Pacific

Journal of

 MathematicsENERGY IDENTITY AND REMOVABLE SINGULARITIES OF MAPS FROM A RIEMANN SURFACE WITH TENSION FIELD UNBOUNDED IN L^{2}

Yong Luo

ENERGY IDENTITY AND REMOVABLE SINGULARITIES OF MAPS FROM A RIEMANN SURFACE WITH TENSION FIELD UNBOUNDED IN $\boldsymbol{L}^{\mathbf{2}}$

Yong Luo

We prove removable singularity results for maps with bounded energy from the unit disk \boldsymbol{B} of \mathbb{R}^{2} centered at the origin to a closed Riemannian manifold whose tension field is unbounded in $L^{2}(B)$ but satisfies the following condition:

$$
\left(\int_{B_{t} \backslash B_{t / 2}}|\tau(u)|^{2}\right)^{\frac{1}{2}} \leq C_{1}\left(\frac{1}{t}\right)^{a}
$$

for some $0<a<1$ and any $0<t<1$, where C_{1} is a constant independent of t.

We will also prove that if a sequence $\left\{u_{n}\right\}$ has uniformly bounded energy and satisfies

$$
\left(\int_{B_{t} \backslash B_{t / 2}}\left|\tau\left(u_{n}\right)\right|^{2}\right)^{\frac{1}{2}} \leq C_{2}\left(\frac{1}{t}\right)^{a}
$$

for some $0<a<1$ and any $0<t<1$, where C_{2} is a constant independent of \boldsymbol{n} and \boldsymbol{t}, then the energy identity holds for this sequence and there will be no neck formation during the blow up process.

1. Introduction

Let (M, g) be a Riemannian manifold and (N, h) a Riemannian manifold without boundary. For a $W^{1,2}(M, N)$ map u, the energy density of u is defined by

$$
e(u)=\frac{1}{2}|\nabla u|^{2}=\operatorname{Tr}_{g}\left(u^{*} h\right),
$$

where $u^{*} h$ is the pullback of the metric tensor h.
The energy functional of the mapping u is defined as

$$
E(u)=\int_{M} e(u) d V .
$$

[^0]A map $u \in C^{1}(M, N)$ is called a harmonic map if it is a critical point of the energy.

By the Nash embedding theorem, N can be isometrically embedded into a Euclidean space \mathbb{R}^{K} for some positive integer K. Then (N, h) can be viewed as a submanifold of \mathbb{R}^{K}, and a map $u \in W^{1,2}(M, N)$ is a map in $W^{1,2}\left(M, \mathbb{R}^{K}\right)$ whose image lies on N. The space $C^{1}(M, N)$ should be understood in the same way. In this sense we have the following Euler-Lagrangian equation for harmonic maps.

$$
\Delta u=A(u)(\nabla u, \nabla u) .
$$

The tension field of a map $u, \tau(u)$, is defined by

$$
\tau(u)=\Delta u-A(u)(\nabla u, \nabla u),
$$

where A is the second fundamental form of N in \mathbb{R}^{K}. So u is a harmonic map if and only if $\tau(u)=0$.

Notice that, when M is a Riemann surface, the functional $E(u)$ is conformal invariant. Harmonic maps are of special interest in this case. Consider a harmonic map u from a Riemann surface M to N. Recall that Sacks and Uhlenbeck, in a fundamental paper [1981], established the well-known removable singularity theorem by using a class of piecewise smooth harmonic functions to approximate the weak harmonic map. Li and Wang [2010] gave a slightly different proof of the following removable singularity theorem.
Theorem 1.1 [Li and Wang 2010]. Let B be the unit disk in \mathbb{R}^{2} centered at the origin. If $u: B \backslash\{0\} \rightarrow N$ is a $W_{\mathrm{loc}}^{2,2}(B \backslash\{0\}, N) \cap W^{1,2}(B, N)$ map and u satisfies

$$
\tau(u)=g \in L^{2}\left(B, \mathbb{R}^{K}\right),
$$

then u can be extended to a map belonging to $W^{2,2}(B, N)$.
In this direction we will prove the following result:
Proposition 1.2. Let B be the unit disk in \mathbb{R}^{2} centered at the origin. If

$$
u: B \backslash\{0\} \rightarrow N
$$

is a $W_{\text {loc }}^{2,2}(B \backslash\{0\}, N) \cap W^{1,2}(B, N)$ map and u satisfies

$$
\left(\int_{B_{t} \backslash B_{t / 2}}|\tau(u)|^{2}\right)^{\frac{1}{2}} \leq C\left(\frac{1}{t}\right)^{a}
$$

for some $0<a<1$ and any $0<t<1$, where C is a constant independent of t, then there exists some $s>1$ such that

$$
\nabla u \in L^{2 s}(B)
$$

A direct corollary of this result is the following removable singularity theorem:
Theorem 1.3. Assume that $u \in W_{\mathrm{loc}}^{2,2}(B \backslash\{0\}, N) \cap W^{1,2}(B, N)$ and u satisfies

$$
\left(\int_{B_{t} \backslash B_{t / 2}}|\tau(u)|^{2}\right)^{\frac{1}{2}} \leq C\left(\frac{1}{t}\right)^{a}
$$

for some $0<a<1$ and any $0<t<1$, where C is a constant independent of t. Then we have

$$
u \in \bigcap_{1<p<\frac{2}{1+a}} W^{2, p}(B, N) .
$$

Consider a sequence of maps $\left\{u_{n}\right\}$ from a Riemann surface M to N with uniformly bounded energy. Clearly $\left\{u_{n}\right\}$ converges to u weakly in $W^{1,2}(M, N)$ for some $u \in W^{1,2}(M, N)$, but in general it may not converge strongly in $W^{1,2}(M, N)$ to u, and the falling of the strong convergence is due to the energy concentration at finite points. Jost [1987] and Parker [1996] independently proved that, when $\tau\left(u_{n}\right)=0$, that is, u_{n} are harmonic maps, the lost energy is exactly the sum of the energy of the bubbles. Recall that Sacks and Uhlenbeck [1981] proved that the bubbles for such a sequence are harmonic spheres defined as nontrivial harmonic maps from S^{2} to N. This result is called energy identity. Furthermore they proved that there is no neck formation during the blow up process, that is, the bubble tree convergence holds true.

For the case when $\tau\left(u_{n}\right)$ is bounded in L^{2}, that is, $\left\{u_{n}\right\}$ is an approximated harmonic map sequence, the energy identity was proved for N is a sphere by Qing [1995], and for the general target manifold N by Ding and Tian [1995] and, independently, by Wang [1996]. Qing and Tian [1997] proved that there is no neck formation during the blow up process; see also [Lin and Wang 1998]. For the heat flow of harmonic maps, related results can also be found in [Topping 2004a; 2004b]. For the case where the target manifold is a sphere, the energy identity and bubble tree convergence were proved by Lin and Wang [2002] for sequences with tension fields uniform bounded in L^{p}, for any $p>1$. In fact, they proved this result under a scaling invariant condition which can be deduced from the uniform boundness of the tension field in L^{p}.

By virtue of Fanghua Lin and Changyou Wang's result, it is natural to ask the following question.

Question. Let $\left\{u_{n}\right\}$ be a sequence from a closed Riemann surface to a closed Riemannian manifold with tension field uniformly bounded in L^{p} for some $p>1$. Do energy identity and bubble tree convergence results hold true during blowing up for such a sequence?

Remark 1.4. Parker [1996] constructed a sequence from a Riemann surface whose tension field is uniformly bounded in L^{1}, in which the energy identity fails.

Theorem 1.5 [Li and Zhu 2010]. Let $\left\{u_{n}\right\}$ be a sequence of maps from B to N in $W^{1,2}(B, N)$ with tension field $\tau\left(u_{n}\right)$, where B is the unit disk of \mathbb{R}^{2} centered at the origin. If
(I) $\left\|u_{n}\right\|_{W^{1,2}(B)}+\left\|\tau\left(u_{n}\right)\right\|_{W^{1, p}(B)} \leq \Lambda$ for some $p \geq \frac{6}{5}$, and
(II) $u_{n} \rightarrow u$ strongly in $W_{\mathrm{loc}}^{1,2}(B \backslash\{0\}, N)$ as $n \rightarrow \infty$,
there exists a subsequence of $\left\{u_{n}\right\}$ (still denoted by $\left\{u_{n}\right\}$) and some nonnegative integer k such that, for any $i=1, \ldots, k$, there are some points x_{n}^{i}, positive numbers r_{n}^{i}, and a nonconstant harmonic sphere ω^{i} (viewed as a map from $\mathbb{R}^{2} \cup\{\infty\} \rightarrow N$) such that:
(1) $x_{n}^{i} \rightarrow 0$ and $r_{n}^{i} \rightarrow 0$ as $n \rightarrow \infty$;
(2) $\lim _{n \rightarrow \infty}\left(\frac{r_{n}^{i}}{r_{n}^{j}}+\frac{r_{n}^{j}}{r_{n}^{i}}+\frac{\left|x_{n}^{i}-x_{n}^{j}\right|}{r_{n}^{i}+r_{n}^{j}}\right)=\infty$ for any $i \neq j$;
(3) ω^{i} is the weak limit or strong limit of $u_{n}\left(x_{n}^{i}+r_{n}^{i} x\right)$ in $W_{\operatorname{loc}}^{1,2}\left(\mathbb{R}^{2}, N\right)$;
(4) Energy identity:

$$
\lim _{n \rightarrow \infty} E\left(u_{n}, B\right)=E(u, B)+\sum_{i=1}^{k} E\left(\omega^{i}, \mathbb{R}^{2}\right)
$$

(5) Necklessness: the image $u(B) \bigcup_{i=1}^{k} \omega^{i}\left(\mathbb{R}^{2}\right)$ is a connected set.

Lemma 1.6. Suppose $\tau(u)$ satisfies

$$
\left(\int_{B_{t} \backslash B_{t / 2}}|\tau(u)|^{2}\right)^{\frac{1}{2}} \leq C\left(\frac{1}{t}\right)^{a}
$$

for some $0<a<\frac{2}{3}$ and any $0<t<1$. Then $\tau(u)$ is bounded in $L^{p}(B)$ for some $p \geq \frac{6}{5}$.

Proof. We have

$$
\begin{aligned}
\int_{B_{2}-k+1 \backslash B_{2}-k}|\tau(u)|^{p} & \leq C\left(2^{-k}\right)^{2-p}\|\tau(u)\|_{L^{2}\left(B_{2}-k+1 \backslash B_{2}-k\right)}^{p} \\
& \leq C\left(2^{-k}\right)^{2-p-a p}
\end{aligned}
$$

Hence

$$
\int_{B}|\tau(u)|^{p} \leq C \sum_{k=1}^{\infty}\left(2^{-k}\right)^{2-p-a p} .
$$

When $0<a<\frac{2}{3}$, we can choose some $p \geq \frac{6}{5}$ such that $2-p-a p>0$, and so

$$
\sum_{k=1}^{\infty}\left(2^{-k}\right)^{2-p-a p} \leq C,
$$

which implies that $\tau(u)$ is bounded in $L^{p}(B)$ for some $p \geq \frac{6}{5}$.
Thus Theorem 1.5 holds for sequences $\left\{u_{n}\right\}$ satisfying the following conditions.
(I) $\left\|u_{n}\right\|_{W^{1,2}(B)} \leq \Lambda$ and $\left(\int_{B_{t} \backslash B_{t} / 2}\left|\tau\left(u_{n}\right)\right|^{2}\right)^{\frac{1}{2}} \leq C\left(\frac{1}{t}\right)^{a}$ for some $0<a<\frac{2}{3}$ and any $0<t<1$, where C is independent of n and t, and
(II) $u_{n} \rightarrow u$ strongly in $W_{\text {loc }}^{1,2}(B \backslash\{0\}, N)$ as $n \rightarrow \infty$.

With the help of this observation, we find the following theorem.
Theorem 1.7. Let $\left\{u_{n}\right\}$ be a sequence of maps from B to N in $W^{1,2}(B, N)$ with tension field $\tau\left(u_{n}\right)$, where B is the unit disk of \mathbb{R}^{2} centered at the origin. If
(I) $\left\|u_{n}\right\|_{W^{1,2(B)}} \leq \Lambda$ and

$$
\left(\int_{B_{t} \backslash B_{t / 2}}\left|\tau\left(u_{n}\right)\right|^{2}\right)^{\frac{1}{2}} \leq C\left(\frac{1}{t}\right)^{a}
$$

for some $0<a<1$ and any $0<t<1$, where C is independent of n and t, and (II) $u_{n} \rightarrow u$ strongly in $W_{\operatorname{loc}}^{1,2}(B \backslash\{0\}, N)$ as $n \rightarrow \infty$,
then there exists a subsequence of $\left\{u_{n}\right\}$ (still denoted by $\left\{u_{n}\right\}$) and some nonnegative integer k such that, for any $i=1, \ldots, k$, there are some points x_{n}^{i}, positive numbers r_{n}^{i}, and a nonconstant harmonic sphere ω^{i} (which is viewed as a map from $\left.\mathbb{R}^{2} \cup\{\infty\} \rightarrow N\right)$, such that:
(1) $x_{n}^{i} \rightarrow 0, r_{n}^{i} \rightarrow 0$ as $n \rightarrow \infty$;
(2) $\lim _{n \rightarrow \infty}\left(\frac{r_{n}^{i}}{r_{n}^{j}}+\frac{r_{n}^{j}}{r_{n}^{i}}+\frac{\left|x_{n}^{i}-x_{n}^{j}\right|}{r_{n}^{i}+r_{n}^{j}}\right)=\infty$ for any $i \neq j$;
(3) ω^{i} is the weak limit or strong limit of $u_{n}\left(x_{n}^{i}+r_{n}^{i} x\right)$ in $W_{\operatorname{loc}}^{1,2}\left(\mathbb{R}^{2}, N\right)$;
(4) Energy identity: $\lim _{n \rightarrow \infty} E\left(u_{n}, B\right)=E(u, B)+\sum_{i=1}^{k} E\left(\omega^{i}, \mathbb{R}^{2}\right)$;
(5) Neckless: the image $u(B) \bigcup_{i=1}^{k} \omega^{i}\left(\mathbb{R}^{2}\right)$ is a connected set.

Remark 1.8. When

$$
\left(\int_{B_{\backslash} \backslash B_{t / 2}}\left|\tau\left(u_{n}\right)\right|^{2}\right)^{\frac{1}{2}} \leq C\left(\frac{1}{t}\right)^{a}
$$

for some $0<a<1$ and any $0<t<1$, where C is independent of n and t, we can deduce that $\tau\left(u_{n}\right)$ is uniformly bounded in $L^{p}(B)$ for any $p<2 /(1+a)$, and when $a \rightarrow 1, p \rightarrow 1$. Hence our condition is stronger than the condition that the tension
field is bounded in L^{p} for some $p>1$, and this result suggests that we probably have a positive answer to the Question on page 367.

Organization of the paper. In Section 2 we quote and prove several important results. In Section 3 we prove the removable singularity result. Theorem 1.7 is proved in Section 4. Throughout the paper, the letter C is used to denote positive constants which vary from line to line. We do not always distinguish between sequences and their subsequences.

2. The ϵ-regularity lemma and the Pohozaev inequality

This section contains a well-known small energy regularity lemma for approximated harmonic maps and a version of the Pohozaev inequality, which will be important later. We assume that the disk $B \subseteq \mathbb{R}^{2}$ is the unit disk centered at the origin, which has the standard flat metric.
Lemma 2.1. Suppose that $u \in W^{2,2}(B, N)$ and $\tau(u)=g \in L^{2}\left(B, \mathbb{R}^{K}\right)$. Then there exists an $\varepsilon_{0}>0$ such that if $\int_{B}|\nabla u|^{2} \leq \varepsilon_{0}^{2}$, we have

$$
\begin{equation*}
\|u-\bar{u}\|_{W^{2,2}\left(B_{1 / 2}\right)} \leq C\left(\|\nabla u\|_{L^{2}(B)}+\|g\|_{L^{2}(B)}\right) \tag{2-1}
\end{equation*}
$$

Here \bar{u} is the mean value of u over $B_{1 / 2}$.
Proof. We can find a complete proof of this lemma in [Ding and Tian 1995].
Using the standard elliptic estimates and the embedding theorems, we can derive from the above lemma that

Corollary 2.2. Under the assumptions of Proposition 1.2, we have

$$
\begin{align*}
\operatorname{Osc}_{B_{2 r} \backslash B_{r}} u & \leq C\left(\|\nabla u\|_{L^{2}\left(B_{4 r} \backslash B_{r / 2}\right)}+r\|g\|_{L^{2}\left(B_{4 r} \backslash B_{r / 2}\right)}\right) \tag{2-2}\\
& \leq C\left(\|\nabla u\|_{L^{2}\left(B_{4 r} \backslash B_{r / 2}\right)}+r^{1-a}\right)
\end{align*}
$$

Lemma 2.3 (Pohozaev inequality). Under the assumptions of Proposition 1.2, for $0<t_{2}<t_{1}<1$,

$$
\begin{equation*}
\int_{\partial\left(B_{\left.t_{1} \backslash B_{t_{2}}\right)}\right.} r\left(\left|\frac{\partial u}{\partial r}\right|^{2}-\frac{1}{2}|\nabla u|^{2}\right) \leq t_{1}\|\nabla u\|_{L^{2}\left(B_{t_{1}} \backslash B_{t_{2}}\right)}\|g\|_{L^{2}\left(B_{t_{1}} \backslash B_{t_{2}}\right)} \tag{2-3}
\end{equation*}
$$

Proof. Multiplying both sides of the equation $\tau(u)=g$ by $r(\partial u / \partial r)$, we get

$$
\int_{B_{t_{1}} \backslash B_{t_{2}}} r \frac{\partial u}{\partial r} \Delta u=\int_{B_{t_{1} \backslash B_{t_{2}}}} r \frac{\partial u}{\partial r} g .
$$

Integrating by parts, we get

$$
\int_{B_{t_{1} \backslash B_{t_{2}}}} r \frac{\partial u}{\partial r} \Delta u d x=\int_{\partial\left(B_{\left.t_{1} \backslash B_{t_{2}}\right)}\right.} r\left|\frac{\partial u}{\partial r}\right|^{2}-\int_{B_{t_{1} \backslash B_{t_{2}}}} \nabla\left(r \frac{\partial u}{\partial r}\right) \nabla u d x
$$

and

$$
\begin{aligned}
\int_{B_{t_{1} \backslash B_{t_{2}}}} \nabla\left(r \frac{\partial u}{\partial r}\right) \nabla u d x & =\int_{B_{t_{1}} \backslash B_{t_{2}}} \nabla\left(x^{k} \frac{\partial u}{\partial x^{k}}\right) \nabla u d x \\
& =\int_{B_{t_{1} \backslash B_{t_{2}}}}|\nabla u|^{2}+\int_{t_{2}}^{t_{1}} \int_{0}^{2 \pi} \frac{r}{2} \frac{\partial}{\partial r}|\nabla u|^{2} r d \theta d r \\
& =\int_{B_{t_{1} \backslash B_{t_{2}}}|\nabla u|^{2}+\frac{1}{2} \int_{\partial\left(B_{t_{1}} \backslash B_{t_{2}}\right)}|\nabla u|^{2} r-\int_{B_{t_{1} \backslash B_{t_{2}}}}|\nabla u|^{2}} \\
& =\frac{1}{2} \int_{\partial\left(B_{\left.t_{1} \backslash B_{t_{2}}\right)}\right.}|\nabla u|^{2} r .
\end{aligned}
$$

This implies the conclusion of the lemma.
Corollary 2.4. Under the assumptions of Proposition 1.2, we have

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{B_{t} \backslash B_{t / 2}}\left|\frac{\partial u}{\partial r}\right|^{2}-\frac{1}{2}|\nabla u|^{2} \leq C\|\nabla u\|_{L^{2}\left(B_{t} \backslash B_{t / 2}\right)} t^{-a} \tag{2-4}
\end{equation*}
$$

Proof. In the previous lemma, let $t_{1}=t$ and $t_{2}=t / 2$. Then

$$
\begin{aligned}
\frac{\partial}{\partial t} \int_{B_{t} \backslash B_{t / 2}}\left|\frac{\partial u}{\partial r}\right|^{2}-\frac{1}{2}|\nabla u|^{2} & =\int_{\partial B_{t}}\left(\left|\frac{\partial u}{\partial r}\right|^{2}-\frac{1}{2}|\nabla u|^{2}\right)-\frac{1}{2} \int_{\partial B_{t / 2}}\left(\left|\frac{\partial u}{\partial r}\right|^{2}-\frac{1}{2}|\nabla u|^{2}\right) \\
& \leq\|g\|_{L^{2}\left(B_{t} \backslash B_{t / 2}\right)}\|\nabla u\|_{L^{2}\left(B_{t} \backslash B_{t / 2}\right)} \\
& \leq C\|\nabla u\|_{L^{2}\left(B_{t} \backslash B_{t / 2}\right)} t^{-a}
\end{aligned}
$$

Corollary 2.5. Under the assumptions of Proposition 1.2,

$$
\begin{equation*}
\int_{B_{t} \backslash B_{t / 2}}\left|\frac{\partial u}{\partial r}\right|^{2}-\frac{1}{2}|\nabla u|^{2} \leq C\|\nabla u\|_{L^{2}\left(B_{t}\right)} t^{1-a} \tag{2-5}
\end{equation*}
$$

Proof. Integrating both sides of the inequality (2-4) from 0 to t and noting that $\|\nabla u\|_{L^{2}\left(B_{s} \backslash B_{s / 2}\right)} \leq\|\nabla u\|_{L^{2}\left(B_{t}\right)}$ for any $s \leq t$, we get (2-5).

3. Removal of singularities

We now discuss the removal of singularities of a class of approximated harmonic maps from the unit disk of \mathbb{R}^{2} to a closed Riemannian manifold N.

Lemma 3.1. Assume that u satisfies the assumptions of Proposition 1.2. Then there are constants $\lambda>0$ and $C>0$ such that

$$
\begin{equation*}
\int_{B_{r}}|\nabla u|^{2} \leq C r^{\lambda} \tag{3-1}
\end{equation*}
$$

for r small enough.

Proof. Because we only need to prove the lemma for r small, we can assume that $E(u, B)<\varepsilon_{0}$. Let $u^{*}(r):(0,1) \rightarrow \mathbb{R}^{K}$ be a curve defined by

$$
u^{*}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(r, \theta) d \theta
$$

Then

$$
\frac{\partial u^{*}}{\partial r}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\partial u}{\partial r} d \theta
$$

On the one hand, we have

$$
\begin{aligned}
\int_{B_{2-k_{t}} \backslash B_{2-k-1_{t}}} \nabla u \nabla\left(u-u^{*}\right) & \geq \int_{B_{2-k_{t} \backslash B_{2-k-1_{t}}}\left(|\nabla u|^{2}-\left|\frac{\partial u}{\partial r}\right|^{2}\right)} \\
& \geq \frac{1}{2} \int_{B_{2}-k_{t} \backslash B_{2-k-1_{t}}}|\nabla u|^{2}-C\left(2^{-k} t\right)^{1-a}
\end{aligned}
$$

where the second inequality makes use of (2-5).
Summing k from 0 to infinity, we get

$$
\int_{B_{t}} \nabla u \nabla\left(u-u^{*}\right) \geq \frac{1}{2} \int_{B_{t}}|\nabla u|^{2}-C t^{1-a}
$$

On the other hand,

$$
\begin{aligned}
& \int_{B_{2-k_{t}} \backslash B_{2-k-1_{t}}} \nabla u \nabla\left(u-u^{*}\right) \\
& =-\int_{B_{2-k_{t}} \backslash B_{2-k-1_{t}}}\left(u-u^{*}\right) \Delta u+\int_{\partial\left(B_{2-k_{t} \backslash B_{2-k-1}^{t}}\right)} \frac{\partial u}{\partial r}\left(u-u^{*}\right) \\
& \left.=-\int_{B_{2-k_{t}} \backslash B_{2-k-1_{t}}}\left(u-u^{*}\right)(\tau(u)-A(u)(\nabla u, \nabla u))+\int_{\partial\left(B_{2}-k_{t} \backslash B_{2-k-1}^{t}\right.}\right) \quad \frac{\partial u}{\partial r}\left(u-u^{*}\right) \text {. }
\end{aligned}
$$

Hence, by summing k from 0 to infinity, we get

$$
\begin{aligned}
& \int_{B_{t}} \nabla u \nabla\left(u-u^{*}\right) \\
& \quad \leq \sum_{k=0}^{\infty}\left\|u-u^{*}\right\|_{L^{\infty}\left(B_{2-k_{t}} \backslash B_{2-k-1_{t}}\right)}\left(\|A\|_{L^{\infty}} \int_{B_{2^{-k_{t}} \backslash} \backslash B_{2-k-1_{t}}}|\nabla u|^{2}+C\left(2^{-k} t\right)^{1-a}\right) \\
& \quad+\int_{\partial B_{t}} \frac{\partial u}{\partial r}\left(u-u^{*}\right) \\
& \quad \leq \int_{B_{t}}|\nabla u|^{2}+C t^{1-a}+\int_{\partial B_{t}} \frac{\partial u}{\partial r}\left(u-u^{*}\right) .
\end{aligned}
$$

Note that we used Corollary 2.2 and ensured that ϵ is small by letting t be small.

Note that

$$
\begin{aligned}
\left|\int_{\partial B_{t}} \frac{\partial u}{\partial r}\left(u-u^{*}\right)\right| & \leq\left(\int_{\partial B_{t}}\left|\frac{\partial u}{\partial r}\right|^{2}\right)^{\frac{1}{2}}\left(\int_{\partial B_{t}}\left|u-u^{*}\right|^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\int_{0}^{2 \pi} t^{2}\left|\frac{\partial u}{\partial r}\right|^{2} d \theta\right)^{\frac{1}{2}}\left(\int_{0}^{2 \pi}\left|\frac{\partial u}{\partial \theta}\right|^{2} d \theta\right)^{\frac{1}{2}} \\
& \leq \frac{1}{2} \int_{0}^{2 \pi}\left(\left|\frac{\partial u}{\partial \theta}\right|^{2}+t^{2}\left|\frac{\partial u}{\partial r}\right|^{2}\right) d \theta=\frac{t}{2} \int_{\partial B_{t}}|\nabla u|^{2}
\end{aligned}
$$

Combining the two sides of the inequalities and letting ϵ be small (we can do this by letting t be small), we conclude that there is a constant $\lambda \in(0,1)$ such that

$$
\lambda \int_{B_{t}}|\nabla u|^{2} \leq t \int_{\partial B_{t}}|\nabla u|^{2}+C t^{1-a}
$$

Set $f(t)=\int_{B_{t}}|\nabla u|^{2}$. Then we get the ordinary differential inequality

$$
\left(\frac{f(t)}{t^{\lambda}}\right)^{\prime} \geq-C t^{-\lambda-a}
$$

Letting λ be small enough that $\lambda+a<1$, we get

$$
f(t)=\int_{B_{t}}|\nabla u|^{2} \leq C t^{\lambda}
$$

for t small enough.
Proof of Proposition 1.2. Let $r_{k}=2^{-k}$ and $v_{k}(x)=u\left(r_{k} x\right)$. Then

$$
\begin{aligned}
\left(\int_{B_{2} \backslash B_{1}}\left|\nabla v_{k}\right|^{2 s}\right)^{\frac{1}{2 s}} & \leq C\left\|v_{k}-\bar{v}_{k}\right\|_{W^{2,2}\left(B_{2} \backslash B_{1}\right)} \\
& \leq\left(\int_{B_{4} \backslash B_{1 / 2}}\left|\nabla v_{k}\right|^{2}\right)^{\frac{1}{2}}+C\left(\int_{B_{4 r_{k}} \backslash B_{r_{k} / 2}} r_{k}^{2}|\tau|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Therefore we deduce that

$$
\begin{aligned}
\int_{B_{2} \backslash B_{1}}\left|\nabla v_{k}\right|^{2 s} & \leq C\left(\int_{B_{4} \backslash B_{1 / 2}}\left|\nabla v_{k}\right|^{2}\right)^{s}+C\left(\int_{B_{4 r_{k} \backslash B_{r_{k} / 2}}} r_{k}^{2}|\tau|^{2}\right)^{s} \\
& \leq C\left(\int_{B_{4} \backslash B_{1 / 2}}\left|\nabla v_{k}\right|^{2}\right)^{s}+C r_{k}^{2 s(1-a)}
\end{aligned}
$$

Note that when k is large enough,

$$
\int_{B_{4_{r_{k}} \backslash B_{r_{k}} \mid 2}}|\nabla u|^{2} \leq 1 .
$$

Hence

$$
\begin{aligned}
r_{k}^{2 s-2} \int_{B_{2 r_{k} \backslash} \backslash B_{r_{k}}}|\nabla u|^{2 s} & \leq C\left(\int_{B_{4 r_{k}} \backslash B_{r_{k} / 2}}|\nabla u|^{2}\right)^{s}+C r_{k}^{2 s(1-a)} \\
& \leq C \int_{B_{4 r_{k}} \backslash B_{r_{k} / 2}}|\nabla u|^{2}+C r_{k}^{2 s(1-a)}
\end{aligned}
$$

This implies that

$$
\int_{B_{2 r_{k} k} \mid B_{r_{k}}}|\nabla u|^{2 s} \leq C r_{k}^{2-2 s} r_{k}^{\lambda}+C r_{k}^{2-2 s a} .
$$

Now choose $s>1$ such that $2 s-2<\lambda / 2$ and $2-2 s a>0$. There exists a positive integer k_{0} such that when $k \geq k_{0}$,

$$
\int_{B_{2}-k+1 \backslash B_{2}-k}|\nabla u|^{2 s} \leq C\left(2^{(-\lambda / 2) k}+2^{-k(2-2 s a)}\right) .
$$

Therefore $\int_{B_{r}}|\nabla u|^{2 s} \leq C \sum_{k=k_{0}}^{\infty}\left(2^{(-\lambda / 2) k}+2^{-k(2-2 s a)}\right) \leq C$ for any $r \leq 2^{-k_{0}+1}$, which
completes the proof.
Proof of Theorem 1.3. Note that

$$
\int_{B_{2-k} \backslash B_{2}-k-1}|\tau(u)|^{p} \leq C\left(2^{-k}\right)^{2-p}\left(\int_{B_{2}-k \backslash B_{2}-k-1}|\tau(u)|^{2}\right)^{p / 2} \leq C\left(2^{-k}\right)^{2-p-p a} .
$$

Summing over k from 0 to infinity, we deduce that $\int_{B}|\tau(u)|^{p} \leq C$ for $p<2 /(1+a)$.
Recall that we have proved that $\nabla u \in L^{2 s}(B)$ for some $s>1$. Hence, by standard elliptic estimates and the bootstrap argument, we can deduce that

$$
u \in \bigcap_{1<p<\frac{2}{1+a}} W^{2, p}(B, N) .
$$

4. The bubble tree structure

Energy identity. Assume that $\left\{u_{n}\right\}$ is a uniformly bounded sequence in $W^{1,2}(B, N)$ and that there exists a constant C, independent of n and t, such that

$$
\left(\int_{B_{\backslash} \backslash B_{t / 2}}\left|\tau\left(u_{n}\right)\right|^{2}\right)^{\frac{1}{2}} \leq C\left(\frac{1}{t}\right)^{a}
$$

for some $0<a<1$ and any $0<t<1$. In this section, we will prove the energy identity for this sequence. For convenience, we will assume that there is only one bubble ω, which is the strong limit of $u_{n}\left(r_{n}.\right)$ in $W_{\text {loc }}^{1,2}\left(\mathbb{R}^{2}, N\right)$. Under this assumption we can deduce the following by a standard blowup argument.

Lemma 4.1. For any $\epsilon>0$, there exist R and δ such that

$$
\begin{equation*}
\int_{B_{2 \lambda} \backslash B_{\lambda}}\left|\nabla u_{n}\right|^{2} \leq \epsilon^{2} \quad \text { for any } \quad \lambda \in\left(\frac{R r_{n}}{2}, 2 \delta\right) . \tag{4-1}
\end{equation*}
$$

Proof of the energy identity. For a given $R>0$, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{B}\left|\nabla u_{n}\right|^{2}=\lim _{n \rightarrow \infty} \int_{B \backslash B_{\delta}}\left|\nabla u_{n}\right|^{2}+\lim _{n \rightarrow \infty} \int_{B_{\delta} \mid B_{R r_{n}}}\left|\nabla u_{n}\right|^{2}+\lim _{n \rightarrow \infty} \int_{B_{R r_{n}}}\left|\nabla u_{n}\right|^{2}, \\
& \lim _{\delta \rightarrow 0} \lim _{n \rightarrow \infty} \int_{B \backslash B_{\delta}}\left|\nabla u_{n}\right|^{2}=\int_{B}|\nabla u|^{2}, \quad \text { and } \quad \lim _{R \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{B_{R r_{n}}}\left|\nabla u_{n}\right|^{2}=\int_{\mathbb{R}^{2}}|\nabla \omega|^{2},
\end{aligned}
$$

Hence, to prove the energy identity, we only need to prove that

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \lim _{\delta \rightarrow 0} \lim _{n \rightarrow \infty} \int_{B_{\delta} \backslash B_{R_{r}}}\left|\nabla u_{n}\right|^{2}=0 . \tag{4-2}
\end{equation*}
$$

The proof is a little similar to the proof in the previous section. We assume that $\delta=2^{m_{n}} R r_{n}$, where m_{n} is a positive integer.

On the one hand, we have

$$
\begin{aligned}
\int_{B_{2^{k} r_{r_{n}} \backslash B_{2} k-1} R_{r_{n}}} \nabla u_{n} \nabla\left(u_{n}-u_{n}^{*}\right) & \geq \int_{B_{2^{k} R r_{n}} \backslash B_{2^{k-1}} R_{R r_{n}}}\left(\left|\nabla u_{n}\right|^{2}-\left|\frac{\partial u_{n}}{\partial r}\right|^{2}\right) \\
& \geq \frac{1}{2} \int_{B_{2^{k} R_{r_{n}}} \backslash B_{2^{k-1} R_{r_{n}}}\left|\nabla u_{n}\right|^{2}-C\left(2^{k} R r_{n}\right)^{1-a} .} .
\end{aligned}
$$

This implies that

$$
\int_{B_{\delta} \backslash B_{R r_{n}}} \nabla u_{n} \nabla\left(u_{n}-u_{n}^{*}\right) \geq \frac{1}{2} \int_{B_{\delta} \backslash B_{R r_{n}}}\left|\nabla u_{n}\right|^{2}-C \delta^{1-a} .
$$

On the other hand, we have

$$
\begin{aligned}
& \int_{B_{2^{k} r_{n}} \backslash B_{2^{k-1}}} \nabla u_{R_{r n}} \nabla\left(u_{n}-u_{n}^{*}\right) \\
& =-\int_{B_{2^{k} k_{r_{n}}} \backslash B_{2^{k-1}}\left(u_{r_{n}}\right.}\left(u_{n}-u_{n}^{*}\right) \Delta u_{n}+\int_{\partial\left(B_{2^{k} r_{n} \backslash} \backslash B_{2^{k-1} R_{r_{n}}}\right)} \frac{\partial u_{n}}{\partial r}\left(u_{n}-u_{n}^{*}\right) \\
& =-\int_{B_{2^{k} r_{n}} \backslash B_{2} k-1 R_{r_{n}}}\left(u_{n}-u_{n}^{*}\right)\left(\tau\left(u_{n}\right)-A\left(u_{n}\right)\left(\nabla u_{n}, \nabla u_{n}\right)\right) \\
& +\int_{\partial\left(B_{2^{k} R_{r r} \backslash} \backslash B_{2^{k-1} 1_{R r_{n}}}\right)} \frac{\partial u_{n}}{\partial r}\left(u_{n}-u_{n}^{*}\right) .
\end{aligned}
$$

Summing from 1 to m_{n}, we deduce that

$$
\begin{aligned}
& \int_{B_{\delta} \backslash B_{R r_{n}}} \nabla u_{n} \nabla\left(u_{n}-u_{n}^{*}\right) \\
& \leq \sum_{k=1}^{m_{n}}\left\|u_{n}-u_{n}^{*}\right\|_{L^{\infty}\left(B_{2^{k} R r_{n}} \backslash B_{2^{k-1} R_{R r_{n}}}\right)}\left(\|A\|_{L^{\infty}} \int_{B_{2^{k} R r_{n}} \backslash B_{2^{k-1} R r_{n}}}\left|\nabla u_{n}\right|^{2}+C\left(2^{k} R r_{n}\right)^{1-a}\right) \\
& +\int_{\partial\left(B_{\delta} \backslash B_{R r_{n}}\right)} \frac{\partial u_{n}}{\partial r}\left(u_{n}-u_{n}^{*}\right) \\
& \leq \epsilon \int_{B_{\delta} \backslash B_{R r_{n}}}\left|\nabla u_{n}\right|^{2}+C \delta^{1-a}+\int_{\partial\left(B_{\delta} \backslash B_{R r_{n}}\right)} \frac{\partial u_{n}}{\partial r}\left(u_{n}-u_{n}^{*}\right) .
\end{aligned}
$$

Comparing the two sides, we get

$$
(1-2 \epsilon) \int_{B_{\delta} \backslash B_{R r_{n}}}\left|\nabla u_{n}\right|^{2} \leq C \delta^{1-a}+2 \int_{\partial\left(B_{\delta} \backslash B_{R r_{n}}\right)} \frac{\partial u_{n}}{\partial r}\left(u_{n}-u_{n}^{*}\right) .
$$

As for the boundary terms, we have

$$
\begin{aligned}
\int_{\partial B_{\delta}} \frac{\partial u_{n}}{\partial r}\left(u_{n}-u_{n}^{*}\right) & \leq\left(\int_{\partial B_{\delta}}\left|\frac{\partial u_{n}}{\partial r}\right|^{2}\right)^{\frac{1}{2}}\left(\int_{\partial B_{\delta}}\left|u_{n}-u_{n}^{*}\right|^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\int_{0}^{2 \pi} \delta^{2}\left|\frac{\partial u_{n}}{\partial r} d \theta\right|^{2}\right)^{\frac{1}{2}}\left(\int_{0}^{2 \pi}\left|\frac{\partial u_{n}}{\partial \theta}\right|^{2} d \theta\right)^{\frac{1}{2}} \\
& \leq \frac{1}{2} \int_{0}^{2 \pi} \delta^{2}\left|\frac{\partial u_{n}}{\partial r} d \theta\right|^{2}+\left|\frac{\partial u_{n}}{\partial \theta}\right|^{2} d \theta=\frac{\delta^{2}}{2} \int_{0}^{2 \pi}\left|\nabla u_{n}\right|^{2} d \theta
\end{aligned}
$$

Now, by the trace embedding theorem, we have

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|\nabla u_{n}(\cdot, \delta)\right|^{2} \delta d \theta & =\int_{\partial B_{\delta}}\left|\nabla u_{n}(\cdot, \delta)\right|^{2} d S_{\delta} \\
& \leq C \delta\left\|\nabla u_{n}\right\|_{W^{1,2}\left(B_{3 \delta / 2} \backslash B_{\delta / 2}\right)}^{2} \\
& \leq C \delta\left\|u_{n}-\bar{u}_{n}\right\|_{W^{2,2}\left(B_{3 \delta / 2} \backslash B_{\delta / 2}\right)}^{2} \\
& \leq C \delta\left(\frac{1}{\delta}\left\|\nabla u_{n}\right\|_{L^{2}\left(B_{2 \delta}\right)}^{2}+\left\|\tau\left(u_{n}\right)\right\|_{L^{2}\left(B_{2 \delta} \backslash B_{\delta / 4}\right)}^{2}\right) \\
& \leq C \delta^{1-2 a},
\end{aligned}
$$

for δ small. From this we deduce that

$$
\int_{\partial B_{\delta}} \frac{\partial u_{n}}{\partial r}\left(u_{n}-u_{n}^{*}\right) \leq C \delta^{2(1-a)}
$$

Similarly we get

$$
\int_{\partial B_{R r_{n}}} \frac{\partial u_{n}}{\partial r}\left(u_{n}-u_{n}^{*}\right) \leq C\left(R r_{n}\right)^{2(1-a)}
$$

for n big enough. Therefore

$$
(1-2 \epsilon) \int_{B_{\delta} \backslash B_{R r_{n}}}\left|\nabla u_{n}\right|^{2} \leq C \delta^{1-a}+C \delta^{2(1-a)}+C\left(R r_{n}\right)^{2(1-a)},
$$

which clearly implies (4-2), and we are done.
Necklessness. In this part we prove that there is no neck between the base map u and the bubble ω, that is, the C^{0} compactness of the sequence modulo bubbles.

Proof. We only need to prove that

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \lim _{\delta \rightarrow 0} \lim _{n \rightarrow \infty} \operatorname{Osc}_{B_{\delta} \backslash B_{R_{r}}} u_{n}=0 \tag{4-3}
\end{equation*}
$$

Again we assume that $\delta=2^{m_{n}} R r_{n}$ and let $Q(t)=B_{2^{t+t_{0}} R r_{n}} \backslash B_{2^{t} 0^{-t} R r_{n}}$. Similarly to the proof of the previous part, we can get

$$
\begin{aligned}
& (1-2 \epsilon) \int_{Q(k)}\left|\nabla u_{n}\right|^{2} \\
& \quad \leq 2^{k+t_{0}} R r_{n} \int_{\partial B_{2^{k+t_{0}}} \mid \nabla u_{n}}|\nabla|^{2}+2^{t_{0}-k} R r_{n} \int_{\partial B_{2^{t_{0}-k}} \mid r_{r_{n}}}\left|\nabla u_{n}\right|^{2}+C\left(2^{k+t_{0}} R r_{n}\right)^{1-a} .
\end{aligned}
$$

Set $f(t)=\int_{Q(t)}\left|\nabla u_{n}\right|^{2}$. Then we have

$$
(1-2 \epsilon) f(t) \leq(1-2 \epsilon) f(k+1) \leq \frac{1}{\log 2} f^{\prime}(k+1)+C\left(2^{k+t_{0}} R r_{n}\right)^{1-a}
$$

for $k \leq t \leq k+1$.
Note that

$$
\begin{aligned}
& f^{\prime}(k+1)-f^{\prime}(t) \\
&=\int_{\partial\left(B_{2^{k+1+t_{0}}}^{R r_{n}} \backslash B_{2^{t+t_{0}}} R_{r_{n}}\right.} \frac{\partial u_{n}}{\partial r}\left(u_{n}-u_{n}^{*}\right)+\int_{\partial\left(B_{\left.2^{t_{0}-t_{R r_{n}}} \backslash B_{2^{t_{0}-k-1} 1_{R r_{n}}}\right)} \frac{\partial u_{n}}{\partial r}\left(u_{n}-u_{n}^{*}\right)\right.} \quad \leq C\left(2^{t+t_{0}} R r_{n}\right)^{2(1-a)} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
(1-2 \epsilon) f(t) \leq \frac{1}{\log 2} f^{\prime}(t)+C\left(2^{t+t_{0}} R r_{n}\right)^{1-a} . \tag{4-4}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
\left(2^{-(1-2 \epsilon) t} f(t)\right)^{\prime} & =2^{-(1-2 \epsilon) t} f^{\prime}(t)-(1-2 \epsilon) 2^{-(1-2 \epsilon) t} f(t) \log 2 \\
& \geq-C 2^{(1-a-(1-2 \epsilon)) t}\left(2^{t_{0}} R r_{n}\right)^{1-a} .
\end{aligned}
$$

Integrating from 1 to L, we get

$$
\begin{aligned}
2^{-(1-2 \epsilon) L} f(L)-2^{-(1-2 \epsilon)} f(1) & \geq-C \int_{1}^{L} 2^{(1-a-(1-2 \epsilon)) t}\left(2^{t_{0}} R r_{n}\right)^{1-a} \\
& =-\left.C \frac{2^{(1-a-(1-2 \epsilon)) t}}{\log 2(1-a-(1-2 \epsilon))}\right|_{1} ^{L}\left(2^{t_{0}} R r_{n}\right)^{1-a} \\
& \geq-C\left(2^{t_{0}} R r_{n}\right)^{1-a}
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
f(1) \leq f(L) 2^{-(1-2 \epsilon)(L-1)}+C\left(2^{t_{0}} R r_{n}\right)^{1-a} \tag{4-5}
\end{equation*}
$$

Now let $t_{0}=i$ and $D_{i}=B_{2^{i+1} R r_{n}} \backslash B_{2^{i} R r_{n}}$. Then we have $f(1)=\int_{D_{i} \cup D_{i-1}}\left|\nabla u_{n}\right|^{2}$, and the inequality holds true for L satisfying

$$
Q(L) \subseteq B_{\delta} \backslash B_{R r_{n}}=B_{2^{m_{n}} R r_{n}} \backslash B_{R r_{n}}
$$

In other words, L should satisfy $i-L \geq 0$ and $i+L \leq M_{n}$.
(I) If $i \leq \frac{1}{2} m_{n}$, let $L=i$. Then

$$
f(1)=\int_{D_{i} \cup D_{i-1}}\left|\nabla u_{n}\right|^{2} \leq C E^{2}\left(u_{n}, B_{\delta} \backslash B_{R r_{n}}\right) 2^{-(1-2 \epsilon) i}+C\left(2^{i} R r_{n}\right)^{1-a} .
$$

(II) If $i>\frac{1}{2} m_{n}$, let $L=m_{n}-i$. Then

$$
f(1)=\int_{D_{i} \cup D_{i-1}}\left|\nabla u_{n}\right|^{2} \leq C E^{2}\left(u_{n}, B_{\delta} \backslash B_{R r_{n}}\right) 2^{-(1-2 \epsilon)\left(m_{n}-i\right)}+C\left(2^{i} R r_{n}\right)^{1-a}
$$

Hence we have

$$
\begin{aligned}
& \sum_{i=1}^{m_{n}} E\left(u_{n}, D_{i}\right) \leq C E\left(u_{n}, B_{\delta} \backslash B_{R r_{n}}\right)\left(\sum_{i \leq \frac{1}{2} m_{n}} 2^{-i(1-2 \epsilon) / 2}+\right.\left.\sum_{i>\frac{1}{2} m_{n}} 2^{-\left(m_{n}-i\right) 1-2 \epsilon /(2)}\right) \\
&+C \sum_{i=1}^{m_{n}}\left(2^{i} R r_{n}\right)^{(1-a) / 2} \\
& \leq C E\left(u_{n}, B_{\delta} \backslash B_{R r_{n}}\right)+C \delta^{(1-a) / 2}
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
\operatorname{Osc}_{B_{\delta} \backslash B_{R r_{n}}} u_{n} & \leq C \sum_{i=1}^{m_{n}}\left(E\left(u_{n}, D_{i}\right)+\left(2^{i} R r_{n}\right)^{1-a}\right) \\
& \leq C E\left(u_{n}, B_{\delta} \backslash B_{R r_{n}}\right)+C \delta^{(1-a) / 2}
\end{aligned}
$$

Clearly this implies (4-3), as needed.

Acknowledgements

I thank Professor Guofang Wang for pointing out many typing errors, and Professor Youde Wang for bringing [Li and Wang 2010] to my attention.

My interest in this kind of problem began at a class given by Professor Yuxiang Li at Tinghua University, and I had many useful discussions with him.

I am thankful to the referee for detailed comments, which have made this paper more readable.

References

[Ding and Tian 1995] W. Ding and G. Tian, "Energy identity for a class of approximate harmonic maps from surfaces", Comm. Anal. Geom. 3:3-4 (1995), 543-554. MR 97e:58055 Zbl 0855.58016
[Jost 1987] J. Jost, "Two-dimensional geometric variational problems", pp. 1094-1100 in Proceedings of the International Congress of Mathematicians, Vol. 1 (Berkeley, Calif., 1986), edited by A. M. Gleason, Amer. Math. Soc., Providence, RI, 1987. MR 89g:58045 Zbl 0850.58010
[Li and Wang 2010] Y. Li and Y. Wang, "Bubbling location for sequences of approximate f harmonic maps from surfaces", Internat. J. Math. 21:4 (2010), 475-495. MR 2011g:58028 Zbl 1190.35067
[Li and Zhu 2010] J. Li and X. Zhu, "Energy identity for the maps from a surface with tension field bounded in $L^{p \prime}$, preprint, 2010. arXiv 1205.2978
[Lin and Wang 1998] F. Lin and C. Wang, "Energy identity of harmonic map flows from surfaces at finite singular time", Calc. Var. Partial Differential Equations 6:4 (1998), 369-380. MR 99k:58047 Zbl 0908.58008
[Lin and Wang 2002] F. Lin and C. Wang, "Harmonic and quasi-harmonic spheres. II", Comm. Anal. Geom. 10:2 (2002), 341-375. MR 2003d:58029 Zbl 1042.58005
[Parker 1996] T. H. Parker, "Bubble tree convergence for harmonic maps", J. Differential Geom. 44:3 (1996), 595-633. MR 98k:58069 Zbl 0874.58012
[Qing 1995] J. Qing, "On singularities of the heat flow for harmonic maps from surfaces into spheres", Comm. Anal. Geom. 3:1-2 (1995), 297-315. MR 97c:58154 Zbl 0868.58021
[Qing and Tian 1997] J. Qing and G. Tian, "Bubbling of the heat flows for harmonic maps from surfaces", Comm. Pure Appl. Math. 50:4 (1997), 295-310. MR 98k:58070 Zbl 0879.58017
[Sacks and Uhlenbeck 1981] J. Sacks and K. Uhlenbeck, "The existence of minimal immersions of 2-spheres", Ann. of Math. (2) 113:1 (1981), 1-24. MR 82f:58035 Zbl 0462.58014
[Topping 2004a] P. Topping, "Repulsion and quantization in almost-harmonic maps, and asymptotics of the harmonic map flow", Ann. of Math. (2) 159:2 (2004), 465-534. MR 2005g:58029 Zbl 1065.58007
[Topping 2004b] P. Topping, "Winding behaviour of finite-time singularities of the harmonic map heat flow", Math. Z. 247:2 (2004), 279-302. MR 2004m:53120 Zbl 1067.53055
[Wang 1996] C. Wang, "Bubble phenomena of certain Palais-Smale sequences from surfaces to general targets", Houston J. Math. 22:3 (1996), 559-590. MR 98h:58053 Zbl 0879.58019

Received February 16, 2011. Revised December 2, 2011.

Yong Luo
Mathematisches Institut, Albert-Ludwigs-Universität
ECKERSTRASSE 1
79104 FREIBURG
GERMANY
yong.luo@math.uni-freiburg.de

PACIFIC JOURNAL OF MATHEMATICS

http://pacificmath.org
Founded in 1951 by
E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

EDITORS

V. S. Varadarajan (Managing Editor)

Department of Mathematics University of California
Los Angeles, CA 90095-1555
pacific@math.ucla.edu

Vyjayanthi Chari	Darren Long	Sorin Popa
Department of Mathematics	Department of Mathematics	Department of Mathematics
University of California	University of California	University of California
Riverside, CA 92521-0135	Santa Barbara, CA 93106-3080	Los Angeles, CA 90095-1555
chari@math.ucr.edu	long@ math.ucsb.edu	popa@ math.ucla.edu
Robert Finn	Jiang-Hua Lu	Jie Qing
Department of Mathematics Stanford University	Department of Mathematics	Department of Mathematics
Stanford, CA 94305-2125	The University of Hong Kong	University of California
finn@math.stanford.edu	Pokfulam Rd., Hong Kong	Santa Cruz, CA 95064
Kefeng Liu	jhlu@ maths.hku.hk	qing @cats.ucsc.edu
Department of Mathematics	Alexander Merkurjev	Jonathan Rogawski
University of California	Department of Mathematics	Department of Mathematics
Los Angeles, CA 90095-1555	University of California	University of California
liu@math.ucla.edu	Los Angeles, CA 90095-1555	Los Angeles, CA 90095-1555
	merkurev@ math.ucla.edu	jonr@ math.ucla.edu

PRODUCTION

pacific@math.berkeley.edu

Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA
UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or pacificmath.org for submission instructions.
The subscription price for 2012 is US $\$ 420 /$ year for the electronic version, and $\$ 485 /$ year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company, 11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

[^1]
PACIFIC JOURNAL OF MATHEMATICS

Volume 256 No. 2 April 2012

O-operators on associative algebras and associative Yang-Baxter 257 equationsChengming Bai, Li Guo and Xiang Ni
Botany of irreducible automorphisms of free groups 291
Thierry Coulbois and Arnaud Hilion
A note on inverse curvature flows in asymptotically Robertson-Walker 309 spacetimes
Claus Gerhardt
Total curvature of graphs after Milnor and Euler 317
Robert Gulliver and Sumio Yamada
Entire solutions of Donaldson's equation 359
Weiyong He
Energy identity and removable singularities of maps from a Riemann 365 surface with tension field unbounded in L^{2}
Yong Luo
Quotients by actions of the derived group of a maximal unipotent 381
subgroup
Dmitri I. Panyushev
Invariants of totally real Lefschetz fibrations 407
Nermin Salepci
Stable trace formulas and discrete series multiplicities 435
Steven Spallone
Small covers and the Halperin-Carlsson conjecture 489
LI Yu
Acknowledgement 509

[^0]: The author is supported by the DFG collaborative Research Center SFB/Transregio 71.
 MSC2010: 35B44.
 Keywords: harmonic maps, energy identity.

[^1]: PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
 at the University of California, Berkeley 94720-3840
 A NON-PROFIT CORPORATION
 Typeset in LATEX
 Copyright ©2012 by Pacific Journal of Mathematics

