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ENERGY IDENTITY AND REMOVABLE SINGULARITIES OF
MAPS FROM A RIEMANN SURFACE WITH TENSION FIELD

UNBOUNDED IN L2

YONG LUO

We prove removable singularity results for maps with bounded energy from
the unit disk B of R2 centered at the origin to a closed Riemannian mani-
fold whose tension field is unbounded in L2(B) but satisfies the following
condition: (∫

Bt\Bt/2

|τ(u)|2
)1

2
≤ C1

(1
t

)a

for some 0 < a < 1 and any 0 < t < 1, where C1 is a constant independent
of t .

We will also prove that if a sequence {un} has uniformly bounded energy
and satisfies (∫

Bt\Bt/2

|τ(un)|
2
)1

2
≤ C2

(1
t

)a

for some 0 < a < 1 and any 0 < t < 1, where C2 is a constant independent
of n and t , then the energy identity holds for this sequence and there will be
no neck formation during the blow up process.

1. Introduction

Let (M, g) be a Riemannian manifold and (N , h) a Riemannian manifold without
boundary. For a W 1,2(M, N ) map u, the energy density of u is defined by

e(u)= 1
2 |∇u|2 = Trg(u∗h),

where u∗h is the pullback of the metric tensor h.
The energy functional of the mapping u is defined as

E(u)=
∫

M
e(u) dV .
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MSC2010: 35B44.
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A map u ∈ C1(M, N ) is called a harmonic map if it is a critical point of the
energy.

By the Nash embedding theorem, N can be isometrically embedded into a Eu-
clidean space RK for some positive integer K . Then (N , h) can be viewed as a
submanifold of RK , and a map u ∈ W 1,2(M, N ) is a map in W 1,2(M,RK ) whose
image lies on N . The space C1(M, N ) should be understood in the same way. In
this sense we have the following Euler–Lagrangian equation for harmonic maps.

1u = A(u)(∇u,∇u).

The tension field of a map u, τ(u), is defined by

τ(u)=1u− A(u)(∇u,∇u),

where A is the second fundamental form of N in RK . So u is a harmonic map if
and only if τ(u)= 0.

Notice that, when M is a Riemann surface, the functional E(u) is conformal
invariant. Harmonic maps are of special interest in this case. Consider a harmonic
map u from a Riemann surface M to N . Recall that Sacks and Uhlenbeck, in a
fundamental paper [1981], established the well-known removable singularity theo-
rem by using a class of piecewise smooth harmonic functions to approximate the
weak harmonic map. Li and Wang [2010] gave a slightly different proof of the
following removable singularity theorem.

Theorem 1.1 [Li and Wang 2010]. Let B be the unit disk in R2 centered at the
origin. If u : B \ {0} → N is a W 2,2

loc (B \ {0}, N )∩W 1,2(B, N ) map and u satisfies

τ(u)= g ∈ L2(B,RK ),

then u can be extended to a map belonging to W 2,2(B, N ).

In this direction we will prove the following result:

Proposition 1.2. Let B be the unit disk in R2 centered at the origin. If

u : B \ {0} → N

is a W 2,2
loc (B \ {0}, N )∩W 1,2(B, N ) map and u satisfies(∫

Bt\Bt/2

|τ(u)|2
)1

2

≤ C
(1

t

)a

for some 0< a< 1 and any 0< t < 1, where C is a constant independent of t , then
there exists some s > 1 such that

∇u ∈ L2s(B).
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A direct corollary of this result is the following removable singularity theorem:

Theorem 1.3. Assume that u ∈W 2,2
loc (B \ {0}, N )∩W 1,2(B, N ) and u satisfies(∫

Bt\Bt/2

|τ(u)|2
)1

2

≤ C
(1

t

)a

for some 0 < a < 1 and any 0 < t < 1, where C is a constant independent of t .
Then we have

u ∈
⋂

1<p< 2
1+a

W 2,p(B, N ).

Consider a sequence of maps {un} from a Riemann surface M to N with uni-
formly bounded energy. Clearly {un} converges to u weakly in W 1,2(M, N ) for
some u ∈W 1,2(M, N ), but in general it may not converge strongly in W 1,2(M, N )
to u, and the falling of the strong convergence is due to the energy concentration
at finite points. Jost [1987] and Parker [1996] independently proved that, when
τ(un)= 0, that is, un are harmonic maps, the lost energy is exactly the sum of the
energy of the bubbles. Recall that Sacks and Uhlenbeck [1981] proved that the
bubbles for such a sequence are harmonic spheres defined as nontrivial harmonic
maps from S2 to N . This result is called energy identity. Furthermore they proved
that there is no neck formation during the blow up process, that is, the bubble tree
convergence holds true.

For the case when τ(un) is bounded in L2, that is, {un} is an approximated
harmonic map sequence, the energy identity was proved for N is a sphere by Qing
[1995], and for the general target manifold N by Ding and Tian [1995] and, in-
dependently, by Wang [1996]. Qing and Tian [1997] proved that there is no neck
formation during the blow up process; see also [Lin and Wang 1998]. For the
heat flow of harmonic maps, related results can also be found in [Topping 2004a;
2004b]. For the case where the target manifold is a sphere, the energy identity and
bubble tree convergence were proved by Lin and Wang [2002] for sequences with
tension fields uniform bounded in L p, for any p > 1. In fact, they proved this
result under a scaling invariant condition which can be deduced from the uniform
boundness of the tension field in L p.

By virtue of Fanghua Lin and Changyou Wang’s result, it is natural to ask the
following question.

Question. Let {un} be a sequence from a closed Riemann surface to a closed Rie-
mannian manifold with tension field uniformly bounded in L p for some p> 1. Do
energy identity and bubble tree convergence results hold true during blowing up
for such a sequence?
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Remark 1.4. Parker [1996] constructed a sequence from a Riemann surface whose
tension field is uniformly bounded in L1, in which the energy identity fails.

Theorem 1.5 [Li and Zhu 2010]. Let {un} be a sequence of maps from B to N in
W 1,2(B, N ) with tension field τ(un), where B is the unit disk of R2 centered at the
origin. If

(I) ‖un‖W 1,2(B)+‖τ(un)‖W 1,p(B) ≤3 for some p ≥ 6
5 , and

(II) un→ u strongly in W 1,2
loc (B \ {0}, N ) as n→∞,

there exists a subsequence of {un} (still denoted by {un}) and some nonnegative
integer k such that, for any i =1, . . . , k, there are some points x i

n , positive numbers
r i

n , and a nonconstant harmonic sphere ωi (viewed as a map from R2
∪ {∞}→ N )

such that:

(1) x i
n→ 0 and r i

n→ 0 as n→∞;

(2) lim
n→∞

(
r i

n

r j
n
+

r j
n

r i
n
+
|x i

n − x j
n |

r i
n + r j

n

)
=∞ for any i 6= j ;

(3) ωi is the weak limit or strong limit of un(x i
n + r i

nx) in W 1,2
loc (R

2, N );

(4) Energy identity:

lim
n→∞

E(un, B)= E(u, B)+
k∑

i=1

E(ωi ,R2);

(5) Necklessness: the image u(B)
⋃k

i=1 ω
i (R2) is a connected set.

Lemma 1.6. Suppose τ(u) satisfies(∫
Bt\Bt/2

|τ(u)|2
)1

2

≤ C
(1

t

)a
,

for some 0 < a < 2
3 and any 0 < t < 1. Then τ(u) is bounded in L p(B) for some

p ≥ 6
5 .

Proof. We have∫
B2−k+1\B2−k

|τ(u)|p ≤ C(2−k)2−p
‖τ(u)‖p

L2(B2−k+1\B2−k )

≤ C(2−k)2−p−ap.

Hence ∫
B
|τ(u)|p ≤ C

∞∑
k=1

(2−k)2−p−ap.
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When 0< a < 2
3 , we can choose some p ≥ 6

5 such that 2− p− ap > 0, and so

∞∑
k=1

(2−k)2−p−ap
≤ C,

which implies that τ(u) is bounded in L p(B) for some p ≥ 6
5 . �

Thus Theorem 1.5 holds for sequences {un} satisfying the following conditions.

(I) ‖un‖W 1,2(B) ≤3 and (
∫

Bt\Bt/2
|τ(un)|

2)
1
2 ≤C( 1

t )
a for some 0< a< 2

3 and any
0< t < 1, where C is independent of n and t , and

(II) un→ u strongly in W 1,2
loc (B \ {0}, N ) as n→∞.

With the help of this observation, we find the following theorem.

Theorem 1.7. Let {un} be a sequence of maps from B to N in W 1,2(B, N ) with
tension field τ(un), where B is the unit disk of R2 centered at the origin. If

(I) ‖un‖W 1,2(B) ≤3 and(∫
Bt\Bt/2

|τ(un)|
2
)1

2

≤ C
(1

t

)a

for some 0< a < 1 and any 0< t < 1, where C is independent of n and t , and

(II) un→ u strongly in W 1,2
loc (B \ {0}, N ) as n→∞,

then there exists a subsequence of {un} (still denoted by {un}) and some nonneg-
ative integer k such that, for any i = 1, . . . , k, there are some points x i

n , positive
numbers r i

n , and a nonconstant harmonic sphere ωi (which is viewed as a map from
R2
∪ {∞}→ N ), such that:

(1) x i
n→ 0, r i

n→ 0 as n→∞;

(2) lim
n→∞

(
r i

n

r j
n
+

r j
n

r i
n
+
|x i

n − x j
n |

r i
n + r j

n

)
=∞ for any i 6= j ;

(3) ωi is the weak limit or strong limit of un(x i
n + r i

nx) in W 1,2
loc (R

2, N );

(4) Energy identity: limn→∞ E(un, B)= E(u, B)+
∑k

i=1 E(ωi ,R2);

(5) Neckless: the image u(B)
⋃k

i=1 ω
i (R2) is a connected set.

Remark 1.8. When (∫
Bt\Bt/2

|τ(un)|
2
)1

2

≤ C
(1

t

)a

for some 0< a < 1 and any 0< t < 1, where C is independent of n and t , we can
deduce that τ(un) is uniformly bounded in L p(B) for any p< 2/(1+a), and when
a→ 1, p→ 1. Hence our condition is stronger than the condition that the tension
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field is bounded in L p for some p > 1, and this result suggests that we probably
have a positive answer to the Question on page 367.

Organization of the paper. In Section 2 we quote and prove several important
results. In Section 3 we prove the removable singularity result. Theorem 1.7 is
proved in Section 4. Throughout the paper, the letter C is used to denote positive
constants which vary from line to line. We do not always distinguish between
sequences and their subsequences.

2. The ε-regularity lemma and the Pohozaev inequality

This section contains a well-known small energy regularity lemma for approxi-
mated harmonic maps and a version of the Pohozaev inequality, which will be
important later. We assume that the disk B ⊆ R2 is the unit disk centered at the
origin, which has the standard flat metric.

Lemma 2.1. Suppose that u ∈W 2,2(B, N ) and τ(u)= g ∈ L2(B,RK ). Then there
exists an ε0 > 0 such that if

∫
B |∇u|2 ≤ ε2

0, we have

(2-1) ‖u− ū‖W 2,2(B1/2) ≤ C(‖∇u‖L2(B)+‖g‖L2(B)).

Here ū is the mean value of u over B1/2.

Proof. We can find a complete proof of this lemma in [Ding and Tian 1995]. �

Using the standard elliptic estimates and the embedding theorems, we can derive
from the above lemma that

Corollary 2.2. Under the assumptions of Proposition 1.2, we have

(2-2) OscB2r\Br u ≤ C(‖∇u‖L2(B4r\Br/2)+ r‖g‖L2(B4r\Br/2))

≤ C(‖∇u‖L2(B4r\Br/2)+ r1−a).

Lemma 2.3 (Pohozaev inequality). Under the assumptions of Proposition 1.2, for
0< t2 < t1 < 1,

(2-3)
∫
∂(Bt1\Bt2 )

r
(∣∣∣∂u
∂r

∣∣∣2− 1
2 |∇u|2

)
≤ t1‖∇u‖L2(Bt1\Bt2 )

‖g‖L2(Bt1\Bt2 )
.

Proof. Multiplying both sides of the equation τ(u)= g by r(∂u/∂r), we get∫
Bt1\Bt2

r ∂u
∂r
4 u =

∫
Bt1\Bt2

r ∂u
∂r

g.

Integrating by parts, we get∫
Bt1\Bt2

r ∂u
∂r
4 u dx =

∫
∂(Bt1\Bt2 )

r
∣∣∣∂u
∂r

∣∣∣2− ∫
Bt1\Bt2

∇

(
r ∂u
∂r

)
∇u dx
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and∫
Bt1\Bt2

∇

(
r ∂u
∂r

)
∇u dx =

∫
Bt1\Bt2

∇

(
xk ∂u
∂xk

)
∇u dx

=

∫
Bt1\Bt2

|∇u|2+
∫ t1

t2

∫ 2π

0

r
2
∂

∂r
|∇u|2r dθ dr

=

∫
Bt1\Bt2

|∇u|2+ 1
2

∫
∂(Bt1\Bt2 )

|∇u|2r −
∫

Bt1\Bt2

|∇u|2

=
1
2

∫
∂(Bt1\Bt2 )

|∇u|2r.

This implies the conclusion of the lemma. �

Corollary 2.4. Under the assumptions of Proposition 1.2, we have

(2-4) ∂

∂t

∫
Bt\Bt/2

∣∣∣∂u
∂r

∣∣∣2− 1
2 |∇u|2 ≤ C‖∇u‖L2(Bt\Bt/2)t

−a.

Proof. In the previous lemma, let t1 = t and t2 = t/2. Then

∂

∂t

∫
Bt\Bt/2

∣∣∣∂u
∂r

∣∣∣2− 1
2 |∇u|2 =

∫
∂Bt

(∣∣∣∂u
∂r

∣∣∣2− 1
2 |∇u|2

)
−

1
2

∫
∂Bt/2

(∣∣∣∂u
∂r

∣∣∣2− 1
2 |∇u|2

)
≤ ‖g‖L2(Bt\Bt/2)‖∇u‖L2(Bt\Bt/2)

≤ C‖∇u‖L2(Bt\Bt/2)t
−a. �

Corollary 2.5. Under the assumptions of Proposition 1.2,

(2-5)
∫

Bt\Bt/2

∣∣∣∂u
∂r

∣∣∣2− 1
2 |∇u|2 ≤ C‖∇u‖L2(Bt )t

1−a.

Proof. Integrating both sides of the inequality (2-4) from 0 to t and noting that
‖∇u‖L2(Bs\Bs/2) ≤ ‖∇u‖L2(Bt ) for any s ≤ t , we get (2-5). �

3. Removal of singularities

We now discuss the removal of singularities of a class of approximated harmonic
maps from the unit disk of R2 to a closed Riemannian manifold N .

Lemma 3.1. Assume that u satisfies the assumptions of Proposition 1.2. Then
there are constants λ > 0 and C > 0 such that

(3-1)
∫

Br

|∇u|2 ≤ Crλ

for r small enough.
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Proof. Because we only need to prove the lemma for r small, we can assume that
E(u, B) < ε0. Let u∗(r) : (0, 1)→ RK be a curve defined by

u∗(r)= 1
2π

∫ 2π

0
u(r, θ) dθ.

Then
∂u∗

∂r
=

1
2π

∫ 2π

0

∂u
∂r

dθ.

On the one hand, we have∫
B2−k t\B2−k−1t

∇u∇(u− u∗)≥
∫

B2−k t\B2−k−1t

(
|∇u|2−

∣∣∣∂u
∂r

∣∣∣2)
≥

1
2

∫
B2−k t\B2−k−1t

|∇u|2−C(2−k t)1−a,

where the second inequality makes use of (2-5).
Summing k from 0 to infinity, we get∫

Bt

∇u∇(u− u∗)≥ 1
2

∫
Bt

|∇u|2−Ct1−a.

On the other hand,∫
B2−k t\B2−k−1t

∇u∇(u− u∗)

=−

∫
B2−k t\B2−k−1t

(u− u∗)1u+
∫
∂(B2−k t\B2−k−1t )

∂u
∂r
(u− u∗)

=−

∫
B2−k t\B2−k−1t

(u− u∗)(τ (u)− A(u)(∇u,∇u))+
∫
∂(B2−k t\B2−k−1t )

∂u
∂r
(u− u∗).

Hence, by summing k from 0 to infinity, we get∫
Bt

∇u∇(u− u∗)

≤

∞∑
k=0

‖u− u∗‖L∞(B2−k t\B2−k−1t )

(
‖A‖L∞

∫
B2−k t\B2−k−1t

|∇u|2+C(2−k t)1−a
)

+

∫
∂Bt

∂u
∂r
(u− u∗)

≤ ε

∫
Bt

|∇u|2+Ct1−a
+

∫
∂Bt

∂u
∂r
(u− u∗).

Note that we used Corollary 2.2 and ensured that ε is small by letting t be small.
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Note that∣∣∣∣∫
∂Bt

∂u
∂r
(u− u∗)

∣∣∣∣≤ (∫
∂Bt

∣∣∣∂u
∂r

∣∣∣2)1
2
(∫

∂Bt

|u− u∗|2
)1

2

≤

(∫ 2π

0
t2
∣∣∣∂u
∂r

∣∣∣2dθ
)1

2
(∫ 2π

0

∣∣∣∂u
∂θ

∣∣∣2dθ
)1

2

≤
1
2

∫ 2π

0

(∣∣∣∂u
∂θ

∣∣∣2+ t2
∣∣∣∂u
∂r

∣∣∣2) dθ = t
2

∫
∂Bt

|∇u|2.

Combining the two sides of the inequalities and letting ε be small (we can do this
by letting t be small), we conclude that there is a constant λ ∈ (0, 1) such that

λ

∫
Bt

|∇u|2 ≤ t
∫
∂Bt

|∇u|2+Ct1−a.

Set f (t)=
∫

Bt
|∇u|2. Then we get the ordinary differential inequality(

f (t)
tλ

)′
≥−Ct−λ−a.

Letting λ be small enough that λ+ a < 1, we get

f (t)=
∫

Bt

|∇u|2 ≤ Ctλ

for t small enough. �

Proof of Proposition 1.2. Let rk = 2−k and vk(x)= u(rk x). Then(∫
B2\B1

|∇vk |
2s
) 1

2s

≤ C‖vk − v̄k‖W 2,2(B2\B1)

≤

(∫
B4\B1/2

|∇vk |
2
)1

2

+C
(∫

B4rk\Brk /2

r2
k |τ |

2
)1

2

.

Therefore we deduce that∫
B2\B1

|∇vk |
2s
≤ C

(∫
B4\B1/2

|∇vk |
2
)s

+C
(∫

B4rk\Brk /2

r2
k |τ |

2
)s

≤ C
(∫

B4\B1/2

|∇vk |
2
)s

+Cr2s(1−a)
k .

Note that when k is large enough,∫
B4rk\Brk /2

|∇u|2 ≤ 1.
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Hence

r2s−2
k

∫
B2rk\Brk

|∇u|2s
≤ C

(∫
B4rk\Brk /2

|∇u|2
)s

+Cr2s(1−a)
k

≤ C
∫

B4rk\Brk /2

|∇u|2+Cr2s(1−a)
k .

This implies that ∫
B2rk\Brk

|∇u|2s
≤ Cr2−2s

k rλk +Cr2−2sa
k .

Now choose s > 1 such that 2s−2< λ/2 and 2−2sa > 0. There exists a positive
integer k0 such that when k ≥ k0,∫

B2−k+1\B2−k

|∇u|2s
≤ C(2(−λ/2)k + 2−k(2−2sa)).

Therefore
∫

Br
|∇u|2s

≤C
∞∑

k=k0

(2(−λ/2)k+2−k(2−2sa))≤C for any r ≤ 2−k0+1, which
completes the proof. �

Proof of Theorem 1.3. Note that∫
B2−k\B2−k−1

|τ(u)|p ≤ C(2−k)2−p
(∫

B2−k\B2−k−1

|τ(u)|2
)p/2

≤ C(2−k)2−p−pa.

Summing over k from 0 to infinity, we deduce that
∫

B |τ(u)|
p
≤C for p<2/(1+a).

Recall that we have proved that∇u ∈ L2s(B) for some s>1. Hence, by standard
elliptic estimates and the bootstrap argument, we can deduce that

u ∈
⋂

1<p< 2
1+a

W 2,p(B, N ). �

4. The bubble tree structure

Energy identity. Assume that {un} is a uniformly bounded sequence in W 1,2(B, N )
and that there exists a constant C , independent of n and t , such that(∫

Bt\Bt/2

|τ(un)|
2
)1

2

≤ C
(1

t

)a

for some 0 < a < 1 and any 0 < t < 1. In this section, we will prove the energy
identity for this sequence. For convenience, we will assume that there is only
one bubble ω, which is the strong limit of un(rn.) in W 1,2

loc (R
2, N ). Under this

assumption we can deduce the following by a standard blowup argument.
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Lemma 4.1. For any ε > 0, there exist R and δ such that

(4-1)
∫

B2λ\Bλ
|∇un|

2
≤ ε2 for any λ ∈

(
Rrn

2
, 2δ

)
.

Proof of the energy identity. For a given R > 0, we have

lim
n→∞

∫
B
|∇un|

2
= lim

n→∞

∫
B\Bδ
|∇un|

2
+ lim

n→∞

∫
Bδ\BRrn

|∇un|
2
+ lim

n→∞

∫
BRrn

|∇un|
2,

lim
δ→0

lim
n→∞

∫
B\Bδ
|∇un|

2
=

∫
B
|∇u|2, and lim

R→∞
lim

n→∞

∫
BRrn

|∇un|
2
=

∫
R2
|∇ω|2,

Hence, to prove the energy identity, we only need to prove that

(4-2) lim
R→∞

lim
δ→0

lim
n→∞

∫
Bδ\BRrn

|∇un|
2
= 0.

The proof is a little similar to the proof in the previous section. We assume that
δ = 2mn Rrn , where mn is a positive integer.

On the one hand, we have∫
B2k Rrn

\B2k−1 Rrn

∇un∇(un − u∗n)≥
∫

B2k Rrn
\B2k−1 Rrn

(
|∇un|

2
−

∣∣∣∣∂un

∂r

∣∣∣∣2)
≥

1
2

∫
B2k Rrn

\B2k−1 Rrn

|∇un|
2
−C(2k Rrn)

1−a.

This implies that∫
Bδ\BRrn

∇un∇(un − u∗n)≥
1
2

∫
Bδ\BRrn

|∇un|
2
−Cδ1−a.

On the other hand, we have∫
B2k Rrn

\B2k−1 Rrn

∇un∇(un − u∗n)

=−

∫
B2k Rrn

\B2k−1 Rrn

(un − u∗n)1un +

∫
∂(B2k Rrn

\B2k−1 Rrn
)

∂un

∂r
(un − u∗n)

=−

∫
B2k Rrn

\B2k−1 Rrn

(un − u∗n)(τ (un)− A(un)(∇un,∇un))

+

∫
∂(B2k Rrn

\B2k−1 Rrn
)

∂un

∂r
(un − u∗n).
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Summing from 1 to mn , we deduce that∫
Bδ\BRrn

∇un∇(un − u∗n)

≤

mn∑
k=1

‖un − u∗n‖L∞(B2k Rrn
\B2k−1 Rrn

)

(
‖A‖L∞

∫
B2k Rrn

\B2k−1 Rrn

|∇un|
2
+C(2k Rrn)

1−a
)

+

∫
∂(Bδ\BRrn )

∂un

∂r
(un − u∗n)

≤ ε

∫
Bδ\BRrn

|∇un|
2
+Cδ1−a

+

∫
∂(Bδ\BRrn )

∂un

∂r
(un − u∗n).

Comparing the two sides, we get

(1− 2ε)
∫

Bδ\BRrn

|∇un|
2
≤ Cδ1−a

+ 2
∫
∂(Bδ\BRrn )

∂un

∂r
(un − u∗n).

As for the boundary terms, we have∫
∂Bδ

∂un

∂r
(un − u∗n)≤

(∫
∂Bδ

∣∣∣∣∂un

∂r

∣∣∣∣2)1
2
(∫

∂Bδ
|un − u∗n|

2
)1

2

≤

(∫ 2π

0
δ2
∣∣∣∣∂un

∂r
dθ
∣∣∣∣2)1

2
(∫ 2π

0

∣∣∣∣∂un

∂θ

∣∣∣∣2dθ
)1

2

≤
1
2

∫ 2π

0
δ2
∣∣∣∣∂un

∂r
dθ
∣∣∣∣2+ ∣∣∣∣∂un

∂θ

∣∣∣∣2dθ = δ
2

2

∫ 2π

0
|∇un|

2dθ.

Now, by the trace embedding theorem, we have∫ 2π

0
|∇un( · , δ)|

2δdθ =
∫
∂Bδ
|∇un( · , δ)|

2d Sδ

≤ Cδ‖∇un‖
2
W 1,2(B3δ/2\Bδ/2)

≤ Cδ‖un − ūn‖
2
W 2,2(B3δ/2\Bδ/2)

≤ Cδ
(1
δ
‖∇un‖

2
L2(B2δ)

+‖τ(un)‖
2
L2(B2δ\Bδ/4)

)
≤ Cδ1−2a,

for δ small. From this we deduce that∫
∂Bδ

∂un

∂r
(un − u∗n)≤ Cδ2(1−a).

Similarly we get ∫
∂BRrn

∂un

∂r
(un − u∗n)≤ C(Rrn)

2(1−a),
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for n big enough. Therefore

(1− 2ε)
∫

Bδ\BRrn

|∇un|
2
≤ Cδ1−a

+Cδ2(1−a)
+C(Rrn)

2(1−a),

which clearly implies (4-2), and we are done. �

Necklessness. In this part we prove that there is no neck between the base map u
and the bubble ω, that is, the C0 compactness of the sequence modulo bubbles.

Proof. We only need to prove that

(4-3) lim
R→∞

lim
δ→0

lim
n→∞

OscBδ\BRrn
un = 0.

Again we assume that δ= 2mn Rrn and let Q(t)= B2t+t0 Rrn\ B2t0−t Rrn . Similarly
to the proof of the previous part, we can get

(1− 2ε)
∫

Q(k)
|∇un|

2

≤ 2k+t0 Rrn

∫
∂B

2k+t0 Rrn

|∇un|
2
+ 2t0−k Rrn

∫
∂B

2t0−k Rrn

|∇un|
2
+C(2k+t0 Rrn)

1−a.

Set f (t)=
∫

Q(t) |∇un|
2. Then we have

(1− 2ε) f (t)≤ (1− 2ε) f (k+ 1)≤ 1
log 2

f ′(k+ 1)+C(2k+t0 Rrn)
1−a

for k ≤ t ≤ k+ 1.
Note that

f ′(k+ 1)− f ′(t)

=

∫
∂(B

2k+1+t0 Rrn
\B2t+t0 Rrn

)

∂un

∂r
(un − u∗n)+

∫
∂(B2t0−t Rrn

\B
2t0−k−1 Rrn

)

∂un

∂r
(un − u∗n)

≤ C(2t+t0 Rrn)
2(1−a).

Therefore

(4-4) (1− 2ε) f (t)≤ 1
log 2

f ′(t)+C(2t+t0 Rrn)
1−a.

It follows that

(2−(1−2ε)t f (t))′ = 2−(1−2ε)t f ′(t)− (1− 2ε)2−(1−2ε)t f (t) log 2

≥−C2(1−a−(1−2ε))t(2t0 Rrn)
1−a.
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Integrating from 1 to L , we get

2−(1−2ε)L f (L)− 2−(1−2ε) f (1)≥−C
∫ L

1
2(1−a−(1−2ε))t(2t0 Rrn)

1−a

=−C 2(1−a−(1−2ε))t

log 2(1−a−(1−2ε))

∣∣∣L
1
(2t0 Rrn)

1−a

≥−C(2t0 Rrn)
1−a.

Therefore we have

(4-5) f (1)≤ f (L)2−(1−2ε)(L−1)
+C(2t0 Rrn)

1−a.

Now let t0= i and Di = B2i+1 Rrn\B2i Rrn . Then we have f (1)=
∫

Di∪Di−1
|∇un|

2,
and the inequality holds true for L satisfying

Q(L)⊆ Bδ\ BRrn = B2mn Rrn \ BRrn .

In other words, L should satisfy i − L ≥ 0 and i + L ≤ Mn .

(I) If i ≤ 1
2 mn , let L = i . Then

f (1)=
∫

Di∪Di−1

|∇un|
2
≤ C E2(un, Bδ\ BRrn )2

−(1−2ε)i
+C(2i Rrn)

1−a.

(II) If i > 1
2 mn , let L = mn − i . Then

f (1)=
∫

Di∪Di−1

|∇un|
2
≤ C E2(un, Bδ\ BRrn )2

−(1−2ε)(mn−i)
+C(2i Rrn)

1−a.

Hence we have
mn∑
i=1

E(un, Di )≤ C E(un, Bδ\BRrn )

( ∑
i≤ 1

2 mn

2−i(1−2ε)/2
+

∑
i> 1

2 mn

2−(mn−i)1−2ε/(2)
)

+C
mn∑
i=1

(2i Rrn)
(1−a)/2

≤ C E(un, Bδ\BRrn )+Cδ(1−a)/2.

Thus we get

OscBδ\BRrn
un ≤ C

mn∑
i=1

(E(un, Di )+ (2i Rrn)
1−a)

≤ C E(un, Bδ\ BRrn )+Cδ(1−a)/2.

Clearly this implies (4-3), as needed. �
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