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Let D C E be an extension of integral domains, I' a numerical semigroup
withT C Ny, I'* =T\ {0} and R = D + E[I'*]. In this paper, we completely
characterize when R is a weakly Krull domain, an AWFD or a GWFD. We
also prove that R is never a WFD.

Introduction

We first review some preliminaries. Let D be an integral domain with quotient field
qf (D) and let F(D) denote the set of nonzero fractional ideals of D. Recall that the
v-operation on D is a star-operation on F(D) defined by I — [, := (I=YH~1, where
I~'={x eqf (D) | xI C D). The t-operation on D is a star-operation defined by
I I,:=J{Jy | J C I with J € F(D) finitely generated}. An I € F(D) is said to
be a v-ideal if I, = I, and a t-ideal if I; = I. A v-ideal I is said to be of finite type
if I = J, for some finitely generated fractional ideal J of D. A t-ideal M of D is
called a maximal t-ideal if M is maximal among proper integral ¢-ideals of D. It
is well known that maximal ¢-ideals are prime ideals. Let r-Max(D) be the set of
maximal z-ideals of D. Then t-Max(D) % @ if D isnot a field. An I € F(D) is said
to be t-invertible if (11~"), = D; equivalently, 117! SZ M for each M € t-Max(D).
Let T (D) be the abelian group of #-invertible fractional ¢-ideals of D under the 7-
multiplication I *J = (I J),, and let Inv(D) and Prin(D) be the subgroups of T' (D)
consisting respectively of invertible fractional ideals of D and nonzero principal
fractional ideals of D. Then it is clear that Prin(D) C Inv(D) C T (D). The t-class
group of D is an abelian group CI(D) = T(D)/Prin(D) and the Picard group
Pic(D) = Inv(D)/ Prin(D) is a subgroup of CI(D). The local t-class group G (D)
of D is defined by G(D) = CI(D)/ Pic(D).

Let X'(D) stand for the set of height-one prime ideals of D. We say that D is a
weakly Krull domainif D =(px1p, Dp and this intersection has finite character,
1.e., each nonzero element d € D is a unit in D p for all but a finite number of P’s in
X' (D); D is a weakly factorial domain (WFD) if every nonzero nonunit element
of D is a product of primary elements; D is an almost weakly factorial domain
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(AWFD) if for each nonzero nonunit element d € D, there exists a positive integer
n = n(d) such that d" is a product of primary elements; and D is a generalized
weakly factorial domain (GWFD) if each nonzero prime ideal of D contains a
primary element. (Recall that a nonzero nonunit d € D is called a primary element
of D if (d) is a primary ideal of D.) It is well known that

WFD = AWFD = GWFD = weakly Krull domain

and a weakly Krull domain has ¢-dimension one. (The ¢-dimension of D, abbrevi-
ated £-dim(D), is the supremum of lengths of chains of prime ¢-ideals of D. Hence
t-dim(D) =1 if and only if each maximal 7-ideal of D has height-one.) Also, it was
shown in [Anderson and Zafrullah 1990, Theorem] that a weakly Krull domain D
is a WFD if and only if C1(D) =0, and in [Anderson et al. 1992, Theorem 3.4] that
a weakly Krull domain D is an AWFD if and only if CI(D) is torsion. We note that
t-dim(DI[I']) = t-dim(D[X]) for any numerical semigroup I" [Chang et al. 2012,
Theorem 1.5].

Let Ny (resp., Z) be the set of nonnegative integers (resp., integers). A semigroup
I" is called a numerical semigroup if I is a subset of Ny containing 0 and generates
Z as a group. It is known that if I' is a numerical semigroup, then I" is finitely
generated and Ny \ I" is a finite set. Hence there exists the largest nonnegative
integer which is not contained in I". This number is called the Frobenius number
of I and is denoted by F(I").

Throughout this article, D € E denotes an extension of integral domains, g f (D)
(resp., gf (E)) is the quotient field of D (resp., E), D means the integral closure
of D, X is an indeterminate over E, I' is a numerical semigroup with I' C Ny
and DI[I'] is the numerical semigroup ring of I over D. Note that each element
f € D[I'] is uniquely expressible in the form f =a; X% +- - -4-a;, X“, where a; € D
ando; e M withay <--- <. Let T =T\{0}, R=D+E[l"™], T =D+ XE[X]
and T, = D + X"E[X] for integers n > 2, i.e., R = {f € E[['] | f(0) € D},
T={feE[X]| fO)eD}and T, = R when I = {0} U {m € Ny | m > n}. Then
D€ RC E[l'] and Tpry+1 S RS T S E[X]. Foran f € gf(D)[T'], c(f)
means the fractional ideal of D generated by the coefficients of f. If I is an ideal
of D[I'], then c(/) denotes the ideal of D generated by the coefficients of all the
polynomials in /.

In multiplicative ideal theory, the D + E[I"*] construction has been extensively
studied by several authors for its interest in constructing examples with prescribed
properties. As a special kind of pullbacks, this has become so important that in
recent years there have been many papers devoted to ring- and ideal-theoretic prop-
erties in this construction.

Anderson et al. [2003a; 2006] (see also [Anderson and Chang 2007]) studied
when the domains D[X?, X3], D + XE[X] and D + X?E[X] are weakly Krull
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domains, WFDs, AWFDs or GWFDs. In fact, they showed that D[X 2 X3isa
weakly Krull domain if and only if D is a weakly Krull UMT-domain [Anderson
et al. 2003a, Proposition 2.7]; if char(D) # 0, then D[X2, X3] is an AWFD if
and only if D[X 2 X3]is a GWFD [Anderson and Chang 2007, Corollary 2.11];
D+ X E[X] is a weakly Krull domain if and only if D+ X?E[X] is a weakly Krull
domain [Anderson et al. 2006, Theorem 4.3]; and D + X E[X] is an AWFD if and
only if D+ X E[X]is a GWFD [Anderson and Chang 2007, Corollary 2.10]. The
main purpose of this paper is to determine how certain properties of D, E and I'
influence those of R, and vice versa. This also extends the results for the domains
D[X?, X3], D+ XE[X] and D+ X2?E[X] to any composite numerical semigroup
ring D + E[T*].

In Section 1, we investigate weakly Krull domains, AWFDs and GWFDs in
the context of numerical semigroup rings D[I"] which coincide with the domains
R = D+ E[T"*] when D = E. We prove that D[I"] is a weakly Krull domain if
and only if D is a weakly Krull UMT-domain, and that if char(D) # 0, then D[I']
is an AWFD if and only if D[I'] is a GWFD, if and only if D is an almost weakly
factorial quasi-AGCD-domain, if and only if D is a generalized weakly factorial
quasi-AGCD-domain.

In Section 2, we study when the domain R = D + E[I"*] is a weakly Krull
domain, an AWFD or a GWFD, where D C E. We show that R is a weakly Krull
domain if and only if T = D + XE[X] is a weakly Krull domain, and that if
char(E) # 0, then R is an AWFD if and only if R is a GWFD, if and only if T is
an AWFD, if and only if R is a GWFD. We also prove that R is never a WFD.

1. Weakly Krull domains as numerical semigroup rings

In this section, we characterize when the numerical semigroup ring D[I'] is a
weakly Krull domain, an AWFD or a GWFD.

The first two lemmas are well known for the general semigroup rings, but we
include their proofs for the convenience of the reader.

Lemma 1.1 [El Baghdadi et al. 2002, Lemma 2.3]. Let D be an integral domain
and I be a numerical semigroup. The following statements hold for an I € F(D):

(1) UD[rp~'=1"'D[T].

(2) UD[r']y = I, DIT'].

(3) UD[T'], =1, D[T'].

Proof. (1) Since (ID[T'])(I"'D[T']) € D[I'], I"'D[T"] € (ID[T'])~". Conversely,

let f € (ID[T])~". Then fIDIT'] € D[T"] and hence c(f)I € D. Hence c(f) C
I~!, and therefore fec(f)D[T] C I~'D[T']. Thus the equality holds.

(2) By (1), UD[T']), = (DT H~' ="' DT~ = 1,DIT].
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(3) Let f1, ..., fu be nonzero elements of /D[I']. Then we have

((f1s -5 f)DITDy € (((f1), - .., c(fu)) DTy
= (c(f), -, c(fu))y DIT']
c I, D[T']

by (2), i.e., (ID[T']); € I;D[T"]. For the reverse inclusion, let J be a nonzero
finitely generated subideal of /. Then J,D[I'] = (JDITI']), € (ID[T']); by (2).
Hence I, D[I"'] € (IDI[I']),. Thus we have the desired equality. U

Lemma 1.2 [Anderson and Chang 2005, Corollary 2.3]. Let D be an integral do-
main, I" be a numerical semigroup and let Q be a maximal t-ideal of D[I"] such
that Q N D # (0). Then Q = (Q N D)DI[TI']. In particular, Q N D is a maximal
t-ideal of D.

Proof. The containment (Q N D)D[I"] C Q is obvious. For the converse, it suffices
to show that ¢(Q) € Q. Suppose to the contrary that ¢(Q) ¢ Q. Then

Q ¢ c(Q)D[T].

Since Q is a maximal t-ideal of D[I"], (c(Q)DI[TI']); = D[TI']. Therefore c(Q); = D
by Lemma 1.1(3), and hence ¢(f), = D for some f € Q. Let0#d € QN D and
choose 0 # g € (d, f)~!. Then gd € D[TI'] and hence g € ¢f(D)[T']. Also, we
have fg € D[I"]. Hence it follows from [Gilmer 1992, Theorem 28.1] that

c(g) S e(@)y = (c(f)"He(@)y = (c(f™)e( )y = c(f8)y S D,

where m is the degree of g. So g € c(g) D[I"]1 € D[I"], which implies that (d, f)~! =
D[I']. This contradicts the fact that Q is a maximal r-ideal of D[I"]. Therefore
c(Q) € 0O, and thus Q € (Q N D)DI[I']. The second assertion is an immediate
consequence of Lemma 1.1(3). O

An integral domain B is said to be a UMT-domain if every upper to zero (a
nonzero prime ideal of B[X] which contracts to zero in B) Q of B[X] is a maximal
t-ideal (equivalently, is ¢-invertible). Now, we give the numerical semigroup ring
version of [Anderson et al. 1993, Proposition 4.11].

Theorem 1.3. Let D be an integral domain and I" be a numerical semigroup with
I' C No. Then the following assertions are equivalent.

(1) D[TI'] is a weakly Krull domain.
(2) D[X] is a weakly Krull domain.
(3) D is a weakly Krull UMT-domain.
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Proof. (1) = (3) Assume D[I'] is a weakly Krull domain. Then ¢-dim(D[I']) =1
[Anderson et al. 1992, Lemma 2.1]. Let P be a prime ¢-ideal of D. Then P D[I"]
is a prime ¢-ideal of D[I'] by Lemma 1.1(3); so htp(P) =htprj(PD[I']) = 1; so
t-dim(D) = 1. Since ¢t-dim(D[I']) = 1, we have r-dim(D[X]) = 1 by [Chang et al.
2012, Theorem 1.5]. Therefore every upper to zero in D[X] is a maximal ¢-ideal,
and thus D is a UMT-domain. Note that

D= () Dp
Pex'(D)
by [Kang 1989, Proposition 2.9]. To show that this intersection has finite character,
let d € D\ {0}. Since D[I'] is a weakly Krull domain, d belongs to only finitely
many height-one prime ideals of D[I"], and hence there exists only a finite number
of height-one prime ideals of D containing d. Thus D is a weakly Krull domain.

(3) = (1) Assume that D is a weakly Krull UMT-domain and let Q be a maximal
t-ideal of D[I'] with QN D # (0). By Lemma 1.2, Q = (QND)D[I'] and QN D
is a maximal z-ideal of D. Since 7-dim(D) = 1 [Anderson et al. 1992, Lemma
2.1], htp(Q N D) = 1; so htprQ < 2 (cf. [Kaplansky 1970, Theorem 37]). If
htpr;Q = 2, then there exists a nonzero prime ideal P C Q which contracts to
zero in D. Note that P = M N D[I'] for some prime ideal M of D[X] [Chang
et al. 2012, Proposition 1.1]. Since M N D = (0) and D is a UMT-domain, M is
a maximal 7-ideal of D[X]. Hence P is a maximal #-ideal of D[I"] [Chang et al.
2012, Theorem 1.4]. This contradicts the choice of P. Thus ¢-dim(D[I']) = 1.
By [Kang 1989, Proposition 2.9], we have D[I"] = erxl(D[rD D[I']o. We claim
that this intersection has finite character. Let f € D[I']\ {0} and set

$={QeX'(DIT) | f e 0}
F1={0e¥|0NDeX"(D)},and
Fr={0eF|0ND=(0)}.

Then ¥ = ¥ UF,. If ¥y is an infinite set, then c(f) belongs to infinitely many
height-one prime ideals of D by Lemma 1.2. This is absurd, because D is a weakly
Krull domain. Hence ¥ is a finite set. Note that ¢ f (D)[I"] is a one-dimensional
Noetherian domain; so gf (D)[I'] is a weakly Krull domain. Hence &, is also a
finite set. Therefore & is a finite set. Thus D[I'] is a weakly Krull domain.

(2) & (3) See [Anderson et al. 1993, Proposition 4.11]. U

Recall that if D C E is an extension of integral domains, then E is said to be a
root extension of D if for each z € E, there is a positive integer n = n(z) such that
7" € D. A domain B is called an almost Priifer v-multiplication domain (APvMD)
(resp., almost GCD-domain (AGCD-domain)) if for each 0 # a, b € B, there exists
a positive integer n = n(a, b) such that (a”, b"), is t-invertible (resp., principal).
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It is known that B is a weakly Krull PuMD if and only if B[X] is weakly Krull
and B is integrally closed [Anderson et al. 1993, Corollary 4.13]. We weaken the
hypothesis and obtain the following result.

Corollary 1.4. Let D be an integral domain and I be a numerical semigroup.

(1) D is aweakly Krull APvMD if and only if D[T"] is a weakly Krull domain and
D C D is a root extension.

(2) D is an almost weakly factorial AGCD-domain if and only if D[I'] is a weakly
Krull domain, CI(D) is torsion and D € D is a root extension.

Proof. (1) By [Li 2012, Theorem 3.8], a domain B is an APvMD if and only if
B is a UMT-domain and B C B is a root extension. Thus the result follows from
Theorem 1.3.

(2) By [Li 2012, Theorem 3.1], a domain B is an AGCD-domain if and only if B
is an APvMD and CI(B) is torsion. Also, by [Anderson et al. 1992, Theorem 3.4],
B is an AWFD if and only if B is a weakly Krull domain and CI(B) is torsion.
Thus the result is an immediate consequence of Theorem 1.3 and (1). [l

Let S be a saturated multiplicative subset of a domain B andlet N(S) ={0#b e
B | (b, s), = B for all s € S} be the m-complement of S. We say that S is an almost
splitting set if for each 0 # b € B, there exists a positive integer n = n(b) such
that b" = st for some s € S and t € N(S). Following [Anderson and Chang 2007],
B is called a quasi-AGCD-domain if B\ {0} is an almost splitting set in B[X]. It
was shown that if B is integrally closed, then the notion of quasi-AGCD-domains
coincides with that of AGCD-domains [Chang 2005, Proposition 2.6]. The next
corollary characterizes when the numerical semigroup ring D[I"] is an AWFD or
a GWFD.

Corollary 1.5. Let D be an integral domain with char(D) # 0 and T’ be a numer-
ical semigroup with I' C Ny. Then the following conditions are equivalent.

(1) D[T"] is an AWFD.
(2) DIT"] is a GWFD.
(3) D[X]is an AWFD.
(4) D[X]isa GWFD.
(5) D is an almost weakly factorial quasi-AGCD-domain.
(6) D is a generalized weakly factorial quasi-AGCD-domain.
(7) D is a weakly Krull quasi-AGCD-domain.
Proof. Let char(D) = p.
(1) = (2) This is well known.
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(1) < (3) By [Anderson et al. 1992, Theorem 3.4], an integral domain B is an
AWEFD if and only if B is a weakly Krull domain and CI(B) is torsion, and by
Theorem 1.3, D[I'] is a weakly Krull domain if and only if D[X] is a weakly Krull
domain. By [Chang et al. 2012, Lemma 2.7], Pic(g f (D)[I']) is torsion if and only
if char(D) # 0. Since CI(D[I']) = CI(D[X]) & Pic(gf(D)[I']) [Anderson and
Chang 2004, Theorem 5], CI(DI[I']) is torsion if and only if CI(D[X]) is torsion
and char(D) # 0. Thus this equivalence follows from these facts.

(4) = (2) By [Anderson et al. 2003b, Theorem 2.2], a domain B is a GWFD if and
only if -dim(B) = 1 and for each P € X!(B), P = +/bB for some b € B. Assume
that D[X]is a GWFD and let P € X' (D[TI']). Since t-dim(D[I']) =¢-dim(D[X]) =
1 [Chang et al. 2012, Theorem 1.5], it suffices to show that P = /f D[T'] for some
feDIT]. If PN D # (0), then P = (P N D)D[I"] by Lemma 1.2. Since D[X]
is a GWFD, (P N D)D[X] = 4/dD[X] for some d € P N D. It is easy to see that
P = ./dD|T']. Next, suppose that P N D = (0). Then there exists a prime ¢-ideal
Q of D[X] such that P = QN D[I'] [Chang et al. 2012, Theorem 1.5]. Since D[X]
is a GWFD, Q = /fD[X] for some f € D[X]. Also, since char(D) = p > 0,
there exists a positive integer n such that f7" € D[I']. An easy calculation shows
that P = /f?" D[T']. Thus D[I'] is a GWFD.

(2) = (4) This direction is an easy modification of the proof of (4) = (2).
(2) = (5) See [Anderson and Chang 2007, Corollary 2.9].
(5) = (6) = (7) These implications are obvious.

(7) = (1) Assume that D is a weakly Krull quasi-AGCD-domain. Then D is
a UMT-domain and CI(D[X]) is torsion [Anderson and Chang 2007, Theorem
2.4]. Hence DI[I'] is a weakly Krull domain by Theorem 1.3. Also, it follows
from [Anderson and Chang 2004, Theorem 5; Chang et al. 2012, Lemma 2.7]
that C1(D[TI']) is torsion. Thus D[I"] is an AWFD [Anderson et al. 1992, Theorem
34]. O

We end this section by noting that D[I'] is never a WFD. We also show that
D[I'] need not be an AWFD if char(D) = 0.

Remark 1.6. (1) Let B be an integral domain with quotient field K. In [Gilmer
and Martin 1990, Theorem 7], Gilmer and Martin showed that if B is a seminormal
domain and B+ X" B[ X] C B[I'], then Pic(B[I']) =Pic(B) ® (W,,/L), where L C
W, are the subgroups of the group U (B[X]/ X" B[X]) of units of B[X]/ X" B[X]
defined by W, = {1+ Xf + X"B[X] | f € B[X]}and L = {1+ Xf + X"B[X] |
14+ Xf € B[I']}. Note that CI(B[I']) = CI(B[X]) ¢ Pic(K[I']) [Anderson and
Chang 2004, Theorem 5] and that B is a WFD if and only if B is a weakly Krull
domain and CI(B) = 0 [Anderson and Zafrullah 1990, Theorem]. If D[I'] is a
WED, then CI(D[I']) = 0, and hence Pic(qf(D)[[']) = 0. Therefore W,, = L;
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so 14+ X 4+ X"qf(D)[X] € L, which implies that 1 € I". Thus, if I" is a proper
numerical semigroup, then D[I'] is never a WFD.

(2) If D[I'] is an AWFD, then CI(D[I']) is torsion [Anderson et al. 1992, Theorem
3.4]; so Pic(gf (D)[I']) is torsion [Anderson and Chang 2004, Theorem 5]. Hence
char(D) # 0 [Chang et al. 2012, Lemma 2.7]. This shows that the condition that
char(D) # 0 is essential in Corollary 1.5.

(3) Itis known that a generalized unique factorization domain (GUFD) is a weakly
factorial GCD-domain [Anderson et al. 1995, Theorem 7], and hence integrally
closed. (See [Anderson et al. 1995] for the definition and some characterizations
of a GUFD.) Thus, if I" is a numerical semigroup with I' C Ny, then D[I'] is not
a GUFD by (1). In fact, D[I'] is not integrally closed; so D[I'] is never a GUFD.

2. Weakly Krull domains and the ring D + E[I'*] when D C E

For a domain A, Spec(A) stands for the set of prime ideals of A. Assume that
D C E is an extension of integral domains, I" is a numerical semigroup with I' C Ny
andlet R=D+ E[T*], T =D+ XE[X], T, =D+ X"E[X] and A, = {0} U
{m € Ny | m > n} for integers n > 2. Note that D[['] C R C T and T,, C T. In this
section, we characterize when the domains R and 7,, are weakly Krull domains,
AWFDs or GWFDs. To do this, we need two lemmas.

Lemma 2.1. Let R=D+ E[I"™]and T = D+ XE[X]. If Q is a prime ideal of
R, then there exists a unique prime ideal of T lying over Q. Thus the natural map
¢ : Spec(T) — Spec(R), given by P +— P N R, is an order-preserving bijection. In
particular, htp (X E[X]) =htg (E[T"*]).

Proof. Let Q be a prime ideal of R. Since T is an integral extension of R, there
exists a prime ideal P of T such that Q = P N R [Kaplansky 1970, Theorem 44].
Note that E[T"*] C Q if and only if XE[X] C P. If E[T"*] C Q, then P is the
unique prime ideal of T lying over Q because R/XE[X] = D = R/E[T*]. If
E[T*] € Q, then XFFL £ & O for some f € E[X]; so

XF(F)-Hfg

8= xrmmwiyp < Ro

for any g € T. Hence Torynr = Rg. Thus QR N T is the unique prime ideal of
T lying over Q. O

Let n be an integer > 2. Then it is clear that if ' = A,,, then R = T,,. Hence
Lemma 2.1 also shows that hty (X E[X]) =ht7, (X" E[X]).

Remark 2.2. LetI' ={oq, ..., 0,}JUArm)1 Withl <oy <--- <o, < F(I') +1
and R=D + E[I'*].
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(1)Let g € (R: E[T*]). Then gE[I'*] C R; hence for each ¢ € I'*, g X% =a, + fy
for some a, € D and f, € E[I"*]. Therefore gX"‘JFF(F) = (aa-l—fa)XF(r) € R, which
means that a, =0. Hence g X% = f, € E[I"*], andso g € ﬂaer*{%f | feE[T*]}.
The reverse containment is obvious. Thus we have

1
(R:E) = N {351/ Er}.

ael™
(2) Tt is clear that E[T'] C (R : E[T'*]) because XF™ e (R : E[T'*]) \ E[T]. Let
g € (R: E[T*]). Then X¥M+lg ¢ R; so we can write

XF(F)-‘rlg — i: giXai + XF(F)-‘Flh
i=0

for some g; € E and h € E[X]. (For the sake of convenience, set og = 0.). Fix a
k €{l,...,n}. Then we have X2F(-at+lg — Zf':ol g XFDtaimax 4 o ¥ F(T) 4
XF(F)+1(Z?:k+1 giX“i_“k_1+h) €R;sogr=0forallk=1, ..., n. Also, we have
XFO+20 — o0 X + XFD+2) € R; so gg = 0. Therefore XFM+lg = xFO+1y
and hence g = h € E[X]. Thus E[I'] C (R : E['*]) € E[X]. In particular, if
I' = Apr)+1, then E[X] C (R : E[I'*]); so (R : E[T'*]) = E[X].
(3) Lemma 4.2 of [Anderson et al. 2006] cannot be extended to any proper numer-

ical semigroup, i.e., it may happen that (R : E[T"*]) C E[X] for some I' C Ny. For
instance, if ' = {2} U A4, then X € E[X]\ (R : E[T*]).

Lemma 2.3. The following statements hold for R = D + E[T"*].
(1) E[T*] is a prime t-ideal of R.
(2) E[T'*] is a maximal t-ideal of R if and only if qf (D) N E = D.
Proof. (1) LetI' ={aj, ..., x}UAFprm)+1 suchthat O <oy < - - - <o < F(I') + 1.

Since R/E[I'*] = D, E[I'*] is a prime ideal of R. It suffices to show that E[I"*]
is a v-ideal of R, because each v-ideal is a ¢-ideal.

Case 1. {1, ..., g} is empty. In this case, (R : E[["*]) = E[X] by Remark 2.2(2);
so we need to show that (R : E[X]) = E[T"*]. It is clear that E[I"*] C (R : E[X]).
For the converse, let f € (R : E[X]). Then fE[X]C R. Since 1 € E[X], f € R.
Also, since X € E[X], f(0)=0;s0 f € E[T"*].

Case 2. {1, ..., o} is nonempty. Deny the conclusion, and then there exists a
polynomial g = go + Zf:l 8o, X% + Zi:F(l")—H gi X' e (E[T*]), \ E[T"*]. Hence
g(R:E[l'*]) CR. Let f € (R: E[T"*]). Then f € E[X] by Remark 2.2(2); so we
can write f =) "', f;X'. Note that

ap—1

i=1
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for some h; € E[X]. Since fge Rand go #0, f1i == f4,-1 =0; 50 f =
fo+ Z;":al fiX". Note that 2y € I'*; so 2y > F(I') + 1 or 2y = «,, for some

pe{2,...,k}. If 20y = F(I') + 1, then we have

ar—1

f&=jogo+ (foga + for ) X*' +g0 3. 1 [iX' 4+ (fo8ar + fur 8D X + X iy
=+

for some h; € E[X]. Again, since fg € R, fo,+1 =+ = fu,—1 = 0. By repeating

this process, we have f; = 0 for all i € Ny \ I', and hence f € R. Therefore

(R : E[T*]) = R. However, this is impossible because X" e (R : E[T'*]) \ R.

If 20y = «, for some p € {2, ..., k}, a simple modification of the proof of the

previous case leads to the same conclusion because 2« > F(I') + 1 for some [ <k.

In either case, E[I"*] is a v-ideal, and thus E[I"*] is a #-ideal of R.
(2) This appears in [Lim 2012, Lemma 1.2]. U

Now, we are ready to give a necessary and sufficient condition for the domain
R to be a weakly Krull domain.

Theorem 2.4. Let R= D+ E[I'*], T = D+ XE[X], T, = D+ X"E[X] and
A, ={0}U{m € Ng | m > n} for integers n > 2. Then the following statements are
equivalent.

(1) R is a weakly Krull domain.
(2) T is a weakly Krull domain.
(3) T, is a weakly Krull domain.

4) X"E[X] is a height-one maximal t-ideal of T,, and E[A,] is a weakly Krull
domain.

(5) Ep\(oy is afield, qf (D) NE = D and E[X] is a weakly Krull domain.

Proof. (2) = (1) Let T be a weakly Krull domain. LetI' = {a1, ..., ax JUA p(r)41
be such that 0 < oy < -+ <o < F(I') + 1. Then T = (\p.y1(r) Tp and this
intersection has finite character. Note that X F[X] is a height-one prime ideal of T
[Anderson et al. 2006, Theorem 3.4]; so E[I"*] is a height-one prime ideal of R by
Lemma 2.1. We claim that R ={") pqgex! (r) Rpnr, where P ranges over all height-
one prime ideals of T. Suppose to the contrary that there exists an element f in
(prrexi(r) Rpar \ R. Note that f € T, and hence we can write f = Yo fiXE
Then there exists a polynomial g € R\ E[T"*] such that fg € R. Since g(0) # 0,
the same argument as in the proof of Lemma 2.3(1) shows that f € R, which
contradicts the choice of f. Thus the equality holds. Since T = (") p.x1 (7 Tp has
finite character, it is clear that the intersection R = [)pn~gexi(r) Rpnr also has
finite character. Thus R is a weakly Krull domain.

(2) = (3) This implication was already shown in the proof of (2) = (1).
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(3) = (4) Assume that 7}, is a weakly Krull domain. Then #-dim(7,,) =1 [Anderson
etal. 1992, Lemma 2.1]; so X" E[X] is a maximal ¢-ideal of 7,, by Lemma 2.3(1).

Let S ={X" |m € A,)}. Then E[A,]s = E[X, X~ '1=(T},)s is a weakly Krull
domain [Anderson et al. 1993, Proposition 4.7]. Note that X E[X] is a height-one
prime ideal of E[X]; so X"E[X] is a height-one prime ideal of E[A,] [Chang
et al. 2012, Proposition 1.1]; so E[A,]lx»g[x] is a one-dimensional quasi-local
domain. Hence E[A,]x»g[x] is a weakly Krull domain. We claim that E[A,] =
E[An]s N E[An]an[X]. Let f = fo + Zfl:n fiXi and h = h() + Ziq:n h,‘Xi be
nonzero elements of E[A,] with 2(0) # 0 and let g = Z?:o giX' € E[X]\ {0}
with g(0) # 0 satisfying % = % € E[A,]ls N E[An]x»Erx) for some nonnegative
integer m. Then X™ f = gh; so m = 0. By comparing coefficients of f and g#, it
is easy to see that g; =0 foralli =1,...,n— 1. Hence % € E[A,]. The reverse
inclusion is clear. Thus E[A,] is a weakly Krull domain.

(4) = (5) By [Zafrullah 2003, Lemma 2.6], ht7 (X E[X]) =dim(Ep\(0)[X]). By
(4), htr, (X" E[X]) = 1; so the comment before Remark 2.2 establishes that

dim(ED\{()} [X]) =1.

Thus Ep\ (o) is a field. Also, since X" E[X]is a maximal z-ideal of T;,, ¢ f (D)NE =
D by Lemma 2.3(2). Finally, it follows directly from Theorem 1.3 that E[X] is a
weakly Krull domain.

(5) = (2) [Anderson et al. 2006, Theorem 3.4].

(1) = (2) In the proof of (2) < (4), the integer n > 2 was arbitrary; so it suf-
fices to show that XFM+1E[X] is a height-one maximal ¢-ideal of T4+ and
E[AFry+1] is a weakly Krull domain. Assume that R is a weakly Krull domain.
Since ¢t-dim(R) = 1 [Anderson et al. 1992, Lemma 2.1], E[T"*] is a height-one
maximal z-ideal of R by Lemma 2.3(1); so X ™+ E[X] is a height-one maximal
t-ideal of Tay,,, by Lemma 2.1 and the remark before Remark 2.2. Let §; =
{XY|a € Apqy+1} and S = {X* | € T'}. Then E[AFpry+1ls, = Ry, is a weakly
Krull domain [Anderson et al. 1993, Proposition 4.7]. Also, E[Apry+1]xro+igrx)
is a weakly Krull domain because it is one-dimensional quasi-local. Note that
E[Arm)+1] = E[AFT)+1]s, N E[AFT)+1]xF0+1 g[x) @s in the proof of (3) = (4).
Thus E[AFry+1]is a weakly Krull domain. O

Corollary 2.5. Let R= D+ E[I'], T = D+ XE[X], T, = D+ X"E[X] and
A, ={0}U{m € Ng | m > n} for integers n > 2. If char(E) # 0, then the following
statements are equivalent.

(1) R is an AWFD.

(2) R isa GWFD.

(3) T is an AWFD.
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@4) T isa GWFD.
(5) T, is an AWFD.
(6) T, is a GWFD.

(7) X"E[X]isamaximalt-ideal of T,,, E]A,] is an AWFD and for eachO#e <€ E,
there exist an integer m = m(e) > 1 and a unit u of E such that ue™ € D.

(8) X"E[X]is amaximal t-ideal of T,,, E|A,] is a GWFD and for eachO#e € E,
there exist an integer m = m(e) > 1 and a unit u of E such that ue™ € D.

) qf(D)NE = D, E[X] is an AWFD and for each 0 # e € E, there exist an
integer m = m(e) > 1 and a unit u of E such that ue™ € D.

(10) gf(D)NE = D, E[X] is a GWFD and for each 0 # e € E, there exist an
integer m = m(e) > 1 and a unit u of E such that ue™ € D.

Proof. (1) = (2) and (5) = (6) Their definitions lead to these implications.
(3) & (9) [Anderson et al. 2006, Theorem 3.5].

(4) & (10) [Anderson and Chang 2007, Corollary 2.10].

(7) < (8) and (9) < (10) See Corollary 1.5.

(7) < (9) This equivalence follows from Corollary 1.5 and Lemma 2.3(2).

(3) = (1) Assume that T is an AWFD. Then T is a weakly Krull domain [Anderson
etal. 1992, Theorem 3.4]. Hence E[X] is a weakly Krull domain by Theorem 2.4.
Let S = {X™ | m € Np}. Since X is a prime element of E[X], CI(E[X]) = CI(T5s)
is torsion [Anderson et al. 1993, Corollary 4.9]; so E[X] is an AWFD [Anderson
et al. 1992, Theorem 3.4]. Let f € R\ {0}. Then there exists an integer m > 1
such that f™ = X' f| - .- f, for some nonnegative positive integer / and primary
elements fi, ..., f, of E[X] with nonzero constant terms. Also, since char(E) #0,
there exists an integer k > F(I') + 1 such that fik e E[T]foralli=1,...,r;so
frk=xlk k... fke E[T]. Fix ani € {1,...,r}, and we claim that vf* E[T] is
a prime ideal of E[I'] [Anderson et al. 2003b, Lemma 2.1]. Note that /f; E[X] =
v fl.k E[X]. If v fi"E [X]= X E[X], then an easy calculation using a similar method
as in the proof of (2) = (1) in Theorem 2.4 shows that «/fikE[F] = E[l'*]isa
prime ideal. Assume that vfXE[X] # X E[X]. Since f;(0) #0, fFE[X, X~ '] is
a primary ideal of E[X, X~ 1; so fi"E[X, XN E[]is primary in E[I"]. It is
easy to see that vVfFE[X, X~'1N E[I'] = vfFE[T']. Hence VfFE[T'] is a prime
ideal. Therefore we may assume that fj, ..., f, are primary elements of E[I']
with nonzero constant terms and write f™ = X' f; --- f, as above. Note that for

eachi=1,...,r, there exist a unit ; of E and an integer a; > F(I") 4+ 1 such that
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u; fi(0)% € D as in the proof of (3) < (9); so u; i € R. Let

dy

_ ~_ 4 d _
a=ay---a, a=—, and w=u{---uy.

ai
Then uf™" = X (uy f{)% - - (u, £9)% and v/ (u; f)% E[T] = /f; E[T'] for each
i=1,...,r. Since t-dim(E[T']) = 1, (uifl.a")diE[F] is a primary ideal of E[I']
[Anderson et al. 2003b, Lemma 2.1] foreach 1 <i <r.
Claim. Foreach1 <i <r, (u,-]‘l.ai)‘ffR is a primary ideal of R.

Proof. Note that (ul-fl.“")d" € Rand fix ani € {1,...,r}. We also note that ¢-
dim(R) = 1 because R is a weakly Krull domain by Theorem 2.4. Hence, by
[Anderson et al. 2003b, Lemma 2.1], it suffices to show that v/ (u; fia" )% R is a prime
ideal of R. If v/ (uifl.“")“iE[F] = E[I'*], then it is easy to see that v/ (uifl.“")“f =
E[l'*] is a prime ideal of R. Assume that \/(ui]‘i“i)“iE[F] # E[T*]. Then
(u; £;(0)%)% # 0. Now, we show that (u; )% E[X, X"'IN R = (u; f*)% R. Let
he (uifl.“")‘iiE[X, X~'1N R. Note that we have

i [fYYEX, XN RC (u £ E[X, X 'INE[T]
= (u; f)FE[T]

by adapting the proof of (2) = (1) in Theorem 2.4. So, we can write & = (u; ]“iai)éi g
for some g € E[I']. Then

i £ (0))
g0) = W

by Theorem 2.4; so g € R. Therefore h € (u; fl.“")‘i" R, and hence

€qf(D)NE=D

(ui]‘i“i)diE[X, X"NNRC (uif;'ai)diR.

The reverse inclusion is clear, and hence (u; f{)% E[X, X"'IN R = (u; f)%R.
Since (u; f)% E[T'] is a primary ideal of E[T], (u; f/)% E[X, X~'] is a primary
ideal of E[X, X ~']. Therefore ~/ (u; £")% R =~/(u; f")% E[X, X"'INR is a prime
ideal of R, and thus (u; fia")‘i" R is a primary ideal of R. The claim is proved. [

If I =0, then uf (0)* = (uy f1(0)*) - - (u, £,(0)*)% € D; so u is a unit of
D because u is a unit of E. If I > 1, then " = u=' X (uy )41 - - (u, f2)4r.
Since u~!X“ E[T'] is a primary ideal of E[T'], u~' X% R is a primary ideal of R
by imitating the previous proof. Hence f“" is a product of primary elements of
R, and thus R is an AWFD.

(2) = (8) Assume that R is a GWFD and fix an integer n > 2. Then R is a weakly
Krull domain [Anderson et al. 2003b, Corollary 2.3]; so X" E[X] is a height-one
maximal ¢-ideal of 7, by Theorem 2.4.
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Next, we claim that E[A,] is a GWFD. Let S = {X" | m € A,} and S, =
{X"™|meTl}. Then E[A,]s, = E[X, X = Rs, is a GWFED. Let Q be a nonzero
prime ideal of E[A,]. If O N S| # @, then Q contains a primary element X" of
E[A,]. If NS =2, then QE[A,]s, is a prime ideal of E[A,]s,; so QE[A,]s,
contains a primary element f € E[X, X~']. Note that X is a unit of E[X, X~']
and f* € E[A,] for some integer k > 1 because char(E) # 0; so we may assume
that f € E[A,] with f(0) # 0. Then

fE[An] - fE[An]S1 mE[An] C QE[An]S1 r-]E[An] = Q;

so Q contains a primary element f. Hence E[A,] is a GWFD.

In order to check the final condition, let e € E \ {0}. If e is a unit of E, then we
have nothing to prove. So, we assume that e is not aunitof £ andleth =e+ X €
E[X]. Since c(h), = E, hE[X] = hqf(E)[X] N E[X] [Anderson and Chang
2007, Lemma 2.1(1)]; so R E[X] is a height-one prime ideal. Let P =hE[X] N R.
Since e is not a unit of E, XFM+! ¢ P: so X* ¢ P for all « € I'. Therefore
hE[X, X~']1= PRs, C Rs,, and hence htg(P) = 1. Since R isa GWFD, P = /gR
for some primary element g € R [Anderson et al. 2003b, Theorem 2.2]. Suppose
to the contrary that g(0) = 0. Since Ep\(g) is a field by Theorem 2.4, % = %
for some 0 #d € D and ¢ € E; so ¢h =d +¢'X € T. Since char(E) # 0,
(¢’h)* € hE[X]1N R = P for some integer k > 1. Hence (¢/h)*' € gR for some
integer [ > 1. However, this is impossible because e 7# 0. Therefore g(0) #£ 0. It is
clear that gRg, is a primary ideal of Rg,, gRs, N E[X] = gE[X], PRs, = \/gRs,
and PRg, N E[X] = hE[X]. Hence gE[X] is a hE[X]-primary ideal. Therefore
g = uh™ for some u € gf (E) and some integer m > 1; so ue” = g(0) € D. Thus
u is a unit of E.

(3) = (5) and (6) = (8) These implications can be obtained by applying I' = A,
to the proofs of (3) = (1) and (2) = (8), respectively. U

We are closing this paper by showing that R = D + E[I"*] is never a WFD and
the assumption “char(E£) = 0” is essential in Corollary 2.5.

Remark 2.6. Assumethat R=D+E[I"*]isa WFDoran AWFD. Leth=1+X €
E[X], P=hE[X]NR and let M be a maximal 7-ideal of R. If M = E[I"*], then
PRy = Ry because 1 4+ (—1)FO xFO+1 ¢ p\ E[T*]. Assume that M # E[T"'*].
Since c(h)y =E, hqf(E)[X]NE[X]=hE[X][Anderson and Chang 2007, Lemma
2.1(1)]. Let S={X™ |m eT}. Then PE[X, X~'1=hE[X, X '];50 PRyy=hRy
is principal. Hence P is ¢-locally principal, and thus P is ¢-invertible [Anderson
et al. 1992, Lemma 2.2].

(1) If R is a WFD, then P = gR for some g € R with g(0) # 0 [Anderson and
Zafrullah 1990, Theorem]. Note that hE[X, X~ '] = gE[X, X~!]; so g = uh for
some unit u of E. Hence uh € R, which is impossible. Thus R is not a WFD.
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(2) Assume that R is an AWFD. Then P" = gR for some integer m > 1 and g € R
with g(0) # 0 [Anderson et al. 1992, Theorem 3.4]. We note that

W"E[X, X '1=gE[X, X" '];

so uh™ = g for some unit u of E. Hence uh™ € R. However, this can not happen
if char(E) = 0. Thus R is never an AWFD whenever char(E) = 0.
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