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PRESENTATIONS FOR THE HIGHER-DIMENSIONAL
THOMPSON GROUPS nV

JOHANNA HENNIG AND FRANCESCO MATUCCI

M. G. Brin has introduced the higher-dimensional Thompson groups nV
that are generalizations to the Thompson group V of self-homeomorphisms
of the Cantor set and found a finite set of generators and relations in the
case n = 2. We show how to generalize his construction to obtain a finite
presentation for every positive integer n. As a corollary, we obtain another
proof that the groups nV are simple (first proved by Brin).

1. Introduction

The higher-dimensional groups nV were introduced by Brin in [2004; 2005] and
generalize Thompson’s group V . The group V is a group of self-homeomorphisms
of the Cantor set C that is simple and finitely presented — the standard introduction
to V is the paper by Cannon, Floyd and Parry [1996]. The groups nV generalize
the group V and act on powers of the Cantor set Cn . Brin shows in [2004] that
the groups V and 2V are not isomorphic and shows in [2005] that the group 2V is
finitely presented. Bleak and Lanoue [2010] have recently shown that two groups
mV and nV are isomorphic if and only if m = n.

In this paper we give a finite presentation for each of the higher-dimensional
Thompson groups nV . The argument extends to the ascending union ωV of the
groups nV and returns an infinite presentation of the same flavor. As a corollary,
we obtain another proof that the groups nV and ωV are simple. Our arguments
follow closely and generalize those of Brin in [2004; 2005] for the group 2V .

This work arose during a Research Experience for Undergraduates program at
Cornell University. The motivation for the project sprang from a commonly held
opinion that the bookkeeping required to generalize Brin’s presentations to the
groups nV would be overwhelming. One would expect from the similarity of the
groups’ constructions that all arguments for 2V would carry over to nV for all n.
Standing in the way of this are the cross relations. Thus our paper has two kinds
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of arguments: those that verify the parts of [Brin 2005] that carry over with no
change to nV and those involving the cross relations that have to be modified to
hold in nV (see Lemmas 6 and 20 and Remark 13 below).

Following a suggestion of Collin Bleak the authors have also explored an al-
ternative generating set (see Section 8). An interesting project would be to find a
set of relators for this alternative generating set in order to use a known procedure
that significantly reduces the number of relations, and which has been successfully
implemented in a number of papers by Guralnick, Kantor, Kassabov and Lubotzky;
see for example [Guralnick et al. 2011].

After a careful reading of Brin’s original paper [2005], it became clear what was
needed to generalize his proof, and the current paper borrows heavily from Brin’s.
Brin was already aware that many of his arguments would probably extend (and he
points out in several places in [2004; 2005] where it is evident that they do). We
show how to deal with generators in higher dimensions and what steps are needed
to obtain the same type of normalized words that are built for 2V in [Brin 2005].

We also mention that Brin asks in [2005] whether or not the group 2V has
type F∞ (that is, it has a classifying space that is finite in each dimension). This
has recently been answered by Kochloukova, Martinez-Perez and Nucinkis [2010],
who have shown that the groups 2V and 3V have type F∞, therefore obtaining a
new proof that these groups are finitely presented.

2. The main ingredient and structure of this paper

Many arguments of Brin [2004; 2005] generalize verbatim from 2V to nV . The
key observation that allows us to restate many results without proof (or with little
additional effort) is the following: Many statements of Brin do not depend on
dimension 2, except those that need to make use of the “cross relation” (relation
(18) in Section 4 below) to rewrite a cut in dimension d followed by a cut in
dimension d ′ as one in dimension d ′ followed by one in dimension d.

As a result, proofs that need to make use of this new relation require a slight
generalization (for example, the normalization of words in the monoid across fully
divided dimensions) while those that do not can be obtained directly using Brin’s
original proof. In any case, since statements need to be adapted to our context we
sketch certain proofs to make it clear that they generalize directly. For example,
we will show why Brin’s proof that 2V is simple does not use the new relation (18)
and therefore it lifts immediately to higher dimensions.

3. The monoid 5n

In [2004, Section 4.5], Brin defines the monoid 5 and 2̂V and observes that one
can extend the definition for all n. Elements of5n are given by numbered patterns
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Figure 1. The generator si,d .

Figure 2. The generator σi .

in X , where X is the union of the set {S0, S1, . . . } of unit n-cubes. Fix n ∈ N and
fix an ordering on the dimensions d for 1 ≤ d ≤ n. The monoid 5n is generated
by the elements si,d and σi , where si,d denotes the element that cuts the rectangle
Si in half across the d-th dimension (see Figure 1) and σi is the transposition that
switches the rectangle labeled i with that labeled i + 1, as defined for 2V (see
Figure 2).

After each cut, the numbering shifts as before. The following relations hold
in 5n .

s j,d ′si,d = si,ds j+1,d ′ for i < j, 1≤ d, d ′ ≤ n,(M1)

σ 2
i = 1 for i ≥ 0,(M2)

σiσ j = σ jσi for |i − j | ≥ 2,(M3)

σiσi+1σi = σi+1σiσi+1 for i ≥ 0,(M4)

σ j si,d = si,dσ j+1 for i < j,(M5a)

σ j si,d = s j+1,dσ jσ j+1 for i = j,(M5b)

σ j si,d = s j,dσ j+1σ j for i = j + 1,(M5c)

σ j si,d = si,dσ j for i > j + 1,(M5d)

si,dsi+1,d ′si,d ′ = si,d ′si+1,dsi,dσi+1 for i ≥ 0, d 6= d ′.(M6)

Relations (M5b) and (M5c) are actually equivalent, because σi is its own inverse.

Remark 1. The proofs of [Brin 2005, Section 2] that use relations (M1)–(M5d) do
not depend on the dimension being 2. For this reason, they generalize immediately
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to the case of the monoid 5n and we do not prove them again. This includes every
result up to and including [Brin 2005, Lemma 2.9].

On the other hand, Proposition 2.11 in [Brin 2005] uses the cross relation (M6)
and it requires us to choose how we write elements to get some underlying pattern.
Brin achieves this type of normalization by writing elements so that vertical cuts
appear first, whenever possible. We generalize his argument by describing how to
order nodes in forests (which represent cuts in some dimension).

The following definition is given inductively on the subtrees.

Definition 2. Given a forest F , we say that a subtree T of some tree of F is fully
divided across some dimension d if the root of T is labeled d or if both its left and
right subtrees are fully divided across dimension d . We say a forest F is normalized
if every subtree T is such that if T is fully divided across different the dimensions
d1 < d2 < · · · < du , then the root of T is labeled with d1, the lowest among all
possible dimensions over which T is fully divided.

Given that a word w is a word in the generators {si,d , σi }, we define the length
`(w) of w to be the number of times an element of {si,d} appears in w. It can easily
be seen that the length of a word is preserved by relations (M1)–(M6).

We restate some results adapted to our case.

Lemma 3 [Brin 2005, Lemma 2.7]. If the numbered, labeled forest F comes from
a word in {si,d | d, i ∈ N}, then the leaves of F are numbered so that the leaves in
Fi have numbers lower than those in F j whenever i < j and the leaves in each tree
of F are numbered in increasing order under the natural left-right ordering of the
leaves.

Lemma 4 [Brin 2005, Lemma 2.8]. If two words in the generators

{si,d , σi | i ∈ N, 1≤ d ≤ n}

lead to the same numbered, labeled forest, then they are related by (M1)–(M5d).

Lemma 5 [Brin 2005, Lemma 2.9]. If F is a numbered, labeled forest with the
numbering as in Lemma 3, and if a linear order is given on the interior vertices
(and thus of the carets) of F that respects the ancestor relation, then there is a
unique word w in {si,d | d, i ∈ N} leading to F such that the order on the interior
vertices of F derived from the order on the entries in w is identical to the given
linear order on the interior vertices.

The next lemma and corollary are used to prove results analogous to [Brin 2005,
Lemma 2.10 and Proposition 2.11].

Lemma 6. Let w be a word in the set {si,d , σi } and suppose that the underlying
pattern P has a fully divided hypercube Si across dimension d. Thenw∼w′= si,da
for some word a ∈ 〈si,d , σi 〉.
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Proof. We use induction on g :=`(w). By using relations (M5a)–(M5d) as in [Brin
2005, Lemma 2.3] we can assume that w= pq , where p ∈ 〈si,d〉 and q ∈ 〈σi 〉. This
does not alter the length of w. If g= 3, then p= p1 p2 p3. If p1= si,d , we are done;
otherwise we have two cases: either p2 = si+1,d and p3 = si,d or p2 = si,d and
p3= si+2,d . Up to using relation (M1), we can assume that p2= si+1,d and p3= si,d

which is what we want to apply relation (M6) to p to get w ∼w′ = si,dsi+1,ksi,kq .
Now assume the thesis true for all words of length less than g. We consider the

word p and look at the labeled unnumbered tree Fi corresponding to Si with root
vertex u and children u0 and u1. Let Tr be the subtree of Fi with root vertex ur

for r = 0, 1. We choose an ordering of the vertices of Fi that respects the ancestor
relation and such that u corresponds to 1, u0 corresponds to 2, the other interior
nodes of T0 correspond to the numbers from 3 to j = #(interior nodes of T0) and
u2 corresponds to j + 1.

By Lemma 5, the word p is equivalent to

p ∼ si,k(si,m p0)(s f,l p1),

where si,m p0 is the subword corresponding to the subtree T0 and s f,l p1 is the
subword corresponding to the subtree T1 and with p0, p1 ∈ 〈si,d〉. We observe
that

`(si,m p0) < `(p)= g and `(s f,l p1) < `(p)= g

and that the underlying squares Si for si,m p0 and Si+1 for s f,l p1 are fully divided
across dimension d . We can thus apply the induction hypothesis and rewrite

si,m p0 ∼ si,d p̃0q̃0 and s f,l p2 ∼ s f,d p̃1q̃1.

We restrict our attention to the subword si,d p̃0q̃0s f,d . Using the relations (M5a)–
(M5d), we can move q̃0 to the right of s f,d and obtain

si,d p̃0q̃0s f,d ∼ si,d p̃0sg,d q̃

for some permutation word q̃ . Since the word p̃0 acts on the rectangle Si and sg,d

acts on the rectangle Si+1, we can apply Lemma 4 and 5 and put a new order on
the nodes so that the node corresponding to si,d is 1 and sg,d is 2. Thus we have

si,d p̃0sg,d q̃ ∼ si,dsi+2,d p̃q̃

for some p̃ word in the set {si,d}. Thus we have w∼w′′ = si,ksi,dsi+2,d p̃ q̃ and so,
by applying the cross relation (M6) to the first three letters of w′′, we get

w ∼ w′′ ∼ w′ = si,dsi,ksi+2,k p̃q̃ = si,da. �
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We have now proved [Brin 2005, Lemma 2.10], since in order for a tree in a
forest to be nonnormalized, one of the rectangles in the pattern corresponding to
that tree must be fully divided across two different dimensions.

Lemma 7 [Brin 2005]. If two different forests correspond to the same pattern in
X , then at least one of the two forests is not normalized.

Remark 8. Lemma 6 is used in our extension of [Brin 2005, Proposition 2.11]
so that we can push dimension d under the root. This is explained better in the
following corollary.

Corollary 9. Let w be a word in the generators {si,d , σi } such that its underlying
square Si is fully divided across dimensions d and `. Then

w ∼ w′ = si,dsi,`si+2,`a ∼ w′′ = si,`si,dsi+2,db

for some suitable words a and b in the generators {si,d , σi }.

Proof. This is achieved by a repeated application of Lemma 6. We apply it tow and
obtain w ∼ si,da1. By construction, the underlying squares Si and Si+1 of a1 are
fully divided across dimension `, so we can apply the previous lemma to a1 to get
a1∼ si,`a2 and finally we apply it again to a2∼ si+2,`a. Hencew∼w′= si,`si+2,`a.
To get w′′ we apply the cross relation (M6) to the subword si,`si,dsi+2,d . �

Proposition 10. A word w is related by (M1)–(M6) to a word corresponding to a
normalized, labeled forest.

Proof. We proceed by induction on the length of w. Let g be the length of w
and assume the result holds for all words of length less than g. As before, write
w = pq , where p = si0si1 · · · sin−1 (here, the i j refers to the cube that is being
cut; we omit the second index indicating dimension as it is unimportant for now).
Write w = si0w

′; since the order of the interior vertices of the forest for p given
by the order of the letters in p must respect the ancestor relation, we know that
the interior vertex corresponding to si0 must be a root of some tree T . As w′ is a
word of length less than g, we may apply our inductive hypothesis and assume that
w′ can be rewritten via relations (M1)–(M6) to obtain a corresponding normalized
forest. The pattern P for w is obtained from the pattern P ′ for w′ by applying the
pattern of P ′ in unit square Si to the rectangle numbered i in the pattern for si0 .
The forest F for w is obtained from the forest F ′ for w′ by attaching the i-th tree
of F ′ to the i-th leaf of the forest for si0 . Since F ′ is normalized, it is seen that
F has all interior vertices normalized except possibly for the root vertex of one
tree, T .

Let u be the root vertex of T with label k and with children u1 and u2. Let T1 and
T2 be the subtrees of T whose roots are u1 and u2, respectively. By hypothesis,
T1 and T2 are already normalized. If T is not normalized already, then T must
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be fully divided across the dimension k that u is labeled with, and some other
dimension less than k. Let d be the minimal dimension across which T is fully
divided. Since T1 and T2 are also fully divided across d , by Lemma 6, we may
apply relations (M1)–(M6) to the subwords of w corresponding to T1 and T2 until
u1 and u2 are each labeled d. Now by [Brin 2005, Lemma 2.9], we may assume
w = si0,ksi0,dsi0+2,dw

′′, where w′′ is the remainder of w. We apply relation (M6)
to obtain

w = si0,dsi0,ksi0+2,kσi0w
′′.

Now, we have normalized the vertex u, and we may now use the inductive hypoth-
esis to renormalize the trees T1 and T2. The result is a normalized forest. �

The proof of the next result follows the argument of [Brin 2005, Theorem 1],
using [Lemma 2.10] and Proposition 10 (to extend [Proposition 2.11]).

Theorem 11. The monoid 5n is presented by using the generators {si,d , σi } and
relations (M1)–(M6).

4. Relations in nV

4.1. Generators for nV. The following generators are defined as in [Brin 2004]
and analogous arguments show why they are a generating set for nV .

X i,d = (si+1
0,1 s1,d , si+2

0,1 ) for i ≥ 0, 1≤ d ≤ n,

Ci,d = (si
0,1s0,d , si+1

0,1 ) for i ≥ 0, 2≤ d ≤ n, (baker’s maps),

πi = (si+2
0,1 σ1, si+2

0,1 ) for i ≥ 0 (σi defined as above),

π i = (si+1
0,1 σ0, si+1

0,1 ) for i ≥ 0

4.2. Relations involving cuts and permutations. In the following relations (1)–
(7), the reader can assume that 1≤ d, d ′ ≤ n unless otherwise stated.

Xq,d Xm,d ′ = Xm,d ′Xq+1,d for m < q,(1)

πq Xm,d = Xm,dπq+1 for m < q,(2)

πq Xq,d = Xq+1,dπqπq+1 for q ≥ 0,(3)

πq Xm,d = Xm,dπq for m > q + 1,(4)

πq Xm,d = Xm.dπq+1 for m < q,(5)

πm Xm,1 = πmπm+1 for m ≥ 0,(6)

Xm,d Xm+1,d ′Xm,d ′ = Xm,d ′Xm+1,d Xm,dπm+1 for m ≥ 0, d 6= d ′.(7)
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4.3. Relations involving permutations only. We have

πqπm = πmπq for |m− q|> 2,(8)

πmπm+1πm = πm+1πmπm+1 for m ≥ 0,(9)

πqπm = πmπq for q ≥ m+ 2,(10)

πmπm+1πm = πm+1πmπm+1 for m ≥ 0,(11)

π2
m = 1 for m ≥ 0,(12)

π2
m = 1 for m ≥ 0.(13)

4.4. Relations involving baker’s maps. In the relations (14)–(18) the reader can
assume that 2≤ d ≤ n and 1≤ d ′ ≤ n unless otherwise stated.

πm Xm,d = Cm+1,dπmπm+1 for m ≥ 0,(14)

Cq,d Xm,d ′ = Xm,d ′Cq+1,d for m < q,(15)

Cm,d Xm,1 = Xm,dCm+2,dπm+1 for m ≥ 0,(16)

πqCm,d = Cm,dπq for m > q+1,(17)

Cm,d Xm,d ′Cm+2,d ′ = Cm,d ′Xm,dCm+2,dπm+1 for m ≥ 0, 1< d ′ < d ≤ n.(18)

Relations (1)–(17) are generalizations of those given in [Brin 2004] and their
proofs are completely analogous. The only new family of relations is (18), which
we prove using relation (M6) from the monoid:

Proof. We have

Cm,d Xm,d ′Cm+2,d ′ = (sm
0,1s0,d , sm+1

0,1 )(sm+1
0,1 s1,d ′, sm+2

0,1 )(sm+2
0,1 s0,d ′, sm+3

0,1 )

= (sm
0,1s0,ds1,d ′s0,d ′, sm+3

0,1 )

= (sm
01s0,d ′s1,ds0,dσ1, sm+3

0,1 )

= (sm
0,1s0,d ′, sm+1

0,1 )(sm+1
0,1 s1,d , sm+2

0,1 )(sm+2
0,1 s0,d , sm+3

0,1 )(sm+3
0,1 σ1, sm+3

0,1 )

= Cm,d ′Xm,dCm+2,dπm+1. �

Lemma 12 (subscript raising formulas). We have

Cr,d ∼ Cr+1,d Xr,dπr+1 X−1
r,1 and πr ∼ πrπr+1 X−1

r,1 ∼ Xr,1πr+1πr .

The first formula of Lemma 12 follows from relations (15) and (16), while the
second is a generalization of the one found in [Brin 2005].
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4.5. Secondary relations for nV. These are as follows.

X−1
q,d Xr,d ∼

{
Xd X−1

d if r 6= q,

1 if r = q for 1≤ d ≤ n,

X−1
q,d Xr,d ′ ∼

{
Xd ′X−1

d if r 6= q,

w(Xd ′)πw(X−1
d ) if r = q for 1≤ d, d ′ ≤ n, d 6= d ′,

C−1
q,d Xr,d ′ ∼

{
Xd ′C−1

d if r < q,

w(X1, π, X−1
d )Xd ′C−1

d if r ≥ q for 2≤ d ≤ n, 1≤ d ′ ≤ n,

X−1
r,d ′Cq,d ∼

{
Cd X−1

d ′ if r < q,

Cd X−1
d ′ w(Xd , π, X−1

1 ) if r ≥ q for 2≤ d ≤ n, 1≤ d ′ ≤ n,

πq Xr,d ∼ Xdw(π) for 1≤ d ≤ n,

πq Xr,1 ∼


X1π if r < q,

ππ if r = q,

w(X1)πw(π) if r > q,

πq Xr,d ∼


Xdπ if r < q,

Cdππ if r = q,

w(X1)Xdπw(π) if r > q for 2≤ d ≤ n,

πqCr,d ∼

{
Cdπ if r > q + 1,

Cdw(X−1
1 , π, Xd) if r ≤ q + 1 for 2≤ d ≤ n,

πqCr,d ∼


Xdππ if r = q + 1,

w(X1)Xdπw(π) if r > q + 1,

w(Xd)Cdππw(π, X−1
1 ) if r < q + 1 for 2≤ d ≤ n,

C−1
q,dCr,d ∼


w(X−1

1 , π, Xd) if q < r,

1 if q = r,

w(X1, π, X−1
d ) if q > r for 2≤ d ≤ n,

C−1
q,dCr,d ′ ∼


Xd ′Cd ′πC−1

d X−1
d w(Xd ′, π, X−1

1 ) if q > r,

Xd ′Cd ′πC−1
d X−1

d if q = r,

w(X1, π, X−1
d ′ )XdCdπC−1

d ′ X−1
d ′ if q < r for 1≤ d ′ < d ≤ n.

Proof. We only prove the last set of secondary relations as it is the only one that
does not immediately descend from the computations in [Brin 2005]. If q > r we
can apply the subscript raising formulas repeatedly for j times until r+ j = q and
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rewrite the product as

C−1
q,dCr,d ′ ∼ C−1

q,dCr+1,d ′Xr,d ′πr+1 X−1
r,1 ∼ · · · ∼ C−1

q,d ′Cr+ j,d ′w(Xd ′, π, X−1
1 ).

We argue similarly if q < r . We now have to study the product C−1
q,dCq,d ′ . Without

loss of generality we assume d ′ < d and apply relation (18):

C−1
q,dCq,d ′ = Xq,d ′Cq+2,d ′πq+1C−1

q+2,d X−1
q,d ,

which is what was claimed. Similar relations can be derived if d ′ > d. �

Remark 13. The last two secondary relations allow us to rewrite a word of type
w(X,C, π,C−1, X−1) in L M R form without increasing the number of times C
appears, and thereby to generalize the proof of [Brin 2005, Lemma 4.6]; see
Lemma 15 below. This observation also lets us generalize [Brin 2005, Lemma 4.7];
see Lemma 16 below. In fact, all our secondary relations are immediate general-
izations of those in [Brin 2005]; the last one does not introduce appearances of π
and therefore all the letters in the last secondary relations can be migrated to their
needed position by means of the previous secondary relations, without altering the
original argument of [Brin 2005, Lemma 4.7]. Therefore even in the case of nV
one is able to do the bookkeeping without risk of creating extra letters that cannot
be passed safely without recreating them, and hence we obtain an argument that
terminates.

5. Presentations for nV

We now show how the relations above enable us to put our group elements into a
normal form, starting with words in the generators of nV corresponding to elements
from n̂V .

Lemma 14. Letw be a word in {X i,d , πi , X−1
i,d |1≤d≤n, i ∈N}. Thenw∼ L M R,

where L and R−1 are words in {X i,d} and M is a word in {πi }.

Proof. There is a homomorphism from n̂V to nV given by si,d 7→ X i,d and σi 7→πi .
This follows from the correspondence between the relations for n̂V and nV as given
below:

(M1)→ (1),

(M2)→ (12),

(M3)→ (8),

(M4)→ (9),

(M5a)→ (2),

(M5b), (M5c)→ (3),

(M5d)→ (4),

(M6)→ (7).

Hence, any word w as given above is the image under this homomorphism of a
word w′ in n̂V . Since n̂V is the group of right fractions of the monoid 5n , we can
represent w′ as pq−1, where p and q are words in {si,d , σi | 1 ≤ d ≤ n, i ∈ N}.
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Now, as noted before in the proof of Lemma 6, we can assume p and q are of
the form ab, where a ∈ 〈si,d〉 and b ∈ 〈σi 〉. Hence, we have written w′ as lmr for
l, r−1

∈ 〈si,d〉 and m ∈ 〈σi 〉 since elements of 〈σi 〉 are their own inverse. Applying
the homomorphism to w′ puts w in the desired form. �

The next two results follow the original proofs of [Brin 2005, Lemmas 4.6
and 4.7] via Remark 13.

Lemma 15. Let w be of the form w(X,C, π, X−1,C−1). Then w ∼ L M R, where
L and R−1 are words of the form w(X,C) and M is of the form w(π). Further the
number of appearances of C in L will be no larger than the number of appearances
of C in w and the number of appearances of C−1 in R will be no larger than the
number of appearances of C−1 in w.

Lemma 16. Let w be a word in the generating set

{X i,d ,Ci,d ′, πi , π i , X−1
i,d ,C−1

i,d ′ | 1≤ d ≤ n, 2≤ d ′ ≤ n, i ∈ N}.

Then w∼ L M R, where L and R−1 are words of the form w(X,C) and M is of the
form w(π, π).

Lemma 17. Let w be a word in the generating set

{X i,d ,Ci,d ′, πi , π i , X−1
i,d ,C−1

i,d ′ | 1≤ d ≤ n, 2≤ d ′ ≤ n, i ∈ N}.

Then w ∼ L M R, where

• L = Ci0,d0Ci1,d1 . . .Cig,dg q with i0 < i1 < · · ·< ig for g ≥−1 and q is a word
in the set {X i,d | 1≤ d ≤ n, i ∈ N}

• R−1
= C j0,d ′0C j1,d ′1 . . .C jm ,d ′m q ′ with j0 < j1 < · · ·< jm for m ≥−1 and q ′ is

a word in the set {X i,d | 1≤ d ≤ n, i ∈ N}

• M is a word in the set {πi , π i | i ∈ N}

Proof. By using the secondary relations, we can assume that w ∼ L M R, where
L and R−1 are words in {X i,d ,Ci,d} and M is a word in {πi , π i } by analogous
arguments used in [Brin 2005, Lemmas 4.6 and 4.7]. We then improve L us-
ing the subscript raising formula for the Ci,d and relation (15) as in the proof of
[ibid., Lemma 4.8]. To adapt the quoted lemmas from [Brin 2005] we need to use
Remark 13 to make sure that appearances of C and π do not increase. �

We define the notions of primary and secondary tree and of trunk exactly the
same way that Brin does [2005]. The primary tree is the tree corresponding to
the word t in Lemma 18 and any extension to the left is a secondary tree for L .
The following extends [Brin 2005, Lemma 4.15] adapted to our case. The proof is
completely analogous.
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Lemma 18. Let

L = Ci0,d0Ci1,d1 · · ·Cig,dg X in+1,dn+1 · · · X il−1,dl−1,

where i0 < i1 < · · · < ig, where 2 ≤ dk ≤ n for k ∈ {0, . . . , g} and 1 ≤ dk ≤ n for
k ∈ {g+ 1, . . . , l − 1}. Let m equal the maximum of

{i j + g+ 2− j | g+ 1≤ j ≤ l − 1} ∪ {ig + 1}.

Then L can be represented as L = (t, sk
0,1), where t is a word in {si,d} and k is the

length of t , so that k =m+ l−g, and so that the tree T for t is the primary tree for
L and is described as follows. The tree T consists of a trunk 3 with a finite forest
F attached. The trunk 3 has m carets and m+ 1 leaves numbered 0 through m in
the right-left order. If the carets in 3 are numbered from 0 starting at the top, then
the label of the i-th caret is dk if i = ik for k in {0, 1, . . . g} and 1 otherwise.

The following two lemmas are used in proving Remark 13, which allows us to
assume the trees corresponding to our group elements are in normal form.

Lemma 19. Let

L = Ci0,d0Ci1,d1 · · ·Cig,dg u and L ′ = Ck0,d ′0Ck1,d ′1 · · ·Ckg,d ′g u′,

where i0 < i1 < · · · < ig, where k0 < k1 < · · · < kg, where u is a word in the set
{X i,d |1≤d≤n, i ∈N}, and where u′ is a word in the set {X i,d , πi |1≤d≤n, i ∈N}.
Assume that L is expressible as (t, s p

0,1) as an element of n̂V with t a word in {si,d}

and p the length of t . Let m be the number of carets of the trunk of the tree T
corresponding to t and assume that m ≥ kg + 1.

If L∼ L ′, then there is a word u′′ in {X i,d}, and there is a word z in {πi | i≤ p−2}
such that setting L1 = Ck0,d ′0Ck1,d ′1 · · ·Ckg,d ′g u′′ and L2 = L1z gives that L ∼ L2

and L1 is expressible as (t ′, s p
0,1) with t ′ a word in {si,d} of length p, so that the

tree T ′ for t ′ is normalized except possibly at interior vertices in the trunk of the
tree, and so that the trunk of T ′ has m carets.

Proof. The homomorphism n̂V → nV given by si,d 7→ X i,d and σi 7→ πi allows
us to write u′ ∼ u′′z′ with u′′ a word in {X i,d} and z′ a word in {πi | i ∈ N}

such that the forest F for u′′ is normalized. The rest of the proof goes through
as before, but we describe the slight modifications needed for our case. We write
L = (tsk

0,1, s p+k
0,1 ) = (t̂ s

r
1,0x, sq+r

1,0 ) = L2 as elements in n̂V , where x is a word in
{σi } and p+ k = q+ r . As before, we can conclude that the unnumbered patterns
for tsk

0,1 and t̂ sr
1,0 are identical.

In the tree for tsk
0,1, let the left edge vertices be a0, a1, . . . , ab reading from the

top, so that a0 is the root of the tree. Since we assume the trunk of the tree has m
carets, we know b=m+k and for m ≤ i < b, the label for ai is 1. Similarly, in the
tree for t̂ sr

1,0, let the left edge vertices be a′0, a′1, . . . , a′b reading from the top. Note
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that remark (∗) in the proof of [Brin 2005, Theorem 4.21] (which we are about to
restate) remains true in our general case, by giving a new definition: For each left
edge vertex ai , define the n-tuple (x i

1, . . . , x i
n), where x i

k equals the number of left
edge vertices above ai with label k. (Note we are using i to denote an index, not
an exponent). It follows that x i

1 + x i
2 + · · · + x i

n is the total number of left edge
vertices above ai . Then we can say,

(∗)
The rectangle corresponding to a left edge vertex ai

depends only on the n-tuple (x i
1, . . . , x i

n).

In other words, for the rectangle labeled 0 in any pattern, the order of the differ-
ent cuts does not matter. This is because the rectangle labeled 0 must contain the
origin and its size in each dimension k will be 2−x i

k . Hence, the analogous statement
for our case follows, and we conclude that the n-rectangle R corresponding to am

is identical to the n-rectangle R′ corresponding to a′m Since R is divided k times
across dimension 1, so is R′, and hence the tree below a′m must consist of an
extension to the left by k carets all labeled 1, and we can conclude that r ≥ k. The
rest of the proof follows exactly as before. �

Here, we define a notion of complexity to measure progress in the following
lemma and proposition towards normalizing trees. If T is a labeled tree, we let
a0, a1, . . . , am be the interior, left edge vertices of T reading from top to bottom
so that a0 is the root. Let b0b1 . . . bm be a word in {1, 2, . . . , n} where bi = k if ai is
labeled k for 0≤ i ≤m. We say b0b1 . . . bm is the complexity of T . We impose the
length-lex ordering on such words, that is, if w1 and w2 are two such words, then
we say w1<w2 if w1 is shorter than w2 or if w1= b1

0 . . . b
1
m and w2= b2

0 . . . b
2
m are

two such words of the same length, then w1 <w2 if when we take j ∈ {0, . . . ,m}
minimal where b1

j 6= b2
j , we have b1

j < b2
j .

Lemma 20. Let L = Ci0,d0Ci1,d1 · · ·Cig,dg u, where i0 < i1 < · · · < ig and u is a
word in the set {X i,d}. Assume that the primary tree T for L is normalized except
at one or more vertices in the trunk of T . Let m be the number of carets in the trunk
of T . Then L ∼ L ′ = Ck0,c0Ck1,c1 · · ·Ckg,cg u′, where k0 < k1 < · · · < kg and u′ is
a word in the set {X i,d , πs}, so that m ≥ kg + 1, and so that the complexity of the
primary tree T ′ of L ′ is strictly less than the complexity of T .

Proof. We want to use the relations to push a suitable instance of an Xu,v in the word
L as far as possible to the left to be able to apply a cross relation. This operation
normalizes a suitable vertex and decreases the complexity of the primary tree T .

Let 3 be the trunk of T . The interior vertices of 3 are the interior, left edge
vertices of T and let these be a0, a1, . . . , am−1. Let r be the highest value with
0 ≤ r < m for which ar is not normalized. This is the lowest nonnormalized
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interior vertex of 3, and since ar is not normalized it is labeled ` 6= 1 and must
correspond to some Ci j ,`. From Lemma 18, we have i j = r .

Since it is not normalized, ar must correspond to some hypercube Si j that is
fully divided across dimension ` and some other dimension d , with 1≤ d < `.

By rewriting L as (t, sk
0,1) (which we can do by Lemma 18) and applying

Corollary 9 to t , we can assume that the children of ar , v1 and v2, are both labeled d.
We divide our work in two cases, d=1 and d>1. We observe that the case d=1 is
entirely analogous to the proof of [Brin 2005, Theorem 4.22] while the case d > 1
is slightly different.

Case 1: d = 1. In this case, the left child v1, which is in the trunk 3, is labeled 1.
In the case that j < n we observe that i j+1 > r + 1 = i j + 1, since the interior
vertex of the trunk corresponding to Ci j+1,d j+1 is not labeled 1 (otherwise, ar = ai j

would not be the lowest nonnormalized interior vertex). Since the right child v2

is an interior vertex not on the trunk, there must be a letter Xq,1 corresponding to
it. By Lemma 5 we can assume that Xq,1 occurs as the first letter of u, that is,
u = Xq,1u′′. Hence

L = Ci0 · · ·Ci j−1Ci j ,`Ci j+1 · · ·Cig Xq,1u′′,

where we have omitted all the dimension subscripts of the baker’s maps Ci,d (ex-
cept for one map) since they are not important for the argument. The subword
Ci0 · · ·Ci j ,` · · ·Cig Xq,1 is a trunk with a single caret labeled 1 attached at the caret
i j of the trunk on its right child. By a careful observation of the right-left ordering
it is evident that q = i j . By using relation (15) repeatedly on L we can move
Xq,1 = X i j ,1 to the left and rewrite the word L as

Ci0 · · ·Ci j−1Ci j ,`X i j ,1Ci j+1+1 · · ·Cig+1u′′,

since i0 < i1 < · · · < ig and i j+1 > i j + 1. Combining relations (15) and (16) on
the product Ci j ,`X i j ,1, we rewrite L as

Ci0 · · ·Ci j−1Ci j+1,`X i j ,`πi j+1Ci j+1+1 · · ·Cig+1u′′.

Now we apply (17) to commute πi j+1 back to the right without affecting the indices
of the baker’s maps. This is possible since i j+1 > i j + 1 and therefore i j+1+ 1>
i j + 2. Now we apply (15) repeatedly to the word

Ci0 · · ·Ci j−1Ci j+1,`X i j ,`Ci j+1+1 · · ·Cig+1πi j+1u′′

to bring X i j ,` back to the right, decreasing the indices of the baker’s maps by 1

Ci0 · · ·Ci j−1Ci j+1,`Ci j+1 · · ·Cig X i j ,`πi j+1u′′.
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By setting u′ = X i j ,`πi j+1u′′ in the previous equation and relabeling the indices
with the ki , we obtain the word L ′ = Ck0,c0Ck1,c1 · · ·Ckg,cg u′ whose primary tree
T ′ is the same as T up until the vertex ar , which is now labeled d = 1 instead of `.
Thus, L ∼ L ′ = Ck0,c0Ck1,c1 · · ·Ckg,cg u′ and the complexity of the primary tree T ′

of L ′ is strictly less than the complexity of T .
The only thing we still need to prove in this case is that m ≥ kg + 1. However,

it has been observed above that i j = r <m−1 so i j +2≤m. This gives the result
in the case that j = n. If j < n, then kg = ig and m ≥ ig + 1 by Lemma 18.

Case 2: 1< d <`. We observe that ar corresponds to Ci j ,` and that v1 corresponds
to Cik ,d . By Lemma 18, we have r + 1 = ik , which implies ik = i j + 1 = i j+1. In
fact, if i j + 1 < i j+1, there would be a vertex labeled 1 on the trunk between the
vertices i j and i j+1 (and this is impossible since d > 1). Let X i j ,d correspond to
the right child v2. Arguing as in the case d = 1 we have

L = Ci0 · · ·Ci j−1Ci j ,`Ci j+1,dCi j+2 · · ·Cig Xq,du′′.

We apply relation (15) as before to move Xq,d = X i j ,d to the left while increasing
the subscript of each baker’s map by 1:

Ci0 · · ·Ci j−1Ci j ,`X i j ,dCi j+2,dCi j+2+1 · · ·Cig+1u′′.

By using the cross relation (18) on the underlined portion, we read it as

Ci0 · · ·Ci j−1Ci j ,d X i j ,`Ci j+2,`πi j+1Ci j+2+1 · · ·Cig+1u′′.

Since i j+2 > i j+1, then i j+2+ 1 > i j+1+ 1; hence πi j+1 and the baker’s maps to
its right commute, so the word becomes

Ci0 · · ·Ci j ,d X i j ,`Ci j+2,`Ci j+2+1 · · ·Cig+1πi j+1u′′.

We apply (15) repeatedly and move X i j ,` back to the right to obtain

L ∼ Ci0 · · ·Ci j ,dCi j+1,`Ci j+2 · · ·Cig X i j ,`πi j+1u′′,

where the product Ci j ,dCi j+2,` has been underlined to stress that the new trunk
has the vertices labeled d and `, which are now switched. Thus the complexity of
the tree has been lowered. In this second case, the new sequence k0 < · · · < kg

is exactly equal to the initial one i0 < · · · < ig. By the definition of m (given in
Lemma 18) applied on the initial word L , we have m≥ ig+1 and so, since kg = ig,
we are done. �

Remark 21. As observed in the proof above, the case d = 1 is equivalent to [Brin
2005, Theorem 4.22], though the proof therein leads to a condition that is equiva-
lent to lowering the complexity. When the index in some Ci j ,d goes up by 1, this
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corresponds to switching the vertices with labels d and 1 in the primary tree and
thus lowering the complexity by making more vertices normalized.

Proposition 22. Let w be a word in the generating set

{X i,d ,Ci,d ′, πi , π i , X−1
i,d ,C−1

i,d ′ | 1≤ d ≤ n, 2≤ d ′ ≤ n, i ∈ N}.

Then w ∼ L M R as in Lemma 17 and when expressed as elements of n̂V we have

L = ts−p
0,1 , R−1

= ys−p
0,1 , M = s p

0,1us−p
0,1 ,

where t , y are words in {si,d | 1≤ d ≤ n, i ∈N}, u is a word in {σ j | 0≤ j ≤ p−1},
and the lengths of t and y are both p. Further, we may assume the trees for t and y
are normalized, and if u can be reduced to the trivial word using relations (2)–(4),
then M can be reduced to the trivial word using relations (13)–(17).

Proof. The proof of the first conclusion is exactly the same as that of [Brin 2010,
Lemma 4.19]. In order to assume the trees for t and y are normalized, we alternate
applying Lemmas 19 and 20. We have L expressed as (t, s p

0,1), where p is the
length of t and the number of carets in the trunk of the tree T for t is m. Setting
L = L ′ certainly gives that L ∼ L ′ and m ≥ kg + 1 by Lemma 18, so we have
satisfied the hypotheses of Lemma 19. Therefore, L ∼ L1z where L1 expressed as
(t ′, s p

0,1), where the trunk of the tree T ′ for t ′ has m carets. Since we set L = L ′,
we see that the trunks of T and T ′ are identical and the only way in which the two
trees differ is that T ′ is normalized off the trunk. Since z is a word in {πi }, z can
be absorbed into M without disrupting the assumptions on M , namely, M can still
be written in the form M = s p

0,1us−p
0,1 as above. We now replace L with L1 and

proceed to use Lemma 20.
Since the tree for L is now normalized off the trunk, we satisfy the hypotheses

of Lemma 20 and write L ∼ L ′, where the tree for L ′ has complexity lower than
the tree for L and m ≥ kg + 1. Hence, we can now apply Lemma 19 again and
obtain L ∼ L1z and let z be absorbed into M . We apply this process over and
over, decreasing the complexity of the tree associated to L each time. Since there
are only finitely many linearly ordered complexities, eventually this process will
terminate, at which point the tree for L will be normalized. We can apply the same
procedure to the inverse of L M R to normalize the tree for R. The last statement
regarding M follows immediately from [Brin 2005, Lemma 4.18]. �

Theorem 23. Let w be a word in the generating set

{X i,d ,Ci,d ′, πi , π i , X−1
i,d ,C−1

i,d ′ | 1≤ d ≤ n, 2≤ d ′ ≤ n, i ∈ N}

that represents the trivial element of nV . Then w ∼ 1 using the relations in
(1)–(18). Hence, we have a presentation for nV .
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Proof. Using Proposition 22, we can assume

w ∼ L M R = (ts−p
0,1 )(s

p
0,1us−p

0,1 )(s
p
0,1 y−1),= tuy−1

where t and y are words in {si,d |1≤d≤n, i ∈N}, u is a word in {σ j |0≤ j ≤ p−1},
and the trees associated to t and y are normalized. By assumption, tuy−1

= (tu, y)
is the trivial element of n̂V and so tu and y represent the same numbered patterns
in5n . Furthermore, t and y must give the same unnumbered pattern, while u enacts
a permutation on the numbering. Since the forests for t and y are normalized and
give the same pattern, the forests are identical with the same labeling by Lemma 7.
The numbering on the leaves for both forests follows the left-right ordering; hence
t and y give the same numbered patterns, which implies that u enacts the trivial
permutation and M ∼ 1 by Proposition 22.

We now wish to show that L ∼ R−1. By Lemma 17, we have

L = Ci0,d0Ci1,d1 · · ·Cig,dg q and R−1
= C j0,d ′0C j1,d ′1 · · ·C jm ,d ′m q ′.

Since we know that the trunks of the trees corresponding to L and R−1 are
identical with the same labeling, the sequences (i0, i1, . . . , ig) and ( j0, j1, . . . , jm)
are identical and dk = d ′k for each k ∈ {0, 1, . . . , n = m}. Hence, the subwords
Ci0,d0Ci1,d1 · · ·Cig,dg and C j0,d ′0C j1,d ′1 · · ·C jm ,d ′m are the same and it remains to show
that q ∼ q ′. This follows from Lemma 4 and the homomorphism from n̂V to nV
as before. �

6. Finite presentations

6.1. Finite presentation for n̂V . We now give a finite presentation for n̂V , using
arguments analogous to those found in [Brin 2005] to show that the full set of
relations is the result of only finitely many of them.

Theorem 24. The group n̂V is presented by the 2n + 2 generators {si,d , σi | i ∈
{0, 1}, 1≤ d ≤ n} and the 5n2

+ 7n+ 6 relations given below:

s−1
1,1s1+k,d ′s1,1 = s2+k,d ′ for k = 1, 2,(M1)

s−1
i,d si+k,d ′si,d = si+k+1,d ′ for i = 0, 1, k = 1, 2, 2≤ d ≤ n,

σ 2
i = 1 for i = 0, 1,(M2)

σiσi+k = σi+kσi for i = 0, 1, k = 2, 3,(M3)

σiσi+1σi = σi+1σiσi+1 for i = 0, 1,(M4)

σk+1s1,1 = s1,1σk+2 for k = 1, 2,(M5a)

σi+ksi,d = si,dσi+k+1 for i = 0, 1, k = 1, 2, 2≤ d ≤ n,

σi si,d = si+1,dσiσi+1 for i = 0, 1,(M5b)/(M5c)
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σi si+k,d = si+k,dσi for i = 0, 1, k = 2, 3,(M5d)

si,dsi+1,d ′si,d ′ = si,d ′si+1,dsi,dσi+1 for i = 0, 1, d 6= d ′.(M6)

Proof. First, recall our generating set is {si,d , σi | i ∈ N, 1 ≤ d ≤ n}. When i < j ,
relations (M1) and (M5a) give s−1

i,1 x j si,1 = x j+1, where x j = s j,d (for some d)
or σ j . Hence, we can use

si,d = s1−i
0,1 s1,dsi−1

0,1 and σi = s1−i
0,1 σ1si−1

0,1

as definitions for i ≥ 2. Therefore, n̂V is generated by

{si,d , σi | i ∈ {0, 1}, 1≤ d ≤ n},

which gives a generating set of size 2n+ 2 for each n.
We treat relations (M1)–(M6) as they are treated in [Brin 2005]. Relations in-

volving only one parameter, such as (M2), (M4), and (M6), are obtained for i ≥ 2
by setting i = 1 and conjugating by powers of s0,1; therefore the only necessary
relations to include are those having i = 0 and i = 1. As before, (M2) and (M4)
follow from σ 2

0 = 1, σ 2
1 = 1, σ0σ1σ0 = σ1σ0σ1, and σ1σ2σ1 = σ2σ1σ2, or 4 rela-

tions for each n. Relation (M6) follows from 2 relations for each pair of distinct
dimensions, giving 2

(n
2

)
= n(n− 1) relations for each n.

Relation (M3) is treated the same way as in [Brin 2005] for each n. Hence,
for all i and j , (M3) follows from the 4 relations σ0σ2 = σ2σ0, σ0σ3 = σ3σ0,
σ1σ3 = σ3σ1, σ1σ4 = σ4σ1.

For relation (M1), which can be rewritten as s−1
i,d si+k,d ′si,d = si+k+1,d ′ for k > 0,

we have two cases: the case where d = 1 and the case where d 6= 1. If d = 1, then
the case i = 0 follows by definition, and by the same induction argument used in
[Brin 2005] implies that the relation for all i and k follows from the cases where
i = 1 and k = 1, 2; hence we need only 2 relations per dimension. If d 6= 1, we do
not get the case i = 0 by definition and we must include i = 0, 1 and k = 1, 2, that
is, 4 relations per each pair of dimensions. There are n−1 choices for d , as d 6= 1,
and n choices for d ′, so this case yields 4n(n− 1) relations. Hence, in total (M1)
can be obtained for all i and k by 2n+ 4n(n− 1)= 4n2

− 2n relations.
For relation (M5b), σi si,d = si+1,dσiσi+1, there is only a single parameter to deal

with; hence the relation for i ≥ 2 can be obtained from the cases where i = 0, 1
by conjugating by s0,1 as before. Relation (M5c) is actually equivalent to (M5b);
hence for each n we only need 2n relations for (M5b) and (M5c). We treat (M5a)
σi+ksi,d = si,dσi+k+1 for k > 0 the same way as for (M1), hence 2 relations are
required for d = 1 and 4 for d 6= 1 for a total of 4n − 2 relations. And lastly,
(M5d) σi si+k,d = si+k,dσi can be obtained in the same way as the second case of
(M1) where the relation for all i, k is obtained by i = 0, 1, k = 2, 3, that is, 4n
relations. �
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6.2. Finite presentation for nV.

Theorem 25. The group nV is presented by the 2n+ 4 generators

{X i,d , πi , π i | i ∈ {0, 1}, 1≤ d ≤ n},

the 5n2
+ 7n + 6 relations obtained from the homomorphism n̂V → nV , and the

additional 5n2
+ 3n + 4 relations given below, for a total of 10n2

+ 10n + 10
relations.

π k+1 X1,1 = X1,1π k+2 for k = 1, 2,(5)

πm+k Xm,d = Xm,dπm+k+1 for m = 0, 1, k = 1, 2,
2≤ d ≤ n,

πm+kπm = πmπm+k for m = 0, 1, k = 2, 3,(10)

πmπm+1πm = πm+1πmπm+1 for m = 0, 1(11)

π2
m = 1 for m = 0, 1,(13)

πm Xm,1 = πmπm+1 for m = 0, 1,(6)

πm Xm,d = Cm+1,dπmπm+1 for m = 0, 1, d 6= 1,(14)

Ck+1,d X1,1 = X1,1Ck+2,d for k = 1, 2,(15)

Cm+k,d Xm,d ′ = Xm,d ′Cm+k+1,d for m = 0, 1, k = 1, 2,
2≤ d, d ′ ≤ n,

Cm,d Xm,1 = Xm,dCm+2,dπm+1 for m = 0, 1, 2≤ d ≤ n,(16)

πmCm+k,d = Cm+k,dπm for m = 0, 1, k = 2, 3,(17)

Cm,d Xm,d ′Cm+2,d ′ = Cm,d ′Xm,dCm+2,dπm+1 for m = 0, 1,(18)
1< d ′ < d ≤ n,

Proof. We can use the relations in nV to write, for i ≥ 2 and 1≤ d ≤ n,

X i,d = X1−i
0,1 X1,d X i−1

0,1 , πi = X1−i
0,1 π1 X i−1

0,1 , π i = X1−i
0,1 π1 X i−1

0,1 .

We can also use the relations for nV as in [Brin 2004, Proposition 6.2] to write

Cm,d = (πm Xm,dπm+1πm)(Xm,dπm+1 X−1
m,1)

for m ≥ 0 and 2 ≤ d ≤ n, which we use as a definition. Hence, the Cm,d are not
needed to generate nV .

The homomorphism n̂V → nV given by si,d 7→ X i,d and σi 7→ πi implies that
the work done for the relations for n̂V carries over to relations (1)–(4), (7)–(9),
and (12) (see Lemma 14). Relations (10), (11), (13) and (6) are exactly the same
as those from 2V and can be treated as in [Brin 2005], contributing a total of 10
relations to our finite set.
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Relation (5) can be treated in a manner similar to (M1) from n̂V , where 2
relations are needed for dimension 1 and 4 for all others, contributing a total of
4(n − 1)+ 2 relations. Relations (14) and (16) include only one parameter and
hence can be obtained from the cases where i =0, 1 as before, contributing 2(n−1)
relations apiece. And (17) requires 4 relations for each d 6= 1, hence adding an
additional 4(n− 1) relations.

For relation (15), we have two cases: For d ′ = 1, all cases follow from when
i = 0, 1, giving us 2(n − 1) relations since 2 ≤ d ≤ n. For d ′ 6= 1, four relations
are required for each pair d, d ′ ∈ {2, . . . , n}, contributing 4(n−1)(n−1) relations.
Lastly, since (18) involves only one parameter in the first component, we only need
2 relations for each 1< d ′< d ≤ n, the number of pairs being (n−1)(n−2)/2. �

Remark 26. Since ωV is an ascending union of the nV , a word

w ∈ {X i,d , πi , π i | i ∈ {0, 1}, d ∈ N}

such that w=ωV 1 must be contained in some nV (for some n ∈N) and so we can
use the same ideas and the relations inside nV to transform w into the empty word.
Therefore, the following result is an immediate consequence of Theorem 25.

Corollary 27. The groupωV is generated by the set {X i,d , πi , π i | i ∈{0, 1}, d ∈N}

and satisfies the family of relations in Theorem 25 with the only exception that the
parameters d, d ′ ∈ N.

7. Simplicity of nV and ωV

Brin [2010] proved that the groups nV and ωV are simple by showing that the
baker’s map is a product of transpositions and following the outline of an existing
proof that V is simple.

We prove again Brin’s simplicity result verify that Brin’s original proof that 2V
is simple [2004, Theorem 7.2] generalizes using the generators and the relations
that have been found.

Theorem 28. The groups nV equal their commutator subgroups for n ≤ ω.

Proof. The goal is to show that the generators Xm,i , πm and πm are products
of commutators. We write f ' g to mean that f = g modulo the commutator
subgroup. The arguments below are independent of the dimension i .

From relation (1) we see that X−1
q,i X−1

0,1 Xq,i X0,1 = X−1
q,i Xq+1,i for q ≥ 1 and so

Xq+1,i ' Xq,i . Therefore Xq,i ' X1,i , for q ≥ 1. Using relation (2) and arguing
similarly, we see that πq ' π1 for q ≥ 1.

From relation (3) we see that π0 X0,iπ
−1
0 X−1

0,i = X1,iπ1 X−1
0,i so that X0,i ' X1,iπ1.

Also, by relation (3), X2,i ' X1,i , and the fact that π2 ' π1, we see π1 X1,i =

X2,iπ1π2 ' X1,iπ1π1 = X1,i . Therefore π1 ' 1 and so X0,i ' X1,i .



PRESENTATIONS FOR THE HIGHER-DIMENSIONAL THOMPSON GROUPS nV 73

Relation (9) and π1'1 give π2
0 'π0π1π0=π1π0π1'π0, which implies π0'1.

By relation (6) and the fact that π1'1 and π1'π0, we get π1 X1,1=π1π2'π1.
Hence X0,1 ' X1,1 ' 1.

Now, relation (6) and X0,1 ' 1 give that π0 ' π0 X0,1 = π1. Relation (11) and
π0 ' 1 lead to π1 ' π0π1π0 = π1π0π1 ' π

2
1. Therefore π0 ' π1 ' 1.

Finally, by relation (7) and X0,1 ' X1,1 ' 1' π1 we get

X1,i X0,i ' X0,1 X1,i X0,i = X0,i X1,1 X0,1π1 ' X0,i ,

which implies X0,i ' X1,i ' 1. We have thus proved that all the generators of nV
are in the commutator subgroup. The case ofωV is identical: Each generator lies in
some nV and can be written as a product of commutators within that subgroup. �

From [Brin 2004, Section 3.1] (which generalizes to nV and ωV as observed by
Brin [2005; 2010]) the commutator subgroup of nV and ωV are simple; therefore
Theorem 28 implies the following result.

Theorem 29. The groups nV are simple for n ≤ ω.

8. An alternative generating set

For any n∈N, we have (n−1)V×V ≤nV . It can be shown that another generating
set for nV is given by taking a generating set for (n − 1)V × V and adding an
involution that swaps two disjoint subcubes of [0, 1]n , one of which has the origin
as one of its vertices and the other of which contains the vertex (1, . . . , 1). This
second generating set has the advantage of taking the generators of (n− 1)V and
adding only the generators of V plus another one. This leads to a smaller generating
set, which was suggested to us by Collin Bleak. It seems feasible that a good set
of relations exist for this alternative generating set.
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