduce

(2-31) lim
t→∞

(
‖Du‖2

)′e2γ t
= 2γ∆ũ ũ.

Let us now differentiate ṽ2. From the relation

(2-32) ṽ = ηαν
α, (ηα)= (−1, 0, . . . , 0),

we infer

(2-33) ˙̃v = ηαβν
α ẋβ + ηα ν̇α =−F−1ηαβν

ανβ +
(
F−1)

k uk,

where we used

(2-34) ν̇ =
(
−F−1)k xk,

see [Gerhardt 2006a, Lemma 2.3.2]. The first term on the right-hand side of (2-33)
is an o

(
e−2γ t

)
in view of the asymptotic behavior of an ARW space, see the defi-

nition of close in Definition 1.1, while

(2-35)
(
F−1)

k

=−F−2 F i j{hi j;k − ṽk f ′gi j − f̃ ′′uk gi j +ψαβν
αxβk gi j +ψαxαl hl

k gi j
}
,

where we applied the Weingarten equation to derive the last term on the right-hand
side. Therefore, we infer

(2-36) lim
t→∞

(
F−1)

kuke2γ t
= ‖Dũ‖2 1

n lim
f ′′

| f ′|2
=−

γ̃

n
‖Dũ‖2 =−γ ‖Dũ‖2,

in view of (1-8) and the definition of γ in Theorem 1.3, and we deduce further

(2-37) lim
t→∞

(
ṽ2)′e2γ t

=−2γ ‖Dũ‖2,
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hence the limit function ũ satisfies

(2-38) ‖Dũ‖2 =−∆ũ ũ

completing the proof of Theorem 1.4.

Remark 2.1. We believe that this method of proof will also work for other curva-
ture flows driven by extrinsic curvatures, in Riemannian or Lorentzian manifolds,
to prove that the leaves of the rescaled curvature flows converge to the graph of a
constant function.

Indeed, applying this method we proved in [Gerhardt 2011, Lemma 6.12] that
the rescaled curvature flow converges to a sphere.
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TOTAL CURVATURE OF GRAPHS
AFTER MILNOR AND EULER

ROBERT GULLIVER AND SUMIO YAMADA

We define a new notion of total curvature, called net total curvature, for
finite graphs embedded in Rn, and investigate its properties. Two guiding
principles are given by Milnor’s way of measuring using a local Crofton-
type formula, and by considering the double cover of a given graph as an
Eulerian circuit. The strength of combining these ideas in defining the cur-
vature functional is that it allows us to interpret the singular/noneuclidean
behavior at the vertices of the graph as a superposition of vertices of a
1-dimensional manifold, so that one can compute the total curvature for
a wide range of graphs by contrasting local and global properties of the
graph utilizing the integral geometric representation of the curvature. A
collection of results on upper/lower bounds of the total curvature on iso-
topy/homeomorphism classes of embeddings is presented, which in turn
demonstrates the effectiveness of net total curvature as a new functional
measuring complexity of spatial graphs in differential-geometric terms.

1. Introduction: curvature of a graph

The celebrated Fáry–Milnor theorem states that a curve in Rn of total curvature at
most 4π is unknotted.

As a key step in his proof, John Milnor [1950] showed that for a smooth Jordan
curve 0 in R3, the total curvature equals half the integral over e∈ S2 of the number
µ(e) of local maxima of the linear height function 〈e, · 〉 along 0. This equality
can be regarded as a Crofton-type representation formula of total curvature where
the order of integrations over the curve and the unit tangent sphere (the space of
directions) are reversed. The Fáry–Milnor theorem follows, since total curvature
less than 4π implies there is a unit vector e0 ∈ S2 so that 〈e0, · 〉 has a unique local
maximum, and therefore that this linear function is increasing on an interval of 0
and decreasing on the complement. Without changing the pointwise value of this
height function, 0 can be topologically untwisted to a standard embedding of S1

Supported in part by JSPS Grant-in-aid for Scientific Research No. 17740030. The authors thank the
Korea Institute for Advanced Study for invitations.
MSC2010: 05C99, 53A04, 57M25, 57N45.
Keywords: spatial graphs, total curvature, Milnor.
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into R3. The Fenchel theorem, that any curve in R3 has total curvature at least 2π ,
also follows from Milnor’s key step, since for all e ∈ S2, the linear function 〈e, · 〉
assumes its maximum somewhere along 0, implying µ(e) ≥ 1. Milnor’s proof is
independent of the proof of Istvan Fáry, published earlier [1949], which takes a
different approach.

We would like to extend the methods of Milnor’s seminal paper, replacing the
simple closed curve by a finite graph 0 in R3. 0 consists of a finite number of
points, the vertices, and a finite number of simple arcs, the edges, each of which
has as its endpoints one or two of the vertices. We shall assume 0 is connected.
The degree of a vertex q is the number d(q) of edges which have q as an endpoint.
(Another word for degree is “valence”.) We remark that it is technically not needed
that the dimension n of the ambient space equals three. All the arguments can be
generalized to higher dimensions, although in higher dimensions (n ≥ 4) there are
no nontrivial knots, and any two homeomorphic graphs are isotopic.

The key idea in generalizing total curvature for curves to total curvature for
graphs is to consider the Euler circuits, namely, parametrizations by S1, of the
double cover of the graph. We note that given a graph of even degree, there can be
several Euler circuits, or ways to trace it without lifting the pen. A topological ver-
tex of a graph of degree d is a singularity, in that the graph is not locally Euclidean.
However by considering an Euler circuit of the double of the graph, the vertex
becomes locally the intersection point of d paths. We will show (Corollary 3.7)
that at the vertex, each path through it has a (signed) measure-valued curvature,
and the absolute value of the sum of those measures is well-defined, independent
of the choice of the Euler circuit of the double cover. We define (Definition 2.1)
the net total curvature (NTC) of a piecewise C2 graph to be the sum of the total
curvature of the smooth arcs and the contributions from the vertices as described.

This notion of net total curvature is substantially different from the total curva-
ture, denoted TC, as defined by Taniyama [1998]. (Taniyama writes τ for TC.) See
Section 2 below.

This is consistent with known results for the vertices of degree d = 2; with
vertices of degree three or more, this definition helps facilitate a new Crofton-type
representation formula (Theorem 3.13) for total curvature of graphs, where the
total curvature is represented as an integral over the unit sphere. Recall that the
vertex is now seen as d distinct points on an Euler circuit. The way we pick up
the contribution of the total curvature at the vertices identifies the d distinct points,
and thus the 2d unit tangent spheres on a circuit. As Crofton’s formula in effect
reverses the order of integrations — one over the circuit, the other over the space of
tangent directions — the sum of the d exterior angles at the vertex is incorporated
in the integral over the unit sphere. On the other hand the integrand of the integral
over the unit sphere counts the number of net local maxima of the height function
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along an axis, where net local maximum means the number of local maxima minus
the number of local minima at these d points of the Euler circuit. This establishes
a correspondence between the differential geometric quantity (net total curvature)
and the differential topological quantity (average number of maxima) of the graph,
as stated in Theorem 3.13 below.

In Section 2, we compare several definitions for total curvature of graphs which
have appeared in the recent literature. In Section 3, we introduce the main tool
(Lemma 3.5) which in a sense reduces the computation of NTC to counting inter-
sections with planes.

Milnor’s treatment [1950] of total curvature also contained an important topo-
logical extension. Namely, in order to define total curvature, the curve needs only
to be continuous. This makes the total curvature a geometric quantity defined on
any homeomorphic image of S1. In this article, we first define net total curva-
ture (Definition 2.1) on piecewise C2 graphs, and then extend the definition to
continuous graphs (Definition 2.3.) In analogy to Milnor, we approximate a given
continuous graph by a sequence of polygonal graphs. In showing the monotonicity
of the total curvature (Proposition 4.1) under the refining process of approximating
graphs we use our representation formula (Theorem 3.13) applied to the polygonal
graphs.

Consequently the Crofton-type representation formula is also extended to cover
continuous graphs (Theorem 4.9). Additionally, we are able to show that continu-
ous graphs with finite total curvature (NTC or TC) are tame. We say that a graph
is tame when it is isotopic to an embedded polyhedral graph.

In sections 5 through 8, we characterize NTC with respect to the geometry and
the topology of the graph. Proposition 5.5 shows the subadditivity of NTC under
the union of graphs which meet in a finite set. In Section 6, the concept of bridge
number is extended from curves to graphs, in terms of which the minimum of NTC
can be explicitly computed, provided the graph has at most one vertex of degree
> 3. In Section 7, Theorem 7.1 gives a lower bound for NTC in terms of the width
of an isotopy class. The infimum of NTC is computed for specific graph types: the
two-vertex graphs θm , the “ladder” Lm , the “wheel” Wm , the complete graph Km

on m vertices and the complete bipartite graph Km,n .
Finally we prove a result (Theorem 8.5) which gives a Fenchel type lower bound

(≥ 3π) for total curvature of a theta graph (an image of the graph consisting of a
circle with an arc connecting a pair of antipodal points), and a Fáry–Milnor type
upper bound (<4π) to imply the theta graph is isotopic to the standard embedding.
A similar result was given by Taniyama [1998], referring to TC. In contrast, for
graphs of the type of Km (m ≥ 4), the infimum of NTC in the isotopy class of a
polygon on m vertices is also the infimum for a sequence of distinct isotopy classes
(Corollary 8.3).
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Many of the results in our earlier preprint [Gulliver and Yamada 2008] have
been incorporated into the present paper.

We thank Yuya Koda for his comments regarding Proposition 6.1, and Jaigyoung
Choe and Rob Kusner for their comments about Theorem 8.5, especially about the
sharp case NTC(0)= 3π of the lower bound estimate.

2. Definitions of total curvature

The first difficulty, in extending the results of Milnor’s classic paper, is to under-
stand the contribution to total curvature at a vertex of degree d(q) ≥ 3. We first
consider the well-known case:

Definition of total curvature for curves. For a smooth closed curve 0, the total
curvature is

C(0)=

∫
0

|Ek| ds,

where s denotes arc length along 0 and Ek is the curvature vector. If x(s) ∈ R3

denotes the position of the point measured at arc length s along the curve, then
Ek = d2x

ds2 . For a piecewise smooth curve, that is, a graph with vertices q1, . . . , qN

having always degree d(qi )= 2, the total curvature is readily generalized to

(2-1) C(0)=

N∑
i=1

c(qi )+

∫
0reg

|Ek| ds,

where the integral is taken over the separate C2 edges of 0 without their endpoints;
and where c(qi ) ∈ [0, π] is the exterior angle formed by the two edges of 0 which
meet at qi . That is, cos(c(qi ))= 〈T1,−T2〉, where T1=

dx
ds (q

+

i ) and T2=−
dx
ds (q

−

i )

are the unit tangent vectors at qi pointing into the two edges which meet at qi . The
exterior angle c(qi ) is the correct contribution to total curvature, since any sequence
of smooth curves converging to 0 in C0, with C1 convergence on compact subsets
of each open edge, includes a small arc near qi along which the tangent vector
changes from near dx

ds (q
−

i ) to near dx
ds (q

+

i ). The greatest lower bound of the contri-
bution to total curvature of this disappearing arc along the smooth approximating
curves equals c(qi ).

Note that C(0) is well defined for an immersed curve 0.

Definitions of total curvature for graphs. When we turn our attention to a graph
0, we find the above definition for curves (degree d(q) = 2) does not generalize
in any obvious way to higher degree (see [Gulliver 2007]). The ambiguity of the
general formula (2-1) is resolved if we specify the replacement for c(0) when 0 is
the cone over a finite set {T1, . . . , Td} in the unit sphere S2.
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The earliest notion of total curvature of a graph appears in the context of the
first variation of length of a graph, which we call variational total curvature, and
is called the mean curvature of the graph in [Allard and Almgren 1976]: we shall
write VTC. The contribution to VTC at a vertex q of degree 2, with unit tangent
vectors T1 and T2, is vtc(q)= |T1+ T2| = 2 sin(c(q)/2). At a nonstraight vertex q
of degree 2, vtc(q) is less than the exterior angle c(q). For a vertex of degree d ,
the contribution is vtc(q)= |T1+ · · ·+ Td |.

A rather natural definition of total curvature of graphs was given in [Taniyama
1998]. We have called this maximal total curvature TC(0) in [Gulliver 2007]. The
contribution to total curvature at a vertex q of degree d is

tc(q) :=
∑

1≤i< j≤d

arccos〈Ti ,−T j 〉.

In the case d(q) = 2, the sum above has only one term, the exterior angle c(q) at
q. Since the length of the Gauss image of a curve in S2 is the total curvature of the
curve, tc(q) may be interpreted as adding to the Gauss image in RP2 of the edges,
a complete great-circle graph on T1(q), . . . , Td(q), for each vertex q of degree d .
Note that the edge between two vertices does not measure the distance in RP2 but
its supplement.

In [Gulliver and Yamada 2006], studying the density of an area-minimizing two-
dimensional rectifiable set 6 spanning 0, we found that it was very useful to apply
the Gauss–Bonnet formula to the cone over 0 with a point p of 6 as vertex. The
relevant notion of total curvature in that context is cone total curvature CTC(0),
defined using ctc(q) as the replacement for c(q) in (2-1):

(2-2) ctc(q) := sup
e∈S2

{ d∑
i=1

(
π

2
− arccos〈Ti , e〉

)}
.

Note that in the case d(q)=2, the supremum above is assumed at vectors e lying
in the smaller angle between the tangent vectors T1 and T2 to 0, so that ctc(q) is
then the exterior angle c(q) at q . The main result of [Gulliver and Yamada 2006]
is that 2π times the area density of 6 at any of its points is at most equal to
CTC(0). The same result had been proven by Eckholm, White and Wienholtz for
the case of a simple closed curve [Ekholm et al. 2002]. Taking6 to be the branched
immersion of the disk given by Douglas [1931] and Radó [1933], it follows that
if C(0) ≤ 4π , then 6 is embedded, and therefore 0 is unknotted. Thus [Ekholm
et al. 2002] provided an independent proof of the Fáry–Milnor theorem. However,
CTC(0) may be small for graphs which are far from the simplest isotopy types of
a graph 0.

In this paper, we introduce the notion of net total curvature NTC(0), which
is the appropriate definition for generalizing — to graphs — Milnor’s approach to
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isotopy and total curvature of curves. For each unit tangent vector Ti at q , where
1 ≤ i ≤ d = d(q), let χi : S2

→ {−1,+1} be equal to −1 on the hemisphere with
center at Ti , and +1 on the opposite hemisphere (modulo sets of zero Lebesgue
measure). We then define

(2-3) ntc(q) :=
1
4

∫
S2

[ d∑
i=1

χi (e)
]+

d AS2(e).

We note that the function
∑d

i=1 χi (e) is odd, hence the quantity above can be
written as

ntc(q) :=
1
8

∫
S2

∣∣∣∣ d∑
i=1

χi (e)
∣∣∣∣ d AS2(e).

as well. In the case d(q)= 2, the integrand of (2-3) is positive (and equals 2) only
on the set of unit vectors e which have negative inner products with both T1 and
T2, ignoring e in sets of measure zero. This set is bounded by great semicircles
orthogonal to T1 and to T2, and has spherical area equal to twice the exterior angle.
So in this case, ntc(q) is the exterior angle. Thus, in the special case where 0
is a piecewise smooth curve, the following quantity NTC(0) coincides with total
curvature, as well as with TC(0) and CTC(0):

Definition 2.1. We define the net total curvature of a piecewise C2 graph 0 with
vertices {q1, . . . , qN } as

(2-4) NTC(0) :=
N∑

i=1

ntc(qi )+

∫
0reg

|Ek| ds.

For the sake of simplicity, elsewhere in this paper, we consider the ambient space
to be R3. However the definition of the net total curvature can be generalized for a
graph in Rn by defining the vertex contribution in terms of an average over Sn−1:

ntc(q) := π
?

Sn−1

[ d∑
i=1

χi (e)
]+

d ASn−1(e),

which is consistent with the definition (2-3) of ntc when n = 3.
Recall that Milnor defines the total curvature of a continuous simple closed

curve C as the supremum of the total curvature of all polygons inscribed in C . By
analogy, we define net total curvature of a continuous graph 0 to be the supremum
of the net total curvature of all polygonal graphs P suitably inscribed in 0 as
follows.

Definition 2.2. For a given continuous graph 0, we say a polygonal graph P ⊂R3

is 0-approximating, provided that its topological vertices (those of degree 6= 2) are
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exactly the topological vertices of 0, and having the same degrees; and that the
arcs of P between two topological vertices correspond one-to-one to the edges of
0 between those two vertices.

Note that if P is a 0-approximating polygonal graph, then P is homeomorphic
to 0. According to the statement of Proposition 4.1, whose proof will be given
in the next section, if P and P̃ are 0-approximating polygonal graphs, and P̃ is
a refinement of P , then NTC(P̃) ≥ NTC(P). Here P̃ is said to be a refinement
of P provided the set of vertices of P is a subset of the vertices of P̃ . Assum-
ing Proposition 4.1 for the moment, we can generalize the definition of the total
curvature to nonsmooth graphs.

Definition 2.3. Define the net total curvature of a continuous graph 0 by

NTC(0) := sup
P

NTC(P)

where the supremum is taken over all 0-approximating polygonal graphs P .

For a polygonal graph P , applying Definition 2.1,

NTC(P) :=
N∑

i=1

ntc(qi ),

where q1, . . . , qN are the vertices of P .
Definition 2.3 is consistent with Definition 2.1 in the case of a piecewise C2

graph 0. Namely, as Milnor showed [1950, p. 251], the total curvature C(00) of
a smooth curve 00 is the supremum of the total curvature of inscribed polygons,
which gives the required supremum for each edge. At a vertex q of the piecewise-
C2 graph 0, as a sequence Pk of 0-approximating polygons become arbitrarily
fine, a vertex q of Pk (and of 0) has unit tangent vectors converging in S2 to the
unit tangent vectors to 0 at q . It follows that for 1 ≤ i ≤ d(q), χ Pk

i → χ0i in
measure on S2, and therefore ntcPk (q)→ ntc0(q).

3. Crofton-type representation formula for total curvature

We would like to explain how the net total curvature NTC(0) of a piecewise C2

graph 0 is related to more familiar notions of total curvature. Recall that 0 has an
Euler circuit if and only if its vertices all have even degree, by a theorem of Euler.
An Euler circuit is a closed, connected path which traverses each edge of 0 exactly
once. Of course, we do not have the hypothesis of even degree. We can attain that
hypothesis by passing to the double 0̃ of 0: 0̃ is the graph with the same vertices
as 0, but with two copies of each edge of 0. Then at each vertex q , the degree
as a vertex of 0̃ is d̃(q) = 2 d(q), which is even. By Euler’s theorem, there is an
Euler circuit 0′ of 0̃, which may be thought of as a closed path which traverses
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each edge of 0 exactly twice. Now at each of the points {q1, . . . , qd} along 0′

which are mapped to q ∈ 0, we may consider the exterior angle c(qi ). The sum of
these exterior angles, however, depends on the choice of the Euler circuit 0′. For
example, if 0 is the union of the x-axis and the y-axis in Euclidean space R3, then
one might choose 0′ to have four right angles, or to have four straight angles, or
something in between, with completely different values of total curvature. In order
to form a version of total curvature at a vertex q which only depends on the original
graph 0 and not on the choice of Euler circuit 0′, it is necessary to consider some
of the exterior angles as partially balancing others. In the example just considered,
where 0 is the union of two orthogonal lines, two opposing right angles will be
considered to balance each other completely, so that ntc(q) = 0, regardless of the
choice of Euler circuit of the double.

It will become apparent that the connected character of an Euler circuit of 0̃ is
not required for what follows. Instead, we shall refer to a parametrization 0′ of the
double 0̃, which is a mapping from a 1-dimensional manifold without boundary,
not necessarily connected; the mapping is assumed to cover each edge of 0̃ once.

The nature of ntc(q) is clearer when it is localized on S2, analogously to [Milnor
1950]. In the case d(q) = 2, Milnor observed that the exterior angle at the vertex
q equals half the area of those e ∈ S2 such that the linear function 〈e, · 〉, restricted
to 0, has a local maximum at q. In our context, we may describe ntc(q) as one-
half the integral over the sphere of the number of net local maxima, which is half
the difference of local maxima and local minima. Along the parametrization 0′ of
the double of 0, the linear function 〈e, · 〉 may have a local maximum at some of
the vertices q1, . . . , qd over q , and may have a local minimum at others. In our
construction, each local minimum balances against one local maximum. If there
are more local minima than local maxima, the number nlm(e, q), the net number
of local maxima, will be negative; however, our definition uses only the positive
part [nlm(e, q)]+.

We need to show that ∫
S2
[nlm(e, q)]+ d AS2(e)

is independent of the choice of parametrization, and in fact is equal to 2 ntc(q);
this will follow from another way of computing nlm(e, q) (see Corollary 3.7).

Definition 3.1. Let a parametrization 0′ of the double of 0 be given. Then a
vertex q of 0 corresponds to a number of vertices q1, . . . , qd of 0′, where d is the
degree d(q) of q as a vertex of 0. Choose e ∈ S2. If q ∈ 0 is a local extremum
of 〈e, · 〉, then we consider q as a vertex of degree d(q) = 2. Let lmax(e, q) be
the number of local maxima of 〈e, · 〉 along 0′ at the points q1, . . . , qd over q , and
similarly let lmin(e, q) be the number of local minima. We define the number of
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net local maxima of 〈e, · 〉 at q to be

nlm(e, q)= 1
2 [lmax(e, q)− lmin(e, q)].

Remark 3.2. The definition of nlm(e, q) appears to depend not only on 0 but on
a choice of the parametrization 0′ of the double of 0: lmax(e, q) and lmin(e, q)
may depend on the choice of 0′. However, we shall see in Corollary 3.6 below
that the number of net local maxima nlm(e, q) is in fact independent of 0′.

Remark 3.3. We have included the factor 1
2 in the definition of nlm(e, q) in order

to agree with the difference of the numbers of local maxima and minima along a
parametrization of 0 itself, if d(q) is even.

We shall assume for the rest of this section that a unit vector e has been chosen,
and that the linear height function 〈e, · 〉 has only a finite number of critical points
along 0; this excludes e belonging to a subset of S2 of measure zero. We shall also
assume that the graph 0 is subdivided to include among the vertices all critical
points of the linear function 〈e, · 〉, with degree d(q)= 2 if q is an interior point of
one of the topological edges of 0.

Definition 3.4. Choose a unit vector e. At a point q ∈ 0 of degree d = d(q),
let the up-degree d+ = d+(e, q) be the number of edges of 0 with endpoint q
on which 〈e, · 〉 exceeds 〈e, q〉, the height of q . Similarly, let the down-degree
d−(e, q) be the number of edges along which 〈e, · 〉 is less than its value at q . Note
that d(q)= d+(e, q)+ d−(e, q), for almost all e in S2.

Lemma 3.5 (combinatorial lemma). For all q ∈ 0 and for almost all e ∈ S2,

nlm(e, q)= 1
2 [d
−(e, q)− d+(e, q)].

Proof. Let a parametrization 0′ of the double of 0 be chosen, with respect to
which lmax(e, q) and lmin(e, q) are defined. Recall the assumption above, that 0
has been subdivided so that along each edge, the linear function 〈e, · 〉 is strictly
monotone.

Consider a vertex q of 0, of degree d = d(q). Then 0′ has 2d edges with an
endpoint among the points q1, . . . , qd which are mapped to q ∈ 0. On 2d+, resp.
2d− of these edges, 〈e, · 〉 is greater resp. less than 〈e, q〉. But for each 1 ≤ i ≤ d ,
the parametrization 0′ has exactly two edges which meet at qi . Depending on the
up/down character of the two edges of 0′ which meet at qi , 1 ≤ i ≤ d , we can
count:

(+) If 〈e, · 〉 is greater than 〈e, q〉 on both edges, then qi is a local minimum point;
there are lmin(e, q) of these among q1, . . . , qd .
(-) If 〈e, · 〉 is less than 〈e, q〉 on both edges, then qi is a local maximum point;
there are lmax(e, q) of these.
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(0) In all remaining cases, the linear function 〈e, · 〉 is greater than 〈e, q〉 along
one edge and less along the other, in which case qi is not counted in computing
lmax(e, q) nor lmax(e, q); there are d(q)− lmax(e, q)− lmin(e, q) of these.

Now count the individual edges of 0′:

(+) There are lmin(e, q) pairs of edges, each of which is part of a local minimum,
both of which are counted among the 2d+(e, q) edges of 0′ with 〈e, · 〉 greater than
〈e, q〉.
(-) There are lmax(e, q) pairs of edges, each of which is part of a local maximum;
these are counted among the number 2d−(e, q) of edges of 0′ with 〈e, · 〉 less than
〈e, q〉. Finally,
(0) there are d(q)− lmax(e, q)− lmin(e, q) edges of 0′ which are not part of a
local maximum or minimum, with 〈e, · 〉 greater than 〈e, q〉; and an equal number
of edges with 〈e, · 〉 less than 〈e, q〉.

Thus, the total number of these edges of 0′ with 〈e, · 〉 greater than 〈e, q〉 is

2d+ = 2 lmin+ (d − lmax− lmin)= d + lmin− lmax.

Similarly,

2d− = 2 lmax+ (d − lmax− lmin)= d + lmax− lmin.

Subtracting gives the conclusion:

nlm(e, q) :=
lmax(e, q)− lmin(e, q)

2
=

d−(e, q)− d+(e, q)
2

. �

Corollary 3.6. The number of net local maxima nlm(e, q) is independent of the
choice of parametrization 0′ of the double of 0.

Proof. Given a direction e ∈ S2, the up-degree and down-degree d±(e, q) at a
vertex q ∈ 0 are defined independently of the choice of 0′. �

Corollary 3.7. For any q ∈ 0, we have ntc(q)= 1
2

∫
S2[nlm(e, q)]+ d AS2 .

Proof. Consider e ∈ S2. In the definition (2-3) of ntc(q), χi (e) = ±1 whenever
±〈e, Ti 〉 < 0. But the number of 1 ≤ i ≤ d with ±〈e, Ti 〉 < 0 equals d∓(e, q), so
that

d∑
i=1

χi (e)= d−(e, q)− d+(e, q)= 2 nlm(e, q)

by Lemma 3.5, for almost all e ∈ S2. �

Definition 3.8. For a graph 0 in R3 and e ∈ S2, define the multiplicity at e as

µ(e)= µ0(e)=
∑
{nlm+(e, q) : q a vertex of 0 or a critical point of 〈e, · 〉}.
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Note that µ(e) is a half-integer. Note also that in the case when 0 is a curve,
or equivalently, when d(q)≡ 2, µ(e) is exactly the integer µ(0, e), the number of
local maxima of 〈e, · 〉 along 0 as defined in [Milnor 1950, p. 252].

Corollary 3.9. For almost all e ∈ S2 and for any parametrization 0′ of the double
of 0, µ0(e)≤ 1

2µ0′(e).

Proof. We have

µ0(e)= 1
2

∑
q

[
lmax0′(e, q)− lmin0′(e, q)

]
≤

1
2

∑
q

lmax0′(e, q)= 1
2µ0′ . �

If, in place of the positive part, we sum nlm(e, q) itself over q located above a
plane orthogonal to e, we find a useful quantity:

Corollary 3.10. For almost all s0 ∈ R and almost all e ∈ S2,

2
∑{

nlm(e, q) : 〈e, q〉> s0
}
= #(e, s0),

the cardinality of the fiber {p ∈ 0 : 〈e, p〉 = s0}.

Proof. If s0 > maxp∈0〈e, p〉, then #(e, s0) = 0. Now proceed downward, using
Lemma 3.5 by induction. �

Note that the fiber cardinality of Corollary 3.10 is also the value obtained for
curves, where the more general nlm may be replaced by the number of local max-
ima [Milnor 1950].

Remark 3.11. In analogy with Corollary 3.10, we expect that an appropriate gen-
eralization of NTC to curved polyhedral complexes of dimension ≥ 2 will in the
future allow computation of the homology of level sets and sublevel sets of a (gen-
eralized) Morse function in terms of a generalization of nlm(e, q).

Corollary 3.12. The multiplicity of a graph in direction e ∈ S2 may also be com-
puted as µ(e)= 1

2

∑
q∈0 |nlm(e, q)|.

Proof. It follows from Corollary 3.10 with s0<min0〈e, · 〉 that
∑

q∈0 nlm(e, q)=0,
which is the difference of positive and negative parts. The sum of these parts is∑

q∈0 |nlm(e, q)| = 2µ(e). �

It was shown in Theorem 3.1 of [Milnor 1950] that, in the case of curves, C(0)=
1
2

∫
S2 µ(e) d AS2 , where Milnor refers to Crofton’s formula. We may now extend

this result to graphs:

Theorem 3.13. For a (piecewise C2) graph 0 mapped into R3, the net total cur-
vature has the representation

NTC(0)=
1
2

∫
S2
µ(e) d AS2(e).
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Proof. We have NTC(0) =
∑N

j=1 ntc(q j )+
∫
0reg
|Ek| ds, where q1, . . . , qN are the

vertices of 0, including local extrema as vertices of degree d(q j )= 2, and where
ntc(q) := 1

4

∫
S2

[∑d
i=1 χi (e)

]+ d AS2(e) by the definition (2-3) of ntc(q). Apply-
ing Milnor’s result to each C2 edge, we have C(0reg) =

1
2

∫
S2 µ0reg(e) d AS2 . But

µ0(e)= µ0reg(e)+
∑N

j=1 nlm+(e, qj), and the theorem follows. �

Corollary 3.14. If f : 0 → R3 is piecewise C2 but is not an embedding, then
the net total curvature NTC(0) is well defined, using the right-hand side of the
conclusion of Theorem 3.13. Moreover, NTC(0) has the same value when some
or all of the points of self-intersection of 0 are redefined as vertices.

For e∈ S2, we use the notation pe :R
3
→ eR for the orthogonal projection 〈e, · 〉.

We sometimes identify R with the one-dimensional subspace eR of R3.

Corollary 3.15. If {0} is any homeomorphism type of graphs, then the infimum
NTC({0}) of net total curvature among mappings f : 0 → Rn is assumed by a
mapping f0 : 0→ R.

For any isotopy class [0] of embeddings f : 0→ R3, the infimum NTC([0]) of
net total curvature is assumed by a mapping f0 : 0→R in the closure of the given
isotopy class.

Conversely, if f0 :0→R is in the closure of a given isotopy class [0] of embed-
dings into R3, then for all δ > 0 there is an embedding f : 0→ R3 in that isotopy
class with NTC( f )≤ NTC( f0)+ δ.

Proof. Let f : 0→ R3 be any piecewise smooth mapping. By Corollary 3.14 and
Corollary 3.10, the net total curvature of the projection pe◦ f :0→R of f onto the
line in the direction of almost any e∈ S2 is given by 2πµ(e)=π(µ(e)+µ(−e)). It
follows from Theorem 3.13 that NTC(0) is the average of 2πµ(e) over e in S2. But
the half-integer-valued function µ(e) is lower semicontinuous almost everywhere,
as may be seen using Definition 3.1. Let e0 ∈ S2 be a point where µ attains its
essential infimum. Then NTC(0) ≥ πµ(e0) = NTC(pe0 ◦ f ). But (pe0 ◦ f )e0 is
the limit as ε→ 0 of the map fε whose projection in the direction e0 is the same
as that of f and is multiplied by ε in all orthogonal directions. Since fε is isotopic
to f , (pe0 ◦ f )e0 is in the closure of the isotopy class of f .

Conversely, given f0 :0→R in the closure of a given isotopy class, let f be an
embedding in that isotopy class uniformly close to f0 e0; fε as constructed above
converges uniformly to f0 as ε→ 0, and NTC( fε)→ NTC( f0). �

Definition 3.16. We call a mapping f : 0→ Rn flat (or NTC-flat) if NTC( f ) =
NTC({0}), the minimum value for the topological type of 0, among all ambient
dimensions n.

Corollary 3.15 above shows that for any 0, there is a flat mapping f : 0→ R.
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Proposition 3.17. Consider a piecewise C2 mapping f1 : 0→ R. There is a map-
ping f0 : 0→ R which is monotonic along the topological edges of 0, has values
at topological vertices of 0 arbitrarily close to those of f1, and has NTC( f0) ≤

NTC( f1).

Proof. Any piecewise C2 mapping f1 : 0→ R may be approximated uniformly
by mappings with a finite set of local extreme points, using the compactness of
0. Thus, we may assume without loss of generality that f1 has only finitely many
local extreme points. Note that for a mapping f :0→R=Re, NTC( f )=2πµ(e):
hence, we only need to compare µf0(e) with µf1(e).

If f1 is not monotonic on a topological edge E , then it has a local extremum at a
point z in the interior of E . For concreteness, we shall assume z is a local maximum
point; the case of a local minimum is similar. Write v,w for the endpoints of E .
Let v1 be the closest local minimum point to z on the interval of E from z to v (or
v1 = v if there is no local minimum point between), and let w1 be the closest local
minimum point to z on the interval from z to w (or w1 = w). Let E1 ⊂ E denote
the interval between v1 and w1. Then E1 is an interval of a topological edge of
0, having end points v1 and w1 and containing an interior point z, such that f1

is monotone increasing on the interval from v1 to z, and monotone decreasing on
the interval from z to w1. By switching v1 and w1 if needed, we may assume that
f1(v1) < f1(w1) < f1(z).

Let f0 equal f1 except on the interior of the interval E1, and map E1 monotoni-
cally to the interval of R between f1(v1) and f1(w1). Then for f1(w1)< s< f1(z),
the cardinality #(e, s) f0 equals #(e, s) f1 − 2. For s in all other intervals of R, this
cardinality is unchanged. Therefore, nlm f1(w1)= nlm f0(w1)− 1, by Lemma 3.5.
This implies that nlm+f1

(w1) ≥ nlm+f0
(w1)− 1. Meanwhile, nlm f1(z) = 1, a term

which does not appear in the formula for µf0 (see Definition 3.8). Thus µf0 ≤µf1 ,
and NTC( f0)≤ NTC( f1).

Proceeding inductively, we remove each local extremum in the interior of any
edge of 0, without increasing NTC. �

4. Representation formula for nowhere-smooth graphs

Recall that, while defining the total curvature for continuous graphs in Section 2,
we needed the monotonicity of NTC(P) under refinement of polygonal graphs P .
We are now ready to prove this.

Proposition 4.1. Let P and P̃ be polygonal graphs in R3, having the same topo-
logical vertices, and homeomorphic to each other. Suppose that every vertex of
P is also a vertex of P̃: P̃ is a refinement of P. Then for almost all e ∈ S2, the
multiplicity µP̃(e)≥ µP(e). As a consequence, NTC(P̃)≥ NTC(P).
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Proof. We may assume, as an induction step, that P̃ is obtained from P by replacing
the edge having endpoints q0, q2 with two edges, one having endpoints q0, q1 and
the other having endpoints q1, q2. Choose e ∈ S2. We consider various cases:

If the new vertex q1 satisfies 〈e, q0〉 < 〈e, q1〉 < 〈e, q2〉, then nlmP̃(e, qi ) =

nlmP(e, qi ) for i = 0, 2 and nlmP̃(e, q1)= 0, hence µP̃(e)= µP(e).
If 〈e, q0〉< 〈e, q2〉< 〈e, q1〉, then nlmP̃(e, q0)= nlmP(e, q0) and nlmP̃(e, q1)=

1. The vertex q2 requires more careful counting: the up- and down-degree satisfy
d±

P̃
(e, q2)= d±P (e, q2)± 1, so that by Lemma 3.5, nlmP̃(e, q2)= nlmP(e, q2)− 1.

Meanwhile, for each of the polygonal graphs, µ(e) is the sum over q of nlm+(e, q),
so the change from µP(e) to µP̃(e) depends on the value of nlmP(e, q2):

(a) If nlmP(e, q2)≤ 0, then nlm+
P̃
(e, q2)= nlm+P(e, q2)= 0.

(b) If nlmP(e, q2)=
1
2 , then nlm+

P̃
(e, q2)= nlm+P(e, q2)−

1
2 .

(c) If nlmP(e, q2)≥ 1, then nlm+
P̃
(e, q2)= nlm+P(e, q2)− 1.

Since the new vertex q1 does not appear in P , recalling that nlmP̃(e, q1) = 1, we
have µP̃(e)−µP(e) = +1,+ 1

2 or 0 in the respective cases (a), (b) or (c). In any
case, µP̃(e)≥ µP(e).

The reverse inequality 〈e, q1〉< 〈e, q2〉< 〈e, q0〉may be reduced to the case just
above by replacing e ∈ S2 with −e, since µP(−e) = −µP(e) for any polyhedral
graph P . Then, depending whether nlmP(e, q2) is ≤ −1, = −1

2 or ≥ 0, we find
that µP̃(e)−µP(e)= nlm+

P̃
(e, q2)−nlm+P(e, q2)= 0, 1

2 , or 1. In any case, µP̃(e)≥
µP(e).

These arguments are unchanged if q0 is switched with q2. This covers all cases
except those in which equality occurs between 〈e, qi 〉 and 〈e, q j 〉 (i 6= j). The set
of such unit vectors e form a set of measure zero in S2. The conclusion NTC(P̃)≥
NTC(P) now follows from Theorem 3.13. �

We remark here that this step of proving the monotonicity for the nowhere-
smooth case differs from Milnor’s argument for the total curvature of curves, where
it was shown by two applications of the triangle inequality for spherical triangles.

Milnor extended his results for piecewise smooth curves to continuous curves
in [Milnor 1950]; we shall carry out an analogous extension to continuous graphs.

Definition 4.2. We say a point q ∈ 0 is critical relative to e ∈ S2 when q is a
topological vertex of 0 or when 〈e, · 〉 is not monotone in any open interval of 0
containing q .

Note that at some points of a differentiable curve, 〈e, · 〉 may have derivative
zero but still not be considered a critical point relative to e by our definition. This
is appropriate to the C0 category. For a continuous graph 0, when NTC(0) is
finite, we shall show that the number of critical points is finite for almost all e in
S2 (see Lemma 4.7 below).
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Lemma 4.3. Let 0 be a continuous, finite graph in R3, and choose a sequence P̂k

of 0-approximating polygonal graphs with NTC(0) = limk→∞NTC(P̂k). Then
for each e ∈ S2, there is a refinement Pk of P̂k such that limk→∞ µPk (e) exists in
[0,∞].

Proof. First, for each k in sequence, we refine P̂k to include all vertices of P̂k−1.
Then for all e ∈ S2, µP̂k

(e) ≥ µP̂k−1
(e), by Proposition 4.1. Second, we refine P̂k

so that the arc of 0 corresponding to each edge of P̂k has diameter ≤ 1/k. Third,
given a particular e ∈ S2, for each edge Êk of P̂k , we add 0, 1 or 2 points from 0

as vertices of P̂k so that maxÊk
〈e, · 〉 = maxE 〈e, · 〉 where E is the closed arc of

0 corresponding to Êk ; and similarly so that minÊk
〈e, · 〉 = minE 〈e, · 〉. Write Pk

for the result of this three-step refinement. Note that all vertices of Pk−1 appear
among the vertices of Pk . Then by Proposition 4.1,

NTC(P̂k)≤ NTC(Pk)≤ NTC(0),

so we still have NTC(0)= limk→∞NTC(Pk).
Now compare the values of µPk (e)=

∑
q∈Pk

nlmPk
+(e, q) with the same sum for

Pk−1. Since Pk is a refinement of Pk−1, Proposition 4.1 gives µPk (e)≥ µPk−1(e).
Therefore the valuesµPk (e) are nondecreasing in k, which implies they are either

convergent or properly divergent; in the latter case we write limk→∞ µPk (e)=∞.
�

Definition 4.4. For a continuous graph 0, define the multiplicity at e ∈ S2 as
µ0(e) := limk→∞ µPk (e) ∈ [0,∞], where Pk is a sequence of 0-approximating
polygonal graphs, refined with respect to e, as given in Lemma 4.3.

Remark 4.5. Note that any two 0-approximating polygonal graphs have a com-
mon refinement. Hence, from the proof of Lemma 4.3, any two choices of se-
quences {P̂k} of 0-approximating polygonal graphs lead to the same value µ0(e).

Lemma 4.6. Let 0 be a continuous, finite graph in R3. Then µ0 : S2
→ [0,∞]

takes its values in the half-integers, or +∞. Now assume NTC(0) <∞. Then µ0
is integrable, hence finite almost everywhere on S2, and

(4-1) NTC(0)=
1
2

∫
S2
µ0(e) d AS2(e).

For almost all e ∈ S2, a sequence Pk of 0-approximating polygonal graphs, con-
verging uniformly to 0, may be chosen (depending on e) so that each local extreme
point q of 〈e, · 〉 along 0 occurs as a vertex of Pk for sufficiently large k.

Proof. Given e∈ S2, let {Pk} be the sequence of 0-approximating polygonal graphs
from Lemma 4.3. If µ0(e) is finite, then µPk (e)=µ0(e) for k sufficiently large, a
half-integer.
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Suppose NTC(0)<∞. Then the half-integer-valued functions µPk are nonneg-
ative, integrable on S2 with bounded integrals since NTC(Pk) < NTC(0) <∞,
and monotone increasing in k. Thus for almost all e ∈ S2, µPk (e) = µ0(e) for k
sufficiently large.

Since the functions µPk are nonnegative and pointwise nondecreasing almost
everywhere on S2, it now follows from the monotone convergence theorem that∫

S2
µ0(e) d AS2(e)= lim

k→∞

∫
S2
µPk (e) d AS2(e)= 2NTC(0).

Finally, the polygonal graphs Pk have maximum edge length→0. For almost all
e∈ S2, 〈e, · 〉 is not constant along any open arc of0, andµ0(e) is finite. Given such
an e, choose l= l(e) sufficiently large that µPk (e)=µ0(e) and µPk (−e)=µ0(−e)
for all k≥ l. Then for k≥ l, along any edge Ek of Pk with corresponding arc E of 0,
the maximum and minimum values of 〈e, · 〉 along E occur at the endpoints, which
are also the endpoints of Ek . Otherwise, as Pk is further refined, new interior local
maximum and local minimum points of E would each contribute a new, positive
value to µPk (e) or µPk (−e), respectively, as k increases. Since the diameter of the
corresponding arc E of 0 tends to zero as k →∞, any local maximum or local
minimum of 〈e, · 〉 must become an endpoint of some edge of Pk for k sufficiently
large, and for k ≥ l in particular. �

Our next lemma focuses on the regularity of a graph 0, originally only assumed
continuous, provided it has finite net total curvature, or another notion of total
curvature of a graph which includes the total curvature of the edges.

Lemma 4.7. Let 0 be a continuous, finite graph in R3, with NTC(0) <∞. Then
0 has continuous one-sided unit tangent vectors T1(p) and T2(p) at each point
p, not a topological vertex. If p is a vertex of degree d , then each of the d edges
which meet at p have well-defined unit tangent vectors at p: T1(p), . . . , Td(p).
For almost all e ∈ S2,

(4-2) µ0(e)=
∑

q

{nlm(e, q)}+,

where the sum is over the finite number of topological vertices of 0 and critical
points q of 〈e, · 〉 along 0. Further, for each q , nlm(e, q)= 1

2 [d
−(e, q)−d+(e, q)].

All of these critical points which are not topological vertices are local extrema of
〈e, · 〉 along 0.

Proof. We have seen in the proof of Lemma 4.6 that for almost all e ∈ S2, the
linear function 〈e, · 〉 is not constant along any open arc of 0, and by Lemma 4.3
there is a sequence {Pk} of 0-approximating polygonal graphs withµ0(e)=µPk (e)
for k sufficiently large. We have further shown that each local maximum point of
〈e, · 〉 is a vertex of Pk , possibly of degree two, for k large enough. Recall that
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µPk (e) =
∑

q nlm+Pk
(e, q). Thus, each local maximum point q for 〈e, · 〉 along

0 provides a nonnegative term nlm+Pk
(e, q) in the sum for µPk (e). Fix such an

integer k.
Consider a point q ∈0 which is not a topological vertex of0 but is a critical point

of 〈e, · 〉. We shall show, by an argument similar to one used in [van Rooij 1965],
that q must be a local extreme point. As a first step, we show that 〈e, · 〉 is monotone
on a sufficiently small interval on either side of q. Choose an ordering of the closed
edge E of 0 containing q , and consider the interval E+ of points ≥ q with respect
to this ordering. Suppose that 〈e, · 〉 is not monotone on any subinterval of E+ with
q as endpoint. Then in any interval (q, r1) there are points p2 > q2 > r2 so that
the numbers 〈e, p2〉, 〈e, q2〉, 〈e, r2〉 are not monotone. It follows by an induction
argument that there exist decreasing sequences pn → q , qn → q , and rn → q of
points of E+ such that for each n, rn−1> pn >qn > rn >q , but the value 〈e, qn〉 lies
outside of the closed interval between 〈e, pn〉 and 〈e, rn〉. As a consequence, there
is a local extremum sn ∈ (rn, pn). Since rn−1> pn , the sn are all distinct, 1≤n<∞.
But by Lemma 4.6, all local extreme points, specifically sn , of 〈e, · 〉 along 0 occur
among the finite number of vertices of Pk , a contradiction. This shows that 〈e, · 〉
is monotone on an interval to the right of q. An analogous argument shows that
〈e, · 〉 is monotone on an interval to the left of q .

Recall that for a critical point q relative to e, 〈e, · 〉 is not monotone on any
neighborhood of q . Since 〈e, · 〉 is monotone on an interval on either side, the
sense of monotonicity must be opposite on the two sides of q . Therefore every
critical point q along 0 for 〈e, · 〉, which is not a topological vertex, is a local
extremum.

We have chosen k large enough that µ0(e)= µPk (e). Then for any edge Ek of
Pk , the function 〈e, · 〉 is monotone along the corresponding arc E of 0, as well as
along Ek . Also, E and Ek have common end points. It follows that for each t ∈R,
the cardinality #(e, t) of the fiber {q ∈ 0 : 〈e, q〉 = t} is the same for Pk as for 0.
We may see from Lemma 3.5 applied to Pk that for each vertex or critical point q ,
nlmPk (e, q)= 1

2 [d
−

Pk
(e, q)− d+Pk

(e, q)]; but nlm(e, q) and d±(e, q) have the same
values for 0 as for Pk . The formula µ0(e)=

∑
q{nlm0(e, q)}+ now follows from

the corresponding formula for Pk , for almost all e ∈ S2.
Consider an open interval E of 0 with endpoint q . We have just shown that for

almost all e ∈ S2, 〈e, · 〉 is monotone on a subinterval with endpoint q . Choose a
sequence pl from E , pl→ q , and write

Tl :=
pl − q
|pl − q|

∈ S2.

Then liml→∞ Tl exists. Otherwise, since S2 is compact, there are subsequences
{Tmn } and {Tkn } with Tmn → T ′ and Tkn → T ′′ 6= T ′. But for an open set of e ∈ S2,
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〈e, T ′〉 < 0 < 〈e, T ′′〉. For such e, 〈e, qmn 〉 < 〈e, q〉 < 〈e, qkn 〉 for n� 1. That is,
as p→ q , p ∈ E , 〈e, p〉 assumes values above and below 〈e, q〉 infinitely often,
contradicting monotonicity on an interval starting at q for almost all e ∈ S2.

This shows that 0 has one-sided tangent vectors T1(q), . . . , Td(q) at each point
q ∈ 0 of degree d = d(q) (d = 2 if q is not a topological vertex). Further, as
k→∞, T Pk

i (q)→ T 0
i (q), 1≤ i ≤ d(q), since edges of Pk have diameter ≤ 1

k .
The remaining conclusions follow readily. �

Corollary 4.8. Let 0 be a continuous, finite graph in R3, with NTC(0)<∞. Then
for each point q of 0, the contribution at q to net total curvature is given by (2-3),
where for e ∈ S2, χi (e) = the sign of 〈−Ti (q), e〉, 1 ≤ i ≤ d(q). (Here, if q is not
a topological vertex, we understand d = 2.)

Proof. According to Lemma 4.7, for 1 ≤ i ≤ d(q), Ti (q) is defined and tangent
to an edge Ei of 0, which is continuously differentiable at its end point q . If Pn

is a sequence of 0-approximating polygonal graphs with maximum edge length
tending to 0, the corresponding unit tangent vectors T Pn

i (q)→ T 0
i (q) as n→∞.

For each Pn , we have

ntcPn (q)=
1
4

∫
S2

[ d∑
i=1

χi
Pn (e)

]+
d AS2(e),

and χi
Pn → χi

0 in measure on S2. Hence, the integrals for Pn converge to those
for 0, which is (2-3). �

We are ready to state the formula for net total curvature, by localization on S2,
a generalization of Theorem 3.13:

Theorem 4.9. For a continuous graph 0, the net total curvature NTC(0)∈ (0,∞]
has the representation

NTC(0)=
1
4

∫
S2
µ(e) d AS2(e),

where, for almost all e ∈ S2, the multiplicity µ(e) is a positive half-integer or+∞,
given as the finite sum (4-2).

Proof. If NTC(0) is finite, the theorem follows from Lemma 4.6 and Lemma 4.7.
Choose e ∈ S2. Suppose NTC(0) = sup NTC(Pk) is infinite, where Pk is a

refined sequence of polygonal graphs as in Lemma 4.3. Then µ0(e) is the nonde-
creasing limit of µPk (e) for all e ∈ S2. Thus µ0(e) ≥ µPk (e) for all e and k, and
µ0(e) = µPk (e) for k ≥ l(e). This implies that µ0(e) is a positive half-integer or
∞. Since NTC(0) is infinite, the integral

NTC(Pk)=
1
2

∫
S2
µPk (e) d AS2(e)
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is arbitrarily large as k→∞, but for each k is less than or equal to

1
2

∫
S2
µ0(e) d AS2(e).

Therefore this latter integral equals∞, and thus equals NTC(0). �

We turn our attention next to the tameness of graphs of finite total curvature.

Proposition 4.10. Let n be a positive integer, and write Z for the set of nth roots
of unity in C= R2. Given a continuous one-parameter family St , 0≤ t < 1, of sets
of n points in R2, there exists a continuous one-parameter family 8t : R

2
→ R2 of

homeomorphisms with compact support such that 8t(St)= Z , 0≤ t < 1.

Proof. It is well known that there is an isotopy80 :R
2
→R2 such that80(S0)= Z

and 80 = id outside of a compact set. This completes the case t0 = 0 of the
following continuous induction argument.

Suppose that [0, t0] ⊂ [0, 1) is a subinterval such that there exists a continuous
one-parameter family 8t : R

2
→ R2 of homeomorphisms with compact support,

with 8t(St) = Z for all 0 ≤ t ≤ t0. We shall extend this property to an interval
[0, t0+δ]. Write Bε(Z) for the union of balls Bε(ζi ) centered at the n roots of unity
ζ1, . . . ζn . For ε< sin π

n , these balls are disjoint. We may choose 0<δ<1−t0 such
that8t0(St)⊂ Bε(Z) for all t0≤ t ≤ t0+δ. Write the points of St as xi (t), 1≤ i ≤n,
where 8t0(xi (t))∈ Bε(ζi ). For each t ∈ [t0, t0+δ], each of the balls Bε(ζi ) may be
mapped onto itself by a homeomorphismψt , varying continuously with t , such that
ψt0 is the identity,ψt is the identity near the boundary of Bε(ζi ) for all t ∈[t0, t0+δ],
and ψt(8t0(xi (t)))= ζi for all such t . For example, we may construct ψt so that for
each y∈ Bε(ζi ), y−ψt(y) is parallel to8t0(xi (t))−ζi . We now define8t =ψt◦8t0
for each t ∈ [t0, t0+ δ].

As a consequence, we see that there is no maximal interval [0, t0] ⊂ [0, 1) such
that there is a continuous one-parameter family8t :R

2
→R2 of homeomorphisms

with compact support with8t(St)= Z , for all 0≤ t ≤ t0. Thus, this property holds
for the entire interval 0≤ t < 1. �

In the following theorem, the total curvature of a graph may be understood in
terms of any definition which includes the total curvature of edges and which is
continuous as a function of the unit tangent vectors at each vertex. This includes
net total curvature, TC of [Taniyama 1998] and CTC of [Gulliver and Yamada
2006].

Theorem 4.11. Suppose 0 ⊂ R3 is a continuous graph with finite total curvature.
Then for any ε > 0, 0 is isotopic to a 0-approximating polygonal graph P with
edges of length at most ε, whose total curvature is less than or equal to that of 0.
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Proof. Since 0 has finite total curvature, by Lemma 4.7, at each topological vertex
of degree d the edges have well-defined unit tangent vectors T1, . . . , Td , which
are each the limit as ε→ 0 of the unit tangent vectors to the corresponding edges
of P . If at each vertex the unit tangent vectors T1, . . . , Td are distinct, then any
sufficiently fine 0-approximating polygonal graph will be isotopic to 0; this easier
case is proven.

We thus consider n edges E1, . . . , En ending at a vertex q , with common unit
tangent vectors T1 = · · · = Tn . Choose orthogonal coordinates (x, y, z) for R3 so
that this common tangent vector T1 = · · · = Tn = (0, 0,−1) and q = (0, 0, 1). For
some ε > 0, in the slab 1−ε≤ z≤ 1, the edges E1, . . . , En project one-to-one onto
the z-axis. After rescaling about q by a factor ≥ 1/ε, the edges E1, . . . , En form a
braid B of n strands in the slab 0≤ z < 1 of R3, plus the point q = (0, 0, 1). Each
strand Ei has q as an endpoint, and the coordinate z is strictly monotone along Ei ,
1≤ i ≤ n. Write St = B ∩{z = t}. Then St is a set of n distinct points in the plane
{z= t} for each 0≤ t<1. By Proposition 4.10, there are homeomorphisms8t of the
plane {z= t} for each 0≤ t<1, isotopic to the identity in that plane, continuous as a
function of t , such that8t(St)= Z×{t}, where Z is the set of n-th roots of unity in
the (x, y)-plane, and8t is the identity outside of a compact set of the plane {z= t}.

We may suppose that St lies in the open disk of radius a(1− t) of the plane
{z = t}, for some (arbitrarily small) constant a > 0. We modify 8t , first replacing
its values with (1− t)8t inside the disk of radius a(1− t). We then modify 8t

outside the disk of radius a(1− t), such that 8t is the identity outside the disk of
radius 2a(1− t).

Having thus modified the homeomorphisms 8t of the planes {z = t}, we may
now define an isotopy 8 of R3 by mapping each plane {z = t} to itself by the
homeomorphism 8−1

0 ◦8t , 0≤ t < 1; and extend to the remaining planes {z = t},
t ≥ 1 and t < 0, by the identity. Then the closure of the image of the braid B is the
union of line segments from q = (0, 0, 1) to the n points of S0 in the plane {z= 0}.
Since each 8t is isotopic to the identity in the plane {z = t}, 8 is isotopic to the
identity of R3.

This procedure may be carried out in disjoint sets of R3 surrounding each unit
vector which occurs as tangent vector to more than one edge at a vertex of 0.
Outside these sets, we inscribe a polygonal arc in each edge of 0 to obtain a 0-
approximating polygonal graph P . By Definition 2.3, P has total curvature less
than or equal to the total curvature of 0. �

Artin and Fox [1948] introduced the notion of tame and wild knots in R3; the
extension to graphs is the following:

Definition 4.12. We say that a graph in R3 is tame if it is isotopic to a polyhedral
graph; otherwise, it is wild.
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Milnor [1950] proved that curves of finite total curvature are tame. More gen-
erally, we have

Corollary 4.13. A continuous graph 0 ⊂ R3 of finite total curvature is tame.

Proof. This is an easy consequence of Theorem 4.11, since the 0-approximating
polygonal graph P is isotopic to 0. �

Observation 4.14. Tameness does not imply finite total curvature.

For a well-known example, let 0 ⊂ R2 be the continuous curve

{(x, h(x)) : x ∈ [−1, 1]},

where
h(x)=−

x
π

sin
π

x
for x 6= 0

and h(0)= 0. This function has a sequence of zeroes ±1/n→ 0 as n→∞. The
total curvature of 0 between (0, 1/n) and (0, 1/(n+1)) converges to π as n→∞.
Thus C(0)=∞.

On the other hand, h(x) is continuous on [−1, 1], from which it readily follows
that 0 is tame.

5. On vertices of small degree

We will now illustrate some properties of net total curvature NTC(0) in a few
relatively simple cases, and make some observations regarding NTC({0}), the
minimum net total curvature for the homeomorphism type of a graph 0 ⊂ Rn

(see Definition 3.16 above).

Minimum curvature for given degree.

Proposition 5.1. If a vertex q has odd degree, then ntc(q) ≥ π/2. If d(q) =
3, then equality holds if and only if the three tangent vectors T1, T2, T3 at q are
coplanar but do not lie in any open half-plane. If q has even degree 2m, then the
minimum value of ntc(q) is 0. Moreover, the equality ntc(q)= 0 only occurs when
T1(q), . . . , T2m(q) form m opposite pairs.

Proof. Let q have odd degree d(q)=2m+1. Then from Lemma 3.5, for any e∈ S2,
we see that nlm(e, q) is one of the half-integers ± 1

2 , . . . ,±
2m+1

2 . In particular,
|nlm(e, q)| ≥ 1

2 . Corollary 3.7 and the proof of Corollary 3.12 show that

ntc(q)=
1
4

∫
S2

∣∣nlm(e, q)
∣∣ d AS2 .

Therefore ntc(q)≥ π/2.
If the degree d(q)= 3, then |nlm(e, q)| = 1

2 if and only if both d+(q) and d−(q)
are nonzero, that is, q is not a local extremum for 〈e, · 〉. If ntc(q) = π/2, then
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this must be true for almost every direction e ∈ S2. Thus, the three tangent vectors
must be coplanar, and may not lie in an open half-plane.

If d(q)= 2m is even and equality ntc(q)= 0 holds, then the formula above for
ntc(q) in terms of |nlm(e, q)| would require nlm(e, q)≡ 0, and hence d+(e, q)=
d−(e, q)=m for almost all e ∈ S2: whenever e rotates so that the plane orthogonal
to e passes Ti , another tangent vector T j must cross the plane in the opposite
direction, for almost all e, which implies T j =−Ti . �

Observation 5.2. If a vertex q of odd degree d(q) = 2p + 1, has the minimum
value ntc(q) = π/2, and a hyperplane P ⊂ Rn contains an even number of the
tangent vectors at q, and no others, then these tangent vectors form opposite pairs.

The proof is seen by fixing any (n−2)-dimensional subspace L of P and rotating
P by a small positive or negative angle δ to a hyperplane Pδ containing L . Since
Pδ must have k of the vectors T1, . . . , T2p+1 on one side and k + 1 on the other
side, for some 0 ≤ k ≤ p, by comparing δ > 0 with δ < 0 it follows that exactly
half of the tangent vectors in P lie nonstrictly on each side of L . The proof may
be continued as in the last paragraph of the proof of Proposition 5.1. In particular,
any two independent tangent vectors Ti and T j share the 2-plane they span with a
third, the three vectors not lying in any open half-plane: in fact, the third vector
needs to lie in any hyperplane containing Ti and T j .

For example, a flat K5,1 in R3 must have five straight segments, two being op-
posite; and the remaining three being coplanar but not in any open half-plane.
This includes the case of four coplanar line segments, since the four must be in
opposite pairs, and either opposing pair may be considered as coplanar with the
fifth segment.

Nonmonotonicity of NTC for subgraphs.

Observation 5.3. If 00 is a subgraph of a graph 0, then NTC(00) might not be
≤ NTC(0).

For a simple polyhedral example, we may consider the “butterfly” graph 0 in
the plane with six vertices: q±0 = (0,±1), q±1 = (1,±3), and q±2 = (−1,±3). 0 has
seven edges: three vertical edges L0, L1 and L2 are the line segments L i joining
q−i to q+i . Four additional edges are the line segments from q±0 to q±1 and from q±0
to q±2 , which form the smaller angle 2α at q±0 , where tanα= 1/2, so that α <π/4.

The subgraph 00 will be 0 minus the interior of L0. Then NTC(00)=C(00)=

6π − 8α. However, NTC(0)= 4(π − α)+ 2(π/2)= 5π − 4α, which is less than
NTC(00). �

The monotonicity property, which Observation 5.3 shows fails for NTC(0), is
a virtue of Taniyama’s total curvature TC(0).
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Net total curvature 6= cone total curvature 6= Taniyama’s total curvature. It is
not difficult to construct three unit vectors T1, T2, T3 in R3 such that the values of
ntc(q), ctc(q) and tc(q), with these vectors as the d(q) = 3 tangent vectors to a
graph at a vertex q , have different values. For example, we may take T1, T2 and
T3 to be three unit vectors in a plane, making equal angles 2π/3. According to
Proposition 5.1, we have the contribution to net total curvature ntc(q)= π/2. But
the contribution to cone total curvature is ctc(q)= 0. Namely,

ctc(q) := sup
e∈S2

3∑
i=1

(
π

2
− arccos〈Ti , e〉

)
.

In this supremum, we may choose e to be normal to the plane of T1, T2 and T3,
and ctc(q)= 0 follows. Meanwhile, tc(q) is the sum of the exterior angles formed
by the three pairs of vectors, each equal to π/3, so that tc(q)= π .

A similar computation for degree d and coplanar vectors making equal angles
gives ctc(q)=0, and tc(q)= π

2

⌊ 1
2(d−1)2

⌋
(floor function), while ntc(q)=π/2 for

d odd, ntc(q)=0 for d even. This example indicates that tc(q)may be significantly
larger than ntc(q). In fact, we have

Observation 5.4. If a vertex q of a graph 0 has degree d = d(q)≥ 2, then

tc(q)≥ (d − 1) ntc(q).

This follows from the definition (2-3) of ntc(q). Let T1, . . . , Td be the unit
tangent vectors at q. The exterior angle between Ti and T j is

arccos〈−Ti , T j 〉 =
1
4

∫
S2
(χi +χ j )

+ d AS2 .

The contribution tc(q) at q to total curvature TC(0) equals the sum of these inte-
grals over all 1≤ i < j ≤ d . The sum of the integrands is

∑
1≤i< j≤d

(χi +χ j )
+
≥

[ ∑
1≤i< j≤d

(χi +χ j )

]+
= (d − 1)

[ d∑
i=1

χi

]+
.

Integrating over S2 and dividing by 4, we have tc(q)≥ (d − 1)ntc(q). �

Conditional additivity of net total curvature under taking union. Observation 5.3
shows the failure of monotonicity of NTC for subgraphs due to the cancellation
phenomena at each vertex. The following subadditivity statement specifies the
necessary and sufficient condition for the additivity of net total curvature under
taking union of graphs.
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Proposition 5.5. Given two graphs 01 and 02 ⊂Rn with 01∩02 = {p1, . . . , pN },
the net total curvature of 0 = 01 ∪02 obeys the subadditivity law

(5-1) NTC(0)= NTC(01)+NTC(02)

+
1
2

N∑
j=1

∫
S2
[nlm+0 (e, p j )− nlm+01

(e, p j )− nlm+02
(e, p j )] d AS2

≤ NTC(01)+NTC(02).

In particular, additivity holds if and only if

nlm01(e, p j ) nlm02(e, p j )≥ 0

for all points p j of 01 ∩02 and almost all e ∈ S2.

Proof. The edges of 0 and vertices other than p1, . . . , pN are edges and vertices of
01 or of 02, so we only need to consider the contribution at the vertices p1, . . . , pN

to µ(e) for e ∈ S2 (see Definition 3.8). The subadditivity follows from the general
inequality (a + b)+ ≤ a+ + b+ for any real numbers a and b. Namely, let a :=
nlm01(e, p j ) and b := nlm02(e, p j ), so that nlm0(e, p j )= a+ b, as follows from
Lemma 3.5. Now integrate both sides of the inequality over S2, sum over j =
1, . . . , N and apply Theorem 3.13.

As for the equality case, suppose that ab ≥ 0. We then note that either a > 0
and b > 0, or a < 0 and b < 0, or a = 0, or b = 0. In all four cases, we have
a++b+= (a+b)+. Applied with a=nlm01(e, p j ) and b=nlm02(e, p j ), assuming
that nlm01(e, p j )nlm02(e, p j )≥ 0 holds for all j = 1, . . . , N and almost all e∈ S2,
this implies that NTC(01 ∪02)= NTC(01)+NTC(02).

To show that the equality NTC(01 ∪ 02) = NTC(01)+ NTC(02) implies the
inequality nlm01(e, p j )nlm02(e, p j ) ≥ 0 for all j = 1, . . . , N and for almost all
e ∈ S2, we suppose, to the contrary, that there is a set U of positive measure in S2,
such that for some vertex p j in 01∩02, whenever e is in U , the inequality ab< 0
is satisfied, where a = nlm01(e, p j ) and b= nlm02(e, p j ). Then for e in U , a and
b are of opposite signs. Let U1 be the part of U where a < 0 < b holds: we may
assume U1 has positive measure, otherwise exchange 01 with 02. On U1, we have

(a+ b)+ < b+ = a++ b+.

Recall that a+ b = nlm0(e, p j ). Hence the inequality between half-integers

nlm+0 (e, p j ) < nlm+01
(e, p j )+ nlm+02

(e, p j )

is valid on the set U1, which has positive measure. This, in turn, implies that
NTC(01 ∪02) < NTC(01)+NTC(02), contradicting the assumption of equality.

�
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One-point union of graphs.

Proposition 5.6. If the graph 0 is the one-point union of graphs 01 and 02, where
the points p1 chosen in 01 and p2 chosen in 02 are not topological vertices, then
the minimum NTC among all mappings is subadditive, and the minimum NTC
minus 2π is superadditive:

NTC({01})+NTC({02})− 2π ≤ NTC({0})≤ NTC({01})+NTC({02}).

Further, if the points p1 ∈ 01 and p2 ∈ 02 may appear as extreme points on map-
pings of minimum NTC, then the minimum net total curvature among all mappings,
minus 2π , is additive:

NTC({0})= NTC({01})+NTC({02})− 2π.

Proof. Write p ∈ 0 for the identified points p1 = p2 = p.
Choose flat mappings f1 : 01→ R and f2 : 02→ R, adding constants so that

the chosen points p1 ∈ 01 and p2 ∈ 02 have f1(p1) = f2(p2) = 0. Further, by
Proposition 3.17, we may assume that f1 and f2 are strictly monotone on the
edges of 01 and 02 containing p1 and p2, respectively. Let f : 0→ R be defined
as f1 on 01 and as f2 on 02. Then at the common point of 01 and 02, f (p) = 0,
and f is continuous. But since f1 and f2 are monotone on the edges containing
p1 and p2, nlm01(p1) = 0 = nlm02(p2), so we have NTC({0}) ≤ NTC( f ) =
NTC( f1)+NTC( f2)= NTC({01})+NTC({02}) by Proposition 5.5.

Next, for all g :0→R, we show that NTC(g)≥NTC({01})+NTC({02})−2π .
Given g, write g1, g2 for the restriction of g to 01, 02. Then

µg(e)= µg1(e)− nlm+g1
(p1)+µg2(e)− nlm+g2

(p2)+ nlm+g (p).

Now for any real numbers a and b, the difference (a+b)+− (a++b+) is equal to
±a,±b or 0, depending on the various signs. Let a=nlmg1(p1) and b=nlmg2(p2).
Then since p1 and p2 are not topological vertices of 01 and 02, respectively, we
have a, b ∈ {−1, 0,+1} and a+b= nlmg(p) by Lemma 3.5. In any case, we have

nlm+g (p)− nlm+g1
(p1)− nlm+g2

(p2)≥−1.

Thus, µg(e)≥µg1(e)+µg2(e)−1, and multiplying by 2π , NTC(g)≥NTC(g1)+

NTC(g2)− 2π ≥ NTC({01})+NTC({02})− 2π .
Finally, assume p1 and p2 are extreme points for flat mappings f1 :01→R and

f2 : 02 → R. We may assume that f1(p1) = 0 = min f1(01) and f2(p2) = 0 =
max f2(02). Then nlm f2(p2)=1 and nlm f1(p1)=−1, and hence using Lemma 3.5,
nlm f (p)= 0. So µ f (e)=µf1(e)−nlm+f1

(p1)+µf2(e)−nlm+ f2(p2)+nlm+f (p)=
µf1(e)+µf2(e)− 1. Multiplying by 2π , we have

NTC({0})≤ NTC( f )= NTC({01})+NTC({02})− 2π. �
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6. Net total curvature for degree 3

Simple description of net total curvature.

Proposition 6.1. For any graph 0 and any parametrization 0′ of its double,

NTC(0)≤ 1
2 C(0′).

If 0 is a trivalent graph, that is, having vertices of degree at most three, then
NTC(0) = 1

2 C(0′) for any parametrization 0′ that does not immediately repeat
any edge of 0.

Proof. The first conclusion follows from Corollary 3.9.
Now consider a trivalent graph 0. Observe that 0′ would be forced to imme-

diately repeat any edge which ends in a vertex of degree 1; thus, we may assume
that 0 has only vertices of degree 2 or 3. Since 0′ covers each edge of 0 twice,
we need only show, for every vertex q of 0, having degree d = d(q) ∈ {2, 3}, that

(6-1) 2 ntc0(q)=
d∑

i=1

c0′(qi ),

where q1, . . . , qd are the vertices of 0′ over q . If d = 2, since 0′ does not immedi-
ately repeat any edge of 0, we have ntc0(q) = c0′(q1) = c0′(q2), so (6-1) clearly
holds. For d = 3, write both sides of (6-1) as integrals over S2, using the definition
(2-3) of ntc0(q). Since 0′ does not immediately repeat any edge, the three pairs of
tangent vectors {T 0′

1 (q j ), T 0′

2 (q j )}, 1≤ j ≤ 3, comprise all three pairs taken from
the triple {T 0

1 (q), T 0
2 (q), T 0

3 (q)}. We need to show that

2
∫

S2
[χ1+χ2+χ3]

+ d AS2 =

∫
S2
[χ1+χ2]

+ d AS2

+

∫
S2
[χ2+χ3]

+ d AS2 +

∫
S2
[χ3+χ1]

+ d AS2,

where at each direction e ∈ S2, χ j (e) = ±1 is the sign of 〈−e, T 0
j (q)〉. But the

integrands are equal at almost every point e of S2:

2[χ1+χ2+χ3]
+
= [χ1+χ2]

+
+ [χ2+χ3]

+
+ [χ3+χ1]

+,

as may be confirmed by cases: 6 = 6 if χ1 = χ2 = χ3 = +1; 2 = 2 if exactly one
of the χi equals −1, and 0= 0 in the remaining cases. �

Simple description of net total curvature fails, d ≥ 4.

Observation 6.2. We have seen in Proposition 6.1 that for graphs with vertices
of degree ≤ 3, if a parametrization 0′ of the double 0̃ of 0 does not immediately
repeat any edge of 0, then NTC(0) = 1

2 C(0′), the total curvature in the usual
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sense of the link 0′. A natural suggestion would be that for general graphs 0⊂R3,
NTC(0) might be half the infimum of total curvature of all such parametrizations
0′ of the double. However, in some cases, we have the strict inequality NTC(0) <
inf0′ 1

2 NTC(0′).

In light of Proposition 6.1, we choose an example of a vertex q of degree four,
and consider the local contributions to NTC for 0 = K1,4 and for 0′, which is the
union of four arcs.

Suppose that for a small positive angle α, (α ≤ 1 radian would suffice) the four
unit tangent vectors at q are T1 = (1, 0, 0); T2 = (0, 1, 0); T3 = (− cosα, 0, sinα);
and T4= (0,− cosα,− sinα). Write the exterior angles as θi j =π−arccos〈Ti , T j 〉.
Then inf0′ 1

2 C(0′)= θ13+ θ14 = 2α. However, ntc(q) is strictly less than 2α. This
may be seen by writing ntc(q) as an integral over S2, according to the definition
(2-3), and noting that cancellation occurs between two of the four lune-shaped
sectors. �

Minimum NTC for trivalent graphs. Using the relation NTC(0) = 1
2 NTC(0′)

between the net total curvature of a given trivalent graph 0 and the total curvature
for a nonreversing double cover 0′ of the graph, we can determine the minimum
net total curvature of a trivalent graph embedded in Rn , whose value is then related
to the Euler characteristic of the graph χ(0)=−k/2.

First we introduce the following definition.

Definition 6.3. For a given graph 0 and a mapping f : 0→ R, let the extended
bridge number B( f ) be one-half the number of local extrema. Write B({0}) for
the minimum of B( f ) among all mappings f : 0→ R. For a given isotopy type
[0] of embeddings into R3, let B([0]) be one-half the minimum number of local
extrema for a mapping f : 0→ R in the closure of the isotopy class [0].

For an integer m ≥ 3, let θm be the graph with two vertices q+, q− and m edges,
each of which has q+ and q− as its two endpoints. Then θ = θ3 has the form of
the lower-case Greek letter θ .

Remark 6.4. For a curve, the number of local maxima equals the number of local
minima. The minimum number of local maxima is called the bridge number, and
equals the number of local minima. This is consistent with our Definition 6.3 of
the extended bridge number. Of course, for curves, the minimum bridge number
among all isotopy classes B({S1

})= 1, and only B([S1
]) is of interest for a specific

isotopy class [S1
]. For certain graphs, the minimum numbers of local maxima and

local minima may not occur at the same time for any mapping: see the exam-
ple of Observation 6.9 below. For isotopy classes of θ -graphs, Goda [1997] has
given a definition of an integer-valued bridge index which is similar in spirit to the
definition above.
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Theorem 6.5. If 0 is a trivalent graph, and if f0 : 0→ R is monotone on topo-
logical edges and has the minimum number 2B({0}) of local extrema, then

NTC( f0)= NTC({0})= π
(
2B({0})+ k/2

)
,

where k is the number of topological vertices of 0. For a given isotopy class [0],

NTC([0])= π
(
2B([0])+ k/2

)
.

Proof. Recall that NTC({0}) denotes the infimum of NTC( f ) among f : 0→ R3

or among f : 0→ R, as may be seen from Corollary 3.15.
We first consider a mapping f1 : 0→ R with the property that any local maxi-

mum or local minimum points of f1 are interior points of topological edges. Then
all topological vertices v, since they have degree d(v) = 3 and d±(v) 6= 0, have
nlm(v)=±1/2, by Proposition 5.1. Let3 be the number of local maximum points
of f1, V the number of local minimum points, λ+ the number of vertices with
nlm=+1/2, and λ− the number of vertices with nlm=−1/2. Then λ++λ− = k,
the total number of vertices, and3+V ≥2B({0}). Hence, applying Corollary 3.12,

(6-2) µ=
1
2

∑
v

|nlm(v)| = 1
2

(
3+ V + λ

+
+λ−

2

)
≥ B({0})+ k/4,

with equality if and only if 3+ V = 2B({0}).
We next consider any mapping f0 : 0 → R in general position: in particu-

lar, the critical values of f0 are isolated. In a similar fashion to the proof of
Proposition 3.17, we shall replace f0 with a mapping whose local extrema are
not topological vertices. Specifically, if f0 assumes a local maximum at any topo-
logical vertex v, then, since d(v) = 3, nlm f0(v) = 3/2. f0 may be isotoped in
a small neighborhood of v to f1 : 0 → R so that near v, the local maximum
occurs at an interior point q of one of the three edges with endpoint v, and thus
nlm f1(q)= 1; while the up-degree d+f1

(v)= 1 and the down-degree d−f1
(v)= 2, so

that nlm f1(v) is now 1
2 . Thus, µf1(e) = µf0(e). Similarly, if f0 assumes a local

minimum at a topological vertex w, then f0 may be isotoped in a neighborhood
of w to f1 : 0→ R so that the local minimum of f1 near w occurs at an interior
point of any of the three edges with endpoint w, and µf1(e) = µf0(e). Then any
local extreme points of f1 are interior points of topological edges. Thus, we have
shown that µf0(e) ≥ B({0})+ k/4, with equality if f1 has exactly 2B({0}) as its
number of local extrema, which holds if and only if f0 has the minimum number
2B({0}) of local extrema. Thus

NTC({0})= 2πµf0(e)= 2π
(
B({0})+ k/4

)
= π

(
2B({0})+ k/2

)
.

Similarly, for a given isotopy class [0] of embeddings into R3, we may choose
f0 : 0→ R in the closure of the isotopy class, deform f0 to a mapping f1 in the
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closure of [0] having no topological vertices as local extrema and count µf0(e)=
µf1(e) ≥ B([0])+ k/4, with equality if f0 has the minimum number 2B([0]) of
local extrema. This shows that NTC([0])= π

(
2B([0])+ k/2

)
. �

Remark 6.6. An example geometrically illustrating the lower bound is given by
the dual graph 0∗ of the one-skeleton 0 of a triangulation of S2, with the {∞}
not coinciding with any of the vertices of 0∗. The Koebe–Andreev–Thurston (see
[Stephenson 2003]) theorem says that there is a circle packing that realizes the
vertex set of 0∗ as the set of centers of the circles. The so realized 0∗, stereo-
graphically projected to R2

⊂ R3, attains the lower bound of Theorem 6.5 with
B({0∗}) = 1, namely NTC([0]) = π(2 + k

2) = π(2 − χ(0∗)), where k is the
number of vertices.

Corollary 6.7. If 0 is a trivalent graph with k topological vertices, and f0 :0→R

is a mapping in general position, having 3 local maximum points and V local
minimum points, then

µf0(e)=
1
2(3+ V )+ 1

4 k ≥ B({0})+ 1
4 k.

Proof. Follows immediately from the proof of Theorem 6.5: f0 and f1 have the
same number of local maximum or minimum points. �

An interesting trivalent graph is Lm , the “ladder of m rungs” obtained from two
unit circles in parallel planes by adding m line segments (“rungs”) perpendicular
to the planes, each joining one vertex on the first circle to another vertex on the
second circle. For example, L4 is the 1-skeleton of the cube in R3. Note that Lm

may be embedded in R2, and that the bridge number B({Lm}) = 1. Since Lm has
2m trivalent vertices, we may apply Theorem 6.5 to compute the minimum NTC
for the type of Lm :

Corollary 6.8. The minimum net total curvature NTC({Lm}) for graphs of the type
of Lm equals π(2+m).

Observation 6.9. For certain connected trivalent graphs 0 containing cut points,
the minimum extended bridge number B({0}) may be greater than 1.

Example. Let 0 be the union of three disjoint circles C1,C2,C3 with three edges
Ei connecting a point pi ∈ Ci with a fourth vertex p0, which is not in any of the
Ci , and which is a cut point of 0: the number of connected components of 0 \ p0

is greater than for 0. Given f : 0→ R, after a permutation of {1, 2, 3}, we may
assume there is a minimum point q1 ∈C1∪E1 and a maximum point q3 ∈C3∪E3.
If q1 and q3 are both in C1 ∪ E1, we may choose C2 arbitrarily in what follows.
Restricted to the closed set C2 ∪ E2, f assumes either a maximum or a minimum
at a point q2 6= p0. Since q2 6= p0, q2 is also a local maximum or a local minimum
for f on 0. That is, q1, q2, q3 are all local extrema. In the notation of the proof
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of Theorem 6.5, we have the number of local extrema V + 3 ≥ 3. Therefore
B({0})≥ 3

2 , and NTC({0})≥ π(3+ k/2)= 5π .
The reader will be able to construct similar trivalent examples with B({0}) ar-

bitrarily large. �

In contrast to the results of Theorem 6.5 and of Theorem 6.11, below, for triva-
lent or nearly trivalent graphs, the minimum of NTC for a given graph type cannot
be computed merely by counting vertices, but depends in a more subtle way on the
topology of the graph:

Observation 6.10. When 0 is not trivalent, the minimum NTC({0}) of net total
curvature for a connected graph 0 with B({0})= 1 is not determined by the num-
ber of vertices and their degrees.

Example. We shall construct two planar graphs Sm and Rm having the same number
of vertices, all of degree 4.

Choose an integer m ≥ 3 and take the image of the embedding fε of the “sine
wave” Sm to be the union of the polar-coordinate graphs C±⊂R2 of two functions:
r = 1±ε sin(mθ). Sm has 4m edges; and 2m vertices, all of degree 4, at r = 1 and
θ = π/m, 2π/m, . . . , 2π . For 0 < ε < 1, fε(Sm) = C+ ∪C− is the union of two
smooth cycles. For small positive ε, C+ and C− are convex. The 2m vertices all
have nlm(q)= 0, so

NTC( fε)= NTC(C+)+NTC(C−)= 2π + 2π.

Therefore NTC({Sm})≤ NTC( fε)= 4π .
For the other graph type, let the “ring graph” Rm ⊂R2 be constructed by adding

m disjoint small circles Ci , each crossing one large circle C at two points v2i−1, v2i ,
1 ≤ i ≤ m. Then Rm has 4m edges. We construct Rm so that the 2m vertices
v1, v2, . . . , v2m , appear in cyclic order around C . Then Rm has the same number
2m of vertices as does Sm , all of degree 4. At each vertex v j , we have nlm(v j )= 0,
so in this embedding, NTC(Rm)= 2π(m+1). We shall show that NTC( f1)≥ 2πm
for any f1 : Rm→R3. According to Corollary 3.15, it is enough to show for every
f : Rm → R that µf ≥ m. We may assume f is monotone on each topological
edge, according to Proposition 3.17. Depending on the order of f (v2i−2), f (v2i−1)

and f (v2i ), nlm(v2i−1) might equal ±1 or ±2, but cannot be 0, as follows from
Lemma 3.5, since the unordered pair {d−(v2i−1), d+(v2i−1)} may only be {1, 3}
or {0, 4}. Similarly, v2i is connected by three edges to v2i−1 and by one edge to
v2i+1. For the same reasons, nlm(v2i ) might equal ±1 or ±2, and cannot = 0. So
|nlm(v j )| ≥ 1, 1≤ j ≤ 2m, and thus by Corollary 3.12, µ= 1

2

∑
j |nlm(v j )| ≥ m.

Therefore the minimum of net total curvature NTC({Rm})≥ 2mπ , which is greater
than NTC({Sm})≤ 4π , since m ≥ 3.
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(A more detailed analysis shows that NTC({Sm}) = 4π and NTC({Rm}) =

2π(m+ 1).) �

Finally, we may extend the methods of proof for Theorem 6.5 to allow one
vertex of higher degree:

Theorem 6.11. If 0 is a graph with one vertexw of degree d(w)=m≥3, all other
vertices being trivalent, and if w shares edges with m distinct trivalent vertices,
then NTC({0})=π

(
2B({0})+k/2

)
, where k is the number of vertices of 0 having

odd degree. For a given isotopy class [0], NTC([0])≥ π
(
2B([0])+ k/2

)
.

Proof. Consider any mapping g : 0→ R in general position. If m is even, then
|nlmg(w)| ≥ 0; if m is odd, then |nlmg(w)| ≥

1
2 , by Proposition 5.1. If some

topological vertex is a local extreme point, then as in the proof of Theorem 6.5,
g may be modified without changing NTC(g) so that all 3 + V local extreme
points are interior points of edges, with nlm = ±1. By Corollary 3.12, we have
µg(e)= 1

2

∑
|nlm(v)| ≥ 1

2

(
3+ V + k/2

)
≥ B({0})+ k/4. This shows that

NTC({0})≥ π
(
2B({0})+ k/2

)
.

Now let f0 : 0→ R be monotone on topological edges and have the minimum
number 2B({0}) of local extreme points (see Proposition 3.17). As in the proof of
Theorem 6.5, f0 may be modified without changing NTC( f0) so that all 2B({0})
local extreme points are interior points of edges. f0 may be further modified so that
the distinct vertices v1, . . . , vm which share edges with w are balanced: f (v j ) <

f (w) for half of the j = 1, . . . ,m, if m is even, or for half of m + 1, if m is odd.
Having chosen f (v j ), we define f along the (unique) edge from w to v j to be
monotone, for j = 1, . . . ,m. Therefore if m is even, then nlm f (w) = 0; and if m
is odd, then nlm f (w)=

1
2 , by Lemma 3.5. We compute

µ f (e)= 1
2

∑
|nlm(v)| = 1

2(3+ V + k/2)= B({0})+ k/4.

We conclude that NTC({0})= π
(
2B({0})+ k/2

)
.

For a given isotopy class [0], the proof is analogous to the above. Choose a
mapping g :0→R in the closure of [0], and modify g without leaving the closure
of the isotopy class. Choose f : 0→ R which has the minimum number 2B([0])
of local extreme points, and modify it so that topological vertices are not local
extreme points. In contrast to the proof of Theorem 6.5, a balanced arrangement
of vertices may not be possible in the given isotopy class. In any case, if m is even,
then |nlm f (w)| ≥ 0; and if m is odd, |nlm f (w)| ≥

1
2 , by Proposition 5.1. Thus

applying Corollary 3.12, we find NTC([0])≥ π
(
2B([0])+ k/2

)
. �
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Observation 6.12. When all vertices of 0 are trivalent except w, d(w) ≥ 4, and
when w shares more than one edge with another vertex of 0, then in certain cases,
NTC({0}) > π

(
2B({0})+ k

2

)
, where k is the number of vertices of odd degree.

Example. Choose 0 to be the one-point union of 01, 02 and 03, where 0i = θ = θ3,
i = 1, 2, 3, and the point wi chosen from 0i is one of its two vertices vi , wi . Then
the identified point w = w1 = w2 = w3 of 0 has d(w) = 9, and each of the other
three vertices v1, v2, v3 has degree 3.

Choose a flat map f :0→R. We may assume that f is monotone on each edge,
applying Proposition 3.17. If f (v1) < f (v2) < f (w) < f (v3), then d+(w) = 3,
d−(w) = 6, so nlm(w) = 3

2 , while vi is a local extreme point, so nlm(vi ) = ±
3
2 ,

1 = 1, 2, 3. This gives µ = 3. The case where f (v1) < f (w) < f (v2) < f (v3)

is similar. If w is an extreme point of f , then nlm(w) = ± 9
2 and µ ≥ 9

2 > 3,
contradicting flatness of f . This shows that NTC({0})= NTC( f )= 6π .

On the other hand, we may show as in Observation 6.9 that B({0}) = 3
2 . All

four vertices have odd degree, so k = 4, and π
(
2B({0})+ k/2

)
= 5π . �

Let Wm denote the “wheel” of m spokes, consisting of a cycle C containing m
vertices v1, . . . , vm (the “rim”), a central vertex w (the “hub”) not on C , and edges
Ei (the “spokes”) connecting w to vi , 1≤ i ≤ m.

Corollary 6.13. The minimum net total curvature NTC({Wm}) for graphs in R3

homeomorphic to Wm equals π(2+dm/2e).

Proof. We have one “hub” vertex w with d(w)=m, and all other vertices have de-
gree 3. Observe that the bridge number B({Wm})= 1. According to Theorem 6.11,
we have NTC({Wm}) = π

(
2B({Wm})+ k/2

)
, where k is the number of vertices

of odd degree: k = m if m is even, or k = m + 1 if m is odd: k = 2dm/2e. Thus
NTC({Wm})= π

(
2+dm/2e

)
. �

7. Lower bounds of net total curvature

The width of an isotopy class [0] of embeddings of a graph 0 into R3 is the mini-
mum among representatives of the class of the maximum number of points of the
graph meeting a family of parallel planes. More precisely, we write

width([0]) := min
f :0→R3| f ∈[0]

min
e∈S2

max
s∈R

#(e, s).

For any homeomorphism type {0} define width({0}) to be the minimum over iso-
topy types.

Theorem 7.1. Let 0 be a graph, and consider an isotopy class [0] of embeddings
f : 0→ R3. Then

NTC([0])≥ π width([0]).
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As a consequence,
NTC({0})≥ π width({0}).

Moreover, if for some e ∈ S2, an embedding f : 0→ R3 and s0 ∈ R, the integers
#(e, s) are increasing in s for s < s0 and decreasing for s > s0, then NTC([0]) =
#(e, s0) π .

Proof. Choose an embedding g : 0→ R3 in the given isotopy class, with

min
e∈S2

max
s∈R

#(e, s)= width([0]).

There exist e∈ S2 and s0 ∈R with #(e, s0)=maxs∈R #(e, s)=width([0]). Replace
e if necessary by a nearby point in S2 so that the values g(vi ), i = 1, . . . ,m are
distinct. Next do cylindrical shrinking: without changing #(e, s) for s ∈ R, shrink
the image of g in directions orthogonal to e by a factor δ > 0 to obtain a family
{gδ} from the same isotopy class [0], with NTC(gδ)→ NTC(g0), where we may
identify g0 : 0→ Re ⊂ R3 with pe ◦ g = pe ◦ gδ : 0→ R. But

NTC(pe ◦ g)=
1
2

∫
S2
µ(u) d AS2(u)= 2π µ(e),

since for pu ◦ pe ◦ g, the local maximum and minimum points are the same as for
pe ◦ g if 〈e, u〉> 0 and reversed if 〈e, u〉< 0 (recall that µ(−e)= µ(e)).

We write the topological vertices and the local extrema of g0 as v1, . . . , vm . Let
the indexing be chosen so that g0(vi ) < g0(vi+1), i = 1, . . . ,m− 1. Now estimate
µ(e) from below: using Lemma 3.5 and Corollary 3.10,

(7-1) µ(e)=
m∑

i=1

nlm+g0
(e, vi )≥

m∑
i=k+1

nlmg0(e, vi )=
1
2 #(e, s)

for any s, g0(vk)< s<g0(vk+1). This shows thatµ(e)≥ 1
2 width([0]), and therefore

NTC(g)≥ NTC(g0)= 2π µ(e)≥ π width([0]).

Now suppose that the integers #(e, s) are increasing in s for s<s0 and decreasing
for s > s0. Then for g0(vi ) > s0, we have nlm(e, g0(vi )) ≥ 0 by Lemma 3.5, and
the inequality (7-1) becomes equality at s = s0. �

Lemma 7.2. For an integer l, the minimum width of the complete graph K2l on 2l
vertices is width({K2l})= l2; for 2l + 1 vertices, width({K2l+1})= l(l + 1).

Proof. Write Ei j for the edge of Km joining vi to v j , 1≤ i < j ≤ m, and suppose
g : Km→ R has distinct values at the vertices: g(v1) < g(v2) < · · ·< g(vm).

Then for any g(vk)< s< g(vk+1), there are k(m−k) edges Ei j with i ≤ k< j ;
each of these edges has at least one interior point mapping to s, which shows that
#(e, s) ≥ k(m − k). If m is even: m = 2l, these lower bounds have the maximum
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value l2 when k= l. If m is odd: m=2l+1, these lower bounds have the maximum
value l(l + 1) when k = l or k = l + 1. This shows that the width of K2l ≥ l2 and
the width of K2l+1 ≥ l(l + 1). On the other hand, equality holds for the piecewise
linear embedding of Km into R with vertices in general position and straight edges
Ei j , which shows that width({K2l})= l2 and width({K2l+1})= l(l + 1). �

Proposition 7.3. For all g : Km → R, NTC(g) ≥ π l2 if m = 2l is even; and
NTC(g) ≥ π l(l + 1) if m = 2l + 1 is odd. Equality holds for an embedding of
Km into R with vertices in general position and monotone on each edge; therefore
NTC({K2l})= π l2, and NTC({K2l+1})= π l(l + 1).

Proof. The lower bound on NTC({Km}) follows from Theorem 7.1 and Lemma 7.2.
Now suppose g : Km → R is monotone on each edge, and number the vertices

of Km so that for all i , g(vi ) < g(vi+1). Then as in the proof of Lemma 7.2,
#(e, s)= k(m− k) for g(vk) < s < g(vk+1). These cardinalities are increasing for
0≤ k ≤ l and decreasing for l+1< k <m. Thus, if g(vl) < s0 < g(vl+1), then by
Theorem 7.1, NTC([0])= #(e, s0) π = l(m− l) π , as claimed. �

Let Km,n be the complete bipartite graph with m + n vertices divided into two
sets: vi , 1 ≤ i ≤ m and w j , 1 ≤ j ≤ n, having one edge Ei j joining vi to w j , for
each 1≤ i ≤ m and 1≤ j ≤ n.

Proposition 7.4. NTC({Km,n})= dmn/2eπ .

Proof. Km,n has vertices v1, . . . , vm of degree d(vi ) = n and vertices w1, . . . , wn

of degree d(w j ) = m. Consider a mapping g : Km,n → R in general position, so
that the m + n vertices of Km,n have distinct images. We wish to show µ(e) =
µg(e)≥ mn/4, if m or n is even, or (mn+ 1)/4, if both m and n are odd.

For this purpose, according to Proposition 3.17, we may first reduce µ(e) or
leave it unchanged by replacing g with a mapping (also called g) which is mono-
tone on each edge Ei j of Km,n . The values of nlm(w j ) and of nlm(vi ) are now
determined by the order of the vertex images g(v1), . . . , g(vm), g(w1), . . . , g(wn).
Since Km,n is symmetric under permutations of {v1, . . . , vm} and permutations
of {w1, . . . , wn}, we shall assume that g(vi ) < g(vi+1), i = 1, . . . ,m − 1 and
g(w j ) < g(w j+1), j = 1, . . . , n− 1. For i = 1, . . . ,m we write ki for the largest
index j such that g(w j ) < g(vi ). Then 0 ≤ k1 ≤ · · · ≤ km ≤ n, and these integers
determine µ(e). According to Lemma 3.5, nlm(vi )= ki − n/2, i = 1, . . . ,m. For
j ≤ k1 and for j ≥ km + 1, we have nlm(w j ) = ±m/2; for k1 < j ≤ k2 and for
km−1< j≤km , we find nlm(w j )=±

(
m/2−1

)
; and so on until we find nlm(w j )=0

on the middle interval kp < j ≤ kp+1, if m = 2p is even; or, if m = 2p+ 1 is odd,
nlm(w j )=−

1
2 for kp < j ≤ kp+1 and nlm(w j )=+

1
2 for the other middle interval

kp+1 < j ≤ kp+2. Thus according to Lemma 3.5 and Corollary 3.12, if m = 2p is
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even,
(7-2)

2µ(e)=
m∑

i=1

∣∣nlm(vi )
∣∣+ n∑

j=1

∣∣nlm(w j )
∣∣= m∑

i=1

∣∣∣ki −
n
2

∣∣∣+ (k1+ n− km)
m
2

+ (k2− k1+ km − km−1)
[m

2
− 1

]
+ · · ·

+ (kp − kp−1+ kp+2− kp+1)
[m

2
− (p− 1)

]
+ (kp+1− kp)[0]

=

m∑
i=1

∣∣∣ki −
n
2

∣∣∣+ mn
2
+

p∑
i=1

ki −

m∑
i=p+1

ki

=
mn
2
+

p∑
i=1

[∣∣∣ki −
n
2

∣∣∣+ (ki −
n
2

)]
+

m∑
i=p+1

[∣∣∣ki −
n
2

∣∣∣− (ki −
n
2

)]
.

Note that formula (7-2) assumes its minimum value 2µ(e)= mn/2 when

k1 ≤ · · · ≤ kp ≤ n/2≤ kp+1 ≤ · · · ≤ km .

If m = 2p+ 1 is odd, then

(7-3) 2µ(e)=
m∑

i=1

∣∣∣ki−
n
2

∣∣∣+(k1+n−km)
m
2
+(k2−k1+km−km−1)

[m
2
−1
]
+· · ·

+ (kp+3− kp+2)
[m

2
− (p− 1)

]
+ (kp+2− kp)

[1
2

]
=

=

m∑
i=1

∣∣∣ki −
n
2

∣∣∣+ mn
2
+

p∑
i=1

ki −

m∑
i=p+2

ki

=
mn
2
+

p∑
i=1

[∣∣∣ki −
n
2

∣∣∣+ (ki −
n
2

)]
+

m∑
i=p+2

[∣∣∣ki −
n
2

∣∣∣− (ki −
n
2

)]
+

∣∣∣kp+1−
n
2

∣∣∣.
Observe that formula (7-3) has the minimum value 2µ(e) = 1

2 mn when n is even
and k1 ≤ · · · ≤ kp ≤

1
2 n = kp+1 ≤ · · · ≤ km . If n as well as m is odd, then the

last term
∣∣kp+1−

1
2 n
∣∣ is at least 1

2 , and the minimum value of 2µ(e) is 1
2(mn+ 1),

attained if and only if k1 ≤ · · · ≤ kp ≤
1
2 n ≤ kp+2 ≤ · · · ≤ km .

This shows that for either parity of m or of n, µ(e)≥ 1
4 mn. If n and m are both

odd, we have the stronger inequality µ(e)≥ 1
4(mn+1). We may summarize these

conclusions as 2µ(e) ≥
⌈1

2 mn
⌉

, and therefore as in the proof of Corollary 3.15,
NTC({Km,n})≥

⌈ 1
2 mn

⌉
π , as we wished to show.

By abuse of notation, write the formula (7-2) or (7-3) as µ(k1, . . . , km).
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To show the inequality in the opposite direction, we need to find a mapping
f : Km,n→R with NTC( f )= 1

2 mn π (m or n even) or NTC( f )= 1
2(mn+1) π (m

and n odd). The above computation suggests choosing f with f (v1), . . . , f (vm)

together in the middle of the images of the w j . Write n = 2l if n is even, or
n = 2l + 1 if n is odd. Choose values f (w1) < · · · < f (wl) < f (v1) < · · · <

f (vm) < f (wl+1) < · · · < f (wn), and extend f monotonically to each of the mn
edges Ei j . From formulas (7-2) and (7-3), we have µ f (e)=µ(l, . . . , l)= 1

4 mn, if
m or n is even; or µ f (e)= µ(l, . . . , l)= 1

4(mn+ 1), if m and n are odd. �

Recall that θm is the graph with two vertices q+, q− and m edges.

Corollary 7.5. NTC({θm})= m π .

Proof. θm is homeomorphic to the complete bipartite graph Km,2, and by the
proof of Proposition 7.4, we find µ(e) ≥ 1

2 m for almost all e ∈ S2, and hence
NTC({Km,2})= m π . �

8. Fáry–Milnor type isotopy classification

Recall the Fáry–Milnor theorem, which states that if the total curvature of a Jor-
dan curve 0 in R3 is less than or equal to 4π , then 0 is unknotted. As we have
demonstrated above, there are a collection of graphs whose values of the minimum
total net curvatures are known. It is natural to hope when the net total curvature
is small, in the sense of being in a specific interval to the right of the minimal
value, that the isotopy type of the graph is restricted, as is the case for curves:
0 = S1. The following proposition and corollaries, however, tell us that results of
the Fáry–Milnor type cannot be expected to hold for more general graphs.

Proposition 8.1. If 0 is a graph in R3 and if C ⊂ 0 is a cycle, such that for some
e ∈ S2, pe ◦C has at least two local maximum points, then for each positive integer
q, there is a nonisotopic embedding 0̃q of 0 in which C is replaced by a knot not
isotopic to C , with NTC(0̃q) as close as desired to NTC(pe ◦0).

Proof. It follows from Corollary 3.15 that the one-dimensional graph pe ◦0 may
be replaced by an embedding 0̂ into a small neighborhood of the line Re in R3,
with arbitrarily small change in its net total curvature. Since pe ◦ C has at least
two local maximum points, there is an interval of R over which pe ◦ C contains
an interval which is the image of four oriented intervals J1, J2, J3, J4 appearing in
that cyclic order around the oriented cycle C . Consider a plane presentation of 0
by orthogonal projection into a generic plane containing the line Re. Choose an
integer q ∈ Z, |q| ≥ 3. We modify 0̂ by wrapping its interval J1 q times around
J3 and returning, passing over any other edges of 0, including J2 and J4, which it
encounters along the way. The new graph in R3 is called 0̃q . Then, if C was the
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unknot, the cycle C̃q which has replaced it is a (2, q)-torus knot (see [Lickorish
1997]). In any case, C̃q is not isotopic to C , and therefore 0̃q is not isotopic to 0.

As in the proof of Theorem 7.1, let gδ : R3
→ R3 be defined by cylindrical

shrinking, so that g1 is the identity and g0 = pe. Then pe ◦ 0̃q = g0(0̃q), and for
δ > 0, gδ(0̃q) is isotopic to 0̃q . But NTC(gδ)→ NTC(g0) as δ→ 0. �

Corollary 8.2. If e= e0 ∈ Sn−1 minimizes NTC(pe◦0), and there is a cycle C ⊂0
so that pe0 ◦C has two (or more) local maximum points, then there is a sequence of
nonisotopic embeddings 0̃q of 0 with NTC(0̃q) less than, or as close as desired,
to NTC(0), in which C is replaced by its connected sum with a (2, q)-torus knot.

Corollary 8.3. If 0 is an embedding of Km into R3, linear on each topological
edge of Km , m ≥ 4, then there is a sequence of nonisotopic embeddings 0̃q of 0
with NTC([0̃q ]) as close as desired to NTC([0]), in which an unknotted cycle C
of 0 is replaced by a (2, q)-torus knot.

Proof. According to Corollary 8.2, we only need to construct an isotopy of Km

with the minimum value of NTC, such that there is a cycle C so that pe ◦C has
two local maximum points, where µ(e) is a minimum among e ∈ S2.

Choose g :Km→R which is monotone on each edge of Km , and has distinct val-
ues at vertices. Then according to Proposition 7.3, we have NTC(g)=NTC({Km}).
Number the vertices v1, . . . , vm so that g(v1) < g(v2) < · · · < g(vm). Write E j i

for the edge Ei j with the reverse orientation, i 6= j . Then the cycle C formed in
sequence from E13, E32, E24 and E41 has local maximum points at v3 and v4, and
covers the interval

(
g(v2), g(v3)

)
⊂ R four times. Since C is formed out of four

straight edges, it is unknotted. The procedure of Corollary 8.2 replaces C with a
(2, q)-torus knot, with an arbitrarily small increase in NTC. �

Note that Corollary 8.2 gives a set of conditions for those graph types where a
Fáry–Milnor type isotopy classification might hold. In particular, we consider one
of the simpler homeomorphism types of graphs, the theta graph θ = θ3 = K3,2

(cf. description following Definition 6.3). The standard theta graph is the isotopy
class in R3 of a plane circle plus a diameter. We have seen in Corollary 7.5 that the
minimum of net total curvature for a theta graph is 3π . On the other hand note that
in the range 3π ≤ NTC(0) < 4π , for e in a set of positive measure of S2, pe(0)

cannot have two local maximum points. In Theorem 8.5 below, we shall show that
a theta graph 0 with NTC(0) < 4π is isotopically standard.

We may observe that there are nonstandard theta graphs in R3. For example,
the union of two edges might be knotted. Moreover, as S. Kinoshita has shown,
there are θ -graphs in R3, not isotopic to a planar graph, such that each of the three
cycles formed by deleting one edge is unknotted [Kinoshita 1972].

We begin with a well-known property of curves, whose proof we give for the
sake of completeness.
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Lemma 8.4. Let C ⊂ R3 be homeomorphic to S1, and not a convex planar curve.
Then there is a nonempty open set of planes P ⊂ R3 which each meet C in at least
four points.

Proof. For e ∈ S2 and t ∈ R write the plane Pe
t = {x ∈ R3

: 〈e, x〉 = t}.
If C is not planar, then there exist four noncoplanar points p1, p2, p3, p4, num-

bered in order around C . Note that no three of the points can be collinear. Let an
oriented plane P0 be chosen to contain p1 and p3 and rotated until both p2 and p4

are above P0 strictly. Write e1 for the unit normal vector to P0 on the side where
p2 and p3 lie, so that P0 = Pe1

t0=0. Then the set Pt ∩C contains at least four points,
for t0 = 0< t < δ1, with some δ1 > 0, since each plane Pt = Pe1

t meets each of the
four open arcs between the points p1, p2, p3, p4. This conclusion remains true,
for some 0 < δ < δ1, when the normal vector e1 to P0 is replaced by any nearby
e ∈ S2, and t is replaced by any 0< t < δ.

If C is planar but nonconvex, then there exists a plane P0 = Pe1
0 , transverse to

the plane containing C , which supports C and touches C at two distinct points, but
does not include the arc of C between these two points. Consider disjoint open
arcs of C on either side of these two points and including points not in P0. Then
for 0 < t < δ � 1, the set Pt ∩ C contains at least four points, since the planes
Pt = Pe1

t meet each of the four disjoint arcs. Here once again e1 may be replaced
by any nearby unit vector e, and the plane Pe

t will meet C in at least four points,
for t in a nonempty open interval t1 < t < t1+ δ. �

Using the notion of net total curvature, we may extend the theorems of Fenchel
[1929] as well as the Fáry–Milnor theorem, for curves homeomorphic to S1, to
graphs homeomorphic to the theta graph. An analogous result is given by Taniyama
[1998], who showed that the minimum of TC for polygonal θ -graphs is 4π , and
that any θ -graph 0 with TC(0) < 5π is isotopically standard.

Theorem 8.5. Suppose f : θ → R3 is a continuous embedding, 0 = f (θ). Then
NTC(0)≥ 3π . If NTC(0)< 4π , then 0 is isotopic in R3 to the planar theta graph.
Moreover, NTC(0) = 3π if and only if the graph is a planar convex curve plus a
straight chord.

Proof. We consider first the case when f : θ→ R3 is piecewise C2.

(1) We have shown the lower bound 3π for NTC( f ), where f : θ → Rn is any
piecewise C2 mapping, since θ = θ3 is one case of Corollary 7.5, with m = 3.

(2) We show next that if there is a cycle C in a graph 0 (a subgraph homeomorphic
to S1) which satisfies the conclusion of Lemma 8.4, then µ(e) ≥ 2 for e in a
nonempty open set of S2. Namely, for t0 < t < t0+ δ, a family of planes Pe

t meets
C , and therefore meets 0, in at least four points. This is equivalent to saying that
the cardinality #(e, t) ≥ 4. This implies, by Corollary 3.10, that

∑
{nlm(e, q) :
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pe(q) > t0} ≥ 2. Thus, since nlm+(e, q) ≥ nlm(e, q), using Definition 3.8, we
have µ(e)≥ 2.

Now consider the equality case of a theta graph 0 with NTC(0) = 3π . As we
have seen in the proof of Proposition 7.4 with m = 3 and n = 2, the multiplicity
µ(e) ≥ 3

2 =
1
4 mn for almost all e ∈ S2, while the integral of µ(e) over S2 equals

2 NTC(0) = 6π by Theorem 3.13, implying µ(e) = 3/2 almost everywhere on
S2. Thus, the conclusion of Lemma 8.4 is impossible for any cycle C in 0. By
Lemma 8.4, all cycles C of 0 must be planar and convex.

Now 0 consists of three arcs a1, a2 and a3, with common endpoints q+ and
q−. As we have just shown, the three Jordan curves 01 := a2 ∪ a3, 02 := a3 ∪ a1

and 03 := a1 ∪ a2 are each planar and convex. It follows that 01, 02 and 03 lie
in a common plane. In terms of the topology of this plane, one of the three arcs
a1, a2 and a3 lies in the middle between the other two. But the middle arc, say
a2, must be a line segment, as it needs to be a shared piece of two curves 01 and
03 bounding disjoint convex open sets in the plane. The conclusion is that 0 is a
planar, convex Jordan curve 02, plus a straight chord a2, whenever NTC(0)= 3π .

(3) We next turn our attention to the upper bound of NTC, to imply that a θ -graph is
isotopically standard: we shall assume that g : θ→R3 is an embedding in general
position with NTC(g) < 4π , and write 0 = g(θ). By Theorem 3.13, since S2 has
area 4π , the average of µ(e) over S2 is less than 2, and it follows that there exists
a set of positive measure of e0 ∈ S2 with µ(e0) < 2. Since µ(e0) is a half-integer,
and since µ(e)≥ 3

2 , as we have shown in part (1) of this proof, we have µ(e0)=
3
2

exactly.
From Corollary 6.7 applied to pe0 ◦ g : θ→R, we find µg(e0)=

1
2(3+V )+ k

4 ,
where3 is the number of local maximum points, V is the number of local minimum
points and k=2 is the number of vertices, both of degree 3. Thus, 3

2=
1
2(3+V )+ 1

2 ,
so that 3 + V = 2. This implies that the local maximum/minimum points are
unique, and must be the unique global maximum/minimum points pmax and pmin

(which may be one of the two vertices q±). Then pe0 ◦ g is monotone along edges
except at the points pmax, pmin and q±.

Introduce Euclidean coordinates (x, y, z) for R3 so that e0 is in the increasing
z-direction. Write tmax = pe0 ◦ g(pmax) = 〈e0, pmax〉 and tmin = 〈e0, pmin〉 for the
maximum and minimum values of z along g(θ). Write t± for the value of z at
g(q±), where we may assume tmin ≤ t− < t+ ≤ tmax.

We construct a “model” standard θ -curve 0̂ in the (x, z)-plane, as follows. 0̂
will consist of a circle C plus the straight chord of C , joining q̂− to q̂+ (points to be
chosen). Choose C so that the maximum and minimum values of z on C equal tmax

and tmin. Write p̂max and p̂min for the maximum and minimum points of z along C .
Choose q̂+ as a point on C where z= t+. There may be two nonequivalent choices
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for q̂− as a point on C where z = t−: we choose so that p̂max and p̂min are in the
same or different topological edge of 0̂, where pmax and pmin are in the same or
different topological edge, respectively, of 0. Note that there is a homeomorphism
from 0 to 0̂ which preserves z.

We now proceed to extend this homeomorphism to an isotopy. For t ∈ R, write
Pt for the plane {z= t}. As in the proof of Proposition 4.10, there is a continuous 1-
parameter family of homeomorphisms8t : Pt→ Pt such that8t(0∩Pt)= 0̂∩Pt ;
8t is the identity outside a compact subset of Pt ; and 8t is isotopic to the identity
of Pt , uniformly with respect to t . Defining8 :R3

→R3 by8(x, y, z) :=8z(x, y),
we have an isotopy of 0 with the model graph 0̂.

(4) Finally, consider an embedding g : θ→R3 which is only continuous, and write
0 = g(θ).

It follows from Theorem 4.11 that for any θ -graph 0 of finite net total curvature,
there is a 0-approximating polygonal θ -graph P isotopic to 0, with NTC(P) ≤
NTC(0) and as close as desired to NTC(0).

If a θ -graph 0 would have NTC(0) < 3π , then the 0-approximating polygonal
graph P would also have NTC(P) < 3π , in contradiction to what we have shown
for piecewise C2 theta graphs in part (1) above. This shows that NTC(0)≥ 3π .

If equality NTC(0) = 3π holds, then NTC(P) ≤ NTC(0) = 3π , so that by
the equality case part (2) above, NTC(P) must equal 3π , and P must be a convex
planar curve plus a chord. But this holds for all 0-approximating polygonal graphs
P , implying that 0 itself must be a convex planar curve plus a chord.

Finally, If NTC(0)<4π , then NTC(P)<4π , implying by part (3) above that P
is isotopic to the standard θ -graph. But 0 is isotopic to P , and hence is isotopically
standard. �
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ENTIRE SOLUTIONS OF DONALDSON’S EQUATION

WEIYONG HE

We construct infinitely many special entire solutions to Donaldson’s equa-
tion. We also prove a Liouville type theorem for entire solutions of Donald-
son’s equation. We believe that all entire solutions of Donaldson’s equation
have the form of the examples constructed in the paper.

1. Introduction

Donaldson [2010] introduced an interesting differential operator when he set up a
geometric structure for the space of volume forms on compact Riemannian man-
ifolds. The Dirichlet problems for Donaldson’s operator are considered in [He
2008; Chen and He 2011]. In this note we shall consider this operator on Euclidean
spaces.

For (t, x) ∈ � ⊂ R × Rn (n ≥ 1), let u(t, x) be a smooth function such that
4u > 0, ut t > 0. We use ∇u, 4u to denote derivatives with respect to x and
ut = ∂t u, ut t = ∂

2
t u to denote derivatives with respect to t . Define a differential

operator Q by
Q(D2u)= ut t4u− |∇ut |

2.

This operator is strictly elliptic when ut t > 0, 4u > 0 and Q(D2u) > 0. When
n = 1, then

Q(D2u)= ut t uxx − u2
xt

is a real Monge–Ampère operator. When n= 2, Q can be viewed as a special case
of the complex Monge–Ampère operator. In the x direction, we identify R2

= C

with a coordinate w. In the t direction, we take a product by R with a coordinate
s and let z = t +

√
−1s. We extend u on R×R2 to R4

= C2 by u(z, w)= u(t, x).
Then

Q(D2u)= 4(uzz̄uww − uzwuwz̄)

is a complex Monge–Ampère operator.

The author is supported in part by a start-up grant of the University of Oregon and by NSF grant
DMS 1005392.
MSC2010: 35J60, 35J96.
Keywords: Donaldson’s equation, entire solution, Liouville type theorem.
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In this paper we shall consider entire solutions u : R×Rn
→ R of

(1-1) Q(D2u)= 1.

One celebrated result, proved by Jörgens [1954] in dimension 2 and by Calabi
[1958] and Pogorelov [1978] in higher dimensions, is that the only convex solutions
of the real Monge–Ampère equation

(1-2) det( fi j )= 1

on the whole of Rn are the obvious ones: quadratic functions.

Theorem 1.1 (Calabi, Jörgens, Pogorelov). Let f be a global convex viscosity
solution of (1-2) on the whole of Rn . Then f has to be a quadratic function.

One can also ask similar questions for the complex Monge–Ampère equations
for plurisubharmonic functions. Let v : Cn

→ R be a strictly plurisubharmonic
function such that (vi ̄ ) > 0, which satisfies

(1-3) det(vi ̄ )= 1.

The analogous results to Theorem 1.1 for the complex Monge–Ampère equation
(1-3) or Donaldson’s equation (1-1) (n > 1) are not known. For the complex
Monge–Ampère equation, LeBrun [1991] investigated the Euclidean Taub–NUT
metric constructed by Hawking [1977] and proved that it is a Kähler Ricci-flat
metric on C2 but a nonflat metric. His example provides a nontrivial entire solu-
tion of the complex Monge–Ampère equation. We shall construct infinitely many
solutions for Donaldson’s equation (1-1), which are nontrivial solutions in the sense
that ut t is constant, but 4u, ∇ut are both not constant. However, when n = 2, the
Kähler metrics corresponding to these examples are the Euclidean metric on C2.
We shall prove a Liouville type theorem for Donaldson’s equation (1-1), which
says ut t has to be constant provided some restrictions on ut t . Our proof relies on
a transformation introduced by Donaldson [2010]. We then ask if all solutions of
(1-1) satisfy that ut t is constant; this would characterize all entire solutions of (1-1)
if confirmed.

2. Examples of entire solutions

In this section we shall construct infinitely many nontrivial solutions of (1-1) and
(1-3). First we consider (1-1). Let ut t = 2a for some a> 0; also let u(0, x)= g(x)
and ut(0, x)= b(x). Then

(2-1) u(t, x)= at2
+ tb(x)+ g(x).

If u solves (1-1), then
2a(t4b+4g)− |∇b|2 = 1.
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It follows that

4b = 0 and 4g = 1
2a
(
1+ |∇b|2

)
.

So we shall construct the examples as follows. Let b = b(x1, x2, . . . , xn) be a
harmonic function in Rn . Define

h(x)=
1+ |∇b|2

2a
.

Consider the following equation for g(x):

(2-2) 4g = h(x).

We can write g = b2(x)/4a + f for some function f such that 4 f = 1/2a. We
can summarize our results above as follows.

Theorem 2.1. Let u be the form of (2-1) such that b is a harmonic function and g
satisfies (2-2). Then u is an entire solution of (1-1). Moreover, any entire solution
of (1-1) with ut t = constant has the form of (2-1).

When n = 2, these examples also provide solutions of the complex Monge–
Ampère equation (1-3). Actually, let u(z, w) : C2

→ R be a solution of (1-3). If
uzz̄ = a for some constant a > 0, it is not hard to derive that

(2-3) u(z, w)= azz̄+ f (z, z̄ )+ zb(w,w)+ z̄b̄(w,w)+ g(w,w)

such that

∂2 f
∂z ∂ z̄

=
∂2b
∂w ∂w

= 0 and
∂2g
∂w ∂w

=
1
a

(
1+

∣∣∣ ∂b
∂w

∣∣∣2) .
However these examples are all trivial solutions of the complex Monge–Ampère
equation in the sense that the corresponding Kähler metrics are flat. For simplicity,
we can assume a= 1. Since ∂2b/∂w ∂w= 0, we can assume that b is holomorphic
or antiholomorphic. If b is holomorphic, then the corresponding Kähler metric is
just dz⊗ dz̄+ dw⊗ dw. If b is antiholomorphic, we can set b(w,w)= c(w) and
b̄(w,w)= c(w). The corresponding Kähler metric is given by

dz⊗ dz̄+ cw dz⊗ dw+ cw dz̄⊗ dw+ gww dw⊗ dw

= d(z+ c(w))⊗ d(z̄+ c(w))+ dw⊗ dw.

Then under the holomorphic transformation (z, w)→ (z+c(w),w) it is clear that
the Kähler metric is actually flat.
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3. A theorem of Liouville type

In this section we shall prove a Liouville type result for solutions of (1-1). We
shall describe a transformation introduced by Donaldson [2010], which relates the
solutions of (1-1) with harmonic functions. Using this transformation, Theorem 3.1
follows from the standard Liouville theorem for positive harmonic functions.

Theorem 3.1. Let u be a solution of (1-1) with ut t > 0. For any x ∈ Rn , if
ut t(t, x)dt2 defines a complete metric on R×{x}, then ut t is constant. In particular,
it has the form of (2-1) such that b is a harmonic function and g satisfies (2-2).

Proof. For any x fixed, let z = ut(t, x). Then 8 : (t, x)→ (z, x) gives a trans-
formation since ut t > 0 and the Jacobian of 8 is always positive. In particular,
8 : R× Rn

→ Image8 ⊂ R× Rn is a diffeomorphism. When ut t(x, t)dt2 is a
complete metric on R×{x} for all x , then Image8=R×Rn . To see this, we note
that for any x fixed, then

z(t, x)= ut(0, x)+
∫ t

0
uss(s, x)ds.

Hence if ut t(t, x)dt2 is complete, the map z : t → z(t, x) satisfies z(R) = R. For
x fixed, there exists a unique t = t (z, x) such that z = ut(t, x). Define a function
θ(z, x)= t (z, x). We claim that θ is a harmonic function in R×Rn . The identity
z = ut(θ, x) implies

∂θ

∂xi
ut t + ut xi = 0 and ut t

∂θ

∂z
= 1.

It then follows that

ut t
∂2θ

∂x2
i
+ 2ut t xi

∂θ

∂xi
+ ut t t

(
∂θ

∂xi

)2

+ ut xi xi = 0 and ut t
∂2θ

∂z2 +
ut t t

u2
t t
= 0.

We compute, if u solves (1-1),

4(z,x)θ =
∂2θ

∂z2 +
∑

i

∂2θ

∂x2
i

=
1

ut t

(
−

ut t t

u2
t t
−4ut + 2

∑
i

ut t xi ut xi

ut t
−

∑
i

ut t t u2
t xi

u2
t t

)
=

1
ut t

(
−

ut t t

u2
t t

(
1+

∑
u2

t xi

)
−4ut + 2

∑
i

ut t xi ut xi

ut t

)
=
−1
ut t

(
ut t t4u

ut t
+4ut − 2

∑
i

ut t xi ut xi

ut t

)
=
−1
u2

t t
∂t
(
4uut t − |∇ut |

2)
= 0.
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On the other hand, ∂θ/∂z=1/ut t >0. Hence ∂θ/∂z is a positive harmonic function
on R×Rn . It follows that ∂θ/∂z is constant, and so ut t is constant. �

One could classify all solutions of (1-1) if one could prove that ut t does not
decay too fast to zero when |t | → ∞, such that ut t dt2 defines a complete metric
on a line. This motivates the following:

Problem 3.2. Do all solutions of (1-1) with ut t > 0 satisfy ut t = constant?
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ENERGY IDENTITY AND REMOVABLE SINGULARITIES OF
MAPS FROM A RIEMANN SURFACE WITH TENSION FIELD

UNBOUNDED IN L2

YONG LUO

We prove removable singularity results for maps with bounded energy from
the unit disk B of R2 centered at the origin to a closed Riemannian mani-
fold whose tension field is unbounded in L2(B) but satisfies the following
condition: (∫

Bt\Bt/2

|τ(u)|2
)1

2
≤ C1

(1
t

)a

for some 0 < a < 1 and any 0 < t < 1, where C1 is a constant independent
of t .

We will also prove that if a sequence {un} has uniformly bounded energy
and satisfies (∫

Bt\Bt/2

|τ(un)|
2
)1

2
≤ C2

(1
t

)a

for some 0 < a < 1 and any 0 < t < 1, where C2 is a constant independent
of n and t , then the energy identity holds for this sequence and there will be
no neck formation during the blow up process.

1. Introduction

Let (M, g) be a Riemannian manifold and (N , h) a Riemannian manifold without
boundary. For a W 1,2(M, N ) map u, the energy density of u is defined by

e(u)= 1
2 |∇u|2 = Trg(u∗h),

where u∗h is the pullback of the metric tensor h.
The energy functional of the mapping u is defined as

E(u)=
∫

M
e(u) dV .

The author is supported by the DFG collaborative Research Center SFB/Transregio 71.
MSC2010: 35B44.
Keywords: harmonic maps, energy identity.
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A map u ∈ C1(M, N ) is called a harmonic map if it is a critical point of the
energy.

By the Nash embedding theorem, N can be isometrically embedded into a Eu-
clidean space RK for some positive integer K . Then (N , h) can be viewed as a
submanifold of RK , and a map u ∈ W 1,2(M, N ) is a map in W 1,2(M,RK ) whose
image lies on N . The space C1(M, N ) should be understood in the same way. In
this sense we have the following Euler–Lagrangian equation for harmonic maps.

1u = A(u)(∇u,∇u).

The tension field of a map u, τ(u), is defined by

τ(u)=1u− A(u)(∇u,∇u),

where A is the second fundamental form of N in RK . So u is a harmonic map if
and only if τ(u)= 0.

Notice that, when M is a Riemann surface, the functional E(u) is conformal
invariant. Harmonic maps are of special interest in this case. Consider a harmonic
map u from a Riemann surface M to N . Recall that Sacks and Uhlenbeck, in a
fundamental paper [1981], established the well-known removable singularity theo-
rem by using a class of piecewise smooth harmonic functions to approximate the
weak harmonic map. Li and Wang [2010] gave a slightly different proof of the
following removable singularity theorem.

Theorem 1.1 [Li and Wang 2010]. Let B be the unit disk in R2 centered at the
origin. If u : B \ {0} → N is a W 2,2

loc (B \ {0}, N )∩W 1,2(B, N ) map and u satisfies

τ(u)= g ∈ L2(B,RK ),

then u can be extended to a map belonging to W 2,2(B, N ).

In this direction we will prove the following result:

Proposition 1.2. Let B be the unit disk in R2 centered at the origin. If

u : B \ {0} → N

is a W 2,2
loc (B \ {0}, N )∩W 1,2(B, N ) map and u satisfies(∫

Bt\Bt/2

|τ(u)|2
)1

2

≤ C
(1

t

)a

for some 0< a< 1 and any 0< t < 1, where C is a constant independent of t , then
there exists some s > 1 such that

∇u ∈ L2s(B).
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A direct corollary of this result is the following removable singularity theorem:

Theorem 1.3. Assume that u ∈W 2,2
loc (B \ {0}, N )∩W 1,2(B, N ) and u satisfies(∫

Bt\Bt/2

|τ(u)|2
)1

2

≤ C
(1

t

)a

for some 0 < a < 1 and any 0 < t < 1, where C is a constant independent of t .
Then we have

u ∈
⋂

1<p< 2
1+a

W 2,p(B, N ).

Consider a sequence of maps {un} from a Riemann surface M to N with uni-
formly bounded energy. Clearly {un} converges to u weakly in W 1,2(M, N ) for
some u ∈W 1,2(M, N ), but in general it may not converge strongly in W 1,2(M, N )
to u, and the falling of the strong convergence is due to the energy concentration
at finite points. Jost [1987] and Parker [1996] independently proved that, when
τ(un)= 0, that is, un are harmonic maps, the lost energy is exactly the sum of the
energy of the bubbles. Recall that Sacks and Uhlenbeck [1981] proved that the
bubbles for such a sequence are harmonic spheres defined as nontrivial harmonic
maps from S2 to N . This result is called energy identity. Furthermore they proved
that there is no neck formation during the blow up process, that is, the bubble tree
convergence holds true.

For the case when τ(un) is bounded in L2, that is, {un} is an approximated
harmonic map sequence, the energy identity was proved for N is a sphere by Qing
[1995], and for the general target manifold N by Ding and Tian [1995] and, in-
dependently, by Wang [1996]. Qing and Tian [1997] proved that there is no neck
formation during the blow up process; see also [Lin and Wang 1998]. For the
heat flow of harmonic maps, related results can also be found in [Topping 2004a;
2004b]. For the case where the target manifold is a sphere, the energy identity and
bubble tree convergence were proved by Lin and Wang [2002] for sequences with
tension fields uniform bounded in L p, for any p > 1. In fact, they proved this
result under a scaling invariant condition which can be deduced from the uniform
boundness of the tension field in L p.

By virtue of Fanghua Lin and Changyou Wang’s result, it is natural to ask the
following question.

Question. Let {un} be a sequence from a closed Riemann surface to a closed Rie-
mannian manifold with tension field uniformly bounded in L p for some p> 1. Do
energy identity and bubble tree convergence results hold true during blowing up
for such a sequence?
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Remark 1.4. Parker [1996] constructed a sequence from a Riemann surface whose
tension field is uniformly bounded in L1, in which the energy identity fails.

Theorem 1.5 [Li and Zhu 2010]. Let {un} be a sequence of maps from B to N in
W 1,2(B, N ) with tension field τ(un), where B is the unit disk of R2 centered at the
origin. If

(I) ‖un‖W 1,2(B)+‖τ(un)‖W 1,p(B) ≤3 for some p ≥ 6
5 , and

(II) un→ u strongly in W 1,2
loc (B \ {0}, N ) as n→∞,

there exists a subsequence of {un} (still denoted by {un}) and some nonnegative
integer k such that, for any i =1, . . . , k, there are some points x i

n , positive numbers
r i

n , and a nonconstant harmonic sphere ωi (viewed as a map from R2
∪ {∞}→ N )

such that:

(1) x i
n→ 0 and r i

n→ 0 as n→∞;

(2) lim
n→∞

(
r i

n

r j
n
+

r j
n

r i
n
+
|x i

n − x j
n |

r i
n + r j

n

)
=∞ for any i 6= j ;

(3) ωi is the weak limit or strong limit of un(x i
n + r i

nx) in W 1,2
loc (R

2, N );

(4) Energy identity:

lim
n→∞

E(un, B)= E(u, B)+
k∑

i=1

E(ωi ,R2);

(5) Necklessness: the image u(B)
⋃k

i=1 ω
i (R2) is a connected set.

Lemma 1.6. Suppose τ(u) satisfies(∫
Bt\Bt/2

|τ(u)|2
)1

2

≤ C
(1

t

)a
,

for some 0 < a < 2
3 and any 0 < t < 1. Then τ(u) is bounded in L p(B) for some

p ≥ 6
5 .

Proof. We have∫
B2−k+1\B2−k

|τ(u)|p ≤ C(2−k)2−p
‖τ(u)‖p

L2(B2−k+1\B2−k )

≤ C(2−k)2−p−ap.

Hence ∫
B
|τ(u)|p ≤ C

∞∑
k=1

(2−k)2−p−ap.
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When 0< a < 2
3 , we can choose some p ≥ 6

5 such that 2− p− ap > 0, and so

∞∑
k=1

(2−k)2−p−ap
≤ C,

which implies that τ(u) is bounded in L p(B) for some p ≥ 6
5 . �

Thus Theorem 1.5 holds for sequences {un} satisfying the following conditions.

(I) ‖un‖W 1,2(B) ≤3 and (
∫

Bt\Bt/2
|τ(un)|

2)
1
2 ≤C( 1

t )
a for some 0< a< 2

3 and any
0< t < 1, where C is independent of n and t , and

(II) un→ u strongly in W 1,2
loc (B \ {0}, N ) as n→∞.

With the help of this observation, we find the following theorem.

Theorem 1.7. Let {un} be a sequence of maps from B to N in W 1,2(B, N ) with
tension field τ(un), where B is the unit disk of R2 centered at the origin. If

(I) ‖un‖W 1,2(B) ≤3 and(∫
Bt\Bt/2

|τ(un)|
2
)1

2

≤ C
(1

t

)a

for some 0< a < 1 and any 0< t < 1, where C is independent of n and t , and

(II) un→ u strongly in W 1,2
loc (B \ {0}, N ) as n→∞,

then there exists a subsequence of {un} (still denoted by {un}) and some nonneg-
ative integer k such that, for any i = 1, . . . , k, there are some points x i

n , positive
numbers r i

n , and a nonconstant harmonic sphere ωi (which is viewed as a map from
R2
∪ {∞}→ N ), such that:

(1) x i
n→ 0, r i

n→ 0 as n→∞;

(2) lim
n→∞

(
r i

n

r j
n
+

r j
n

r i
n
+
|x i

n − x j
n |

r i
n + r j

n

)
=∞ for any i 6= j ;

(3) ωi is the weak limit or strong limit of un(x i
n + r i

nx) in W 1,2
loc (R

2, N );

(4) Energy identity: limn→∞ E(un, B)= E(u, B)+
∑k

i=1 E(ωi ,R2);

(5) Neckless: the image u(B)
⋃k

i=1 ω
i (R2) is a connected set.

Remark 1.8. When (∫
Bt\Bt/2

|τ(un)|
2
)1

2

≤ C
(1

t

)a

for some 0< a < 1 and any 0< t < 1, where C is independent of n and t , we can
deduce that τ(un) is uniformly bounded in L p(B) for any p< 2/(1+a), and when
a→ 1, p→ 1. Hence our condition is stronger than the condition that the tension
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field is bounded in L p for some p > 1, and this result suggests that we probably
have a positive answer to the Question on page 367.

Organization of the paper. In Section 2 we quote and prove several important
results. In Section 3 we prove the removable singularity result. Theorem 1.7 is
proved in Section 4. Throughout the paper, the letter C is used to denote positive
constants which vary from line to line. We do not always distinguish between
sequences and their subsequences.

2. The ε-regularity lemma and the Pohozaev inequality

This section contains a well-known small energy regularity lemma for approxi-
mated harmonic maps and a version of the Pohozaev inequality, which will be
important later. We assume that the disk B ⊆ R2 is the unit disk centered at the
origin, which has the standard flat metric.

Lemma 2.1. Suppose that u ∈W 2,2(B, N ) and τ(u)= g ∈ L2(B,RK ). Then there
exists an ε0 > 0 such that if

∫
B |∇u|2 ≤ ε2

0, we have

(2-1) ‖u− ū‖W 2,2(B1/2) ≤ C(‖∇u‖L2(B)+‖g‖L2(B)).

Here ū is the mean value of u over B1/2.

Proof. We can find a complete proof of this lemma in [Ding and Tian 1995]. �

Using the standard elliptic estimates and the embedding theorems, we can derive
from the above lemma that

Corollary 2.2. Under the assumptions of Proposition 1.2, we have

(2-2) OscB2r\Br u ≤ C(‖∇u‖L2(B4r\Br/2)+ r‖g‖L2(B4r\Br/2))

≤ C(‖∇u‖L2(B4r\Br/2)+ r1−a).

Lemma 2.3 (Pohozaev inequality). Under the assumptions of Proposition 1.2, for
0< t2 < t1 < 1,

(2-3)
∫
∂(Bt1\Bt2 )

r
(∣∣∣∂u
∂r

∣∣∣2− 1
2 |∇u|2

)
≤ t1‖∇u‖L2(Bt1\Bt2 )

‖g‖L2(Bt1\Bt2 )
.

Proof. Multiplying both sides of the equation τ(u)= g by r(∂u/∂r), we get∫
Bt1\Bt2

r ∂u
∂r
4 u =

∫
Bt1\Bt2

r ∂u
∂r

g.

Integrating by parts, we get∫
Bt1\Bt2

r ∂u
∂r
4 u dx =

∫
∂(Bt1\Bt2 )

r
∣∣∣∂u
∂r

∣∣∣2− ∫
Bt1\Bt2

∇

(
r ∂u
∂r

)
∇u dx
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and∫
Bt1\Bt2

∇

(
r ∂u
∂r

)
∇u dx =

∫
Bt1\Bt2

∇

(
xk ∂u
∂xk

)
∇u dx

=

∫
Bt1\Bt2

|∇u|2+
∫ t1

t2

∫ 2π

0

r
2
∂

∂r
|∇u|2r dθ dr

=

∫
Bt1\Bt2

|∇u|2+ 1
2

∫
∂(Bt1\Bt2 )

|∇u|2r −
∫

Bt1\Bt2

|∇u|2

=
1
2

∫
∂(Bt1\Bt2 )

|∇u|2r.

This implies the conclusion of the lemma. �

Corollary 2.4. Under the assumptions of Proposition 1.2, we have

(2-4) ∂

∂t

∫
Bt\Bt/2

∣∣∣∂u
∂r

∣∣∣2− 1
2 |∇u|2 ≤ C‖∇u‖L2(Bt\Bt/2)t

−a.

Proof. In the previous lemma, let t1 = t and t2 = t/2. Then

∂

∂t

∫
Bt\Bt/2

∣∣∣∂u
∂r

∣∣∣2− 1
2 |∇u|2 =

∫
∂Bt

(∣∣∣∂u
∂r

∣∣∣2− 1
2 |∇u|2

)
−

1
2

∫
∂Bt/2

(∣∣∣∂u
∂r

∣∣∣2− 1
2 |∇u|2

)
≤ ‖g‖L2(Bt\Bt/2)‖∇u‖L2(Bt\Bt/2)

≤ C‖∇u‖L2(Bt\Bt/2)t
−a. �

Corollary 2.5. Under the assumptions of Proposition 1.2,

(2-5)
∫

Bt\Bt/2

∣∣∣∂u
∂r

∣∣∣2− 1
2 |∇u|2 ≤ C‖∇u‖L2(Bt )t

1−a.

Proof. Integrating both sides of the inequality (2-4) from 0 to t and noting that
‖∇u‖L2(Bs\Bs/2) ≤ ‖∇u‖L2(Bt ) for any s ≤ t , we get (2-5). �

3. Removal of singularities

We now discuss the removal of singularities of a class of approximated harmonic
maps from the unit disk of R2 to a closed Riemannian manifold N .

Lemma 3.1. Assume that u satisfies the assumptions of Proposition 1.2. Then
there are constants λ > 0 and C > 0 such that

(3-1)
∫

Br

|∇u|2 ≤ Crλ

for r small enough.
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Proof. Because we only need to prove the lemma for r small, we can assume that
E(u, B) < ε0. Let u∗(r) : (0, 1)→ RK be a curve defined by

u∗(r)= 1
2π

∫ 2π

0
u(r, θ) dθ.

Then
∂u∗

∂r
=

1
2π

∫ 2π

0

∂u
∂r

dθ.

On the one hand, we have∫
B2−k t\B2−k−1t

∇u∇(u− u∗)≥
∫

B2−k t\B2−k−1t

(
|∇u|2−

∣∣∣∂u
∂r

∣∣∣2)
≥

1
2

∫
B2−k t\B2−k−1t

|∇u|2−C(2−k t)1−a,

where the second inequality makes use of (2-5).
Summing k from 0 to infinity, we get∫

Bt

∇u∇(u− u∗)≥ 1
2

∫
Bt

|∇u|2−Ct1−a.

On the other hand,∫
B2−k t\B2−k−1t

∇u∇(u− u∗)

=−

∫
B2−k t\B2−k−1t

(u− u∗)1u+
∫
∂(B2−k t\B2−k−1t )

∂u
∂r
(u− u∗)

=−

∫
B2−k t\B2−k−1t

(u− u∗)(τ (u)− A(u)(∇u,∇u))+
∫
∂(B2−k t\B2−k−1t )

∂u
∂r
(u− u∗).

Hence, by summing k from 0 to infinity, we get∫
Bt

∇u∇(u− u∗)

≤

∞∑
k=0

‖u− u∗‖L∞(B2−k t\B2−k−1t )

(
‖A‖L∞

∫
B2−k t\B2−k−1t

|∇u|2+C(2−k t)1−a
)

+

∫
∂Bt

∂u
∂r
(u− u∗)

≤ ε

∫
Bt

|∇u|2+Ct1−a
+

∫
∂Bt

∂u
∂r
(u− u∗).

Note that we used Corollary 2.2 and ensured that ε is small by letting t be small.
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Note that∣∣∣∣∫
∂Bt

∂u
∂r
(u− u∗)

∣∣∣∣≤ (∫
∂Bt

∣∣∣∂u
∂r

∣∣∣2)1
2
(∫

∂Bt

|u− u∗|2
)1

2

≤

(∫ 2π

0
t2
∣∣∣∂u
∂r

∣∣∣2dθ
)1

2
(∫ 2π

0

∣∣∣∂u
∂θ

∣∣∣2dθ
)1

2

≤
1
2

∫ 2π

0

(∣∣∣∂u
∂θ

∣∣∣2+ t2
∣∣∣∂u
∂r

∣∣∣2) dθ = t
2

∫
∂Bt

|∇u|2.

Combining the two sides of the inequalities and letting ε be small (we can do this
by letting t be small), we conclude that there is a constant λ ∈ (0, 1) such that

λ

∫
Bt

|∇u|2 ≤ t
∫
∂Bt

|∇u|2+Ct1−a.

Set f (t)=
∫

Bt
|∇u|2. Then we get the ordinary differential inequality(

f (t)
tλ

)′
≥−Ct−λ−a.

Letting λ be small enough that λ+ a < 1, we get

f (t)=
∫

Bt

|∇u|2 ≤ Ctλ

for t small enough. �

Proof of Proposition 1.2. Let rk = 2−k and vk(x)= u(rk x). Then(∫
B2\B1

|∇vk |
2s
) 1

2s

≤ C‖vk − v̄k‖W 2,2(B2\B1)

≤

(∫
B4\B1/2

|∇vk |
2
)1

2

+C
(∫

B4rk\Brk /2

r2
k |τ |

2
)1

2

.

Therefore we deduce that∫
B2\B1

|∇vk |
2s
≤ C

(∫
B4\B1/2

|∇vk |
2
)s

+C
(∫

B4rk\Brk /2

r2
k |τ |

2
)s

≤ C
(∫

B4\B1/2

|∇vk |
2
)s

+Cr2s(1−a)
k .

Note that when k is large enough,∫
B4rk\Brk /2

|∇u|2 ≤ 1.
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Hence

r2s−2
k

∫
B2rk\Brk

|∇u|2s
≤ C

(∫
B4rk\Brk /2

|∇u|2
)s

+Cr2s(1−a)
k

≤ C
∫

B4rk\Brk /2

|∇u|2+Cr2s(1−a)
k .

This implies that ∫
B2rk\Brk

|∇u|2s
≤ Cr2−2s

k rλk +Cr2−2sa
k .

Now choose s > 1 such that 2s−2< λ/2 and 2−2sa > 0. There exists a positive
integer k0 such that when k ≥ k0,∫

B2−k+1\B2−k

|∇u|2s
≤ C(2(−λ/2)k + 2−k(2−2sa)).

Therefore
∫

Br
|∇u|2s

≤C
∞∑

k=k0

(2(−λ/2)k+2−k(2−2sa))≤C for any r ≤ 2−k0+1, which
completes the proof. �

Proof of Theorem 1.3. Note that∫
B2−k\B2−k−1

|τ(u)|p ≤ C(2−k)2−p
(∫

B2−k\B2−k−1

|τ(u)|2
)p/2

≤ C(2−k)2−p−pa.

Summing over k from 0 to infinity, we deduce that
∫

B |τ(u)|
p
≤C for p<2/(1+a).

Recall that we have proved that∇u ∈ L2s(B) for some s>1. Hence, by standard
elliptic estimates and the bootstrap argument, we can deduce that

u ∈
⋂

1<p< 2
1+a

W 2,p(B, N ). �

4. The bubble tree structure

Energy identity. Assume that {un} is a uniformly bounded sequence in W 1,2(B, N )
and that there exists a constant C , independent of n and t , such that(∫

Bt\Bt/2

|τ(un)|
2
)1

2

≤ C
(1

t

)a

for some 0 < a < 1 and any 0 < t < 1. In this section, we will prove the energy
identity for this sequence. For convenience, we will assume that there is only
one bubble ω, which is the strong limit of un(rn.) in W 1,2

loc (R
2, N ). Under this

assumption we can deduce the following by a standard blowup argument.
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Lemma 4.1. For any ε > 0, there exist R and δ such that

(4-1)
∫

B2λ\Bλ
|∇un|

2
≤ ε2 for any λ ∈

(
Rrn

2
, 2δ

)
.

Proof of the energy identity. For a given R > 0, we have

lim
n→∞

∫
B
|∇un|

2
= lim

n→∞

∫
B\Bδ
|∇un|

2
+ lim

n→∞

∫
Bδ\BRrn

|∇un|
2
+ lim

n→∞

∫
BRrn

|∇un|
2,

lim
δ→0

lim
n→∞

∫
B\Bδ
|∇un|

2
=

∫
B
|∇u|2, and lim

R→∞
lim

n→∞

∫
BRrn

|∇un|
2
=

∫
R2
|∇ω|2,

Hence, to prove the energy identity, we only need to prove that

(4-2) lim
R→∞

lim
δ→0

lim
n→∞

∫
Bδ\BRrn

|∇un|
2
= 0.

The proof is a little similar to the proof in the previous section. We assume that
δ = 2mn Rrn , where mn is a positive integer.

On the one hand, we have∫
B2k Rrn

\B2k−1 Rrn

∇un∇(un − u∗n)≥
∫

B2k Rrn
\B2k−1 Rrn

(
|∇un|

2
−

∣∣∣∣∂un

∂r

∣∣∣∣2)
≥

1
2

∫
B2k Rrn

\B2k−1 Rrn

|∇un|
2
−C(2k Rrn)

1−a.

This implies that∫
Bδ\BRrn

∇un∇(un − u∗n)≥
1
2

∫
Bδ\BRrn

|∇un|
2
−Cδ1−a.

On the other hand, we have∫
B2k Rrn

\B2k−1 Rrn

∇un∇(un − u∗n)

=−

∫
B2k Rrn

\B2k−1 Rrn

(un − u∗n)1un +

∫
∂(B2k Rrn

\B2k−1 Rrn
)

∂un

∂r
(un − u∗n)

=−

∫
B2k Rrn

\B2k−1 Rrn

(un − u∗n)(τ (un)− A(un)(∇un,∇un))

+

∫
∂(B2k Rrn

\B2k−1 Rrn
)

∂un

∂r
(un − u∗n).
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Summing from 1 to mn , we deduce that∫
Bδ\BRrn

∇un∇(un − u∗n)

≤

mn∑
k=1

‖un − u∗n‖L∞(B2k Rrn
\B2k−1 Rrn

)

(
‖A‖L∞

∫
B2k Rrn

\B2k−1 Rrn

|∇un|
2
+C(2k Rrn)

1−a
)

+

∫
∂(Bδ\BRrn )

∂un

∂r
(un − u∗n)

≤ ε

∫
Bδ\BRrn

|∇un|
2
+Cδ1−a

+

∫
∂(Bδ\BRrn )

∂un

∂r
(un − u∗n).

Comparing the two sides, we get

(1− 2ε)
∫

Bδ\BRrn

|∇un|
2
≤ Cδ1−a

+ 2
∫
∂(Bδ\BRrn )

∂un

∂r
(un − u∗n).

As for the boundary terms, we have∫
∂Bδ

∂un

∂r
(un − u∗n)≤

(∫
∂Bδ

∣∣∣∣∂un

∂r

∣∣∣∣2)1
2
(∫

∂Bδ
|un − u∗n|

2
)1

2

≤

(∫ 2π

0
δ2
∣∣∣∣∂un

∂r
dθ
∣∣∣∣2)1

2
(∫ 2π

0

∣∣∣∣∂un

∂θ

∣∣∣∣2dθ
)1

2

≤
1
2

∫ 2π

0
δ2
∣∣∣∣∂un

∂r
dθ
∣∣∣∣2+ ∣∣∣∣∂un

∂θ

∣∣∣∣2dθ = δ
2

2

∫ 2π

0
|∇un|

2dθ.

Now, by the trace embedding theorem, we have∫ 2π

0
|∇un( · , δ)|

2δdθ =
∫
∂Bδ
|∇un( · , δ)|

2d Sδ

≤ Cδ‖∇un‖
2
W 1,2(B3δ/2\Bδ/2)

≤ Cδ‖un − ūn‖
2
W 2,2(B3δ/2\Bδ/2)

≤ Cδ
(1
δ
‖∇un‖

2
L2(B2δ)

+‖τ(un)‖
2
L2(B2δ\Bδ/4)

)
≤ Cδ1−2a,

for δ small. From this we deduce that∫
∂Bδ

∂un

∂r
(un − u∗n)≤ Cδ2(1−a).

Similarly we get ∫
∂BRrn

∂un

∂r
(un − u∗n)≤ C(Rrn)

2(1−a),
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for n big enough. Therefore

(1− 2ε)
∫

Bδ\BRrn

|∇un|
2
≤ Cδ1−a

+Cδ2(1−a)
+C(Rrn)

2(1−a),

which clearly implies (4-2), and we are done. �

Necklessness. In this part we prove that there is no neck between the base map u
and the bubble ω, that is, the C0 compactness of the sequence modulo bubbles.

Proof. We only need to prove that

(4-3) lim
R→∞

lim
δ→0

lim
n→∞

OscBδ\BRrn
un = 0.

Again we assume that δ= 2mn Rrn and let Q(t)= B2t+t0 Rrn\ B2t0−t Rrn . Similarly
to the proof of the previous part, we can get

(1− 2ε)
∫

Q(k)
|∇un|

2

≤ 2k+t0 Rrn

∫
∂B

2k+t0 Rrn

|∇un|
2
+ 2t0−k Rrn

∫
∂B

2t0−k Rrn

|∇un|
2
+C(2k+t0 Rrn)

1−a.

Set f (t)=
∫

Q(t) |∇un|
2. Then we have

(1− 2ε) f (t)≤ (1− 2ε) f (k+ 1)≤ 1
log 2

f ′(k+ 1)+C(2k+t0 Rrn)
1−a

for k ≤ t ≤ k+ 1.
Note that

f ′(k+ 1)− f ′(t)

=

∫
∂(B

2k+1+t0 Rrn
\B2t+t0 Rrn

)

∂un

∂r
(un − u∗n)+

∫
∂(B2t0−t Rrn

\B
2t0−k−1 Rrn

)

∂un

∂r
(un − u∗n)

≤ C(2t+t0 Rrn)
2(1−a).

Therefore

(4-4) (1− 2ε) f (t)≤ 1
log 2

f ′(t)+C(2t+t0 Rrn)
1−a.

It follows that

(2−(1−2ε)t f (t))′ = 2−(1−2ε)t f ′(t)− (1− 2ε)2−(1−2ε)t f (t) log 2

≥−C2(1−a−(1−2ε))t(2t0 Rrn)
1−a.
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Integrating from 1 to L , we get

2−(1−2ε)L f (L)− 2−(1−2ε) f (1)≥−C
∫ L

1
2(1−a−(1−2ε))t(2t0 Rrn)

1−a

=−C 2(1−a−(1−2ε))t

log 2(1−a−(1−2ε))

∣∣∣L
1
(2t0 Rrn)

1−a

≥−C(2t0 Rrn)
1−a.

Therefore we have

(4-5) f (1)≤ f (L)2−(1−2ε)(L−1)
+C(2t0 Rrn)

1−a.

Now let t0= i and Di = B2i+1 Rrn\B2i Rrn . Then we have f (1)=
∫

Di∪Di−1
|∇un|

2,
and the inequality holds true for L satisfying

Q(L)⊆ Bδ\ BRrn = B2mn Rrn \ BRrn .

In other words, L should satisfy i − L ≥ 0 and i + L ≤ Mn .

(I) If i ≤ 1
2 mn , let L = i . Then

f (1)=
∫

Di∪Di−1

|∇un|
2
≤ C E2(un, Bδ\ BRrn )2

−(1−2ε)i
+C(2i Rrn)

1−a.

(II) If i > 1
2 mn , let L = mn − i . Then

f (1)=
∫

Di∪Di−1

|∇un|
2
≤ C E2(un, Bδ\ BRrn )2

−(1−2ε)(mn−i)
+C(2i Rrn)

1−a.

Hence we have
mn∑
i=1

E(un, Di )≤ C E(un, Bδ\BRrn )

( ∑
i≤ 1

2 mn

2−i(1−2ε)/2
+

∑
i> 1

2 mn

2−(mn−i)1−2ε/(2)
)

+C
mn∑
i=1

(2i Rrn)
(1−a)/2

≤ C E(un, Bδ\BRrn )+Cδ(1−a)/2.

Thus we get

OscBδ\BRrn
un ≤ C

mn∑
i=1

(E(un, Di )+ (2i Rrn)
1−a)

≤ C E(un, Bδ\ BRrn )+Cδ(1−a)/2.

Clearly this implies (4-3), as needed. �
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QUOTIENTS BY ACTIONS OF THE DERIVED GROUP OF A
MAXIMAL UNIPOTENT SUBGROUP

DMITRI I. PANYUSHEV

Let U be a maximal unipotent subgroup of a connected semisimple group G
and U ′ the derived group of U . If X is an affine G-variety, then the algebra
of U ′-invariants, k[X]U ′ , is finitely generated and the quotient morphism
π : X → X//U ′ = Spec k[X]U ′ is well-defined. In this article, we study
properties of such quotient morphisms, e.g. the property that all the fibres
of π are equidimensional. We also establish an analogue of the Hilbert-
Mumford criterion for the null-cones with respect to U ′-invariants.

Introduction

The ground field k is algebraically closed and of characteristic zero. Let G be a
semisimple algebraic group with Lie algebra g. Fix a maximal unipotent subgroup
U ⊂G and a maximal torus T of the Borel subgroup B= NG(U ). Set U ′= (U,U ).
Let X be an irreducible affine variety acted upon by G. The algebra of covariants
(or, U -invariants) k[X ]U is a classical and important object in Invariant Theory.
It is known that k[X ]U is finitely generated and has many other useful properties
and applications, see e.g. [9, Ch. 3, § 3]. For a factorial conical variety X with
rational singularities, there are interesting relations between the Poincaré series
of the graded algebras k[X ] and k[X ]U , see [3], [12, Ch. 5]. Similar results for
U ′-invariants are obtained in [14].

A surprising observation that stems from [14] is that, to a great extent, the theory
of U ′-invariants is parallel to that of U -invariants. In this article, we elaborate on
further aspects of this parallelism. Our main object is the quotient πX,U ′ : X →
X//U ′=Spec(k[X ]U

′

). Specifically, we are interested in the property that X//U ′ is
an affine space and/or the morphism πX,U ′ is equidimensional (i.e., all the fibres of
πX,U ′ have the same dimension). Our ultimate goal is to prove for U ′ an analogue
of the Hilbert–Mumford criterion and to provide a classification of the irreducible
representations V of simple algebraic groups G such that k[V ] is a free k[V ]U

′

-
module. We also develop some theory for U ′-actions on the affine prehomogeneous

At the author’s request, this article did not undergo any editorial changes.
MSC2010: 14L30, 17B20, 22E46.
Keywords: semisimple algebraic group, quotient, equidimensional morphism, invariant.
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horospherical varieties of G (S-varieties in terminology of [22]). As U ′ = {1} for
G = SL2, one sometimes has to assume that G has no simple factors SL2.

If X has a G-fixed point, say x0, then the fibre of πX,U ′ containing x0 is called
the null-cone, and we denote it by NU ′(X). (The null-cone NH (X) can be defined
for any subgroup H ⊂G such that k[X ]H is finitely generated.) If G has no simple
factors SL2 nor SL3, then the canonical affine model of k[G/U ′] constructed in
[14, Sect. 2] consists of unstable points in the sense of GIT, and using this property
we give a characterisation of NU ′(X) in terms of one-parameter subgroups of T .
We call it the Hilbert–Mumford criterion for U ′. This is inspired by similar results
of Brion for U -invariants [3, Sect. IV]. It is easily seen that NU ′(X) ⊂ NG(X).
Therefore G·NU ′(X) ⊂ NG(X). Using the Hilbert–Mumford criterion for U ′ we
prove that G·NU ′(X) = NG(X) whenever G has no simple factors SLn . This
should be compared with the result of Brion [3] that G·NU (X) = NG(X) for all
G.

The S-varieties are in one-to-one correspondence with the finitely generated
monoids S in the monoid X+ of dominant weights, and the S-variety correspond-
ing to S ⊂ X+ is denoted by C(S). We give exhaustive answers to three natural
problems related to the actions of U ′ on S-varieties. A set of fundamental weights
M is said to be sparse if the corresponding nodes of the Dynkin diagram are disjoint
and, moreover, there does not exist any node (not in M) that is adjacent to two nodes
from M . Our results are:

a) k[C(S)]U
′

is a polynomial algebra if and only if the monoid S is generated
by a set of fundamental weights;

b) k[C(S)]U
′

is a polynomial algebra and πC(S),U ′ is equidimensional if and
only if the monoid S is generated by a sparse set of fundamental weights;

c) the morphism πC(S),U ′ is equidimensional if and only if the convex poly-
hedral cone R+S is generated by a sparse set of fundamental weights. (In
particular, the cone R+S is simplicial.)

Part a) is rather easy, while parts b) and c) require technical details related to
the Bruhat decomposition of the flag variety associated with C(S). If S has one
generator, say λ, and R(λ) is a simple G-module with highest weight λ, then C(S)

is the closure of the orbit of highest weight vectors in the dual G-module R(λ)∗.
Such a variety is denoted by C(λ). As in [22], we say that C(λ) is an HV-variety.
Our results for HV-varieties are more complete. For instance, we compute the
homological dimension of C(λ)//U ′ and prove that NU ′(C(λ)) is always of codi-
mension 2 in C(λ). The criterion of part b) is then transformed into a sufficient
condition applicable to a wider class of affine varieties:

Theorem 0.1. Suppose that G acts on an irreducible affine variety X such that
(1) k[X ]U is a polynomial algebra and (2) the weights of free generators are
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fundamental, pairwise distinct, and form a sparse set. Then k[X ]U
′

is also poly-
nomial, of Krull dimension 2 dim X//U, and the quotient πX,U ′ : X → X//U ′ is
equidimensional.

This exploits the theory of “contractions of actions” of G [15] and can be re-
garded as a continuation of our work in [13, Sect. 5], where the equidimensionality
problem was considered for quotient morphism by U . For instance, under the
hypotheses of Theorem 0.1, the morphism πX,U is also equidimensional.

In [14], we obtained a classification of the irreducible representations of simple
algebraic groups such that k[V ]U

′

is a polynomial algebra. Now, using Theo-
rem 0.1 and some ad hoc arguments, we extract from that list the representations
having the additional property that πV,U ′ is equidimensional. The resulting list is
precisely the list of representations such that k[V ] is a free k[V ]U

′

-module (such
G-representations are said to be U ′-cofree).

This work is organized as follows. Section 1 contains auxiliary results on S-
varieties [22], U ′-invariants [14], and equidimensional morphisms. In Section 2,
we consider U ′-actions on the HV-varieties. Section 3 is devoted to the U ′-actions
on arbitrary S-varieties. Here we prove results of items a) and b) above (Theo-
rems 3.2, 3.4, and 3.7). In Section 4, we prove the general equidimensionality
criterion for S-varieties (item c)). The Hilbert–Mumford criterion for U ′ and re-
lations between two null-cones are discussed in Section 5. In Section 6, we prove
Theorem 0.1 and obtain the classification of U ′-cofree representations of G.

Notation. If an algebraic group Q acts regularly on an irreducible affine variety
X , then X is called a Q-variety and
• Qx = {q ∈ Q | q·x = x} is the stabiliser of x ∈ X ;
• k[X ]Q is the algebra of Q-invariant polynomial functions on X . If k[X ]Q is

finitely generated, then X//Q := Spec (k[X ]Q), and the quotient morphism πQ =

πX,Q : X→ X//Q is the mapping associated with the embedding k[X ]Q ↪→ k[X ].
Throughout, G is a semisimple simply-connected algebraic group, W = NG(T )/T
is the Weyl group, B = T U , and r = rk G. Then

– 1 is the root system of (G, T ), 5 = {α1, . . . , αr } ⊂ 1 are the simple roots
corresponding to U , and $1, . . . ,$r are the corresponding fundamental weights.

– The character group of T is denoted by X. All roots and weights are regarded
as elements of the r -dimensional real vector space XR := X⊗R.

– ( , ) is a W -invariant symmetric non-degenerate bilinear form on XR and
si ∈ W is the reflection corresponding to αi . For any λ ∈ X+, let λ∗ denote the
highest weight of the dual G-module, i.e., R(λ)∗ ' R(λ∗). The µ-weight space of
R(λ) is denoted by R(λ)µ.

We refer to [21] for standard results on root systems and representations of
semisimple algebraic groups.
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1. Recollections

1.1. Horospherical varieties with a dense orbit. A G-variety X is said to be horo-
spherical if the stabiliser of any x ∈ X contains a maximal unipotent subgroup of
G. Following [22], affine horospherical varieties with a dense G-orbit are called
S-varieties. Let S be a finitely generated monoid in X+ and {λ1, . . . , λm} the
minimal set of generators of S. Let v−λi ∈ R(λ∗i ) be a lowest weight vector. Set
v = (v−λ1, . . . , v−λm ) and consider

C(S) := G·v ⊂ R(λ∗1)⊕ · · ·⊕R(λ∗m).

Clearly, C(S) is an S-variety; conversely, each S-variety is obtained in this way
[22]. Write 〈S〉 for the linear span of S in XR and set rk S= dimR〈S〉. Let LS be
the Levi subgroup such that T ⊂ LS and the roots of LS are those orthogonal to
λ1, . . . , λm . Then PS = LSNS is the standard parabolic subgroup, with unipotent
radical NS ⊂U .

Theorem 1.1 ([22]). The affine variety C(S) has the following properties:

1. The algebra k[C(S)] is a multiplicity free G-module. More precisely,
k[C(S)] =

⊕
λ∈S R(λ) and this decomposition is a multigrading, i.e.,

R(λ)R(µ)= R(λ+µ);

2. The G-orbits in C(S) are in a one-to-one correspondence with the faces of
the convex polyhedral cone in XR generated by S;

3. C(S) is normal if and only if ZS∩Q+S=S;

4. dim C(S)= dim G/PS+ rk S.

If S = Nλ, then we write C(λ), Pλ, . . . in place of C(Nλ), PNλ,. . . . The variety
C(λ) is the closure of the G-orbit of highest weight vectors in R(λ∗). Such va-
rieties are called HV-varieties; they are always normal. Recall that a G-variety
X is spherical, if B has a dense orbit in X . Since B·v is dense in C(S), all
S-varieties are spherical. By [15, Theorem 10]), a normal spherical variety has
rational singularities and therefore is Cohen-Macaulay. In particular, if S is a free
monoid, then C(S) has rational singularities.

1.2. Generalities on U ′-invariants. We recall some results of [14] and thereby
fix relevant notation. We regard X as a poset with respect to the root order “4”.
This means that ν 4 µ if µ− ν is a non-negative integral linear combination of
simple roots. For any λ ∈ X+, we fix a simple G-module R(λ) and write P(λ) for
the set of T -weights of R(λ). Then (P(λ),4) is a finite poset and λ is its unique
maximal element. Let ei ∈ u = Lie U be a root vector corresponding to αi ∈ 5.
Then (e1, . . . , er ) is a basis for Lie (U/U ′).
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The subspace of U ′-invariants in R(λ) has a nice description. Since R(λ)U
′

is
acted upon by B/U ′, it is T -stable. Hence R(λ)U

′

=
⊕

µ∈Iλ
R(λ)U

′

µ , where Iλ is a
subset of P(λ).

Theorem 1.2 ([14, Theorem 1.6]). Suppose that λ=
∑r

i=1 ai$i ∈ X+. Then
(1) Iλ = {λ−

∑r
i=1 biαi | 06 bi 6 ai ∀i};

(2) dim R(λ)U
′

µ = 1 for all µ ∈ Iλ, i.e., R(λ)U
′

is a multiplicity free T -module;
(3) A nonzero U ′-invariant of weight λ−

∑r
i=1 aiαi , say f , is a cyclic vector

of the U/U ′-module R(λ)U
′

. That is, the vectors {(
∏r

i=1 ebi
i )( f ) | 06 bi 6 ai ∀i}

form a basis for R(λ)U
′

.

It follows from (1) and (2) that dim R(λ)U
′

=
∏r

i=1(ai + 1). In particu-
lar, dim R($i )

U ′
= 2. The weight spaces R($i )$i and R($i )$i−αi are one-

dimensional, and we fix corresponding nonzero weight vectors fi , f̃i such that
ei ( f̃i )= fi . That is, f̃i is a cyclic vector of R($i )

U ′ .
The biggest S-variety corresponds to the monoid S= X+. Here

k[G/U ] = k[C(X+)] =
⊕
λ∈X+

R(λ),

and the multiplicative structure of k[C(X+)] together with Theorem 1.2 imply

Theorem 1.3 (cf. [14, Theorem 1.8]). The algebra of U ′-invariants k[C(X+)]U
′

is
freely generated by f1, f̃1, . . . , fr , f̃r . Therefore, any basis for the 2r-dimensional
vector space

⊕r
i=1 R($i )

U ′ yields a free generating system for k[C(X+)]U
′

.

The algebra k[G/U ] is sometimes called the flag algebra for G, because it can be
realized as the multi-homogeneous coordinate ring of the flag variety G/B. More
generally, we have

Theorem 1.4. If S is generated by some fundamental weights, say {$i | i ∈ M},
then any basis for

⊕
i∈M R($i )

U ′ yields a free generating system for k[C(S)]U
′

.

Proof. As in the proof of [14, Theorem 1.8], one observes that, for λ=
∑

i∈M ai$i ,
the monomials {

∏
i∈M f bi

i f̃ ai−bi
i | 0 6 bi 6 ai } form a basis for the space R(λ)U

′

.
[Another way is to consider the natural embedding C(S) ↪→ C(X+) [22] and the
surjective homomorphism k[C(X+)]

U ′
→ k[C(S)]U

′

.] �

Given λ ∈ X+, we always consider a basis for R(λ)U
′

generated by a cyclic
vector and elements ei ∈ gαi , i.e., a basis { fµ ∈ R(λ)µ | µ ∈ Iλ} such that

ei ( fµ)=

{
fµ+αi , µ+αi ∈ Iλ,

0, µ+αi 6∈ Iλ.

However, for the fundamental G-modules R($i ), we write fi in place of f$i and
f̃i in place of f$i−αi .
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1.3. Equidimensional morphisms and conical varieties. Let π : X→Y be a dom-
inant morphism of irreducible algebraic varieties. We say that π is equidimensional
at y ∈ Y if all irreducible components of π−1(y) are of dimension dim X−dim Y .
Then π is said to be equidimensional if it is equidimensional at any y ∈ π(X).
By a result of Chevalley [6, Ch. 5, n.5, Prop. 3], if y = π(x) is a normal point,
π is equidimensional at y, and � ⊂ X is a neighbourhood of x , then π(�) is
a neighbourhood of y. Consequently, an equidimensional morphism to a normal
variety is open.

An affine variety X is said to be conical if k[X ] is N-graded, k[X ] =⊕
n>0 k[X ]n , and k[X ]0=k. Then the point x0 corresponding to the maximal ideal⊕
n>1 k[X ]n is called the vertex. Geometrically, this means that X is equipped with

an action of the multiplicative group k
× such that {x0} is the only closed k

×-orbit
in X .

Lemma 1.5. Suppose that both X and Y are conical, and π : X → Y is dominant
and k×-equivariant. (Then π(x0)=: y0 is the vertex in Y .) If Y is normal and π is
equidimensional at y0, then π is onto and equidimensional.

This readily follows from the above-mentioned result of Chevalley and standard
inequalities for the dimension of fibres.

Remark 1.6. As S lies in an open half-space of XR, taking a suitable N-
specialisation of the multi-grading of k[C(S)] shows that C(S) is conical and the
origin in R(λ∗1)⊕ · · ·⊕R(λ∗m) is its vertex. This implies that C(S)//U ′ is conical,
too. We will apply the above lemma to the study of equidimensional quotient maps
π : C(S)→ C(S)//U ′. It is important that such π appears to be onto.

The idea of applying Chevalley’s result to the study of equidimensional quotients
(by U ) is due to Vinberg and Gindikin [20].

2. Actions of U ′ on HV-varieties

Let C(λ) = G·v−λ ⊂ R(λ∗) be an HV-variety. The algebra k[C(λ)] is N-graded
and its component of degree n is R(nλ). Since C(λ) is normal, C(λ)//U ′ is normal,
too.

Theorem 2.1. C(λ)//U ′ is an affine space if and only if λ is a fundamental weight.

Proof. 1) Suppose that λ is not fundamental, i.e., λ= · · ·+a$i +b$ j +· · · with
a, b > 1.
• If i 6= j , then R(λ)U

′

contains linearly independent vectors fλ, fλ−αi , fλ−α j ,

fλ−αi−α j that occur in any minimal generating system, since k[C(λ)]1 ' R(λ).
Using the relations ei ( fλ−αi−α j )= fλ−α j , etc., one easily verifies that

p = fλ fλ−αi−α j − fλ−αi fλ−α j
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is a U -invariant function on C(λ), of degree 2. The only highest weight in degree 2
is 2λ. Since the weight of p is not 2λ, we must have p≡ 0, and this is a non-trivial
relation.
• If i = j , then the coefficient of $i is at least 2 and we consider vectors fλ,

fλ−αi , fλ−2αi ∈ R(λ)U
′

. Then p̃ = 2 fλ fλ−2αi − f 2
λ−αi

is a U -invariant function of
degree 2 and weight 2(λ−αi ), and this yields the relation p̃ = 0 in k[C(λ)]U

′

.
2) If λ=$i , then dim R($i )

U ′
= 2 and C($i )//U ′ ' A2 by Theorem 1.4. �

For an affine variety X , let edim X denote the minimal number of generators of
k[X ] and hd(X) the homological dimension of k[X ]. If k[X ] is a graded Cohen-
Macaulay algebra, then hd(X)= edim X − dim X [17, Ch. IV].

Theorem 2.2. If λ=
∑r

i=1 ai$i ∈ X+, then

(i) dim C(λ)//U ′ = 1+ #{ j | a j 6= 0};

(ii) the graded algebra k[C(λ)]U
′

is generated by functions of degree one, i.e., by
the space R(λ)U

′

, and edim C(λ)//U ′ =
∏r

i=1(ai + 1).

Proof. (i) Recall that Pλ= LλNλ is the standard parabolic subgroup associated with
C(λ) and the simple roots of Lλ are those orthogonal to λ. Set k = #{ j | a j 6= 0}.
Then srk Lλ := rk (Lλ, Lλ)= rk G−k and dim C(λ)= dim Nλ+1. Since U ·(kv−λ)
is dense in C(λ), U (Lλ) :=U ∩Lλ is a generic stabiliser for the U -action on C(λ).
By [14, Lemma 2.5], the minimal dimension of stabilisers for the U ′-action on
C(λ) equals dim(U (Lλ)∩U ′)= dim U (Lλ)− srk Lλ. Consequently,

dim C(λ)//U ′ = dim C(λ)− dim U ′+ min
x∈C(λ)

dim U ′x =

= dim Nλ+1−(dim U−rk G)+(dim U (Lλ)−srk Lλ)= 1+rk G−srk Lλ= 1+k.

(ii) By Theorem 1.2, dim R(λ)U
′

=
∏r

i=1(ai + 1), which shows that
edim C(λ)//U ′>

∏r
i=1(ai+1). Therefore, it suffices to prove that the graded alge-

bra k[C(λ)]U
′

is generated by elements of degree 1. The weights of U ′-invariants
of degree n are

Inλ = {nλ−
∑

i

biαi | bi = 0, 1, . . . , nai }.

In particular,
Iλ = {λ−

∑
i

biαi | bi = 0, 1, . . . , ai }.

Obviously, each element of Inλ is a sum of n elements of Iλ. Since R(nλ)U
′

is
a multiplicity free T -module, this space is spanned by products of n elements of
R(λ)U

′

. �
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Corollary 2.3. We have hd(C(λ)//U ′)=
∏r

i=1(1+ai )−1−#{ j |a j 6=0}. Therefore,
• hd(C(λ)//U ′)= 0 if and only if λ is fundamental;
• hd(C(λ)//U ′)= 1 if and only if λ=$i +$ j or 2$i .

Proof. As it was mentioned above, the HV-varieties have rational singularities. In
view of [14, Theorem 2.3], C(λ)//U ′ also has rational singularities and in particular
is Cohen-Macaulay. Hence hd(C(λ)//U ′)= edim C(λ)//U ′− dim C(λ)//U ′. �

Remark 2.4. 1) As above, k = rk G − srk Lλ and hence dim C(λ)//U ′ = k + 1.
Another consequence of Theorems 1.2 and 2.2 is that C(λ)//U ′ is a toric va-
riety with respect to k

×
× T , where k

× acts on R(λ∗) (and hence on C(λ))
by homotheties. Note that the T -action on C(λ)//U ′ has a non-effectivity ker-
nel of dimension rk G − k. The quotient morphism πC(λ),U ′ has the follow-
ing description. Let ann(R(λ)U

′

) be the annihilator of R(λ)U
′

in R(λ∗). Then
(R(λ)U

′

)∗ = R(λ∗)/ann(R(λ)U
′

) and πC(λ),U ′ is the restriction to C(λ) of the pro-
jection R(λ∗) → (R(λ)U

′

)∗. Thus, C(λ)//U ′ is embedded in the vector space
(R(λ)U

′

)∗. Consequently, P(C(λ)//U ′) ⊂ P((R(λ)U
′

)∗) is a normal toric variety
with respect to T . As is well-known, a projective toric T -variety can be described
via a convex polytope in XQ [7, 5.8]. The polytope corresponding to P(C(λ)//U ′)
is the convex hull of Iλ. It is a k-dimensional parallelepiped, in particular, a simple
polytope. It follows that the corresponding complete fan is simplicial. Therefore
the complex cohomology of P(C(λ)//U ′) satisfies Poincaré duality and has a num-
ber of other good properties, see [7, § 14].

2) Along with the toric structure (i.e., a dense T -orbit), the projective variety
P(C(λ)//U ′) also has a dense orbit of the commutative unipotent group U/U ′.

3. Actions of U ′ on arbitrary S-varieties

Let C(S) be an S-variety. In this section, we answer the following questions:
– When is C(S)//U ′ an affine space?
– Suppose that C(S)//U ′ is an affine space. When is πC(S),U ′ equidimensional?
We begin with a formula for dim C(S)//U ′, which generalises Theorem 2.2(i).

Proposition 3.1. dim C(S)//U ′ = rk S+ (rk G− srk LS).

Proof. By Theorem 1.1, dim C(S)=dim NS+rk S and dim C(S)//U = rk S. This
readily implies that U (LS) := U ∩ LS is a generic stabiliser for the U -action on
C(S). By [14, Lemma 2.5], the minimal dimension of stabilisers for the U ′-action
on C(S) equals dim(U (LS)∩U ′)= dim U (LS)− srk LS. Consequently,

dim C(S)//U ′ = dim C(S)− dim U ′+ min
x∈C(S)

dim U ′x =

=dim NS+rk S−(dim U−rk G)+(dim U (LS)−srk LS)= rk S+(rk G−srk LS).

Here we use the fact that U is a semi-direct product of NS and U (LS). �
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Remark. Note that rk S 6 rk G − srk LS, and the equality here is equivalent to
the fact that the space 〈S〉 has a basis that consists of fundamental weights.

Theorem 3.2. Let S ⊂ X+ be an arbitrary finitely generated monoid. Then
C(S)//U ′ is an affine space if and only if S is generated by fundamental weights.

Proof. 1) Suppose that C(S)//U ′ is an affine space. If λ is a generator of S, then
any generating system of k[C(S)]U

′

contains a basis for R(λ)U
′

. Arguing as in the
proof of Theorem 2.1, we conclude that λmust be a fundamental weight. [Another
way is to use Proposition 3.1 and the inequality dim C(S)//U ′ > 2rk S.]

2) The converse is contained in Theorem 1.4. �

In the rest of this section, we only consider monoids generated by fundamental
weights. Fix a numbering of the simple roots (fundamental weights). For any
M ⊂ {1, 2, . . . , r}, let C(M) denote the S-variety corresponding to the monoid
S=

∑
i∈M N$i . Our aim is to characterise the subsets M having the property that

πU ′ : C(M)→ C(M)//U ′ is equidimensional. The origin (vertex) is the only G-
fixed point of C(M) and the corresponding fibre of πU ′ (the null-cone) is denoted
by NU ′(M).

Recall that k[C(M)] is a graded Cohen-Macaulay ring and k[C(M)]U
′

is a poly-
nomial algebra freely generated by { fi , f̃i | i ∈ M} (Theorem 1.4). Therefore, πU ′

is equidimensional if and only if the functions { fi , f̃i | i ∈ M} form a regular
sequence in k[C(M)] if and only if dim NU ′(M)= dim C(M)−2(#M) [16, § 17].

Definition 1. A subset M ⊂ {1, . . . , r} is said to be sparse, if 1) the roots αi with
i ∈ M are pairwise orthogonal, i.e., disjoint in the Dynkin diagram; 2) there are no
i, j ∈ M and no k 6∈ M such that (αk, αi ) < 0 and (αk, α j ) < 0, i.e., αk is adjacent
to both αi and α j .
Accordingly, we say that a certain set of fundamental weights (simple roots) is
sparse.

Clearly, if M is sparse and J ⊂ M , then J is also sparse.

Lemma 3.3. Let αi1, . . . , αil be a sequence of different simple roots such that
αi j , αi j+1 are adjacent for j = 1, 2, . . . , l − 1). Then µ := $i1 −

∑l
j=1 αi j is a

weight of R($i1) and dim R($i1)µ = 1.

Proof. The first assertion is easily proved by induction on l. The second assertion
follows from [1, Prop. 2.2] �

Theorem 3.4. If the quotient πU ′ : C(M)→ C(M)//U ′ is equidimensional, then
M is sparse.

Proof. As we already know, k[C(M)]U
′

is freely generated by the functions { fi , f̃i |

i ∈ M}. Assuming that M is not sparse, we point out certain relations in k[C(M)],
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which show that these free generators do not form a regular sequence. There are
two possibilities for that.
• Suppose first that αi and α j are adjacent simple roots for some i, j ∈ M .

Then λi j := $i +$ j − αi − α j is dominant. Consider upper parts of the Hasse
diagrams of weight posets for R($i ) and R($ j ):

R($i ):
e e e$i

fi f̃i pi

$i−αi $i−αi−α j. . .

R($ j ):
e e e$i

f j f̃ j p j

$ j−α j $ j−αi−α j. . .

In these figures, each node depicts a weight space, and we put the weight over the
node and a weight vector under the node. There can be other edges incident to the
node $i −αi (if there exist other simple roots adjacent to αi ), but we do not need
them. By Lemma 3.3, the weight spaces R($i )$i , R($i )$i−αi , and R($i )$i−αi−α j

are one-dimensional. Here fi , f̃i , and pi are normalised such that ei ( f̃i )= fi and
e j (pi ) = f̃i ; and likewise for R($ j ). Note also that ei (pi ) = 0, since $i − α j is
not a weight of R($i ). It is then easily seen that

fi ⊗ p j − f̃i ⊗ f̃ j + pi ⊗ f j

is a U -invariant of weight λi j in R($i )⊗R($ j ). However, only the Cartan com-
ponent of R($i ) ⊗ R($ j ) survives in the algebra k[C(M)], i.e., in the product
R($i )·R($ j ). Consequently, fi p j− f̃i f̃ j+ pi f j = 0 in k[C(M)]. This means that
( fi , f j , f̃i , f̃ j ) is not a regular sequence in k[C(M)].
• Yet another possibility is that there are k 6∈ M and i, j ∈ M such that αk is

adjacent to both αi and α j . Here one verifies that λ̃i j :=$i +$ j − αi − αk − α j

is dominant. In this situation, we need larger fragments of the weight posets:

R($i ):
e e e e$i

fi f̃i pi qi

$i−αi $i−αi−αk $i−αi−αk−α j. . .

R($ j ):
e e e e$i

f j f̃ j p j q j

$ j−α j $ j−α j−αk $ j−α j−αk−αi. . .

Here all the weight spaces are one-dimensional by Lemma 3.3, and we follow the
same conventions as above. Additionally, we assume that e j (qi ) = pi . Note that
ek(qi )= 0 and ei (qi )= 0, since neither $i−αi−α j nor $i−αk−α j is a weight of
R($i ). (And likewise for R($ j ).) Then fi ⊗q j − f̃i ⊗ p j + pi ⊗ f̃ j −qi ⊗ f j is a
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U -invariant of weight λ̃i j , and hence

(3·1) fi q j − f̃i p j + pi f̃ j − qi f j = 0

in k[C(M)] for the same reason as above. This again implies that ( fi , f j , f̃i , f̃ j )

is not a regular sequence in k[C(M)]. �

Example 3.5. Let g = sl4 and M = {1, 3} in the usual numbering of 5. Then
dim R($1) = dim R($3) = 4 and dim C(M) = 7. In this case, the above 4-node
fragments provide the whole weight posets. Therefore, R($1) = 〈 f1, f̃1, p1, q1〉,
R($3) = 〈 f3, f̃3, p3, q3〉, and (3·1) with (i, j) = (1, 3) is the equation of the hy-
persurface C(M). Since dim C(M)//U ′ = 4 and NU ′(M) ⊃ 〈p1, q1, p3, q3〉, the
morphism πU ′ is not equidimensional.

To prove the converse to Theorem 3.4, we need some preparations. Recall that
the partial order “4” is defined in 1.2. We also write ν ≺ µ if ν 4 µ and µ 6= ν.

Lemma 3.6. Suppose that M is sparse and w ∈W has the property that w($i )≺

$i −αi for all i ∈ M. Then `(w)> 2·#(M).

Proof. Since w($i ) ≺ $i , any reduced decomposition of w contains si . Fur-
thermore, since w($i ) ≺ $i − αi , there exists a node i ′ adjacent to i such that
w($i )4$i −αi −αi ′ . Therefore, w must also contain the reflection si ′ . Because
M is sparse, all the reflections {si , si ′ | i ∈ M} are different. Thus, `(w)> 2·#(M).

�

For any I ⊂ 5, we consider the following objects. Let PI = L I NI be the
standard parabolic subgroup of G. Here L I is the Levi subgroup whose set of
simple roots is I and NI is the unipotent radical of PI . Then P−I = L I N−I is the
opposite parabolic subgroup of G. We also need the factorisation

W =W I
×WI ,

where WI is the subgroup generated by {si | αi ∈ I } and W I is the set of represen-
tatives of minimal length for W/WI [8, 1.10]. It is also true that W I

= {w ∈ W |
w(αi ) ∈1

+
∀αi ∈ I } [8, 5.4]. If I = {α ∈5 | (α, λ)= 0} for some λ ∈ X+, then

we write Pλ, Wλ, W λ, etc.
For each w ∈ W , we fix a representative, ẇ, in NG(T ). As is well-known, the

U -orbits in G/P−I can be parametrised by W I , and letting O(w)=U ẇP−I ⊂G/P−I
(w ∈W I ), we have G/P−I = tw∈W I O(w) and codim O(w)= `(w).

Theorem 3.7. If M ⊂ {1, . . . , r} is sparse, then the quotient πU ′ : C(M) →
C(M)//U ′ is equidimensional.

Proof. Set m = #M and I = 5 \ {αi | i ∈ M}. Consider v =
∑

i∈M v−$i ∈⊕
i∈M R($ ∗i ). As explained in Subsection 1.1, then C(M)'G·v and dim C(M)=
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dim G/P−I +m. We also have dim C(M)//U ′= 2m. Therefore, our goal is to prove
that dim NU ′(M)6 dim G/P−I −m.

Set V = T ·v=
⊕

i∈M kv−$i . It is an m-dimensional subspace of
⊕

i∈M R($ ∗i ),
which is contained in C(M) and is P−I -stable. Recall that G ×P−I

V is a homoge-
neous vector bundle on G/P−I . A typical element of it is denoted by g ∗ v, where
g ∈ G and v =

∑
i∈M vi ∈ V . Our main tool for estimating dim NU ′(M) is the

following diagram:

G×P−I
V

τ
−→ C(M)yφ yπU ′

G/P−I C(M)//U ′

where φ(g ∗ v) := g P−I and τ(g ∗ v) := g·v. Note that NU ′(M) is B-stable, and
hence so is τ−1(NU ′(M)). It is easily seen that the morphism τ is birational and
therefore it is an equivariant resolution of singularities of C(M).

Let n ∈U and w ∈W I . As k[C(M)]U
′

is generated by { fi , f̃i | i ∈ M}, we have
(3·2)
φ−1(nẇP−I )∩ τ

−1(NU ′(M))= {nẇ ∗ v | fi (nẇ·v)= 0, f̃i (nẇ·v)= 0 ∀i ∈ M}.

Here fi (resp. f̃i ) is regarded as the coordinate of v−$i ∈ R($ ∗i ) (resp. v−$i+αi ∈

R($ ∗i )). Note that fi (nẇ·v) depends only on the component vi of v, and vi is
proportional to v−$i . Let us simplify condition (3·2). Since fi is actually a U -
invariant, we have fi (nẇ·vi ) = fi (ẇ·vi ). Next, f̃i is invariant with respect to
a subgroup of codimension 1 in U . Namely, consider the decomposition U =
Uαi Uαi ' Uαi × Uαi , where Uαi is the root subgroup and Uαi is the unipotent
radical of the minimal parabolic subgroup associated with αi . If ni ∈ Uαi and
ñ ∈ Uαi , then ñ· f̃i = f̃i and n−1

i · f̃i = f̃i + ci fi for some ci = ci (ni ) ∈ k. Hence
for n = ñni ∈U , we have

f̃i (nẇ·vi )= f̃i (ni ẇ·vi )= (n−1
i · f̃i )(ẇ·vi )= f̃i (ẇ·vi )+ fi (ẇ·vi )ci .

Therefore, (3·2) reduces to the following:
(3·3)
φ−1(nẇP−I )∩ τ

−1(NU ′(M))= {nẇ ∗ v | fi (ẇ·vi )= 0, f̃i (ẇ·vi )= 0 ∀i ∈ M}.

Thus, the dimension of this intersection does not depend on n ∈U ; it depends only
on w ∈ W I , i.e., on O(w) ⊂ G/P−I . We can make (3·3) more precise by using
the partition of C(M) into (finitely many) G-orbits. For any subset J ⊂ M , let
v J =

∑
i∈J v−$i ∈ V . Then {v J | J ⊂ M} is a complete set of representatives of

the G-orbits in C(M) (Theorem 1.1(2)). Set
◦

V J =G·v J ∩V = T ·v J . It is an open
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subset of a (#J )-dimensional vector space. Then

φ−1(nẇP−I )∩ τ
−1(NU ′(M)∩G·v J )

= {nẇ ∗ v | v ∈
◦

V J , fi (ẇ·vi )= 0, f̃i (ẇ·vi )= 0 ∀i ∈ M}.

This set is non-empty if and only if ẇ·v−$i has the trivial projection to
〈v−$i , v−$i+αi 〉 ⊂ R($ ∗i ) for all i ∈ J , i.e., w($i ) ≺ $i − αi for all i ∈ J .

In this case the dimension of this set equals dim
◦

V J = #J . Consequently, if
φ−1(O(w))∩ τ−1(NU ′(M)∩G·v J ) 6=∅, then

w($i )≺$i −αi for all i ∈ J and

dim
(
φ−1(O(w))∩ τ−1(NU ′(M)∩G·v J )

)
= #J + dim O(w).

By Lemma 3.6, `(w)> 2·#J . Therefore,

dim
(
φ−1(O(w))∩ τ−1(NU ′(M)∩G·v J )

)
=

#J − codim O(w)+ dim G/P−I = #J − `(w)+ dim G/P−I 6 dim G/P−I − #J.

This is an upper bound for the dimension of the pullback in G ×P−I
V of a subset

of NU ′(M). If v J is not generic, i.e., J 6= M , then dim τ−1(v J ) > 0 and the actual
subset of NU ′(M) has smaller dimension. More precisely, set Ĩ = {αi | i 6∈ J }.
Then Ĩ ⊃ I and τ−1(v J ) ' P−

Ĩ
/P−I . Since srk (L Ĩ ) = srk (L I )+ (m − #J ), we

have dim τ−1(v J )> m− #J . Thus, for all w ∈W I and J ⊂ M , we have

dim
(
τ
(
φ−1(O(w))

)
∩NU ′(M)∩G·v J

)
6

dim G/P−I − #J − (m− #J )= dim G/P−I −m,

and therefore dim NU ′(M)6 dim G/P−I −m. �

Remark 3.8. A “dual” approach is to consider the PI -stable subspace Ṽ =⊕
i∈M kv$ ∗i ⊂

⊕
i∈M R($ ∗i ) and the map G ×PI Ṽ → C(M). Then one has to

work with U−-orbits in G/PI and U−-invariants in k[C(M)], but all dimension
estimates remain the same. Such an approach is realised in [13, Sect. 5], where the
equidimensionality problem is considered for the actions of U on S-varieties.

Combining Theorems 3.2, 3.4, and 3.7, we obtain the general criterion:

Theorem 3.9. For a finitely generated monoid S ⊂ X+, the following conditions
are equivalent:

(i) C(S)//U ′ is an affine space and πC(S),U ′ : C(S)→ C(S)//U ′ is equidimen-
sional;

(ii) S is generated by a sparse set of fundamental weights.
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4. Equidimensional quotients by U ′

In this section, the quotient morphism for the S-variety C(S) will be denoted by
πS,U ′ . Similarly, for the HV-variety C(λ), we use notation πλ,U ′ . Our goal is to
characterise the monoids S such that πS,U ′ :C(S)→C(S)//U ′ is equidimensional
(i.e., without assuming that C(S)//U ′ is an affine space). We assume that U ′ 6= {1},
i.e., G is not a product of several SL2.

First, we consider the case of HV-varieties.

Theorem 4.1. For any λ ∈ X+, the null-cone NU ′(C(λ)) is of codimension 2 in
C(λ).

Proof. As in the proof of Theorem 3.7, we work with the diagram

G×P−λ
V

τ
−→ C(λ)yφ yπλ,U ′

G/P−λ C(λ)//U ′,

where V = kv−λ, φ(g ∗ v) := g P−λ and τ(g ∗ v) := g·v. Note that P−λ is just
the stabiliser of the line V ⊂ R(λ∗). For simplicity, we write NU ′(λ) in place of
NU ′(C(λ)).

Since NU ′(λ) is U -stable, φ(τ−1(NU ′(λ))) is a union of U -orbits. Recall that
k[C(λ)]U

′

is generated by the space R(λ)U
′

, and the corresponding set of T -weights
is Iλ.

We point out a w ∈W λ such that the U -orbit O(w)⊂G/P−λ is of codimension 2
and φ−1(O(w))⊂ τ−1(NU ′(λ)). Suppose that (λ, α∨1 )= a1 > 1 and α1 is a simple
root of a simple component of G of rank > 2. Let α2 be a simple root adjacent to
α1 in the Dynkin diagram. Take w = s2s1. Regardless of the value of (λ, α2), it is
true that w ∈W λ and `(w)= 2. We have

s2s1(λ)= λ− a1α1− (a2− a1(α1, α
∨

2 ))α2 4 λ− a1α1− (a1+ a2)α2,

where a2 = (λ, α
∨

2 ). Hence s2s1(λ) 6∈ Iλ. It follows that ṡ2ṡ1(v−λ) ∈NU ′(λ) and

τ(φ−1(O(w)))=U ·(ṡ2ṡ1(V )) ∈NU ′(λ).

Thus, w = s2s1 is the required element. Since τ is injective outside the zero
section of φ, it is still true that codim C(λ)τ(φ

−1(O(w))) = 2. This proves that
codim NU ′(λ)6 2.

On the other hand, the similar argument shows that ifw∈W λ and `(w)= 1 (i.e.,
w= si , where (αi , λ) 6=0), then ẇ·v−λ 6∈NU ′(λ). Therefore, codim NU ′(λ)=2. �

Corollary 4.2. Suppose that U ′ 6= {1}. Then πλ,U ′ : C(λ)→ C(λ)//U ′ is equidi-
mensional if and only if λ = ai$i for some i . In particular, if the action of G on
C(λ) is effective and πλ,U ′ is equidimensional, then G is simple.
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Proof. It follows from Theorem 2.2(i) that dim C(λ)//U ′=2 if and only if λ=ai$i .
�

Now, we turn to considering general monoids S ⊂ X+. For any S ⊂ X, let
con(S) denote the closed cone in XR generated by S.

Lemma 4.3. Suppose that we are given two monoids S1 and S2 such that
con(S1)= con(S2). Then πS1,U ′ is equidimensional if and only if πS2,U ′ is.

Proof. It suffices to treat the case in which S2 = con(S1)∩X+. Then k[C(S2)] is
a finite k[C(S1)]-module [22, Prop. 4]. Consider the commutative diagram

C(S2)
ψ
−→ C(S1)yπS2,U ′

yπS1,U ′

C(S2)//U ′
ψ//U ′
−→ C(S1)//U ′.

Here ψ is finite, and it suffices to prove that ψ//U ′ is also finite, i.e., that
k[C(S2)]

U ′ is a finite k[C(S1)]
U ′-module. By the “transfer principle” ([2, Ch. 1],

[15, § 3]), we have

k[X ]U
′

' (k[X ]⊗ k[G/U ′])G

for any affine G-variety X . Hence, one has to prove that (k[S2] ⊗ k[G/U ′])G

is a finite (k[S1] ⊗ k[G/U ′])G-module, which readily follows from the fact that
k[G/U ′] is finitely generated and G is reductive. �

Theorem 4.4. The quotient morphism πS,U ′ is equidimensional if and only if
con(S) is generated by a sparse set of fundamental weights.

Proof. 1) The “if” part readily follows from Lemma 4.3 and Theorem 3.7.
2) Suppose that πS,U ′ :C(S)→C(S)//U ′ is equidimensional. By Lemma 4.3,

it suffices to consider the case in which S = con(S)∩X+. Then C(S) is normal
(see Theorem 1.1(3)). Consider an arbitrary edge, con(λ), of con(S). It is assumed
that λ ∈ S is a primitive element of X+. By [22, Prop. 7], the HV-variety C(λ)

is a subvariety of C(S). On the other hand, k[C(λ)] =
⊕

n>0 R(nλ) is a G-stable
subalgebra of k[C(S)]=

⊕
µ∈S R(µ). This yields the chain of G-equivariant maps

C(λ) ↪→ C(S)
r
−→ C(λ).

Here the composite map is the identity, i.e., r is a G-equivariant retraction. Fur-
thermore, passage to the subalgebras of U ′-invariants (= quotient varieties) yields
the maps

C(λ)//U ′ ↪→ C(S)//U ′
r//U ′
−→ C(λ)//U ′,
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which shows that r//U ′ is a retraction, too. This also shows that both r and r//U ′

are onto. Consider the commutative diagram

C(λ) � � //

πλ,U ′

��

C(S)
r // //

πS,U ′

��

C(λ)

πλ,U ′

��
C(λ)//U ′ �

� // C(S)//U ′
r//U ′ // // C(λ)//U ′

As C(S) is normal, the same is true for C(S)//U ′. Since πS,U ′ is equidimensional
and both C(S) and C(S)//U ′ are conical, it follows from Lemma 1.5 that πS,U ′

is onto. Therefore, πλ,U ′ is onto as well. Furthermore, πλ,U ′ = πS,U ′ |C(λ), since
C(λ) is a G-stable subvariety of C(S). This shows that πS,U ′(C(λ)) is a closed
subset of C(S)//U ′.

Let Y ⊂C(S) be an irreducible component of π−1
S,U ′(πS,U ′(C(λ))) that contains

C(λ) and maps dominantly to πS,U ′(C(λ)). Consider the commutative diagram

Y
r |Y //

πS,U ′ |Y %%

C(λ)

πS,U ′ |C(λ)xx
πS,U ′(C(λ))

By the very construction of Y , the morphism r |Y is onto and πS,U ′ |Y is equidi-
mensional. It follows that πS,U ′ |C(λ) is also equidimensional. Consequently,
πλ,U ′ = πS,U ′ |C(λ) is equidimensional and, by Corollary 4.2, λ = $i for some
i (recall that λ is supposed to be primitive). Thus, the edges of con(S) are gen-
erated by fundamental weights. Finally, by Theorem 3.4, the corresponding set of
fundamental weights is sparse. �

Remark 4.5. Our proof of the “only if” part exploits ideas of Vinberg and Wehlau
for the equidimensional quotients by G (see [23, Theorem 8.2] and [24, Prop. 2.6]).

Remark 4.6. We can prove a general equidimensionality criterion for the quotients
of S-varieties by U . This topic will be considered in a forthcoming publication.

5. The Hilbert–Mumford criterion for U ′

Let X be an irreducible affine G-variety and x0 ∈ X G . For any H ⊂ G, define the
null-cone with respect to H and x0 as

NH (X)= {x ∈ X | F(x)= F(x0) ∀F ∈ k[X ]H }.

If k[X ]H is finitely generated, then NH (X) can be regarded as the fibre of πX,H

containing x0. Below, we give a characterisation of NU ′(X) via one-parameter
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subgroups (1-PS for short) of T . This is inspired by Brion’s description of null-
cones for U -invariants [3, Sect. IV]. Recall that the Hilbert–Mumford criterion for
G asserts that
x ∈NG(X) if and only if there is a 1-PS τ : k×→ G such that limt→0 τ(t)·x = x0

(cf. [9, III.2], [23, § 5.3]). By [14, Theorem 2.2], there is the canonical affine model
of the homogeneous space G/U ′, that is, an affine pointed G-variety (G/U ′, p)
such that

• G p =U ′;

• G· p is dense in G/U ′;

• k[G/U ′] = k[G]U
′

.

Here p= ( f1, f̃1, . . . , fr , f̃r ) is a direct sum of weight vectors in 2R($1)⊕· · ·⊕

2R($r ), with weights$i ,$i−αi (16 i 6 r ). If G has no simple factors SL2, SL3,
then all these weights belong to an open half-space of XR (see the proof of [14,
Prop. 1.9]). In this case, p is unstable and G/U ′ contains the origin in 2R($1)⊕

· · · ⊕ 2R($r ). Let τ : k× → T be a 1-PS. Using the canonical pairing between
X and the set of 1-PS of T , we will regard τ as an element of XR. Let us say
that τ is U ′-admissible, if (τ,$i ) > 0 and (τ,$i − αi ) > 0 for all i ; that is, if
limt→0 τ(t)· p= 0. Since k[G/U ′] = k[G]U

′

, one has the isomorphism

(5·1) k[X ×G/U ′]G = (k[X ]⊗ k[G]U
′

)G
∼
−→ k[X ]U

′

that takes F̃(·, ·) ∈ k[X ×G/U ′]G to F(·)= F̃(·, p) ∈ k[X ]U ′ .

Theorem 5.1. Suppose that G has no simple factors SL2, SL3. Then the following
conditions are equivalent:

(i) x ∈NU ′(X), i.e., F(x)= F(x0) for all F ∈ k[X ]U
′

;

(ii) there is u ∈ U and a U ′-admissible 1-PS τ : k× → T such that
limt→0 τ(t)u·x = x0.

Proof. (i)⇒ (ii). Suppose that x ∈ NU ′(X). Then F̃(x, p) = F(x) = F(x0) =

F̃(x0, p). Since p is unstable in G/U ′, we have F̃(x0, p) = F̃(x0, 0). Thus,
F̃(x, p) = F̃(x0, 0) for all F̃ ∈ (k[X ] ⊗ k[G]U

′

)G , i.e., (x, p) ∈NG(X ×G/U ′).
By the Hilbert–Mumford criterion for G, there is a 1-PS ν : k× → G such that
ν(t)·(x, p)−→

t→0
(x0, 0).

By a result of Grosshans [10, Cor. 1] (see also [3, IV.1]), we may assume that
ν(k×)⊂ B. Then there is u ∈U such that τ(t) := uν(t)u−1

∈ T . Therefore,

τ(t)u·(x, p)−→
t→0

(x0, 0).

Note that u· p (u ∈ U ) does not differ much from p. Namely, each component fi

remains intact, whereas f̃i is replaced with f̃i + ci fi for some ci ∈ k. This means
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that τ(t)u· p−→
t→0

0 if and only if τ(t)· p−→
t→0

0. That is, τ is actually U ′-admissible

and limt→0 τ(t)u·x = x0.
(ii)⇒ (i). Suppose that F ∈ k[X ]U

′

and F̃ is the corresponding G-invariant in
k[X×G/U ′]. Then F(x)= F̃(x, p)= F̃(τ (t)u·x, τ (t)u· p). Since u· p is a linear
combination of weight vectors with the same weights and τ is U ′-admissible, we
have limt→0 τ(t)u· p= 0. Hence F(x)= F̃(x0, 0)= F̃(x0, p)= F(x0). �

Remark 5.2. Our Theorem 5.1 is similar to Theorem 5 in [3] on null-cones for U -
invariants. The only difference is that we end up with a smaller class of admissible
1-PS.

Obviously, there are inclusions NU ′(X)⊂NU (X)⊂NG(X) and hence

G·NU ′(X)⊂ G·NU (X)⊂NG(X).

It is proved in [3, Théorème 6(ii)] that actually G·NU (X) = NG(X). Below, we
investigate the similar problem for U ′.

Recall that con(S) is the closed cone in XR generated by S. If K ⊂ XR is a
closed cone, then K⊥ denotes the dual cone and K o denotes the relative interior of
K . By the very definition, the cone generated by the U ′-admissible 1-PS is open,
and its closure is dual to con({$i ,$i −αi | i = 1, . . . , r}). By [14, Theorem 4.2],
we have

con({$i ,$i −αi | i = 1, . . . , r})⊥ = con(1+ \5).

Hence the cone generated by the U ′-admissible 1-PS equals con(1+ \5)o.

Theorem 5.3. Suppose that G has no simple factors of type SL. Then
1) con($1, . . . ,$r )⊂ con(1+ \5),
2) G·NU ′(X)=NG(X) for all affine G-varieties X.

Proof. 1) Taking the dual cones yields the equivalent condition that

con({$i ,$i −αi | i = 1, . . . , r})⊂ con(1+).

That is, one has to verify that each $i − αi has non-negative coefficients in the
expression via the simple roots. Let C denote the Cartan matrix of a simple group
G. All the entries of C−1 are positive and the rows of C−1 provide the expressions
of the fundamental weights via the simple roots. Hence it remains to check that
the diagonal entries of C−1 are > 1. An explicit verification shows that this is true
if G 6= SLr+1. (The matrices C−1 can be found in [21, Table 2].)

2) Suppose that x ∈ NG(X). Then there exist g ∈ G and τ : k× → T such
that limt→0 τ(t)g·x = x0. Let y = g·x . The set of all 1-PS ν : k× → T such
that limt→0 ν(t)·y = x0 generates an open cone in XR. Therefore, we may assume
that τ is a regular 1-PS. Now, in view of the Hilbert–Mumford criterion for G and
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Theorem 5.1, it suffices to prove that any regular 1-PS of T is W -conjugate to a U ′-
admissible one. This follows from part 1), since con($1, . . . ,$r ) is a fundamental
domain for the W -action on XR and con($1, . . . ,$r )

o
⊂ con(1+ \5)o. �

For G = SLr+1, we have $1 − α1,$r − αr 6∈ con(1+) and therefore,
con($1, . . . ,$r ) 6⊂ con(1+ \5). More precisely, $1,$r 6⊂ con(1+ \5). This
means that one may expect that, for some SLr+1-varieties, there is the strict inclu-
sion G·NU ′(X)$ NG(X).

Example 5.4. For m > 3, consider the representation of G = SL3 in the space
V = R(m$1) of forms of degree m in three variables x, y, z. By Theorem 1.2,
dim V U ′

=m+1. Let U be the subgroup of the unipotent upper-triangular matrices
in the basis dual to (x, y, z). The U ′-invariants of degree 1 are the coefficients of
xm, xm−1 y, . . . , xym−1, ym . Therefore, NU ′(V ) is contained in the subspace of
forms having the linear factor z and all the forms in SL3·NU ′(V ) have a linear
factor. On the other hand, the null-form (with respect to SL3) xm

+ ym−1z is
irreducible. Hence, SL3·NU ′(V ) 6=NSL3(V ).

Remark. In view of Theorem 5.1, it would be much more instructive to have such
an example for SLn , n > 4. However, we are unable to provide it yet.

6. Equidimensional quotients and irreducible representations of simple
groups

In this section, we transform the criterion of Theorem 3.9 in a sufficient condition
applicable to a wider class of G-varieties. Then we obtain the list of irreducible
representations V of simple algebraic groups G 6= SL2 such that k[V ] is a free
k[V ]U

′

-module.
For any affine irreducible G-variety Z , there is a flat degeneration k[Z ]  

gr(k[Z ]). (Brion attributes this to Domingo Luna in his thesis, see [2, Lemma 1.5]).
Here gr(k[Z ]) is again a finitely generated k-algebra and a locally-finite G-module,
and grZ := Spec (gr(k[Z ])) is an affine horospherical G-variety. The whole theory
of “contractions of actions of reductive groups” is later developed in [15]. (See
also [4], [19], [11] for related results and other applications.) The “contraction”
Z  grZ has the property that the algebras k[Z ] and k[grZ ] = gr(k[Z ]) are iso-
morphic as G-modules. But the multiplication in k[grZ ] is simpler than that in
k[Z ]; namely, if M and N are two simple G-modules in k[grZ ], then M ·N (the
product in k[grZ ]) is again a simple G-module. Furthermore, k[grZ ]U ' k[Z ]U

and G·((grZ)U )= grZ . This means that if Z is a spherical G-variety, then grZ is
an S-variety.



400 DMITRI I. PANYUSHEV

Theorem 6.1. Suppose that G acts on an irreducible affine variety X such that (1)
k[X ]U is a polynomial algebra and (2) the weights of free generators are funda-
mental, different and form a sparse set. Then k[X ]U

′

is also polynomial, of Krull
dimension 2 dim X//U, and the quotient πX,U ′ : X→ X//U ′ is equidimensional.

Proof. The idea is the same as in the proof of the similar result for U -invariants in
[13, Theorem 5.5]. We use the fact that in our situation grX is an S-variety whose
monoid of dominant weights is generated by a sparse set of fundamental weights.

Let$1, . . . ,$m be the weights of free generators of k[X ]U . Set 0=
∑m

i=1 N$i .
It follows from the hypotheses on weights that k[X ] is a multiplicity free G-
module, i.e., X is a spherical G-variety [18, Theorem 2]. Therefore, k[X ] is iso-
morphic to

⊕
λ∈0 R(λ) as G-module and grX ' C(0).

By [15, §5], there exists a G-variety Y and a function q ∈ k[Y ]G such that
k[Y ]/(q − a) ' k[X ] for all a ∈ k×, k[Y ][q−1

] ' k[X ][q, q−1
], and k[Y ]/(q) '

k[grX ]. Recall some details on constructing Y and grX . Let % be the half-sum
of the positive coroots. For λ ∈ X+, we set ht (λ) = (λ, %). Letting k[X ](n) =⊕

λ: ht (λ)6n R(λ), one obtains an ascending filtration of the algebra k[X ]:

{0} ⊂ k[X ](0) ⊂ k[X ](1) ⊂ · · · ⊂ k[X ](n) · · · .

Each subspace k[X ](n) is G-stable and finite-dimensional and k[X ](0)=k[X ]G=k.
Let q be a formal variable. Then the algebras k[Y ] and gr(k[X ]) are defined as
follows:

k[Y ] =
∞⊕

n=0

k[X ](n)qn
⊂ k[X ][q] ,

gr(k[X ])=
⊕
n>0

k[X ](n)/k[X ](n−1) .

Let f1, . . . , fm be the free generators of k[X ]U , where fi ∈R($i )
U , as usual. They

can also be regarded as free generators of k[grX ]U . By Theorem 1.4, k[grX ]U
′

is freely generated by f1, f̃1, . . . , fm, f̃m and by Theorem 3.9, πgrX,U ′ : grX →
(grX)//U ′ is equidimensional. On the other hand, it follows from [14, Theo-
rem 2.4] that f1, f̃1, . . . , fm, f̃m also generate k[X ]U

′

. Therefore, to conclude that
k[X ]U

′

is polynomial, it suffices to know that dim X//U ′ = dim(grX)//U ′(= 2m).
To this end, we exploit the following facts:
a) For an irreducible G-variety X , there always exists a generic stabiliser for the
U -action on X [5, Corollaire 1.6], which we denote by g.s.(U :X);
b) If X is affine, then this generic stabiliser depends only on the G-module struc-
ture of k[X ], i.e., on the highest weights of G-modules occurring in k[X ] [12,
Theorem 1.2.9]. Consequently, g.s.(U :X)= g.s.(U :grX);
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c) the minimal dimension of U ′-stablisers in X equals dim(U ′ ∩ g.s.(U :X)) [14,
Lemma 2.5]. Therefore it is the same for X and grX ;
d) Since U ′ is unipotent, we have dim X//U ′ = dim X−dim U ′+minx∈X dim U ′x .

Combining a)-d) yields the desired equality and thereby the assertion that k[X ]U
′

is polynomial, of Krull dimension 2m = 2 dim X//U .
Let ni be the smallest integer such that R($i ) ⊂ k[X ](ni ). Using the above

description of k[Y ] and k[grX ]U
′

, one easily obtains that

k[Y ]U = k[q, qn1 f1, . . . , qnm fm]

k[Y ]U
′

= k[q, qn1 f1, qn1 f̃1, . . . , qnm fm, qnm f̃m],

i.e., both algebras are polynomial, of Krull dimension m + 1 and 2m + 1, respec-
tively. By a result of Kraft, the first equality implies that Y has rational singularities
(see [2, Theorem 1.6], [15, Theorem 6]). One has the following commutative dia-
gram:

C(0) ' grX ↪→ Y ← X ×A1yπgrX,U ′
yπY,U ′

A2m
' (grX)//U ′ ↪→ Y//U ′ ' A2m+1y yq

{0} ↪→ A1

Consequently,

NU ′(grX)= π−1
grX,U ′(πgrX,U ′(0̄))= π−1

Y,U ′(πY,U ′(0̄))=NU ′(Y ),

where 0̄ ∈ grX ⊂ Y is the unique G-fixed point of grX . Since dim Y = dim X + 1,
dim Y//U ′ = dim(grX)//U ′ + 1, and πgrX,U ′ is equidimensional, the morphism
πY,U ′ is equidimensional as well. As Y has rational singularities and hence is
Cohen-Macaulay, this implies that k[Y ] is a flat k[Y ]U

′

-module. Since k[Y ][q−1
]'

k[X ][q, q−1
] and k[Y ]U

′

[q−1
] ' k[X ]U

′

[q, q−1
], we conclude that k[X ] is a flat

k[X ]U
′

-module. Thus, πX,U ′ is equidimensional. �

Our next goal is to obtain the list of all irreducible representations V of simple
algebraic groups such that k[V ] is a free k[V ]U

′

-module. As is well known, k[V ]
is a free k[V ]U

′

-module if and only if k[V ]U
′

is polynomial and πV,U ′ is equidi-
mensional [16, Prop. 17.29]. Therefore, the required representations are contained
in [14, Table 1] and our task is to pick from that table the representations having the
additional property that πV,U ′ is equidimensional. The numbering of fundamental
weights of simple algebraic groups follows [21, Tables].

Theorem 6.2. Let G be a connected simple algebraic group with rk G > 2 and
R(λ) a simple G-module. The following conditions are equivalent:
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(i) k[R(λ)] is a free k[R(λ)]U
′

-module;

(ii) Up to symmetries of the Dynkin diagram of G, the pairs (G, λ) occur in the
following list: (Ar ,$1), (Br ,$1), (Cr ,$1), r > 2;
(Dr ,$1), r > 3;
(B3,$3), (B4,$4), (D5,$5), (E6,$1), (G2,$1).

Proof. (ii)⇒(i). By [14, Theorem 5.1], all these representations have a polynomial
algebra of U ′-invariants. Consider X = NG(R(λ)), the null-cone with respect to
G. The nonzero weights of generators of k[R(λ)]U (and hence the weights of
generators of k[X ]U ) given by Brion [3, p. 13] are fundamental and form a sparse
set. Consequently, Theorem 6.1 applies to X , and πX,U ′ is equidimensional. Since
X is either a G-invariant hypersurface in R(λ) or equal to R(λ), πR(λ),U ′ is also
equidimensional.

(i)⇒(ii). We have to prove that, for the other items in [14, Table 1], the quotient
is not equidimensional. The list of such “bad” pairs (G, λ) is: (Ar ,$

∗

2 )with r > 4;
(B5,$5), (D6,$6), (E7,$1), (F4,$1). Note that (A3,$

∗

2 )= (D3,$1) and this
good pair is included in the list in (ii).
It suffices to check that the free generators of k[R(λ)]U

′

given in that Table do not
form a regular sequence. To this end, we point out a certain relation in k[R(λ)]

using the fact the weights of generators do not form a sparse set (cf. the proof of
Theorem 3.4).

The only “bad” serial case is (Ar ,$
∗

2 ) with r > 4. The algebra k[R($ ∗2 )]
U has

free generators f2i (16 i 6 [r/2]) of degree i and weight $2i , and for r odd, there
is also the Pfaffian, which is G-invariant. Then k[R($ ∗2 )]

U ′ is freely generated by
f2, f̃2, f4, f̃4, . . . (and the Pfaffian, if r is odd). Using the 4-nodes fragments of
the weight posets P($2) and P($4) and notation of the proof of Theorem 3.4, we
construct a U -invariant function f2q4− f̃2 p4+ p2 f̃4−q2 f4 of degree 3 and weight
$2+$4− α2− α3− α4 =$1+$5. (Cf. Eq. (3·1).) However, there are no such
nonzero U -invariants in k[R($ ∗2 )]. This yields a relation in k[R($ ∗2 )] involving
free generators f2, f̃2, f4, f̃4 ∈ k[R($

∗

2 )]
U ′ .

In all other cases, we can do the same thing using a pair of generators of
k[R(λ)]U corresponding to suitable fundamental weights. The only difference is
that one of these two U -invariants is not included in the minimal generating system
of k[R(λ)]U

′

and should be expressed via some other U ′-invariants. Nevertheless,
the resulting relation still shows that the U ′-invariants involved do not form a reg-
ular sequence.

For instance, consider the pair (D6,$6). Here the free generators of k[R($6)]
U

have the following degrees and weights: (1,$6), (2,$2), (3,$6), (4,$4), (4, 0)
[3]. The invariants themselves are denoted by f (1)6 , f2, f (3)6 , f4, F , respectively.
Starting with the U -invariants f2 and f4, we obtain, as a above, a relation of the
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form

(6·1) f2q4− f̃2 p4+ p2 f̃4− q2 f4 = 0

in k[R($ ∗6 )]. However, f4 is not a generator in k[R($6)]
U ′ . Taking the sec-

ond U ′-invariant in each fundamental G-submodule, we obtain nine functions
f (1)6 , f̃ (1)6 , f2, f̃2, f (3)6 , f̃ (3)6 , f4, f̃4, F that generate k[R($6)]

U ′ . Here f4 =

f (1)6 f̃ (3)6 − f̃ (1)6 f (3)6 and the remaining eight functions freely generate k[R($6)]
U ′ .

Substituting this expression for f4 in (6·1), we finally obtain the relation

f2q4− f̃2 p4+ p2 f̃4− q2
(

f (1)6 f̃ (3)6 − f̃ (1)6 f (3)6

)
= 0,

which shows that the free generators of k[R($6)]
U ′ do not form a regular sequence.

�

Some open problems. Let V be a rational G-module.
1o. Suppose that V//U is an affine space. Is it true that V//U ′ is a complete

intersection?
2o. Suppose that V//U ′ is an affine space and G has no simple factors SL2. Is it

true that V//U is an affine space? (In [14], we have proved that V//G is an affine
space, but this seems to be too modest.)
Direct computations provide an affirmative answer to both questions if G is simple
and V is a simple G-module.
Acknowledgements. Part of this work was done while I was visiting MPIM (Bonn). I
thank the Institute for the hospitality and inspiring environment. I am grateful to E.B. Vin-
berg for sending me the preprint [20].
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INVARIANTS OF TOTALLY REAL LEFSCHETZ FIBRATIONS

NERMİN SALEPCİ

We introduce certain invariants of real Lefschetz fibrations and call these
invariants real Lefschetz chains. We prove that if the fiber genus is greater
than 1, then the real Lefschetz chains are complete invariants of totally real
Lefschetz fibrations. If however the fiber genus is 1, real Lefschetz chains
are not sufficient to distinguish real Lefschetz fibrations. We show that by
adding a certain binary decoration to real Lefschetz chains, we get a com-
plete invariant.

1. Introduction

This note is devoted to a topological study of Lefschetz fibrations equipped with
certain Z2 actions compatible with the fiber structure. The action is generated by
an involution, which is called a real structure. Intuitively, real structures are topo-
logical generalizations of the complex conjugation on complex algebraic varieties
defined over the reals. Real Lefschetz fibrations appear, for instance, as blow-ups of
pencils of hyperplane sections of complex projective algebraic surfaces defined by
real polynomial equations. Regular fibers of real Lefschetz fibrations are compact
oriented smooth genus g surfaces, while singular fibers have a single node. The
invariant fibers, called the real fibers, inherit a real structure from the real structure
of the total space. We focus on fibrations whose critical values are all fixed by the
action and call such fibrations totally real. We also assume that the fixed point set
of the base space is oriented. We use the term directed to indicate such fibrations.

The main results of this article are exhibited in Sections 6 and 8 in which we
treat the cases of fiber genus g > 1 and g = 1, respectively. In Section 6, we
introduce real Lefschetz chains and prove that if g > 1, real Lefschetz chains
are complete invariants of directed genus g totally real Lefschetz fibrations over
the disk (Corollary 6.4). The case of g = 1 (elliptic fibrations) is considered in
Theorem 8.1. We show that directed totally real elliptic Lefschetz fibrations over
D2 are determined uniquely by their decorated real Lefschetz chains. In both cases
we study extensions of such fibrations to fibrations over a sphere and obtain com-
plete invariants of directed totally real Lefschetz fibrations over a sphere.

MSC2010: primary 55R15, 55R55; secondary 57M05.
Keywords: Lefschetz fibrations, real structure, monodromy.
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It is possible to give a purely combinatorial shape to decorated real Lefschetz
chains. We discuss such combinatorial objects, which we call necklace diagrams,
and their applications in [Salepci 2012]; see [Degtyarev 2011; Degtyarev and
Salepci 2011] for other applications of necklace diagrams.

This paper is organized as follows. In Section 2, we settle the definitions and
introduce basic notions. Section 3 is devoted to the topological classification of
equivariant neighborhoods of real singular fibers. We show that real Lefschetz
fibrations around real singular fibers are determined by the pair consisting of the
inherited real structure on one of the nearby regular real fibers and the vanishing
cycle that is invariant under the action of the real structure. We call such a pair a
real code.

Real Lefschetz chains are, indeed, sequences of real codes each of which is
associated to a neighborhood of a real singular fiber. Obviously, each real Lef-
schetz fibration with real critical values defines a real Lefschetz chain that is, by
definition, invariant of the fibration. The natural question to ask is to what extent
real Lefschetz chains determine the fibration.

In Section 4, we compute the fundamental group of the components of the space
of real structures on a genus g surface. These computations are applied in Section 5
where we define a strong boundary fiber sum (that is, the boundary fiber sum of C-
marked real Lefschetz fibrations) and show that if the fiber genus is greater than 1,
then the strong boundary fiber sum is well defined. Section 6 is devoted to C-
marked genus g > 1 fibrations. We show that directed C-marked genus g > 1
totally real Lefschetz fibrations are classified by their strong real Lefschetz chains.
As a corollary, we obtain the result for nonmarked fibrations.

Because of the different geometric nature of the surfaces of genus g > 1 and
g = 1, we apply slightly different techniques to deal with the case of g = 1. In
Section 7, we define a boundary fiber sum of nonmarked real elliptic Lefschetz
fibrations. We observe that the boundary fiber sum is not always well defined.
This observation leads to a decoration of directed totally real Lefschetz chains.
In the last section, we introduce decorated real Lefschetz chains and prove that
they are complete invariants of real elliptic Lefschetz fibrations. We also study
extensions of such fibrations to fibrations over a sphere.

2. Basic definitions

Throughout the paper X will stand for a compact connected oriented smooth 4-
manifold and B for a compact connected oriented smooth 2-manifold.

Definition 2.1. A real structure cX on a smooth 4-manifold X is an orientation-
preserving involution c2

X = id, such that the set Fix(cX ) of fixed points of cX is
empty or of the middle dimension.
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Two real structures cX and c′X are considered equivalent if there is an orientation-
preserving diffeomorphism ψ : X→ X such that ψ ◦ cX = c′X ◦ψ .

A real structure cB on a smooth 2-manifold B is an orientation-reversing in-
volution B → B. Such structures are similarly considered up to conjugation by
orientation-preserving diffeomorphisms of B.

This definition mimics the properties of the standard complex conjugation on
complex manifolds. Actually, around a fixed point, every real structure defined as
above behaves like complex conjugation.

We will call a manifold together with a real structure a real manifold and the
fixed point set the real part.

Remark 2.2. It is well known that for given g there is a finite number of equiv-
alence classes of real structures on a genus g surface 6g. These classes can be
distinguished by their types and the number of real components. Namely, one
distinguishes two types of real structures: separating and nonseparating. A real
structure is called separating if the complement of its real part has two connected
components; otherwise we call it nonseparating (indeed, in the first case the quo-
tient surface 6g/c is orientable while in the second case it is not). The number of
real components of a real structure (note that the real part forms the boundary of
6g/c), can be at most g + 1. This estimate is known as Harnack inequality. By
looking at the possible number of connected components of the real part, one can
see that on6g there are 1+[g/2] separating real structures and g+1 nonseparating
ones. A significant property of the case of genus 1 surfaces is that the number of
real components, which can be 0, 1 or 2, is enough to distinguish the real structures.

In this article we stick to the following definition of Lefschetz fibrations.

Definition 2.3. A Lefschetz fibration is a surjective smooth map π : X→ B such
that

• π(∂X)= ∂B and the restriction ∂X→ ∂B of π is a submersion;

• π has only a finite number of critical points (that is, the points where dπ
is degenerate), all the critical points belong to X \ ∂X , and their images are
distinct points of B \ ∂B; and

• around each of the critical points one can choose orientation-preserving charts
ψ :U→C2 and φ : V→C so that φ◦π ◦ψ−1 is given by (z1, z2)→ z1

2
+z2

2.

When we want to specify the genus of the nonsingular fibers, we prefer calling
them genus g Lefschetz fibrations. In particular, we will use the term elliptic Lef-
schetz fibrations when the genus is equal to one. For each integer g, we will fix a
closed oriented surface of genus g, which will serve as a model for the fibers, and
denote it by6g. In what follows we will always assume that a Lefschetz fibration is
relatively minimal; that, is none of its fibers contains a self intersection −1 sphere.



410 NERMİN SALEPCİ

Definition 2.4. A real structure on a Lefschetz fibration π : X → B is a pair of
real structures (cX , cB) of X and B such that the diagram

X
cX

//

π

��

X

π

��

B
cB

// B.

commutes. A Lefschetz fibration equipped with a real structure is called a real
Lefschetz fibration and is sometimes referred as RLF. When the fiber genus is 1,
we call it a real elliptic Lefschetz fibration (abbreviated RELF).

Definition 2.5. An R-marked RLF is a triple (π, b, ρ) consisting of a real Lef-
schetz fibration π : X→ B, a real regular value b and a diffeomorphism ρ :6g→ Fb

such that cX |Fb ◦ ρ = ρ ◦ c, where c : 6g → 6g is a real structure. Note that if
∂B 6=∅, then b will be chosen in ∂B.

A C-marked RLF is a triple (π, {m,m}, {ρ, ρ̄}), including a real Lefschetz
fibration π : X→ B, a pair of regular values m,m= cB(m) and a pair of diffeomor-
phisms ρ :6g→ Fm and ρ̄ = cX |Fm ◦ ρ :6g→ Fm , where Fm and Fm = cX (Fm)

are the fibers over m and m, respectively. As in the case of R-marking, if ∂B 6=∅,
then we choose m in ∂B. When precision is not needed we will denote Fm and Fm

by F and F , respectively.

Two real Lefschetz fibrations π : X → B and π ′ : X ′ → B ′ are said to be
isomorphic if there exist orientation-preserving diffeomorphisms H : X→ X ′ and
h : B→ B ′ such that this diagram is commutative:

X
H

//

π ��

X ′

π ′

��

X

cX 77

H
//

π

��

X ′
cX ′

77

π ′

��

B
h

// B ′

B
h

//

cB 77

B ′
cB′

77

Two R-marked RLFs are called isomorphic if they are isomorphic as RLFs such
that h(b)= b′ and the following diagram is commutative:

F
H

//

cX

��

F ′

cX ′

��

6g
ρ′

66

ρ

hh

c

��

F
H

// F ′

6g
ρ′

66

ρ

hh
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Two C-marked RLFs are called isomorphic if they are isomorphic as RLFs and
the following diagram is well defined and commutative:

F
H

//

cX

��

F ′

cX ′

��

6g
ρ′

66

ρ

hh

id

��

F H
// F̄ ′

6̄g
ρ̄′

66

ρ̄

hh

Definition 2.6. A real Lefschetz fibration π : X→ B is called directed if the real
part of (B, cB) is oriented. (If cB is separating, then we consider an orientation on
the real part inherited from one of the halves B \Fix(cB).)

Two directed RLFs are isomorphic if they are isomorphic as RLFs with the
additional condition that the diffeomorphism h : B → B preserves the chosen
orientation on the real part.

Unless otherwise stated, all fibrations we consider are directed.

Remark 2.7. The notion of Lefschetz fibration can be slightly generalized to cover
the case of fibrations whose fibers have nonempty boundary. Then, X turns into
a manifold with corners and its boundary ∂X becomes naturally divided into two
parts, the vertical boundary ∂vX that is the inverse image π−1(∂B), and the hori-
zontal boundary ∂h X that is formed by the boundaries of the fibers. We call such
fibrations Lefschetz fibrations with boundary.

3. Elementary real Lefschetz fibrations

In this section, we classify real structures on a neighborhood of a real singular fiber
of a real Lefschetz fibration. Such a neighborhood can be viewed as a Lefschetz
fibration over a disc D2 with a unique critical value q = 0 ∈ D2. We call such
a fibration an elementary real Lefschetz fibration. Without loss of generality, we
may assume that the real structure on D2 is the standard one, conj, induced from
C⊃ D2.

Let π : X → D2 be an elementary RLF. By definition, there exist equivari-
ant local charts (U, φU ) and (V, φV ) around the critical point p ∈ π−1(0) and
the critical value 0 ∈ D2, respectively, such that U and V are closed discs and
π |U : (U, cU )→ (V, conj) is equivariantly isomorphic (via φU and φV ) to either
of ξ± : (E±, conj)→ (Dε, conj), where

E± = {(z1, z2) ∈ C2
: |z1| ≤

√
ε, |z2

1± z2
2| ≤ ε

2
}

and
Dε = {t ∈ C : |t | ≤ ε2

} for 0< ε < 1,
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c

z2
1 − z2

2 = 0
z2
1 + z2

2 = 0

real part

c

Figure 1. Actions of real structures on the singular fibers of ξ±.

with ξ±(z1, z2)= z2
1± z2

2.
The real local models above, ξ± : E±→Dε , can be seen as two real structures on

the neighborhood of a critical point. These two real structures are not equivalent.
The difference can be seen already at the level of the singular fibers: In the case
of ξ+, the two branches are imaginary and they are interchanged by the complex
conjugation; in the case of ξ− the two branches are both real (see Figure 1).

To understand the action of the real structures on the regular real fibers of ξ±,
we can use the branched covering defined by the projection (z1, z2)→ z1. Thus:

• In the case of ξ+, there are two types of real regular fibers; the fibers Ft with
t < 0 have no real points, their vanishing cycles have invariant representatives
(that is, c(at) = at set-theoretically), and in this case, c acts on the invariant
vanishing cycles as an antipodal involution; the fibers Ft with t > 0 have a
circle as their real part and this circle is an invariant (pointwise fixed) repre-
sentative of the vanishing cycle.

• In the case of ξ−, all the real regular fibers are of the same type and the
real part of such a fiber consists of two arcs each having its endpoints on the
two different boundary components of the fiber; the vanishing cycles have
invariant representatives, and c acts on them as a reflection.

Using the ramified covering (z1, z2)→ z1, we observe that the horizontal bound-
ary of the fibration ξ± is equivariantly trivial and has a distinguished equivariant
trivialization. Moreover, since the complement of U in π−1(V ) does not contain
any critical point, X can be written as union of two RLFs with boundary: One of
them, U→ V , is isomorphic to ξ± : E±→ Dε , and the other one is isomorphic to
the trivial real fiber bundle R→ Dε whose real fibers are equivariantly diffeomor-
phic to the complement of an open regular neighborhood of the vanishing cycle
a ⊂ Fb. The action of the complex conjugation on the boundary components of
the real fibers of R→ Dε determines the type ξ± : E±→ Dε of the model glued
to R→ Dε : In the case of ξ+, it switches the boundary components while in the
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a
c

−r 0 r

real part

ac

z2
1 + z2

2 = −r z2
1 + z2

2 = rz2
1 + z2

2 = 0

(z1, z2)→ z2
1 + z2

2

z2
1 − z2

2 = 0 z2
1 − z2

2 = rz2
1 − z2

2 = −r

(z1, z2)→ z2
1 − z2

2

aa

c c

−r r

real part

0

Figure 2. Nearby regular fibers of ξ± and the vanishing cycles.

case of ξ−, boundary components are preserved (and the complex conjugation acts
as a reflection on each of them).

We use the decomposition above to get first a classification of directed R-marked
elementary RLF, and then discuss the cases of C-marked and nonmarked fibrations.

Let Ac
g denote the set of equivariant isotopy classes of noncontractible curves

on a real surface (6g, c), let Vc
g denote the set of equivariant isotopy classes of

noncontractible embeddings ν : S1
× I→6g such that c◦ν= ν, and let LR,c

g denote
the set of isomorphism classes of directed R-marked elementary real Lefschetz
fibrations whose distinguished fiber is identified with (6g, c).

We consider the map � :Vc
g→LR,c

g defined as follows. Let [ν] be a class in Vc
g

with a representative ν. As c◦ν= ν, the closure6νg of6g\ν(S1
× I ) inherits a real

structure from (6g, c). Let Rν = 6νg × Dε→ Dε be the trivial real fibration with
the real structure cRν = (c, conj) : Rν → Rν and let Eν

±
→ Dε denote the model

ξ± : E → Dε whose marked fiber is identified with ν(S1
× I ). Depending on the

real structure on the horizontal boundary S1
× Dε→ Dε (where the real structure
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on S1
× Dε is taken as (c∂6νg , conj)) of Rν→ Dε , we choose either of Eν

±
→ Dε .

We then glue Rν → Dε and the suitable model Eν
±
→ Dε along their horizontal

trivial boundaries to get a fibration in LR,c
g .

Lemma 3.1. � : Vc
g → LR,c

g is well defined.

Proof. Let νt : S1
× I → 6g be an isotopy between ν0 and ν1. Then, there exists

an equivariant ambient isotopy 9t : 6g→ 6g such that 90 = id and νt = 9t ◦ ν0

with 9t ◦ c = c ◦9t for all t . The diffeomorphism 91 induces equivariant diffeo-
morphisms 9R

1 : Rν0 → Rν1 and 9E
1 : Eν0

± → Eν1
± that respect the fibrations and

the gluing; thus, it gives an isomorphism of the images �([ν0]) and �([ν1]) as
R-marked fibrations. �

Since c ◦ ν = ν, we have c(ν(S1
×{

1
2}))= ν(S

1
×{

1
2})). Hence, we can define

ε : Vc
g →Ac

g such that ε([ν])= [ν(S1
×{

1
2})]. This mapping is two-to-one. Since

the monodromy does not depend on the orientation of the vanishing cycle, there
exists a well-defined mapping �̂ such that the following diagram commutes:

Vc
g

�

��

ε
// Ac

g

�̂}}

LR,c
g .

Theorem 3.2. �̂ :Ac
g→ LR,c

g is a bijection.

Proof. As discussed in the beginning of the section, any elementary RLF can be
divided equivariantly into two RLFs with boundary: an equivariant neighborhood
of the critical point (isomorphic to one of the models, ξ±) and the complement
of this neighborhood (isomorphic to a trivial real Lefschetz fibration). Such a
decomposition defines the equivariant isotopy class of the vanishing cycle. Thus,
�̂ is surjective.

To show that �̂ is injective, let us consider the classes [a], [a′] ∈ Ac
g such that

�̂([a]) = �̂([a′]). Let π : X → Dε and π ′ : X ′ → Dε denote the images of [a]
and [a′], respectively. Since �̂ is well defined, there exist equivariant orientation-
preserving diffeomorphisms H : X → X ′ and h : Dε→ Dε such that we have the
commutative diagrams

X
H

//

π
��

X ′

π ′

��

X

cX
88

H
//

π

��

X ′
cX ′

88

π ′

��

Dε
h

// Dε

Dε
h

//

conj 99

Dε

conj

99

and

F
H |F

//

cX

��

F ′

cX ′

��

6g
ρ′

99

ρ

ee

c

��

F
H |F

// F ′

6g.
ρ′

99

ρ

ee
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Figure 3. Relation between R-marking and C-marking.

Clearly, H(ρ(a)) is equivariantly isotopic to ρ ′(a′), where a and a′ are repre-
sentatives of [a] and [a′], respectively. Moreover, since H |F ◦ ρ = ρ ′, we have
H(ρ(a))= ρ ′(a), so ρ ′(a) is equivariant isotopic to ρ ′(a′).

For t ∈ [0, 1], let ψt : F ′→ F ′ such that ψ0 = id and ψ1(ρ
′(a)) = ρ ′(a′) and

that ψt ◦ c′ = c′ ◦ψt . Then, 9t = ρ
′−1
◦ψt ◦ ρ

′
:6g→6g is the required isotopy

between a and a′. �

Theorem 3.2 shows that c-equivariant isotopy classes of vanishing cycles on
(6g, c) classify directed R-marked elementary RLFs. To obtain a classification for
directed C-marked RLFs, we study the difference between two C-markings; see
Figure 3.

Let ({m,m}, {ρm, cX ◦ρm}) be a C-marking on a directed RLF π : X→ D2. The
complement, ∂D2

\{m,m}, has two pieces S± (left/right semicircles) distinguished
by the direction. By considering a trivialization of the fibration over the piece
of S+ connecting m to the marked real point b (the trivialization over the piece
connecting m to the real point obtain by the symmetry), we can pull the marking
ρm :6g→ Fm to Fb in order to obtain a marking ρb :6g→ Fb and a real structure
c = ρ−1

b ◦ cX ◦ ρb : 6g → 6g. Any other trivialization results in another marking
isotopic to ρb and a real structure isotopic to c : 6g → 6g. Hence, a directed
elementary C-marked RLF defines a vanishing cycle defined up to c-equivariant
isotopy, where the real structure c is also considered up to isotopy.

Definition 3.3. A pair (c, a) of a real structure c :6g→6g and a noncontractible
simple closed curve a ∈6g is called a real code if c(a)= a.

Two real codes (c0, a0) and (c1, a1) are said to be isotopic if there exist a pair
(ct , at) of isotopies of real structures and vanishing cycles such that ct(at)= at for
all t ∈ [0, 1]. Two real codes (c0, a0) and (c1, a1) are called conjugate if there is
an orientation-preserving diffeomorphism φ : 6g → 6g such that φ ◦ c0 = c1 ◦ φ

and that φ(a0) is isotopic to a1.
We denote the isotopy class of the real code by [c, a] and the conjugacy class

by {c, a}.
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Proposition 3.4. There is a bijection between the isomorphism classes of directed
C-marked elementary RLFs and the isotopy classes of real codes.

Proof. We already discussed how to assign a real code to a directed C-marked
elementary RLF. It is straightforward to check that this map is well defined and
surjective.

To show that it is injective, we consider two isotopy classes [c1, a1] and [c2, a2]

such that [c1, a1] = [c2, a2]. Let

(π1 : X1→D2, {m1,m1}, {ρm1, ρ̄m1}) and (π2 : X2→D2, {m2,m2}, {ρm2, ρ̄m2})

be two directed C-marked elementary RLFs associated to the classes [c1, a1] and
[c2, a2], respectively. We need to show that π1 and π2 are isomorphic as directed
C-marked RLFs.

Note that we can always choose a representative c for both [c1] and [c2] such
that [a1] = [a2] ∈Ac

g. Then, by Theorem 3.2, π1 is isomorphic to π2 as R-marked
RLFs. An isomorphism of R-marked RLFs may not preserve the C-markings;
however, it can be modified to preserve them.

Up to homotopy one can identify X2 with a subset
◦

X2 of X1. Since the difference
X1 \

◦

X2 has no singular fiber, one can transform the marking ◦m2 of
◦

X2 to m1,
preserving the real marking and the trivializations over the corresponding paths,
S+ and

◦

S+ (see Figure 4). This way we get an isomorphism of C-marked RLFs
preserving the isomorphism class of R-marked RLFs. �

For fibrations without marking we allow [c, a] to change by an equivariant dif-
feomorphism. Hence, we have the following:

Corollary 3.5. There is a bijection between the set of conjugacy classes of real
codes and the set of classes of directed nonmarked elementary real Lefschetz fibra-
tions.

Remark 3.6. As the classification of real structures on a genus g surface is known,
it is possible to enumerate the conjugacy classes {c, a} of real codes. In the case
when a is nonseparating, there are 6 classes if g = 1; 8g− 3 classes if g > 1 and

b1

S+

m1

m2 S+

Figure 4. The difference of two C-markings.
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is odd; and 8g − 4 classes otherwise. The formulas for separating curves can be
found in [Salepci 2007].

Remark 3.7. There is no preferable real fiber over the boundary of the disk if
the fibration is not directed. Thus, to an elementary nondirected RLF, we can
associate two real codes (c−, a−) and (c+, a+) extracted from the “left” and “right”
real fibers, respectively. It is a fundamental property of the monodromies of real
Lefschetz fibrations that the real structures c− and c+ are related by the monodromy
such that c+ ◦ c− = ta− = ta+ ; see [Salepci 2010].

4. Equivariant diffeomorphisms and the space of real structures

In this section we compute the fundamental group of the space of real structures
on a genus g surface. The computations will be essential in next sections.

Let Cc(6g) denote the space of real structures on 6g that are isotopic to a fixed
real structure c, and let Diff0(6g) denote the group of orientation-preserving dif-
feomorphisms of6g that are isotopic to the identity. We consider two subgroups of
Diff0(6g): One, denoted Diffc

0(6g), consists of those diffeomorphisms that com-
mute with c, and the other, Diff0(6g, c), is the group of diffeomorphisms that are
c-equivariantly isotopic to the identity. The group Diff0(6g) acts transitively on
Cc(6g) by conjugation. The stabilizer of this action is the group Diffc

0(6g). Hence,
Cc(6g) can be identified with the homogeneous space Diff0(6g)/Diffc

0(6g).

Lemma 4.1. The space Diffc
0(6g) is connected for all c : 6g → 6g if g > 1, and

for c :6g→6g, which has one real component, if g = 1.

Proof. We will use different techniques for the cases g > 1 and g = 1.
The case of g> 1: We consider the fiber bundle description of conformal struc-

tures on 6g, introduced in [Earle and Eells 1969]. Let Conf6g denote the space
of conformal structures on 6g equipped with C∞-topology. The group Diff0(6g)

acts on Conf6g by composition from the right. This action is proper, continuous,
and effective; hence, Conf6g → Conf6g /Diff0(6g) is a principal Diff0(6g)-fiber
bundle; see [Earle and Eells 1969]. The quotient is the Teichmüller space of 6g,
denoted Teich6g . Note that conformal structures can be seen as equivalence classes
of Riemannian metrics with respect to the relation that two Riemannian metrics are
equivalent if they differ by a positive function on 6g. Let Riem6g denote the space
of Riemannian metrics on 6g. Then, we have the fibrations

{u :6g→ R : u > 0} // Riem6g

p2
��

Diff0(6g) // Conf6g

p1
��

Teich6g .
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The real structure c has an action Diff0(6g) by conjugation. This action extends
to Conf6g and Riem6g as follows: Fix a section s : Teich6g → Conf6g of the
bundle p1 and consider a family of diffeomorphisms φs

ζ : Diff0(6g) → p−1
1 (ζ )

parametrized by Teich6g such that φs
ζ (id) = s(ζ ). Let s(ζ ) = [µx ] for some Rie-

mannian metric µx on 6g. Then, define φs
ζ ( f (x))= [µ f (x)] for all f ∈Diff0(6g).

The action of the real structure, thus, can be written as c.[µ f (x)] = [µc◦ f ◦c(x)].
Clearly the definition does not depend on the choice of the representative of the
class [µ f (x)], so the action extends to Riem6g .

Let FixConf6g
(c) denote the set of fixed points of the action of c on Conf6g and

let FixRiem6g
(c) be the set of fixed points on Riem6g . Note that s(ζ ) = φs

ζ (id) is
in FixConf6g

(c) for all ζ ∈ Teich6g . Indeed, each [µ f (x)] for f ∈ Diffc
0(61) is in

FixConf6g
(c).

The space FixConf6g
(c) is connected. If FixConf6g

(c) were disconnected, then
the inverse image FixRiem6g

(c) would also be disconnected in Riem6g . However,
it is known that Riem6g is convex; thus, FixRiem6g

(c) is convex, so it is connected.
Therefore, FixConf6g

(c)∩Diff0(6g)=Diffc
0(6g) is connected since FixConf6g

(c) is
a union of sections.

The case of g = 1: If c has one real component, then the quotient 61/c is the
Möbius band. The space of diffeomorphisms of the Möbius band has two con-
nected components [Hamstrom 1965]: the identity component and the component
of the diffeomorphism induced from the reflection of I × I with respect to I × 1

2
(if the Möbius band is obtained from I × I , we identify the points t × 0 with the
points 1−t×1 for t ∈ I =[0, 1]). This diffeomorphism is not isotopic to the identity
because before identifying the ends it reverses the orientation of I× I , and it lifts to
a diffeomorphism of 61 (considered as the obvious quotient of [−1, 1]× [−1, 1])
induced from the central symmetry of [−1, 1] × [−1, 1]. This diffeomorphism is
not isotopic to the identity on 61 since it reverses the orientation of the real curve.

Therefore, we have

{ f :61/c→61/c : f̂ :61→61 is isotopic to id} = { f :61/c→61/c : f ∼= id}.

The former is identified by Diffc
0(61) and the latter is connected. �

Lemma 4.2. For any real structure c :6g→6g,

π1(Diff0(6g)/Diff0(6g, c), id)=
{

0 if g > 1 ,
Z if g = 1.

Proof. Note that the subgroup Diff0(6g, c) acts on Diff0(6g) by composition
from the left. Such an action is free, so Diff0(6g)→ Diff0(6g)/Diff0(6g, c) is a
Diff0(6g, c)-fiber bundle. The fibers, Diff0(6g, c), can be identified with the group
Diff0(6g/c) because the lifting of diffeomorphisms of6g/c can always be assured
by means of the orientation double cover of 6g/c. (Note that if c is nonseparating,
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then 6g/c is nonorientable. In this case, Diff0(6g/c) denotes the space of all
diffeomorphisms of 6g/c and Diff0(6g/c) is component of the identity.)

Now, we consider the long exact homotopy sequence of this fibration:

· · · → π2(Diff0(6g))→ π2(Diff0(6g)/Diff0(6g, c))→ π1(Diff0(6g, c))

→ π1(Diff0(6g))→ π1(Diff0(6g)/Diff0(6g, c))→ π0(Diff0(6g))→ · · · .

The case of g> 1: The space Diff0(6g) is contractible for g> 1 [Earle and Eells
1969], as is Diff0(6g/c) [Earle and Schatz 1970]. Therefore, from the homotopy
long exact sequence of the fibration we get π1(Diff0(6g)/Diff0(6g, c), id)= 0.

The case of g = 1: It is known that 61 is a deformation retract of Diff0(61)

[Ivanov 2001], so the space Diff0(61) can be considered as a group generated by
the rotations that lift to the standard translations on the universal cover.

To understand Diff0(6g, c), we first consider the case when c has two real
components. Note that, in this case, the quotient 61/c is topologically an an-
nulus, so π1(Diff0(61/c), id) = Z; see [Ivanov 2001]. We fix an identification of
% : C/Z2

→61 such that the real structure c is the one induced from the standard
complex conjugation on C. We consider the family

R′1t : C/Z2
→ C/Z2, R′2t : C/Z2

→ C/Z2,

(x + iy)Z2 7→ (x + t + iy)Z2, (x + iy)Z2 7→ (x + i(y+ t))Z2

of diffeomorphisms, where t ∈ [0, 1] and (x + iy)Z2 denotes the equivalence class
of x + iy in C/Z2. Clearly R′ j0 = R′ j1 = id, and R′ jt is isotopic to identity for
each t ∈ [0, 1] and j = 1, 2. The homotopy classes of R1

t = % ◦ R′1t ◦ %
−1 and

R2
t = % ◦ R′2t ◦ %

−1 form a basis of π1(Diff0(61), id). Moreover, with respect to
the identification %, each diffeomorphism R1

t is in Diff0(61, c), so the loop R1
t is

a generator of π1(Diff0(61, c), id). Thus, from the homotopy exact sequence we
get π1(Diff0(61)/Diff0(61, c), id)= Z.

If c has no real component, then the quotient 61/c is a Klein bottle, so the
group Diff0(61/c) is isomorphic to S1 and is generated by the rotation that lifts
to a translation in the universal cover of the Klein bottle [Hamstrom 1965]. Let us
now fix an identification % : R2/Z2

→ 61 such that the real structure c is induced
from the real structure

R2/Z2
→ R/Z2, (x, y)Z2 7→ (x + 1

2 ,−y)Z2 .

The classes of family of diffeomorphisms R j
t = % ◦ R′ jt ◦ %

−1 for j = 1, 2, where

R′1t : R2/Z2
→ R2/Z2, R′2t : R2/Z2

→ R2/Z2,

(x, y)Z2 7→ (x + t, y)Z2, (x, y)Z2 7→ (x, y+ t)Z2,



420 NERMİN SALEPCİ

form a basis of π1(Diff0(61), id). With respect to the identification % each diffeo-
morphism R1

t is in Diff0(61, c), so R1
t is a generator of π1(Diff0(61, c), id) = Z.

Therefore, we get π1(Diff0(61)/Diff0(61, c), id)= Z.
If c has a unique real component, C , then the restriction f |C of f ∈Diff0(61, c)

defines a diffeomorphism of C . Such a restriction defines a fibration Diff0(61, c)→
Diff0(C) whose fibers isomorphic to Diff0(61,C)= { f ∈Diff0(61, c) : f |C = id}.
Note that Diff0(61,C) ∼= Diff0(61 \C, ∂) where 61 \C denotes the closure of
61 \C and Diff0(61 \C, ∂) the group diffeomorphisms of 61 \C that are identity
on the boundary.

Topologically 61 \ C is an annulus, so Diff0(61 \C, ∂) is contractible; see
[Ivanov 2001]. From the homotopy long exact sequence of the fibration

Diff0(61,C) // Diff0(61, c)

��

Diff0(C),

we get πk(Diff0(61, c), id)∼= πk(Diff0(C), id) for all k.
Let us now choose an identification % : C/3→61, where 3 is the lattice gen-

erated by v1 = (1/
√

2, 1/
√

2) and v2 = (1/
√

2,−1/
√

2). Then, the real structure
c can be taken as the one induced from the complex conjugation on C.

We consider R′i (t) : C/3→ C/3, t ∈ [0, 1] such that

R′1t : C/3 → C/3, R′2t : C/3 → C/3,

(x + iy)3 7→ (x + t + iy)3, (x + iy)3 7→ (x + i(y+ t))3.

Again, the classes of R j
t = %◦ R′ jt ◦%

−1 for j = 1, 2 form a basis for Diff0(61),
while R1

t can be taken as a generator for π1(Diff0(61, c), id) = Z. Therefore,
π1(Diff0(61)/Diff0(61, c), id)= Z. �

Proposition 4.3. For any real structure c :6g→6g,

π1(C
c(6g))= π1(Diff0(6g)/Diffc

0(6g), id)=
{

0 if g > 1,
Z if g = 1.

Proof. By Lemma 4.1, Diffc
0(6g) is connected for all real c :6g→6g with g > 1

and for the real structure c :61→61 that has one real component. Hence, in these
cases Diffc

0(61)= Diff0(61, c), so the result follows from Lemma 4.2.
In the case when c : 61→ 61 has 2 real components, the space Diffc

0(61) has
two connected components. Note that the diffeomorphism R2

1/2 ( induced from the
translation (x+ iy)Z2→ (x+ i(y+1/2))Z2 on C/Z2) is equivariant; however, it is
not equivariantly isotopic to the identity. Hence, Diffc

0(61) has two components:
the component Diff0(61, c) of the identity and the component of the rotation R2

1/2.
(In what follows, we denote R2

1/2 by R1/2.)
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We identify rotations in Diff0(61) \Diff0(61, c) with S1 by letting R2
t → 2π t .

Then rotations in the quotient Diff0(61)/Diffc
0(61) are identified with S1/θ∼(θ+π),

so we have π1(Diff0(61)/Diffc
0(61), id)= Z.

The case when c : 61 → 61 has no real component can be treated similarly
using the identification % : R2/Z2

→61. �

5. Boundary fiber sum of C-marked real Lefschetz fibrations

Let (D2, conj) be a real disk with oriented real part. We denote by S± the upper/
lower semicircles of ∂D2. We consider also left/right semicircles, denoted by S±,
and the quarter circles S±± = S± ∩ S±. (Here directions right/left and up/down are
determined by the orientations of D2 and its real part.) Let r± be the real points of
S±, and c± the real structures on F± = π−1(r±).

Definition 5.1. Let

(π ′ : X ′→ D2, {b′, b̄′}, {ρ ′, ρ̄ ′}) and (π : X→ D2, {b, b̄}, {ρ, ρ̄})

be two directed C-marked real Lefschetz fibrations such that the real structures c′
+

on F ′
+

and c− on F− induce (via the markings) isotopic real structures on6g. Then,
we define the strong boundary fiber sum (the boundary fiber sum of C-marked
RLFs) as follows.

Σg ρρ�

Fb
c−F �

+ F−c�
+

bb�

b̄� b̄

r−r�
+

F �
b�

We choose trivializations of π ′−1(S++) and π−1(S+−) such that the pull backs of
c′
+

and c− give the same real structure c on 6g. The trivialization of π ′−1(S+) can
be obtained as a union 6g× S++ ∪6g× S−+�(x,1+)∼(c(x),1−) and similarly π−1(S−)
is obtained as 6g × S+− ∪6g × S−−�(x,−1+)∼(c(x),−1−). The strong boundary fiber
sum X ′ \6g X→ D2 \ D2 is thus obtained by gluing π ′−1(S+) to π−1(S−) via the
identity map.

Remark 5.2. (1) In fact, the construction described above creates a manifold with
corners, but there is a canonical way to smooth the corners; hence, the strong
boundary fiber sum is the manifold obtained by smoothing the corners.

(2) By definition, the strong boundary fiber sum is associative but not commuta-
tive.
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(3) The strong boundary fiber sum of C-marked RLFs is naturally C-marked.

Proposition 5.3. If g > 1, then the strong boundary fiber sum X ′ \6g X → D2 of
directed C-marked genus g real Lefschetz fibrations is well defined up to isomor-
phism of C-marked RLFs.

Proof. The boundary fiber sum does not affect the fibrations outside a small neigh-
borhood of the interval where the gluing is made. Let us choose a neighborhood N
that is real and far from the critical set. Obviously, the real structures on the fibers
over the real points of N are isotopic. Therefore, each fiber sum defines a path in
the space of real structures on 6g, and the difference of two strong boundary fiber
sums gives a loop in this space. Thus, the result follows from the contractibility
(shown in Proposition 4.3) of this loop in the case of g > 1. �

6. Strong real Lefschetz chains associated to
C-marked real Lefschetz fibrations

Let’s consider a directed C-marked totally real Lefschetz fibration π : X→ D2. We
slice D2 into smaller discs D1, D2, . . . , Dn (ordered with respect to the orientation
of the real part of (D2, conj)) such that each Di contains only one critical value
and the base point b (which is chosen to be the “north pole” as in Figure 5). Let
r1, r2, . . . , rn, rn+1 be the real points of

⋃n
i=1 ∂Di and let ci be the real structure

on 6g pulled back from the inherited real structure of Fri .
As claimed in Remark 3.7, we have ci+1 ◦ ci = tai for each fibration over Di ,

where ai denotes the corresponding vanishing cycle. As shown in Proposition 3.4,
each C-marked real Lefschetz fibration over Di is determined by the isotopy class
[ci , ai ] of a real code. Hence, the fibration π : X → D2 yields a sequence of real
codes [ci , ai ] satisfying ci+1 ◦ ci = tai . Clearly this sequence is an invariant of π .

Definition 6.1. A sequence [c1, a1], [c2, a2], . . . , [cn, an] of isotopy classes of real
codes is called a strong real Lefschetz chain if we have ci+1 ◦ ci = tai for all
i = 1, . . . , n.

�

b

...

...
r1 r2 rn rn+1× ××� � � � �

b̄

r3

Figure 5. Slicing D2 into small discs having one critical value.
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Theorem 6.2. If g > 1, then there is a one-to-one correspondence between the
strong real Lefschetz chains [c1, a1], [c2, a2], . . . , [cn, an] and the isomorphism
classes of directed C-marked genus g totally real Lefschetz fibrations over D2.

Proof. Necessity is clear. As for the converse, we consider the unique class (assured
by Proposition 3.4) of directed C-marked elementary real Lefschetz fibration asso-
ciated to each real code [ci , ai ]. We then glue these elementary fibrations (from left
to right respecting the order determined by the chain) using the strong boundary
fiber sum. The result, thus, follows from Proposition 5.3. �

Note that if we consider nonmarked fibrations, then the real codes around real
singular fibers are defined up to conjugation. Thus, we are motivated to give the
following definition and state the immediate corollary of Theorem 6.2.

Definition 6.3. A sequence {c1, a1}, {c2, a2}, . . . , {cn, an} of conjugacy classes of
real codes is called a real Lefschetz chain if tai ◦ ci is conjugate to ci+1 for all
1≤ i ≤ n.

Corollary 6.4. If g > 1, then there is a one-to-one correspondence between the
real Lefschetz chains {c1, a1}, {c2, a2}, . . . , {cn, an} and the isomorphism classes
of nonmarked directed genus g totally real Lefschetz fibrations over D2.

If the total monodromy of the fibration π : X → D2 is the identity, then we
can consider the extension of π to a fibration π̂ : X̂ → S2. Two such extensions
π̂ : X̂ → S2 and π̌ : X̌ → S2 are considered isomorphic if there is an equivariant
orientation-preserving diffeomorphism H : X̂→ X̌ such that π̂ = π̌ ◦ H .

Proposition 6.5. Let π : X → D2 be a C-marked genus g totally real Lefschetz
fibration whose total monodromy is the identity. If g > 1, then π can be extended
uniquely up to isomorphism to a totally real Lefschetz fibration over S2.

Proof. Once again, the difference of two extensions corresponds to a loop in the
space of real structures. Hence, the result follows from Proposition 4.3. �

Corollary 6.6. If g > 1, then there is a one-to-one correspondence between the
strong real Lefschetz chains [c1, a1], [c2, a2], . . . , [cn, an] such that cn+1 ◦ c1 =

(tan ◦ cn) ◦ c1 = id and the isomorphism classes of directed C-marked genus g
totally real Lefschetz fibrations over S2.

Remark 6.7. It is known that the components of the space of diffeomorphisms of
the torus fixing a point are contractible [Earle and Eells 1969], so Theorem 6.2 can
be adapted to C-marked real elliptic Lefschetz fibration admitting a real section
(a section compatible with the real structures). See [Salepci 2007, Section 5.4]
for details. In the next section, we treat the case of nonmarked elliptic Lefschetz
fibrations, which possibly do not admit a real section.



424 NERMİN SALEPCİ

7. Boundary fiber sum of nonmarked real elliptic Lefschetz fibrations

To deal with the case of elliptic fibrations, we introduce the boundary fiber sum
for nonmarked fibrations. (Although we concentrate on the case of g(F) = 1, the
definition applies to any genus.)

Definition 7.1. Let π ′ : X ′ → D2 and π : X → D2 be two directed nonmarked
RLFs. We consider the real fibers F ′

+
and F− of π ′ and π over the real points

r ′
+

and r−, respectively. Let us assume that the real structure c′
+
: F ′
+
→ F ′

+
is

conjugate to c− : F−→ F−. That is, there is an orientation-preserving equivariant
diffeomorphism φ : F ′

+
→ F−. Then, the boundary fiber sum of X ′ \F,φ X → D2

is obtained by identifying the fibers F ′
+

and F− via φ, as below.

F−F ′
+

r−r′
+

φ
→

The boundary fiber sum does depend on the choice of φ in such a way that
the two boundary fiber sums defined by the equivariant diffeomorphisms φ,ψ :
F ′
+
→ F− are isomorphic, if ψ ◦φ−1

: F−→ F− can be extended to an equivariant
diffeomorphism of X→D2 (or similarly if φ−1

◦ψ : F ′
+
→ F ′

+
can be extended to an

equivariant diffeomorphism of X ′→ D2). The necessary and sufficient condition
for ψ ◦φ−1

: F−→ F− to extend to an equivariant diffeomorphism of the fibration
X→ D2 is that ψ ◦φ−1 takes the unique vanishing cycle a of X→ D2 to a curve
equivariantly isotopic to a.

Now note that if c(a) = a, then c induces an action on a. Such an action can
be the identity, a reflection, or an antipodal involution. It is not hard to show that
if c : 61→ 61 has one real component, then 61 contains a unique c-equivariant
isotopy class of noncontractible curves on which c acts as a reflection, a unique
class of curves where the action of c is an antipodal involution, and a unique real
curve; if c has 2 real components, then 61 contains no c-equivariant isotopy class
of curves on which c acts as an antipodal involution, a unique class of curves on
which c acts as a reflection, and two classes of real curves (in which case, we
call a pair of representatives of different classes c-twin curves); if c has no real
components, then there exist two c-equivariant isotopy classes where c acts as an
antipodal involution (as above, a pair of representatives of different classes are
called c-twin curves) and no classes of other types. The boundary fiber sum is,
therefore, well defined unless the real structure c has no real component or c has
two real components one of which is the vanishing cycle a.
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Recall that the rotation R1/2 (introduced in the proof of Proposition 4.3) switches
the c-twin curves. Hence, c-twin curves can be carried to each other via equivariant
diffeomorphisms although they are not equivariantly isotopic, so in the case of
existence of c-twin curves, there is an ambiguity in the definition of the boundary
fiber sum X ′\X→D2 (it can be defined in two ways). To resolve the ambiguity, we
should specify how we identify the c′

+
-twin curves on the fiber F ′

+
in X ′ with the

c−-twin curves on the fiber F− in X . In a certain case, namely, if the real structure
c′
+

has two real components and acts on the vanishing cycle a′ as a reflection,
the problem of switching c-twin curves can be eliminated via the transformation
introduced below.

Let π : X→ D2 be an elementary directed real elliptic Lefschetz fibration such
that the real structure c+ : F+ → F+ acts on the vanishing cycle as a reflection.
As a result, one of c± : F±→ F± has 1 real component while the other has 2 real
components. Without loss of generality, we can assume that the real structure c−
has 1 real component. Our aim is to construct a transformation Tsing of X that does
not change the isomorphism class of the fibration π : X→ D2 and that is identity
over S− ⊂ ∂D2 and interchanges the real components of F+. To construct Tsing,
we consider the following well known model for elementary elliptic fibrations.

Let �̂ = {z | |Re(z)| ≤ 1
2 , Im(z) ≥ 1} ∪ ∞. This is the subset bounded by

Im(z) ≥ 1 of the one point compactification of the standard fundamental domain
{z | |Re(z)| ≤ 1

2 , |z| ≥ 1} of the modular action on C; see Figure 6.
We consider the real structure c�̂ : �̂→ �̂ such that c�̂(ω)=−ω. Let � denote

the quotient �̂� 1
2+iy∼− 1

2+iy. The real structure c�̂ induces a real structure on �.
Note that � is a topological real disc and can be identified with D2 so that the real
part of D2 corresponds to the union of the half-lines iy and 1

2 + iy, where y ≥ 1.
For any ω ∈�, the fiber over ω is given by Fω =C/(Z+ωZ), where the fiber F∞
has the required nodal-type singularity.

Ω̂

−1 −1
2

11
2

i

0

1
2

+ iy iy

∞

Ω

Figure 6. Moduli space of prescribed RELFs.
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1
2

0−
1
2

1
2

Figure 7. The graph of f .

Let π� : X�→ � denote the fibration such that π−1
� (ω) = Fω = C/(Z+ωZ)

for all ω ∈�. Then, we consider the translation T ′� defined by

T ′� : X�→ X�, (z)Z+ωZ ∈ Fω 7→ (z+ τ(w))Z+ωZ ∈ Fω,

where ( · )Z+ωZ denotes the equivalence class in C/(Z+ωZ).
The map τ :�→� is defined by

τ(ω)=− 1
2 +

( 1
2 − f (Re(ω))+ i

)
exp(− Im(ω)+ 1),

where f : R/Z→ R/Z is a smooth mapping whose graph is as shown in Figure 7
and that satisfies the following properties:

• f (0)= 1
2 (modulo Z),

• f (1− x)= 1− f (x), (which implies f ( 1
2)=

1
2 ) (modulo Z),

• f is linear on [14 ,
3
4 ] (modulo Z).

Note that τ has the following properties. (Equations are considered modulo the
relation − 1

2 + iy ∼ 1
2 + iy, with y ≥ 1.)

• τ(−ω)=−τ(ω).

• τ(∞)= 1
2 .

• τ( 1
2 + iy)=− 1

2 + i exp(−y+ 1)= 1
2 + i exp(−y+ 1); in particular, if y = 1,

then τ( 1
2 + i)= 1

2 + i .

• τ(iy)=− 1
2 + i exp(−y+1)= 1

2 + i exp(−y+1); in particular, if y = 1, then
τ(i)= 1

2 + i .

Let Tsing : X→ X denote the transformation induced from T ′sing : X�→ X�. By
definition Tsing is equivariant and the identity over S− ⊂ ∂D2, and its restriction to
F+ is the rotation R1/2. (Figure 8 shows the action of Tsing.)

Lemma 7.2. Let π ′ : X ′ → D2 and π : X → D2 be two nonmarked elementary
RELFs such that both c′

+
and c− have 2 real components. We assume that the

vanishing cycle a of π is real with respect to c−. Then, the boundary fiber sum
X ′ \F X→ D2 is well defined if c′

+
acts on the vanishing cycle a′ as a reflection.
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Tsing
−→

Figure 8. The action of Tsing on the real part (in gray).

Proof. The boundary fiber sums X ′ \F,φ X → D2 and X ′ \F,ψ X → D2 are not
isomorphic if φ ◦ψ−1(a) and a are c-twin curves, but in the case when c′

+
acts on

the vanishing cycle a′ as a reflection, we can apply Tsing to X ′ so that Tsing(F ′+)
differs from the fiber F ′

+
by the rotation R1/2. Hence, X ′\F,φ X→D2 is isomorphic

to Tsing(X ′) \F,φ◦R1/2 X→ D2, which is isomorphic to X ′ \F,ψ X→ D2. �

8. Real Lefschetz chains associated to
nonmarked real elliptic Lefschetz fibrations

We now consider a nonmarked directed totally real elliptic Lefschetz fibration π :
X→ D2, with q1< q2< · · ·< qn . Around each critical value qi we choose a small
real disc Di such that

Di ∩ {q1, q2, . . . , qn} = {qi } and Di ∩ Di+1 = {ri+1} ⊂ [qi , qi+1];

see Figure 9. Let ci be the real structures on the fibers Fri for 1≤ i ≤ n (where r1

is the left real point of ∂D2) and ai be the corresponding vanishing cycle.
By Corollary 3.5, each directed (nonmarked) fibration over Di is classified by

the conjugacy class {ci , ai } of the real code. Thus, we can encode the fibration
π : X→ D2 by the real Lefschetz chain {c1, a1}, {c2, a2}, . . . , {cn, an}.

Clearly, real Lefschetz chains are invariants of directed nonmarked totally real
elliptic Lefschetz fibrations over D2, but they are not sufficient for classifying such
fibrations. Additional information is needed, if for some i the real structure ci has
2 real components and vanishing cycles corresponding to the critical values qi and

× × × ×q1 q2 q3 qn

...
r1 r2

rn

Figure 9. Subdividing D2 into smaller discs.
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qi qi+1ri
× ×

{ci, ai}

qi qi+1ri

× ×

{ci, ai}R

qi qi+1ri
××

{ci, ai}

qi qi+1ri
××

{ci, ai}R

Figure 10. Real parts (in gray) of the fibrations associated to
{ci , ai } and {ci , ai }

R .

qi+1 are real or if ci has no real component. Indeed, in these cases the vanishing
cycles corresponding to the critical values qi and qi+1 can be the same curve, or
they can be ci -twin curves. If they are ci -twin curves, then we mark {ci , ai }

R the
corresponding real code {ci , ai } by adding R (here R refers to the rotation R1/2

that interchanges c-twin curves). The real Lefschetz chain we obtain is called the
decorated real Lefschetz chain. Figure 10 shows all possible configurations of the
real locus associated to {ci , ai } and {ci , ai }

R .

Theorem 8.1. There exists a one-to-one correspondence between the decorated
real Lefschetz chains and the isomorphism classes of directed nonmarked totally
real elliptic Lefschetz fibrations over D2.

Proof. Necessity is clear. As for the converse, we consider the unique class of
the directed nonmarked elementary RELF (assured by Corollary 3.5) associated
to each real code {ci , ai }. Then, we construct the required fibration by gluing
elementary fibrations (from left to right) using the boundary fiber sum. As dis-
cussed above, the boundary fiber sum is uniquely defined in the case when the real
structure on the fiber where the sum is performed has 1 real component or when
it has 2 real components and acts on the vanishing cycle of the fibration glued to
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� � � � �

N

×× × ...

Figure 11. Neighborhood over which Tsing is applied.

right as a reflection. In the case when the real structure has 2 real components
and acts as reflection on the vanishing cycle corresponding to the rightmost critical
value of the already constructed π ′ : X ′ → D2, the two possible boundary fiber
sums are isomorphic by Lemma 7.2 since in this case we can apply Tsing to X ′

(by considering Tsing on a neighborhood N of the last critical value, as shown in
Figure 11, and extending it to X ′ as the identity outside of π ′−1(N )). In all the
other cases, the boundary fiber sum is defined uniquely by the decoration. �

If c1 is conjugate to cn+1, then we can consider an extension of π : X→ D2 to
a fibration over S2. As before, in the case when cn+1 has no real components or it
has 2 real components and both a1 and an are real, a decoration at infinity will be
needed.

Proposition 8.2. Let π : X → D2 be a totally real elliptic Lefschetz fibration
associated to a decorated real Lefschetz chain. We assume that the real structures
c1 and cn+1 on the fibers over left and respectively right real point of ∂D2 are
conjugate. If cn+1 (and thus c1) has 1 real component or if cn+1 (and thus c1) has 2
real components and either cn+1 acts on the vanishing cycle an as a reflection, or c1

acts on the vanishing cycle a1 as a reflection, then π extends uniquely to a fibration
over S2. Otherwise, there are two extensions distinguished by the decoration at
infinity.

Proof. An extension of π : X → D2 to a fibration over S2 defines a trivialization
φ : 61 × S1

→ π−1(∂D2) over the boundary ∂D2. Two trivializations φ and φ′

correspond to isomorphic real fibrations if φ−1
◦ φ′ : 61 × S1

→ 61 × S1 can be
extended to an equivariant diffeomorphism of 61 × D2 with respect to the real
structure (cn+1, conj) : 61 × D2

→ 61 × D2. Let 8t = (φ
−1
◦ φ′)t : 61 → 61,

t ∈ S1. Since there is no fixed marking, up to change of marking we assume that
8t ∈ Diff0(61).

The real structure splits the boundary into two symmetric pieces, so instead
of considering an equivariant map over the entire boundary we consider a dif-
feomorphism over one the symmetric pieces. Let 8t for t ∈ [0, 1] denote the
family of such diffeomorphisms. This family defines a path in Diff0(61) whose
end points lie in the group Diffcn+1

0 (61); therefore, 8t defines a relative loop in
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... ×

N

× ... ××

Figure 12. Neighborhood over which T is applied.

π1(Diff0(61),Diffcn+1
0 (61)), and we are interested in the contractibility of this

relative loop.
We consider the exact sequence

· · · → π1(Diffcn+1
0 )→ π1(Diff0)

f
→ π1(Diff0,Diffcn+1

0 )
g
→ π0(Diffcn+1

0 )

h
→ π0(Diff0)→ π0(Diff0,Diffcn+1

0 )→ 0

of the pair (Diff0(61),Diffcn+1
0 (61)).

In the case when cn+1 has one real component, Diffcn+1
0 (61) is connected, so the

map h is injective; hence f is surjective. Therefore, we can see elements of the
group π1(Diff0(61),Diffcn+1

0 (61), id) as being in π1(Diff0(61), id).
In all the other cases, Diffcn+1

0 (61) has two components. We mark one of the
components to make the map h injective when restricted to the marked component.
Thus, g becomes the zero map, and so f is surjective over the marked component
of Diffcn+1

0 (61). Note that decoration of real Lefschetz chains distinguishes one of
the component of Diffcn+1

0 (61); hence, marking one component or other give the
two extensions distinguished by the decoration. The distinctive feature of the case
when cn+1 has 2 real components and acts an as a reflection (or c1 acts on a1 as
a reflection) is that the transformation Tsing changes one marking to other, so the
marking is not essential.

The proposition, thus, follows from Lemma 8.4 in which we show that any
relative loop can be made contractible by means of some transformations T of the
fibration π : X→ D2. �

Let us first define the transformation T of real elliptic Lefschetz fibrations that
is defined over a regular slice N of D2.

Let π : X → D2 be a directed RELF. We consider a real slice N of D2 that
contains no critical value; see Figure 12.

Let ξ : I×I→N , where I =[0, 1], be an orientation-preserving diffeomorphism
such that first interval corresponds to the real direction on N . The fibration over
N has no singular fiber; hence, it is trivializable. Let us consider a trivialization
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4 :61× I × I → π−1(N ) such that the following diagram commutes:

61× I × I 4
//

��

π−1(N )

π

��

I × I
ξ

// N .

Since N has no critical value, the isotopy type of the real structure on the fibers
over the real part of N remains fixed. If the real structure c has 2 real components,
then we consider the model % : C/Z2

→61 and set %̄ = (%, id) : C/Z2
× I × I →

61× I × I to define T as follows:

T ′ : C/Z2
× I × I → C/Z2

× I × I, ((x + iy)Z2, t, s) 7→ ((x + t + iy)Z2, t, s).

Then, we set T = 4 ◦ (%̄ ◦ T ′ ◦ %̄−1) ◦4−1 on π−1(N ). Since T is the identity
at t = 0, 1, we can extend T to X by the identity outside of π−1(N ).

If c has one real component, we construct T using % : C/3→61. Similarly, if
c has no real component, then we repeat the same using % : R2/Z2

→61.

Remark 8.3. First, since the transformation T is defined by a real rotation, T
preserves the isomorphism class of the real Lefschetz fibration.

Second, the map T depends only on the isotopy type of π−1(N ).

Lemma 8.4. Let π : X → D2 be a totally real elliptic Lefschetz fibration. We
assume that there exists at least one vanishing cycle on which corresponding real
structure acts as a reflection. Then, there exists a generating set for

π1(Diff0(61), id)= Z+Z

consisting of transformations T± for some nonsingular slices N±.

Proof. Let qi be the critical value such that the real structure on a nearby regular
real fiber acts on the vanishing cycle as a reflection. This assumption assures that
the neighboring real fibers have one real component on one side and two real com-
ponents on the other side of the critical value qi . Without loss of generality we can
assume that the real structure over a fiber over a real point that lies on the left of qi

has two real components. (The other case can be treated similarly.)
We choose an auxiliary C-marking ({b, b̄}, {ρ : 61 → Fb, ρ̄ : 61 → Fb̄}) and

fix an identification % : S1
× S1

→ 61. Since the real structure has 2 real compo-
nents, we can assume that the induced real structure on S1

× S1 is the reflection
(α, β)→ (α,−β). The real part consists of the curves C1= (α, 0) and C2= (α, π).
Moreover, a representative of the vanishing cycle can be chosen as (0, β). As
c+ = tai ◦ c− on S1

× S1, the real part of c+ is the curve C3 given homologically
by 2α−β; see Figure 13.
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ai

C1 C2

F− F+

C3

Figure 13. Real fibers (in gray) over the real points neighboring qi .

... ...× ×× ××

N− N+

qi

Figure 14. Regular slices N±.

We now consider two nonsingular real slices N− and N+ of D2 as shown in
Figure 14. Let us suppose that the real fibers over N− are identified to F− while
real fibers over N+ are identified to F+ (where F± are as shown Figure 13). Let
C ′3 and C ′1 be curves on Fb obtained by pulling back C3 ⊂ F+ and C1 ⊂ F−,
respectively. The curves C ′3 and C ′1 intersect at one point, so we can identify 61

with C ′1×C ′3 so that rotations along C ′1 and C ′3 generate the group Diff0(61, id).
Hence, {T+, T−} generates π1(Diff0(61), id). �

Theorem 8.1 applies naturally to directed nonmarked RELFs over D2 that ad-
mit a real section in which a real-case Lefschetz chain does not contain a real
code (ci , ai ) where the real structure has no real component. Besides, in the case
when the real structure has 2 real components and the vanishing cycle is real, the
decoration is not needed since the existence of a real section determines naturally
the gluing. Moreover, the extension to a fibration over S2 is uniquely defined by
the section. Hence we have the following proposition.

Proposition 8.5. Two directed totally real elliptic Lefschetz fibrations over S2

admitting a real section and having the same real Lefschetz chain up to cyclic
ordering are isomorphic.

Remark 8.6. Indeed, the proposition holds even for fibrations with a fixed real
section. If there are only real critical values, then the real sections are determined
in a neighborhood of a real part. Moreover, over the real part one can carry one
real section to another using the transformations T and double Tsing. Indeed, the
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T
−→

T
−→

double Tsing
−→

Figure 15. Modification of the real section over the real part.

double Tsing is defined for real Lefschetz fibrations with two critical values where
the real structure extracted from the real fiber over a real point between the critical
values acts on the vanishing cycles as a reflection. The model we use to define
the double Tsing is as follows. Consider the disc D with two critical values as the
double cover of a disc with one critical value branched at a regular real point. Let
D− and D+ be two corresponding copies of the disk on the branched cover. By
pulling back the fibration X� over D, we obtain a model fibration over D− ∪ D+.
Thus, we can apply Tsing at the same time to fibrations over D− and D+. The
possible modifications of the section is shown in the Figure 15.
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STABLE TRACE FORMULAS AND DISCRETE SERIES
MULTIPLICITIES

STEVEN SPALLONE

Let G be a reductive algebraic group over Q, and suppose that 0 ⊂ G(R) is
an arithmetic subgroup defined by congruence conditions. A basic problem
in arithmetic is to determine the multiplicities of discrete series represen-
tations in L2(0\G(R)), and in general to determine the traces of Hecke
operators on these spaces. In this paper we give a conjectural formula
for the traces of Hecke operators, in terms of stable distributions. It is
based on a stable version of Arthur’s formula for L2-Lefschetz numbers,
which is due to Kottwitz. We reduce this formula to the computation of
elliptic p-adic orbital integrals and the theory of endoscopic transfer. As
evidence for this conjecture, we demonstrate the agreement of the central
terms of this formula with the unipotent contributions to the multiplicity
coming from Selberg’s trace formula of Wakatsuki, in the case G = GSp4
and 0 =GSp4(Z).

1. Introduction

Let G be a reductive algebraic group over Q, and 0 an arithmetic subgroup of
G(R) defined by congruence conditions. Then G(R) acts on L2(0\G(R)) via
right translation; let us write R for this representation. A fundamental problem in
arithmetic is to understand R. As a first step, we may decompose R as

R = Rdisc⊕ Rcont,

where Rdisc is a direct sum of irreducible representations, and Rcont decomposes
continuously. The continuous part may be understood inductively through Levi
subgroups of G as in [Langlands 1976], leaving us with the study of Rdisc. Given
an irreducible representation π of G(R), write Rdisc(π) for the π -isotypic subspace
of Rdisc. Then

Rdisc(π)∼= π
⊕mdisc(π)

MSC2010: 11F46, 11F72, 22E55, 32N10.
Keywords: discrete series, Hecke operators, orbital integrals, Shimura varieties, endoscopy,

fundamental lemma, stable trace formula.
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for some integer mdisc(π). (We may also write mdisc(π, 0).) A basic problem is to
compute these integers.

There is more structure than simply these dimensions, however. Arithmetic
provides us with a multitude of Hecke operators h on L2(0\G(R)) that commute
with R. Write Rdisc(π, h) for the restriction of h to Rdisc(π). The general problem
is to find a formula for the trace of Rdisc(π, h).

We focus on discrete series representations π . These are representations that
behave like representations of compact or finite groups, in the sense that their
associated matrix coefficients are square integrable. Like other smooth representa-
tions, they have a theory of characters developed by Harish-Chandra. They separate
naturally into finite sets called L-packets. For an irreducible finite-dimensional al-
gebraic representation E of G(C), there is a corresponding L-packet5E of discrete
series representations, consisting of those with the same infinitesimal and central
characters as E .

We follow the tradition of computing tr Rdisc(π, h) through trace formulas. This
method has gone through several incarnations, beginning with Selberg [1956] for
GL2, in which he also investigated the continuous Eisenstein series. A goal was
to compute dimensions of spaces of modular forms, and traces of Hecke operators
on these spaces. These spaces of modular forms correspond to the spaces Rdisc(π)

we are discussing in this case. His trace formula is an integral, over the quotient
of the upper half space X by 0, of a sum of functions Hγ , one for each element
of 0. Let us write it roughly as

dimC S(0)=
∫
0\X

∑
γ∈0

Hγ(Z)d Z ,

for some space S(0) of cusp forms with a suitable 0-invariance condition.
Here d Z is a G(R)-invariant measure on X . When the quotient 0\X is com-

pact, the sum and integral may be interchanged, leading to a simple expression
for the dimensions in terms of orbital integrals. The interference of the Eisenstein
series precludes this approach in the noncompact quotient case. Here there are
several convergence difficulties, which Selberg overcomes by employing a trunca-
tion process. Unfortunately the truncation process leads to notoriously complicated
expressions, which are far from being in closed form. This study of Rdisc(π) has
been expanded to other reductive groups using what is called the Arthur–Selberg
trace formula. See [Arthur 2005].

Generally, a trace formula is an equality of distributions on G(R), or on the
adelic group G(A). One distribution is called the geometric side; it is a sum
of terms corresponding to conjugacy classes of G. Given a test function f , the
formula is essentially made up of combinations IM(γ, f ) of weighted integrals
of f over the conjugacy classes of elements γ. (Here M is a Levi subgroup of G.)
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The other distribution is called the spectral side, involving the Harish-Chandra
transforms trπ( f ) for various representations π . Here, the operator π( f ) is given
by weighting the representation π by f . The geometric and spectral sides agree,
and in applications we can learn much about the latter from the former. Some of
the art is in picking test functions to extract information about both sides.

The best general result using the trace formula to study tr Rdisc(π, h) seems to
be Arthur’s [1989]. He produces a formula for

(1-1)
∑
π∈5

tr Rdisc(π, h),

where 5 is a given discrete series L-packet for G(R). He uses test functions
f which he calls “stable cuspidal”. Their Fourier transforms π 7→ trπ( f ) are
“stable” in that they are constant on L-packets, and “cuspidal” in that, considered
as a function defined on tempered representations, they are supported on discrete
series. (Tempered representations are those that appear in the Plancherel formula
for G(R).) Using his invariant trace formula, Arthur [1988a; 1988b] obtains (1-1)
as the spectral side. The geometric side is a combination of orbital integrals for h
and values of Arthur’s 8-function, which describes the asymptotic values of dis-
crete series characters averaged over an L-packet.

In particular, he produces a formula for

(1-2)
∑
π∈5

mdisc(π),

for an L-packet 5 of (suitably regular) discrete series representations.
In the case of G = GL2, there is a discrete series representation πk for each

integer k ≥ 1. In this case mdisc(πk) is the dimension of the space Sk(0) of 0-cusp
forms of weight k on the upper half plane. Restriction to SL2(R) gives two discrete
series {π+k , π

−

k } in each L-packet. However we may still use Arthur’s formula here
since mdisc(π

+

k , 0) = mdisc(π
−

k , 0) for every arithmetic subgroup 0. (Endoscopy
does not play a role.)

For the group GSp4(R) there are two discrete series representations in each L-
packet: one “holomorphic” and one “large” discrete series. Let π be a holomorphic
discrete series, and write π ′ for the large discrete series representation in the same
L-packet as π . The multiplicity mdisc(π, 0) is also the dimension of a certain space
of vector-valued Siegel cusp forms (see [Wallach 1984]) on the Siegel upper half
space, an analogue of the usual cusp forms on the upper half plane. For 0=Sp4(Z),
the dimensions of these spaces of cusp forms were calculated by Tsushima [1983;
1997] by using the Riemann–Roch–Hirzebruch formula, and later by Wakatsuki
[2012] by using the Selberg trace formula and the properties of prehomogeneous
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vector spaces. In [≥ 2012], Wakatsuki then evaluated Arthur’s formula to compute
mdisc(π, 0)+mdisc(π

′, 0), thereby deducing a formula for mdisc(π
′, 0).

A natural approach to isolating the individual mdisc(π), or generally the indi-
vidual tr Rdisc(π, h), is to apply a trace formula to a matrix coefficient, or more
properly, a pseudocoefficient f . This means that f is a test function whose Fourier
transform picks out π rather than the entire packet5 containing π ; see Definition 6
below. Such a function will not be stable cuspidal, but merely cuspidal. Arthur
[1989] (see also [2005]) showed that IM(γ, f ) vanishes when f is stable cuspidal
and the unipotent part of γ is nontrivial. If we examine the geometric side of
Arthur’s formula for a pseudocoefficient f , we must evaluate the more compli-
cated terms IM(γ, f ) for elements γ with nontrivial unipotent part. At the time
of this writing, such calculations have not been made in general; we take another
approach.

Distinguishing the individual representations π from others in its L-packet leads
to the theory of endoscopy, and stable trace formulas. The grouping of representa-
tions π into packets 5 on the spectral side mirrors the fusion of conjugacy classes
that occurs when one extends the group G(R) to the larger group G(C). If F is a
local or global field, then a stable conjugacy class in G(F) is, roughly, the union
of classes which become conjugate in G(F). (See [Langlands 1979] for a precise
definition.)

The distribution that takes a test function to its integral over a regular semi-
simple stable conjugacy class is a basic example of a stable distribution. Indeed,
a stable distribution is defined to be a closure of the span of such distributions;
see [Langlands 1983; 1979]. A distribution on G(F) is stabilized if it can be
written as a sum of stable distributions, the sum being over smaller subgroups
H related to G. These groups H are called endoscopic groups for G; they are
tethered to G not as subgroups but through their Langlands dual groups. As part
of a series of techniques called endoscopy, one writes unstable distributions on G
as combinations of stable distributions on the groups H . Part of this process is the
theory of transfer, associating suitable test functions f H on H(F) to test functions
f on G(F) that yield a matching of orbital integrals. Indeed this was the drive
for [Ngô 2010]. As the name suggests, the theory of endoscopy, while laborious,
leads to an intimate understanding of G.

There has been much work in stabilizing Arthur’s formula. See for example
[Langlands 1983; Arthur 2002; 2001; 2003]. In Kottwitz’s preprint [≥ 2012], he
defines a stable version of Arthur’s Lefschetz formula, which we review below.
(See also [Morel 2010].) It is a combination K( f ) =

∑
H ι(G, H) STg( f H ) of

distributions f 7→ f H
7→ STg( f H ) over endoscopic groups H for G. Here the

distributions STg, defined for each H , are stable. (See Section 5.1 for the definition
of the rational numbers ι(G, H).) Each STg is a sum of terms corresponding to
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stable conjugacy classes of elliptic elements γ ∈ H(Q). Kottwitz’s main result
is that K agrees with Arthur’s distribution, at least for functions f that are stable
cuspidal at the real place.

As part of the author’s thesis [Spallone 2004], the identity terms of K were
evaluated for the group G = SO5 at a function f that was a pseudocoefficient
for a discrete series representation at the real place. Later, Wakatsuki noted that
the resulting expressions match up with the terms in his multiplicity formulas for
mdisc(π, 0) and mdisc(π

′, 0) corresponding to unipotent elements. Moreover, the
contribution in [Spallone 2004] from the endoscopic group accounted for the dif-
ference in these multiplicity formulas, while the stable part corresponded to the
sum. After further investigation, we conjecture simply that Kottwitz’s distribution
evaluated at a function f = fπ,0 suitably adapted to π and 0 is equal to mdisc(π, 0),
under a regularity condition on π . (See Section 5.3 for the precise statement.) Of
course this is compatible with Arthur’s results in [1989].

In this paper we give some computational evidence for this conjecture. We
also reduce the computation of each ST ( f H

π,0) to evaluating elliptic orbital p-adic
integrals for the transfer f∞H at the finite places. The rest breaks naturally into a
problem at the real points and a global volume computation.

The main ingredient at the archimedean place is the 8-function 8M(γ,2
E) of

Arthur, which we review. This quantity gives the contribution from the real place
to the trace formulas in [Arthur 1989] and [Goresky et al. 1997]. It also plays
a prominent role in Kottwitz’s formula. This function, originally defined by the
asymptotic behavior of a stable character near a singular element γ, was expressed
in closed form in many cases by the author in [Spallone 2009].

There are two volume-related constants that enter into any explicit computation
of STg. The first is v(G), which is essentially the volume of an inner form of
G over R. It depends on the choice of local measure dg∞. The second comes
about from orbital integrals at the finite adeles, and depends on the choice of local
measure dg f . These integrals may frequently be written in terms of the volumes
of open compact subgroups K f of G(A f ). In practice, one is left computing ex-
pressions such as v(G)−1 voldg f (K f )

−1, which are independent of the choice of
local measures. More specifically, we define

χK f (G)= v(G)
−1 voldg f (K f )

−1τ(G)d(G).

Here τ(G) is the Tamagawa number of G and d(G) is the index of the real Weyl
group in the complex Weyl group. A main general result of this paper, Theorem 2,
interprets χK f (G) via Euler characteristics of arithmetic subgroups. It extends a
computation of Harder [1971], which was for semisimple simply connected groups,
to the case of reductive groups, under some mild hypotheses on G.

We work out two examples in this paper, one for SL2 and another for GSp4. It
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is easy to verify our conjecture for G = SL2 and 0 = SL2(Z) using the classic
dimension formula for cusp forms. In this case endoscopy does not appear. The
calculations for GSp4 are more complex; we content ourselves with working out
the central terms of Kottwitz’s formula.

If π is a holomorphic discrete series representation of GSp4(R), write Hπ
1 for

the central-unipotent terms of the Selberg trace formula, as evaluated in [Wakatsuki
≥ 2012] to compute mdisc(π, 0). Here 0=GSp4(Z). If π is a large discrete series
representation, write Hπ

1 for the central-unipotent terms in [Wakatsuki ≥ 2012]
contributing to mdisc(π, 0). In both cases, write f = fπ,0 = f∞ f∞, with f∞ a
pseudocoefficient for π , and f∞ the (normalized) characteristic function of the
integer adelic points of G. Write K( f,±1) for the central terms of Kottwitz’s
formula applied to f .

As evidence for our conjecture, we show this:

Theorem 1. For each regular discrete series representation π of G(R), we have

K( fπ,0,±1)= Hπ
1 .

We believe that the K( fπ,0,±1) terms will generally match up with the difficult
central-unipotent terms of the Arthur–Selberg formula, as in this case.

Our conjecture reduces the computation of discrete series multiplicities to the
computation of stable elliptic orbital integrals of various transfers f H

p , written for
functions on G(Qp). Let us write this as SOγH ( f H

p ). Here f p are characteristic
functions of congruence subgroups of G(Qp) related to 0. Certainly at suitably
regular elements, SOγH ( f H

p ) is an unstable combination of orbital integrals of f p;
however there are also contributions from elliptic singular γH , notably γH = 1. At
present, there are expressions for f H

p in the parahoric case and of course for G(Zp),
but less seems to be known for smaller congruence subgroups. On the other hand,
there are many formulas for dimensions of Siegel cusp forms and discrete series
multiplicities for these cases (for example, [Wakatsuki ≥ 2012]). This suggests
that one could predict stable singular elliptic orbital integrals SOγH ( f H

p ) for the
transfer f H

p of characteristic functions of congruence subgroups (see for example
Klingen, Iwahori and Siegel), by comparing our formulas.

Finally, we refer the casual reader to our survey [Spallone 2011] of the present
approach to discrete series multiplicities.

In Section 2, we set up the conventions for this study. We explain how we are
setting up the orbital integrals, and indicate our main computational tools. We also
review the Langlands correspondence for real groups.

The theory of Arthur’s 8-function is reviewed in Section 4. In Section 5, we
review Kottwitz’s stable version of Arthur’s formula from [Kottwitz ≥ 2012]. We
also state our conjecture here. The heart of the volume computations in this paper
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is in Section 6, where we determine χK (G). As a warm up, we work out the classic
case of SL2, with 0 = SL2(Z) in Section 7.

The case of G =GSp4 is considerably more difficult. We must work out several
isomorphisms of real tori. These are described in Section 8. The basic structure of
G and its Langlands dual Ĝ is set up in Section 9. In Section 10 we work out the
Langlands parameters for discrete series of G(R). There is only one elliptic endo-
scopic group H for G. We describe H in Section 11. In Section 12, we describe
the Langlands parameters for discrete series of H(R) and describe the transfer of
discrete series in this case. In Section 13, we describe the Levi subgroups of G and
H and compute various constants that occur in Kottwitz’s formula for these groups.
In Section 14, we compute explicitly Arthur’s8-function for Levi subgroups of G,
and we do this for Levi subgroups of H in Section 15. In Section 16, we write
out the terms of Kottwitz’s formula corresponding to central elements of G and H ,
for a general arithmetic subgroup 0. In Section 17, we specialize to the case of
0 = GSp4(Z), and in Section 18 we gather our results to demonstrate Theorem 1.

2. Preliminaries and notation

If F is a field, write 0F for the absolute Galois group of F . Suppose G is an
algebraic group over F . If E is an extension field of F , we write G E for G viewed
as an algebraic group over E (by restriction). If γ is an element of G(F), we
denote by Gγ the centralizer of γ in G. By G◦ we denote the identity compo-
nent of G (with the Zariski topology). Write Gder for the derived group of G.
If G is a reductive group, write Gsc for the simply connected cover of Gder. Let
X∗(G)= Hom(G F ,Gm) and X∗(G)= Hom(Gm,G F ). These are abelian groups.
Write X∗(G)C and X∗(G)C for the tensor product of these groups over Z with C.
Similarly with the subscript R. Write AG for the maximal F-split torus in the
center of G.

We denote by A the ring of adeles over Q. We denote by A f the ring of finite
adeles over Q, so that A = A f ×R. Write O f for the integral points of A f .

If G is a real Lie group, we write G+ for the connected component of G (using
the classical topology rather than any Zariski topology).

Let G be a connected reductive group over R. A torus T in G is elliptic if T/AG

is anisotropic (as an R-torus). Say that G is cuspidal if it contains a maximal torus
T that is elliptic. An element of G(R) is elliptic if it is contained in an elliptic
maximal torus of G. Having fixed an elliptic maximal torus T , the absolute Weyl
group �G of T in G is the quotient of the normalizer of T (C) in G(C) by T (C).
The real Weyl group �G,R of T in G is the quotient of the normalizer of T (R) in
G(R) by T (R). We may drop the subscript G if it is clear from context. Also fix
a maximal compact subgroup KR of G(R).
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Write q(G) for half the dimension of G(R)/KR Z(R). If we write R for the
roots of G, with a set of positive roots R+, then

q(G)= 1
2(|R

+
| + dim(X)),

where X is the span of R.
If G is an algebraic group over Q, let G(Q)+ = G(R)+ ∩G(Q).

2.1. Endoscopy. Here we review the theory of based root data and endoscopy in
the form we will use in this paper.

The notion of a based root datum is defined in [Springer 1979]. First, a root
datum is a quadruple 9 = (X, R, X∨, R∨), where

• X and X∨ are free, finitely generated abelian groups, in duality by a pairing

〈 · , · 〉 : X × X∨→ Z;

• R and R∨ are finite subsets of X and X∨, respectively;

• there is a bijection α 7→ α∨ from R onto R∨;

• we have 〈α, α∨〉 = 2 for all α ∈ R;

• sα(R) = R if sα is the reflection of X determined by α, and similarly with α
replaced by α∨ and R by R∨.

A based root datum is a quadruple 90 = (X,1, X∨,1∨), where 1 and 1∨ are
sets of simple roots of root system R and R∨ respectively, so that (X, R, X∨, R∨)
is a root datum. The dual of 90 = (X,1, X∨,1∨) is given simply by 9∨0 =
(X∨,1∨, X,1).

Let 90 = (X,1, X∨,1∨) and 9 ′0 = (X
′,1′, X ′∨,1′∨) be two based root data.

Then an isomorphism between 9 and 9 ′ is an isomorphism of groups f : X→ X ′

so that f induces a bijection of 1 onto 1′ and so that the transpose of f induces
a bijection of 1∨ onto 1′∨.

Let G be a connected reductive group over an algebraically closed field F . Fix
a maximal torus T and a Borel subgroup B of G with T ⊆ B. We say in this
situation that (T, B) is a pair (for G). The choice of pair determines a based root
datum

90(G, T, B)= (X∗(T ),1(T, B), X∗(T ),1∨(T, B))

for G. Here 1(T, B) is the set of simple B-positive roots of T , and 1∨(T, B) is
the set of simple B-positive coroots of T . If another pair T ′⊆ B ′ is chosen, the new
based root datum obtained is canonically isomorphic to the original via an inner
automorphism α of G. We have α(T ′) = T and α(B ′) = B. Although the inner
automorphism α need not be unique, its restriction to an isomorphism T ′ ∼→ T is
unique.
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We may remove the dependence of the based root datum on the choice of pair
as follows. Write X∗, 1, X∗, and 1∨ for the inverse limit over the set of pairs
(T, B) of X∗(T ), 1(T, B), X∗(T ) and 1∨(T, B), respectively. Then we simply
define the based root datum of G to be

90(G)= (X∗,1, X∗,1∨).

Let G be a connected reductive group over a field F , and 90(G) a based root
datum of G F . Then 0F acts naturally (via isomorphisms) on 90(G). The action
of 0F on G is said to be an L-action if it fixes some splitting of G; see [Kottwitz
1984, Section 1.3].

Definition 1. A dual group for G is the following data:

(i) A connected complex reductive group with a based root datum 90(Ĝ). We
write its complex points as Ĝ.

(ii) An L-action of 0F on Ĝ.

(iii) A 0F -isomorphism from 90(Ĝ) to the dual of 90(G).

To specify the isomorphism for (iii) above, one typically fixes pairs (T0, B0) of
G and (Ŝ0, B̂0) of a dual group Ĝ and an isomorphism from 90(Ĝ, Ŝ0, B̂0) to the
dual of 90(G, T0, B0).

In the case that G is a torus T , the dual group T̂ is simply given by

(2-1) T̂ = X∗(T )⊗Z C×,

with the 0F -action induced from X∗(T ). There are canonical 0F -isomorphisms
X∗(T̂ ) ∼→ X∗(T ) and X∗(T̂ ) ∼→ X∗(T ).

The formalism for dual groups encodes canonical isomorphisms between tori. If
T and T ′ are tori, and ϕ : T→ T ′ is a homomorphism, it induces a homomorphism
T̂ ′→ T̂ in the evident way.

Suppose that (T, B) is a pair for G and (Ŝ, B̂) is a pair for Ĝ. By (iii) above, one
has in particular a fixed isomorphism from90(G, T, B) to the dual of90(Ĝ, Ŝ, B̂).
In particular this yields an isomorphism from X∗(T ) to X∗(Ŝ), which induces an
isomorphism

(2-2) T̂ ∼→ Ŝ.

Next, let G be a connected reductive group over a field F , which is either local
or global.

Definition 2. An endoscopic group for G is a triple (H, s, η) as follows:

• H is a quasisplit connected group, with a fixed dual group Ĥ as above;

• s ∈ Z(Ĥ).
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• η : Ĥ → Ĝ is an embedding.

• The image of η is (Ĝ)◦η(s), the connected component of the centralizer in Ĝ
of η(s).

• The Ĝ-conjugacy class of η is fixed by 0F .
Cohomology of 0F -modules then yields a boundary map

[Z(Ĥ)/Z(Ĝ)]0F → H 1(F, Z(Ĝ)).

• The image of s in Z(Ĥ)/Z(Ĝ) is fixed by 0, and its image under the boundary
map above is trivial if F is local and locally trivial if F is global.

An endoscopic group is elliptic if the identity components of Z(Ĝ)0F and Z(Ĥ)0F

agree.

Isomorphism of endoscopic groups is defined in [Kottwitz 1984, Section 7.5];
we do not review it here.

2.2. Langlands correspondence. Let G be a connected reductive group over R. In
this section we review elliptic Langlands parameters for G and the corresponding
L-packets for discrete series representations of G(R). Our main references are
[Borel 1979] and [Kottwitz 1990]. Write WR for the Weil group of R, and WC for
the canonical image of C× in WR. There is an exact sequence

1→WC→WR→ 0R→ 1.

The Weil group WR is generated by WC and a fixed element τ satisfying τ 2
=−1

and τ zτ−1
= z for z ∈ WC. The action of 0R on Ĝ inflates to an action of WR

on Ĝ, and through this action we form the L-group LG = Ĝ o WR.
A Langlands parameter ϕ for G is an equivalence class of continuous homo-

morphisms ϕ : WR →
LG commuting with projection to 0R, satisfying a mild

hypothesis on the image; see [Borel 1979]. The equivalence relation is via inner
automorphisms from Ĝ. One associates to a Langlands parameter ϕ an L-packet
5(ϕ) of irreducible admissible representations of G.

Suppose that G is cuspidal, so that there is a discrete series representation
of G(R). This implies that the longest element w0 of the Weyl group � acts as −1
on X∗(T ). If ϕ is a Langlands parameter, write Cϕ for the centralizer of ϕ(WR) in
Ĝ and Ŝ for the centralizer of ϕ(WC) in Ĝ. Write Sϕ for the product CϕZ(Ĝ). We
say ϕ is elliptic if Sϕ/Z(Ĝ) is finite, and describe the L-packet 5(ϕ) in this case.

Since ϕ is elliptic, the centralizer Ŝ is a maximal torus in Ĝ. Since ϕ commutes
with the projection to 0R, it restricts to a homomorphism

WC→ Ŝ×{1}.
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We may view this restriction as a continuous homomorphism ϕ : C×→ Ŝ, which
may be written in exponential form

ϕ(z)= zµzν

with µ and ν regular elements of X∗(T̂ )C. Write B̂ for the unique Borel subgroup
of Ĝ containing Ŝ so that 〈µ, α〉 is positive for every root α of Ŝ that is positive
for B̂. We say that ϕ determines the pair (Ŝ, B̂), at least up to conjugacy in Ĝ.

Let B be a Borel subgroup of GC containing T . Then ϕ and B determine a
quasicharacter χB =χ(ϕ, B), as follows. There is a canonical (up to Ĝ-conjugacy)
homomorphism ηB :

LT → LG described in [Kottwitz 1990] such that

ηB(z)= zρz−ρ × z ∈ Ĝ o WR for z ∈WC.

Here ρ = ρG is the half sum of the B-positive roots for T . Then a Langlands
parameter ϕB for T may be chosen so that ϕ = ηB ◦ ϕB . Finally χB is the quasi-
character associated to ϕB by the Langlands correspondence for T (as described
in [Borel 1979, Section 9.4]).

Write B for the set of Borels of GC containing T . The L-packet associated to
ϕ is indexed by �R\B. For B ∈ �R\B, a representation π(ϕ, B) in the L-packet
is given by the irreducible discrete series representation of G(R) whose character
2π is given on regular elements γ of T (R) by

(−1)q(G)
∑
ω∈�R

χω(B)(γ) ·1ω(B)(γ)
−1.

Here 1B is the usual discriminant

1B(γ)=
∏

α>0 for B

(1−α(γ)−1).

Finally, let

5(ϕ)= {π(ϕ, B) | B ∈�R\B}.

It has order d(G) = |�/�R|. There is a unique irreducible finite-dimensional
algebraic complex representation E of G(C) with the same infinitesimal character
and central character as the representations in this L-packet. It has highest weight
µ−ρ ∈ X∗(T ) with respect to B. The isomorphism classes of such E are in one-
to-one correspondence with elliptic Langlands parameters ϕ, and we often write
5E for 5(ϕ).

Definition 3. We say that a discrete series representation π ∈5E is regular if the
highest weight of E is regular.
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2.3. Measures and orbital integrals. Let G be a locally compact group with Haar
measure dg. If f is a continuous function on G, write f dg for the measure on G
given by

ϕ 7→

∫
G
ϕ(g) f (g)dg,

for ϕ continuous and compactly supported in G. We will refer to the measures
obtained in this way simply as “measures”. If G is a p-adic, real, or adelic Lie
group, we require that f be suitably smooth.

In this paper, we will view orbital integrals and Fourier transforms as distri-
butions defined on measures, rather than on functions. This approach eases their
dependence on choices of local measures, choices that do not matter in the end.

For K an open compact subset of G, write eK for the measure given by f dg,
where f is the characteristic function of K divided by voldg(K ). Note that the
measure eK is independent of the choice of Haar measure dg.

Let G be a reductive group defined over a local field F . Fix a Haar measure
dg on G(F). Let f dg be a measure on G(F), and take a semisimple element
γ ∈ G(F). Fix a Haar measure dt of G(F)◦γ . Then we write Oγ( f dg; dt) for the
usual orbital integral

Oγ( f dg; dt)=
∫

Gγ
◦(F)\G(F)

f (g−1γg)
dg
dt
.

Many cases of finite orbital integrals are easy to compute by the following result,
a special case extracted from [Kottwitz 1986, Section 7].

Proposition 1. Let F be a p-adic field with ring of integers O. Let G be a split
connected reductive group defined over O, and let K = G(O). Suppose that γ ∈ K
is semisimple, and that 1− α(γ) is either 0 or a unit for every root α of G. Let γ′

be stably conjugate to γ. Then Oγ′(eK ; dt) vanishes unless γ′ is conjugate to γ, in
which case

Oγ′(eK ; dt)= voldt(Gγ
◦(F)∩ K )−1.

Now let G be a reductive group defined over Q.
Let f∞dg f be a measure on G(A f ) and take a semisimple element γ ∈G(A f ).

Fix a Haar measure dt f of G◦γ(A f ). Write Oγ( f∞dg f ; dt f ) for the orbital integral

Oγ( f∞dg f ; dt f )=

∫
Gγ
◦(A f )\G(A f )

f∞(g−1γg)
dg f

dt f
.

We also have the stable orbital integrals

SOγ( f∞dg f ; dt f )=
∑

i

e(γi )Oγi ( f∞dg f ; dti, f ),
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the sum being over γi ∈G(A f ) (up to G(A f )-conjugacy) whose local components
are stably conjugate to γ. The centralizers of γ and a given γi are inner forms of
each other, and we use corresponding measures dt f and dti, f . The number e(γi )

is defined as follows: For a reductive group A over a local field, Kottwitz [1983]
has defined an invariant e(A). It is equal to 1 if A is quasisplit. For each place v
of Q, write γi,v for the vth component of γi . Let

e(γi,v)= e(G◦γi,v
(Qv)).

Finally, let

e(γi )=
∏
v

e(γi,v).

Definition 4. Let M be a Levi component of a parabolic subgroup P of G, and
dm f a Haar measure on M(A f ). Given a measure f∞dg f , its M-constant term is
the measure f∞M dm f , where f∞M is defined via

f∞M (m)= δ
−1/2
P(A f )

(m)
∫

N (A f )

∫
K f

f∞(k−1nmk)dk f dn f .

Here we fix the Haar measure dk f on K f giving it mass one, and the Haar measure
dn f on N (A f ) is chosen so that dg f = dk f dn f dm f . The function δP(A f ) is the
modulus function on P(A f ).

It is independent of the choice of parabolic subgroup P .

Proposition 2. Let G be a split group defined over Z and let K f = G(O f ). Then

(eK f )M = eM(A f )∩K f .

Proof. Write eK f = f∞dg f . Then it is easy to see that f∞M (m)= 0 unless m ∈ K f .
If m ∈ K f , we compute that

f∞M (m)=
voldk f (K f ) voldn f (K f ∩ N (A f ))

voldg f (K f )
.

The result follows since

voldg f (K f )= voldm f (M(A f )∩ K f ) voldn f (N (A f )∩ K f ) voldk f (K f ). �

2.4. Pseudocoefficients. We continue with a connected reductive group G over Q,
and adopt some terminology from [Arthur 1989]. Fix a maximal compact sub-
group KR of G(R). We put K ′R = KR AG(R)

+. Given a quasicharacter (smooth
homomorphism to C×) ξ on AG(R)

+, write Hac(G(R), ξ) for the space of smooth,
K ′R-finite functions on G(R) that are compactly supported modulo AG(R)

+, and
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transform under AG(R)
+ according to ξ . Write 5(G(R), ξ) for the set of irre-

ducible representations of G(R) whose central character restricted to AG(R)
+ is

equal to ξ .
Given a function f ∈Hac(G(R), ξ−1), a representation π ∈5(G(R), ξ), and a

Haar measure dg∞ on G(R), write π( f dg∞) for the operator on the space of π
given by the formula

π( f dg∞)=
∫

G(R)/AG(R)+
f (x)π(x)dg∞.

Here we give AG(R)
+ the measure corresponding to Lebesgue measure on Rn , if

AG is n-dimensional. The operator is of trace class.
Write 5temp(G(R), ξ) (respectively 5disc(G(R), ξ)) for the subset of tempered

(respectively discrete series) representations in 5(G(R), ξ).

Definition 5. Suppose that f ∈ Hac(G(R), ξ−1). We say that the measure f dg∞
is cuspidal if trπ( f dg∞), viewed as a function on 5temp(G(R), ξ), is supported
on 5disc(G(R), ξ).

Write Ẽ for the contragredient of the representation E . Arthur [1989] employs
functions fE ∈Hac(G(R), ξ−1) with fE dg∞ cuspidal, whose defining property is
that, for all π ∈5temp(G(R), ξ),

(2-3) trπ( fE dg∞)=
{
(−1)q(G) if π ∈5Ẽ ,

0 otherwise.

Such measures can be broken down further.

Definition 6. Fix a representation π0 ∈ 5disc(G(R), ξ−1), and suppose that f0 ∈

Hac(G(R), ξ−1). Suppose the measure f0dg∞ satisfies, for all π ∈5temp(G(R), ξ),

trπ( f0dg∞)=
{
(−1)q(G) if π ∼= π̃0,

0 otherwise.

It follows from the corollary in [Clozel and Delorme 1984, Section 5.2] that
such functions exist. Pick such a function f0, and put eπ0 = f0dg∞.

Suppose that for each π ∈5E we fix measures eπ as above. Let

fE dg∞ =
∑
π

eπ ,

the sum being over π ∈5E . Then clearly fE dg∞ satisfies Arthur’s condition (2-3).
We remark that the measure (−1)q(G)eπ is called a pseudocoefficient of π̃ .
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3. Transfer

We sketch the important theory of transfer in the form that we will use in this paper.
Suppose that G is a real connected reductive group, and that (H, s, η) is an

elliptic endoscopic group for G. Fix an elliptic maximal torus TH of H , an elliptic
maximal torus T of G, and an isomorphism j : TH

∼
→ T between them. Also

fix a Borel subgroup B of GC containing T and a Borel subgroup BH of HC

containing TH .
Suppose that ξ is a quasicharacter on AG(R), and that f∞ ∈ Hac(G(R), ξ−1),

with f∞dg∞ cuspidal. There is a corresponding quasicharacter ξH on AH (R)

described in [Kottwitz ≥ 2012, Section 5.5].
There is also a measure f H

∞
dh∞ on H(R) with f H

∞
∈ Hac(H(R), ξ−1

H ), having
matching character values. See [Shelstad 1982; Clozel and Delorme 1984; 1990;
Langlands and Shelstad 1987]. More specifically, let ϕH be a tempered Langlands
parameter for HR, and write 5H = 5(ϕH ) for the corresponding L-packet of
discrete series representations of H(R). Transport ϕH via η to a tempered Lang-
lands parameter ϕG for G. The parameters ϕG and ϕH determine pairs (Ŝ, B̂) and
(ŜH , B̂H ) as in Section 2.2.

Then

(3-1) tr5H ( f H
∞

dh∞)=
∑
π∈5

1∞(ϕH , π) · trπ( f∞dg∞),

using Shelstad’s transfer factors 1∞(ϕH , π). Both sides of (3-1) vanish unless
5H is a discrete series packet. In particular, f H

∞
dh∞ is cuspidal, and it may be

characterized by (3-1). (The transfer f H
∞

dh∞ is only defined up to the kernel of
stable distributions.) We may use this formula to identify it as a combination of
pseudocoefficients.

It is a delicate matter to specify the transfer factors. We will use a formula for
1∞(ϕH , π) from [Kottwitz 1990], which is itself a reformulates a formula from
[Shelstad 1982]. One must carefully specify the duality between G and Ĝ, and
between H and Ĥ , because this factor depends on precisely how this is done. It
also depends on the isomorphism j : TH

∼
→T , which must be compatible with cor-

respondences of tori determined by the Langlands parameters, as specified below.

Definition 7. The triple ( j, BT , BTH ) is aligned with ϕH if the following diagram
commutes:

(3-2)

T̂ //

ĵ
��

Ŝ

T̂H // ŜH .

η

OO
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Here the isomorphisms T̂ → Ŝ and T̂H → ŜH are determined, as in (2-2), by
(B, B̂) and (BH , B̂H ), respectively. The map ĵ is the map dual to j using the
identification (2-1) of the dual tori.

For each ω ∈�, there is a character

aω : (T̂ /Z(Ĝ))0R → {±1}

described in [Kottwitz 1990].
If the triple ( j, BT , BTH ) is aligned with ϕH , then we may take as transfer factors

1∞(ϕH , π(ϕ, ω
−1(B)))= 〈aω, ĵ−1(s)〉.

Next, let G be a connected reductive algebraic group over Q, and let (H, s, η)
be an endoscopic group for G. Given a measure f∞dg f on G(A f ), there is a
measure f∞H dh f on H(A f ) such that for all γH ∈ H(A f ) suitably regular, one
has

SOγH ( f∞H dh f )=
∑
γ

1∞(γH , γ)Oγ( f∞dg f ).

The sum is taken over G(A f )-conjugacy classes of “images” γ ∈G(A f ) of γH . We
have written 1∞(γH , γ) for the Langlands–Shelstad transfer factors. One takes
matching measures on the centralizers of γH and the various γ in forming the
quotient measures for the orbital integrals. We have left out many details; please see
[Langlands and Shelstad 1987] and [Kottwitz and Shelstad 1999] for definitions,
and [Ngô 2010] for the celebrated proof.

4. Arthur’s 8-function

In this section we consider a reductive group G defined over R. Let T be a maximal
torus contained in a Borel subgroup B of GC. Let A be the split part of T , let Tc

be the maximal compact subtorus of T , and let M be the centralizer of A in G. It
is a Levi subgroup of G containing T . Let E be an irreducible finite-dimensional
(algebraic) representation of G(C), and consider the L-packet5E of discrete series
representations π of G(R) that have the same infinitesimal and central characters
as E . Write 2π for the character of π , and put

2E
= (−1)q(G)

∑
π∈5E

2π .

Note that 2E(γ) will not extend continuously to all elements γ ∈ T (R), and in
particular not to γ = 1. Define the function DG

M on T by

DG
M(γ)= det(1−Ad(γ);Lie(G)/Lie(M)).
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Then a result of Arthur and Shelstad [Arthur 1989] states that the function

γ 7→ |DG
M(γ)|

1/22E(γ),

defined on the set of regular elements Treg(R), extends continuously to T (R).
We denote this extension by 8M(γ,2

E). The following closed expression for
8M(γ,2

E) when γ ∈ Tc is given in [Spallone 2009].

Proposition 3. If γ ∈ Tc(R), then

(4-1) 8M(γ,2
E)= (−1)q(L)|�L |

∑
ω∈�L M

ε(ω) tr(γ; V M
ω(λB+ρB)−ρB

).

In particular,

(i) if T is compact, then M = G and 8G(γ,2
E)= tr(γ; E);

(ii) if T is split, then M = A and 8A(1,2E)= (−1)q(G)|�G |.

The notation needs to be explained. Here L is the centralizer of Tc in G. The
roots of T in L and M are the real and imaginary roots, respectively, of T in G.
Write �L and �M for the respective Weyl groups. Write �L M for the set of ele-
ments that are simultaneously Kostant representatives for both L and M , relative
to B. We write ε for the sign character of �G . Finally by V M

ω(λB+ρB)−ρB
we de-

note the irreducible finite-dimensional representation of M(C) with highest weight
ω(λB + ρB)− ρB , where λB is the B-dominant highest weight of E .

If z ∈ G(R) is central, it is easy to see that 8M(γz,2E) = λE(z)8M(γ,2
E),

where λE is the central character of E . Thus, for the case of central γ = z,
computing8M(z,2E) amounts to computing the dimensions of finite-dimensional
representations of M(C) with various highest weights. For this we use the Weyl
dimension formula, in the following form.

Proposition 4 (Weyl dimension formula). Let G be a complex reductive group
and T a maximal torus in G, contained in a Borel subgroup B. Write ρB for the
half-sum of the positive roots for T in G (with respect to B). Let λB ∈ X∗(T ) be
a positive weight. Then there is a unique irreducible representation VλB of G with
highest weight λB . Its dimension is given by

dimC VλB =

∏
α>0

〈α, λB + ρB〉

〈α, ρB〉
.

Here 〈 · , · 〉 is a nondegenerate �G-invariant inner product on X∗(T )R, which is
unique up to a scalar.
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5. Kottwitz’s formula

5.1. Various invariants. In this section we introduce some invariants involved in
Kottwitz’s formula.

By G we generally denote an inner form of GR such that G/AG is anisotropic
over R.

Definition 8. Let G be a cuspidal reductive group over R, and dg∞ a Haar measure
on G(R). Let

v(G; dg∞)= e(G) vol(G(R)/AG(R)
+).

This is a stable version of the constant v(G) that appears in [Arthur 1989]. As
before, e(G) is the sign defined in [Kottwitz 1983]. (Note that e(G) = (−1)q(G)

when G is quasisplit.) In both cases the Haar measure on G(R) is transported
from dg∞ on G(R) in the usual way, and the measure on AG(R)

+ is the standard
Lebesgue measure.

Definition 9. Let G be a cuspidal connected reductive group over Q. Then G
contains a maximal torus T such that T/AG is anisotropic over R. Write Tsc

for the inverse image in Gsc of T . Then k(G) is the cardinality of the image
of H 1(R, Tsc)→ H 1(R, T ).

Definition 10. If G is a reductive group over Q, write τ(G) for the Tamagawa
number of G, as defined in [Ono 1966].

By [Kottwitz 1988] or [Kottwitz ≥ 2012], the Tamagawa numbers τ(G) for a
reductive group G over Q may be computed using the formula

τ(G)= |π0(Z(Ĝ)0Q)| · |ker1(Q, Z(Ĝ))|−1.

Here π0 denotes the topological connected component.

Definition 11. Let M be a Levi subgroup of G. Then put

nG
M = [NG(M)(Q) : M(Q)].

Here NG(M) denotes the normalizer of M in G.

Definition 12. Let γ ∈ M(Q) be semisimple. Then put

ιM(γ)= |(Mγ/M◦γ )(Q)| and ιM(γ)= [Mγ(Q) : M◦γ (Q)].

Let (H, s, η) be an endoscopic triple for G, and write Out(H, s, η) for its outer
automorphisms. Put

ι(G, H)= τ(G)τ (H)−1
|Out(H, s, η)|−1.
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5.2. The formula. In this section we give Kottwitz’s formula [≥ 2012].
Our G will now be a cuspidal connected reductive group over Q. Let f∞ ∈

C∞c (G(A f )) and f∞∈Hac(G(R), ξ) for some ξ . We consider measures f dg of the
form f dg= f∞dg f · f∞dg∞∈C∞c (G(A)), for some decomposition dg=dg f dg∞
of the Tamagawa measure on G(A f ). Also choose such decompositions for every
cuspidal Levi subgroup M of G.

First we define the stable distribution S8M at the archimedean place:

Definition 13. Let M be a cuspidal Levi subgroup of G. Let γ ∈M(Q) be elliptic,
and pick a Haar measure dt∞ of M◦γ (R). Then S8M(γ, f∞dg∞; dt∞) is defined
to be

(−1)dim(AM/AG)k(M)k(G)−1v(Mγ
◦
; dt∞)−1

∑
5

8M(γ
−1,25) tr5( f∞dg∞),

the sum being taken over L-packets of discrete series representations.
Here is the basic building block of Kottwitz’s formula:

Definition 14. Let M be a cuspidal Levi subgroup of G, and γ ∈ M(Q) an elliptic
element. Pick Haar measures dt f on M◦γ (A f ) and dt∞ on M◦γ (R) whose product
is the Tamagawa measure dt on M◦γ (A).

We define

STg( f dg, γ,M)

= (nG
M)
−1τ(M)ιM(γ)−1 SOγ( f∞M dm f ; dt f ) S8M(γ, f∞dg∞; dt∞).

Here f∞M dm f is the M-constant term of f∞dg f . The product

SOγ( f∞M dm f ; dt f )v(M; dt∞)

is independent of the decompositions of dt and dg. We will therefore often write
this simply as SOγ( f∞M dm f )v(M), and similarly for other such products.

Kottwitz defines

STg( f dg)=
∑

M

∑
γ∈M

STg( f dg, γ,M).

Here M runs over G(Q)-conjugacy classes of cuspidal Levi subgroups in G, and
the second sum runs over stable M(Q)-conjugacy classes of semisimple elements
γ ∈ M(Q) that are elliptic in M(R).

For convenience we also define, for γ ∈ G(Q) semisimple,

STg( f dg, γ)=
∑

M

STg( f dg, γ,M),

the sum being taken over cuspidal Levi subgroups of G with semisimple γ ∈M(Q)
that are elliptic in M(R).
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Kottwitz’s stable version of Arthur’s trace formula is given by

K( f dg)=
∑

(H,s,η)∈E0

ι(G, H) STg( f H dh),

where E0 is the set of (equivalence classes of) elliptic endoscopic groups for G.
We record here the simpler form of STg( f dg, γ,M)when γ= z is in the rational

points Z(Q) of the center of G. We have

STg( f dg, z,M)

= (−1)dim(AM/AG)
k(M)
k(G)

(nG
M)
−1τ(M) f∞M (z)v(M; dm∞)−18M(z−1,25).

5.3. Conjecture. Recall the stable cuspidal measure fE dg∞ from Section 2.4. Fix
any test function f∞dg f and put f = f∞ fE dg.

Let

Tg( f dg)=
∑

M

(nG
M)
−1
∑
γ

ιM(γ)−1τ(Mγ)Oγ( f∞M dm f )8M(γ, fE dg∞).

Again, the sum is over cuspidal Levi subgroups M and semisimple γ ∈ M(Q) that
are elliptic in M(R). Here as in [Arthur 1989],8M(γ, · ) is the unnormalized form
of the distribution IM defined in [Arthur 1988a].

Now suppose that π ∈5disc(G(R), ξ), and let K f be an open compact subgroup
of G(A f ). Write

L2(G(Q)\G(A)/K f , ξ)

for the space of functions on this double coset space that transform by AG(R)
+

according to ξ and are square integrable modulo center. Write Rdisc(π, K f ) for
the π -isotypical subspace of L2(G(Q)\G(A)/K f , ξ); it is finite-dimensional. If
f∞dg f is K f -biinvariant, then convolution gives an operator Rdisc(π, f∞dg f ) on
Rdisc(π, K f ). According to [Arthur 1989, Corollary 6.2], if the highest weight of
E is regular, then ∑

π∈5E

tr Rdisc(π, f∞dg f )= Tg( f dg).

The main result of [Kottwitz ≥ 2012] is that if f∞dg∞ is stable cuspidal, then
Tg( f dg) = K( f dg). Since we may assume fE dg∞ =

∑
π∈5E

eπ , the following
conjecture is plausible:

Conjecture 1. Fix a regular discrete series representation π of G(R). As in
Section 2.4, let f∞dg∞ = eπ . Pick a measure f∞dg f with f∞ ∈ Cc(G(A f )),
and dg f dg∞ = dg the Tamagawa measure on G(A). Put f = f∞ f∞. Then

K( f dg)= tr Rdisc(π, f∞dg f ).
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In particular, if we choose a compact open subgroup K f of G(A f ), and put
f∞dg f = eK f , we obtain

mdisc(π, K f )= K(eπeK f ).

In this paper we give some evidence for this conjecture. Moreover, we will see
that K( f dg) is given by a closed algebraic expression, which is straightforward to
evaluate, so long as one can compute the transfers eH

π at the real place, and evaluate
the semisimple orbital integrals of f∞H dh f at the finite adeles.

6. Euler characteristics

We have finished our discussion of Kottwitz’s formula, and now solve the arith-
metic volume problem mentioned in the introduction. For simplicity we will write
K rather than K f for open compact subgroups of G(A f ) in this section.

Definition 15. For K a compact open subgroup of G(A f ), we define

χK (G)= v(G; dg∞)−1 voldg f (K )
−1τ(G)d(G)

if G is cuspidal. If G is not cuspidal, then χK (G)= 0.

Note that if K0 is another compact open subgroup of G(A f ), with K ⊆ K0

of finite index, then χK (G) = [K0 : K ]χK0(G). In this section we compute the
quantities χK (G) under some mild hypotheses on G.

6.1. Statement of theorem. Before getting embroiled in details, let us sketch the
idea of the computation of χK (G). The computation is considerably easier if K
is sufficiently small. In this case, χK (G) is the classical Euler characteristic of
a Shimura variety. This in turn may be written in terms of Euler characteristics
of an arithmetic subgroup of Gad(R). For G a semisimple and simply connected
Chevalley group, such Euler characteristics were computed in [Harder 1971].

Our work is to reduce to this case. Given a compact open subgroup K0 of
G(A f ), we will pick a sufficiently small subgroup K of K0. By the above we
know the analogue of χK (G) for Gsc. To compute χK0(G) we have two tasks: to
change between G and Gsc, and to change between K and K0.

The resulting formula entails several standard definitions:

Definition 16. Write G(R)+ ⊆ G(R) for the inverse image of Gad(R)
+. Let

G(Q)+ = G(Q) ∩ G(R)+. Write ν : G � C for the quotient of G by Gder.
Let C(R)† = ν(Z(R)), and C(Q)† = C(Q) ∩ C(R)†. Write ρ : Gsc → Gder for
the usual covering of Gder by Gsc. For K a compact open subgroup of G(A f ),
let K der

= Gder(A f ) ∩ K , and let K sc be the preimage of K in Gsc(A f ). Let
0K = G(Q)+ ∩ K , let 0der

K = Gder(Q)+ ∩ K , let 0sc
K = K sc

∩Gsc(Q)+, and write
0ad

K for the image of 0K in Gad(Q).
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In this section we avoid certain awkward tori for simplicity, preferring the fol-
lowing kind:

Definition 17. A torus T over Q is QR-equitropic if the largest Q-anisotropic torus
in T is R-anisotropic.

Here are some basic facts about QR-equitropic tori.

Proposition 5. If T is a QR-equitropic torus, then T (Q) is discrete in T (A f ). If
G is a reductive group, and the connected component Z◦ of the center of G is
QR-equitropic, then its derived quotient C is also QR-equitropic.

Proof. The first statement follows from [Milne 2005, Theorem 5.26]. The second
is straightforward. �

Serre [1971] introduces an Euler characteristic χalg(0) ∈ Q applicable to any
group 0 with a finite index subgroup 00 that is torsion-free and has finite cohomo-
logical dimension. In particular, it applies to our congruence subgroups 0 = 0K .
Here are some simple properties of χalg:

• For an exact sequence of the form

1→ A→ B→ C→ 1,

with A, B and C groups as above, we have χalg(B)= χalg(A) ·χalg(C).

• If 0 is a finite group, then χalg(0)= |0|
−1.

The theorem of this section relates χK (G) to χalg(0
sc
K ). More precisely:

Theorem 2. Let G be a reductive group over Q. Assume that Gsc has no compact
factors and that the connected component Z◦ of the center of G is QR-equitropic.
Let K0 ⊂ G(A f ) be a compact open subgroup. Then χK0(G) is equal to

|ker(ρ(Q))|[Gder(A f ) : Gder(Q)+K der
0 ]

· [0der
K0
: Gder(Q)+ ∩ ρ(K sc

0 )][C(A f ) : C(Q)†ν(K0)]

[G(R) : G(R)+]|ν(K0)∩C(Q)†|
χalg(0

sc
K0
).

Here ρ(Q) denotes the map ρ(Q) :Gsc(Q)→G(Q) on Q-points. The assump-
tion on the absence of compact factors is needed for strong approximation, and is
discussed in [Milne 2005].

When Gsc is a Chevalley group and 0sc
K0
= Gsc(Z), this reduces the problem to

the calculation of Harder [1971]:

Proposition 6. Let G be a simply connected, semisimple Chevalley group over Z.
Write m1, . . . ,mr for the exponents of its Weyl group �, and put 0 = G(Z). We
have

χalg(0)= (−
1
2)

r
|�R|

−1
r∏

i=1

Bmi+1.
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Here Bn denotes the n-th Bernoulli number. Recall that �R is the real Weyl
group of G.

6.2. Shimura varieties. To prove Theorem 2, we will use some basic Shimura
variety theory, which may be found in [Deligne 1979] or [Milne 2005]. Much of
the theory holds only for K sufficiently small. For simplicity, we will say “K is
small” rather than “K is a sufficiently small finite index subgroup of K0”.

For convenience, we gather here many simplifying properties of small K , which
we will often use without comment. For the rest of this section assume that Z(G)◦

is QR-equitropic, and that Gsc has no compact factors.

Proposition 7. Let K be small.

(i) K ∩ Z(Q)= {1}.

(ii) ν(K )∩C(Q)= {1}.

(iii) G(Q)∩ K Gder(A f )⊆ Gder(Q).

(iv) Gder(A f )∩G(Q)K = Gder(Q)Kder.

(v) K ∩Gder(Q)⊆ ρ(Gsc(Q)).

(vi) K ∩G(Q)⊆ G(Q)+.

Proof. The first two items follow because Z◦ and thus C are QR-equitropic.
Item (iii) follows from [Deligne 1979, Corollaire 2.0.12], and the next is a corol-
lary. Items (v) and (vi) follow from [Deligne 1979, Corollaire 2.0.5 and 2.0.14],
respectively. �

Recall that we have chosen a maximal compact subgroup KR of G(R).

Definition 18. Let

X = G(R)/K+R Z(R), X = G(R)/KR Z(R), SK = G(Q)\X ×G(A f )/K

be the double coset space obtained through the action q(x, g)k = (qx, qgk) of
q ∈ G(Q) and k ∈ K .

Similarly, let
SK = G(Q)\X ×G(A f )/K ,

with the action of G(Q)× K defined in the same way.
The component group of SK is finite and given (see [Deligne 1979, 2.1.3]) by

(6-1) π0(SK )= G(A f )/G(Q)+K .

There is some variation in the literature regarding the use of X versus X . Deligne
[1979] and Milne [2005] implicitly use X (in light of Deligne’s [Proposition 1.2.7]).
Harder [1971] uses X . Arthur [1989] uses

G(R)/K ′R.
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(Recall that K ′R = AG(R)
+KR.) Since for us Z◦ is QR-equitropic, we have

K ′R = Z(R)KR,

and so this quotient is equal to X .
Since we would like to combine results stated in terms of X with others stated

in terms of X , we must understand the precise relationship between the two. This
is the purpose of Proposition 8 below.

Definition 19. Let G be a real group, and Z its center. Write

(6-2) ad : G(R)→ G(R)/Z(R)

for the quotient map.

Note that ad(G(R)) has finite index in Gad(R).

Lemma 1. For this lemma, let G be a Zariski-connected reductive real group, and
KR a maximal compact subgroup of G(R). Let LR be a maximal compact subgroup
of Gad(R) containing ad(KR). Then the following hold:

(i) KR meets all the connected components of G(R).

(ii) KR ∩G(R)+ = K+R .

(iii) ad(KR) is a maximal compact subgroup of ad(G(R)).

(iv) ad(K+R )= L+R .

(v) KR Z(R)∩G(R)+ = K+R Z(R).

Proof. The first two statements follow from the Cartan decomposition [Satake
1980, Corollary 4.5].

For (iii), suppose that C is a subgroup of G(R) with ad(KR)⊆ ad(C) and ad(C)
compact. If ad(KR) 6= ad(C), there is an element a ∈ C Z(R)− KR Z(R). By the
Cartan decomposition, we may assume that a = exp(H), with H a semisimple
element of Lie(G), and α(H) real and nonnegative for every root α of G. Since
a /∈ Z(R), we have α(H) > 0 for some root α. Thus ad(C) is not compact, a
contradiction. Thus ad(KR)= ad(C), and statement (iii) follows.

For (iv), note that LR ∩ ad(G) = ad(KR), and therefore LR/ ad(KR) injects
into Gad(R)/ ad(G(R)). It follows that ad(K+R ) has finite index in LR. Since it is
connected, statement (iv) follows.

For (v), let g ∈ KR Z(R)∩G(R)+. Then ad(g)∈ LR∩Gad(R)
+, so by statement

(ii), we see ad(g) ∈ L+R = ad(K+R ). Thus g ∈ K+R Z(R). The other inclusion is
obvious. �

Proposition 8.

(i) The natural projection pX : X→ X has fibers of order [G(R) : G(R)+].
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(ii) Let X+ be a connected component of X. It is stabilized by G(R)+, and the
restriction of pX to X+ is a G(R)+-isomorphism onto X.

(iii) Let K be small. Then the natural projection pS : SK → SK has fibers of order
[G(R) : G(R)+].

Proof. Consider the natural map

(6-3) KR Z(R)/K+R Z(R)→ G(R)/G(R)+.

It is surjective because KR meets every connected component of G(R). It is injec-
tive because KR Z(R)∩G(R)+⊆ K+R Z(R). It follows that (6-3) is an isomorphism,
and the first statement follows.

We now prove the second statement. Note that pX is both an open and closed
map, so that pX (X+) is a component of X . Since KR meets every connected
component of G(R), the set X is connected. Therefore pX (X+) = X . By [Milne
2005, Proposition 5.7], there are [G(R) : G(R)+] connected components of X ,
each stabilized by G(R)+. Thus the fiber over a point in X is composed of exactly
one point from each component of X . So pX restricted to X+ is an isomorphism;
it is clear that it respects the G(R)+-action.

To prove the third statement, we require K to be sufficiently small, in the
following way. Suppose K∗ is an open compact subgroup of G(A f ) satisfying
K∗ ∩ G(Q) ⊆ G(Q)+. Let g1, . . . , gr be representatives of the finite quotient
group G(Q)K∗\G(A f ). Then we require that

(6-4) K ⊆
r⋂

i=1

g−1
i K∗gi .

Now for x ∈ X , let Fib(x) be the fiber of pX containing x . If we further fix
g ∈G(A f ), let Fib(x, g) be the fiber of pS containing (x, g). (Here we understand
(x, g) as an element of SK .) We claim that for all such x and g, the map

(6-5) Fib(x)→ Fib(x, g)

given by x ′ 7→ (x ′, g) is a bijection. This will imply the third statement.
For surjectivity of (6-5), pick (x ′, g′) ∈ Fib(x, g). Then there are q ∈ G(Q)

and k ∈ G(A f ) such that qpX (x ′) = pX (x) and qg′k = g. Let x ′′ = qx ′. Then
x ′′ ∈ Fib(x) and (x ′′, g)= (x ′, g′).

For injectivity of (6-5), suppose that (x1, g)= (x2, g) in SK with x1, x2 ∈Fib(x).
Then in particular, there is an element q ∈ G(Q) and k ∈ K such that qgk = g and
qx1 = x2. Write g = q0k0gi with q0 ∈ G(Q) and k0 ∈ K∗. Then we have

q(q0k0gi )k = q0k0gi ,
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which we rewrite as
q−1

0 qq0 = k0gi k−1g−1
i k−1

0 .

Using this and (6-4) we see that q−1
0 qq0 ∈ G(Q)∩ K∗ ⊆ G(Q)+. Since G(Q)+ is

normal in G(Q), in fact q ∈ G(Q)+.
Meanwhile, pick ξ1, ξ2 ∈ G(R) representing x1 and x2, respectively. Since

x1, x2 ∈ Fib(x) we have ξ−1
1 ξ2 ∈ KR Z(R). Write ξ2 = ξ1kz, with k ∈ KR and

z ∈ Z(R). Since qx1 = x2, we have ξ−1
2 qξ1 ∈ K+R Z(R), and thus z−1k−1ξ−1

1 qξ1 ∈

K+R Z(R). Using the fact that q is in the normal subgroup G(R)+ of G(R), it
follows that k ∈ G(R)+ ∩ KR ⊆ K+R Z(R). Thus x1 = x2, as desired. �

Proposition 9 (Harder; see [Harder 1971; Serre 1971]). If G is semisimple and K
is small, then χtop(0K \X)= χalg(0K ).

Proposition 10 [Arthur 1989; Goresky et al. 1997]. If K is small, then we have
χK (G)= χtop(SK ).

6.3. Computations. The next three lemmas will allow us to convert our computa-
tion for K0 to a computation for K .

Lemma 2. If K is small, then

|C(Q)†\C(A f )/ν(K )|

= [ν(K0) : ν(K )]|ν(K0)∩C(Q)†|−1
|C(Q)†\C(A f )/ν(K0)|.

Proof. This follows from the exactness of the sequence

1→ ν(K0)∩C(Q)†→ ν(K0)/ν(K )→ C(Q)†\C(A f )/ν(K )

→ C(Q)†\C(A f )/ν(K0)→ 1. �

Lemma 3. If K ⊆ K0 is small, then

(6-6) [0ad
K0
: 0ad

K ] =
[0K0 : ρ(0

sc
K0
)][K0 : K ]

|K0 ∩ Z(Q)|[ν(K0) : ν(K )][K der
0 : K

derρ(K sc
0 )]

.

In the proof we refer to conditions of Proposition 7.

Proof. Consider the map 0der
K0
/0der

K → 0ad
K0
/0ad

K .
The kernel of this map sits in the middle of the exact sequence

1→ 0der
K0
∩ Z(Q)→ (0K Z(Q)∩0der

K0
)/0der

K

→ (0K Z(Q)∩0der
K0
)/0der

K (0der
K0
∩ Z(Q))→ 1,

using condition (i). This last quotient is trivial, because actually 0K = 0
der
K by

condition (iii).
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We have established the exactness of the sequence

1→ 0der
K0
∩ Z(Q)→ 0der

K0
/0der

K → 0ad
K0
/0ad

K → 0K0 Z(Q)/0der
K0

Z(Q)→ 1.

The last quotient is isomorphic to 0K0/(Z(Q) ∩ K0)0
der
K0

, which itself sits inside
the exact sequence

1→ K0 ∩ Z(Q)/0der
K0
∩ Z(Q)→ 0K0/0

der
K0
→ 0K0/(Z(Q)∩ K0)0

der
K0
→ 1.

The quantity |0der
K0
∩ Z(Q)| cancels, and it follows that

(6-7) [0ad
K0
: 0ad

K ] =
[0der

K0
: 0der

K ] · [0K0 : 0
der
K0
]

|K0 ∩ Z(Q)|
.

By condition (v) we have

1→ ρ(0sc
K0
)/ρ(0sc

K )→ 0der
K0
/0der

K → 0der
K0
/ρ(0sc

K0
)→ 1.

Strong approximation tells us that Gsc(Q) is dense in Gsc(A f ). Therefore we
have isomorphisms

ρ(0sc
K0
)/ρ(0sc

K )
∼
→0sc

K0
/0sc

K
∼
→ K sc

0 /K sc ∼
→ ρ(K sc

0 )/ρ(K
sc).

Combining this with the exact sequences

1→ K der
0 /K der

→ K0/K → ν(K0)/ν(K )→ 1

and

(6-8) 1→ ρ(K sc
0 )/ρ(K

sc)→ K der
0 /K der

→ K der
0 /K derρ(K sc

0 )→ 1,

we obtain

[0der
K0
: 0der

K ] =
[0der

K0
: ρ(0sc

K0
)][K0 : K ]

[K der
0 : K

derρ(K sc
0 )][ν(K0) : ν(K )]

.

Plugging this into (6-7) gives the lemma. �

Corollary 1. Suppose that K ⊆ K0 is small, and g ∈ G(A f ) with gK g−1
⊆ K0

also small. Then
[0ad

K0
: 0ad

gK g−1] = [0
ad
K0
: 0ad

K ].

Proof. We show that the expression (6-6) does not change when K is replaced with
gK g−1. Clearly ν(K )= ν(gK g−1). Since

[K0 : K ] = voldg f (K0)/voldg f (K ),

we have [K0 : gK g−1
] = [K0 : K ]. Finally, we claim that

[K der
0 : (gK g−1)derρ(K sc

0 )] = [K
der
0 : K

derρ(K sc
0 )].
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From the exact sequence (6-8), it is enough to show that [K der
0 : (gK g−1)der

] =

[K der
0 :K

der
] and [ρ(K sc

0 ) :ρ((gK g−1)sc)]= [ρ(K sc
0 ) :ρ(K

sc)]. These hold because
(gK g−1)der

= gK derg−1 and ρ((gK g−1)sc)= gρ(K sc)g−1. �

Lemma 4. If G is semisimple and K is small, then

|π0(SK )| = [K0 : Kρ(K sc
0 )][0K0 : G(Q)+ ∩ ρ(K

sc
0 )]|π0(SK0)|.

Proof. The kernel of the projection π0(SK )� π0(SK0) is isomorphic to

K0/(K G(Q)+ ∩ K0).

By [Deligne 1979, Section 2.1.3], we have ρ(Gsc(A f )) ⊆ K G(Q)+. Using the
exact sequence

1→ (K0 ∩ K G(Q)+)/Kρ(K sc
0 )→ K0/Kρ(K sc

0 )→ K0/(K G(Q)+ ∩ K0)→ 1,

we are reduced to computing the order of

(K0 ∩ K G(Q)+)/Kρ(K sc
0 )
∼
→0K0/(Kρ(K

sc
0 )∩G(Q)+).

This group sits in the sequence

1→ (G(Q)+ ∩ Kρ(K sc
0 ))/(G(Q)+ ∩ ρ(K

sc
0 ))

→ 0K0/(G(Q)+ ∩ ρ(K
sc
0 ))→ 0K0/(Kρ(K

sc
0 )∩G(Q)+)→ 1.

We claim the kernel is trivial. Note that Kρ(K sc
0 )⊆ Kρ(Gsc(Q)K sc) by strong

approximation. So

G(Q)+ ∩ Kρ(K sc
0 )⊆ G(Q)+ ∩ Kρ(Gsc(Q))

= G(Q)+ ∩ (K ∩G(Q))ρ(Gsc(Q)).

Since K ∩G(Q)⊆ ρ(Gsc(Q)) by Proposition 7(v), we have G(Q)+∩ Kρ(K sc
0 )⊆

G(Q)+ ∩ ρ(K sc
0 ). This proves the claim, and the lemma follows. �

In the course of proving the theorem, we will pass to the adjoint group to ap-
ply Harder’s theorem (Proposition 9), but lift to Gsc to apply Harder’s calculation
(Proposition 6). We must record the difference between Serre’s Euler characteristic
at Gad and Gsc.

Lemma 5. We have

χalg(0
ad
K0
)=
|ker(ρ(Q))||K0 ∩ Z(Q)|
[0der

K0
: ρ(0sc

K0
)][0K0 : 0

der
K0
]
χalg(0

sc
K0
).

Proof. This follows from the properties of χalg mentioned earlier. �
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Proof of Theorem 2. Pick a set g1, . . . , gr of representatives of π0(SK0), viewed as
a quotient of G(A f ) as in (6-1).

Let K be small subgroup of finite index in K0. Possibly by intersecting finitely
many conjugates of K , we may assume that

• K is normal in K0 and

• gi K g−1
i is a small subgroup of K0 for all i .

By Proposition 10, χK (G) = χtop(SK ). By Proposition 8, this is equal to
[G(R) : G(R)+]−1χtop(SK ). Write 0g for 0ad

gK g−1 . By [Deligne 1979, 2.1.2], the
components of SK are each isomorphic to 0g\X+, where X+ is a component of X .
Here g runs over π0(SK ).

By Proposition 8, the topological spaces 0g\X+ and 0g\X are isomorphic.
Therefore we have χtop(0g\X+)= χtop(0g\X).

Applying Proposition 9 to Gad, this is equal to χalg(0g). Therefore

χK (G)= [G(R) : G(R)+]−1
∑

g∈π0(SK )

χalg(0g).

Every element in π0(SK )may be written as the product of an element of π0(SK0)

with an element of K0. Since K is normal in K0, the groups 0gk0 and 0g are equal
for k0 ∈ K0. It follows that

χK (G)=
|π0(SK )|

[G(R) : G(R)+]|π0(SK0)|

r∑
i=1

χalg(0gi ).

By Corollary 1 we have

χalg(0gi )= [0
ad
K0
: 0gi ]χalg(0

ad
K0
)= [0ad

K0
: 0ad

K ]χalg(0
ad
K0
).

This gives

χK (G)= [G(R) : G(R)+]−1
[0ad

K0
: 0ad

K ]|π0(SK )|χalg(0
ad
K0
).

The component group π0(SK ) fits into the exact sequence

1→ Gder(A f )/(Gder(A f )∩G(Q)+K )→ π0(SK )→ C(Q)†\C(A f )/ν(K )→ 1

This gives

χK (G)=[G(R) :G(R)+]−1
|π0(SK der)||C(Q)†\C(A f )/ν(K )|[0ad

K0
:0ad

K ]χalg(0
ad
K0
).

where here π0(SK der)= Gder(A f )/Gder(Q)+K der.
Using χK0(G)= [K0 : K ]−1χK (G) together with Lemma 2 gives

χK0(G)=
|π0(SK der)|[ν(K0) : ν(K )]|C(Q)†\C(A f )/ν(K0)|[0

ad
K0
: 0ad

K ]

[G(R) : G(R)+]|ν(K0)∩C(Q)†|[K0 : K ]
χalg(0

ad
K0
).
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By Lemmas 3 and 5,

χK0(G)=
|ker(ρ(Q))||π0(SK der)||C(Q)†\C(A f )/ν(K0)|

[G(R) : G(R)+]|ν(K0)∩C(Q)†|[K der
0 : K

derρ(K sc
0 )]

χalg(0
sc
K0
).

The theorem then follows from Lemma 4. �

6.4. Examples. We now use Theorem 2 and Proposition 6 to explicitly compute
some cases of χK0(G). Recall that we write O f for the integer points of A f .

Corollary 2. If T is a torus and K0 ⊂ T (A f ) is a compact open subgroup, then

χK0(T )= |T (Q)\T (A f )/K0| · |K0 ∩ T (Q)|−1.

Let T = Gm , and K0 = T (O f ). Then χK0(T )= 1/2.
Let T be the norm-one subgroup of an imaginary quadratic extension E of Q.

Let K0 = T (O f ). Write O(E) for the integer points of the adeles AE over E . Then
T (Q)\T (A f )/K0 injects into E×\A×E, f /O(E)

×, which is in bijection with the class
group. If the class number of E is trivial, it follows that χK0(T )= |T (Z)|

−1.

Corollary 3. If G is semisimple and simply connected, then

χK0(G)= [G(R) : G(R)+]
−1χalg(0K0).

Let G = SL2 and K0 = G(O f ). Then

χK0(G)= χalg(SL2(Z))=−
1
2 B2 =−2−23−1.

Let G = Sp4 and K0 = G(O f ). Then

χK0(G)= χalg(Sp4(Z))=−
1
8 B2 B4 =−2−53−25−1.

When the derived group is simply connected the calculation is not much harder.

Corollary 4. If Gder is simply connected, then

χK0(G)=
|C(Q)†\C(A f )/ν(K0)|

[G(R) : G(R)+]|ν(K0)∩C(Q)†|
χalg(0

der
K0
).

Let G = GL2 and K0 = G(O f ). Then χK0(G)=
1
2χalg(SL2(Z))=−2−33−1.

Let G=GSp4 and K0=G(O f ). Then χK0(G)=
1
2χalg(Sp4(Z))=−2−63−25−1.

Lemma 6. If all the points of ker ρ are Q-rational, then

[0der
K0
: Gder(Q)+ ∩ ρ(K sc

0 )] = 1.

Proof. By [Deligne 1979, Section 2.0.3], we have an injection

Gder(Q)/ρ(Gsc(Q)) ↪→ H 1(im(Gal(Q/Q)), (ker ρ)(Q)),
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using the cohomology group defined in that paper. We also have an injection

0der
K0
/(Gder(Q)+ ∩ ρ(K sc

0 )) ↪→ Gder(Q)/ρ(Gsc(Q)).

Since all the points of ker ρ are Q-rational, all these groups are trivial. �

Let G = PGL2 and K0 = G(O f ). The only nontrivial factors in the formula
are [G(R) : G(R)+] = 2, |ker ρ(Q)| = 2, and χalg(SL2(Z)) = −2−23−1. Thus
χK0(G)=−2−23−1.

7. The case of SL2

Let G = SL2, defined over Q. Let A be the subgroup of diagonal matrices in G,
and let T be the maximal elliptic torus of G given by matrices

(7-1) γa,b =

(
a −b
b a

)
,

with a2
+ b2
= 1.

The characters and cocharacters of T are both isomorphic to Z. We identify
Z ∼→ X∗(T ) via n 7→ χn , where χn(γa,b) = (a+ bi)n . We specify Z ∼→ X∗(T ) by
identifying n with the cocharacter taking α to diag(α, α−1). The roots of T in G
are then {±2}, and the coroots of T in G are {±1}. The Weyl group � of these
systems has order 2 and the compact Weyl group�R is trivial. Thus each L-packet
of discrete series has order 2. The group dual to G is Ĝ = PGL2(C) in the usual
way.

Pick an element ξ ∈ G(C) such that

Ad(ξ)
(

a −b
b a

)
=

(
a+ ib

a− ib

)
,

and put BT = Ad(ξ−1)BA. Then BT is a Borel subgroup of G(C) containing T .
Consider the Langlands parameter ϕG : WR→ Ĝ given by ϕG(τ ) =

( 0
1

1
0

)
× 1,

and
ϕG(z)= diag(zn, zn)× z = zµzν × z,

where µ corresponds to n ∈ X∗(T̂ ) ∼→ X∗(T ) and ν corresponds to −n. The corre-
sponding representation E of G(C) has highest weight λB = n− 1 ∈ X∗(T ). It is
the (n−1)-st symmetric power of the standard representation. Its central character
is λE(z)= zn−1, where z =±1.

We put πG = π(ϕG, BT ), in the notation from Section 2.2. Write π ′G for the
other discrete series representation in 5E . Thus the L-packet determined by ϕG is

5E = {πG, π
′

G}.

We will put f∞dg∞ = eπG as in Section 2.4.
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7.1. Main term. First we consider the terms STg( f dg,±1).
We have S8G(1, eπG )=−nv(G; dg∞)−1, and so

STg( f dg,±1,G)= (±1)nnv(G; dg∞)−1 f∞(±1).

We have S8A(1, eπG )=−v(G; dg∞)−1, and so

STg( f dg,±1, A)= (±1)n 1
2v(G; dg∞)−1 f∞A (±1).

If γ is a regular semisimple element of G(C) with eigenvalues α and α−1, then
according to the Weyl character formula,

tr(γ; E)=
αn
−α−n

α−α−1 .

Define t4(n)= tr(diag(i,−i); E), where i is a fourth root of unity. Then t4(n)=0
if n is even, and t4(n)= (−1)(n−1)/2 if n is odd.

Similarly, define t3(n) = tr(diag(ζ, ζ 2); E), where ζ is a third root of unity.
Then t3(n)= [0, 1,−1; 3]n , meaning that

t3(n)=


0 if n ≡ 0,
1 if n ≡ 1,
−1 if n ≡ 2.

Here the congruence is modulo 3.
There are three stable conjugacy classes of elliptic γ∈G(Q), which we represent

by

γ3 =

(
−1 −1

1 0

)
, γ4 =

(
0 −1
1 0

)
, γ6 =

(
0 −1
1 1

)
.

Note that −γ4 ∼ γ4, γ2
6 = γ3, and −γ3 ∼ γ6.

Write T3 for the elliptic torus consisting of elements(
a a− b

b− a b

)
, with a2

− ab+ b2
= 1.

We have S8G(γ3, eπG )=−v(T3)
−1t3(n), and so

STg( f dg, γ3,G)=−v(T3)
−1 SOγ3( f∞dg f )t3(n).

We have S8G(γ4, eπG )=−v(T )
−1t4(n), and so

STg( f dg, γ4,G)=−v(T )−1 SOγ4( f∞dg f )t4(n).

Finally S8G(γ6, eπG )=−v(T3)t3(n)(−1)n−1, and so

STg( f dg, γ6,G)=−v(T3)
−1 SO−γ3( f∞dg f )t3(n)(−1)n−1.
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Thus, STg( f dg) is equal to the sum

−nv(G; dg∞)−1 f∞(1)+ nv(G; dg∞)−1 f∞(−1)(−1)n − 1
2v(A; da∞)−1 f∞A (1)

+
1
2v(A; da∞)−1 f∞A (−1)(−1)n − v(T3)

−1 SOγ3( f∞dg f )t3(n)

−v(T )−1 SOγ4( f∞dg f )t4(n)+ v(T3)
−1 SO−γ3( f∞dg f )t3(n)(−1)n.

7.2. Endoscopic terms.

Definition 20. Let E be an imaginary quadratic extension of Q. Write HE for the
kernel of the norm map ResE

Q Gm→ Gm .

The HE comprise the (proper) elliptic endoscopic groups for G = SL2. For
each H = HE we have τ(H) = 2 and |Out(H, s, η)| = 1; see [Kottwitz 1984,
Section 7]. Therefore ι(G, H) = 1

2 . The character identities of Shelstad [1982]
give eH

πG
= eχn + eχ−1

n
.

Write f H dh= f∞H dh f eH
πG

, where f∞H dh f is the transfer of f∞dg f . Choose
dh∞ so that dh f dh∞ is the Tamagawa measure on H . Then we obtain

STg( f H dh)= 2v(H ; dh∞)
∑
γH

f∞,H (γH )TrE
Q(γ

n
H ),

the sum being taken over γH ∈ H(Q).

Remark. Consider the local transfer, where f pdgp is a spherical (that is, invariant
under G(Zp)) measure on G(Qp). Then if H ramifies over p, a representation πp

in one of the L-packets transferring from H will also be ramified. This means that
trπp( f pdgp)= 0. So we take f H

p = 0 in this case. Thus

K( f dg)= STg( f dg);

there is no (proper) endoscopic contribution. This is compatible with the fact that
mdisc is constant on L-packets in this case.

7.3. Case of 0 = SL2(Z). We take K f = K0 to be the integral points of G(A f ).
Also let K A = K0 ∩ A(A f ) and KT = K0 ∩ T (A f ). Each of these breaks into a
product of local groups K0,p, etc.

We put f∞dg f = eK0 . Note that f∞(g) = f∞(−g) for all g ∈ G(A f ) and
f∞A (a)= f∞A (−a) for all a ∈ A(A f ). Therefore, if n is even, then STg( f dg)= 0.
So assume henceforth that n is odd. Then our expression is equal to

−2nv(G; dg∞)−1 f∞(1)− v(A; da∞)−1 f∞A (1)

− 2v(T3)
−1 SOγ3( f∞dg f )t3(n)+ v(T )−1 SOγ4( f∞dg f )(−1)(n+1)/2.
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We have

−2nv(G; dg∞)−1 f∞(1)=−2nv(G; dg∞)−1 voldg f (K0)
−1

=−2nτ(G)−1d(G)−1χK0(G)=
1
12 n,

−v(A; da∞)−1 f∞A (1)=−v(A; da∞)−1 volda f (K A)
−1

=−τ(A)−1d(A)−1χK A(A)=−
1
2 .

Now we consider SOγ4( f∞dg f ; dt f ). We have 1− α(γ4) = 2 for the positive
root α of G. Therefore by Proposition 1, the local orbital integrals are equal to
voldtp(KT,2)

−1 for p 6= 2. At p = 2, one has two stable conjugacy classes γ4 and
γ′4 in the conjugacy class of γ4, where γ′4 =

( 0
−1

1
0

)
.

It follows that

SOγ4( f∞dg f ; dt f )=
(
Oγ4(eK2; dt2)+Oγ′4

(eK2; dt2)
)∏

p 6=2

voldtp(T (Qp)∩K p)
−1.

To compute the local integral at p = 2, we reduce to a GL2-computation by the
following lemma. Its proof is straightforward.

Lemma 7. Let F be a p-adic local field with ring of integers O. Put G = SL2,
G̃ = GL2, and Z for the center of G̃. Pick Haar measures dg on G(F), dg̃ on
G̃(F), and dz on Z(F). Let f ∈ Cc(Z(F)\G̃(F)). Then

voldz(Z(O))

voldg̃(G̃(O))

∫
Z(F)\G̃(F)

f (g)
dg̃
dz
= voldg(G(O))−1

|O×/O×2
|
−1
∑
α

∫
G(F)

f (tαg)dg.

Here α runs over the square classes in F×, and tα = diag(α, 1).

Proposition 11. We have

Oγ4(eK2; dt2)+ Oγ′4
(eK2; dt2)= 2 voldt2(KT,2)

−1.

Proof. Write f̃2 for the characteristic function of GL2(Z2)Z(Q2). By the lemma,∫
Z(Q2)\GL2(Q2)

f̃2(g−1γ4g)
dg̃
dz
=voldt2(KT,2)|Z

×

2 /Z
×2
2 |
−1
∑
α

OAd(tα)(γ4)(eK0; dt2).

Here we are normalizing dg̃ and dz so that voldz(Z(Z2))= voldg̃(GL2(Z2))= 1.
In fact, Ad(tα)(γ4) is conjugate in G(Q2) to γ4 if and only if α is a norm from

Q2(
√
−1), and in the contrary case, it is conjugate to γ′4. It follows that∫

Z(Q2)\GL2(Q2)

f̃2(g−1γ4g)
dg̃
dz
=
(
Oγ4(eK2; dt2)+ Oγ′4

(eK2; dt2)
)

voldt2(KT,2).

By an elliptic orbital integral computation in [Kottwitz 2005], the left hand side
is equal to 2. �



STABLE TRACE FORMULAS AND DISCRETE SERIES MULTIPLICITIES 469

We conclude that

SOγ4( f∞dg f ; dt f )= 2 voldt f (T (A f )∩ K0)
−1,

and so

−v(T )−1 SOγ4( f∞dg f )t4(n)=−2v(T )−1 voldt f (T (A f )∩ K0)
−1t4(n)

=−2τ(T )−1χKT (T )t4(n)= 2−2(−1)(n+1)/2.

Similarly, we find that

SOγ3( f∞dg f )= 2 voldt3, f (T3(A f )∩ K0)
−1,

and so
−2v(T3)

−1 SOγ3( f∞dg f )t3(n)=−3−1t3(n).

We conclude that in this case,

STg( f dg)= 1
12 n− 1

2 +
1
4(−1)(n+1)/2

−
1
3 t3(n).

Note that for n > 1 this agrees precisely with the discrete series multiplicities.
For n= 1, this expression is equal to−1, but of course in this case π is not regular.

8. Real tori

We have finished our discussion of SL2. Starting with this section, we begin to
work out the example of GSp4. Various isomorphisms of tori must be written
carefully, so we begin by explicitly working out their parametrizations.

8.1. The real tori Gm, S, and T1. We identify the group of characters of Gm with
Z in the usual way, via (a 7→ an)↔ n.

Let A0=Gm×Gm , viewed as a maximal torus in GL2 in the usual way. Via the
identification above we obtain X∗(A0)∼= Z2 and X∗(A0)∼= Z2.

Let S = ResC
R Gm . Recall that ResC

R Gm denotes the algebraic group over R

whose A-points are (A⊗C)× for an R-algebra A. By choosing the basis {1, i} of
C over R, we have an injection (A×C)×→GL(A⊗C)∼=GL2(A). Thus we have
an embedding ιS : S→ GL2 as an elliptic maximal torus.

There is a ring isomorphism ϕ :C⊗C∼→C×C such that ϕ(z1⊗z2)= (z1z2, z1z2),
which restricts to an isomorphism ϕ : S(C) ∼→Gm(C)×Gm(C). This isomorphism
is also actualized by conjugation within GL2(C). Fix x ∈ GL2(C) so that

Ad(x)
(

a −b
b a

)
=

(
a+ ib

a− ib

)
;

then Ad(x) : S(C) ∼→ A0(C) is identical to ϕ, viewing these two tori under the
embeddings above.
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We fix the isomorphism from Z2 to X∗(S) that sends (1, 0) and (0, 1) to the char-
acter ϕ composed with projection to the first and, respectively, second component
of Gm×Gm . Similarly we fix the isomorphism from Z2 to X∗(S) that sends (1, 0)
and (0, 1) to the cocharacters a 7→ ϕ−1(a, 1) and a 7→ ϕ−1(1, a), respectively.

Write Ŝ for the Langlands dual torus to S. It is isomorphic to C× × C× as
a group, with 0R-action defined by σ(α, β) = (β, α). We fix the isomorphism
X∗(S) ∼→ X∗(Ŝ) given by (a, b) 7→ (z 7→ (za, zb)).

We have an inclusion ιS : Gm → S given on A-points by a 7→ a⊗ 1. Write σS

for the automorphism of S given by 1⊗ σ on A-points. Note that the fixed point
set of σS is precisely the image of ιS .

Write Nm : S→ Gm for the norm map given by s 7→ s · σS(s). Note that the
product s · σS(s) is in ιS(Gm), which we identify here with Gm . One computes
that the norm map induces the map n 7→ (n, n) from X∗(Gm) to X∗(S) with the
identifications above.

Write T1 for the kernel of this norm map. Its group of characters fits into the
exact sequence

0→ X∗(Gm)→ X∗(S)→ X∗(T1)→ 0.

We identify X∗(T1) with Z so that the restriction map X∗(S)→ X∗(T1) is given
by (a, b) 7→ a− b. The corresponding map Ŝ→ T̂ is given by (α, β) 7→ αβ−1.

8.2. The kernel and cokernel tori.

Definition 21. We define Aker to be the kernel of the map from Gm
4
→Gm given

by (a, b, c, d) 7→ (ab)/(cd). We define Acok to be the cokernel of the map from
Gm to Gm

4 given by x 7→ (x, x, x−1, x−1). Write Tker for the kernel of the map

S× S→ Gm, (α, β) 7→ Nm(α/β),

and Tcok for the cokernel of the map

Gm→ S× S, x 7→ (ιS(x), ιS(x−1)).

Identifying X∗(Gm) and X∗(Gm) with Z as before, we obtain exact sequences

0→ X∗(Aker)→ Z4
→ Z→ 0,

0→ Z→ Z4
→ X∗(Aker)→ 0,

0→ Z→ Z4
→ X∗(Acok)→ 0,

0→ X∗(Acok)→ Z4
→ Z→ 0.

Here the maps from Z→ Z4 are both n 7→ (n, n,−n,−n), and the maps from
Z4
→ Z are both (n1, n2, n3, n4) 7→ n1+ n2− n3− n4.
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Thus we obtain isomorphisms

gkc : X∗(Aker)
∼
→ X∗(Acok) and gck : X∗(Acok)

∼
→ X∗(Aker),

obtained from the exact sequences defining Aker and Acok. In this way we view
Acok(C) and Aker(C) as the dual tori Âker and Âcok, respectively.

The isomorphism ϕ × ϕ : S(C) × S(C) ∼→ (C×)4 gives isomorphisms 8ker :

Tker(C)
∼
→ Aker(C) and 8cok : Tcok(C)

∼
→ Acok(C).

Consider the map from S× S to S× S given by (a, b) 7→ (ab, aσS(b)). This fits
together with the previous maps to form an exact sequence

1→ Gm→ S× S→ S× S→ Gm→ 1,

and yields an isomorphism 9T : Tcok
∼
→ Tker.

Consider the map from Gm
4 to Gm

4 given by (a, b, c, d) 7→ (ac, bd, ad, bc).
This fits together with the previous maps to form an exact sequence

1→ Gm→ Gm
4
→ Gm

4
→ Gm→ 1

and yields an isomorphism 9A : Acok
∼
→ Aker. On C-points we have

(8-1) 8ker ◦9T (C)=9A(C) ◦8cok.

9. Structure of GSp4(F)

9.1. The general symplectic group. Let F be a field of characteristic 0. Put

J =


1

−1
1

−1

 .
Take G to be the algebraic group GSp4 = {g ∈ GL4 | g Jgt

= µJ, some µ =
µ(g) ∈ Gm}. It is closely related to the group G ′ = Sp4 = {g ∈ GSp4 | µ(g)= 1}.
Write A for the subgroup of diagonal matrices in G, and Z for the subgroup of
scalar matrices in G.

We fix the isomorphism ιA : Aker
∼
→ A given by

(9-1) (a, b, c, d) 7→ diag(a, c, d, b).

Let BA be the Borel subgroup of upper triangular matrices in G.

9.2. Root data. Although A and Aker are isomorphic tori, we prefer to parame-
trize their character and cocharacter groups differently, since the isomorphism ιA

permutes the order of the components.
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So we express X∗(A)= Hom(A,Gm) as the cokernel of the map

(9-2) i : Z→ Z4,

given by i(n)= (n,−n,−n, n).
We write e1, . . . , e4 for the images in X∗(A) of (1, 0, 0, 0), . . . , (0, 0, 0, 1).

Thus e1 + e4 = e2 + e3. The basis 1G of simple roots corresponding to BA is
{e1−e2, e2−e3}, with corresponding positive roots {e1−e2, e1−e4, e2−e3, e1−e3}.
The half-sum of the positive roots is then ρB =

1
2(4e1− e2− 3e3) ∈ X∗(A).

Definition 22. Write � for the Weyl group of A in G. Write w0, w1, w2 for the
elements of � that conjugate diag(a, b, c, d) ∈ A to

diag(d, c, b, a), diag(a, c, b, d), diag(b, a, d, c),

respectively.

� has order 8 and is generated by w0, w1, and w2.
Express X∗(A) as the kernel of the map

(9-3) p : Z4
→ Z, (a, b, c, d) 7→ a− b− c+ d.

Let ϑ1= (1, 0, 0,−1) and ϑ2= (0, 1,−1, 0)∈ X∗(A). Then the coroots of A in G
are given by R∨ = R∨(A,G) = {±ϑ1± ϑ2,±ϑ1,±ϑ2}. The basis 1∨G of simple
coroots dual to 1G is {ϑ1 − ϑ2, ϑ2}. Then (X∗(A),1G, X∗(A),1∨G) is a based
root datum for G.

9.3. The dual group Ĝ. We will take Ĝ to be GSp4(C), with trivial L-action, and
the same based root data as already discussed for G. The isomorphism

(9-4) X∗(A)
(ιA)

∗

−−→ X∗(Aker)
(9A)

∗

−−−→ X∗(Acok)
gck
−→ X∗(Aker)

(ιA)∗
−−→ X∗(A)

(and its inverse) furnish the required isomorphism of based root data. Let us write
this out more explicitly. Note that (ιA)∗ and (ιA)∗ are given by

(ιA)∗(a, b, c, d)= (a, c, d, b) and (ιA)
∗(a, b, c, d)= (a, d, b, c).

The isomorphism in (9-4) is induced from the linear transformation6 :Z4
→Z4

represented by the matrix 
1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 ,
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which gives the exact sequence 0 → Z
i
−→ Z4 6

−→ Z4 p
−→ Z → 0, and thus an

isomorphism

(9-5) X∗(A)
6

−
∼
→ X∗(A).

This agrees with the isomorphism used in [Roberts and Schmidt 2007, Section 2.3].
We have 6(e1−e2)= ϑ2 and 6(e2−e3)= ϑ1−ϑ2. Thus the based root datum

above is self-dual. Note that 6(ρ)= 3
2ϑ1+

1
2ϑ2. Write Â for A(C); it is the torus

dual to A via the isomorphism in (9-5).

10. Discrete series for GSp4(R)

10.1. The maximal elliptic torus T of G. Consider the map GL2×GL2→ GL4

given by

(
a b
c d

)
×

(
e f
g h

)
7→


a b

e f
g h

c d

 .
The composition of this with the natural inclusion S × S→ GL2×GL2 gives

an embedding of S × S into GL4. This restricts to an embedding of Tker into G,
whose image is an elliptic maximal torus T of G. Thus we have ιT : Tker

∼
→ T .

T (R) is the subgroup of matrices of the form

(10-1) γr,θ1,θ2 =


r cos(θ1) −r sin(θ1)

r cos(θ2) −r sin(θ2)

r sin(θ2) r cos(θ2)

r sin(θ1) r cos(θ1)


for r > 0 and angles θ1, θ2.

Pick an element ξ ∈ G(C) so that

Ad(ξ)


a −b

c −d
d c

b a

=


a+ ib
c+ id

c− id
a− ib

 ,
and put BT =Ad(ξ−1)BA. Then BT is a Borel subgroup of GC containing T , and
Ad(ξ) : T (C) ∼→A(C) is the canonical isomorphism associated to the pairs (T, BT )

and (A, BA). The definitions have been set up so that

ιA ◦8ker = Ad(ξ) ◦ ιT .
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We identify A(C) as the torus dual T̂ to T via the isomorphisms

(10-2) X∗(T )
(ιT )

∗

−−→ X∗(Tker)
8∗ker
−−→ X∗(Aker)

(9A)
∗

−−−→ X∗(Acok)
gck
−→ X∗(Aker)

(ιA)∗
−−→ X∗(A).

10.2. Real Weyl group. We use Ad(ξ) to identify � with the Weyl group of T (C)
in G(C). Recall that �R denotes the Weyl group of T (R) in G(R). By [Warner
1972, Proposition 1.4.2.1], we have

�R = NKR
(T (R))/(T (R)∩ KR).

When discussing maximal compact subgroups of GSp4(R), it is convenient
to use a different realization of these symplectic groups. Following [Pitale and
Schmidt 2009], take for J the symplectic matrix

1
1

−1
−1

 .
Take for KR the standard maximal compact subgroup of GSp4(R) (the intersection
of G(R) with the orthogonal group), and SKR the intersection of KR with Sp4(R).
One finds that SKR is isomorphic to the compact unitary group U2(R), and yields
the Weyl group element w2. The element diag(1, 1,−1,−1) ∈ NG(R)(T (R))∩KR

gives w0 ∈ �R, and these two elements generate �R. This subgroup has index 2
in �, and does not contain the element w1.

10.3. Admissible embeddings. Consider the admissible embedding ηB :
LT→ LG.

Write θ(z)= z/|z| for z ∈C×. We have LT = T̂ oWR, with τ acting as the longest
Weyl group element on T̂ .

Writing LT = T̂ ×WR, we put

ηB(1× z)= diag(θ(z)3, θ(z), θ(z)−1, θ(z)−3)× z for z ∈ C× ∼=WC,

ηB(t̂ × 1)= t̂ × 1 for t̂ ∈ T̂ ,

ηB(1× τ)= J × τ.

10.4. Elliptic Langlands parameters. Let a, b be odd integers with a > b > 0.
Let t be an even integer. Put

µ= 1
2 [(t, t, t, t)+ (a, b,−b,−a)] and ν = 1

2 [(t, t, t, t)+ (−a,−b, b, a)],

viewed in X∗(T̂ )C. Then we may define a Langlands parameter ϕG :WR→
L G by

ϕG(z)= zµzν × z = |z|t diag(θ(z)a, θ(z)b, θ(z)−b, θ(z)−a)× z,
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and ϕG(τ )= J × τ .
Note that the centralizer of ϕG(WC) in Ĝ is simply Â, and that 〈µ, α〉 is positive

for every root of A that is positive for BA(C). Thus ϕG determines the pair ( Â, B̂A),
where B̂A is simply BA(C).

Define a Langlands parameter ϕB :WR→
LT by

ϕB(z)= |z|t diag(θ(z)a−3, θ(z)b−1, θ(z)1−b, θ(z)3−a)× z,

and ϕB(τ )= 1× τ . Then ϕG = ηB ◦ϕB .
Let πG =π(ϕG, BT ) and π ′G =π(ϕG, w1(BT )), with notation from Section 2.2.

The L-packet determined by ϕG is5={πG, π
′

G}. Here πG is called a holomorphic
discrete series representation, and π ′G is called a large discrete series representation.

The highest weight for the associated representation E of G(C) is

λB =
1
2(a+ b− 4, t − b+ 1, t − a+ 3, 0) ∈ X∗(A).

From this we may read off the central character λE(z I )= zt for z I ∈ AG(C).

11. The elliptic endoscopic group H

11.1. Root data. Let H be the cokernel of the map Gm → GL2×GL2 given by
t 7→ t I × t−1 I . Write AH for the diagonal matrices in H , and BH for the pairs of
upper triangular matrices in H . Fix ιAH : Acok

∼
→ AH given by

(a, b, c, d) 7→ diag(a, b)× diag(d, c).

Write TH for the image of S× S in H . It is an elliptic maximal torus in H . Fix
ιTH : Tcok

∼
→TH obtained from the map S× S→GL2×GL2, α 7→ (ιS(α), ιS(α)).

Put BTH =Ad(x×x)−1 BH , a Borel subgroup of HC containing TH . Then Ad(x×x)
is the canonical isomorphism TH (C)

∼
→ AH (C) associated to the pairs (TH , BTH )

and (AH , BH ). We view X∗(TH ) as the kernel of the map p : Z2
×Z2

→ Z given
by (a, b)× (c, d) 7→ a+ b− c− d . We have a basis of roots 1H given by

(11-1) 1H = {(1,−1)× (0, 0), (0, 0)× (1,−1)},

and ρH =
1
2(1,−1)× 1

2(1,−1).
Furthermore, X∗(TH ) is the cokernel of the map ι : Z → Z2

× Z2 given by
a 7→ (a, a)× (−a,−a). We have a basis of coroots 1∨H given by

(11-2) 1∨H = {(1,−1)× (0, 0), (0, 0)× (1,−1)},

viewed in the quotient X∗(TH ).
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11.2. Dual group Ĥ. Let Ĥ ={(g, h)∈GL2(C)×GL2(C) | det(g)= det(h)}. We
have an inclusion Aker(C)→ Ĥ given by

(a, b, c, d) 7→ diag(a, b)× diag(d, c).

Write ÂH
⊂ Ĥ for the image. We thus have an isomorphism ι ÂH : Aker(C)

∼
→ ÂH .

Also write B̂H for the subgroup of upper triangular matrices in Ĥ . This Borel
subgroup determines a based root datum for Ĥ .

Giving Ĥ the trivial L-action, we view it as a dual group to H via the isomor-
phisms

X∗(AH )
(ιAH )

∗

−−−→ X∗(Acok)
gck
−→ X∗(Aker)

(ι ÂH )∗
−−−→ X∗( ÂH ),

X∗( ÂH )
(ι ÂH )

∗

−−−→ X∗(Aker)
gkc
−→ X∗(Acok)

(ιAH )∗
−−−→ X∗(AH ).

We identify ÂH as the torus T̂H dual to TH via the isomorphisms

(11-3) X∗(TH )
(ιTH )

∗

−−−→ X∗(Tcok)
8∗cok
−−→ X∗(Acok)

gck
−→ X∗(Aker)

(ι ÂH )
∗

−−−→ X∗( ÂH ).

Let η : LH → LG be given by

(11-4)
(

a b
c d

)
×

(
e f
g h

)
×w 7→


a b

e f
g h

c d

×w.
Let s = diag(1, 1)× diag(−1,−1) ∈ Ĥ .
The image η(Ĥ) is the connected centralizer in Ĝ of η(s). Thus, (H, s, η) is an

elliptic endoscopic triple for G. In fact it is the only one, up to isomorphism.
Moreover note that η restricted to ÂH is given by

(11-5) η| ÂH = ιA ◦ (ι ÂH )
−1.

(Recall that Â = A(C).)

12. Transfer for H(R)

The goal of this section is Proposition 12, in which we identify eH
πG

and eH
π ′G

. This
is part of the global transfer f H dh that is to be entered into STg for the endoscopic
group H . We will recognize it using the character theory of transfer reviewed in
Section 3.

12.1. Parametrization of discrete series. First we must set up the Langlands pa-
rameters for discrete series representations of H(R), and describe how they transfer
to L-packets in G(R). Recall that we have fixed three integers a, b, t , with a, b odd,
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t even, and a > b> 0. Define the Langlands parameter ϕH :WR→
LH = Ĥ×WR

by
ϕH (z)= |z|t diag(θ(z)a, θ(z)−a)× |z|t diag(θ(z)b, θ(z)−b)× z

for z ∈WC, and
ϕH (τ )=

(
−1

1)
×
(

1
−1)
× τ.

Then ϕH determines the pair ( ÂH , B̂H ). The L-packet is a singleton {πH }. The
corresponding representation EH of H(C) has highest weight

λH =
1
2(t + a− 1, t − a+ 1)× 1

2(t + b− 1, t − b+ 1)

and central character λEH (z1, z2)= (z1z2)
t . Most importantly, we have ϕG=η◦ϕH .

There is another Langlands parameter ϕ′H given by

ϕ′H (z)= |z|
t diag(θ(z)b, θ(z)−b)× |z|t diag(θ(z)a, θ(z)−a)× z,

and by ϕ′H (τ )= ϕH (τ ) as above.
Again the L-packet is a singleton {π ′H }. The corresponding representation E ′H

has highest weight

λ′H =
1
2(t + b− 1, t − b+ 1)× 1

2(t + a− 1, t − a+ 1),

and central character λE ′H = λEH above.
Let ϕ′G = η◦ϕ

′

H . Then ϕ′G = Int(w2)◦ϕG , so it is equivalent to ϕG . In particular,
both L-packets {πH } and {π ′H } transfer to 5= {πG, π

′

G}.

12.2. Alignment. Recall the definition of alignment from Section 3.

Lemma 8. Define j : TH
∼
→ T by j = ιT ◦ 9T ◦ (ιTH )

−1. Then ( j, BT , BTH ) is
aligned with ϕH , and ( j, w1 BT , BTH ) is aligned with ϕ′H .

Proof. Since the parameter ϕG gives the pair ( Â, B̂), the parameter ϕ′G gives the
pair ( Â, w1 B̂), and because ϕH and ϕ′H both give ( Â, B̂H ), the horizontal maps
in (3-2) are identities. The map ĵ : T̂ → T̂H may be computed by composing the
isomorphism X∗(T̂ )∼→X∗(T ) in (10-2) with the induced map j∗ : X∗(T )∼→X∗(TH )

and finally with the inverse of the isomorphism X∗(T̂H )
∼
→X∗(TH ) in (11-3). Using

equations (8-1) and (11-5), one finds that ĵ = ι ÂH
◦ (ιA)

−1
= η−1, as desired. �

12.3. Transfer for HR.

Proposition 12. Let πG = π(ϕG, BT ) and π ′G = π(ϕG, ω
−1(BT )) as described in

Section 10.4. Then (using notation from Section 2.4) we may take eH
πG
= eπH +eπ ′H ,

where πH and π ′H are the discrete series representation determined by ϕH and ϕ′H ,
respectively, as above. Furthermore, we may take eH

π ′G
=−eH

πG
.
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Proof. By Lemma 8, we may use

1∞(ϕH , π(ϕG, ω
−1(BT )))= 〈aω, ĵ−1(s)〉,

1∞(ϕ
′

H , π(ϕG, ω
−1(w1 BT )))= 〈aw1ω, ĵ−1(s)〉

for ω ∈�. In both cases, this is given by

〈aω, s〉 =
{

1 if ω ∈�R,

−1 if ω /∈�R.

Note that 〈aw1ω, ĵ−1(s)〉 = −〈aω, ĵ−1(s)〉. Therefore the characterization (3-1)
becomes, for a general measure f∞dg∞ at the real place,

2πH ( f H
∞

dh∞)=
∑

π∈5(ϕG)

1∞(ϕH , π)2π ( f∞dg∞)

=2πG ( f∞dg∞)−2π ′G ( f∞dg∞)

and similarly

2π ′H ( f H
∞

dh∞)=2πG ( f∞dg∞)−2π ′G ( f∞dg∞).

In our case, we obtain

2πH (e
H
πG
)=2π ′H (e

H
πG
)= (−1)q(G) and 2πH (e

H
π ′G
)=2π ′H (e

H
π ′G
)=−(−1)q(G).

The proposition follows. �

13. Levi subgroups

13.1. Levi subgroups. We give the standard Levi subgroups of G, which are those
of the parabolic subgroups containing BA. We have the group A, the group G itself,
and the following two Levi subgroups:

M1 = {diag(g, λg) | g ∈ GL2, λ ∈ Gm},

M2 = {diag(a, g, b) | g ∈ GL2, a, b ∈ Gm, det(g)= ab}.

Note that both M1 and M2 are isomorphic to Gm ×GL2.
The group H also has four Levi subgroups, namely AH , the group H itself, the

image M H
1 of GL2×A0 in H , and the image M H

2 of A0 ×GL2 in H . Note that
both M H

1 and M H
2 are isomorphic to GL2×Gm .

13.2. Miscellaneous constants. We now compute the invariants from Section 5.1
for the Levi subgroups of G and H .

First, we compute the various k(M). When M is the split torus A its derived
group is trivial and so k(A)= 1. For i = 1, 2, the Levi subgroup Mi is isomorphic
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to GL2×Gm , and the torus is isomorphic to S×Gm . Since S and Gm have trivial
first cohomology, again k(M1)= 1.

Lemma 9. We have k(G)= 2.

Write T as before for the elliptic torus of G.

Proof. Recall that T1 is the kernel of Nm and H 1(R, T1) has order 2.
Recall that the torus T is isomorphic to the kernel of the map

S× S→ Gm, (α, β) 7→ Nm(α/β).

Projection to the first (or second) component followed by Nm gives an exact se-
quence

(13-1) 1→ T1× T1→ T → Gm→ 1.

We have that Gsc=Gder and the inclusion Tsc=Gder∩T ⊂ T may be identified
with the map T1 × T1 → T in the sequence above. In particular, H 1(R, Tsc) has
order 4.

Taking the cohomology of (13-1) gives the exact sequence

1→ R×/R×2
→ H 1(R, Tsc)→ H 1(R, T )→ 1,

from which we conclude that H 1(R, Tsc)→ H 1(R, T ) is surjective and H 1(R, T )
has order 2. �

One must also compute k(MH ) for Levi subgroups MH of H . The intermediate
Levi subgroups are again isomorphic to GL(2)×Gm , and for AH the derived group
is trivial. So k(MH )= 1 for each of these.

Lemma 10. We have k(H)= 1.

Proof. We have T = P(S × S), Hsc = SL2×SL2, and Tsc = T1 × T1. The map
Tsc→ T factors through T1×T1→ S×S. As above we conclude that k(H)= 1. �

Secondly, we compute the Tamagawa numbers. Recall that

τ(G)= |π0(Z(Ĝ)0Q)| · |ker1(Q, Z(Ĝ))|−1.

Proposition 13. We have τ(M)= 1 for all Levi subgroups of G and for all proper
Levi subgroups of H , and τ(H)= 2.

Proof. For each of these groups, Z(M̂) is either the group C× with trivial 0Q-
action, or a product of such groups. By the Chebotarev density theorem, the
homomorphism

Hom(0Q,C×)→
∏
v

Hom(0Qv
,C×)
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is injective. So |ker1(Q, Z(Ĝ))| is trivial for our examples. Computing the com-
ponent group of each Z(M̂) is straightforward. �

The quantities nG
M are easy to compute using NG(M) ⊆ NG(Z(M)). If M is a

maximal torus, nG
M is of course the order of the Weyl group. For the intermediate

cases, one finds that nG
Mi
= nH

M H
i
= 2.

If γ = 1, then ιM(γ)= 1 for each M , since each M is connected. Note that for
Levi subgroups M of G, all proper Levi subgroups M of H , and all semisimple
elements γ in G or H , we have ιM(γ)=1 since in all these cases the derived groups
are simply connected.

Finally, we compute ι(G, H), which we recall is given by

ι(G, H)= τ(G)τ (H)−1
|Out(H, s, η)|−1.

One may compute the order of Out(H, s, η) through [Kottwitz 1984, Section 7.6],
which shows that this set is in bijection with

∧
(η(s), ρ), in the notation of that

paper. This last set is represented by {1, g}, where

g =


1

1
1

1

 .
The conclusion is that ι(G, H)= 1

4 .

14. Computing S8M for Levi subgroups of G

Recall from Proposition 3 the formula

8M(γ,2
E)= (−1)q(L)|�L |

∑
ω∈�L M

ε(ω) tr(γ; V M
ω(λB+ρB)−ρB

) for γ ∈ Te(R).

In this section, the maximal torus will be conjugate to A, and the character group
will be identified with X∗(A). We specify an inner product we use on X∗(A)R for
the Weyl dimension formula (Proposition 4).

Definition 23. The usual dot product gives an inner product ( · , · ) on X∗(A)R,
viewing it as a hypersurface in R4.

Consider the isomorphism

pr : X∗(A)R ∼→ X∗(A)R

given by

pr(a, b, c, d)= (a, b, c, d)− 1
4(a+ d − b− c)(1,−1,−1, 1),

and let 〈λ,µ〉 = (pr(λ), pr(µ)).
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For instance,

pr(λB)=
1
4(a+ b+ t − 4, a− b+ t − 2,−a+ b+ t + 2,−a− b+ t + 4).

It will also be necessary to compute �L M for each example. Recall that this is
the set of w ∈ � such that w−1α > 0 for positive roots α that are either real or
imaginary.

14.1. The term 8G . By (4-1) we have 8G(γ,2
E) = tr(γ; E). Using the Weyl

dimension formula, we compute

S8G(1, eπG )=−
1
24ab(a+ b)(a− b)v(G)−1.

14.2. The term S8M1 . Consider the torus TM1 given by
a b
−b a

λa λb
−λb λa

 ,
with a2

+ b2
6= 0 and λ 6= 0. This is an elliptic torus in M1.

There is one positive real root e1 − e3 and one positive imaginary root αM1 =

e1− e2. We have �L M
= {1, w1}, q(L)= 1, and |�L | = 2. This gives

8M1(1,2
E)= (−2)

(
dimC V M1

λB
− dimC V M1

λ′B

)
,

where λ′B =
1
2(a+ b− 4, t − a+ 1, t − b+ 3, 0) ∈ X∗(T ).

Note that 〈αM1, λB〉 =
1
2(b− 1). The Weyl dimension formula yields

dimC V M1
λB
= b and dimC V M1

λ′B
= a.

Thus
S8M1(1, eπG )=−(b− a)v(M1)

−1.

14.3. The term S8M2 . Consider the torus TM2 given by
s

a −b
b a

t

 ,
with st = a2

+ b2
6= 0. This is an elliptic torus in M2.

We may conjugate this in G(C) to matrices of the form

γ = diag(s, a+ ib, a− ib, t)
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in A(C). Composing the roots of A with this composition, we determine the posi-
tive imaginary root αM2 = e2− e3. We have �L M

= {1, w2}.
This gives

8M2(1,2
E)= (−2)

(
dimC V M2

λB
− dimC V M2

λ′′B

)
,

where λ′′B =
1
2(t − b− 1, a+ b− 2, 0, t − a+ 3) ∈ X∗(T ). Note that

pr(λ′′B)=
1
4(t + a− b− 4, t + a+ b− 2, t − a− b+ 2, t − a+ b+ 4).

The Weyl dimension formula yields

dimC V M2
λB
=

1
2(a− b) and dimC V M2

λ′′B
=

1
2(a+ b),

and so
S8M2(1, eπG )= b · v(M2)

−1.

14.4. The term S8A. By (4-1), we have 8A(1,2E) = (−1)q(G)|�G | = −8, and
so

S8A(1, eπG )= 4v(A)−1.

15. Computing S8MH for Levi subgroups of H

Since eH
πG
= eπH + eπ ′H , we have

S8MH (1, eH
πG
)

= (−1)q(G)(−1)dim(AMH /AH )v(MH )
−1(8MH (1,2πH )+8MH (1,2π ′H )

)
.

15.1. The term S8H(1, eH
πG
). In this case H has the elliptic torus TH .

From (4-1), we obtain 8H (1,2πH ) = dimC EH . To apply the dimension for-
mula, we compute for instance 〈α1, λH 〉=a−1, 〈α2, λH 〉=b−1, and 〈αi , ρH 〉=1.

We find that
8H (1,2EH )=8H (1,2E ′H )= ab.

Therefore
S8H (1, eH

πG
)=−2v(H)−1ab.

15.2. The term S8AH (1, eH
πG
). From (4-1), we obtain

8AH (1,2EH )=8AH (1,2E ′H )= 4.

Therefore
S8AH (1, eH

πG
)=−8v(AH )−1.
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15.3. The terms S8MH (1, eH
πG
) for the intermediate Levi subgroups. For both

M = M1
H and M = M2

H , we have �G = �L�M , and so formula (4-1) becomes
simply 8MH (1,2

EH )= (−2) dimC V MH
λH

for both of these Levi subgroups.
We obtain

8M1
H
(1,2EH )=8M2

H
(1,2E ′H )=−2a

and

8M2
H
(1,2EH )=8M1

H
(1,2E ′H )=−2b.

Therefore

S8M1
H
(1, eH

πG
)= S8M2

H
(1, eH

πG
)=−2v(M1

H )
−1(a+ b).

16. Final form: γ central

Recall that G = GSp4. For the convenience of the reader, we recall the setup.
Let a and b be odd integers with a > b> 0, and t an even integer. Consider the

Langlands parameter ϕG :WR→
L G given by

ϕG(z)= |z|t diag(θ(z)a, θ(z)b, θ(z)−b, θ(z)−a)× z and ϕG(τ )= J × τ.

Let πG be the discrete series representation π(ϕG, BT ) of G(R) as in Section 2.2.
Write π ′G for the other representation in 5(ϕG).

Put f∞dg∞= eπG as in Section 2.4 for πG and any measure f∞dg f on G(A f ).
Let f dg = eπG f∞dg f , a measure on G(A). By the theory of endoscopic transfer
there is a matching measure f H dh on H(A), where H is the elliptic endoscopic
group P(GL2×GL2) discussed above.

If z ∈ AG(Q), then
∑

M STg( f dg, z,M) is given by the product of λE(z) = zt

with

−
1
24ab(a+ b)(a− b)v(G)−1 f∞(z)+ 1

2(a− b)v(M1)
−1 f∞M1

(z)

+
1
2 bv(M2)

−1 f∞M2
(z)+ 1

2v(A)
−1 f∞A (z).

If z = (z1, z2) ∈ AH (Q), then
∑

MH
STg( f H dh, z,MH ) is given by the product of

λEH (z)= (z1z2)
t with

−4abv(H)−1 f H,∞(z)− 2(a+ b)v(M1
H )
−1 f∞M2

(z)− 2v(AH )−1 f∞AH (z).

17. The case 0 = Sp4(Z)

Let f∞dg f = eK0 , where K0 = G(O f ). Here dg f is an arbitrary Haar measure on
G(A f ), so that dg = dg f dg∞ is the Tamagawa measure on G(A).
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17.1. Central terms in G. Note that f∞M (z) = 0 for all z ∈ Z(Q) unless z = ±1,
and that f∞M (1)= f∞M (−1) for all Levi subgroups M .

First we compute STg( f dg,±1,G). We have

−
1

233
ab(a+ b)(a− b)v(G)−1 f∞(±1)

=−
1

233
ab(a+ b)(a− b)τ (G)−1d(G)−1χK0(G)

= 2−103−35−1ab(a+ b)(a− b).

Next we treat the ±1∈ Mi terms, for the intermediate Levi subgroups. We have

STg( f dg,±1,M1)=
1
2(a− b)v(M1)

−1 f∞M1
(±1)=−2−53−1(a− b),

STg( f dg,±1,M2)=
1
2 bv(M2)

−1 f∞M2
(±1)=−2−53−1b.

Next we treat the±1∈ A terms. We have f A(1)= volda f (K ∩ A(A f ))
−1, which

is 1. Moreover we take Lebesgue measure on A(R) so that v(A) = 8. It follows
that

STg( f dg,±1, A)= 1
2v(A)

−1 f∞A (±1)= 2−4.

Doubling these terms to account for both central elements, we compute

(17-1)
∑
z,M

STg( f dg, z,M)

= 2−93−35−1ab(a+ b)(a− b)− 2−43−1(a− b)− 2−43−1b+ 2−3.

17.2. Central terms in H. By the fundamental lemma ([Hales 1997; Weissauer
2009] for GSp4, and of course [Ngô 2010] in general), we may write (eK0)

H
= eK H ,

where K H = H(O f ). Thus ( f∞)H
M(z) = 0 for all z ∈ H(Q) unless z = (1,±1),

and

f H∞
M (1, 1)= f H∞

M (1,−1)

for all Levi subgroups M = MH of H .
The only nontrivial factors in the formula of Theorem 2 are |ker ρ(Q)| = 2,
[H(R) : H(R)+] = 4, and χalg(H sc(Z)). Note that H sc

= SL2×SL2.
Therefore

χK H (H)= 2−1χalg(SL2(Z))
2
= 2−53−2.

We conclude that

STg( f H dh, (1,±1), H)=−4abv(H)−1 vol(K H )
−1
=−2−43−2ab.
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Next we find that
2∑

i=1

STg( f H dh, (1,±1),M H
i )=−2(a+ b)v(M H

1 )
−1 vol(KM)

−1

= 2−33−1(a+ b).

Finally, we have

STg( f H dh, (1,±1), AH )=−2v(A)−1 vol(K A)
−1
=−2−2.

Multiplying by ι(G, H) = 4−1 and then doubling to account for both central
elements, we compute

(17-2) ι(G, H)
∑
z,MH

STg( f H dh, z,MH )=−2−53−2ab+ 2−43−1(a+ b)− 2−3.

18. Comparison

As mentioned in the introduction, Wakatsuki [≥ 2012; 2012] has used the Selberg
trace formula and Arthur’s L2-Lefschetz number formula to compute the discrete
series multiplicities mdisc(π, 0) for π both holomorphic and large discrete series
representations for Sp4(R), and for many cases of arithmetic subgroups 0. We will
compare our formula to his when 0 is the full modular group. (Note that if π is
a discrete series representation of GSp4(R) with trivial central character, and π1

is its restriction to Sp4(R), then mdisc(π, 0)=mdisc(π1, 01), where 01 = Sp4(Z).)
Since he is using the Selberg trace formula, his formula breaks into contributions
from each conjugacy class in 0. In particular, he identifies the central-unipotent
contributions H Hol

1 and H Large
1 to mdisc(πG) and mdisc(π

′

G), respectively. Namely,

H Hol
1 = 2−93−35−1ab(a− b)(a+ b)− 2−53−2ab+ 2−43−1b,

H Large
1 = 2−93−35−1ab(a− b)(a+ b)+ 2−53−2ab− 2−33−1b+ 2−2.

(To translate from his notation to ours, use j = b− 1 and k = 1
2(a− b)+ 2.)

Comparing these formulas to our formulas above, we observe

H Hol
1 =

∑
M

STg( f dg,±1,M)+ ι(G, H)
∑
MH

STg( f H dh, (1,±1),MH )

when f dg = eπG eK0 and

H Large
1 =

∑
M

STg( f dg,±1,M)+ ι(G, H)
∑
MH

STg( f H dh, (1,±1),MH ).

when f dg = eπ ′G eK0 .
This proves Theorem 1. �
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SMALL COVERS
AND THE HALPERIN–CARLSSON CONJECTURE

LI YU

We prove that the Halperin–Carlsson conjecture holds for any free (Z2)
m-

action on a compact manifold whose orbit space is a small cover.

1. Introduction

For any prime p, let Zp denote the quotient group Z/pZ, and S1 the circle group.

The Halperin–Carlsson Conjecture. If G = (Zp)
m or (S1)m can act freely on a

finite CW-complex X , then, respectively,
∞∑

i=0

dimZp H i (X,Zp)≥ 2m or
∞∑

i=0

dimQ H i (X,Q)≥ 2m .

This was proposed by Halperin [1985] for the torus case and by Carlsson [1986]
for the Zp-torus case. It is also called the toral rank conjecture in some papers.

At first this conjecture mainly took the form of whether a free (Zp)
m-action on

a product of spheres Sn1×· · ·× Snk implies m ≤ k. Many authors have studied this
intriguing conjecture in its various aspects [Conner 1957; Carlsson 1982; Adem
1987; Adem and Browder 1988; Adem and Benson 1998; Hanke 2009]. For a
survey of results on the topic, see [Adem 2004; Allday and Puppe 1993]. The
general case is still open for any prime p.

For general finite CW-complexes, the conjecture was proved in [Puppe 2009]
for m ≤ 3 in the torus and Z2-torus cases and m ≤ 2 in the odd Zp-torus case.
Also we have the following result, achieved independently, which confirmed the
Halperin–Carlsson conjecture for some special Z2-torus actions on real moment-
angle complexes:

This work was partially supported by the Japan Society for the Promotion of Science (JSPS grant
no. P10018) and the Natural Science Foundation of China (grant no. 11001120). This work was
also funded by the PAPD (priority academic program development) of Jiangsu higher education
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MSC2010: 57R22, 57R91, 57S17, 57S25.
Keywords: free torus action, Halperin–Carlsson conjecture, small cover, moment-angle manifold,

glue-back construction.
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Theorem 1.1 [Cao and Lü 2009; Ustinovskii 2011]. Let K n−1 be an (n − 1)-
dimensional simplicial complex on the vertex set [d]. Then the real moment-angle
complex RZK n−1 over K n−1 must satisfy

∑
i dimZ2 H i (RZK n−1,Z2) ≥ 2d−n . In

particular, if Pn is an n-dimensional simple convex polytope with d facets, then the
real moment-angle manifold RZPn must satisfy

∑
i dimZ2 H i (RZPn ,Z2)≥ 2d−n .

Remark 1.2. Stronger results were obtained in [Cao and Lü 2009] and [Usti-
novskii 2011]; for example, Theorem 1.1 holds even if the Z2-coefficients are
replaced by rational coefficients.

Remark 1.3. There is a purely algebraic analogue of the Halperin–Carlsson con-
jecture, which was proposed in [Carlsson 1986] in the context of commutative
algebras. Some related results were obtained in [Carlsson 1987].

Here we only study the conjecture for G = (Z2)
m and X a closed manifold. We

use the following conventions:

• we treat (Z2)
m as an additive group;

• all manifolds and submanifolds are smooth;

• we do not distinguish between an embedded submanifold and its image.

Suppose that (Z2)
m acts freely and smoothly on a closed n-manifold Mn . Let

Qn
= Mn/(Z2)

m be the orbit space. Then Qn is a closed n-manifold too. Let π :
Mn
→ Qn be the orbit map. We can think of Mn either as a principal (Z2)

m-bundle
over Qn or as a regular covering over Qn whose deck transformation group is (Z2)

m .
In algebraic topology, we have a standard way to recover Mn from Qn , using the
universal covering space of Qn and the monodromy of the covering [Hatcher 2002].
However, it is not so easy for us to visualize the total space of the covering with this
approach. In [Yu 2012], a new way of constructing principal (Z2)

m-bundles over
closed manifolds is introduced, which allows us to visualize this kind of object
more easily.

Indeed, it is shown in [Yu 2012] that π : Mn
→ Qn determines a (Z2)

m-coloring
λπ on a nice manifold with corners V n (called a Z2-core of Qn), and up to equi-
variant homeomorphism, we can recover Mn by a standard glue-back construction
from V n and λπ . Using this new language, we prove the following theorem, which
supports the Halperin–Carlsson conjecture.

Theorem 1.4. Suppose that (Z2)
m acts freely on a closed n-manifold Mn whose

orbit space is homeomorphic to a small cover; then

(1)
∑

i

dimZ2 H i (Mn,Z2)≥ 2m .

Recall that an n-dimensional small cover is a closed n-manifold with a locally
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standard (Z2)
n-action whose orbit space can be identified with an n-dimensional

simple convex polytope [Davis and Januszkiewicz 1991].
Given an arbitrary n-dimensional simple convex polytope Pn , there may not

exist any small cover over Pn . But we can always define a closed manifold RZPn

associated to Pn called a real moment-angle manifold [Davis and Januszkiewicz
1991, Construction 4.1]. Let F(Pn) = {F1, . . . , Fr } be the set of facets of Pn ,
and let {e1, . . . , er } be a basis of (Z2)

r . For 1 ≤ i ≤ r , we define a function
λ∗ : F(Pn)→ (Z2)

r by

(2) λ∗(Fi )= ei .

For any proper face f of Pn , let G f denote the subgroup of (Z2)
r generated by

the set {λ∗(Fi ) | f ⊂ Fi }. The real moment-angle manifold RZPn of Pn is defined
to be the quotient space

(3) RZPn := Pn
× (Z2)

r/∼,

where (p, g)∼ (p′, g′) if and only if p = p′ and g−1g′ ∈ G f (p), with f (p) being
the unique face of Pn that contains p in its relative interior. Let [(p, g)] denote
the equivalence class of (p, g) in RZPn . There is a canonical action of (Z2)

r on
RZPn by

g′ · [(p, g)] = [(p, g′+ g)],

for all p ∈ Pn and g, g′ ∈ (Z2)
r . This (Z2)

r -action on RZPn is not free. But a
subgroup N ⊂ (Z2)

r might act freely on RZPn through the canonical action. In that
case, the quotient space RZPn/N is called a partial quotient of RZPn [Buchstaber
and Panov 2002, Section 7.5]. Also, if there is another subgroup Ñ of (Z2)

r with
Ñ ⊃ N , and Ñ also acts freely on RZPn through the canonical action, we get an
induced free action of Ñ/N on RZPn/N whose orbit space is RZPn/Ñ . By abuse
of terminology, we also call this (Ñ/N )-action on RZPn/N canonical.

It is known that any small cover over Pn (if it exists) is a partial quotient of RZPn

by a rank (r − n) subgroup of (Z2)
r [Buchstaber and Panov 2002, Section 7.5].

Proposition 1.5. Suppose that Qn is a small cover over a simple convex polytope
Pn of dimension n, and that Mn is a principal (Z2)

m-bundle over Qn . If Mn is
connected, then there exists a subgroup N of (Z2)

r , where r is the number of facets
of Pn , such that Mn is equivalent to the partial quotient RZPn/N as principal
(Z2)

m-bundles over Qn .

Recall that two principal (Z2)
m-bundles Mn

1 and Mn
2 over a space Qn are called

equivalent if there are a homeomorphism f : Mn
1 → Mn

2 and a group automorphism
σ : (Z2)

m
→ (Z2)

m such that
• f (g · x)= σ(g) · f (x) for all g ∈ (Z2)

m and x ∈ Mn
1 , and

• f induces the identity map on the orbit space.
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Under these conditions, we also say that the free (Z2)
m-actions on Mn

1 and Mn
2 are

equivalent.
This paper is organized as follows. In Section 2, we review how to construct

principal (Z2)
m-bundles over a manifold from the classical theory of fiber bundles

and from the glue-back construction introduced in [Yu 2012]. We compare these
two constructions, using them to prove several lemmas on principal (Z2)

m-bundles,
and then give a proof of Proposition 1.5. In Section 3, we prove Theorem 1.4.

2. Glue-back construction

Suppose (Z2)
m acts freely and smoothly on an n-dimensional closed manifold Mn .

Then the orbit space Qn
=Mn/(Z2)

m is naturally a closed manifold. In this section,
we assume that Qn is connected and that H 1(Qn,Z2) 6= 0. Indeed, if Qn is not
connected, we can just apply our discussion to each connected component of Qn .
And if H 1(Qn,Z2)= 0, then Mn must be homeomorphic to Qn

× (Z2)
m .

Let π : Mn
→ Qn be the orbit map of the free (Z2)

m-action. If we think of Mn

as a principal (Z2)
m-bundle over Qn , then it determines an element

(4) 3π ∈ Hom
(
H1(Qn,Z2), (Z2)

m)∼= H 1(Qn, (Z2)
m).

If we think of Mn as a regular covering space over Qn , its monodromy is a group
homomorphism Hπ : π1(Qn, q0)→ (Z2)

m , where q0 is a base point of Qn . Then
Hπ factors through 3π via the canonical group homomorphism

(5) π1(Qn, q0)→ H1(Qn,Z)→ H1(Qn,Z2).

Conversely, given any element 3 ∈ Hom(H1(Qn,Z2), (Z2)
m), we can obtain a

principal (Z2)
m-bundle X (Qn,3) over Qn as follows. We compose 3 with the

group homeomorphism in (5) and obtain a group homomorphism

(6) 83 : π1(Qn, q0)→ (Z2)
m .

Then we define a left action of π1(Qn, q0) on (Z2)
m by

(7) γ · g =83(γ )+ g,

for all γ ∈ π1(Qn, q0) and g ∈ (Z2)
m . Also, suppose p : Q̃n

→ Qn is a universal
covering of Qn , and let π1(Qn, q0) act freely on Q̃n from the right. Then we can
define a free action of π1(Qn, q0) on Q̃n

× (Z2)
m thus: for any γ ∈ π1(Qn, q0) and

(x, g) ∈ Q̃n
× (Z2)

m ,

(8) γ · (x, g) := (x · γ−1, γ · g)= (x · γ−1,83(γ )+ g).

Let X (Qn,3) be the quotient space of this π1(Qn, q0) action on Q̃n
× (Z2)

m , and
let 23 : Q̃n

× (Z2)
m
→ X (Qn,3) be the corresponding quotient map. So for all
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γ ∈ π1(Qn, q0) and (x, g) ∈ Q̃n
× (Z2)

m , we have

23(x · γ, g)=23(x, γ · g).

Now, for any (x, g) ∈ Q̃n
× (Z2)

m , we define a map

(9) π3 : X (Qn,3)→ Qn, 23(x, g) 7→ p(x).

Clearly π3 : X (Qn,3)→ Qn is a principal (Z2)
m-bundle with a canonical free

(Z2)
m-action defined by

(10) g′ ·23(x, g) :=23(x, g+ g′),

for all x ∈ Q̃n and g, g′ ∈ (Z2)
m . Therefore the monodromy of X (Qn,3) is given

by 83. We call X (Qn,3) the bundle associated to p : Q̃n
→ Qn (thought of as

a principal π1(Qn)-bundle) and the π1(Q)-action (7) on (Z2)
m . In the theory of

fiber bundles, we may also write

X (Qn,3)= Q̃n
×3 (Z2)

m .

Also, any subgroup H of (Z2)
m acts freely on X (Qn,3) via (10). Then the quotient

space X (Qn,3)/H is naturally equipped with a free (Z2)
m/H -action. We call

X (Qn,3)/H with this free (Z2)
m/H -action a partial quotient of X (Qn,3).

For a principal (Z2)
m-bundle π : Mn

→ Qn , it is easy to verify that X (Qn,3π )

is equivalent to Mn as principal (Z2)
m-bundles over Qn .

But this way of constructing Mn from Qn and 3π is not so convenient for the
proof of Theorem 1.4, so we use another way of constructing principal (Z2)

m-
bundles over Qn , introduced in [Yu 2012]. First, we construct a manifold with
corners from Qn that can carry the information of any element of H 1(Qn, (Z2)

m).
This is done as follows [Yu 2012].

By a standard argument of intersection theory in differential topology, we can
show that there exists a collection of (n− 1)-dimensional compact embedded sub-
manifolds 61, . . . , 6k in Qn such that their homology classes {[61], . . . , [6k]}

form a basis of Hn−1(Qn,Z2) ∼= H 1(Qn,Z2) 6= 0. Also, we can put 61, . . . , 6k

in general position in Qn , which means that

• 61, . . . , 6k intersect transversely with each other, and

• if 6i1 ∩ · · · ∩6is is not empty, then it is an embedded submanifold of Qn of
codimension s.

Then we cut Qn open along 61, . . . , 6k ; that is, we choose a small tubular
neighborhood N (6i ) of each 6i and remove the interior of each N (6i ) from Qn .
Then we get a nice manifold with corners V n

= Qn
−
⋃

i int(N (6i )), which is
called a Z2-core of Qn from cutting Qn open along 61, . . . , 6k (see Figure 1 for
an example). A manifold with corners is called nice if each codimension-l face
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Figure 1. A Z2-core of a torus.

of the manifold belongs to exactly l facets [Jänich 1968; Davis 1983]. Here, the
niceness of V n follows from 61, . . . , 6k being in general position in Qn . The
boundary of N (6i ) is called the cut section of 6i in Qn , and {61, . . . , 6k} is
called a Z2-cut system of Qn . We can choose each 6i to be connected.

The projection ηi : ∂N (6i )→6i is a double cover, either trivial or nontrivial.
Let τ i be the generator of the deck transformation of ηi . Then τ i is a free involution
on ∂N (6i ); that is, τ i is a homeomorphism with no fixed point, and τ 2

i = id.
By applying some local deformations to these τ i if necessary [Yu 2012], we can
construct an involutive panel structure on ∂V n , which means that the boundary of
V n is the union of some compact subsets P1, . . . , Pk (called panels) that satisfy
the following conditions:

(a) each panel Pi is a disjoint union of facets of V n , and each facet is contained
in exactly one panel;

(b) there exists a free involution τi on each Pi that sends a face f ⊂ Pi to a face
f ′ ⊂ Pi (it is possible that f ′ = f );

(c) for all i 6= j , we have τi (Pi∩Pj )⊂ Pi∩Pj and τi◦τ j =τ j◦τi : Pi∩Pj→ Pi∩Pj .

The Pi above consists of those facets of V n that lie in the cut section of 6i , and
τi : Pi → Pi is the restriction of the modified τ i to Pi (see [Yu 2012] for the details
of these constructions).

Remark 2.1. A more general notion of involutive panel structure is introduced
in [Yu 2012], where the involution τi in (b) is not required to be free. This general
notion is used in [Yu 2012] to unify the construction of all locally standard (Z2)

m-
actions on closed manifolds from the orbit spaces.

Let P(V n) = {P1, . . . , Pk} denote the set of all panels in V n . Any map λ :
P(V n)→ (Z2)

m is called a (Z2)
m-coloring on V n , and any element in (Z2)

m is
called a color.

Now, let us see how to recover a principal (Z2)
m-bundle π :Mn

→ Qn from a Z2-
core V n of Qn and the element 3π ∈ Hom(H1(Qn,Z2), (Z2)

m). By the Poincaré
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duality for closed manifolds, there is a group isomorphism

κ : Hn−1(Qn,Z2)→ H1(Qn,Z2).

So we can assign an element of (Z2)
m to each panel Pi of V n by

(11) λπ (Pi )=3π (κ([6i ])) ∈ (Z2)
m .

We call λπ the associated (Z2)
m-coloring of π : Mn

→ Qn on V n .
Generally, for any (Z2)

m-coloring λ on V n , we can glue 2m copies of V n by

(12) M(V n, {Pi , τi }, λ) := V n
× (Z2)

m/∼,

where (x, g)∼ (x ′, g′) whenever x ′= τi (x) for some Pi and g′= g+λ(Pi )∈ (Z2)
m .

If x is in the relative interior of Pi1 ∩ · · · ∩ Pis , then (x, g)∼ (x ′, g′) if and only
if (x ′, g′)=

(
τ
εs
is
◦ · · · ◦ τ

ε1
i1
(x), g+ ε1λ(P1)+· · ·+ εsλ(Ps)

)
, where ε j = 0 or 1 for

any 1≤ j ≤ s and τ 0
i j
:= id .

M(V n, {Pi , τi }, λ) is called the glue-back construction from (V n, λ). Also, we
use M(V n, λ) to denote M(V n, {Pi , τi }, λ) in contexts where there is no ambiguity
about the involutive panel structure on V n .

Example 2.2. Figure 2 shows two principal (Z2)
2-bundles over a torus T 2 via

glue-back constructions from two different (Z2)
2-colorings on a Z2-core of T 2.

The {e1, e2} in the picture is a linear basis of (Z2)
2. The first (Z2)

2-coloring gives
a torus, and the second one gives a disjoint union of two tori. Also, we can define
a double covering map (as defined later in (16)) from the torus on the top to either
one of the tori below it.

Example 2.3. Figure 3 shows a Z2-core of the Klein bottle with three different
Z2-colorings, where Z2 = 〈a〉. So from the glue-back construction, we get three
inequivalent double coverings of the Klein bottle. From left to right in Figure 3,
the first Z2-coloring gives a torus, while the second and the third both give a Klein
bottle.
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Let θλ : V n
×(Z2)

m
→M(V n, λ) be the quotient map defined in (12). It is shown

in [Yu 2012] that M(V n, λ) is a closed manifold with a smooth free (Z2)
m-action

defined by

(13) g′ · θλ(x, g) := θλ(x, g+ g′),

for all x ∈ V n and g, g′ ∈ (Z2)
m . The orbit space of M(V n, λ) under this free

(Z2)
m-action is homeomorphic to Qn . We say that (13) defines the natural (Z2)

m-
action on M(V n, λ). Here, we always associate this natural free (Z2)

m-action
to M(V n, λ). Any subgroup H ⊂ (Z2)

m also acts freely on M(V n, λ) through the
natural action. The induced action of (Z2)

m/H on M(V n, λ)/H is also free, and its
orbit space is homeomorphic to M(V n, λ)/(Z2)

m
= Qn . By abuse of terminology,

we also call this (Z2)
m/H -action on M(V n, λ)/H natural and call M(V n, λ)/H

with the natural (Z2)
m/H -action a partial quotient of M(V n, λ).

We have defined “partial quotient” in three different contexts : RZPn , X (Qn,3)

and M(V n, λ). The common property of these notions is that each of them denotes
the quotient space of some free Z2-torus action on a space.

Theorem 2.4 [Yu 2012, Theorem 3.5]. Let π : Mn
→ Qn be a principal (Z2)

m-
bundle, and let λπ be the associated (Z2)

m-coloring on V n . Then M(V n, λπ ) and
Mn are equivalent principal (Z2)

m-bundles over Qn .

For any integer m ≥ 1, define

Colm(V n) := the set of all (Z2)
m-colorings on V n

= {λ | λ : P(V n)→ (Z2)
m
},

Lλ := the subgroup of (Z2)
m generated by {λ(P1), . . . , λ(Pk)},

rank(λ) := dimZ2 Lλ, for all λ ∈ Colm(V n).

For any g ∈ (Z2)
m , it is clear from (13) that Lλ acts freely on θλ(V n

× (g+ Lλ)),
whose orbit space is Qn .

Theorem 2.5 [Yu 2012, Theorem 3.7]. For any (Z2)
m-coloring λ on V n , M(V n, λ)

has 2m−rank(λ) connected components that are pairwise homeomorphic, and Lλ ∼=
(Z2)

rank(λ) acts freely on each connected component of M(V n, λ) whose orbit space
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is Qn . Each connected component of M(V n, λ) is equivalent to θλ(V n
× Lλ) as

principal (Z2)
rank(λ)-bundles over Qn .

An element λ ∈ Colm(V n) is called maximally independent if rank(λ) = k =
dimZ2 Hn−1(Qn,Z2). If λ ∈ Colm(V n) is maximally independent, then m ≥ k.

Obviously, the relation in (11) defines a one-to-one correspondence between the
elements of Colm(V n) and Hom(H1(Qn,Z2), (Z2)

m)∼= H 1(Qn, (Z2)
m). Suppose

3 ∈Hom(H1(Qn,Z2), (Z2)
m) is the element corresponding to λ ∈Colm(V n); then

Lλ is nothing but the image Im(3)⊂ (Z2)
m of 3, and λ is maximally independent

if and only if 3 is injective. We define

rank(3) := dimZ2(Im(3))= dimZ2(Lλ)= rank(λ).

It is clear that X (Qn,3) and M(V n, λ) are equivalent principal (Z2)
m-bundles

over Qn , and so are 23(Q̃n
× Im(3)) and θλ(V n

× Lλ). The canonical free (Z2)
m-

action on X (Qn,3) defined by (10) corresponds exactly to the natural (Z2)
m-

action on M(V n, λ) defined by (13). So for any subgroup H of (Z2)
m , the par-

tial quotients X (Qn,3)/H and M(V n, λ)/H are equivalent. Then we can write
Theorem 2.5 in terms of X (Qn,3) as follows.

Theorem 2.5∗. For any 3 ∈ Hom(H1(Qn,Z2), (Z2)
m), X (Qn,3) has 2m−rank(3)

connected components that are pairwise homeomorphic, and Im(3)∼= (Z2)
rank(3)

acts freely on each connected component of X (Qn,3) whose orbit space is Qn .
Each connected component of X (Qn,3) is equivalent to 23(Q̃n

× Im(3)) as
principal (Z2)

rank(3)-bundles over Qn .

We prove several lemmas on principal (Z2)
m-bundles over a closed manifold.

The statements of these lemmas are written in the language of glue-back construc-
tion. But we use X (Qn,3) and M(V n, λ) alternatively in the proofs of these
lemmas, depending on what is convenient.

Lemma 2.6. For any m≥ dimZ2 Hn−1(Qn,Z2), if λ1, λ2 ∈Colm(V n) are both max-
imally independent, then M(V n, λ1) must be equivalent to M(V n, λ2) as principal
(Z2)

m-bundles over Qn .

Proof. Let 31 and 32 be the elements of Hom(H1(Qn,Z2), (Z2)
m) corresponding

to λ1 and λ2. Then by our assumption, 31 and32 are both injective. So there exists
a group automorphism σ of (Z2)

m such that σ ◦31 =32. Then we can define a
homeomorphism φ : Q̃n

× (Z2)
m
→ Q̃n

× (Z2)
m , for x ∈ Q̃n and g ∈ (Z2)

m , by

φ(x, g)= (x, σ (g)).

Obviously, 231(x, g)=231(x
′, g′) if and only if 232(φ(x, g))=232(φ(x

′, g′)).
So φ induces an equivalence between the two principal (Z2)

m-bundles X (Qn,31)

and X (Qn,32). So M(V n, λ1) is equivalent to M(V n, λ2). �
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Lemma 2.7. Suppose M1 and M2 are two principal (Z2)
k-bundles over Qn , where

k = dimZ2 Hn−1(Qn,Z2). If M1 and M2 are both connected, then M1 must be
equivalent to M2 as principal (Z2)

k-bundles over Qn .

Proof. Using this notation, for some λi ∈ Colk(V n), i = 1, 2, Theorem 2.4 gives

Mi ∼= M(V n, λi ).

Also, because M1 and M2 are both connected, Theorem 2.5 implies that rank(λ1)=

rank(λ2)= k; that is, λ1 and λ2 are both maximally independent. So by Lemma 2.6,
M(V n, λ1) and M(V n, λ2) are equivalent principal (Z2)

k-bundles over Qn . �

We study some relations between M(V n, λ) for different λ ∈ Colm(V n). For
conciseness, for any topological space B and field F, we define

hrk(B, F) :=

∞∑
i=0

dimF H i (B, F).

Lemma 2.8. For any double covering ξ : B̃→ B and any i ≥ 0,

dimZ2 H i (B̃,Z2)≤ 2 · dimZ2 H i (B,Z2).

So hrk(B̃,Z2)≤ 2 · hrk(B,Z2).

Proof. The Gysin sequence of ξ : B̃→ B, in Z2-coefficient, reads:

· · · → H i−1(B,Z2)
φi−1
−→ H i (B,Z2)

ξ∗

−→ H i (B̃,Z2)→ H i (B,Z2)
φi
−→ . . . ,

where φi (γ )= γ ∪ e for all γ ∈ H i (B,Z2) and e ∈ H 1(B,Z2) is the first Stiefel–
Whitney class (mod 2 Euler class) of B̃. Then by the exactness of the Gysin
sequence, we have

dimZ2 H i (B̃,Z2)= dimZ2 H i (B,Z2)− dimZ2 Im(φi−1)+ dimZ2 ker(φi )

= 2 · dimZ2 H i (B,Z2)− dimZ2 Im(φi−1)− dimZ2 Im(φi )

≤ 2 · dimZ2 H i (B,Z2). �

Remark 2.9. In Lemma 2.8, if we replace the Z2-coefficients by Zp (p is an odd
prime) or Q (rational) coefficients, the conclusion in the lemma might fail. For
example, let B = RP2

∨RP2 be a one-point union of two RP2’s, and let B̃ be the
union of two spheres that intersect at two points (see Figure 4). It is clear that B̃
is a double covering of B. But for any field F= Zp or Q, we have hrk(B, F)= 1,
while hrk(B̃, F)= 4.
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Lemma 2.10. Suppose that λmax ∈ Colk(V n) is a maximally independent (Z2)
k-

coloring on V n , where k = dimZ2 Hn−1(Qn,Z2). Then, for any λ ∈ Colk(V n),

hrk(M(V n, λ),Z2)≥ hrk(M(V n, λmax),Z2).

Proof. Suppose 3 is the element of Hom(H1(Qn,Z2), (Z2)
k) corresponding to λ.

Let {α1, . . . , αk} be a Z2-linear basis of H1(Qn,Z2). Without loss of generality, we
assume that {3(α1), . . . , 3(αs)} is a Z2-linear basis of Im(3)⊂ (Z2)

k . Then we
can choose ω1, . . . , ωk−s ∈ (Z2)

k such that (Z2)
k
= Im(3)⊕〈ω1〉⊕ · · ·⊕ 〈ωk−s〉.

We define a sequence of elements 30, . . . , 3k−s ∈ Hom(H1(Qn,Z2), (Z2)
k)

thus: for any 0≤ j ≤ k− s,

(14) 3 j (αi ) :=

{
3(αi ) if 1≤ i ≤ s or s+ j < i ≤ k;
ωi−s if s+ 1≤ i ≤ s+ j .

Clearly 30 =3 and Im(3)= Im(30)⊂ Im(31)⊂ · · · ⊂ Im(3k−s)= (Z2)
k , and

for 1≤ j ≤ k− s,
rank(3 j )= rank(3 j−1)+ 1.

Let λ j be the elements of Colk(V n) corresponding to 3 j , with 0 ≤ j ≤ k − s.
Then λk−s is maximally independent. So by Lemma 2.6, we have

(15) hrk(M(V n, λmax),Z2)= hrk(M(V n, λk−s),Z2)= hrk(X (Qn,3k−s),Z2).

To prove the lemma, it suffices to show that for all 1≤ j ≤ k− s,

hrk(X (Qn,3 j−1),Z2)≥ hrk(X (Qn,3 j ),Z2).

Notice that Im(3 j )= Im(3 j−1)⊕〈ω j 〉 ⊂ (Z2)
k , and the only difference between

3 j−1 and 3 j is that 3 j−1(αs+ j )=3(αs+ j ) while 3 j (αs+ j )= ω j . Let

K j =23 j (Q̃
n
× Im(3 j ))

for all 1≤ j ≤ k− s, where p : Q̃n
→ Qn is a universal covering of Qn .

We define a free involution t j on K j : for any (x, g) ∈ Q̃n
× Im(3 j ),

(16) t j (23 j (x, g))=23 j (x, g+3(αs+ j )+ω j ).
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Let K j/t j be the quotient space of K j under t j , and let 23 j (x, g) ∈ K j/t j denote
the equivalence class of 23 j (x, g). So K j is a double covering of K j/t j .

By (9), the bundle map π3 j : X (Q
n,3 j )→ Qn restricted to K j gives a bundle

map π3 j : K j→ Qn that sends any 23 j (x, g) to p(x), and the monodromy of π3 j

is 83 j : π1(Qn, q0)→ Im(3 j )⊂ (Z2)
k ; see (6). So π3 j induces a map

π3 j : K j/t j → Qn, 23 j (x, g) 7→ p(x).

By the definition (16) of t j , we can easily see that π3 j is a fiber bundle whose fiber
is Im(3 j ) modulo the relation ∼, where for all g ∈ Im(3 j ),

g ∼ g+3(αs+ j )+ω j ,

or equivalently, ω j ∼ 3(αs+ j ). Now by (14), Im(3 j )/∼ can be identified with
Im(3 j−1), so the fiber of π3 j : K j/t j → Qn is isomorphic to Im(3 j−1). Let

% : Im(3 j )→ Im(3 j−1)= Im(3 j )/∼ .

So the monodromy of π3 j is % ◦83 j : π1(Qn, q0)→ Im(3 j−1). Also, it is easy
to check that % ◦83 j coincides with the monodromy 83 j−1 of the bundle π3 j−1 :

K j−1 → Qn . Therefore, the two bundles K j/t j and K j−1 over Qn are actually
equivalent. So by Lemma 2.8,

hrk(K j ,Z2)≤ 2 · hrk(K j/t j ,Z2)= 2 · hrk(K j−1,Z2).

Also, because by Theorem 2.5∗, X (Qn,3 j ) consists of 2k−rank(3 j ) copies of K j

for each 0≤ j ≤ k− s and rank(3 j )= rank(3 j−1)+ 1, we get

hrk(X (Qn,3 j−1),Z2)= 2k−rank(3 j−1) hrk(K j−1,Z2)

≥ 2k−rank(3 j ) hrk(K j ,Z2)= hrk(X (Qn,3 j+1),Z2).

Therefore,

hrk(M(V n, λ),Z2)= hrk(X (Qn,30),Z2)≥ hrk(X (Qn,3k−s),Z2)

= hrk(M(V n, λmax),Z2),

where we use (15) for the final equality. �

Lemma 2.11. Let Mn be a connected principal (Z2)
s-bundle over Qn . Then there

exist a maximally independent coloring λ̃ ∈ Colk(V n), where

k = dimZ2 Hn−1(Qn,Z2),

and a free (Z2)
k−s-action on M(V n, λ̃) whose orbit space is homeomorphic to Mn .

Also, Mn is equivalent to a partial quotient M(V n, λ̃)/H for some subgroup H of
(Z2)

k with rank k− s.
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Proof. We use a similar argument to the proof of Lemma 2.10. Because Mn is
connected, Theorem 2.5 implies that s≤ k and that there is an element λ∈Colk(V n)

such that rank(λ)= s and Mn is homeomorphic to θλ(V n
× Lλ)⊂ M(V n, λ).

As in the proof of Lemma 2.10, let3 be the element of Hom(H1(Qn,Z2), (Z2)
k)

corresponding to λ, and let {α1, . . . , αk} be a Z2-linear basis of H1(Qn,Z2) such
that {3(α1), . . . , 3(αs)} is a Z2-linear basis of Im(3)⊂ (Z2)

k . Suppose also that
(Z2)

k
= Im(3)⊕〈ω1〉⊕ · · · ⊕ 〈ωk−s〉, and define the same sequence of elements

3 = 30,31, . . . , 3k−s ∈ Hom(H1(Qn,Z2), (Z2)
k) as in (14) and corresponding

elements λ0, λ1, . . . , λk−s ∈ Colk(V n). So λk−s is maximally independent.
Let Ĥ = 〈ω1〉⊕· · ·⊕〈ωk−s〉 ⊂ (Z2)

k . Then Ĥ ∼= (Z2)
k−s , and there exists a free

action ? of Ĥ on X (Qn,3k−s)∼= M(V n, λk−s) defined by

ω j ?23 j−s (x, g) :=23 j−s (x, g+3(αs+ j )+ω j ),

for 1≤ j ≤ k− s. As in the proof of Lemma 2.10, we can show that the orbit space
of the action of Ĥ is homeomorphic to 23(Q̃n

× Im(3))∼= θλ(V n
× Lλ)∼= Mn .

The action of Ĥ on X (Qn,3k−s) can be identified with the canonical action (10)
of H = 〈3(αs+1) + ω1〉 ⊕ · · · ⊕ 〈3(αk) + ωk−s〉 on X (Qn,3k−s) via a group
isomorphism σ : Ĥ → H , where for 1≤ j ≤ k− s,

σ(ω j )=3(αs+ j )+ω j .

Here σ is an isomorphism because (Z2)
k
= Im(3)⊕〈ω1〉⊕· · ·⊕〈ωk−s〉. So Mn is

equivalent to the partial quotient X (Qn,3k−s)/H ∼= M(V n, λk−s)/H as principal
(Z2)

s-bundles over Qn . This completes the lemma. �

Proof of Proposition 1.5. Suppose the polytope Pn has k+ n facets. Then

Hn−1(Qn,Z2)∼= (Z2)
k .

So by Lemma 2.11, there exist a maximally independent coloring λ̃ ∈ Colk(V n)

and a subgroup H ⊂ (Z2)
k such that Mn is equivalent to the partial quotient

M(V n, λ̃)/H as principal (Z2)
m-bundles over Qn . Both M(V n, λ̃) and the real

moment-angle manifold RZPn are principal (Z2)
k-bundles over Qn , and they are

both connected. So by Lemma 2.7, RZPn is equivalent to M(V n, λ̃).
Let Ñ ⊂ (Z2)

k+n be a subgroup of rank k such that Qn is homeomorphic to
the partial quotient RZPn/Ñ (such a subgroup Ñ is not unique). The equivalence
between M(V n, λ̃) and RZPn determines a group isomorphism σ : (Z2)

k
→ Ñ .

Then M(V n, λ̃)/H is equivalent to the partial quotient RZPn/N of RZPn , where
N = σ(H)⊂ Ñ ⊂ (Z2)

k+n . This proves our proposition. �

3. Proof of Theorem 1.4

We adapt the following lemma for our proof of Theorem 1.4.
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Lemma 3.1 [Ustinovskii 2011]. Let (X, A) be a pair of CW-complexes such that
A has a collar neighborhood U (A) in X , that is,

(U (A), A)∼= (A×[0, 1), A× 0).

Take a homeomorphism ϕ : A → A that can be extended to a homeomorphism
ϕ̃ : X → X. Let Y = X1 ∪ϕ X2 be the space obtained by gluing two copies of X
along A via the map ϕ. Then for any field F, we have hrk(Y, F)≥ hrk(A, F).

Proof. The argument is almost the same as in [Ustinovskii 2011]. Let U1(A) and
U2(A) be the collar neighborhoods of A in X1 and X2. Consider an open cover
Y = W1 ∪W2, where W1 = X1 ∪U2(A) and W2 = X2 ∪U1(A). Then the Mayer–
Vietoris sequence of cohomology groups for this open cover reads (we omit the
coefficients F):

· · · → H j−1(W1 ∩W2)
δ∗( j)
−→ H j (Y )
g∗( j)
−→ H j (W1)⊕ H j (W2)

p∗( j)
−→ H j (W1 ∩W2)→ . . . .

Here the map p∗( j) equals i∗1 ⊕−i∗2 , where i1 and i2 are inclusions of W1 ∩ W2

into W1 and W2. Because W1 and W2 are both homotopy equivalent to X and
W1 ∩W2 =U1(A)∪U2(A)∼= A× (−1, 1), we get another, equivalent, long exact
sequence

· · · → H j−1(A)
δ̂∗( j)
−→ H j (Y )

ĝ∗( j)
−→ H j (X1)⊕ H j (X2)

p̂∗( j)
−→ H j (A)→ . . . .

Now p̂∗( j) = ι
∗

1 ⊕−(ι2 ◦ ϕ)
∗, where ι1 and ι2 are inclusions of A into X1 and X2.

For any γ ∈ H j (X1), it is easy to see that (γ, (ϕ̃−1)∗γ ) is in ker( p̂∗( j)). Thus
dim ker( p̂∗( j))≥ dim H j (X), and so dim Im( p̂∗( j))≤ dim H j (X). Then

dim H j (Y )= dim ker(ĝ∗( j))+ dim Im(ĝ∗( j))= dim Im(̂δ∗( j))+ dim ker( p̂∗( j))

≥ dim H j−1(A)− dim Im( p̂∗( j−1))+ dim H j (X)

≥ dim H j−1(A)− dim H j−1(X)+ dim H j (X).

Summing up these inequalities over all indices j , we get

hrk(Y, F)=
∑

j

dim H j (Y )≥
∑

j

dim H j−1(A)− dim H j−1(X)+ dim H j (X)

=

∑
j

dim H j−1(A)= hrk(A, F). �

Remark 3.2. In Lemma 3.1, the assumption that ϕ : A→ A can be extended to a
homeomorphism ϕ̃ : X → X is essential; otherwise the claim may not hold. For
example, let X be a solid torus and A∼= T 2 the boundary of X . Let ϕ : A→ A be the
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homeomorphism interchanging the meridian and longitude of T 2. If we glue two
copies of X along their boundaries via ϕ, we get a 3-sphere S3. But hrk(S3,Z2)= 2,
while hrk(A,Z2)= 4. The reason why the conclusion of Lemma 3.1 does not hold
in this example is that ϕ cannot be extended to a homeomorphism on the whole X .

We introduce an auxiliary notion that plays an important role in our proof of
Theorem 1.4. Suppose V n is a Z2-core of a closed manifold Qn and the involutive
panel structure on V n is {Pi , τi }. For any panel Pj of V n , we define the space

(17) M\Pj (V
n, λ) := V n

× (Z2)
m/∼Pj ,

where (x, g)∼Pj (x
′, g′) whenever x ′ = τi (x) for some Pi 6= Pj and

g′ = g+ λ(Pi ) ∈ (Z2)
m .

In other words, M\Pj (V
n, λ) is the quotient space of V n

× (Z2)
m under the rule

in (12), except that we leave the interior of those facets in Pj × (Z2)
m open. We

call M\Pj (V
n, λ) a partial glue-back from (V n, λ). Let the corresponding quotient

map be

(18) θ
\Pj
λ : V n

× (Z2)
m
→ M\Pj (V

n, λ).

Then the boundary of M\Pj (V
n, λ) can be written as θ\Pj

λ (Pj × (Z2)
m).

Proof of Theorem 1.4. The proof is by induction on the dimension of Mn . When
n = 1, the only small cover is a circle. Because a principal (Z2)

m-bundle over a
circle must be a disjoint union of 2m or 2m−1 circles, the theorem holds. Now we
assume the theorem holds for manifolds with dimension less than n.

Suppose that Pn is an n-dimensional simple convex polytope with k+ n facets
F1, . . . , Fk+n , with k ≥ 1, and that πµ : Qn

→ Pn is a small cover over Pn with
the characteristic function µ. For any face f = Fi1 ∩ · · · ∩ Fil of Pn , let Gµ

f be the
rank-l subgroup of (Z2)

n generated by µ(F1), . . . , µ(Fl). Then by definition,

(19) Qn
= Pn

× (Z2)
n/∼, with

(p, w)∼ (p′, w′) ⇐⇒ p = p′ and w−w′ ∈ Gµ

f (p),

where f (p) is the unique face of Pn that contains p in its relative interior. It was
shown in [Davis and Januszkiewicz 1991] that the Z2-Betti numbers of Qn can be
computed from the h-vector of Pn . In particular, Hn−1(Qn,Z2)∼= (Z2)

k .
We choose an arbitrary vertex v0 of Pn . By reindexing the facets of Pn , we can

assume that F1, . . . , Fk are all the facets of Pn that are not incident to v0. Then ac-
cording to [Davis and Januszkiewicz 1991], the homology classes of the embedded
submanifolds π−1

µ (F1), . . . , π
−1
µ (Fk) (called facial submanifolds of Qn) form a Z2-

linear basis of Hn−1(Qn,Z2). Cutting Qn open along π−1
µ (F1), . . . , π

−1
µ (Fk) gives

us a Z2-core of Qn , denoted by V n . We can think of V n as a partial gluing of the 2n
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Figure 5. A Z2-core of a small cover in dimension 2.

copies of Pn according to the rule in (19), except that we leave the facets F1, . . . , Fk

in each copy of Pn open (see Figure 5 for an example). Let ζ : Pn
× (Z2)

n
→ V n

denote the quotient map and let P1, . . . , Pk be the panels of V n corresponding to
π−1
µ (F1), . . . , π

−1
µ (Fk). Then each Pi consists of 2n copies of Fi , and for all p ∈ Fi

and w ∈ (Z2)
n , the involutive panel structure {τi : Pi → Pi }1≤i≤k on V n can be

written

(20) τi (ζ(p, w))= ζ(p, w+µ(Fi )).

Obviously, each τi extends to an automorphism τ̃i of V n given by the same form:
for all p ∈ Pn and w ∈ (Z2)

n ,

(21) τ̃i (ζ(p, w))= ζ(p, w+µ(Fi )).

These τ̃i commute with each other; that is, τ̃i ◦ τ̃ j = τ̃ j ◦ τ̃i , for 1 ≤ i, j ≤ k. So
each τ̃i preserves any panel Pj of V n .

To prove Theorem 1.4, it suffices to show that hrk(M(V n, λ),Z2)≥ 2m for any
λ ∈ Colm(V n), because of Theorem 2.4.

We assume m = k. Let λ0 be a maximally independent (Z2)
k-coloring of V n;

that is, rank(λ0)= k. By Lemma 2.10, hrk(M(V n, λ),Z2)≥ hrk(M(V n, λ0),Z2)

for all λ ∈ Colk(V n). So it suffices to prove that

(22) hrk(M(V n, λ0),Z2)≥ 2k .

Inequality (22) follows from Theorem 1.1 and Lemma 2.7 (see Remark 3.3 below).
But here we give another proof of (22), which only uses Lemma 3.1. This proof
takes advantage of the interior symmetries of small covers (see (20) and (21)), and
is more natural from the viewpoint of the glue-back construction.

Because λ0 is maximally independent, by Lemma 2.6, we can assume λ0(Pi )=

ei for 1≤ i ≤ k, where {e1, . . . , ek} is a linear basis of (Z2)
k . Let θλ0 : V

n
×(Z2)

k
→

M(V n, λ0) be the quotient map defined by (12).
Now take an arbitrary panel of V n , say P1, and let M\P1(V

n, λ0) be a partial
glue-back from (V n, λ0) defined by (17). Let θ\P1

λ0
: V n
× (Z2)

k
→ M\P1(V

n, λ0)
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be the corresponding quotient map. Suppose H is the subgroup of (Z2)
k generated

by {e2, . . . , ek}. Then we define

Y1 = θ
\P1
λ0
(V n
× H), Y2= θ

\P1
λ0
(V n
× (e1+ H)),(23)

A1 = θ
\P1
λ0
(P1× H), A2= θ

\P1
λ0
(P1× (e1+ H)).(24)

Obviously, A1 = ∂Y1 and A2 = ∂Y2, and there is a homeomorphism 5 : Y1→ Y2

with 5(A1)= A2. Indeed, for all x ∈ V n and h ∈ H , 5 is given by

5(θ
\P1
λ0
(x, h))= θ\P1

λ0
(x, h+ e1).

It is easy to see that M(V n, λ0) is the gluing of Y1 and Y2 along their boundary by
a homeomorphism ϕ : A1→ A2 defined by

ϕ(θ
\P1
λ0
(x1, h))= θ\P1

λ0
(τ1(x1), h+ e1),

for all x1 ∈ P1 and h ∈ H .
Also, because τ1 : P1→ P1 extends to a homeomorphism τ̃1 : V n

→ V n (see (20)
and (21)), we can extend ϕ to a homeomorphism ϕ̃ : Y1→ Y2 by

ϕ̃(θ
\P1
λ0
(x, h))= θ\P1

λ0
(̃τ1(x), h+ e1),

for all x ∈ V n and h ∈ H . We know ϕ̃ is well-defined because τ̃1 commutes with
each τi on Pi (see (12) and (21)).

Identifying (Y1, A1) with (Y2, A2) via 5, we get a decomposition of M(V n, λ0)

that satisfies all the conditions in Lemma 3.1. So Lemma 3.1 implies that

(25) hrk(M(V n, λ0),Z2)≥ hrk(A1,Z2).

Also, let q : Y1 ∪ Y2→ M(V n, λ0) be the quotient map and let

ξλ0 : M(V
n, λ0)→ Qn

be the orbit map of the natural (Z2)
k-action on M(V n, λ0) (see (13)). It is easy to

see that
A1 ∼= q(A1)= ξ

−1
λ0
(π−1
µ (F1)).

Because ξ−1
λ0
(π−1
µ (F1)) is a principal (Z2)

k-bundle over π−1
µ (F1) and π−1

µ (F1)

is a small cover over F1 of dimension n− 1, we have hrk
(
ξ−1
λ0
(π−1
µ (F1)),Z2

)
≥ 2k ,

by the induction hypothesis. Then hrk(A1,Z2) ≥ 2k also. So the case m = k is
confirmed, because by (25), hrk(M(V n, λ0),Z2)≥ 2k .

Now we assume m < k. Let ι : (Z2)
m ↪→ (Z2)

k be the standard inclusion, and
define λ̂ := ι ◦ λ. We consider λ̂ as a (Z2)

k-coloring on V n . So by the above
argument, hrk(M(V n, λ̂),Z2)≥ 2k . By Theorem 2.5, M(V n, λ̂) consists of 2k−m

copies of M(V n, λ), so hrk(M(V n, λ),Z2)≥ 2m .
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Finally, we assume m > k. Because rank(λ)≤ k, with a proper change of basis,
we can assume Lλ ⊂ (Z2)

k
⊂ (Z2)

m . Let % : (Z2)
m
→ (Z2)

k be the standard
projection. Define λ := % ◦ λ. Similarly, we consider λ as a (Z2)

k-coloring on V n ,
and so we have hrk(M(V n, λ),Z2) ≥ 2k . By Theorem 2.5, M(V n, λ) consists of
2m−k copies of M(V n, λ), so hrk(M(V n, λ),Z2)≥ 2m .

So for any m ≥ 1 and λ ∈ Colm(V n), we always have hrk(M(V n, λ),Z2)≥ 2m .
The induction is complete. �

Remark 3.3. Both M(V n, λ0) and RZPn are connected principal (Z2)
k-bundles

over Qn . Then by Lemma 2.7, M(V n, λ0) is homeomorphic to RZPn . So the
conclusion of Theorem 1.1 also tells us that hrk(M(V n, λ0),Z2)≥ 2k .

A crucial step in this proof is that when λ0 ∈Colk(V n) is maximally independent,
we can always get the type of decomposition of M(V n, λ0) as in Lemma 3.1, which
allows us to use the induction hypothesis. However, for an arbitrary λ ∈ Colk(V n),
this type of decomposition of M(V n, λ) may not exist (at least not obviously).

For example, in the lower picture in Figure 2, we have a principal (Z2)
2-bundle

π : M2
→ T 2, where M2 is a disjoint union of two tori. The union of the two

meridians in M2 is the inverse image of a meridian in T 2 under π . If we cut M2

open along these two meridians, we get two circular cylinders. But M2 is not
obtained by gluing these two cylinders together, because the colors of the (Z2)

2-
coloring on the two panels are not linearly independent. So the construction in (23)
for this case fails to give us the type of decomposition of M2 as in Lemma 3.1.

So when λ ∈ Colk(V n) is not maximally independent, we may not be able to
directly apply the induction hypothesis to M(V n, λ) as we do to M(V n, λ0) above.
But these cases are settled by Lemma 2.10.
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