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Let D ⊆ E be an extension of integral domains, 0 a numerical semigroup
with 0 ( N0, 0∗ = 0 \ {0} and R = D+ E[0∗]. In this paper, we completely
characterize when R is a weakly Krull domain, an AWFD or a GWFD. We
also prove that R is never a WFD.

Introduction

We first review some preliminaries. Let D be an integral domain with quotient field
q f (D) and let F(D) denote the set of nonzero fractional ideals of D. Recall that the
v-operation on D is a star-operation on F(D) defined by I 7→ Iv := (I−1)−1, where
I−1
= {x ∈ q f (D) | x I ⊆ D}. The t-operation on D is a star-operation defined by

I 7→ It :=
⋃
{Jv | J ⊆ I with J ∈ F(D) finitely generated}. An I ∈ F(D) is said to

be a v-ideal if Iv = I , and a t-ideal if It = I . A v-ideal I is said to be of finite type
if I = Jv for some finitely generated fractional ideal J of D. A t-ideal M of D is
called a maximal t-ideal if M is maximal among proper integral t-ideals of D. It
is well known that maximal t-ideals are prime ideals. Let t-Max(D) be the set of
maximal t-ideals of D. Then t-Max(D) 6=∅ if D is not a field. An I ∈F(D) is said
to be t-invertible if (I I−1)t = D; equivalently, I I−1 * M for each M ∈ t-Max(D).
Let T (D) be the abelian group of t-invertible fractional t-ideals of D under the t-
multiplication I ∗ J = (I J )t , and let Inv(D) and Prin(D) be the subgroups of T (D)
consisting respectively of invertible fractional ideals of D and nonzero principal
fractional ideals of D. Then it is clear that Prin(D)⊆ Inv(D)⊆ T (D). The t-class
group of D is an abelian group Cl(D) = T (D)/Prin(D) and the Picard group
Pic(D)= Inv(D)/Prin(D) is a subgroup of Cl(D). The local t-class group G(D)
of D is defined by G(D)= Cl(D)/Pic(D).

Let X1(D) stand for the set of height-one prime ideals of D. We say that D is a
weakly Krull domain if D=

⋂
P∈X1(D) DP and this intersection has finite character,

i.e., each nonzero element d ∈ D is a unit in DP for all but a finite number of P’s in
X1(D); D is a weakly factorial domain (WFD) if every nonzero nonunit element
of D is a product of primary elements; D is an almost weakly factorial domain

MSC2010: primary 13A15, 13G05; secondary 13A02, 13B25, 13F05.
Keywords: numerical semigroup, D+ E[0∗], weakly Krull domain.

227

http://msp.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2012.257-1


228 JUNG WOOK LIM

(AWFD) if for each nonzero nonunit element d ∈ D, there exists a positive integer
n = n(d) such that dn is a product of primary elements; and D is a generalized
weakly factorial domain (GWFD) if each nonzero prime ideal of D contains a
primary element. (Recall that a nonzero nonunit d ∈ D is called a primary element
of D if (d) is a primary ideal of D.) It is well known that

WFD⇒ AWFD⇒ GWFD⇒ weakly Krull domain

and a weakly Krull domain has t-dimension one. (The t-dimension of D, abbrevi-
ated t-dim(D), is the supremum of lengths of chains of prime t-ideals of D. Hence
t-dim(D)=1 if and only if each maximal t-ideal of D has height-one.) Also, it was
shown in [Anderson and Zafrullah 1990, Theorem] that a weakly Krull domain D
is a WFD if and only if Cl(D)= 0, and in [Anderson et al. 1992, Theorem 3.4] that
a weakly Krull domain D is an AWFD if and only if Cl(D) is torsion. We note that
t-dim(D[0]) = t-dim(D[X ]) for any numerical semigroup 0 [Chang et al. 2012,
Theorem 1.5].

Let N0 (resp., Z) be the set of nonnegative integers (resp., integers). A semigroup
0 is called a numerical semigroup if 0 is a subset of N0 containing 0 and generates
Z as a group. It is known that if 0 is a numerical semigroup, then 0 is finitely
generated and N0 \ 0 is a finite set. Hence there exists the largest nonnegative
integer which is not contained in 0. This number is called the Frobenius number
of 0 and is denoted by F(0).

Throughout this article, D⊆ E denotes an extension of integral domains, q f (D)
(resp., q f (E)) is the quotient field of D (resp., E), D means the integral closure
of D, X is an indeterminate over E , 0 is a numerical semigroup with 0 ( N0

and D[0] is the numerical semigroup ring of 0 over D. Note that each element
f ∈D[0] is uniquely expressible in the form f =a1 Xα1+· · ·+ak Xαk , where ai ∈D
and αi ∈0 with α1 < · · ·<αk . Let 0∗=0\{0}, R= D+E[0∗], T = D+X E[X ]
and Tn = D + Xn E[X ] for integers n ≥ 2, i.e., R = { f ∈ E[0] | f (0) ∈ D},
T = { f ∈ E[X ] | f (0) ∈ D} and Tn = R when 0 = {0} ∪ {m ∈ N0 | m ≥ n}. Then
D[0] ⊆ R ⊆ E[0] and TF(0)+1 ⊆ R ( T ⊆ E[X ]. For an f ∈ q f (D)[0], c( f )
means the fractional ideal of D generated by the coefficients of f . If I is an ideal
of D[0], then c(I ) denotes the ideal of D generated by the coefficients of all the
polynomials in I .

In multiplicative ideal theory, the D+ E[0∗] construction has been extensively
studied by several authors for its interest in constructing examples with prescribed
properties. As a special kind of pullbacks, this has become so important that in
recent years there have been many papers devoted to ring- and ideal-theoretic prop-
erties in this construction.

Anderson et al. [2003a; 2006] (see also [Anderson and Chang 2007]) studied
when the domains D[X2, X3

], D + X E[X ] and D + X2 E[X ] are weakly Krull
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domains, WFDs, AWFDs or GWFDs. In fact, they showed that D[X2, X3
] is a

weakly Krull domain if and only if D is a weakly Krull UMT-domain [Anderson
et al. 2003a, Proposition 2.7]; if char(D) 6= 0, then D[X2, X3

] is an AWFD if
and only if D[X2, X3

] is a GWFD [Anderson and Chang 2007, Corollary 2.11];
D+X E[X ] is a weakly Krull domain if and only if D+X2 E[X ] is a weakly Krull
domain [Anderson et al. 2006, Theorem 4.3]; and D+ X E[X ] is an AWFD if and
only if D+ X E[X ] is a GWFD [Anderson and Chang 2007, Corollary 2.10]. The
main purpose of this paper is to determine how certain properties of D, E and 0
influence those of R, and vice versa. This also extends the results for the domains
D[X2, X3

], D+ X E[X ] and D+ X2 E[X ] to any composite numerical semigroup
ring D+ E[0∗].

In Section 1, we investigate weakly Krull domains, AWFDs and GWFDs in
the context of numerical semigroup rings D[0] which coincide with the domains
R = D + E[0∗] when D = E . We prove that D[0] is a weakly Krull domain if
and only if D is a weakly Krull UMT-domain, and that if char(D) 6= 0, then D[0]
is an AWFD if and only if D[0] is a GWFD, if and only if D is an almost weakly
factorial quasi-AGCD-domain, if and only if D is a generalized weakly factorial
quasi-AGCD-domain.

In Section 2, we study when the domain R = D + E[0∗] is a weakly Krull
domain, an AWFD or a GWFD, where D ( E . We show that R is a weakly Krull
domain if and only if T = D + X E[X ] is a weakly Krull domain, and that if
char(E) 6= 0, then R is an AWFD if and only if R is a GWFD, if and only if T is
an AWFD, if and only if R is a GWFD. We also prove that R is never a WFD.

1. Weakly Krull domains as numerical semigroup rings

In this section, we characterize when the numerical semigroup ring D[0] is a
weakly Krull domain, an AWFD or a GWFD.

The first two lemmas are well known for the general semigroup rings, but we
include their proofs for the convenience of the reader.

Lemma 1.1 [El Baghdadi et al. 2002, Lemma 2.3]. Let D be an integral domain
and 0 be a numerical semigroup. The following statements hold for an I ∈ F(D):

(1) (ID[0])−1
= I−1 D[0].

(2) (ID[0])v = IvD[0].

(3) (ID[0])t = It D[0].

Proof. (1) Since (ID[0])(I−1 D[0])⊆ D[0], I−1 D[0] ⊆ (ID[0])−1. Conversely,
let f ∈ (ID[0])−1. Then f ID[0] ⊆ D[0] and hence c( f )I ⊆ D. Hence c( f ) ⊆
I−1, and therefore f ∈ c( f )D[0] ⊆ I−1 D[0]. Thus the equality holds.

(2) By (1), (ID[0])v = ((ID[0])−1)−1
= (I−1 D[0])−1

= IvD[0].
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(3) Let f1, . . . , fn be nonzero elements of ID[0]. Then we have

(( f1, . . . , fn)D[0])v ⊆ ((c( f1), . . . , c( fn))D[0])v
= (c( f1), . . . , c( fn))vD[0]

⊆ It D[0]

by (2), i.e., (ID[0])t ⊆ It D[0]. For the reverse inclusion, let J be a nonzero
finitely generated subideal of I . Then JvD[0] = (J D[0])v ⊆ (ID[0])t by (2).
Hence It D[0] ⊆ (ID[0])t . Thus we have the desired equality. �

Lemma 1.2 [Anderson and Chang 2005, Corollary 2.3]. Let D be an integral do-
main, 0 be a numerical semigroup and let Q be a maximal t-ideal of D[0] such
that Q ∩ D 6= (0). Then Q = (Q ∩ D)D[0]. In particular, Q ∩ D is a maximal
t-ideal of D.

Proof. The containment (Q∩D)D[0] ⊆ Q is obvious. For the converse, it suffices
to show that c(Q)⊆ Q. Suppose to the contrary that c(Q)* Q. Then

Q ( c(Q)D[0].

Since Q is a maximal t-ideal of D[0], (c(Q)D[0])t = D[0]. Therefore c(Q)t = D
by Lemma 1.1(3), and hence c( f )v = D for some f ∈ Q. Let 0 6= d ∈ Q ∩ D and
choose 0 6= g ∈ (d, f )−1. Then gd ∈ D[0] and hence g ∈ q f (D)[0]. Also, we
have f g ∈ D[0]. Hence it follows from [Gilmer 1992, Theorem 28.1] that

c(g)⊆ c(g)v = (c( f )m+1c(g))v = (c( f m)c( f g))v = c( f g)v ⊆ D,

where m is the degree of g. So g∈c(g)D[0]⊆D[0], which implies that (d, f )−1
=

D[0]. This contradicts the fact that Q is a maximal t-ideal of D[0]. Therefore
c(Q) ⊆ Q, and thus Q ⊆ (Q ∩ D)D[0]. The second assertion is an immediate
consequence of Lemma 1.1(3). �

An integral domain B is said to be a UMT-domain if every upper to zero (a
nonzero prime ideal of B[X ]which contracts to zero in B) Q of B[X ] is a maximal
t-ideal (equivalently, is t-invertible). Now, we give the numerical semigroup ring
version of [Anderson et al. 1993, Proposition 4.11].

Theorem 1.3. Let D be an integral domain and 0 be a numerical semigroup with
0 ( N0. Then the following assertions are equivalent.

(1) D[0] is a weakly Krull domain.

(2) D[X ] is a weakly Krull domain.

(3) D is a weakly Krull UMT-domain.
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Proof. (1)⇒ (3) Assume D[0] is a weakly Krull domain. Then t-dim(D[0])= 1
[Anderson et al. 1992, Lemma 2.1]. Let P be a prime t-ideal of D. Then P D[0]
is a prime t-ideal of D[0] by Lemma 1.1(3); so htD(P)=htD[0](P D[0])= 1; so
t-dim(D)= 1. Since t-dim(D[0])= 1, we have t-dim(D[X ])= 1 by [Chang et al.
2012, Theorem 1.5]. Therefore every upper to zero in D[X ] is a maximal t-ideal,
and thus D is a UMT-domain. Note that

D =
⋂

P∈X1(D)
DP

by [Kang 1989, Proposition 2.9]. To show that this intersection has finite character,
let d ∈ D \ {0}. Since D[0] is a weakly Krull domain, d belongs to only finitely
many height-one prime ideals of D[0], and hence there exists only a finite number
of height-one prime ideals of D containing d . Thus D is a weakly Krull domain.

(3)⇒ (1) Assume that D is a weakly Krull UMT-domain and let Q be a maximal
t-ideal of D[0] with Q∩D 6= (0). By Lemma 1.2, Q = (Q∩D)D[0] and Q∩D
is a maximal t-ideal of D. Since t-dim(D) = 1 [Anderson et al. 1992, Lemma
2.1], htD(Q ∩ D) = 1; so htD[0]Q ≤ 2 (cf. [Kaplansky 1970, Theorem 37]). If
htD[0]Q = 2, then there exists a nonzero prime ideal P ( Q which contracts to
zero in D. Note that P = M ∩ D[0] for some prime ideal M of D[X ] [Chang
et al. 2012, Proposition 1.1]. Since M ∩ D = (0) and D is a UMT-domain, M is
a maximal t-ideal of D[X ]. Hence P is a maximal t-ideal of D[0] [Chang et al.
2012, Theorem 1.4]. This contradicts the choice of P . Thus t-dim(D[0]) = 1.
By [Kang 1989, Proposition 2.9], we have D[0] =

⋂
Q∈X1(D[0]) D[0]Q . We claim

that this intersection has finite character. Let f ∈ D[0] \ {0} and set

S= {Q ∈ X1(D[0]) | f ∈ Q},

S1 = {Q ∈ S | Q ∩ D ∈ X1(D)}, and

S2 = {Q ∈ S | Q ∩ D = (0)}.

Then S = S1 ∪S2. If S1 is an infinite set, then c( f ) belongs to infinitely many
height-one prime ideals of D by Lemma 1.2. This is absurd, because D is a weakly
Krull domain. Hence S1 is a finite set. Note that q f (D)[0] is a one-dimensional
Noetherian domain; so q f (D)[0] is a weakly Krull domain. Hence S2 is also a
finite set. Therefore S is a finite set. Thus D[0] is a weakly Krull domain.

(2)⇔ (3) See [Anderson et al. 1993, Proposition 4.11]. �

Recall that if D ⊆ E is an extension of integral domains, then E is said to be a
root extension of D if for each z ∈ E , there is a positive integer n = n(z) such that
zn
∈ D. A domain B is called an almost Prüfer v-multiplication domain (APvMD)

(resp., almost GCD-domain (AGCD-domain)) if for each 0 6= a, b ∈ B, there exists
a positive integer n = n(a, b) such that (an, bn)v is t-invertible (resp., principal).
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It is known that B is a weakly Krull PvMD if and only if B[X ] is weakly Krull
and B is integrally closed [Anderson et al. 1993, Corollary 4.13]. We weaken the
hypothesis and obtain the following result.

Corollary 1.4. Let D be an integral domain and 0 be a numerical semigroup.

(1) D is a weakly Krull APvMD if and only if D[0] is a weakly Krull domain and
D ⊆ D is a root extension.

(2) D is an almost weakly factorial AGCD-domain if and only if D[0] is a weakly
Krull domain, Cl(D) is torsion and D ⊆ D is a root extension.

Proof. (1) By [Li 2012, Theorem 3.8], a domain B is an APvMD if and only if
B is a UMT-domain and B ⊆ B is a root extension. Thus the result follows from
Theorem 1.3.

(2) By [Li 2012, Theorem 3.1], a domain B is an AGCD-domain if and only if B
is an APvMD and Cl(B) is torsion. Also, by [Anderson et al. 1992, Theorem 3.4],
B is an AWFD if and only if B is a weakly Krull domain and Cl(B) is torsion.
Thus the result is an immediate consequence of Theorem 1.3 and (1). �

Let S be a saturated multiplicative subset of a domain B and let N (S)={0 6= b∈
B | (b, s)v = B for all s ∈ S} be the m-complement of S. We say that S is an almost
splitting set if for each 0 6= b ∈ B, there exists a positive integer n = n(b) such
that bn

= st for some s ∈ S and t ∈ N (S). Following [Anderson and Chang 2007],
B is called a quasi-AGCD-domain if B \ {0} is an almost splitting set in B[X ]. It
was shown that if B is integrally closed, then the notion of quasi-AGCD-domains
coincides with that of AGCD-domains [Chang 2005, Proposition 2.6]. The next
corollary characterizes when the numerical semigroup ring D[0] is an AWFD or
a GWFD.

Corollary 1.5. Let D be an integral domain with char(D) 6= 0 and 0 be a numer-
ical semigroup with 0 ( N0. Then the following conditions are equivalent.

(1) D[0] is an AWFD.

(2) D[0] is a GWFD.

(3) D[X ] is an AWFD.

(4) D[X ] is a GWFD.

(5) D is an almost weakly factorial quasi-AGCD-domain.

(6) D is a generalized weakly factorial quasi-AGCD-domain.

(7) D is a weakly Krull quasi-AGCD-domain.

Proof. Let char(D)= p.

(1)⇒ (2) This is well known.



WEAKLY KRULL DOMAINS AND THE RING D+ E[0∗] 233

(1) ⇔ (3) By [Anderson et al. 1992, Theorem 3.4], an integral domain B is an
AWFD if and only if B is a weakly Krull domain and Cl(B) is torsion, and by
Theorem 1.3, D[0] is a weakly Krull domain if and only if D[X ] is a weakly Krull
domain. By [Chang et al. 2012, Lemma 2.7], Pic(q f (D)[0]) is torsion if and only
if char(D) 6= 0. Since Cl(D[0]) = Cl(D[X ]) ⊕ Pic(q f (D)[0]) [Anderson and
Chang 2004, Theorem 5], Cl(D[0]) is torsion if and only if Cl(D[X ]) is torsion
and char(D) 6= 0. Thus this equivalence follows from these facts.

(4)⇒ (2) By [Anderson et al. 2003b, Theorem 2.2], a domain B is a GWFD if and
only if t-dim(B)= 1 and for each P ∈ X1(B), P =

√
bB for some b ∈ B. Assume

that D[X ] is a GWFD and let P ∈ X1(D[0]). Since t-dim(D[0])= t-dim(D[X ])=
1 [Chang et al. 2012, Theorem 1.5], it suffices to show that P =

√
f D[0] for some

f ∈ D[0]. If P ∩ D 6= (0), then P = (P ∩ D)D[0] by Lemma 1.2. Since D[X ]
is a GWFD, (P ∩ D)D[X ] =

√
d D[X ] for some d ∈ P ∩ D. It is easy to see that

P =
√

d D[0]. Next, suppose that P ∩ D = (0). Then there exists a prime t-ideal
Q of D[X ] such that P = Q∩D[0] [Chang et al. 2012, Theorem 1.5]. Since D[X ]
is a GWFD, Q =

√
f D[X ] for some f ∈ D[X ]. Also, since char(D) = p > 0,

there exists a positive integer n such that f pn
∈ D[0]. An easy calculation shows

that P =
√

f pn D[0]. Thus D[0] is a GWFD.

(2)⇒ (4) This direction is an easy modification of the proof of (4)⇒ (2).

(2)⇒ (5) See [Anderson and Chang 2007, Corollary 2.9].

(5)⇒ (6)⇒ (7) These implications are obvious.

(7) ⇒ (1) Assume that D is a weakly Krull quasi-AGCD-domain. Then D is
a UMT-domain and Cl(D[X ]) is torsion [Anderson and Chang 2007, Theorem
2.4]. Hence D[0] is a weakly Krull domain by Theorem 1.3. Also, it follows
from [Anderson and Chang 2004, Theorem 5; Chang et al. 2012, Lemma 2.7]
that Cl(D[0]) is torsion. Thus D[0] is an AWFD [Anderson et al. 1992,Theorem
3.4]. �

We end this section by noting that D[0] is never a WFD. We also show that
D[0] need not be an AWFD if char(D)= 0.

Remark 1.6. (1) Let B be an integral domain with quotient field K . In [Gilmer
and Martin 1990, Theorem 7], Gilmer and Martin showed that if B is a seminormal
domain and B+Xn B[X ] ⊆ B[0], then Pic(B[0])= Pic(B)⊕(Wn/L), where L ⊆
Wn are the subgroups of the group U (B[X ]/Xn B[X ]) of units of B[X ]/Xn B[X ]
defined by Wn = {1+ X f + Xn B[X ] | f ∈ B[X ]} and L = {1+ X f + Xn B[X ] |
1 + X f ∈ B[0]}. Note that Cl(B[0]) = Cl(B[X ])⊕ Pic(K [0]) [Anderson and
Chang 2004, Theorem 5] and that B is a WFD if and only if B is a weakly Krull
domain and Cl(B) = 0 [Anderson and Zafrullah 1990, Theorem]. If D[0] is a
WFD, then Cl(D[0]) = 0, and hence Pic(q f (D)[0]) = 0. Therefore Wn = L;
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so 1+ X + Xnq f (D)[X ] ∈ L , which implies that 1 ∈ 0. Thus, if 0 is a proper
numerical semigroup, then D[0] is never a WFD.

(2) If D[0] is an AWFD, then Cl(D[0]) is torsion [Anderson et al. 1992, Theorem
3.4]; so Pic(q f (D)[0]) is torsion [Anderson and Chang 2004, Theorem 5]. Hence
char(D) 6= 0 [Chang et al. 2012, Lemma 2.7]. This shows that the condition that
char(D) 6= 0 is essential in Corollary 1.5.

(3) It is known that a generalized unique factorization domain (GUFD) is a weakly
factorial GCD-domain [Anderson et al. 1995, Theorem 7], and hence integrally
closed. (See [Anderson et al. 1995] for the definition and some characterizations
of a GUFD.) Thus, if 0 is a numerical semigroup with 0 ( N0, then D[0] is not
a GUFD by (1). In fact, D[0] is not integrally closed; so D[0] is never a GUFD.

2. Weakly Krull domains and the ring D+ E[0∗] when D ( E

For a domain A, Spec(A) stands for the set of prime ideals of A. Assume that
D ( E is an extension of integral domains, 0 is a numerical semigroup with 0(N0

and let R = D + E[0∗], T = D + X E[X ], Tn = D + Xn E[X ] and 1n = {0} ∪
{m ∈N0 |m ≥ n} for integers n ≥ 2. Note that D[0]( R ( T and Tn ( T . In this
section, we characterize when the domains R and Tn are weakly Krull domains,
AWFDs or GWFDs. To do this, we need two lemmas.

Lemma 2.1. Let R = D+ E[0∗] and T = D+ X E[X ]. If Q is a prime ideal of
R, then there exists a unique prime ideal of T lying over Q. Thus the natural map
φ : Spec(T )→ Spec(R), given by P 7→ P ∩ R, is an order-preserving bijection. In
particular, htT (X E[X ])=htR(E[0∗]).

Proof. Let Q be a prime ideal of R. Since T is an integral extension of R, there
exists a prime ideal P of T such that Q = P ∩ R [Kaplansky 1970, Theorem 44].
Note that E[0∗] ⊆ Q if and only if X E[X ] ⊆ P . If E[0∗] ⊆ Q, then P is the
unique prime ideal of T lying over Q because R/X E[X ] ∼= D ∼= R/E[0∗]. If
E[0∗]* Q, then X F(0)+1 f 6∈ Q for some f ∈ E[X ]; so

g =
X F(0)+1 f g
X F(0)+1 f

∈ RQ

for any g ∈ T . Hence TQ RQ∩T = RQ . Thus Q RQ ∩ T is the unique prime ideal of
T lying over Q. �

Let n be an integer ≥ 2. Then it is clear that if 0 = 1n , then R = Tn . Hence
Lemma 2.1 also shows that htT (X E[X ])=htTn (X

n E[X ]).

Remark 2.2. Let 0 = {α1, . . . , αn}∪1F(0)+1 with 1<α1 < · · ·<αn < F(0)+1
and R = D+ E[0∗].
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(1) Let g ∈ (R : E[0∗]). Then gE[0∗] ⊆ R; hence for each α ∈0∗, gXα
= aα+ fα

for some aα ∈D and fα ∈ E[0∗]. Therefore gXα+F(0)
= (aα+ fα)X F(0)

∈ R, which
means that aα=0. Hence gXα

= fα ∈ E[0∗], and so g∈
⋂
α∈0∗{

1
Xα f | f ∈ E[0∗]}.

The reverse containment is obvious. Thus we have

(R : E[0∗])=
⋂
α∈0∗

{ 1
Xα

f | f ∈ E[0∗]
}
.

(2) It is clear that E[0] ( (R : E[0∗]) because X F(0)
∈ (R : E[0∗]) \ E[0]. Let

g ∈ (R : E[0∗]). Then X F(0)+1g ∈ R; so we can write

X F(0)+1g =
n∑

i=0
gi Xαi + X F(0)+1h

for some gi ∈ E and h ∈ E[X ]. (For the sake of convenience, set α0 = 0.). Fix a
k ∈ {1, . . . , n}. Then we have X2F(0)−αk+1g =

∑k−1
i=0 gi X F(0)+αi−αk + gk X F(0)

+

X F(0)+1
(∑n

i=k+1 gi Xαi−αk−1
+h
)
∈ R; so gk=0 for all k=1, . . . , n. Also, we have

X F(0)+2g = g0 X + X F(0)+2h ∈ R; so g0 = 0. Therefore X F(0)+1g = X F(0)+1h,
and hence g = h ∈ E[X ]. Thus E[0] ( (R : E[0∗]) ⊆ E[X ]. In particular, if
0 =1F(0)+1, then E[X ] ⊆ (R : E[0∗]); so (R : E[0∗])= E[X ].

(3) Lemma 4.2 of [Anderson et al. 2006] cannot be extended to any proper numer-
ical semigroup, i.e., it may happen that (R : E[0∗])( E[X ] for some 0 ( N0. For
instance, if 0 = {2} ∪14, then X ∈ E[X ] \ (R : E[0∗]).

Lemma 2.3. The following statements hold for R = D+ E[0∗].

(1) E[0∗] is a prime t-ideal of R.

(2) E[0∗] is a maximal t-ideal of R if and only if q f (D)∩ E = D.

Proof. (1) Let 0={α1, . . . , αk}∪1F(0)+1 such that 0<α1< · · ·<αk < F(0)+1.
Since R/E[0∗] ∼= D, E[0∗] is a prime ideal of R. It suffices to show that E[0∗]
is a v-ideal of R, because each v-ideal is a t-ideal.

Case 1. {α1, . . . , αk} is empty. In this case, (R : E[0∗])= E[X ] by Remark 2.2(2);
so we need to show that (R : E[X ])= E[0∗]. It is clear that E[0∗] ⊆ (R : E[X ]).
For the converse, let f ∈ (R : E[X ]). Then f E[X ] ⊆ R. Since 1 ∈ E[X ], f ∈ R.
Also, since X ∈ E[X ], f (0)= 0; so f ∈ E[0∗].

Case 2. {α1, . . . , αk} is nonempty. Deny the conclusion, and then there exists a
polynomial g = g0+

∑k
i=1 gαi Xαi +

∑l
i=F(0)+1 gi X i

∈ (E[0∗])v \ E[0∗]. Hence
g(R : E[0∗])⊆ R. Let f ∈ (R : E[0∗]). Then f ∈ E[X ] by Remark 2.2(2); so we
can write f =

∑m
i=0 fi X i . Note that

f g = f0g0+ g0

α1−1∑
i=1

fi X i
+ ( f0gα1 + fα1 g0)Xα1 + Xα1+1h1
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for some h1 ∈ E[X ]. Since f g ∈ R and g0 6= 0, f1 = · · · = fα1−1 = 0; so f =
f0+

∑m
i=α1

fi X i . Note that 2α1 ∈ 0
∗; so 2α1 ≥ F(0)+ 1 or 2α1 = αp for some

p ∈ {2, . . . , k}. If 2α1 ≥ F(0)+ 1, then we have

f g= f0g0+( f0gα1+ fα1 g0)Xα1+g0

α2−1∑
i=α1+1

fi X i
+( f0gα2+ fα2 g0)Xα2+Xα2+1h2

for some h2 ∈ E[X ]. Again, since f g ∈ R, fα1+1 = · · · = fα2−1 = 0. By repeating
this process, we have fi = 0 for all i ∈ N0 \ 0, and hence f ∈ R. Therefore
(R : E[0∗]) = R. However, this is impossible because X F(0)

∈ (R : E[0∗]) \ R.
If 2α1 = αp for some p ∈ {2, . . . , k}, a simple modification of the proof of the
previous case leads to the same conclusion because 2αl ≥ F(0)+1 for some l ≤ k.

In either case, E[0∗] is a v-ideal, and thus E[0∗] is a t-ideal of R.

(2) This appears in [Lim 2012, Lemma 1.2]. �

Now, we are ready to give a necessary and sufficient condition for the domain
R to be a weakly Krull domain.

Theorem 2.4. Let R = D + E[0∗], T = D + X E[X ], Tn = D + Xn E[X ] and
1n = {0}∪ {m ∈N0 |m ≥ n} for integers n ≥ 2. Then the following statements are
equivalent.

(1) R is a weakly Krull domain.

(2) T is a weakly Krull domain.

(3) Tn is a weakly Krull domain.

(4) Xn E[X ] is a height-one maximal t-ideal of Tn and E[1n] is a weakly Krull
domain.

(5) ED\{0} is a field, q f (D)∩ E = D and E[X ] is a weakly Krull domain.

Proof. (2)⇒ (1) Let T be a weakly Krull domain. Let 0={α1, . . . , αk}∪1F(0)+1

be such that 0 < α1 < · · · < αk < F(0)+ 1. Then T =
⋂

P∈X1(T ) TP and this
intersection has finite character. Note that X E[X ] is a height-one prime ideal of T
[Anderson et al. 2006, Theorem 3.4]; so E[0∗] is a height-one prime ideal of R by
Lemma 2.1. We claim that R=

⋂
P∩R∈X1(R) RP∩R , where P ranges over all height-

one prime ideals of T . Suppose to the contrary that there exists an element f in⋂
P∩R∈X1(R) RP∩R \ R. Note that f ∈ T , and hence we can write f =

∑m
i=0 fi X i .

Then there exists a polynomial g ∈ R \ E[0∗] such that f g ∈ R. Since g(0) 6= 0,
the same argument as in the proof of Lemma 2.3(1) shows that f ∈ R, which
contradicts the choice of f . Thus the equality holds. Since T =

⋂
P∈X1(T ) TP has

finite character, it is clear that the intersection R =
⋂

P∩R∈X1(R) RP∩R also has
finite character. Thus R is a weakly Krull domain.

(2)⇒ (3) This implication was already shown in the proof of (2)⇒ (1).
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(3)⇒ (4) Assume that Tn is a weakly Krull domain. Then t-dim(Tn)=1 [Anderson
et al. 1992, Lemma 2.1]; so Xn E[X ] is a maximal t-ideal of Tn by Lemma 2.3(1).

Let S = {Xm
| m ∈1n}. Then E[1n]S = E[X, X−1

] = (Tn)S is a weakly Krull
domain [Anderson et al. 1993, Proposition 4.7]. Note that X E[X ] is a height-one
prime ideal of E[X ]; so Xn E[X ] is a height-one prime ideal of E[1n] [Chang
et al. 2012, Proposition 1.1]; so E[1n]Xn E[X ] is a one-dimensional quasi-local
domain. Hence E[1n]Xn E[X ] is a weakly Krull domain. We claim that E[1n] =

E[1n]S ∩ E[1n]Xn E[X ]. Let f = f0 +
∑k1

i=n fi X i and h = h0 +
∑k2

i=n hi X i be
nonzero elements of E[1n] with h(0) 6= 0 and let g =

∑k3
i=0 gi X i

∈ E[X ] \ {0}
with g(0) 6= 0 satisfying g

Xm =
f
h ∈ E[1n]S ∩ E[1n]Xn E[X ] for some nonnegative

integer m. Then Xm f = gh; so m = 0. By comparing coefficients of f and gh, it
is easy to see that gi = 0 for all i = 1, . . . , n−1. Hence g

Xm ∈ E[1n]. The reverse
inclusion is clear. Thus E[1n] is a weakly Krull domain.

(4) ⇒ (5) By [Zafrullah 2003, Lemma 2.6], htT (X E[X ]) =dim(ED\{0}[X ]). By
(4), htTn (X

n E[X ])= 1; so the comment before Remark 2.2 establishes that

dim(ED\{0}[X ])= 1.

Thus ED\{0} is a field. Also, since Xn E[X ] is a maximal t-ideal of Tn , q f (D)∩E=
D by Lemma 2.3(2). Finally, it follows directly from Theorem 1.3 that E[X ] is a
weakly Krull domain.

(5)⇒ (2) [Anderson et al. 2006, Theorem 3.4].

(1) ⇒ (2) In the proof of (2) ⇔ (4), the integer n ≥ 2 was arbitrary; so it suf-
fices to show that X F(0)+1 E[X ] is a height-one maximal t-ideal of TF(0)+1 and
E[1F(0)+1] is a weakly Krull domain. Assume that R is a weakly Krull domain.
Since t-dim(R) = 1 [Anderson et al. 1992, Lemma 2.1], E[0∗] is a height-one
maximal t-ideal of R by Lemma 2.3(1); so X F(0)+1 E[X ] is a height-one maximal
t-ideal of T1F(0)+1 by Lemma 2.1 and the remark before Remark 2.2. Let S1 =

{Xα
| α ∈1F(0)+1} and S2 = {Xα

| α ∈ 0}. Then E[1F(0)+1]S1 = RS2 is a weakly
Krull domain [Anderson et al. 1993, Proposition 4.7]. Also, E[1F(0)+1]X F(0)+1 E[X ]
is a weakly Krull domain because it is one-dimensional quasi-local. Note that
E[1F(0)+1] = E[1F(0)+1]S1 ∩E[1F(0)+1]X F(0)+1 E[X ] as in the proof of (3)⇒ (4).
Thus E[1F(0)+1] is a weakly Krull domain. �

Corollary 2.5. Let R = D + E[0∗], T = D + X E[X ], Tn = D + Xn E[X ] and
1n = {0}∪ {m ∈N0 |m ≥ n} for integers n ≥ 2. If char(E) 6= 0, then the following
statements are equivalent.

(1) R is an AWFD.

(2) R is a GWFD.

(3) T is an AWFD.
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(4) T is a GWFD.

(5) Tn is an AWFD.

(6) Tn is a GWFD.

(7) Xn E[X ] is a maximal t-ideal of Tn , E[1n] is an AWFD and for each 0 6=e∈E ,
there exist an integer m = m(e)≥ 1 and a unit u of E such that uem

∈ D.

(8) Xn E[X ] is a maximal t-ideal of Tn , E[1n] is a GWFD and for each 0 6= e∈ E ,
there exist an integer m = m(e)≥ 1 and a unit u of E such that uem

∈ D.

(9) q f (D) ∩ E = D, E[X ] is an AWFD and for each 0 6= e ∈ E , there exist an
integer m = m(e)≥ 1 and a unit u of E such that uem

∈ D.

(10) q f (D) ∩ E = D, E[X ] is a GWFD and for each 0 6= e ∈ E , there exist an
integer m = m(e)≥ 1 and a unit u of E such that uem

∈ D.

Proof. (1)⇒ (2) and (5)⇒ (6) Their definitions lead to these implications.

(3)⇔ (9) [Anderson et al. 2006, Theorem 3.5].

(4)⇔ (10) [Anderson and Chang 2007, Corollary 2.10].

(7)⇔ (8) and (9)⇔ (10) See Corollary 1.5.

(7)⇔ (9) This equivalence follows from Corollary 1.5 and Lemma 2.3(2).

(3)⇒ (1) Assume that T is an AWFD. Then T is a weakly Krull domain [Anderson
et al. 1992, Theorem 3.4]. Hence E[X ] is a weakly Krull domain by Theorem 2.4.
Let S = {Xm

| m ∈ N0}. Since X is a prime element of E[X ], Cl(E[X ])= Cl(TS)

is torsion [Anderson et al. 1993, Corollary 4.9]; so E[X ] is an AWFD [Anderson
et al. 1992, Theorem 3.4]. Let f ∈ R \ {0}. Then there exists an integer m ≥ 1
such that f m

= X l f1 · · · fr for some nonnegative positive integer l and primary
elements f1, . . . , fr of E[X ]with nonzero constant terms. Also, since char(E) 6=0,
there exists an integer k ≥ F(0)+ 1 such that f k

i ∈ E[0] for all i = 1, . . . , r ; so
f mk
= X lk f k

1 · · · f k
r ∈ E[0]. Fix an i ∈ {1, . . . , r}, and we claim that

√

f k
i E[0] is

a prime ideal of E[0] [Anderson et al. 2003b, Lemma 2.1]. Note that
√

fi E[X ] =
√

f k
i E[X ]. If

√

f k
i E[X ]= X E[X ], then an easy calculation using a similar method

as in the proof of (2) ⇒ (1) in Theorem 2.4 shows that
√

f k
i E[0] = E[0∗] is a

prime ideal. Assume that
√

f k
i E[X ] 6= X E[X ]. Since fi (0) 6= 0, f k

i E[X, X−1
] is

a primary ideal of E[X, X−1
]; so f k

i E[X, X−1
] ∩ E[0] is primary in E[0]. It is

easy to see that
√

f k
i E[X, X−1

] ∩ E[0] =
√

f k
i E[0]. Hence

√

f k
i E[0] is a prime

ideal. Therefore we may assume that f1, . . . , fr are primary elements of E[0]
with nonzero constant terms and write f m

= X l f1 · · · fr as above. Note that for
each i = 1, . . . , r , there exist a unit ui of E and an integer ai ≥ F(0)+1 such that
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ui fi (0)ai ∈ D as in the proof of (3)⇔ (9); so ui f ai
i ∈ R. Let

a = a1 · · · ar , âi =
a
ai
, and u = uâ1

1 · · · u
âr
r .

Then u f am
= Xal(u1 f a1

1 )
â1 · · · (ur f ar

r )
âr and

√

(ui f ai
i )

âi E[0]=
√

fi E[0] for each
i = 1, . . . , r . Since t-dim(E[0]) = 1, (ui f ai

i )
âi E[0] is a primary ideal of E[0]

[Anderson et al. 2003b, Lemma 2.1] for each 1≤ i ≤ r .

Claim. For each 1≤ i ≤ r , (ui f ai
i )

âi R is a primary ideal of R.

Proof. Note that (ui f ai
i )

âi ∈ R and fix an i ∈ {1, . . . , r}. We also note that t-
dim(R) = 1 because R is a weakly Krull domain by Theorem 2.4. Hence, by
[Anderson et al. 2003b, Lemma 2.1], it suffices to show that

√

(ui f ai
i )

âi R is a prime
ideal of R. If

√

(ui f ai
i )

âi E[0] = E[0∗], then it is easy to see that
√

(ui f ai
i )

âi R =
E[0∗] is a prime ideal of R. Assume that

√

(ui f ai
i )

âi E[0] 6= E[0∗]. Then
(ui fi (0)ai )âi 6= 0. Now, we show that (ui f ai

i )
âi E[X, X−1

] ∩ R = (ui f ai
i )

âi R. Let
h ∈ (ui f ai

i )
âi E[X, X−1

] ∩ R. Note that we have

(ui f ai
i )

âi E[X, X−1
] ∩ R ⊆ (ui f ai

i )
âi E[X, X−1

] ∩ E[0]

= (ui f ai
i )

âi E[0]

by adapting the proof of (2)⇒ (1) in Theorem 2.4. So, we can write h= (ui f ai
i )

âi g
for some g ∈ E[0]. Then

g(0)=
(ui fi (0)ai )âi

h(0)
∈ q f (D)∩ E = D

by Theorem 2.4; so g ∈ R. Therefore h ∈ (ui f ai
i )

âi R, and hence

(ui f ai
i )

âi E[X, X−1
] ∩ R ⊆ (ui f ai

i )
âi R.

The reverse inclusion is clear, and hence (ui f ai
i )

âi E[X, X−1
] ∩ R = (ui f ai

i )
âi R.

Since (ui f ai
i )

âi E[0] is a primary ideal of E[0], (ui f ai
i )

âi E[X, X−1
] is a primary

ideal of E[X, X−1
]. Therefore

√

(ui f ai
i )

âi R=
√

(ui f ai
i )

âi E[X, X−1
]∩R is a prime

ideal of R, and thus (ui f ai
i )

âi R is a primary ideal of R. The claim is proved. �

If l = 0, then u f (0)am
= (u1 f1(0)a1)â1 · · · (ur fr (0)ar )âr ∈ D; so u is a unit of

D because u is a unit of E . If l ≥ 1, then f am
= u−1 Xal(u1 f a1

1 )
â1 · · · (ur f ar

r )
âr .

Since u−1 Xal E[0] is a primary ideal of E[0], u−1 Xal R is a primary ideal of R
by imitating the previous proof. Hence f am is a product of primary elements of
R, and thus R is an AWFD.

(2)⇒ (8) Assume that R is a GWFD and fix an integer n≥ 2. Then R is a weakly
Krull domain [Anderson et al. 2003b, Corollary 2.3]; so Xn E[X ] is a height-one
maximal t-ideal of Tn by Theorem 2.4.
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Next, we claim that E[1n] is a GWFD. Let S1 = {Xm
| m ∈ 1n} and S2 =

{Xm
|m ∈0}. Then E[1n]S1 = E[X, X−1

] = RS2 is a GWFD. Let Q be a nonzero
prime ideal of E[1n]. If Q ∩ S1 6= ∅, then Q contains a primary element Xn of
E[1n]. If Q∩ S1 =∅, then QE[1n]S1 is a prime ideal of E[1n]S1 ; so QE[1n]S1

contains a primary element f ∈ E[X, X−1
]. Note that X is a unit of E[X, X−1

]

and f k
∈ E[1n] for some integer k ≥ 1 because char(E) 6= 0; so we may assume

that f ∈ E[1n] with f (0) 6= 0. Then

f E[1n] ⊆ f E[1n]S1 ∩ E[1n] ⊆ QE[1n]S1 ∩ E[1n] = Q;

so Q contains a primary element f . Hence E[1n] is a GWFD.
In order to check the final condition, let e ∈ E \ {0}. If e is a unit of E , then we

have nothing to prove. So, we assume that e is not a unit of E and let h = e+ X ∈
E[X ]. Since c(h)v = E , hE[X ] = hq f (E)[X ] ∩ E[X ] [Anderson and Chang
2007, Lemma 2.1(1)]; so hE[X ] is a height-one prime ideal. Let P = hE[X ]∩ R.
Since e is not a unit of E , X F(0)+1

6∈ P; so Xα
6∈ P for all α ∈ 0. Therefore

hE[X, X−1
]= P RS2 ( RS2 , and hence htR(P)=1. Since R is a GWFD, P=

√
gR

for some primary element g ∈ R [Anderson et al. 2003b, Theorem 2.2]. Suppose
to the contrary that g(0) = 0. Since ED\{0} is a field by Theorem 2.4, 1

e =
e′
d

for some 0 6= d ∈ D and e′ ∈ E ; so e′h = d + e′X ∈ T . Since char(E) 6= 0,
(e′h)k ∈ hE[X ] ∩ R = P for some integer k ≥ 1. Hence (e′h)kl

∈ gR for some
integer l ≥ 1. However, this is impossible because e 6= 0. Therefore g(0) 6= 0. It is
clear that gRS2 is a primary ideal of RS2 , gRS2 ∩ E[X ] = gE[X ], P RS2 =

√
gRS2

and P RS2 ∩ E[X ] = hE[X ]. Hence gE[X ] is a hE[X ]-primary ideal. Therefore
g = uhm for some u ∈ q f (E) and some integer m ≥ 1; so uem

= g(0) ∈ D. Thus
u is a unit of E .

(3)⇒ (5) and (6)⇒ (8) These implications can be obtained by applying 0=1n

to the proofs of (3)⇒ (1) and (2)⇒ (8), respectively. �

We are closing this paper by showing that R = D+ E[0∗] is never a WFD and
the assumption “char(E)= 0” is essential in Corollary 2.5.

Remark 2.6. Assume that R= D+E[0∗] is a WFD or an AWFD. Let h= 1+X ∈
E[X ], P = hE[X ] ∩ R and let M be a maximal t-ideal of R. If M = E[0∗], then
P RM = RM because 1+ (−1)F(0)X F(0)+1

∈ P \E[0∗]. Assume that M 6= E[0∗].
Since c(h)v= E , hq f (E)[X ]∩E[X ]=hE[X ] [Anderson and Chang 2007, Lemma
2.1(1)]. Let S={Xm

|m ∈0}. Then P E[X, X−1
]= hE[X, X−1

]; so P RM = h RM

is principal. Hence P is t-locally principal, and thus P is t-invertible [Anderson
et al. 1992, Lemma 2.2].

(1) If R is a WFD, then P = gR for some g ∈ R with g(0) 6= 0 [Anderson and
Zafrullah 1990, Theorem]. Note that hE[X, X−1

] = gE[X, X−1
]; so g = uh for

some unit u of E . Hence uh ∈ R, which is impossible. Thus R is not a WFD.
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(2) Assume that R is an AWFD. Then Pm
= gR for some integer m ≥ 1 and g ∈ R

with g(0) 6= 0 [Anderson et al. 1992, Theorem 3.4]. We note that

hm E[X, X−1
] = gE[X, X−1

];

so uhm
= g for some unit u of E . Hence uhm

∈ R. However, this can not happen
if char(E)= 0. Thus R is never an AWFD whenever char(E)= 0.
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