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DIFFERENTIAL HARNACK INEQUALITIES
FOR NONLINEAR HEAT EQUATIONS WITH POTENTIALS

UNDER THE RICCI FLOW

JIA-YONG WU

We prove several differential Harnack inequalities for positive solutions to
nonlinear backward heat equations with different potentials coupled with
the Ricci flow. We also derive an interpolated Harnack inequality for the
nonlinear heat equation under the ε-Ricci flow on a closed surface. These
new Harnack inequalities extend the previous differential Harnack inequal-
ities for linear heat equations with potentials under the Ricci flow.

1. Introduction and main results

Background. The study of differential Harnack estimates for parabolic equations
originated with the work of P. Li and S.-T. Yau [1986], who first proved a gradient
estimate for the heat equation via the maximum principle (though a precursory
form of their estimate appeared in [Aronson and Bénilan 1979]). Using their
gradient estimate, the same authors derived a classical Harnack inequality by inte-
grating the gradient estimate along space-time paths. This result was generalized
to Harnack inequalities for some nonlinear heat-type equations in [Yau 1994] and
for some non-self-adjoint evolution equations in [Yau 1995]. Recently, J. Li and
X. Xu [2011] gave sharper local estimates than previous results for the heat equa-
tion on Riemannian manifolds with Ricci curvature bounded below. Surprisingly,
R. Hamilton employed similar techniques to obtain Harnack inequalities for the
Ricci flow [Hamilton 1993a], and the mean curvature flow [Hamilton 1995]. In
dimension two, a differential Harnack estimate for the positive scalar curvature
was proved in [Hamilton 1988], and then extended by B. Chow [1991a] when the
scalar curvature changes sign. Similar techniques were used to obtain the Har-
nack inequalities for the Gauss curvature flow [Chow 1991b] and the Yamabe flow
[Chow 1992]. H.-D. Cao [1992] proved a Harnack inequality for the Kähler–Ricci
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flow. B. Andrews [1994] derived several Harnack inequalities for general curvature
flows of hypersurfaces. Chow and Hamilton [1997] gave extensions of the Li–Yau
Harnack inequality, which they called constrained and linear Harnack inequalities.
For more detailed discussion, we refer the interested reader to [Chow et al. 2006,
Chapter 10].

Hamilton [1993b] also generalized the Li–Yau Harnack inequality to a matrix
Harnack form on a class of Riemannian manifolds with nonnegative sectional cur-
vature. This result was extended to the constrained matrix Harnack inequalities in
[Chow and Hamilton 1997]. H.-D. Cao and L. Ni [2005] proved a matrix Harnack
estimate for the heat equation on Kähler manifolds. Chow and Ni [2007] proved
a matrix Harnack estimate for Kähler–Ricci flow using interpolation techniques
from [Chow 1998].

In another direction, differential Harnack inequalities for (backward) heat-type
equations coupled with the Ricci flow have become an important object, which
can be traced back to [Hamilton 1988]. This subject was further explored by
Chow [1998], Chow and Hamilton [1997], Chow and D. Knopf [2002], and H.-B.
Cheng [2006], among others. Perhaps the most spectacular result is G. Perelman’s
[2002] differential Harnack inequality for the fundamental solution to the back-
ward heat equation coupled with the Ricci flow without any curvature assumption.
Perelman’s Harnack inequality has many important applications (it is essential in
proving pseudolocality theorems), and it has been extended by X. Cao [2008] and
independently by S.-L. Kuang and Qi S. Zhang [2008]. Those authors proved a
differential Harnack inequality for all positive solutions to the backward heat equa-
tion under the Ricci flow on closed manifolds with nonnegative scalar curvature.
X. Cao and Qi S. Zhang [2011a] have established Gaussian upper and lower bounds
for the fundamental solution to the backward heat equation under the Ricci flow.

On the subject of differential Harnack inequalities for the linear heat equation
coupled with the Ricci flow, there have been many important contributions; see,
for example, [Bailesteanu et al. 2010; Cao and Hamilton 2009; Chau et al. 2011;
Chow et al. 2010; Guenther 2002; Liu 2009; Wu and Zheng 2010; Zhang 2006].

In recent years there has been increasing interest in the study of the nonlinear
heat-type equations coupled with the Ricci flow. A nice example of a nonlinear
heat equation, introduced by L. Ma [2006], is

(1-1)
∂

∂t
f =1 f − a f ln f − b f,

where a and b are real constants. Ma first proved a local gradient estimate for
positive solutions to the corresponding elliptic equation

(1-2) 1 f − a f ln f − b f = 0
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on a complete manifold with a fixed metric. Indeed, F. R. K. Chung and S.-T. Yau
[1996] observed that equation (1-2) is linked with the gross logarithmic Sobolev
inequality. They also established a logarithmic Harnack inequality for this equation
when a < 0. Y. Yang [2008] derived local gradient estimates for positive solutions
to (1-1) on a complete manifold with a fixed metric; see also [Chen and Chen
2009; Huang and Ma 2010; Wu 2010a; 2010b]. Yang’s result has been generalized
by L. Ma [2010a; 2010b], who obtained Hamilton and new Li–Yau type gradient
estimates for the nonlinear heat equation (1-1), and also by S.-Y. Hsu [2011], who
proved local gradient estimates for the nonlinear heat equation (1-1) under the Ricci
flow, similar to the gradient estimates of [Yang 2008] for the fixed metric case.

We remind the reader that equations (1-1) and (1-2) often appear in geometric
evolution equations, and are also closely related to the gradient Ricci solitons.
See, for example, [Cao and Zhang 2011b; Ma 2006] for nice explanations on this
subject.

Very recently, X. Cao and Z. Zhang [2011b] used the argument from [Cao and
Hamilton 2009] to prove an interesting differential Harnack inequality for positive
solutions to the forward nonlinear heat equation

(1-3)
∂

∂t
f =1 f − f ln f + R f

coupled with the Ricci flow equation

(1-4)
∂

∂t
gi j =−2Ri j

on a closed manifold. Here 1, R and Ri j are the Laplacian, scalar curvature and
Ricci curvature of the metric g(t) moving under the Ricci flow.

Main results. In this paper, we will be concerned with general time-dependent
nonlinear backward heat equations of the type (1-1) with different potentials on
closed manifolds under the Ricci flow.

Before studying nonlinear backward heat equations, we first study the nonlinear
forward heat equation (1-3) with the metric evolving under the Ricci flow. Suppose
(M, g(t)), t ∈ [0, T ), is a solution to the ε-Ricci flow (ε ≥ 0)

(1-5)
∂

∂t
gi j =−εRgi j

on a closed surface. Let f be a positive solution to the nonlinear forward heat
equation with potential εR, that is,

(1-6)
∂

∂t
f =1 f − f ln f + εR f.
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In this case, we can derive a new differential interpolated Harnack inequality, which
is originated with B. Chow [1998].

Theorem 1.1. Let (M, g(t)), t ∈ [0, T ), be a solution to the ε-Ricci flow (1-5) on
a closed surface with R > 0. Let f be a positive solution to the nonlinear heat
equation (1-6), u =−ln f and Hε =1u− εR. Then, for all time t ∈ (0, T ),

Hε ≤
1
t
,

that is,
∂

∂t
ln f − |∇ ln f |2+ ln f +

1
t
=1 ln f + εR+

1
t
≥ 0.

In Theorem 1.1, if we take ε= 0, we can get the following differential Harnack
inequality for the nonlinear heat equation on closed surfaces with a fixed metric:

Corollary 1.2. If f : M × [0, T )→ R, is a positive solution to the nonlinear heat
equation

∂

∂t
f =1 f − f ln f

on a closed surface (M, g) with R > 0, then, for all time t ∈ (0, T ),

∂

∂t
ln f − |∇ ln f |2+ ln f +

1
t
=1 ln f +

1
t
≥ 0.

If we take ε = 1 in Theorem 1.1, we get:

Corollary 1.3. Let (M, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on a closed
surface with R > 0. If f is a positive solution to the nonlinear heat equation (1-3),
then for all time t ∈ (0, T ),

∂

∂t
ln f − |∇ ln f |2+ ln f +

1
t
=1 ln f + R+

1
t
≥ 0.

Remark 1.4. X. Cao and Z. Zhang [2011b] have proved a differential Harnack
inequality for Equation (1-3) under the Ricci flow on manifolds of any dimension.
However, on a closed surface, the result of Corollary 1.3 is better than theirs.

Remark 1.5. Interestingly, Theorem 1.1 is a nonlinear interpolated Harnack in-
equality which links Corollary 1.2 to Corollary 1.3.

Secondly, we now consider differential Harnack inequalities for positive solu-
tions to the nonlinear backward heat equation with potential 2R, that is,

(1-7)
∂

∂t
f =−1 f + f ln f + 2R f

under the Ricci flow. X. Cao and Z. Zhang [2011b] made nice explanations that
the nonlinear forward heat equation (1-3) is closely related to expanding gradient
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Ricci solitons. Analogously to the argument of Cao and Zhang, our consideration
of the Equation (1-7) is motivated by shrinking gradient Ricci solitons proposed in
[Hamilton 1993a]. Recall that a shrinking gradient Ricci soliton (M, g) is defined
by the form (see [Chow et al. 2006])

(1-8) Ri j +∇i∇ jw = cgi j ,

where w is some Ricci soliton potential and c is a positive constant. Taking the
trace of both sides of (1-8) yields

(1-9) R+1w = const.

Using the contracted Bianchi identity, we can easily deduce that

(1-10) R− 2cw+ |∇w|2 =−const.

From (1-9) and (1-10), we get

(1-11) 2|∇w|2 =−1w+ |∇w|2+ 2cw− 2R.

Recall that the Ricci flow solution for a complete gradient Ricci soliton [Chow
et al. 2006, Theorem 4.1] is the pullback of g under ϕ(t), up to a scale factor c(t):

g(t)= c(t) ·ϕ(t)∗g,

where c(t) :=−2ct+1> 0 and ϕ(t) is the 1-parameter family of diffeomorphisms
generated by

1
c(t)
∇gw.

Then the corresponding Ricci soliton potential ϕ(t)∗w satisfies

∂

∂t
ϕ(t)∗w =

∣∣∇ϕ(t)∗w∣∣2 .
Note that along the Ricci flow, (1-11) becomes

2|∇ϕ(t)∗w|2 =−1ϕ(t)∗w+ |∇ϕ(t)∗w|2+
2c

c(t)
·ϕ(t)∗w− 2R.

Hence the evolution equation for the Ricci soliton potential ϕ(t)∗w is

2
∂ϕ(t)∗w
∂t

=−1ϕ(t)∗w+ |∇ϕ(t)∗w|2+
2c

c(t)
·ϕ(t)∗w− 2R.

If we let ϕ(t)∗w =−ln f̃ , this equation becomes

(1-12) 2
∂ f̃
∂t
=−1 f̃ + 2R f̃ +

2c
c(t)
· f̃ ln f̃ .
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Notice that (1-7) and (1-12) are closely related and only differ by the time scaling
and their last terms.

For the nonlinear backward heat equation (1-7) under the Ricci flow, we have:

Theorem 1.6. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold of dimension n. Let f be a positive solution to the nonlinear backward
heat equation (1-7), u =−ln f , τ = T − t and

(1-13) H = 21u− |∇u|2+ 2R− 2
n
τ
.

Then, for all time t ∈ [0, T ),

H ≤
n
2
.

Remark 1.7. We can easily see that H ≤ n/2 is equivalent to

|∇ f |2

f 2 − 2
(

fτ
f
+ ln f + R

)
≤ 2

n
τ
+

n
2
.

In [Yang 2008] (see also [Wu 2010b]), the classical Li–Yau gradient estimate for
positive solutions to the nonlinear heat equation (1-1) is

|∇ f |2

f 2 − 2
(

ft

f
+ a ln f + b

)
≤ 2

n
t
+ na

on manifolds with a fixed metric satisfying nonnegative Ricci curvature. Hence
our Harnack inequality is similar to the classical Li–Yau gradient estimate for the
nonlinear heat equation (1-1).

If we assume instead that our solution to the Ricci flow is defined for t ∈ [0, T )
(where T <∞ is the blow-up time) and is of type I, meaning that

(1-14) |Rm| ≤
d0

T − t

for some constant d0, then we can show this:

Theorem 1.8. Let (M, g(t)), t ∈ [0, T ) (where T <∞ is the blow-up time) be a
solution to the Ricci flow on a closed manifold of dimension n, and assume that g
is of type I, that is, it satisfies (1-14), for some constant d0. Let f be a positive
solution to the nonlinear backward heat equation (1-7), u =−ln f , τ = T − t and

H = 21u− |∇u|2+ 2R− d
n
τ
,

where d = d(d0, n)≥ 2 is some constant such that H(τ ) < 0 for small τ . Then, for
all time t ∈ [0, T ),

H ≤
n
2
.
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Thirdly, we consider the nonlinear backward heat equation

(1-15)
∂

∂t
f =−1 f + f ln f + R f

under the Ricci flow. This equation is very similar to (1-7) and only differs by
the last potential. We also find that (1-15) can be regarded as the extension of the
linear backward heat equation considered in [Cao 2008, Theorem 1.3] and [Kuang
and Zhang 2008, Theorem 2.1]. In fact, we only have the additional term f ln f
in the linear backward heat equation. For this system, we prove:

Theorem 1.9. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold of dimension n with nonnegative scalar curvature. Let f be a positive
solution to the nonlinear backward heat equation (1-15), u=−ln f , τ = T − t and

(1-16) H = 21u− |∇u|2+ R− 2
n
τ
.

Then, for all time t ∈ [0, T ),

H ≤
n
4
.

By modifying the Harnack quantity of Theorem 1.9, we can deduce the follow-
ing differential Harnack inequality without assuming the nonnegativity of R:

Theorem 1.10. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold of dimension n. Let f be a positive solution to the nonlinear backward
heat equation (1-15), v =−ln f − 1

2 n ln(4πτ), τ = T − t , and

P = 21v− |∇v|2+ R− 3
n
τ
.

Then, for all time t ∈ [T/2, T ),

P ≤
n
4
.

Remark 1.11. Theorems 1.6–1.10 extend to the nonlinear case Theorems 1.1–1.3
and 3.6 of [Cao 2008] and Theorem 2.1 of [Kuang and Zhang 2008].

The proof of all our theorems nearly follows from the arguments of X. Cao
[2008], X. Cao and R. Hamilton [2009], X. Cao and Z. Zhang [2011b], and S.-L.
Kuang and Qi S. Zhang [Kuang and Zhang 2008], where computations of evolu-
tion equations and the maximum principle for parabolic equations are employed.
The major differences are that one of our results gives an interpolation Harnack
inequality for a nonlinear forward heat equation along the ε-Ricci flow on a closed
surface, and the others provide differential Harnack estimates for various nonlinear
backward heat equations under the Ricci flow.
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One interesting feature of this paper is that our differential Harnack inequalities
are not only like the Perelman’s Harnack inequalities, but also similar to the clas-
sical Li–Yau Harnack inequalities for the corresponding nonlinear heat equation
(see Remark 1.7 above). Another feature is that our Harnack quantities of non-
linear backward heat equations are nearly the same as those of linear backward
heat equations considered by X. Cao [2008], and S.-L. Kuang and Qi S. Zhang
[2008]. Due to the fact that Ricci soliton potentials are linked with some nonlinear
backward heat equations, we expect that our differential Harnack inequalities will
be useful in understanding the Ricci solitons.

The rest of this paper is organized as follows: In Section 2, we will prove a new
differential interpolated Harnack inequality on a surface, that is, Theorem 1.1. In
Section 3, we firstly derive differential Harnack inequalities for positive solutions
to the nonlinear backward heat equation with potential 2R under the Ricci flow
(Theorems 1.6 and 1.8). Then a classical integral version of the Harnack inequality
will be proved (Theorem 3.2). In the latter part of this section, we will establish
Harnack inequalities for another nonlinear backward heat equation with potential
R under the Ricci flow (Theorem 1.9) as well as its classical Harnack version
(Theorem 3.4). By modifying the Harnack quantity of Theorem 1.9, we can prove
another differential Harnack inequalities without the nonnegative assumption of
scalar curvature (Theorem 1.10). Finally, in Section 4, we will prove gradient
estimates for positive and bounded solutions to the nonlinear (including backward)
heat equation without potentials under the Ricci flow, that is, Theorems 4.1 and 4.3.

2. Nonlinear heat equation with potentials

In this section, we will prove a differential interpolated Harnack inequality for
positive solutions to nonlinear forward heat equations with potentials coupled with
the ε-Ricci flow on a closed surface.

Let f be a positive solution to the nonlinear forward heat equation (1-6). By
the maximum principle, we conclude that the solution will remain positive along
the Ricci flow when scalar curvature is positive. If we let

u =−ln f,

then u satisfies the equation

∂

∂t
u =1u− |∇u|2− εR− u.

Proof of Theorem 1.1. The proof involves a direct computation and the parabolic
maximum principle. Let f and u be defined as above. Under the ε-Ricci flow (1-5)
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on a closed surface, we have that

∂R
∂t
= ε(1R+ R2) and ∂

∂t
(1)= εR1,

where the Laplacian 1 is acting on functions. Define the Harnack quantity

(2-1) Hε =1u− εR.

Using the evolution equations above, we first compute that

∂

∂t
Hε =1

(
∂

∂t
u
)
+

(
∂

∂t
1
)

u− ε ∂R
∂t

=1(1u− |∇u|2− εR− u)+ εR1u− ε ∂R
∂t

=1Hε −1|∇u|2−1u+ εRHε + ε2 R2
− ε

∂R
∂t

Since
1|∇u|2 = 2|∇∇u|2+ 2∇1u · ∇u+ R|∇u|2

on a two-dimensional surface, we then have

∂

∂t
Hε =1Hε − 2|∇∇u|2− 2∇1u · ∇u− R|∇u|2+ εRHε + ε2 R2

− ε
∂R
∂t
−1u

=1Hε − 2|∇∇u|2− 2∇Hε · ∇u

− 2ε∇R · ∇u− R|∇u|2+ εRHε + ε2 R2
− ε

∂R
∂t
−1u

=1Hε − 2
∣∣∣∇i∇ j u−

ε

2
Rgi j

∣∣∣2− 2εR1u− 2∇Hε · ∇u

− 2ε∇R · ∇u− R|∇u|2+ εRHε + 2ε2 R2
− ε

∂R
∂t
−1u.

Since 1u = Hε + εR by (2-1), these equalities become

∂

∂t
Hε =1Hε − 2

∣∣∣∇i∇ j u−
ε

2
Rgi j

∣∣∣2− εRHε − 2∇Hε · ∇u

− 2ε∇R · ∇u− R|∇u|2− ε ∂R
∂t
−1u.

Rearranging terms yields

(2-2) ∂

∂t
Hε =1Hε − 2

∣∣∣∇i∇ j u−
ε

2
Rgi j

∣∣∣2− 2∇Hε · ∇u− εRHε

− R |∇u+ ε∇ ln R|2− εR
(
∂ ln R
∂t
− ε|∇ ln R|2

)
−1u

≤1Hε − H 2
ε − 2∇Hε · ∇u− (εR+ 1)Hε +

ε

t
R− εR.

The reason for this last inequality is that the trace Harnack inequality for the ε-
Ricci flow on a closed surface proved in [Chow 1998] (see also [Wu and Zheng
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2010, Lemma 2.1]) states that

∂ ln R
∂t
− ε|∇ ln R|2 = ε(1 ln R+ R)≥−1

t
,

since g(t) has positive scalar curvature. Besides this, we also used (2-1) and the
elementary inequality∣∣∣∇i∇ j u−

ε

2
Rgi j

∣∣∣2 ≥ 1
2
(1u− εR)2 = 1

2
H 2
ε .

Adding −1/t to Hε in (2-2) yields

(2-3) ∂

∂t

(
Hε −

1
t

)
≤1

(
Hε −

1
t

)
− 2∇

(
Hε −

1
t

)
· ∇u

−

(
Hε +

1
t

) (
Hε −

1
t

)
− (εR+ 1)

(
Hε −

1
t

)
−

1
t
− εR.

Clearly, for t small enough we have Hε − 1/t < 0. Since R > 0, applying the
maximum principle to the evolution formula (2-3) we conclude that Hε− 1/t ≤ 0
for all time t , and the proof of this theorem is completed. �

We remark that Theorem 1.1 can be regarded as a nonlinear version of an inter-
polated Harnack inequality proved by B. Chow:

Theorem 2.1 [Chow 1998]. Let (M, g(t)) be a solution to the ε-Ricci flow (1-5)
on a closed surface with R > 0. If f is a positive solution to

∂

∂t
f =1 f + εR f,

then
∂

∂t
ln f − |∇ ln f |2+

1
t
=1 ln f + εR+

1
t
≥ 0.

3. Nonlinear backward heat equation with potentials

We next study several differential Harnack inequalities for positive solutions to the
nonlinear backward heat equation under the Ricci flow, proving Theorems 1.6, 1.8,
1.9, and 1.10 from the Introduction. The first two of these theorems deal with the
case where the potential equals 2R, and the last two with the potential R. The
proofs are largely based on the maximum principle.

Potential 2R. Theorems 1.6 and 1.8 deal with differential Harnack inequalities for
positive solutions to the equation

∂

∂t
f =−1 f + f ln f + 2R f

under the Ricci flow. We follow the trick used to prove Theorem 1.1 in [Cao and
Zhang 2011b] to simplify a tedious calculation of the evolution equations. Also,
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the evolution equation of u in this case is very similar to what is considered in [Cao
2008]. So we can borrow Cao’s computation for the very general setting there to
simplify our calculation. The only difference is that we have extra terms coming
from the time derivative ∂u/∂τ .

Proof of Theorem 1.6. As before, it is easy to compute that u satisfies

(3-1)
∂

∂τ
u =1u− |∇u|2+ 2R− u.

Recall from (1-13) that H = 21u − |∇u|2 + 2R − 2n/τ . Adapting [Cao 2008,
(2.4)] and using (3-1) as well as the elementary inequality∣∣∣∇i∇ j u− Ri j −

1
τ

gi j

∣∣∣2 ≥ 1
n

(
1u− R− n

τ

)2
,

we can write

∂

∂τ
H =1H − 2∇H · ∇u− 2

τ
H − 2

τ
|∇u|2− 2|Rc|2− 2

∣∣∣∇i∇ j u+ Ri j −
1
τ

gi j

∣∣∣2
− 2(1u− |∇u|2)

≤1H − 2∇H · ∇u− 2
τ

H − 2
τ
|∇u|2− 2

n
R2
−

2
n

(
1u+ R− n

τ

)2

− 2(1u− |∇u|2),

By the definition of H , we have

−2(1u− |∇u|2)=−2H + 2
(
1u+ R−

n
τ

)
+ 2R−

2n
τ
.

Plugging this into the preceding inequality yields

∂

∂τ
H ≤1H − 2∇H · ∇u−

(2
τ
+ 2

)
H − 2

τ
|∇u|2− 2

n
R2

−
2
n

(
1u+ R− n

τ
−

n
2

)2
+

n
2
+ 2R− 2n

τ

=1H − 2∇H · ∇u−
(2
τ
+ 2

)
H − 2

τ
|∇u|2

−
2
n

(
1u+ R− n

τ
−

n
2

)2
−

2
n

(
R− n

2

)2
−

2n
τ
+ n.

Adding −n/2 to H , we then get

(3-2) ∂

∂τ

(
H − n

2

)
≤1

(
H − n

2

)
− 2∇

(
H − n

2

)
· ∇u−

(2
τ
+ 2

) (
H − n

2

)
−

2
τ
|∇u|2− 2

n

(
1u+ R− n

τ
−

n
2

)2
−

2
n

(
R− n

2

)2
−

3n
τ
.

If τ is small enough, H − n/2 < 0. Then applying the maximum principle to the
evolution equation (3-2) yields H − n/2≤ 0 for all τ , hence for all t ∈ [0, T ). �



210 JIA-YONG WU

An easy modification of the preceding proof, using (1-14) to ensure that we can
apply the maximum principle as τ→ 0, verifies Theorem 1.8. We omit the details.

Remark 3.1. Theorem 1.6 is also true on a complete noncompact Riemannian
manifolds, as long as we can apply the maximum principle.

From Theorem 1.6, we can derive a classical Harnack inequality by integrating
along a space-time path.

Theorem 3.2. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold of dimension n. Let f be a positive solution to the nonlinear backward
heat equation (1-7). Assume that (x1, t1) and (x2, t2), 0 ≤ t1 < t2 < T , are two
points in M × [0, T ). Then we have

et2 ln f (x2, t2)− et1 ln f (x1, t1)≤
1
2

∫ t2

t1
eT−t

(
|γ̇ |2+ 2R+

n
2
+

2n
T − t

)
dt,

where γ is any space-time path joining (x1, t1) and (x2, t2).

Proof. This is similar to Theorem 2.3 in [Cao 2008]; we include the proof for
completeness. Consider the solutions to

∂

∂τ
u =1u− |∇u|2+ 2R− u.

Combining this with

H −
n
2
= 21u− |∇u|2+ 2R− 2

n
τ
−

n
2
≤ 0,

we have

2
∂

∂τ
u+ |∇u|2− 2R− 2

n
τ
+ 2u−

n
2
≤ 0.

If γ (x, t) is a space-time path joining (x2, τ2) and (x1, τ1), with τ1 > τ2 > 0, we
have along γ

du
dτ
=
∂u
∂τ
+∇u · γ ≤−1

2
|∇u|2+ R+ n

τ
− u+ n

4
+∇u · γ

≤
1
2

(
|γ̇ |2+ 2R+ n

2

)
+

n
τ
− u,

where in the last step we used the inequality − 1
2 |∇u|2 + ∇u · γ − 1

2 |γ̇ |
2
≤ 0.

Rearranging terms yields

d
dτ
(eτ · u)≤

eτ

2

(
|γ̇ |2+ 2R+

n
2
+

2n
τ

)
.
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Integrating this inequality we obtain

eτ1 · u(x1, τ1)− eτ2 · u(x2, τ2)≤
1
2

∫ τ1

τ2

eτ
(
|γ̇ |2+ 2R+

n
2
+

2n
τ

)
dτ,

which can be rewritten as

et1 · u(x1, t1)− et2 · u(x2, t2)≤
1
2

∫ t2

t1
eT−t

(
|γ̇ |2+ 2R+

n
2
+

2n
T − t

)
dt.

Note that u =−ln f . Hence the desired classical Harnack inequality follows. �

Potential R. We now turn to the equation with potential R:

∂

∂t
f =−1 f + f ln f + R f.

Here we need to assume that the initial metric g(0) has nonnegative scalar curva-
ture. It is well known that this property is preserved by the Ricci flow.

Proof of Theorem 1.9. This time u satisfies

∂

∂τ
u =1u− |∇u|2+ R− u.

Adapting [Cao 2008, (3.2)], we can write

(3-3) ∂

∂τ
H =1H − 2∇H · ∇u− 2

τ
H − 2

τ
|∇u|2− 2 R

τ

− 2
∣∣∣∇i∇ j u+ Ri j −

1
τ

gi j

∣∣∣2− 2(1u− |∇u|2).

Since H is now given by (1-16), we have

−2(1u− |∇u|2)=−2H + 2
(
1u+ R−

n
τ

)
−

2n
τ
.

Plugging this into (3-3), we obtain

∂

∂τ
H ≤1H − 2∇H · ∇u−

(2
τ
+ 2

)
H − 2

τ
|∇u|2− 2 R

τ

−
2
n

(
1u+ R− n

τ

)2
+ 2

(
1u+ R− n

τ

)
−

2n
τ

=1H − 2∇H · ∇u−
(2
τ
+ 2

)
H − 2

τ
|∇u|2− 2 R

τ

−
2
n

(
1u+ R− n

τ
−

n
2

)2
−

2n
τ
+

n
2
.

Adding −n/4 to H yields

(3-4) ∂

∂τ

(
H − n

4

)
≤1

(
H − n

4

)
− 2∇

(
H − n

4

)
· ∇u−

(2
τ
+ 2

) (
H − n

4

)
−

2
τ
|∇u|2− 2 R

τ
−

2
n

(
1u+ R− n

τ
−

n
2

)2
−

5n
2τ
.
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Since R ≥ 0, it is easy to see that H − n/4< 0 for τ small enough. Applying the
maximum principle to the evolution formula (3-4), we have H −n/4≤ 0 for all τ ,
hence for all t . This finishes the proof of Theorem 1.9. �

We easily derive counterparts to Theorem 1.8 and Theorem 3.2:

Theorem 3.3. Let (M, g(t)), t ∈ [0, T ) (where T <∞ is the blow-up time) be a
solution to the Ricci flow on a closed manifold of dimension n with nonnegative
scalar curvature, and assume that g is of type I, that is, it satisfies (1-14), for some
constant d0. Let f be a positive solution to the nonlinear backward heat equation
(1-15), u =−ln f , τ = T − t and

H = 21u− |∇u|2+ R− d
n
τ
,

where d = d(d0, n)≥ 1 is some constant such that H(τ ) < 0 for small τ . Then, for
all time t ∈ [0, T ),

H ≤
n
4
.

Theorem 3.4. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold of dimension n with nonnegative scalar curvature. Let f be a positive
solution to the nonlinear backward heat equation (1-15). Assume that (x1, t1) and
(x2, t2), with 0≤ t1 < t2 < T , are two points in M ×[0, T ). Then

et2 ln f (x2, t2)− et1 ln f (x1, t1)≤
1
2

∫ t2

t1
eT−t

(
|γ̇ |2+ R+

n
4
+

2n
T − t

)
dt,

where γ is any space-time path joining (x1, t1) and (x2, t2).

In the rest of this section, we will finish the proof of Theorem 1.10. The in-
teresting feature of Theorem 1.10 is that the differential Harnack inequalities hold
without any assumption on the scalar curvature R.

Proof of Theorem 1.10. We first compute that v satisfies

(3-5)
∂

∂τ
v =1v− |∇v|2+ R−

n
2τ
−

(
v+

n
2

ln(4πτ)
)
.

If we let
P̃ := 21v− |∇v|2+ R− 2

n
τ
,

then by adapting [Cao 2008, (3.7)], we have

∂

∂τ
P̃ =1P̃ − 2∇ P̃ · ∇v− 2

τ
P̃ − 2

τ
|∇v|2− 2 R

τ

− 2
∣∣∣∇i∇ jv+ Ri j −

1
τ

gi j

∣∣∣2− 2(1v− |∇v|2).
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Since P = P̃ − n/τ , we have

(3-6) ∂

∂τ
P =1P − 2∇P · ∇v− 2

τ
P − 2

τ
|∇v|2− 2 R

τ
−

n
τ 2

− 2
∣∣∣∇i∇ jv+ Ri j −

1
τ

gi j

∣∣∣2− 2(1v− |∇v|2).

According to the definition of P , we have

−2a(1v− |∇v|2)=−2P + 2
(
1v+ R−

n
τ

)
−

4n
τ
.

Substituting this into (3-6), we get

∂

∂τ
P ≤1P − 2∇P · ∇v−

(2
τ
+ 2

)
P − 2

τ
|∇v|2− 2 R

τ
−

n
τ 2(3-7)

−
2
n

(
1v+ R− n

τ

)2
+ 2

(
1v+ R− n

τ

)
−

4n
τ

=1P − 2∇P · ∇v−
(2
τ
+ 2

)
P − 2

τ
|∇v|2−

2
τ

(
R+ n

2τ

)
−

2
n

(
1v+ R− n

τ
−

n
2

)2
−

4n
τ
+

n
2
.

Note that the evolution of scalar curvature under the Ricci flow is
∂R
∂t
=1R+ 2|Rc|2 ≥1R+ 2

n
R2.

Applying the maximum principle to this inequality yields R ≥ −n/(2t). Since
t ≥ T/2, we have 1/t ≤ 1/τ . Hence

R ≥− n
2t
≥−

n
2τ
,

that is,
R+ n

2τ
≥ 0.

Combining this with (3-7), we have

∂

∂τ
P ≤1P − 2∇P · ∇v−

(2
τ
+ 2

)
P − 4n

τ
+

n
2
.

Adding −n/4 to P , we get

(3-8) ∂

∂τ

(
P − n

4

)
≤1

(
P − n

4

)
−2∇

(
P − n

4

)
·∇v−

(2
τ
+ 2

) (
P − n

4

)
−

9n
2τ
.

It is easy to see that P − n/4 < 0 for τ small enough. Applying the maximum
principle to the evolution formula (3-8) yields

P −
n
4
≤ 0

for all time t ≥ T/2. Hence the theorem is proved. �
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Remark 3.5. Motivated by Theorems 3.3 and 3.4, we can prove similar theorems
by the standard argument from Theorem 1.10. We omit them in the interests of
brevity.

4. Gradient estimates for nonlinear (backward) heat equations

In this section, on one hand we consider the positive solution f (x, t) < 1 to the
nonlinear heat equation without any potential

(4-1)
∂

∂t
f =1 f − f ln f,

with the metric evolved by the Ricci flow (1-4) on a closed manifold M . This
equation has been considered by S.-Y. Hsu [2011] and L. Ma [2010a]. If we let
u =−ln f , then

(4-2)
∂

∂t
u =1u− |∇u|2− u

and u > 0. Note that 0 < f < 1 is preserved as time t evolves. In fact the initial
assumption says that

− ln sup
M

f (x, 0)≤ u(x, 0)≤− ln inf
M

f (x, 0).

Applying the maximum principle to (4-2), we have

−e−t ln sup
M

f (x, 0)≤ u(x, t)≤−e−t ln inf
M

f (x, 0)

and hence
0< u(x, t)≤− ln inf

M
f (x, 0)

for all x ∈ M and t ∈ [0, T ). Since u =−ln f , this implies

0< inf
M

f (x, 0)≤ f (x, t) < 1

for all x ∈ M and t ∈ [0, T ).
Following the arguments of [Cao and Hamilton 2009], we let

H = |∇u|2−
u
t
.

Comparing with the equation (5.3) in the same reference, we have

(4-3) ∂

∂t
H =1H − 2∇H · ∇u− 1

t
H − 2|∇∇u|2− 2|∇u|2+ u

t

=1H − 2∇H · ∇u−
(1

t
+ 1

)
H − 2|∇∇u|2− |∇u|2.
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Notice that if t small enough, then H < 0. Then applying the maximum principle
to (4-3), we obtain:

Theorem 4.1. Let (M, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on a closed
manifold. Let f < 1 be a positive solution to the nonlinear heat equation (4-1),
u =−ln f and

H = |∇u|2−
u
t
.

Then, for all time t ∈ (0, T ),
H ≤ 0.

Remark 4.2. Theorem 4.1 can be regarded as a nonlinear version of [Cao and
Hamilton 2009, Theorem 5.1]. Recently, L. Ma [2010a, Theorem 3] has proved
the same estimate as in Theorem 4.1 on a closed manifold with nonnegative Ricci
curvature under a static metric. However, in our case, we do not need any curvature
assumption.

On the other hand, we can also consider the positive solution f (x, t) < 1 to the
nonlinear backward heat equation without any potential

(4-4)
∂

∂t
f =−1 f + f ln f,

with the metric evolved by the Ricci flow (1-4). Let u =−ln f . Then we have

∂

∂τ
u =1u− |∇u|2− u

and u > 0. Using the maximum principle, one can see that 0 < f < 1 is also
preserved under the Ricci flow. In fact from the initial assumption

0< inf
M

f (x, T )≤ f (x, T )≤ sup
M

f (x, T ) < 1,

one can also show that

0< inf
M

f (x, T )≤ f (x, τ ) < 1

for all x ∈ M and τ ∈ (0, T ] in the same way as the above arguments.
Following the arguments of [Cao 2008], let

H = |∇u|2−
u
τ
.

Comparing with the equation (5.3) in [Cao 2008], we have

(4-5) ∂

∂τ
H =1H − 2∇H · ∇u− 1

τ
H − 2|∇∇u|2− 4Ri j ui u j − 2|∇u|2+ u

τ

=1H − 2∇H · ∇u−
(1
τ
+ 1

)
H − 2|∇∇u|2− 4Ri j ui u j − |∇u|2.
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If we assume Ri j (g(t))≥−K , where 0≤ K ≤ 1
4 , then

−4Ri j ui u j − |∇u|2 ≤ (4K − 1)|∇u|2 ≤ 0.

Hence if τ small enough, then H < 0. Then applying the maximum principle to
(4-5), we have a nonlinear version of [Cao 2008, Theorem 5.1].

Theorem 4.3. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold with the Ricci curvature satisfying Ri j (g(t)) ≥ −K , where 0 ≤ K ≤ 1

4 .
Let f < 1 be a positive solution to the nonlinear backward heat equation (4-4),
u =−ln f , τ = T − t and

H = |∇u|2−
u
τ
.

Then, for all time t ∈ [0, T ),
H ≤ 0.
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