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PRODUCTS OF PARTIAL NORMAL SUBGROUPS

ELLEN HENKE

In memory of Robert Steinberg.

We show that the product of two partial normal subgroups of a locality (in
the sense of Chermak) is again a partial normal subgroup. This generalizes
a theorem of Chermak and fits into the context of building a local theory of
localities.

1. Introduction

Localities were introduced by Andrew Chermak [2013], in the context of his proof of
the existence and uniqueness of centric linking systems. Roughly speaking, localities
are group-like structures which are essentially the “same” as the transporter systems
of Oliver and Ventura [2007]; see the appendix to [Chermak 2013]. As centric
linking systems are special cases of transporter systems, the existence of centric
linking systems implies that there is a locality attached to every fusion system. It
is work in progress of Chermak to build a local theory of localities similar to the
local theory of fusion systems as developed by Aschbacher [2008; 2011]. In fact, it
seems often an advantage to work inside of localities, where some group theoretical
concepts and constructions can be expressed more naturally than in fusion systems.
Thus, one can hope to improve the local theory of fusion systems, once a way of
translating between fusion systems and localities is established. The results of this
paper can be considered as first evidence that some constructions are easier in the
world of localities. We prove that the product of partial normal subgroups of a
locality is itself a partial normal subgroup, whereas in fusion systems the product of
normal subsystems has only been defined in special cases; see [Aschbacher 2011,
Theorem 3]. It is work in progress of Chermak to show that there is a one-to-one
correspondence between the normal subsystems of a saturated fusion system F
and the partial normal subgroups of a linking locality attached to F in the sense of
[Henke 2015, Definition 2]. This is one reason why our result seems particularly
important in the case of linking localities. Another reason is that the concept of a
linking locality generalizes properties of localities corresponding to centric linking
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systems and is thus interesting for studying the homotopy theory of fusion systems;
see [Broto et al. 2003; 2005; 2007; Henke 2015]. It is however crucial for our
proof that we work with arbitrary localities, since our arguments rely heavily on
the theory of quotient localities introduced by Chermak [2015], and a quotient of a
linking locality is not necessarily a linking locality again. Thus, we feel that the
method of our proof gives evidence for the value of studying localities in general
rather than restricting attention only to the special case of linking localities.

To describe the results of this paper in more detail, let L be a partial group as
defined in [Chermak 2013, Definition 2.1; 2015, Definition 1.1]. Thus, there is an
involutory bijection L→ L, f 7→ f −1, called an “inversion”, and a multivariable
product 5 which is only defined on certain words in L. Let D be the domain of the
product; i.e., D is a set of words in L and 5 is a map D→ L. Following Chermak,
we call a nonempty subset H of L a partial subgroup of L if h−1

∈H for all h ∈H
and 5(v) ∈H for all words v in the alphabet H with v ∈ D. A partial subgroup N
is called a partial normal subgroup if x f

:=5( f −1, x, f ) ∈N for all x ∈N and
f ∈ L for which ( f −1, x, f ) ∈ D. Given two subsets M and N of L, the product
MN is naturally defined by

MN = {5(m, n) : m ∈M, n ∈N , (m, n) ∈ D}.

The problem is however to show that this is again a partial normal subgroup if M
and N are partial normal subgroups. Indeed, as we show in Example 2.3, this is not
true in general if L is an arbitrary partial group. It is true however in the important
case that (L,1, S) is a locality. Chermak [2015, Theorem 5.1] proved this in a
special case and we build on his result to prove the general case. More precisely,
we prove the following theorem:

Theorem 1. Let (L,1, S) be a locality and let M,N be partial normal subgroups
of L. Then MN = NM is a partial normal subgroup of L and (MN ) ∩ S =
(M∩ S)(N ∩ S). Moreover, for every g ∈MN there exists m ∈M and n ∈ N
such that (m, n) ∈ D, g =5(m, n), and Sg = S(m,n).

To understand the technical conditions stated in the last sentence of the theorem,
we recall from [Chermak 2013; 2015] that

Sg = {s ∈ S : (g−1, s, g) ∈ D and sg
∈ S}

for any g ∈ L. Moreover, for a word v = (g1, . . . , gn) in L, Sv is the set of all s ∈ S
such that there exist x0, . . . , xn ∈ S with s = x0, (g−1

i , xi−1, gi ) ∈ D and xgi
i−1 = xi

for i = 1, . . . , n. By [op. cit, Proposition 2.6 and Corollary 2.7], the sets Sg and
Sv are subgroups of S, Sg ∈ 1 for any g ∈ L, and Sv ∈ 1 if and only if v ∈ D.
Therefore, the condition Sg = S(m,n) stated in the theorem is crucial for proving that
certain products are defined in L. This is particularly important for the proof of our
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next theorem which concerns products of more than two partial normal subgroups.
Given subsets N1,N2, . . . ,Nl of L define their product via

N1N2 · · ·Nl := {5(n1, n2, · · · , nl) : (n1, n2, . . . , nl) ∈ D, ni ∈Ni for 1≤ i ≤ l}.

We prove:

Theorem 2. Let N1,N2, . . . ,Nl be partial normal subgroups of a locality (L,1, S).
Then N1N2 · · ·Nl is a partial normal subgroup of L. Moreover, the following hold:

(1) N1N2 · · ·Nl = (N1 · · ·Nk)(Nk+1 · · ·Nl) for every 1≤ k < l.

(2) N1N2 · · ·Nl =N1σN2σ · · ·Nlσ for every permutation σ ∈ Sl .

(3) For every g ∈ N1 . . .Nl there exists (n1, . . . , nl) ∈ D with ni ∈ Ni for every
i = 1, . . . , l, g =5(n1, . . . , nl), and Sg = S(n1,...,nl ).

As already mentioned above, it is work in progress of Andrew Chermak to show
that for every fusion system F and a linking locality (L,1, S) attached to F there
is a one-to-one correspondence between the normal subsystems of F and the partial
normal subgroups of L. When this work is complete, our results will imply the
existence of a product of an arbitrary finite number of normal subsystems of F.

In this text only relatively few demands will be made on understanding the
concepts introduced in [Chermak 2013; 2015]. In Section 2, we point the reader to
the few general results needed about partial groups, give a concise definition of a
locality and review some basic facts about localities. In Section 3, we summarize
what is needed about partial normal subgroups and quotient localities.

2. Partial groups and localities

We refer the reader to [Chermak 2013, Definition 2.1] or [Chermak 2015, Defini-
tion 1.1] for the precise definition of a partial group, and to the elementary properties
of partial groups stated in [2013, Lemma 2.2] or [2015, Lemma 1.4]. Adapting
Chermak’s notation we write W(L) for the set of words in a set L, ∅ for the empty
word, and v1 ◦ v2 ◦ · · · ◦ vn for the concatenation of words v1, . . . , vn ∈W(L).

For the remainder of this text let L be a partial group with product5 : D→L
defined on the domain D ⊆W(L).

Again following Chermak’s notation, we set 1 = 5(∅). Moreover, given a
word v = ( f1, . . . , fn) ∈ D, we write f1 f2 . . . fn for the product 5(v). Recall the
definitions of partial subgroups and partial normal subgroups from the introduction.
Note that a partial subgroup of L is always a partial group itself whose product is
the restriction of the product 5 to W(H)∩ D. Observe furthermore that L forms a
group in the usual sense if W(L)= D; see [op. cit., Lemma 1.3]. So it makes sense
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to call a partial subgroup H of L a subgroup of L if W(H)⊆ D. In particular, we can
talk about p-subgroups of L meaning subgroups of L whose order is a power of p.

We will need the Dedekind lemma [Chermak 2015, Lemma 1.10] in the following
slightly more general form:

2.1 (Dedekind lemma). Let H, K, A be subsets of L such that A is a partial
subgroups of L and K⊆A. Then A∩(HK)= (A∩H)K and A∩(KH)=K(A∩H).

Proof. Clearly, (A∩H)K ⊆ A∩ (HK). Taking h ∈H and k ∈ K with (h, k) ∈ D
and hk ∈ A, we have (h, k, k−1) ∈ D by [op. cit, Lemma 1.4(d)] and then h =
h(kk−1)= (hk)k−1

∈A as K ⊆A and A is a partial subgroup. Hence, h ∈A∩H
and hk ∈ (A∩H)K. The second equation follows similarly. �

Before we continue with more definitions, we illustrate the concepts we men-
tioned so far with examples. For this purpose we say that two groups G1 and G2

form an amalgam, if the set-theoretic intersection G1 ∩G2 is a subgroup of both
G1 and G2, and the restriction of the multiplication on G1 to a multiplication on
G1∩G2 is the same as the restriction of the multiplication on G2 to a multiplication
on G1 ∩G2.

Example 2.2. Let G1 and G2 be groups which form an amalgam. Set L=G1∪G2

and D = W(G1) ∪ W(G2). Define a partial product 5 : D → L by sending
v = ( f1, . . . , fn) ∈ W(Gi ) to the product f1 . . . fn in the group Gi for i = 1, 2.
Define an inversion L→ L by sending f ∈ Gi to the inverse of f in the group
Gi for i = 1, 2. Then L with these structures forms a partial group. (For readers
familiar with the concept of an objective partial group as introduced in [Chermak
2013, Definition 2.6] or [Chermak 2015, Definition 2.1] we mention that, setting
1 := {G1,G2}, (L,1) is an objective partial group if G1∩G2 is properly contained
in G1 and G2.)

Let K be a subset of L. Then K is a partial subgroup of L if and only if K∩Gi is
a subgroup of Gi for each i = 1, 2. The subset K is a subgroup of L if and only if
K is a subgroup of Gi for some i = 1, 2. Moreover, K is a partial normal subgroup
of L if and only if (K∩Gi )EGi for i = 1, 2.

We use the construction method introduced in the previous example to show that
the product of two partial normal subgroups of a partial group is not in general
itself a partial normal subgroup.

Example 2.3. Let G1∼=C2×C4 and let G2 be a dihedral group of order 16. Choose
G1 and G2 such that G1 and G2 form an amalgam with G1 ∩G2 ∼= C2×C2 and
8(G1) = Z(G2). Let M and N be the two cyclic subgroups of G1 of order 4.
Form the locality L as in Example 2.2. As G1 is abelian, a subgroup K of G1 is
normal in G1 and thus a partial normal subgroup of L if and only if K∩G2EG2.
As G1 ∩G2 ∼= C2×C2 and M and N are cyclic of order 4, we have M∩G2 =
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N ∩G2 = 8(G1) = Z(G2)EG2. Thus M and N are partial normal subgroups
of L. The product MN in L is the same as the product MN in G1 and thus equal
to G1. However, as G2 does not have a normal fours subgroup, G1 ∩ G2 is not
normal in G2 and thus MN = G1 is not a partial normal subgroup of L.

The previous example shows that the concept of a partial group (and even the
concept of an objective partial group) is too general for our purposes. Therefore,
we will focus on localities. We give a definition of a locality which, in contrast
to the definition given by Chermak [2013; 2015], does not require the reader to
be familiar with the definition of an objective partial group and can easily seen
to be equivalent to Chermak’s definition. For any g ∈ L, D(g) denotes the set of
x ∈ L with (g−1, x, g) ∈ D. Thus, D(g) denotes the set of elements x ∈ L for
which the conjugation xg

:=5(g−1, x, g) is defined. If g ∈ L and X ⊆ D(g) we
set X g

:= {xg
: x ∈ X}. If we write X g for some g ∈ L and some subset X ⊆ L, we

will always implicitly mean that X ⊆ D(g).

Definition 2.4. We say that (L,1, S) is a locality if the partial group L is finite
as a set, S is a p-subgroup of L, 1 is a nonempty set of subgroups of S, and the
following conditions hold:

(L1) S is maximal with respect to inclusion among the p-subgroups of L.

(L2) A word ( f1, . . . , fn) ∈ W(L) is an element of D if and only if there exist
P0, . . . , Pn ∈1 such that

(*) Pi−1 ⊆ D( fi ) and P fi
i−1 = Pi .

(L3) For any subgroup Q of S, for which there exist P ∈ 1 and g ∈ L with
P ⊆ D(g) and Pg

≤ Q, we have Q ∈1.

If (L,1, S) is a locality and v = ( f1, . . . , fn) ∈W(L), then we say that v ∈ D via
P0, . . . , Pn (or v ∈ D via P0), if P0, . . . , Pn ∈1 and (*) holds.

From now on let (L,1, S) be a locality.

Note that P = P1
≤ S for all P ∈ 1. As 1 6= ∅, property (L3) implies thus

S ∈1. For any g ∈ L, write cg for the conjugation map

cg : D(g)→ L, x 7→ xg.

Recall the definitions of Sg and Sv from the introduction. Note that Sg ⊆ D(g). For
any subgroup X of L set

NL(X) := { f ∈ L : X ⊆ D( f ), X f
= X}.

2.5 (Important properties of localities). The following hold:

(a) NL(P) is a subgroup of L for each P ∈1.
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(b) Let P ∈1 and g ∈ L with P ⊆ Sg. Then Q := Pg
∈1 (so in particular Q is a

subgroup of S). Moreover, NL(P)⊆ D(g) and

cg : NL(P)→ NL(Q)

is an isomorphism of groups.

(c) Let w = (g1, . . . , gn) ∈ D via (X0, . . . , Xn). Then

cg1 ◦ · · · ◦ cgn = c5(w)

is a group isomorphism NL(X0)→ NL(Xn).

(d) For every g ∈ L, Sg ∈1. In particular, Sg is a subgroup of S.

(e) For anyw∈W(L), Sw is a subgroup of S5(w), and Sw ∈1 if and only ifw∈ D.1

Proof. Properties (a)–(c) correspond to statements in [Chermak 2015, Lemma 2.3]
except for the fact stated in (b) that Q ∈1. This is however true by [op. cit., Propo-
sition 2.6(c)]. Property (d) is true by [op. cit., Proposition 2.6(a)] and property (e)
is stated in [op. cit., Corollary 2.7]. �

3. Partial normal subgroups and quotient localities

In this section we continue to assume that (L,1, S) is a locality. The following
theorem is a special case of Theorem 1 and will be used to prove the more general
theorem.

Theorem 3.1. Let M, N be partial normal subgroups of L such that M∩N = 1.
Then MN =NM is a partial normal subgroup of L. Moreover, for any f ∈MN
there exists m ∈M and n ∈N such that (m, n) ∈ D, f = mn, and S f = S(m,n).

Proof. As M ∩ N ⊆ S, it follows from [Chermak 2015, Lemma 5.3] that M
normalizes N ∩ S and N normalizes M ∩ S. So by [op. cit., Theorem 5.1],
MN =NM is a partial normal subgroup of L. Moreover, by [op. cit., Lemma 5.2],
for any f ∈MN there exist m ∈M and n ∈ N such that (m, n) ∈ D, f = mn,
and S f = S(m,n). �

To deduce Theorem 1 from Theorem 3.1, we need the theory of quotient localities
developed in [Chermak 2015]; see also [Chermak 2013, Sections 3 and 4]. For the
convenience of the reader we quickly summarize this theory here. After that we
state some more specialized lemmas needed in our proof.

Throughout let K be a partial normal subgroup of L and T = S ∩K.
3.2. (a) T is strongly closed in (L,1, S); that is, tg

∈ T for every g ∈ L and every
t ∈ T ∩ Sg. In particular, T g

= T for any g ∈ L with T ⊆ Sg.

(b) T is maximal in the poset of p-subgroups of N.

1Recall the definition of S(g1,...,gn) from the introduction.
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Proof. Let g ∈L and t ∈ T ∩Sg. Then tg
∈ S and, as N is a partial normal subgroup,

tg
∈N. Hence, tg

∈ S∩N = T. This proves (a). Property (b) is proved in [Chermak
2015, Lemma 3.1(c)]. �

We write ↑K for the relation ↑ introduced in [op. cit., Definition 3.6], but with
the partial normal subgroup N replaced by K. Thus ↑K is a relation on the set
L ◦ 1 of pairs ( f, P) ∈ L × 1 with P ≤ S f . For ( f, P), (g, Q) ∈ L ◦ 1, we
have ( f, P) ↑K (g, Q) if there exist x ∈ NK(P, Q) and y ∈ NK(P f , Qg) such
that xg = f y. We say then ( f, P) ↑K (g, Q) via (x, y). One easily sees that ↑K
is reflexive and transitive. Moreover, ( f, P) ↑K ( f, S f ) via (1, 1). An element
f ∈ L is called ↑K-maximal if ( f, S f ) is maximal with respect to the relation ↑K
(i.e., if ( f, S f ) ↑K (g, Q) implies (g, Q) ↑K ( f, S f ) for any (g, Q) ∈ L ◦1). We
summarize some important technical properties of the relation ↑K in the following
lemma.

3.3. The following hold:

(a) Every element of NL(S) is ↑K-maximal. In particular, every element of S is
↑K-maximal.

(b) If f ∈ L is ↑K-maximal, then T ≤ S f .

(c) (Stellmacher’s splitting lemma) Let (x, f ) ∈ D such that x ∈ K and f is
↑K-maximal. Then S(x, f ) = Sx f .

Proof. Property (a) is [Chermak 2015, Lemma 3.7(a)], (b) is [op. cit., Proposi-
tion 3.9], and (c) is [op. cit., Lemma 3.12]. �

The relation ↑K is crucial for defining a quotient locality L/K somewhat analo-
gously to quotients of groups. A coset of K in L is of the form

K f = {k f : k ∈ K, (k, f ) ∈ D}

for some f ∈ L. A maximal coset of K is a coset which is maximal with respect to
inclusion among the cosets of K in L. The set of these maximal cosets is denoted
by L/K .

3.4. The following hold:

(a) f ∈ L is ↑K-maximal if and only if K f is a maximal coset.

(b) The maximal cosets of K form a partition of L.

Proof. This is [op. cit., Proposition 3.14(b),(c),(d)]. �

The reader might note that what we call a coset would be more precisely called
a right coset. The distinction does however not matter very much, since we are
mostly interested in the maximal cosets and, by [op. cit., Proposition 3.14(a)], we
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have K f = f K for any ↑K-maximal element f ∈ L. By 3.4(b), we can define a
map

ρ : L→ L := L/K

sending f ∈ L to the unique maximal coset of K containing f . This should be
thought of as a “quotient map”. We adopt the bar notation similarly as used for
groups. Thus, if X is an element or a subset of L, then X denotes the image
of X under ρ. Furthermore, if X is an element or a subset of W(L) then X
denotes the image of X under ρ∗, where ρ∗ denotes the map W(L)→W(L) with
( f1, . . . , fn)ρ

∗
= ( f1ρ, . . . , fnρ). In particular,

D = Dρ∗.

We note:

3.5. Let f, g ∈ L such that g = f and f is ↑K-maximal. Then g ∈ K f .

Proof. By 3.4(a), K f is a maximal coset, so g = f = K f by the definition of ρ.
Hence, again by the definition of ρ, g ∈ K f . �

Recall the definition of a homomorphism of a partial groups from [Chermak 2013,
Definition 3.1] and [Chermak 2015, Definition 1.11]. By [op. cit., Lemma 3.16],
there is a unique mapping 5 : D→ L and a unique involutory bijection f 7→ f −1

such that L with these structures is a partial group and ρ is a homomorphism of
partial groups. Since ρ is a homomorphism, we have 5(v)=5(vρ∗)=5(v)ρ =
5(v) for v ∈ D and f −1

= f −1 by the definition of a homomorphism of partial
groups and by [op. cit., Lemma 1.13]. In particular, 1 = 5(∅) is the identity
element in L. So ρ has kernel ker(ρ) = { f ∈ L : f = 1} = K1 = K. By [op. cit.,
Proposition 4.2], (L,1, S) is a locality for 1 := {P : P ∈ 1}. We will use this
important fact throughout without further reference. We remark:

3.6. Let v = ( f1, . . . , fn) ∈ W(L) such that each fi is ↑K-maximal and v ∈ D.
Then v ∈ D and 5(v)=5(v).

Proof. As v ∈ D, there is u = (g1, . . . , gn) ∈ D such that u = v. Then gi = fi for
i = 1, . . . , n, i.e., gi ∈ K fi by 3.5. Now by [op. cit., Proposition 3.14(e)], v ∈ D.
As seen above, since ρ is a homomorphism of partial groups, 5(v)=5(v). �

There is a nice correspondence between the partial subgroups of L containing K
and the partial subgroups of L.

3.7. Let H be the set of partial subgroups of L containing K.

(a) Let H ∈ H. Then the maximal cosets of K contained in H form a partition of H.

(b) Write H for the set of partial subgroups of L. Then the map H→H with H 7→H
is well defined and a bijection. Moreover, for any H ∈H, we have HEL if and
only if HEL.
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Proof. Property (a) is [Chermak 2015, Lemma 3.15]. The map ρ is a homomorphism
of partial groups and (L,1, S) is a locality. From the way D and 1 are defined,
it follows that ρ is a projection in the sense of [op. cit., Definition 4.5]. Hence,
property (b) is a reformulation of [op. cit., Proposition 4.8]. �

3.8. For any subset X of L and for any partial subgroup H of L containing K,
X ∩H= X ∩H.

Proof. Clearly, X ∩H⊆ X ∩H. Let now x ∈ X such that x ∈H. Then there exists
h ∈H such that x = h and, by 3.7(a), we may choose h such that Kh is a maximal
coset. By the definition of ρ, this means x ∈ Kh ⊆H and hence x ∈ X ∩H. Thus
x ∈ X ∩H, proving X ∩H⊆ X ∩H. �

3.9. Let R ≤ S. Then { f ∈ L : f ∈ R} = KR.

Proof. Clearly, f ∈ R for any f ∈ KR, as K is the kernel of ρ. Let now f ∈ L
and r ∈ R with f = r . As every element of S is ↑K-maximal by 3.3(a), it follows
from 3.5 that f ∈ Kr ⊆ KR. This proves the assertion. �

3.10. Let T ≤ R ≤ S. Then R = {s ∈ S : s ∈ R} and NS(R)= NS(R).

Proof. By 3.9 and the Dedekind lemma (2.1), we have {s ∈ S : s ∈ R} = S∩(KR)=
(S ∩K)R = T R = R. Moreover, for any element t ∈ S with t ∈ NS(R) and any
r ∈ R, we have r t = r t

∈ R, so r t
∈ {s ∈ S : s ∈ R} = R. Hence, NS(R)≤ NS(R). As

ρ is a homomorphism of partial groups, NS(R)⊆ NS(R), so the assertion holds. �

3.11. For every f ∈ L such that f is ↑K-maximal, we have Sf = S f

Proof. Set P = S f and Q = P f. As ρ is a homomorphism of partial groups,
one easily observes that P ⊆ S f . As (L,1, S) is a locality, S f is a p-group. So
assuming the assertion is wrong, there exists a ∈ S such that a ∈ NS f

(P)\P. As
f is ↑-maximal, T ≤ P = S f by 3.3(b). Hence, by 3.10 applied with P in the
role of R, a ∈ NS(P). So by 3.10 now applied with NS(P) in the role of R,
a ∈ NS(P). Using 2.5(a),(b), we conclude that A := P〈a〉 is a p-subgroup of the
group NL(P) and that A f is a p-subgroup of the group NL(Q). As A f

⊆ S, we
have A f

⊆ NS(Q). By 3.2(a), T = T f
≤ Q. Thus, by 3.10, A f

⊆ NS(Q). Now 3.9
yields A f

⊆ (KNS(Q))∩ NL(Q)= NK(Q)NS(Q), where the last equality uses the
Dedekind lemma (2.1). Recall that NL(Q) is a finite group. Clearly, NK(Q) is
a normal subgroup of NL(Q). It follows from 3.2(b) that T ∈ Sylp(NK(Q)). So
NS(Q) ∈ Sylp(NK(Q)NS(Q)) and by Sylow’s theorem, there exists c ∈ NK(Q)
such that A f c

≤ NS(Q). Then ( f, P) ↑K ( f c, A) via (1, c) contrary to f being
↑K-maximal. �

3.12. Suppose that f, g ∈ L such that f = g, S f = Sg, and f is ↑K-maximal. Then
g is ↑K-maximal and K f = Kg.
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Proof. As f is ↑K-maximal and f = g, we have g ∈ K f by 3.5, i.e., there exists
k ∈ K with (k, f ) ∈ D and g = k f . By Stellmacher’s splitting lemma 3.3(c), we
have Sg = Sk f = S(k, f ). Hence, S f = Sg = S(k, f ) and thus k ∈ NL(S f ). By 2.5(c),
k−1
∈ NL(S f ) and (k−1, k, f ) ∈ D as via S f . Hence, (k−1, g) = (k−1, k f ) ∈ D,

k−1g= k−1(k f )= k−1k f = (k−1k) f = f and Sg
f = S f

f . This shows that ( f, S f )↑K

(g, S f ) via (k−1, 1). We conclude that g is ↑K-maximal as f is ↑K-maximal and
↑K is transitive. By 3.4, Kg and K f are both maximal cosets, and the maximal
cosets of K form a partition of L. So it follows that K f = Kg. �

4. Proof of Theorem 1

Throughout this section assume the hypothesis of Theorem 1. Set

K :=M∩N .

Observe that K is a partial normal subgroup of L. As in Section 3, let

ρ : L→ L := L/K

be the quotient map sending f ∈ L to the unique maximal coset of K containing f ,
and use the bar notation as introduced there. Set

T := K∩ S.

4.1. M∩N = 1.

Proof. As K is contained in M and N, this is a special case of 3.8. �

4.2. We have MN =NM, and MN is a partial normal subgroup of L. Moreover,
for any x ∈MN , there exist m ∈M and n ∈N such that (m, n) ∈ D, x =m n and
Sx = S(m,n).

Proof. By 3.7(b), M and N are partial normal subgroups of L. By 4.1, M∩N = 1.
Hence, the assertion follows from Theorem 3.1. �

4.3. Let x ∈MN . Then there exist m ∈M and n ∈N with (m, n) ∈ D such that
m, n, and mn are ↑K-maximal, x = m n = mn and Smn = S(m,n).

Proof. By 4.2, there exist m ∈M, n ∈N such that (m, n) ∈ D, x =m n, and Sx =

S(m,n). By 3.7(a), we may furthermore choose preimages m ∈M and n ∈N of m
and n such that m and n are ↑K-maximal. Then, by 3.2(a) and 3.3(b), m, n ∈ NL(T ).
By 3.6, (m, n) ∈ D and m n = mn. It remains to prove that Smn = S(m,n) and that
mn is ↑K-maximal. As an intermediate step we prove the following two properties:

S f ⊆ S(m,n) for every f ∈ L with f = x .(4-1)

S f = S(m,n) for every ↑K-maximal element f ∈ L with f = x .(4-2)
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For the proof of (4-1) and (4-2) note first that, by 3.11, Sm = Sm and Sn = Sn as m
and n are ↑K-maximal. Hence,

Sx = S(m,n) = {s : s ∈ Sm, sm
∈ Sn} = {s : s ∈ Sm, sm

∈ Sn}.

If s ∈ Sm then, by definition of Sm , (m−1, s,m) ∈ D and sm
∈ S. Moreover, as ρ is

a homomorphism of partial groups, sm = sm. So sm
∈ Sn is equivalent to sm

∈ Sn

by 3.10 since T ≤ Sn . Hence,

Sx = {s : s ∈ Sm, sm
∈ Sn} = S(m,n).

As m, n ∈ NL(T ), T ≤ S(m,n). Clearly, S f ⊆ Sx for every f ∈ L with f = x . If
such f is in addition ↑K-maximal, then S f = Sx and T ≤ S f by 3.11 and 3.3(b).
Now (4-1) and (4-2) follow from 3.10. As mn = m n = x , (4-1) yields in particular
Smn ⊆ S(m,n) and thus Smn = S(m,n) by 2.5(e). Choosing f ∈ L to be ↑K-maximal
with f = x , we obtain from (4-2) that S f = S(m,n) = Smn . So mn is ↑K-maximal
by 3.12 completing the proof. �

4.4. Let f ∈ L with f ∈MN. Then f ∈MN and there exist m ∈M, n ∈N with
(m, n) ∈ D, f = mn, and S f = S(m,n).

Proof. By 4.3, we can choose m ∈M and n ∈N with (m, n) ∈ D such that mn is
↑K-maximal, f =mn and Smn = S(m,n). Then there exists k ∈K with (k,mn) ∈ D
and f = k(mn). As Smn= S(m,n), it follows that S(k,mn)= S(k,m,n) and (k,m, n)∈ D
by 2.5(e). Hence, (km, n) ∈ D and f = (km)n by the axioms of a partial group.
As K ⊆M, we have km ∈M and so f = (km)n ∈MN. It is now sufficient
to show that S(km,n) = S f . As mn is ↑K-maximal, it follows from Stellmacher’s
splitting lemma 3.3(c) that S f = Sk(mn) = S(k,mn) = S(k,m,n) ⊆ S(km,n). By 2.5(e),
S(km,n) ⊆ S(km)n = S f . So S f = S(km,n), proving the assertion. �

Proof of Theorem 1. By 4.2 and 3.7(b), there exists a partial normal subgroup H of
L containing K such that H =MN =NM. Then for any f ∈ L with f ∈MN,
there exists h ∈H with f = h. By 3.7(a), we can choose h to by ↑K-maximal. So
by 3.5, f ∈ Kh ⊆H. This shows H= { f ∈ L : f ∈MN }.

We need to prove that H=MN =NM. As the situation is symmetric in M and
N, it is enough to prove that H=MN. Since ρ is a homomorphism, for any m ∈M
and n ∈N with (m, n) ∈ D, we have mn = m n ∈MN and thus mn ∈H. Hence,
MN ⊆ H. By 4.4, we have H ⊆MN, so H =MN. Moreover, 4.4 shows that
for every f ∈MN, there exists m ∈M and n ∈N such that (m, n) ∈ D, f = mn,
and S f = S(m,n). So it only remains to prove that S ∩ (MN ) = (S ∩M)(S ∩N ).
Clearly, (S ∩M)(S ∩N )⊆ S ∩ (MN ). Let now s ∈ S ∩ (MN ). By what we just
said, there exists m ∈M and n ∈ N with (m, n) ∈ D, s = mn, and Ss = S(m,n).
As Ss = S, it follows that m, n ∈ G := NL(S). By 2.5(a), G is a subgroup of L.
Furthermore, property (L1) in the definition of a locality implies that S is a Sylow
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p-subgroup of G. Note that X := G∩M and Y := G∩N are normal subgroups of
G. Hence, s = mn ∈ (XY )∩ S = (X ∩ S)(Y ∩ S)= (M∩ S)(N ∩ S) completing
the proof. �

5. The Proof of Theorem 2

Throughout, let (L,1, S) be a locality with partial normal subgroups N1, . . . ,Nl .
We prove Theorem 2 in a series of lemmas.

5.1. Let 1 ≤ k < l such that the products N1N2 · · ·Nk and Nk+1Nk+2 · · ·Nl are
partial normal subgroups. Suppose furthermore that for any f ∈ N1 · · ·Nk and
any g ∈Nk+1 · · ·Nl there exist u = (n1, . . . , nk), v = (nk+1, . . . , nl) ∈ D such that
ni ∈Ni for i = 1, . . . , l, f =5(u), g =5(v), S f = Su and Sg = Sv. Then

N1N2 · · ·Nl = (N1N2 · · ·Nk)(Nk+1Nk+2 · · ·Nl)

is a partial normal subgroup of L, and for every h ∈ N1, . . . ,Nl there exists
w = (n1, . . . , nl) ∈ D such that ni ∈Ni for i = 1, . . . , l, h =5(w), and Sh = Sw.

Proof. By Theorem 1, (N1N2 · · ·Nk)(Nk+1Nk+2 · · ·Nl) is a partial normal sub-
group of L. If w = (n1, . . . , nl) ∈ D with ni ∈ Ni for i = 1, . . . , l, then u =
(n1, . . . , nk), v = (nk+1, . . . , nl) ∈ D, and

5(w)=5(5(u),5(v)) ∈ (N1N2 · · ·Nk)(Nk+1Nk+2 · · ·Nl).

This proves that N1N2 · · ·Nl ⊆ (N1N2 · · ·Nk)(Nk+1Nk+2 · · ·Nl). To prove the
converse inclusion, let

h ∈ (N1N2 · · ·Nk)(Nk+1Nk+2 · · ·Nl).

Then by Theorem 1, there exist f ∈ N1 · · ·Nk and g ∈ Nk+1 · · ·Nl such that
( f, g) ∈ D, h = f g, and Sh = S( f,g). By assumption, there exist u = (n1, . . . , nk)

and v= (nk+1, . . . , nl)∈ D such that ni ∈Ni for i = 1, . . . , l, f =5(u), g=5(v),
S f = Su , and Sg = Sv. Then Sh = S( f,g) = Su◦v, u ◦ v ∈ D via Sh , and

h = f g =5(5(u),5(v))=5(u ◦ v) ∈N1N2 · · ·Nl,

proving the assertion. �

5.2. (a) The product N1N2 · · ·Nl is a partial normal subgroup, and for every
f ∈N1N2 · · ·Nl there existsw= (n1, . . . , nl)∈ D such that ni ∈Ni for i =1, . . . , l,
f =5(w), and S f = Sw.

(b) For every 1≤ k < l, we have

N1N2 · · ·Nl = (N1N2 · · ·Nk)(Nk+1Nk+2 · · ·Nl).
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Proof. We prove this by induction on l. Clearly, the claim is true for l = 1. Assume
now l>1. Then there exists always 1≤ k< l. For any such k, it follows by induction
(one time applied with N1, . . . ,Nk and one time applied with Nk+1, . . . ,Nl in place
of N1, . . . ,Nl) that the hypothesis of 5.1 is fulfilled, so the assertion follows. �

5.3. Let σ ∈ Sl be a permutation. Then N1N2 · · ·Nl =N1σN2σ · · ·Nlσ .

Proof. We may assume that σ = (i, i + 1) for some 1 ≤ i < l, as Sl is generated
by transpositions of this form. Note that N1 · · ·Ni−1, NiNi+1 and Ni+2 · · ·Nl are
partial normal subgroups by 5.2(a), where it is understood that Nr · · ·Ns = {1} if
r > s. By Theorem 1, we have MN =NM for any two partial normal subgroups.
Using this fact and 5.2(b) repeatedly, we obtain

N1N2 · · ·Nl = (N1 · · ·Ni−1)(NiNi+1)(Ni+2 · · ·Nl)

= (N1 · · ·Ni−1)(Ni+1Ni )(Ni+2 · · ·Nl)

=N1σN2σ · · ·Nlσ . �

Proof of Theorem 2. It follows from 5.2(a) that N1 · · ·Nl is a partial normal subgroup
and that (c) holds. Property (a) is 5.2(b), and property (b) is 5.3. �
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