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In this paper, we prove a sharp lower bound of the first (nonzero) eigen-
value of the anisotropic Laplacian with the Neumann boundary condition.
Equivalently, we prove an optimal anisotropic Poincaré inequality for con-
vex domains, which generalizes the classical result of Payne and Weinberger.
A lower bound of the first (nonzero) eigenvalue of the anisotropic Laplacian
with the Dirichlet boundary condition is also proved.

1. Introduction

In this paper we are interested in studying the eigenvalues of the anisotropic Lapla-
cian Q, which is a natural generalization of the ordinary Laplacian 1. We say that
F is a norm on Rn if F : Rn

→ [0,+∞) is a convex function of class C1(Rn
\{0}),

which is even and positively 1-homogeneous, that is,

F(tξ)= |t |F(ξ) for any t ∈ R, ξ ∈ Rn,

and

F(ξ) > 0 for any ξ 6= 0.

A typical norm on Rn is F(ξ)= (
∑n

i=1 |ξi |
q)1/q for q ∈ (1,∞). The anisotropic

Laplacian (or Finsler–Laplacian) of u : Rn
→ R is defined by

(1) Qu(x) :=
n∑

i=1

∂

∂xi

(
F(∇u(x))Fξi (∇u(x))

)
, x ∈ Rn,

where

Fξi (ξ)=
∂F
∂ξi
(ξ) and ∇u(x)=

(
∂u
∂x1

(x), . . . , ∂u
∂xn

(x)
)
.

When F(ξ) = |ξ | = (
∑n

i=1 |ξi |
2)1/2, the anisotropic Laplacian Q = 1, the usual

Laplacian. Note that, in this paper, we use ξ ∈Rn for F and x ∈Rn for functions u.
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The anisotropic Laplacian has been studied by many mathematicians, in the
context of both Finsler geometry (see, for example, [Amar and Bellettini 1994; Ge
and Shen 2001; Ohta 2009; Ohta and Sturm 2011; Shen 2001]) and quasilinear
PDE (see, for example, [Alvino et al. 1997; Belloni et al. 2003; Ferone and Kawohl
2009; Wang and Xia 2011b; 2011a; 2012]). Particularly, many problems related
to the first eigenvalue of the anisotropic Laplacian have already been considered
in [Belloni et al. 2003; Ge and Shen 2001; Kawohl 2011; Ohta 2009; Wang and
Xia 2011a]. In this paper we investigate the estimates of the first eigenvalue of the
anisotropic Laplacian.

Let � be a smooth bounded domain in Rn and ν the outward normal unit vector
of its boundary ∂�. The first (nonzero) eigenvalue λ1 of the anisotropic Laplacian
Q is defined by the smallest positive constant such that there exists a nonconstant
function u satisfying

(2) −Qu = λ1u in �

with the Dirichlet boundary condition

(3) u = 0 on ∂�

or the Neumann boundary condition

(4) 〈Fξ (∇u), ν〉 = 0 on ∂�.

We call λ1 the first Dirichlet eigenvalue (respectively the first Neumann eigenvalue)
and denote it by λD

1 (respectively λN
1 ). Here 〈Fξ (∇u), ν〉 =

∑n
i=1 Fξi (∇u)νi and

ν = (ν1, . . . , νn). Equation (4) is a natural Neumann boundary condition for the
anisotropic Laplacian. When F(ξ)= |ξ |, 〈Fξ (∇u), ν〉 = ∂u/∂ν.

The first (nonzero) Dirichlet (respectively Neumann) eigenvalue can be formu-
lated as a variational problem by

λD
1 (�)= inf

{∫
�

F2(∇u) dx∫
�

u2 dx

∣∣∣∣ 0 6= u ∈W 1,2
0 (�)

}
.(5)

λN
1 (�)= inf

{∫
�

F2(∇u) dx∫
�

u2 dx

∣∣∣∣ 0 6= u ∈W 1,2(�),

∫
�

u dx = 0
}
.(6)

Therefore obtaining a sharp estimate of first eigenvalue is equivalent to obtaining
the best constant in Poincaré type inequalities.

We remark that Equation (2) should be understood in a weak sense, that is,∫
�

n∑
i=1

∂

∂ξi

( 1
2 F2)(∇u)ϕi dx =

∫
�

λ1uϕ dx for any ϕ ∈ C∞0 (�).
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Finding a lower bound for the first eigenvalue is always an interesting problem.
In [Belloni et al. 2003; Ge and Shen 2001], the authors proved the Faber–Krahn
type inequality for the first Dirichlet eigenvalue of the anisotropic Laplacian. A
Cheeger type estimate for the first eigenvalue of the anisotropic Laplacian involving
the isoperimetric constant was also obtained there. In this paper, we are interested
in the Payne–Weinberger type sharp estimate [Payne and Weinberger 1960] of the
first eigenvalue in terms of some geometric quantity, such as the diameter with
respect to F .

Before stating our main result, we need to introduce some concepts and definitions.
We say that ∂� is weakly convex if the second fundamental form of ∂� with respect
to the inward normal is nonnegative definite. We say that ∂� is F-mean convex if
the F-mean curvature HF is nonnegative. For the definition of F-mean curvature,
see Section 2.

There is another convex function F0 related to F , which is defined to be the
support function of K := {x ∈ Rn

: F(x) < 1}, namely,

F0(x) := sup
ξ∈K
〈x, ξ〉.

It is easy to verify that F0
: Rn
7→ [0,+∞) is also a convex, even, 1-positively,

homogeneous function. Actually F0 is dual to F (see, for instance, [Alvino et al.
1997]) in the sense that

F0(x)= sup
ξ 6=0

〈x, ξ〉
F(ξ)

and F(x)= sup
ξ 6=0

〈x, ξ〉
F0(ξ)

.

Hence the Cauchy–Schwarz inequality holds in the sense that

(7) 〈ξ, η〉Rn ≤ F(ξ)F0(η).

We call Wr (x0) := {x ∈ Rn
| F0(x − x0)≤ r} a Wulff ball of radius r with center at

x0. We say γ : [0, 1] →� a minimal geodesic from x1 to x2 if

dF (x1, x2) :=

∫ 1

0
F0(γ̇ (t)) dt = inf

∫ 1

0
F0( ˙̃γ (t)) dt,

where the infimum takes on all C1 curves γ̃ (t) in � from x1 to x2. In fact γ is
a straight line and dF (x1, x2) = F0(x2 − x1). We call dF (x1, x2) the F-distance
between x1 and x2.

Now we can define the diameter dF of � with respect to the norm F on Rn as

dF := sup
x1,x2∈�

dF (x1, x2).

In the same spirit we define the inscribed radius iF of � with respect to the norm
F on Rn as the radius of the biggest Wulff ball that can be enclosed in �.
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Our main result is the following.

Theorem 1.1. Let � be a smooth bounded domain in Rn and F ∈ C1(Rn
\ {0}) a

norm on Rn . Let λN
1 be the first Neumann eigenvalue of the anisotropic Laplacian

(1). Assume that ∂� is weakly convex. Then λN
1 satisfies

(8) λN
1 ≥

π2

d2
F
.

Moreover, equality holds in (8) if and only if n = 1, and hence � is a segment.

Estimate (8) for the Neumann boundary problem is optimal. This is in fact
a generalization of the classical result of Payne and Weinberger [1960] on an
optimal estimate of the first Neumann eigenvalue of the ordinary Laplacian. See
also [Bebendorf 2003]. There are many interesting generalizations. Here we just
mention its generalization to Riemannian manifolds, since we will use the methods
developed there. It should also be interesting to ask if the methods of [Payne and
Weinberger 1960] and [Bebendorf 2003] work to reprove our result, since there are
lots of motivations in computational mathematics.

For a smooth compact n-dimensional Riemannian manifold (M, g) with nonneg-
ative Ricci curvature and diameter d, possibly with boundary, the first Neumann
eigenvalue λ1 of the Laplace operator 1 is defined to be the smallest positive
constant such that there is a nonconstant function u satisfying

−1u = λ1u in M

with
∂u
∂ν
= 0 on ∂M,

if ∂M is not empty, where ν denotes the outward normal of ∂M . The fundamental
work in [Li 1979; Li and Yau 1980; Zhong and Yang 1984] gives us the following
optimal estimate

(9) λ1 ≥
π2

d2 ,

where d is the diameter of M with respect to g. Li and Yau [1980] derived a gradient
estimate for the eigenfunction u and proved that λ1 ≥ π

2/(4d2), and Li [1979] used
another auxiliary function to obtain a better estimate λ1≥π

2/(2d2). Finally, Zhong
and Yang [1984] were able to use a more precise auxiliary function to get the sharp
estimate λ1 ≥ π

2/d2, which is optimal in the sense that the lower bound is achieved
by a circle or a segment. Recently Hang and Wang [2007] proved that equality (9)
holds if and only if M is a circle or a segment. For related work see [Kröger 1992;
Chen and Wang 1997; Bakry and Qian 2000]. These results were generalized to
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the p-Laplacian in [Valtorta 2012] and to the Laplacian on Alexandrov spaces in
[Qian et al. 2012].

For the Dirichlet problem we have the following.

Theorem 1.2. Let � be a smooth bounded domain in Rn and F ∈ C1(Rn
\ {0})

a norm on Rn . Assume that λD
1 is the first Dirichlet eigenvalue of the anisotropic

Laplacian (1). Assume further that ∂� is F-mean convex. Then λN
1 satisfies

(10) λD
1 ≥

π2

4i2
F
.

Estimate (10) is by no means optimal.
Our idea to prove the result on the Dirichlet eigenvalue is based on the gradient

estimate technique for eigenfunctions from [Li 1979; Li and Yau 1980]. This
idea also works for the first Neumann eigenvalue to get a rough estimate, say
λN

1 ≥ π
2/(2d2

F ). However, for getting the sharp estimate of the first Neumann
eigenvalue (8), the method of Zhong and Yang seems hard to apply. Instead, we
adopt the technique based on gradient comparison with a one dimensional model
function, which was developed in [Kröger 1992] and improved in [Chen and Wang
1997; Bakry and Qian 2000]. Surprisingly, we find that the one dimensional model
coincides with that for the Laplacian case. In fact, this must be the case because
when we consider F in R, it can only be F(x)= c|x | with c > 0, a multiple of the
standard Euclidean norm. In order to get the gradient comparison theorem, we need
a Bochner type formula (13), a Kato type inequality (14), and a refined inequality
(15), which was referred to as the “extended curvature-dimension inequality” in
the context of [Bakry and Qian 2000]. Interestingly, the proof of these inequalities
sounds more “natural” than the proof of their counterpart for the usual Laplace
operator. These inequalities may have their own interest. Another difficulty we
encounter is handling the boundary maximum due to the different representation
of the Neumann boundary condition (4). We find a suitable vector field V (see
its explicit construction in Section 3) to avoid this difficulty. With the gradient
comparison theorem, we are able to follow step by step the argument in [Bakry and
Qian 2000] to get the sharp estimate. The proof for the rigidity part of Theorem 1.1
closely follows [Hang and Wang 2007]. Here we need to pay more attention to the
points with vanishing |∇u|.

A natural question arises of whether one can generalize Theorem 1.1 to manifolds.
The anisotropic Laplacian with the norm F does not have a direct generalization
to Riemannian manifolds. However, it has a (natural) generalization to Finsler
manifolds. In fact, Rn with F can be viewed as a special Finsler manifold. On
a general Finsler manifold, there is a generalized anisotropic Laplacian; see for
instance [Ge and Shen 2001; Ohta 2009; Shen 2001]. A Lichnerowicz type result for
the first eigenvalue of this Laplacian was obtained in [Ohta 2009] under a condition
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on some kind of new Ricci curvature RicN , N ∈ [n,∞]. A Li–Yau–Zhong–Yang
type sharp estimate, that is, a generalization of Theorem 1.1 for this generalized
Laplacian on Finsler manifolds would be a challenging problem. We will study this
problem in a forthcoming paper.

The paper is organized as follows. In Section 2, we give some preliminary
results on 1-homogeneous convex functions and the F-mean curvature, and prove
useful inequalities. In Section 3 we prove the sharp estimate for the first Neumann
eigenvalue and classify the equality case. We handle the first Dirichlet eigenvalue
in Section 4.

2. Preliminary

Without loss of generality, we may assume that F ∈C3(Rn
\{0}) and F is a strongly

convex norm on Rn , that is, F satisfies

Hess(F2) is positive definite in Rn
\ {0}.

In fact, for any norm F ∈ C1(Rn
\ {0}), there exists a sequence Fε ∈ C3(Rn

\ {0})
such that the strongly convex norm F̃ε :=

√
F2
ε + ε|x |2 converges to F uniformly

in C1
loc(R

n
\ {0}). Then the corresponding first eigenvalue λε1 of the anisotropic

Laplacian with respect to F̃ε converges to λ1 as well. Here | ·| denotes the Euclidean
norm. Therefore, in the following sections, we assume that F ∈ C3(Rn

\ {0})
and F is a strongly convex norm on Rn . Thus (2) is degenerate elliptic among
� and uniformly elliptic in � \C, where C := {x ∈ � | ∇u(x) = 0} denotes the
set of degenerate points. The standard regularity theory for degenerate elliptic
equations (see, for example, [Belloni et al. 2003; Tolksdorf 1984]) implies that
u ∈ C1,α(�)∩C2,α(� \C).

The following property is an obvious consequence of the 1-homogeneity of F .

Proposition 2.1. Let F : Rn
→ [0,+∞) be a 1-homogeneous function. Then the

following holds:

(i)
∑n

i=1 Fξi (ξ)ξi = F(ξ);

(ii)
∑n

j=1 Fξi ξ j (ξ)ξ j = 0 for any i = 1, 2, . . . , n. �

For simplicity, from now on we will follow the summation convention and
frequently use the notations F = F(∇u), Fi = Fξi (∇u), ui = ∂u/∂xi , ui j =

∂2u/(∂xi∂x j ), and so on. Denote

(11)
ai j (∇u)(x) := ∂2

∂ξi∂ξ j

( 1
2 F2)(∇u(x))= (Fi F j + F Fi j )(∇u(x)),

ai jk(∇u)(x) := ∂3

∂ξi∂ξ j∂ξk

( 1
2 F2)(∇u(x)).
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In the following we simply write ai j and ai jk if no confusion appears. With these
notations, we can rewrite the anisotropic Laplacian (1) as

(12) Qu = ai j ui j .

For the function 1
2 F2(∇u) we have a Bochner type formula.

Lemma 2.1 (Bochner formula). At a point where ∇u 6= 0, we have

(13) ai j
(1

2 F2(∇u)
)

i j

= ai j akluiku jl + (Qu)k
∂

∂ξk

( 1
2 F2)(∇u)− ai jl

∂

∂xl

( 1
2 F2(∇u)

)
ui j .

Proof. The formula is derived from a direct computation.

ai j (∇u)
( 1

2 F2(∇u)
)

i j

= ai j
∂

∂x j

(
∂

∂ξk

( 1
2 F2)(∇u)uik

)
= ai j

∂2

∂ξk∂ξl

( 1
2 F2)(∇u)uiku jl + ai j

∂

∂ξk

( 1
2 F2)(∇u)ui jk

= ai j akluiku jl +
∂

∂ξk

( 1
2 F2)(∇u)

(
∂

∂xk
(ai j ui j )−

(
∂

∂xk
ai j

)
ui j

)
.

Taking into account (12) and

∂

∂ξk

( 1
2 F2) ∂

∂xk
ai j = ai jl

∂

∂xl

( 1
2 F2(∇u)

)
,

we get (13). �

When F(ξ)= |ξ |, (13) is just the usual Bochner formula

1
21(|∇u|2)= |D2u|2+〈∇u,∇(1u)〉.

We have a Kato type inequality for the square of the “anisotropic” norm of the
Hessian.

Lemma 2.2 (Kato inequality). At a point where ∇u 6= 0, we have

(14) ai j akluiku jl ≥ ai j Fk Fluiku jl .

Proof. It is clear that

ai j akluiku jl−ai j Fk Fluiku jl =ai j F Fkluiku jl = F Fi F j Fkluiku jl+F2 Fi j Fkluiku jl .

Since (Fi j ) is positive definite, we know the first term

F Fi F j Fkluiku jl = F Fkl(Fi uik)(F j u jl)≥ 0.
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The second term Fi j Fkluiku jl is nonnegative as well. Indeed, we can write the
matrix (Fkl)k,l = OT3O for some orthogonal matrix O and diagonal matrix 3=
diag(µ1, µ2, . . . , µn) with µi ≥ 0 for any i = 1, 2, . . . , n. Set U = (ui j )i, j and
Ũ = OU OT

= (ũi j )i, j . Then we have

Fi j Fklul j uki = tr(OT3OU OT3OU )= tr(3OU OT3OU OT )

= tr(3Ũ3Ũ )= µiµ j ũ2
i j ≥ 0, �

When F(ξ)= |ξ |, (14) is the usual Kato inequality

|∇
2u|2 ≥ |∇|∇u||2.

The following inequality is crucial to apply the gradient comparison argument in
Section 3.

Lemma 2.3. At a point where ∇u 6= 0, we have

(15) ai j akluiku jl ≥
(ai j ui j )

2

n
+

n
n− 1

(
ai j ui j

n
− Fi F j ui j

)2

Proof. Let
A = Fi F j ui j and B = F Fi j ui j .

The right hand side of (15) equals

(A+B)2

n
+

n
n−1

( B
n
−

n−1
n

A
)2
= A2

+
1

n−1
B2.

The left hand side of (15) is

A2
+ 2F Fi F j Fkluiku jl + F2 Fi j Fkluiku jl .

Since (Fi j ) is semipositively definite, we know

F Fi F j Fkluiku jl = F Fkl(Fi uik)(F j u jl)≥ 0.

Using the same notations as in the proof of Lemma 2.2, we have

F2 Fi j Fkluiku jl = F2µiµ j ũ2
i j = F2µ2

i ũ2
i i + F2

∑
i 6=k

µiµk ũ2
ik ≥ F2µ2

i ũ2
i i ,

B = F Fi j ui j = tr(OT3OU )= tr(3OU OT )= µi ũi i .

We claim that (Fi j ) is a matrix of rank n − 1, that is, one of µi is zero. Firstly,
Fi j u j = 0. Secondly, for any nonzero V ⊥ Fξ (∇u), Fi j V i V j

= ai j V i V j > 0. The
claim follows easily. Thus the Hölder inequality gives

F2µ2
i ũ2

i i ≥
1

n−1
F2(µi ũi i )

2
=

1
n−1

B2. �
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When F(ξ)= |ξ |, (15) is

|∇
2u|2 ≥

(1u)2

n
+

n
n− 1

(
1u
n
−

ui u j ui j

|∇u|2

)2

.

We now recall the definition of F-mean curvature. Let � ⊂ Rn be a smooth
bounded domain whose boundary ∂� is an (n− 1)-dimensional, oriented, compact
submanifold without boundary in Rn . We denote by ν and dσ the outward normal
of ∂� and the area element, respectively. Let {eα}n−1

α=1 be a basis of the tangent
space Tp(∂�), and let gαβ = g(eα, eβ) and hαβ be the first and second fundamental
forms, respectively. ∂� is called weakly convex if (hαβ) is nonnegative definite.
Moreover, let (gαβ) be the inverse matrix of (gαβ) and ∇ the covariant derivative
in Rn . The F-second fundamental form hF

αβ and the F-mean curvature HF are
defined by

hF
αβ := 〈Fξξ ◦∇eαν, eβ〉 and HF =

n−1∑
α,β=1

gαβhF
αβ,

respectively. We call
−→
HF =−HFν the F-mean curvature vector (it is easy to check

that all definitions are independent of the choice of coordinates). ∂� is called
weakly F-convex (respectively F-mean convex) if (hF

αβ) is nonnegative definite
(respectively HF ≥ 0). It is well known that when we consider a variation of
∂� with variation vector field ϕ ∈ C∞0 (∂�,Rn), the first variation of the F-area
functional F(X) :=

∫
∂�

F(ν)dσ reads as

δϕF(X)=−
∫
∂�

〈
−→
HF , ϕ〉dσ.

It is easy to see from the convexity of F that hF
αβ being nonnegative definite is

equivalent to the ordinary second fundamental form hαβ being nonnegative definite.
In other words, there is no difference between weakly F-convex and weakly convex.
However, F-mean convex is different from mean convex. For more properties of
HF , we refer to [Wang and Xia 2011b] and the references therein. Here we will
use the following lemma, which interprets the relation between the anisotropic
Laplacian and the F-mean curvature of level sets of functions.

Lemma 2.4 [Wang and Xia 2011b, Theorem 3]. Let u be a C2 function with a
regular level set St := {x ∈� | u = t}. Let HF (St) be the F-mean curvature of the
level set St . We then have

Qu(x)=−F HF (St)+ Fi F j ui j =−F HF (St)+
∂2u
∂ν2

F

for x with u(x)= t , where νF := Fξ (ν)=−Fξ (∇u).
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We point out that we have used the inward normal in [Wang and Xia 2011b] and
there is an sign error in formula (5) there. Hence the term F HF (St) in formula (9)
there should be read as −F HF (St).

3. Sharp estimate of the first Neumann eigenvalue

It is well-known that the existence of the first Neumann eigenfunction can be
obtained from the direct method in the calculus of variations. We note that the first
Neumann eigenfunction must change sign, for its average vanishes.

In this Section we first prove the following gradient comparison theorem, which
is the most crucial part for the proof of the sharp estimate. For simplicity, we write
λ1 instead of λN

1 throughout this section.

Theorem 3.1. Let �, u, λ1 be as in Theorem 1.1. Let v be a solution of the 1-
dimensional model problem on some interval (a, b):

(16) v′′− T v′ =−λ1v, v′(a)= v′(b)= 0, v′ > 0

with T (t)=−(n− 1)/t or 0. Assume that [min u,max u] ⊂ [min v,max v]. Then

(17) F(∇u)(x)≤ v′
(
v−1(u(x))

)
.

Proof. First, since
∫

u=0, we know that min u<0 while max u>0. We may assume
that [min u,max u] ⊂ (min v,max v) by multiplying u by a constant 0< c < 1. If
we prove the result for this u, then, letting c→ 1, we have (17).

Under the condition [min u,max u] ⊂ (min v,max v), v−1 is smooth on a neigh-
borhood U of [min u,max u].

Consider P := ψ(u)( 1
2 F(∇u)2−φ(u)), where ψ, φ ∈ C∞(U ) are two positive

smooth functions to be determined later. We first assume that P attains its maximum
at x0 ∈ �. Then we consider the case where x0 ∈ ∂�. If ∇u(x0) = 0, P ≤ 0 is
obvious. Hence we assume ∇u(x0) 6= 0. From now on we compute at x0. As in
Section 2, we use the notation (11). Since x0 is the maximum of P , we have

Pi (x0)= 0,(18)

ai j (x0)Pi j (x0)≤ 0.(19)

Equality (18) gives

(20) ∂

∂xi

( 1
2 F2(∇u)−φ(u)

)
=−

ψ(u))i
ψ2 P, Fi F j ui j = φ

′
−
ψ ′

ψ2 P.

Then we compute ai j Pi j .

ai j Pi j =
P
ψ

ai j (ψ(u))i j +ψai j
∂

∂xi x j

( 1
2 F2(∇u)− (φ(u))

)
+ 2ai j (ψ(u))i

∂

∂x j

( 1
2 F2(∇u)−φ(u)

)
.
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It is easy to see from Proposition 2.1 that

(21) ∂

∂ξi

( 1
2 F2)(∇u)ui = F2(∇u), ai j ui u j = F2(∇u), ai jkuk = 0.

By using (20), (21), the Bochner formula (13), and eigenvalue equation (2), we get

(22) ai j Pi j

=

(
−λ1u

ψ ′

ψ
+F2ψ

′′

ψ
−2F2ψ

′2

ψ2

)
P+ψ(ai j akluiku jl−λ1 F2)+ψ(λ1uφ′−F2φ′′).

Applying Lemma 2.3 to (22), replacing F2 by 2P/ψ +φ, and using (20), (2), and
(19), we deduce

(23) 0≥ ai j Pi j

≥

(
−λ1u

ψ ′

ψ
+ F2ψ

′′

ψ
− 2F2ψ

′2

ψ2

)
P +ψ(λ1uφ′− F2φ′′)

+ψ

(
(ai j ui j )

2

n
+

n
n− 1

(
ai j ui j

n
− Fi F j ui j

)2

− λ1 F2
)

=
1
ψ

[
2
ψ ′′

ψ
− (4−

n
n− 1

)
ψ ′2

ψ2

]
P2

+

[
2φ
(
ψ ′′

ψ
− 2

ψ ′2

ψ2

)
−

n+ 1
n− 1

ψ ′

ψ
λ1u−

2n
n− 1

ψ ′

ψ
φ′− 2λ1− 2φ′′

]
P

+ψ
[ 1

n−1
λ2

1u2
+

n+1
n−1

λ1uφ′+ n
n−1

φ′2− 2λ1φ− 2φφ′′
]

:= a1 P2
+ a2 P + a3.

We are lucky to observe that the coefficients ai , i = 1, 2, 3, coincide with those
appearing in the ordinary Laplacian case; see, for example, [Bakry and Qian 2000,
Lemma 1]. The next step is to choose suitable positive functions ψ and φ such that
a1, a2 > 0 everywhere and a3 = 0, which has already be done in [Bakry and Qian
2000]. For completeness, we sketch the main idea here.

Choose φ(u)= 1
2v
′(v−1(u))2, where v is a solution of the 1-dimensional problem

(16). One can compute that

φ′(u)= v′′(v−1(u)), φ′′(u)= v
′′′

v′
(v−1(u)).

Setting t = v−1(u) and u = v(t), we have

a3(t)
ψ
=

1
n−1

λ2
1v

2
+

n+1
n−1

λ1vv
′′
+

n
n−1

v′′2− λ1v
′2
− v′v′′′

=−v′(v′′− T v′+ λ1v)
′
+

1
n−1

(v′′− T v′+ λ1v)(nv′′+ T v′+ λ1v)= 0.
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Here we have used the fact that T satisfies T ′= T 2/(n−1). For a1, a2, we introduce

X (t)= λ1
v(t)
v′(t)

, ψ(u)= exp
(∫

h(v(t))
)
, f (t)=−h(v(t))v′(t).

With these notations, we have

f ′ =−h′v′2+ f (T − X),

v′|2
v−1a1ψ = 2 f (T − X)− n−2

n−1
f 2
− 2 f ′ := 2(Q1( f )− f ′),

a2 = f
(3n−1

n−1
T − 2X

)
− 2T

( n
n−1

T − X
)
− f 2

− f ′ := Q2( f )− f ′.

We may now use [Bakry and Qian 2000, Corollary 3], which says that there
exists a bounded function f on [min u,max u] ⊂ (min v,max v) such that f ′ <
min{Q1( f ), Q2( f )}.

In view of (23), we know that, by our choice of ψ and φ, P(x0)≤ 0, and hence
P(x)≤ 0 for every x ∈�, which leads to (17).

Now we consider the case x0 ∈ ∂�. Suppose that P attains its maximum at
x0 ∈ ∂�. We introduce a new vector field V (x)= (V i (x))ni=1 defined on ∂� by

V i (x)=
n∑

j=1

ai j (∇u(x))ν j (x).

Because (ai j ) is positive, V (x) must point outward. Hence

∂P
∂V

(x0)≥ 0.

On the other hand, we see, from the Neumann boundary condition and homo-
geneity of F , that

∂u
∂V

(x0)= ui ai j (∇u(x))ν j
= F F jν

j
= 0.

Thus we have

(24) 0≤ ∂P
∂V

(x0)= ψF Fi ui j a jkν
k .

We now choose a local coordinate {ei }i=1,...,n around x0 such that en = ν and
{eα}α=1,...,n−1 is the orthonormal basis of the tangent space of ∂�. Denote by hαβ
the second fundamental form of ∂�. By the assumption that ∂� is weakly convex,
we know the matrix (hαβ)≥ 0.

The Neumann boundary condition implies that

(25) Fiν
i (x0)= Fn(x0)= 0.
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By taking the tangential derivative of (25), we get

Deβ

( n∑
i=1

Fiν
i
)
(x0)= 0

for any β = 1, . . . , n− 1. Computing Deβ (
∑n

i=1 Fiν
i )(x0) explicitly, we have

(26) 0= Deβ

( n∑
i=1

Fiν
i
)
(x0)=

n∑
i, j=1

Fi j u jβν
i
+

n∑
i=1

Fiν
i
β

=

n∑
i, j=1

Fi j u jβν
i
+

n∑
i=1

n−1∑
γ=1

Fi hβγ ei
γ

=

n∑
j=1

Fnj u jβ +

n−1∑
γ=1

Fγ hβγ .

In the last equality, we used νn = 1, and νβ = 0 for β = 1, . . . , n− 1 in the chosen
coordinate.

Combining (24), (25), and (26), we obtain

0≤ ∂P
∂V

(x0)=

n∑
i, j,k=1

ψF Fi ui j a jkν
k
= ψF

n−1∑
α=1

n∑
j=1

Fαuα j a jn

= ψF
n−1∑
α=1

n∑
j=1

Fαuα j F jn =−ψF
n−1∑
α,γ=1

FαFγ hαγ ≤ 0.

Therefore we obtain that (∂P/∂V )(x0)= 0. Since the tangent derivatives of P also
vanish, we have ∇P(x0)= 0. It is also the case that (19) holds. Thus the previous
proof for an interior maximum also works in this case. This finishes the proof of
Theorem 3.1. �

Following the idea from [Bakry and Qian 2000], besides the gradient comparison
with the 1-dimensional models, in order to prove the sharp estimate on the first
eigenvalue of the anisotropic Laplacian, we need to study many properties of the
1-dimensional models, such as the difference δ(a) = b(a)− a as a function of
a ∈ [0,+∞], where b(a) is the first number for which v′(b(a)) = 0 (Note that
v′ > 0 in (a, b(a))). As we already saw in Theorem 3.1, the 1-dimensional model
(16) appears the same as that in the Laplacian case. Therefore, we can directly use
the results of [Bakry and Qian 2000] on the properties of 1-dimensional models.
Here we use some simpler statement from [Valtorta 2012].

We define δ(a) as a function of a ∈ [0,+∞] as follows. On the one hand, we
denote δ(∞) = π/

√
λ1. This number comes from the 1-dimensional model (16)
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with T = 0. In fact, it is easy to see that solutions of (16) with T = 0 can be
explicitly written as

v(t)= sin
√
λ1t

up to dilations. Hence in this case, b(a)− a = π/
√
λ1 for any a ∈ R. On the

other hand, we denote δ(a)= b(a)− a as a function of a ∈ [0,+∞) relative to the
1-dimensional model (16) with T =−(n− 1)/x .

We have the following property of δ(a).

Lemma 3.1 [Bakry and Qian 2000; Valtorta 2012, Theorem 5.3, Corollary 5.4].
The function δ(a) : [0,∞]→ R+is a continuous function such that

δ(a) > π
√
λ1

and δ(∞)=
π
√
λ1
.

m(a) := v(b(a)) < 1, lima→∞m(a)= 1, and m(a)= 1 if and only if a =∞.

In order to prove the main result, we also need the following comparison the-
orem on the maximum values of eigenfunctions. This theorem is obtained as a
consequence of a standard property of the volume of small balls with respect to
some invariant measure; see [Bakry and Qian 2000, Section 6].

Lemma 3.2. Let �, u, λ1 be as in Theorem 1.1. Let v be a solution of the 1-
dimensional model problem on some interval (0,∞):

v′′ =−
n−1

t
v′− λ1v, v(0)=−1, v′(0)= 0.

Let b be the first number after 0 with v′(b) = 0 and denote m = v(b). Then
max u ≥ m.

The proof of Lemma 3.2 is similar to that of [Bakry and Qian 2000, Theorem 11].
The essential part is the gradient comparison theorem 3.1. We omit it here.

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let u be an eigenfunction with eigenvalue λ1. Since
∫

u = 0,
we may assume min u = −1 and 0 ≤ k = max u ≤ 1. Given a solution v to (16),
denote m(a)= v(b(a)) with b(a) the first number with v′(b(a))= 0 after a.

Lemmas 3.1 and 3.2 imply that for any eigenfunction u, there exists a solution v
to (16) such that min v =min u =−1 and max v =max u = k ≤ 1.

We now get the expected estimate by using Theorem 3.1. Choosing x1, x2 ∈�

with u(x1) = min u = −1, u(x2) = max u = k and γ (t) : [0, 1] → � the minimal
geodesic from x1 to x2. Consider the subset I of [0,1] such that (d/dt)u(γ (t))≥ 0.
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By the gradient comparison estimate (17) and Lemma 3.1, we have

dF ≥

∫ 1

0
F0(γ̇ (t)) dt ≥

∫
I

F0(γ̇ (t)) dt

≥

∫ 1

0

1
F(∇u)

〈∇u, γ̇ (t)〉 dt =
∫ k

−1

1
F(∇u)

du

≥

∫ k

−1

1
v′(v−1(u))

du =
∫ b(a)

a
dt = δ(a)≥ π

√
λ1
,

which leads to
λ1 ≥

π2

d2
F
.

It remains to prove the equality case. The idea of the proof follows from [Hang
and Wang 2007]. Here we must pay more attention to the points with vanishing ∇u.

Assume that λ1 = π
2/d2

F . It can be easily seen from the proof of Theorem 1.1
that a =∞, which leads to max u =max v = 1 by Lemma 3.1. We will prove that
� is in fact a segment in R. We divide the proof into several steps.

Step 1. S := {x ∈� | u(x)=±1} ⊂ ∂�.
Let P= F(∇u)2+ λ1u2. After a simple calculation using the Bochner formula

(13) and the Kato inequality (14), we obtain

1
2ai j Pi j = ai j akluiku jl −

1
2ai jlui j Pl − λ

2
1u2

≥ ai j Fk Fluiku jl −
1
2ai jlui j Pl − λ

2
1u2

=−
1
2ai jlui j Pl +

1
4F2 (ai j Pi P j − 4λ1uui Pi )

on � \C. Namely,

(27) 1
2ai j Pi j + bi Pi ≥ 0

on � \C for some bi ∈ C0(�). If P attains its maximum on x0 ∈ ∂�, then arguing
as in Theorem 3.1, we have ∇P(x0) = 0. However, from the Hopf Theorem,
∇P(x0) 6= 0, a contradiction. Hence P attains its maximum at C, and therefore,

P≤ λ1.(28)

Take any two points x1, x2 ∈ S with u(x1)=−1, u(x2)= 1. Let

γ (t)=
(

1− t
F0(x2−x1)

)
x1+

t
F0(x2−x1)

x2 : [0, l] →�

be the straight line from x1 to x2, where l := F0(x2− x1) is the distance from x1

to x2 with respect to F . Denote f (t) := u(γ (t)). It is easy to see F0(γ̇ (t))= 1. It
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follows from (28) and the Cauchy–Schwarz inequality (7) that

(29) | f ′(t)| = |∇u(γ (t)) · γ̇ (t)| ≤ F(∇u)(γ (t))≤
√
λ1(1− f (t)2).

Here we have used the Cauchy–Schwarz inequality (7) again. Hence

(30) dF ≥ l ≥
∫
{0≤t≤l, f ′(t)>0}

dt ≥
∫ l

0

1
√
λ1

f ′(t)√
1− f (t)2

dt

=
1
√
λ1

∫ 1

−1

1
√

1−x2
dx = π

√
λ1
.

Since dF = π/
√
λ1, we must have dF = l, which means S ⊂ ∂�.

Step 2. P= F2(∇u)+ λ1u2
≡ λ1 in �. Hence S ≡ C.

From Step 1, we know that�∗ :=�\S is connected. Let E := {x ∈�∗ :P= λ1}.
It is clear that E is closed. In view of (27), thanks to the strong maximum principle,
we know that E is also open. We now show that E is nonempty. Indeed, from the
fact that all inequalities in (29) and (30) are equalities, we obtain f (t)= u(γ (t))=
− cos

√
λ1t for t ∈ (0, l). Hence

P(γ (t))= f ′(t)2+ λ1 f (t)2 = λ1.

Thus E is nonempty, open, and closed in �∗. Therefore, we obtain P≡ λ1 in �
(for x ∈ S, P= λ1 is obvious).

Step 3: Define X = ∇u/F(∇u) in �∗ and X∗ the cotangent vector given by
X∗(Y )= 〈X, Y 〉 for any tangent vector Y . Then, in �∗, we claim that

(31) D2u =−λ1u X∗⊗ X∗,

and, moreover, X = Ec for some constant vector Ec.
First, taking the derivative of F2(∇u)+ λ1u2

≡ λ1 gives

(32) Fi F j ui j =−λ1u.

On the other hand, since P≡ λ1, the proof of (27) leads to

(33) ai j akluiku jl = λ
2
1u2
= (Fi F j ui j )

2.

Equation (33) in fact gives that

(34) Fi j Fkluiku jl = 0.

Set X⊥ := {V ∈ Rn
| V ⊥ X}. X⊥ is an (n − 1)-dimensional vector subspace.

Note that (Fi j ) is exactly a matrix of rank n− 1 (see the proof of Lemma 2.3) and
Fi j X j

= 0. It follows from this fact and (34) that

(35) ui j V i V j
= 0 for any V ∈ X⊥.
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Equations (32) and (35) imply (31), which in turn implies

ui j =
−λ1uui u j

F2(∇u)
.(36)

By differentiating X , we obtain from (36) that

∇i X j
=

ui j

F(∇u)
−

u j

F2(∇u)
Fkuki = 0.

Thus X = Ec in �∗.

Step 4: The maximum point and the minimum point are unique.
We already knew that f (t) = u(γ (t)) = − cos

√
λ1t and ∇u(γ (t)) 6= 0 for

t ∈ (0, l). Hence u is C2 along γ (t) for t ∈ (0, l), and it follows that

(37) D2u(γ̇ (t), γ̇ (t)) |γ (t) = λ1 cos t for any t ∈ (0, l).

On the other hand, we deduce from (31) that

(38) D2u(γ̇ (t), γ̇ (t)) |γ (t) =−λ1u(γ (t))〈X, γ̇ (t)〉2.

Combining (37) and (38), and taking t→ 0, we get

|〈X, γ̇ (t)〉| = 1= F(X)F0(γ̇ (t)),

which means equality in the Cauchy–Schwarz inequality (7) holds. Hence X =
±F0

ξ (γ̇ (t)). Noting that γ̇ (t)= x2− x1/F0(x2− x1), we have

X = F0
ξ (x2− x1).

Suppose there is some point x3 with u(x3)= 1. Using the same argument, we obtain
X = F0

ξ (x3− x1). In view of F0(x3− x1)= F0(x2− x1), we conclude that x3 = x2.
Therefore, there is only one maximum point and only one minimum point.

Step 5: n = 1 and � is a segment.
From Step 4, we have ∇u 6= 0 for most points of ∂�, and at these points

X =∇u/F(∇u) lies in the tangent spaces due to the Neumann boundary condition.
This is impossible unless n = 1, because X is a constant vector. This completes the
proof. �

4. Estimate of the first Dirichlet eigenvalue

As in Section 3, for simplicity, we write λ1 instead of λD
1 throughout this section.

It is well-known that the existence of first Dirichlet eigenfunction can be easily
proved by using the direct method in the calculus of variations. Moreover, by the
assumption that F is even, the first Dirichlet eigenfunction u does not change sign;
see [Belloni et al. 2003, Theorem 3.1]. We may assume u is nonnegative. By
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multiplying u by a constant, we can also assume that sup� u = 1 and inf� u = 0
without loss of generality.

For any α, β ∈ R with α > 0, β2 > sup(α+ u)2, consider the function

P(x)= F2(∇u)
2(β2−(α+u)2)

.

Suppose that P(x) attains its maximum at x0 ∈�.
With the assumption that � is F-mean convex, we first exclude the possibility

x0 ∈ ∂� with ∇u(x0) 6= 0. Indeed, suppose we have x0 ∈ ∂� with ∇u(x0) 6= 0.
Define

νF := Fξ (ν)

on ∂�= {x ∈� | u(x)= 0}. In view of 〈νF , ν〉 = F(ν) > 0, νF must point outward.
From the Dirichlet boundary condition, we know that

ν =−∇u/|∇u|

for ∇u 6= 0. Hence νF =−Fξ (∇u). Since P attains its maximum at x0, we have

0≤ ∂P
∂νF

(x0)=
F Fi ui jν

j
F

β2− (α+ u)2
+ F2 α(∂u/∂νF )

(β2− (α+ u)2)2

Hence

−
∂2u
∂ν2

F
+

Fα(∂u/∂νF )

β2−α2 ≥ 0.

Note that ∂u/∂νF = −F(∇u). Since ∂� itself is a level set of u, we can apply
Lemma 2.4 to obtain

∂2u
∂ν2

F
= Qu+ F HF .

In view of Qu(x0)=−λ1u(x0)= 0, we obtain that

−F HF − F2 α

β2−α2 ≥ 0.

This contradicts the fact that HF (∂�)≥ 0.
On the other hand, if ∇u(x0)= 0, F(∇u)(x0)= 0 and P(x0)= 0, which implies

F(∇u)= 0, that is, u is constant, a contradiction.
Therefore we may assume x0 ∈� and ∇u(x0) 6= 0. Since ai j is positively definite

on � \C, where C := {x | ∇u(x)= 0}, it follows from the maximum principle that

Pi (x0)= 0,(39)

ai j (x0)Pi j (x0)≤ 0.(40)



AN OPTIMAL ANISOTROPIC POINCARÉ INEQUALITY 323

From now on we will compute at the point x0. Equality (39) gives

(41) ∂

∂xi

( 1
2 F2(∇u)

)
=−

F2(∇u)(α+ u)ui

β2− (α+ u)2
.

Then we compute ai j (x0)Pi j (x0).

ai j (x0)Pi j (x0)=
1

β2−(α+u)2
ai j

∂2

∂xi∂x j

( 1
2 F2(∇u)

)
+ 2ai j

∂

∂xi

( 1
2 F2(∇u)

) ∂
∂x j

( 1
β2−(α+u)2

)
+ ai j

∂2

∂xi∂x j

( 1
β2−(α+u)2

)
1
2 F2(∇u)

= I + II + III.

By using (41), (21), the Bochner formula (13), and Equation (2), we obtain

I = 1
β2−(α+u)2

[ai j akluiku jl − λ1 F2
],(42)

II =− 4F4(α+u)2

(β2−(α+u)2)3
,(43)

III = F4

(β2−(α+u)2)2
+

4F4(α+u)2

(β2−(α+u)2)3
−

λ1 F2u(α+ u)
(β2− (α+ u)2)2

.(44)

We now apply Lemma 2.2 to (42) and obtain

ai j akluiku jl ≥ ai j Fk Fluiku jl

=
1

F2 ai j
∂

∂xi

( 1
2 F2(∇u)

) ∂
∂x j

( 1
2 F2(∇u)

)
=

F4(α+u)2

(β2−(α+u)2)2
.

Here we have used (41) and (21) again in the last equality. Therefore, we have

(45) I ≥
F4(α+ u)2

(β2− (α+ u)2)3
−

λ1 F2

β2− (α+ u)2
.

Combining (40), (43), (44), and (45), we obtain

0≥ ai j Pi j ≥
F4β2

(β2− (α+ u)2)3
−

λ1 F2

β2− (α+ u)2
−

λ1 F2u(α+ u)
(β2− (α+ u)2)2

.

It follows that

(46) F2(∇u)
β2−(α+u)2

(x0)≤
λ1

β2 (β
2
−α(α+ u)).
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Noting that sup� u = 1, we choose α > 0 and β = α+ 1. Then estimate (46)
becomes

F2(∇u)
(α+1)2−(α+u)2

(x0)≤ λ1

(
1− α(α+u)

(α+1)2
)
≤ λ1.

Hence we conclude that

(47) F2(∇u)
(α+1)2−(α+u)2

≤ λ1.

for any x ∈�.
Choose x1 ∈� with u(x1)= sup u = 1 and x2 ∈ ∂� with

dF (x1, x2)= dF (x1, ∂�)≤ iF

and γ (t) : [0, 1] → � the minimal geodesic connecting x1 with x2. Using the
gradient estimates (47), we have

π

2
− arcsin

(
α

α+1

)
=

∫ 1

0

1√
(α+1)2−(α+u)2

du ≤
√
λ1

∫ 1

0

1
F(∇u)

du

≤

√
λ1

∫ 1

0

1
F(∇u(γ (t)))

〈∇u(γ (t)), γ̇ (t)〉 dt

≤

√
λ1

∫ 1

0
F0(γ̇ (t)) dt ≤

√
λ1iF .

Here we have used the Cauchy–Schwarz inequality (7). Letting α→ 0, we obtain

λ1 ≥
π2

4i2
F
.

Thus we finish the proof of Theorem 1.2.
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