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Dedicated to the memory of Professor R. Steinberg

Let q be a prime power and let Gn be the general linear group GLn.q/ or
the special linear group SLn.q/, with n � 4. We prove two characterization
theorems for the Weil representations of Gn in any characteristic coprime
to q, one in terms of the restriction to a standard subgroup Gn�1, and an-
other in terms of the restriction to a maximal parabolic subgroup of Gn.

1. Introduction

The so-called Weil representations were introduced by A. Weil [1964] for classical
groups over local fields. Weil mentioned that the finite field case may be considered
analogously. This was developed in detail by R. E. Howe [1973] and P. Gérardin
[1977] for characteristic zero representations. The same representations, still in
characteristic zero, were introduced independently by I. M. Isaacs [1973] and
H. N. Ward [1972] for symplectic groups Sp2n.q/ with q odd, and by G. M. Seitz
[1975] for unitary groups. (These representations for Sp2n.p/ were also constructed
in [Bolt et al. 1961].) Weil representations of finite symplectic groups Sp2n.q/

with 2 j q were constructed by R. M. Guralnick and the author in [Guralnick and Tiep
2004]. Weil representations attract much attention because of their many interesting
features; see, for instance, [Dummigan 1996; Dummigan and Tiep 1999; Gow 1989;
Gross 1990; Scharlau and Tiep 1997; 1999; Tiep 1997a; 1997b, Zalesski 1988].

The construction of the Weil representations may be found in [Howe 1973;
Gérardin 1977; Guralnick and Tiep 2004; Seitz 1975], etc. In particular, in the case
of general and special linear groups, they can be constructed as follows. Let W DFn

q

with n� 3, and let Q� 2 C, respectively � 2 Fq , be a fixed primitive .q�1/-th root of
unity. Then SL.W /D SLn.q/ has q� 1 complex Weil representations, which are
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the nontrivial irreducible constituents of the permutation representation of SL.W /

on W nf0g. The characters of these representations are � i
n;q , where 0� i � q�2 and

(1-1) � i
n;q.g/D

1

q�1

q�2X
kD0

Q� ikqdim Ker.g��k �1
W
/
� 2ı0;i :

Similarly, GL.W / D GLn.q/ has .q � 1/2 complex Weil representations, which
are the q� 1 nontrivial irreducible constituents of the permutation representation
of GL.W / on W n f0g, tensored with one of the q� 1 representations of degree 1

of GLn.q/. If we fix a character ˛ of order q � 1 of GLn.q/, then the characters
of these representations are � i;j

n;q , where 0� i; j � q� 2 and

(1-2) � i;j
n;q.g/D

�
1

q�1

q�2X
kD0

Q� ij qdim Ker.g��k �1
W
/
� 2ı0;i

�
�˛j .g/:

Note that � i;j
n;q restricts to � i

n;q over SLn.q/.
From now on, let us fix a prime p, a power q of p, and an algebraically closed

field F of characteristic ` not equal to p. If G is a finite (general or special) linear
group, unitary group, or symplectic group, then by a Weil representation of G

over F, we mean any composition factor of degree > 1 of a reduction modulo ` of a
complex Weil representation of G. As it turns out, another important feature of the
Weil representations is that, with very few small exceptions, Weil representations are
precisely the irreducible FG-representations of the first few smallest degrees (larger
than 1); see [Brundan and Kleshchev 2000; Guralnick et al. 2002; 2006, Guralnick
and Tiep 1999, 2004, Hiss and Malle 2001; Tiep and Zalesski 1996]. Aside from
this characterization by degree, Weil representations can also be recognized by
various conditions imposed on their restrictions to standard subgroups, or parabolic
subgroups. This was done in the case where G is a symplectic group or a unitary
group, in [Tiep and Zalesski 1997] for complex representations and in [Guralnick
et al. 2002, 2006, Guralnick and Tiep 2004] for modular representations (in cross
characteristics). However, the case where G is a general or special linear group has
not been treated. Perhaps one of the reasons for the absence until now of such charac-
terizations (as regards the restriction to a parabolic subgroup) is that the obvious ana-
logue of [Guralnick et al. 2002, Corollary 12.4] fails in this case; see Example 4.1.

We now fix W D Fn
q with a basis .e1; : : : ; en/, and consider Gn DG D GL.W /

or SL.W /. By a standard subgroup Gm in Gn, where 1 � m � n� 1, we mean
(any G-conjugate of) the subgroup

Gm D StabGn

�
he1; : : : ; emiFq

; emC1; : : : ; en

�
:

Next, we fix a primitive p-th root of unity � 2 C. A maximal parabolic subgroup
of G is conjugate to

P D StabG

�
he1; : : : ; ekiFq

�
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for some 1� k � n� 1. The unipotent radical Q of P is�
ŒX � WD

�
Ik X

0 In�k

� ˇ̌̌̌
X 2Mk;n�k.Fq/

�
;

where Ma;b.Fq/ is the space of all a� b matrices over Fq . Any irreducible Brauer
character of Q can then be written in the form

ˇY W ŒX � 7! �
Tr

Fq=Fp
tr.X Y /

for a unique Y 2Mn�k;k.Fq/. We define the rank of ˇY to be the rank of the
matrix Y .

The main results of the paper are the following theorems, which characterize
the Weil representations of finite general and special linear groups in terms of their
restrictions to a standard or maximal parabolic subgroup.

Theorem A. Let q be a prime power, n � 5, and for any integer m � 4, let Gm

denote the general linear group GLm.q/ or the special linear group SLm.q/. Con-
sider the standard embedding of Gm in Gn when n>m. Let F be an algebraically
closed field of characteristic zero or characteristic coprime to q. Then for any
finite-dimensional irreducible FGn-representation ˆ, the following statements are
equivalent:

(i) Either degˆD 1, or ˆ is a Weil representation of Gn.

(ii) ˆ has property .W/; that is, if ‰ is any composition factor of the restriction
ˆjGn�1

, then either deg‰ D 1, or ‰ is a Weil representation of Gn�1.

(iii) For some m with 4 � m � n� 1, every composition factor of the restriction
ˆjGm

either is a Weil representation or has degree 1.

(iv) For every m with 4 �m � n� 1, every composition factor of the restriction
ˆjGm

either is a Weil representation or has degree 1.

Theorem B. Let q be a prime power, n � 4, and let G denote the general linear
group GLn.q/ or the special linear group SLn.q/. Let F be an algebraically closed
field of characteristic zero or characteristic coprime to q. Let W D Fn

q denote
the natural G-module, and let Pk be the stabilizer of a k-dimensional subspace
of W in G, where 2 � k � n � 2. Then for any finite-dimensional irreducible
FGn-representation ˆ, the following statements are equivalent:

(i) Either degˆD 1, or ˆ is a Weil representation of Gn.

(ii) ˆ has property .Pk/; that is, the restriction ˆjQ to the unipotent radical Q of
Pk contains only irreducible FQ-representations of rank � 1.

Note that the definitions of properties .W/ and .Pk/ do not depend on the choice
of the particular standard or parabolic subgroup. Our subsequent proofs also make
use of another local property .Z/, which is defined by the condition (2-1) in Section 2.
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Theorem B has already been used by A. E. Zalesski [� 2015] in his recent work.

Throughout the paper, we will say that an ordinary or Brauer character ' of
GLn.q/ or SLn.q/ has property .W/, or .Pk/, if a representation affording ' does
as well. The notation IBr.X / denotes the set of irreducible Brauer characters of a
finite group X in characteristic `. If Y is a subgroup of a finite group X , and ˆ is
an FX -representation and ‰ is an FY -representation, then ˆjY is the restriction of
ˆ to Y , and ‰Y is the FX -representation induced from ‰, with similar notation for
ordinary and Brauer characters, as well as for modules. If � is a complex character
of X , then �ı denotes the restriction of � to the set of `0-elements in X .

2. Local properties and Weil representations

A key ingredient of our inductive approach is the following statement:

Proposition 2.1. Let GDGnDGLn.q/with n�5 and letˆ be an FG-representation.
Let K DG4 be a standard subgroup of G. Then the following statements hold.

(i) If ˆ has property .Pk/ for some 2 � k � n� 2, then the FK-representation
ˆjK has property .P2/.

(ii) If ˆjK has property .P2/, then ˆ has property .Pk/ for all 2� k � n� 2.

Proof. Consider

P D StabG

�
he1; : : : ; ekiFq

�
;

K D StabG

�
he1; e2; ekC1; ekC2iFq

; e3; : : : ; ek ; ekC3; : : : ; en

�
:

Then P2 WD P \K plays the role of the second parabolic subgroup of K, the
stabilizer in K of the plane he1; e2iFq

, with unipotent radical Q2 WDQ\K. Let '
denote the Brauer character of ˆ.

(i) Suppose that ˆ has property .Pk/. Consider any irreducible constituent ˇD ˇY

of 'jQ. By the assumption, rank.Y /� 1. Writing

Y D

�
Y1 Y2

Y3 Y4

�
;

where Y1 is 2� 2, it is easy to see that the restriction ˇjQ2
is just the character ˇY1

of Q2. Certainly, rank.Y1/� rank.Y /. It follows that ˆjK has property .P2/.

(ii) Suppose that ˆ does not possess property .Pk/ for some 2� k � n� 2. Then
we can find an irreducible constituent ˇ D ˇY of 'jQ, where rank.Y / DW r � 2.
Note that the conjugation by the element diag.A;B/ in the Levi subgroup

LD GLk.q/�GLn�k.q/

of P sends ˇY to ˇB�1YA. Replacing ˇ by a suitable L-conjugate, we may assume
that the principal r�r submatrix of Y is the identity matrix Ir . Now, in the notation
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of (i), we have ˇjQ2
D ˇY1

, where Y1 D I2. But this violates property .P2/

for ˆjK . �
Corollary 2.2. Let GDGnDGLn.q/ with n�5 and letˆ be an FG-representation.
Let H D Gm be a standard subgroup of G for some 4 � m � n � 1. Then the
following statements hold.

(i) If ˆ has property .Pk/ for some 2 � k � n� 2, then the FH -representation
ˆjH has property .Pj / for all 2� j �m� 2.

(ii) If ˆH has property .Pj / for some 2 � j �m� 2, then ˆ has property .Pk/

for all 2� k � n� 2.

Proof. Consider a standard subgroup K DG4 of H .

(i) By applying Proposition 2.1(i) to ˆ, ˆjK has property .P2/. Hence, by applying
Proposition 2.1(ii) to ˆjH , ˆjH has property .Pj / for all 2� j �m� 2.

(ii) By applying Proposition 2.1(i) to ˆjH , ˆjK has property .P2/. Hence, by
applying Proposition 2.1(ii) to ˆ, ˆ has property .Pk/ for all 2� k � n� 2. �

We will also fix the following elements in GLn.q/:

x D

�
1 1

0 1

�
˚ In�2; y D

�
1 1

0 1

�
˚

�
1 1

0 1

�
˚ In�4; zD

0@1 1 0

0 1 1

0 0 1

1A˚ In�3:

If ' is a Brauer character of G, we define

'Œ1� WD '.1/� .qC 1/'.x/C q'.y/; 'Œ2� WD '.y/�'.z/:

We will furthermore say that ' (or any representation affording it) has property .Z/ if

(2-1) 'Œ1�D 'Œ2�D 0:

Corollary 2.3. Let G D GLn.q/ or SLn.q/ with n � 4 and let ˆ be a Weil repre-
sentation of G over F. Then ˆ has property .Pk/ for all 2 � k � n� 2. If n � 5,
then ˆ has property .W/.

Proof. It suffices to prove the statement in the case where FD C and furthermore
GDGLn.q/, as � i;j

n;q restricts to � i
n;q over SLn.q/.

(i) First we consider the case G D GL4.q/ and consider the parabolic subgroup
P D StabG.he1; e2iFq

/, with unipotent radical Q. It is easy to check that IBr.Q/
consists of three P -orbits: f1Qg, O1 of characters of rank 1, and O2 of characters
of rank 2; moreover,

jO1j D .q
2
� 1/.qC 1/; jO2j D .q

2
� 1/.q2

� q/:

If q� 3, then jO2j>�
i;j
4;q
.1/ for all i; j , whence .� i;j

4;q
/jQ can afford only characters

of rank � 1, and so we are done.
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Suppose that q D 2, in which case there is only one complex Weil character
�D �

1;1
4;2

of degree 14. We also consider the irreducible complex character � of
G D GL4.2/Š A8 of degree 7. As jO1j D 9, jO2j D 6, and Q 6� Ker.�/, we must
have that

�jQ D 1QC

X
�2O2

�:

For the aforementioned involutions x, y , we have that

�.x/D 6; �.y/D 2;

whence x belongs to class 2A and y belongs to class 2B in the notation of [Conway
et al. 1985]. It follows that

�.x/D�1; �.y/D 3;

and soX
�2O2

�.x/D�2;
X
�2O2

�.y/D 2;
X
�2O1

�.x/D 1;
X
�2O1

�.x/D�3:

Since
�jQ D a � 1QC b

X
�2O1

�C c
X
�2O2

�

for some nonnegative integers a; b; c, we conclude that .a; b; c/D .5; 1; 0/, i.e., �
has property .P2/, as desired.

(ii) Now we consider the general case of G D GLn.q/ with n � 5, and consider
a standard subgroup H D GL4.q/ and a standard subgroup LD GLn�1.q/ in G.
Let �n denote the permutation character of G on Fn

q , so that

�n D

q�2X
iD0

� i;0
n;qC 2 � 1G :

Note that .�n/jLD q�n�1, and so ˆ has property .W/. Similarly, .�n/jH D qn�4�4.
Furthermore, according to (i), �4 has property .P2/. It follows that .�n/jH also
has property .P2/, and so, by Corollary 2.2(ii), �n has property .Pk/. Consequently,
�

i;0
n;q and � i;j

n;q also possess property .Pk/. �

Lemma 2.4. Let G D GLn.q/ or SLn.q/, where n � 4, and let ˆ be a Weil
representation of G over F. Then ˆ has property .Z/.

Proof. Let ' be the Brauer character of ˆ. It is well known, see [Guralnick and
Tiep 1999] for instance, that ' is a linear combination of the reduction modulo `
of some �D � i;j

n;q or � i
n;q (note that such reductions need not be irreducible) and a
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linear character of G. As any linear character has property .Z/, it suffices to show
that � has property .Z/. According to (1-2), we have

�.1/D
qn� 1

q� 1
�ı0;i ; �.x/D

qn�1� 1

q� 1
�ı0;i ; �.y/D�.z/D

qn�2� 1

q� 1
�ı0;i ;

which implies property .Z/ for �. �
Proposition 2.5. Let G D GLn.q/ and S D SLn.q/ � G with n � 4. Let ˆ be an
FG-representation and let ‰ be an FS -representation. Also, let P D .Pk/ for some
2� k � n� 2, or P D .W/.

(i) ˆ has property P if and only if ˆjS has property P .

(ii) ‰ has property P if and only if ‰G has property P .

Proof. (a) First we consider the case P D .Pk/ and let P be the stabilizer in G

of a k-space in the natural module W D Fn
q , with unipotent radical Q. Note that

Q< P \S . Furthermore, if O1 denotes the set of all Brauer irreducible characters
of Q of rank 1, then O1 forms a single P -orbit and also a single P \S -orbit.

It is clear that ˆ has property .Pk/ if and only if ˆjS has property .Pk/, since
Q< S . It is also clear that ‰ has property .Pk/ whenever ‰G has property .Pk/,
since ‰jQ is a subquotient of .‰G/jQ. Assume now that ‰ has property .Pk/

and affords the Brauer character  . Then, by the aforementioned discussion,
 jQ D a � 1QC b
 for some integers a; b � 0 and 
 WD

P
�2O1

�. Note that we
can find a cyclic subgroup C Š Cq�1 of P such that G D S ÌC , and again by the
aforementioned discussion, C preserves 
 . As

. G/jQ D
X
c2C

. c/jQ;

we conclude that . G/jQ D .q� 1/.a � 1QC b
 /, and so ‰G has property .Pk/.
(b) Next we consider the case P D .W/ and let H Š GLn�1.q/ be a standard
subgroup of G, so that H \ S Š SLn�1.q/ is also a standard subgroup of S .
We already mentioned that Weil representations of H restrict irreducibly to Weil
representations of H \S . In particular, if ˆ has property .W/ then so does ˆjS .
Similarly, as the composition factors of ‰ are among the composition factors
of .‰G/jS , if ‰G has property .W/ then so does ‰.

Conversely, observe that

.� i
m;q/

G
D

q�2X
jD0

� i;j
m;q:

Hence, if ‚ is a Weil representation of SLm.q/ and m� 3, then every composition
factor of‚GLm.q/ is a Weil representation of GLm.q/ or a representation of degree 1.
Moreover, we can find a cyclic subgroup C ŠCq�1 of H such that G D S ÌC and
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H D .H \S/ÌC . It follows that if ‰ has property .W/ then so does ‰G . Finally,
as the composition factors of ˆ are among the composition factors of .ˆjS /G ,
if ˆjS has property .W/ then so do .ˆjS /G and ˆ. �

Corollary 2.6. Let G D GLn.q/ or SLn.q/ and let ˆ be an FG-representation.

(i) If ˆ possesses property .W/ and n� 5, then ˆ has property .Z/.

(ii) If ˆ has property .Pk/ for some 2 � k � n� 2 and n � 4, then the Brauer
character ' of ˆ satisfies 'Œ1�D 0.

(iii) Suppose that either the assumption of (i) or of (ii) holds. If P1 is the stabilizer
in G of a 1-space of the natural module W D Fn

q of G and V is an FG-module
affording ˆ, then CV .Q1/¤ 0 for Q1 WDOp.P1/.

Proof. (i) Suppose that n� 5 and ˆ has property .W/. Then we can choose x;y ; z

from a standard subgroup H DGLn�1.q/ or SLn�1.q/ of G. By Lemma 2.4, ˆjH
has property .Z/, and so does ˆ.

(ii) Suppose now that n� 4 and ˆ has property .Pk/. Then we can choose x;y ; z

from a standard subgroup H DGL4.q/ or SL4.q/ of G. First we consider the case
nD4, so that kD2, and let � WD �0;0

4;q
2 Irr.H /; in particular, �.1/D .q4�q/=.q�1/.

By Lemma 2.4, � has property .Z/. On the other hand, in the notation of the proof
of Corollary 2.3, it follows from the arguments in that proof that

�jQ D
X
�2O1

�C .2qC 1/ � 1Q:

Hence, choosing x;y 2Q, we see that

(2-2) ˛Œ1�D 
 Œ1�D 0

for ˛ WD 1Q and 
 WD
P
�2O1

�. Also note that P always acts transitively on O1,
no matter if H D GL4.q/ or SL4.q/. It follows that 'jQ D a˛ C b
 for some
integers a; b � 0, and so (2-2) implies that 'Œ1�D 0.

Now we consider the case n� 5. If GDGLn.q/, then by Proposition 2.1(i),ˆjH
has property .P2/ and so 'Œ1�D 0 by the case nD 4. Suppose now that GD SLn.q/

and set M DGLn.q/�G. We can choose a standard subgroup LŠGL4.q/ in M

such that L\G DH Š SL4.q/. By Proposition 2.5(ii) applied to .M;G/, ˆM

has property .Pk/, and so .ˆM /jL has property .P2/ by Proposition 2.1(i). But
then .ˆM /jH has property .P2/ by Proposition 2.5(i). As we can find a cyclic
subgroup C Š Cq�1 of L such that L D H Ì C and M D G Ì C , we see that
.ˆM /jH D ..ˆjH /

L/jH . We can now conclude that ˆH has property .P2/ and so
'Œ1�D 0 again by the case nD 4.

(iii) By the results of (i) and (ii), we may assume that 'Œ1� D 0 for the Brauer
character ' of ˆ. Assume the contrary that CV .Q1/ D 0. Note that P1 acts
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transitively on IBr.Q1/ n f1Q1
g. It follows that we can write

(2-3) 'Q1
D c

X
1Q1
¤�2IBr.Q1/

�

for some integer c > 0. In particular, taking x 2Q1 we get

'.1/D c.qn�1
� 1/; '.x/D�c;

and so the relation 'Œ1�D 0 implies that

(2-4) '.y/D�c.qn�2
C 1/:

On the other hand, as n� 4, we can choose an SLn.q/-conjugate y1 2P1 of y that
projects onto a transvection in GLn�1.q/ under the embedding

P1=Q1 ,! GL1.q/�GLn�1.q/:

Such an element y1 acts on IBr.Q1/ n f1Q1
g with exactly qn�2 � 1 fixed points.

Coupled with (2-3), this implies that

j'.y/j D j'.y1/j � .q
n�2
� 1/c;

contradicting (2-4). �

3. The general linear groups

For GDGLn.q/ and V an irreducible FG-module, we will use James’ parametriza-
tion [1986]
(3-1) V D

�
D.s1; �1/ ıD.s2; �2/ ı � � � ıD.st ; �t /

�
"G

for V as given in [Guralnick and Tiep 1999, Proposition 2.4]. Here, si 2 F� has
degree di over Fq and is `-regular, �i ` ki , and nD

Pt
iD1 kidi . Moreover, for any

i¤j , si and sj do not have the same minimal polynomial over Fq . Each D.si ; �i/ is
an irreducible module for GLki di

.q/, and if t > 1 then V is Harish-Chandra-induced
from the Levi subgroup

LD GLk1d1
.q/�GLk2d2

.q/� � � � �GLkt st
.q/

of a certain parabolic subgroup P DQL of G. Namely, consider

D.s1; �1/˝D.s2; �2/˝ � � �˝D.st ; �t /

as an irreducible L-module, inflate it to an irreducible FP -module U , and then
induce to G to get V : V D U G . Note that the Harish-Chandra induction is
commutative (with respect to the factors D.si ; �i/) and transitive. Also, note that the
Weil modules of G are precisely D.a; .n�1; 1// and

�
D.a; .n�1//ıD.b; .1//

�
"G,

with a; b 2 F�q being `-regular and a¤ b. For the irreducible complex G-modules,
we will instead use the notation�

S.s1; �1/ ıS.s2; �2/ ı � � � ıS.st ; �t /
�
"G:
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Proposition 3.1. Theorem B holds for G D GL4.q/.

Proof. The implication “(i) ) (ii)” follows from Corollary 2.3. For the other
implication, let ˆ be an irreducible FG-representation possessing property .P2/

and let ' denote its Brauer character. By Corollary 2.6(ii)–(iii), we have 'Œ1�D 0

and CV .Q1/¤ 0, if V is an FG-module affording ˆ.

(i) First we consider the case `D 0, or more generally, ' lifts to a complex character
of G. Using the character table of G given, e.g., in [Geck et al. 1996], one can
check that the relation 'Œ1�D 0 implies that ' is a Weil character. (Note that the
character table of G was first determined in [Steinberg 1951].)

(ii) From now on we may assume that p ¤ `
ˇ̌
jGj and that ' does not lift to a

complex character. We use the label for V given in (3-1). Since any irreducible
FX -module of X 2 fGL1.q/;GL2.q/g lifts to a complex module, we see that
D.si ; �i/ lifts to a complex GLki di

.q/-module if kidi � 2. The same also happens
if �i D .ki/; see [Guralnick and Tiep 1999, Corollary 2.6]. Hence, the condition
that V does not lift to a complex module implies that one of the following cases
must occur for V as labeled in (3-1):

(a) t D 1, V DD.s; �/.

(b) t D 2, V D
�
D.a; �/ıD.b; .1//

�
"G, deg.a/D deg.b/D 1, �` 3, and a¤ b.

Let e be the smallest positive integer such that ` j .1C qC q2C � � �C qe�1/.

(iii) Suppose we are in case (a). Then, by [Kleshchev and Tiep 2010, Theorem 5.4],
CV .Q1/ D 0 whenever deg.s/ > 1. Hence we must have that deg.s/ D 1. By
[Guralnick and Tiep 1999, Lemma 2.9] without loss we may assume that s D 1,
i.e., ˆ is a unipotent representation. Note that ˆ has degree 1 if �D .4/ and is a
Weil representation if �D .3; 1/. Now we let �j , 1 � j � 5, denote the complex
unipotent character of G labeled by .4/, .3; 1/, .2; 2/, .2; 12/, and .14/, respectively.
Similarly, we let 'j , 1� j � 5, denote the Brauer unipotent character of G labeled
by .4/, .3; 1/, .2; 2/, .2; 12/, and .14/, respectively. Then

(3-2) �1Œ1�D�2Œ1�D'1Œ1�D'2Œ1�D0; �3Œ1�Dq4; �4Œ1�Dq5; �5Œ1�Dq6:

Recall that we use the notation �ı to denote the restriction of a complex character �
to the set of `0-elements of G, and that 'Œ1�D 0.

By the results of [James 1990], there are integers x1;x2 such that

�ı3 D '3Cx1'1Cx2'2:

It follows by (3-2) that '3Œ1�D �3Œ1�D q4; in particular, �¤ .2; 2/.
Next, by [Guralnick and Tiep 1999, Proposition 3.1], there are nonnegative

integers y1;y2;y3 such that y3 � 1 and

�ı4 D '4Cy1'1Cy2'2Cy3'3:
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It follows by (3-2) that

'4Œ1�D �4Œ1��y3'3Œ1�D q4.q�y3/ > 0I

in particular, �¤ .2; 12/.
Finally, let �D .14/, i.e., ' D '5. Then � is 2-divisible and 4-divisible in the

sense of [Kleshchev and Tiep 2010, Definition 4.3]. Since CV .Q1/¤ 0, it follows
by [loc. cit., Theorem 5.4] that e ¤ 2; 4. If e D 3, then by [James 1990], we have

�ı5 D 'C'3;

and so �5Œ1�D '3Œ1�D q4, contrary to (3-2). Thus we must have e � 5 > n, and
so '5 D �ı

5
by [James 1990, Theorem 6.4], whence �5Œ1� D 'Œ1� D 0, again a

contradiction.

(iv) Suppose we are in case (b). By [Guralnick and Tiep 1999, Lemma 2.9], we
may assume that aD 1. Let �1, �2, and �3 denote the (ordinary) characters of the
irreducible CG-modules

�
S.1; �/ ıS.b; .1//

�
"G, with �D .3/, .2; 1/, and .13/,

respectively. Similarly, let  1,  2, and  3 denote the Brauer characters of the
irreducible FG-modules

�
D.1; �/ ıD.b; .1//

�
"G, with �D .3/, .2; 1/, and .13/,

respectively. Using [Geck et al. 1996], we can compute

(3-3) �1Œ1�D 0; �2Œ1�D q4.qC 1/; �3Œ1�D q5.qC 1/:

Note that  1 is a Weil character, and so  1Œ1� D 0. Using the decomposition
matrix for GL3.q/ [James 1990], we get a nonnegative integer x such that

�ı2 D  2Cx 1:

It follows by (3-3) that  2Œ1�D �2Œ1�D q4.qC 1/. Furthermore, there are integers
0� y; z � 1 such that

�ı3 D  3Cy 1C z 2:

It follows by (3-3) that

 3Œ1�D �3Œ1�� z 2Œ1�� q4.q2
� 1/:

We have therefore shown that ' D  1, a Weil character. �
Proposition 3.2. Let GDGLn.q/ with n�5 and let V be an irreducible FG-module.
Suppose that V has property .W/. Then in the label (3-1) for V , deg.si/D 1 for
all i . Furthermore, either V is a Weil module, or t D 1.

Proof. (i) First we consider the case t D 1. By Corollary 2.6, CV .Q1/¤ 0, whence
deg.s1/D 1 by [Kleshchev and Tiep 2010, Theorem 5.4].

(ii) From now on we may assume that t � 2, so that V is Harish-Chandra-
induced. Next we show that deg.si/ D 1 for all i . Assume for instance that
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d1 D deg.s1/ > 1. Then we consider a standard subgroup H D GLm.q/ of G

with 2�m WD n� ktdt � n� 1. Property .W/ implies that all composition factors
of V jH are Weil modules or of dimension 1. We can find a parabolic subgroup
P DQL with Levi subgroup LDH�GLkt dt

.q/. Then note that V can be obtained
by inflating the irreducible FL-module A˝D.st ; �t / to P , where

A WD
�
D.s1; �1/ ıD.s2; �2/ ı � � � ıD.st�1; �t�1/

�
"H;

and then induce to G. In particular, A is a simple submodule of V jH , and clearly A

is not a Weil module as deg.s1/ > 1. Suppose that dim.A/D 1. Since deg.s1/ > 1,
we must have that .m; q/ D .2; 2/, deg.s1/ D 2, �1 D .1/, and t D 2. Applying
property .W/ to a standard subgroup GL3.2/ containing H D GL2.2/ (as its
standard subgroup) and then restricting further down to H , we see, however, that
AD deg.s1; .1// cannot occur in V jH , a contradiction.

(iii) Here we show that one of the following holds:

(a) t D 3, �i D .ki/ for all i , and fk1; k2; k3g D fn� 2; 1; 1g.

(b) t D 2 and �i 2 f.ki/; .ki � 1; 1/g for all i .

The arguments in (ii) show that A is a simple submodule of V jH . Again by
property .W/, A is either a Weil module or of dimension 1. First we consider the
case t �3. Then note that dim.A/ is at least the index of a proper parabolic subgroup
of H and so can never be equal to 1. Thus A is a Weil module. The identification
of Weil modules among the ones labeled in (3-1) now implies that in fact t D 3,
�i D .ki/ for all i D 1; 2, and 1 2 fk1; k2g. Interchanging k3 with k1 or k2 in the
above construction and noting that n� 5, we then get k3 D 1 and �3 D .1/ as well.

Suppose now that t D 2. The claim is obvious if ki � 2, so we consider the
case where k1 � 3, say. Then ADD.s1; �1/ is a Weil module of GLk1

.q/ or of
dimension 1. It follows that �1 2 f.k1/; .k1� 1; 1/g, as stated.

(iv) Abusing the notation, now we use H to denote the standard subgroup

H D StabG

�
he1; e2; : : : ; en�1iFq

; en

�
Š GLn�1.q/;

and P DQÌL to denote the parabolic subgroup

P D StabG

�
he1; : : : ; ekiFq

�
;

where k WD k1 and

LD StabG

�
he1; : : : ; ekiFq

; hekC1; : : : ; eniFq

�
:

Then we can obtain V by inflating the irreducible FL-module B, where

B WDD.s1; �1/˝
�
D.s2; �2/ ı � � � ıD.st ; �t /

�
" GLn�k.q/;
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to an irreducible FP -module U and then induce to G. Note that PH DQH ÌLH

is also a parabolic subgroup of H , where

PH WD P \H; QH WDQ\H; LH WDL\H:

Mackey’s formula implies that V jH contains a subquotient V 0 WD .U 0/H , where
U 0 WD U jPH

. But note that QH �Q acts trivially on U , so in fact V 0 is Harish-
Chandra-induced from the FLH -module B0, where B0 WD BjLH

.

(v) Now we can complete the case t D 3. As shown in (iii), in this case we have that
�i D .ki/ for all i and we may furthermore assume that .k1; k2; k3/D .1; 1; n�2/.
Repeating the argument in (iv) and using the notation therein, we see that B0

contains a simple subquotient isomorphic to

D.s1; .1//˝
�
D.s2; .1// ıD.s3; .n� 3//

�
" GLn�2.q/:

It follows that V jH contains a subquotient isomorphic to�
D.s1; .1// ıD.s2; .1// ıD.s3; .n� 3//

�
"H;

which is irreducible, but not a Weil module nor of dimension 1. This contradiction
shows that the case t D 3 is impossible.

(vi) Finally, we consider the case t D 2. As shown in (iii), �i 2 f.ki/; .ki � 1; 1/g;
also, recall that n D k1C k2 � 5. Suppose first that k2 � k1 � 2. Then, in the
notation of (iv), we see that BDD.s1; �1/˝D.s2; �2/ and so B0 contains a simple
subquotient isomorphic to D.s1; �1/˝D.s2; �/ with � 2 f.k2� 1/; .k2� 2; 1/g.
It follows that V jH contains a subquotient isomorphic to�

D.s1; �1/ ıD.s2; �/
�
"H;

which is irreducible, but not a Weil module nor of dimension 1, a contradiction.
Hence we may assume that .k1; k2/D .1; n� 1/. If �2 D .n� 1/, then V is a

Weil module. Assume that �2D .n�2; 1/. Then, in the notation of (iv), we see that
B DD.s1; �1/˝D.s2; .n�2; 1// and so B0 contains a simple subquotient isomor-
phic to D.s1; �1/˝D.s2; .n� 3; 1//. It follows that V jH contains a subquotient
isomorphic to �

D.s1; .1// ıD.s2; .n� 3; 1//
�
"H;

which is irreducible, but not a Weil module nor of dimension 1, again contradicting
property .W/. �
Proposition 3.3. Let GDGLn.q/ with n�5 and let V be an irreducible FG-module.
Suppose that V has property .W/. Then either V is a Weil module, or dim V D 1.

Proof. (i) Consider the label (3-1) for V . By Proposition 3.2 and [Guralnick and Tiep
1999, Lemma 2.9], we may assume that V DD.1; �/, a unipotent representation;
furthermore, CV .Q1/ ¤ 0 by Corollary 2.6. Now V is a subquotient of the
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reduction modulo ` of the unipotent CG-module S.1; �/. We can find a standard
subgroup H D GLn�1.q/ of G as a direct factor of the Levi subgroup L1 D

H �GL1.q/ of P1 DQ1L1. By the Howlett–Lehrer comparison theorem [1983,
Theorem 5.9], the Harish-Chandra restriction �RG

L1
of unipotent characters of G

can be computed inside the Weyl group Sn of G, and it is similar for the Harish-
Chandra induction RG

L1
. For brevity, we denote the character of S.1; �/ by �� and

the Brauer character of D.1; �/ by '�, with similar notation for other partitions.
In this notation, �RG

L1
.��/ is the sum of unipotent characters �� of L1 labeled

by � ` .n� 1/, where the Young diagram Y .�/ of � is obtained from the Young
diagram Y .�/ of � by removing one removable node. For instance,

(3-4)

�RG
L1
.�.n//D �.n�1/;

�RG
L1
.�.n�1;1//D �.n�1/

C�.n�2;1/;

�RG
L1
.�.n�2;2//D �.n�3;2/

C�.n�2;1/;

�RG
L1
.�.n�2;12//D �.n�3;12/

C�.n�2;1/:

It is similar for the Harish-Chandra induction; in particular,

(3-5)
RG

L1
.�.n�1//D �.n/C�.n�1;1/;

RG
L1
.�.n�2;1//D �.n�1;1/

C�.n�2;2/
C�.n�2;12/:

Let  be the Brauer character of a simple submodule of the L1-module CV .Q1/.
Then  is an irreducible constituent of �RG

L1
.'�/, the Brauer L1-character of

CV .Q1/. The above arguments show that  is an irreducible constituent of .��/ı

for some � ` .n� 1/, whence  D '� for some � ` .n� 1/. On the other hand,
property .W/ implies that  is a Weil character (while restricted to H ), or has
degree 1. As n � 5, it follows that � D .n � 1/ or .n � 2; 1/. By Frobenius’
reciprocity, '� is an irreducible constituent of RG

L1
.'�/, and so of .RG

L1
.��//ı

as well. Restricting (3-5) to `0-elements, we see by [Guralnick and Tiep 1999,
Proposition 3.1] that � is .n/, .n�1; 1/, .n�2; 2/, or .n�2; 12/. The first possibility
leads to the principal character, and the second one yields a Weil character.

(ii) Here we consider the case �D.n�2; 2/. Then applying [loc. cit., Proposition 3.1]
to G, we can write

.��/ı D '�Cx1.�
.n//ıCx2.�

.n�1;1//ı

for some integers x1, x2. It follows by (3-4) that
�RG

L1
.'�/D

�
�.n�3;2/

C .1�x2/�
.n�2;1/

� .x1Cx2/�
.n�1/

�ı
:

Applying [loc. cit., Proposition 3.1] to H , we then get
�RG

L1
.'�/D '.n�3;2/

Cx01'
.n�1/

Cx02'
.n�2;1/
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for some integers x0
1
, x0

2
. By the linear independence of irreducible Brauer charac-

ters, '.n�3;2/ is an irreducible constituent of .'�/jH , contradicting .W/.

(iii) Finally, assume that �D .n� 2; 12/. Then applying [loc. cit., Proposition 3.1]
to G, we have

.��/ı D '�Cy1.�
.n//ıCy2.�

.n�1;1//ıCy3.�
.n�2;2//ı

for some integers y1, y2, y3. It follows by (3-4) that

�RG
L1
.'�/D

�
�.n�3;12/

�y3�
.n�3;2/

C.1�y2�y3/�
.n�2;1/

�.y1Cy2/�
.n�1/

�ı
:

Applying [loc. cit., Proposition 3.1] to H , we then get

�RG
L1
.'�/D '.n�3;12/

Cy01'
.n�1/

Cy02'
.n�2;1/

Cy03'
.n�2;2/

for some integers y0
1
, y0

2
, y0

3
. By linear independence of irreducible Brauer charac-

ters, '.n�3;12/ is an irreducible constituent of .'�/jH , again contradicting .W/. �

We note (without giving proof, since we do not need it subsequently) that prop-
erty .Z/ can also be used to characterize Weil representations of GLn.q/ with n� 5.

Proposition 3.4. Theorem A holds for G D GLn.q/ with n� 5.

Proof. The implication “(i)) (ii)” follows from Corollary 2.3. In fact, by applying
Corollary 2.3 successively, we see that (i) also implies (iii) and (iv). Also, note that
(iv) obviously implies (iii), and (ii) implies (i) by Proposition 3.3.

It remains to show that (iii) implies (i). We proceed by induction on n� 5, with
the induction base nD 5 (so that mD 4) already established in Proposition 3.3. For
the induction step n� 6, consider a chain of standard subgroups

H D GLm.q/�LD GLn�1.q/ <G D GLn.q/:

Let ‰ be any composition factor of ˆjL. According to (iii), every composition
factor of ‰jH is either a Weil representation or has dimension 1. Hence, by the
induction hypothesis applied to L, we see that either ‰ is a Weil representation or
deg‰ D 1. Thus ˆ has property .W/, and so we are done by Proposition 3.3. �

Proposition 3.5. Theorem B holds for G D GLn.q/ with n� 4.

Proof. The implication “(i)) (ii)” follows from Corollary 2.3. For the other impli-
cation, let G D GLn.q/ with n� 4 and let ˆ be an irreducible FG-representation
with property .Pk/ for some 2� k � n�2. By Proposition 3.1, we may assume that
n � 5 and consider a standard subgroup H Š GL4.q/ of G. By Corollary 2.2(i),
every composition factor ‰ of ˆjH has property .P2/. By Proposition 3.1, either ‰
is a Weil representation or deg‰ D 1. Thus ˆ fulfills condition (iii) of Theorem A
for G and with mD 4. Hence ˆ is either a Weil representation or has degree 1 by
Proposition 3.4. �
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4. The special linear groups

Proof of Theorems A and B. By Propositions 3.4 and 3.5, it suffices to prove the
theorems for SDSLn.q/. Also, by Corollary 2.3, it suffices to prove the implication
“(ii)) (i)” (as the implication “(iii)) (i)” of Theorem A can then be proved using
the same arguments as in the proof of Proposition 3.4). Let P 2 f.Pk/; .W/g and
let U be an irreducible FS -module with property P . We consider S as the derived
subgroup of GDGLn.q/. By Proposition 2.5(ii), a simple submodule V of U G has
property P . Applying Proposition 3.5 if P D .Pk/, respectively Proposition 3.4 if
PD .W/, to V , we see that V is a Weil module or dim V D1. As U is an irreducible
constituent of V jS , we conclude that U is a Weil module or has dimension 1. �

We note that one could try to prove the complex case of Theorem A for GLn.q/

using the results of [Zelevinsky 1981] or [Thoma 1971]. We conclude by the follow-
ing example showing that Weil representations of GLn.q/ and SLn.q/ do not admit a
“middle-free” characterization in the spirit of [Guralnick et al. 2002, Corollary 12.4].

Example 4.1. Let GDGLn.q/ or SLn.q/ with n� 3. Consider the natural module
W D he1; : : : ; eniFq

and let

P D StabG

�
he1iFq

; he1; : : : ; en�1iFq

�
:

Note that P DNG.Z/ for a long-root subgroup Z of G. Also, we may assume
that (a G-conjugate of) the long-root element x defined in Section 2 is contained
in Z. Suppose that an irreducible FG-module V has no middle with respect to
QDOp.P / as in [Guralnick et al. 2002, Corollary 12.4], i.e.,

CV .Z/DCV .Q/:

It follows that
V DCV .Q/˚ ŒV;Z�:

Let ' denote the Brauer character of V . Then we have

'.x/D a� qn�2b;

where dim CV .Q/Da and dimŒV;Z�D qn�2.q�1/b. But note that QnZ contains
a G-conjugate x0 of x, and

'.x0/D a:

It follows that b D 0, V DCV .Q/, Q acts trivially on V , and so dim V D 1.
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