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We construct infinitely many special entire solutions to Donaldson’s equa-
tion. We also prove a Liouville type theorem for entire solutions of Donald-
son’s equation. We believe that all entire solutions of Donaldson’s equation
have the form of the examples constructed in the paper.

1. Introduction

Donaldson [2010] introduced an interesting differential operator when he set up a
geometric structure for the space of volume forms on compact Riemannian man-
ifolds. The Dirichlet problems for Donaldson’s operator are considered in [He
2008; Chen and He 2011]. In this note we shall consider this operator on Euclidean
spaces.

For (t, x) ∈ � ⊂ R × Rn (n ≥ 1), let u(t, x) be a smooth function such that
4u > 0, ut t > 0. We use ∇u, 4u to denote derivatives with respect to x and
ut = ∂t u, ut t = ∂

2
t u to denote derivatives with respect to t . Define a differential

operator Q by
Q(D2u)= ut t4u− |∇ut |

2.

This operator is strictly elliptic when ut t > 0, 4u > 0 and Q(D2u) > 0. When
n = 1, then

Q(D2u)= ut t uxx − u2
xt

is a real Monge–Ampère operator. When n= 2, Q can be viewed as a special case
of the complex Monge–Ampère operator. In the x direction, we identify R2

= C

with a coordinate w. In the t direction, we take a product by R with a coordinate
s and let z = t +

√
−1s. We extend u on R×R2 to R4

= C2 by u(z, w)= u(t, x).
Then

Q(D2u)= 4(uzz̄uww − uzwuwz̄)

is a complex Monge–Ampère operator.
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In this paper we shall consider entire solutions u : R×Rn
→ R of

(1-1) Q(D2u)= 1.

One celebrated result, proved by Jörgens [1954] in dimension 2 and by Calabi
[1958] and Pogorelov [1978] in higher dimensions, is that the only convex solutions
of the real Monge–Ampère equation

(1-2) det( fi j )= 1

on the whole of Rn are the obvious ones: quadratic functions.

Theorem 1.1 (Calabi, Jörgens, Pogorelov). Let f be a global convex viscosity
solution of (1-2) on the whole of Rn . Then f has to be a quadratic function.

One can also ask similar questions for the complex Monge–Ampère equations
for plurisubharmonic functions. Let v : Cn

→ R be a strictly plurisubharmonic
function such that (vi ̄ ) > 0, which satisfies

(1-3) det(vi ̄ )= 1.

The analogous results to Theorem 1.1 for the complex Monge–Ampère equation
(1-3) or Donaldson’s equation (1-1) (n > 1) are not known. For the complex
Monge–Ampère equation, LeBrun [1991] investigated the Euclidean Taub–NUT
metric constructed by Hawking [1977] and proved that it is a Kähler Ricci-flat
metric on C2 but a nonflat metric. His example provides a nontrivial entire solu-
tion of the complex Monge–Ampère equation. We shall construct infinitely many
solutions for Donaldson’s equation (1-1), which are nontrivial solutions in the sense
that ut t is constant, but 4u, ∇ut are both not constant. However, when n = 2, the
Kähler metrics corresponding to these examples are the Euclidean metric on C2.
We shall prove a Liouville type theorem for Donaldson’s equation (1-1), which
says ut t has to be constant provided some restrictions on ut t . Our proof relies on
a transformation introduced by Donaldson [2010]. We then ask if all solutions of
(1-1) satisfy that ut t is constant; this would characterize all entire solutions of (1-1)
if confirmed.

2. Examples of entire solutions

In this section we shall construct infinitely many nontrivial solutions of (1-1) and
(1-3). First we consider (1-1). Let ut t = 2a for some a> 0; also let u(0, x)= g(x)
and ut(0, x)= b(x). Then

(2-1) u(t, x)= at2
+ tb(x)+ g(x).

If u solves (1-1), then
2a(t4b+4g)− |∇b|2 = 1.
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It follows that

4b = 0 and 4g = 1
2a
(
1+ |∇b|2

)
.

So we shall construct the examples as follows. Let b = b(x1, x2, . . . , xn) be a
harmonic function in Rn . Define

h(x)=
1+ |∇b|2

2a
.

Consider the following equation for g(x):

(2-2) 4g = h(x).

We can write g = b2(x)/4a + f for some function f such that 4 f = 1/2a. We
can summarize our results above as follows.

Theorem 2.1. Let u be the form of (2-1) such that b is a harmonic function and g
satisfies (2-2). Then u is an entire solution of (1-1). Moreover, any entire solution
of (1-1) with ut t = constant has the form of (2-1).

When n = 2, these examples also provide solutions of the complex Monge–
Ampère equation (1-3). Actually, let u(z, w) : C2

→ R be a solution of (1-3). If
uzz̄ = a for some constant a > 0, it is not hard to derive that

(2-3) u(z, w)= azz̄+ f (z, z̄ )+ zb(w,w)+ z̄b̄(w,w)+ g(w,w)

such that

∂2 f
∂z ∂ z̄

=
∂2b
∂w ∂w

= 0 and
∂2g
∂w ∂w

=
1
a

(
1+

∣∣∣ ∂b
∂w

∣∣∣2) .
However these examples are all trivial solutions of the complex Monge–Ampère
equation in the sense that the corresponding Kähler metrics are flat. For simplicity,
we can assume a= 1. Since ∂2b/∂w ∂w= 0, we can assume that b is holomorphic
or antiholomorphic. If b is holomorphic, then the corresponding Kähler metric is
just dz⊗ dz̄+ dw⊗ dw. If b is antiholomorphic, we can set b(w,w)= c(w) and
b̄(w,w)= c(w). The corresponding Kähler metric is given by

dz⊗ dz̄+ cw dz⊗ dw+ cw dz̄⊗ dw+ gww dw⊗ dw

= d(z+ c(w))⊗ d(z̄+ c(w))+ dw⊗ dw.

Then under the holomorphic transformation (z, w)→ (z+c(w),w) it is clear that
the Kähler metric is actually flat.



362 WEIYONG HE

3. A theorem of Liouville type

In this section we shall prove a Liouville type result for solutions of (1-1). We
shall describe a transformation introduced by Donaldson [2010], which relates the
solutions of (1-1) with harmonic functions. Using this transformation, Theorem 3.1
follows from the standard Liouville theorem for positive harmonic functions.

Theorem 3.1. Let u be a solution of (1-1) with ut t > 0. For any x ∈ Rn , if
ut t(t, x)dt2 defines a complete metric on R×{x}, then ut t is constant. In particular,
it has the form of (2-1) such that b is a harmonic function and g satisfies (2-2).

Proof. For any x fixed, let z = ut(t, x). Then 8 : (t, x)→ (z, x) gives a trans-
formation since ut t > 0 and the Jacobian of 8 is always positive. In particular,
8 : R× Rn

→ Image8 ⊂ R× Rn is a diffeomorphism. When ut t(x, t)dt2 is a
complete metric on R×{x} for all x , then Image8=R×Rn . To see this, we note
that for any x fixed, then

z(t, x)= ut(0, x)+
∫ t

0
uss(s, x)ds.

Hence if ut t(t, x)dt2 is complete, the map z : t → z(t, x) satisfies z(R) = R. For
x fixed, there exists a unique t = t (z, x) such that z = ut(t, x). Define a function
θ(z, x)= t (z, x). We claim that θ is a harmonic function in R×Rn . The identity
z = ut(θ, x) implies

∂θ

∂xi
ut t + ut xi = 0 and ut t

∂θ

∂z
= 1.

It then follows that

ut t
∂2θ

∂x2
i
+ 2ut t xi

∂θ

∂xi
+ ut t t

(
∂θ

∂xi

)2

+ ut xi xi = 0 and ut t
∂2θ

∂z2 +
ut t t

u2
t t
= 0.

We compute, if u solves (1-1),

4(z,x)θ =
∂2θ

∂z2 +
∑

i

∂2θ

∂x2
i

=
1

ut t

(
−

ut t t

u2
t t
−4ut + 2

∑
i

ut t xi ut xi

ut t
−

∑
i

ut t t u2
t xi

u2
t t

)
=

1
ut t

(
−

ut t t

u2
t t

(
1+

∑
u2

t xi

)
−4ut + 2

∑
i

ut t xi ut xi

ut t

)
=
−1
ut t

(
ut t t4u

ut t
+4ut − 2

∑
i

ut t xi ut xi

ut t

)
=
−1
u2

t t
∂t
(
4uut t − |∇ut |

2)
= 0.
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On the other hand, ∂θ/∂z=1/ut t >0. Hence ∂θ/∂z is a positive harmonic function
on R×Rn . It follows that ∂θ/∂z is constant, and so ut t is constant. �

One could classify all solutions of (1-1) if one could prove that ut t does not
decay too fast to zero when |t | → ∞, such that ut t dt2 defines a complete metric
on a line. This motivates the following:

Problem 3.2. Do all solutions of (1-1) with ut t > 0 satisfy ut t = constant?
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