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I dedicate this work to the memory of Robert Steinberg, having in mind both a nice encounter in
Los Angeles and the representations named after him, which play such a fundamental role in the
representation theory of reductive p-adic groups.

We give basic properties of the parabolic induction and coinduction functors
associated to R-algebras modelled on the pro-p Iwahori Hecke R-algebras
Hr(G) and H (M) of a reductive p-adic group G and of a Levi subgroup M
when R is a commutative ring. We show that the parabolic induction and
coinduction functors are faithful, have left and right adjoints that we de-
termine, respect finitely generated R-modules, and that the induction is a
twisted coinduction.
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1. Introduction

We give basic properties of the parabolic induction and coinduction functors as-
sociated to R-algebras modelled on the pro-p Iwahori Hecke R-algebras Hg(G)
and Hr(M) of a reductive p-adic group G and of a Levi subgroup M when R is a
commutative ring. We show that the parabolic induction and coinduction functors
are faithful, have left and right adjoints that we determine, respect finitely generated
R-modules, and that the induction is a twisted coinduction.

When R is an algebraically closed field of characteristic p, Abe [2014, §4] proved
that the induction is a twisted coinduction when he classified the simple H(G)-
modules in terms of supersingular simple H g(M)-modules. In two forthcoming
articles [Ollivier and Vignéras > 2015; Abe et al. > 2015], we will use this paper
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to compute the images of an irreducible admissible R-representation of G by the
basic functors: invariants by a pro- p-Iwahori subgroup, left or right adjoint of the
parabolic induction.

Let R be a commutative ring and let # be a pro-p Iwahori Hecke R-algebra,
associated to a pro-p Iwahori Weyl group W (1) and parameter maps & —1> R,
&(1) = R[Z] [Vignéras 2013a, §4.3; 2015b].

For the reader unfamiliar with these definitions, we recall them briefly. The pro-p
Iwahori Weyl group W (1) is an extension of an Iwahori-Weyl group W by a finite
commutative group Z;, and X (1) denotes the inverse image in W (1) of a subset X
of W. The Iwahori-Weyl group contains a normal affine Weyl subgroup W'; & is
the set of all affine reflections of W2T, and q is a W-equivariant map & — R, with W
acting by conjugation on & and trivially on R; ¢ is a (W (1) x Z;)-equivariant map
S&(1) — R[Zg], with W (1) acting by conjugation and Z; by multiplication on
both sides.

The Iwahori—Weyl group is a semidirect product W = A x Wy, where A is the
(commutative finitely generated) subgroup of translations and Wj is the finite Weyl
subgroup of W2,

Let ST be a set of generators of W2 such that (W, §2) is an affine Coxeter
system and (Wp, S := S¥T N Wy) is a finite Coxeter system. The Iwahori-Weyl
group is also a semidirect product W = W x Q, where Q denotes the normalizer
of S in W. Let £ denote the length of ( wat gafty extended to W and then inflated
to W (1) such that 2 C W and (1) C W (1) are the subsets of length-0 elements.

Let w € W(1) denote a fixed but arbitrary lift of w € W.

The subset & C W2 of all affine reflections is the union of the W3f-conjugates
of §% and the map q is determined by its values on S*T; the map c¢ is determined
by its values on any set S c $2(1) of lifts of S in W (1).

Definition 1.1. The R-algebra H associated to (W(1), q, ¢) and ST is the free
R-module of basis (T3)sew (1) and relations generated by the braid and quadratic
relations

ToTw = Tois T3 = ()G +c®7T;

for all w, W' € W (1) with £(w) + £(w’) = £(ww’) and all § € S (1).

By the braid relations, the map R[2(1)] — H sending & € (1) to T; identifies
R[2(1)] with a subring of H containing R[Z;]. This identification is used in the
quadratic relations. The isomorphism class of 7 is independent of the choice of S,

Let Sy be a subset of S. We recall the definitions of the pro-p Iwahori Weyl
group Wy, (1), the parameter maps Sy, Ju, R, Gy (1) N R[Z;] and S;‘};f given in
[Vignéras 2015b].

The set Sy, generates a finite Weyl subgroup Wy, o of Wp, Wy := A x Wy
is a subgroup of W, Wy (1) is the inverse image of Wy, in W(1), Gy (1) =
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S(1) N Wy (1), qu is the restriction of q to Sy, and ¢y, is the restriction of ¢
to G (1). The subgroup Wf“}f = W' N Wy, € Wy is an affine Weyl group and
Sj;f denotes the set of generators of Wj{‘,}cf containing Sy, such that (W}‘l‘,,ff, Sﬁ;f) is an
affine Coxeter system.

Definition 1.2. For S); C S, the R-algebra H,, associated to (W, (1), qar, ¢pr) and
S48 is called a Levi algebra of H.

Let (Tﬁ’)”)a)eWM(l) denote the basis of H,s associated to (Wy(1), qa, car) and
Sﬁ,ﬁf and £, the length of Wy, (1) associated to § fgf.

Remark 1.3. When Sy, = S, we have Hyy = H, and when Sy, = &, we have
Hy = R[A(D)].

In general when Sy # S, Sﬁ is not Wy, NS and H,, is not a subalgebra of #;
it embeds in # only when the parameters q(s) € R for s € S*! are invertible.

As in the theory of Hecke algebras associated to types, one introduces the

subalgebra 7-[;(,[ C H,, of basis (Tufj” ) associated to the positive monoid

weW,+ (1)
Wi+ = {w e Wy | w(zT — oF) ¢ zt+),

where ¥ C X are the reduced root systems defining W,?f C W2, the upper
index indicates the positive roots with respect to ST, §2if and =2 is the set of
affine roots of X. One chooses an element [i; central in Wy, (1), in particular of
length £ (fipr) = 0, lifting a strictly positive element ey in Ap+ := AN Wyy+.
The element T;% of Hy is invertible of inverse T;:?:I;, 1, but in general T}, is not
invertible in H.

Theorem 1.4. (i) The R-submodule Hy+ of basis (Tﬁljw )
of Huy, called the positive subalgebra of Hyy.

(ii) The R-algebra Hy = HM+[(TI£;I4)_1] is a localization of Hpy+ at TﬂA;Iu'

DeW, (1) 15 @ subring

(iii) The injective linear map Hy—>H sending Ti’)"’ to T for w € Wy (1) restricted
to Hy+ is a ring homomorphism.

(iv) Asa 0 (Hp+)-module, H is the almost localization of a left free O (H p1+)-module
Vy+ at Tﬂ u-

The theorem was known in special cases. Part (iv) means that H is the union
over r € N of

Vu+ ={x eH| TﬂrMX €Vy+t, Vy+r= eadEMWoe(HM*)TJ'

Here YW, is the set of elements of minimal lengths in the cosets Wy, o\ Wy and
d € W(1) is an arbitrary lift of d. The theorem admits a variant for the subalgebra
H - C Hyy associated to the negative submonoid Wy, inverse of W+, for the
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linear map H yy > # sending (Ta];W )* to T for w € Wy, (1) [Vignéras 2013a, Propo-
sition 4.14], and with left replaced by right in (iv): Hpy = Hpy- [Tﬂ% ], 6* restricted
to H - is a ring homomorphism, and the right 6*(H ;- )-module H is the almost
localisation at Tﬁ‘;} of a right free 6*(H ;- )-module V#,_ of rank |WM,0|*1 [Wol,
meaning that # is the union over r € N of

Vi={xeH| x(T;;dl)’ eV b V=) TIOY(Huo).
dew)!
Here Wé” is the inverse of MW,,.

For a ring A, let Mod,4 denote the category of right A-modules and 4 Mod the
category of left A-modules. Given two rings A C B, the induction — ®4 B and the
coinduction Homy (B, —) from Mod, to Modp are the left and the right adjoint of
the restriction Resﬁ. The ring B is considered as a left A-module for the induction,
and as a right A-module for the coinduction.

Property (iv) and its variant describe  as a left 0 (H y;+)-module and as a right
0*(H - )-module. The linear maps 6 and 6* identify the subalgebras H s+, H -
of H,; with the subalgebras 6 (Hy+), 0™ (Hy-) of H.

Definition 1.5. The parabolic induction and coinduction from Mody,,, to Mody
are the functors I;_L[‘M =—Qn,+0 H and I]%M = Homyy,,_ o (H, —).

We show the following:

Theorem 1.6. The parabolic induction I;_fM is faithful, transitive, respects finitely
generated R-modules, and admits a right adjoint Homy . (Hpy, —).
If R is a field, the right adjoint functor respects finite dimension.

The transitivity of the parabolic induction means that for Sy C Sy C S,
Hyp
0 = I;jM, o I, : Mody,,, — Mody,,,, — Mody, .

Let wo denote the longest element of Wy, Sy, m) the subset woSywo of S, and
w(])” = wow .0, Where wyy o is the longest element of Wy, o. A lift zi)g” e Wyo(1)
of wé"[ defines an R-algebra isomorphism

M
(1) Hy = Hupry,  TH > TV5D

Wil s~

for w € Wy (1),
inducing an equivalence of categories
il
MOdHM MOdeo )

of inverse 1} ") defined by the lift (w3) ' € Wo(1) of wi*™ = (wi)~".

Definition 1.7. The wo-twisted parabolic induction and coinduction from Mody,,,

H =M H =M
to Mody are the functors IHwOW) otoy and ”HU,OW) oty .
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Up to modulo equivalence, these functors do not depend on the choice of the lift
of w(’)"’ used for their construction.

Theorem 1.8. The parabolic induction (resp. coinduction) is equivalent to the
wo-twisted parabolic coinduction (resp. induction):

H oo TH =M H oM =M
HHM = IHWO(M) [¢] mo y IHM = HHWO(M) (¢] mO .
Using that the coinduction admits a left adjoint and that the induction is a twisted

coinduction, one proves the following:
Theorem 1.9. The parabolic induction I;’fM admits a left adjoint equivalent to

= wo (M)
0

v o(—®x Huwo(m)) : Mody — Mody,, ) = Mody,, .

woan= -0
When R is a field, the left adjoint functor respects finite dimension.
The coinduction satisfies the same properties as the induction:

Corollary 1.10. The coinduction I]zM is faithful, transitive, respects finitely gener-
ated R-modules, and admits a left and a right adjoint. When R is a field, the left
and right adjoint functors respect finite dimension.

Note that the induction and the coinduction are exact functors, as they admit a
left and a right adjoint.

We prove Theorem 1.4 in Section 2, and Theorems 1.6, 1.8 and 1.9 in Section 4.
Remark 1.11. One cannot replace (H, H,,, ’H;{l) by (H,H,,, H,,) to define the
induction I%M.

When no nonzero element of the ring R is infinitely p-divisible, is the parabolic
induction functor

IH
Mods,, —> Mody
fully faithful? The answer is yes for the parabolic induction functor
00 Indg 00
Mod} (M) —= Mod? (G)

when M is a Levi subgroup of a parabolic subgroup P of a reductive p-adic
group G and Mody’(G) the category of smooth R-representations of G [Vignéras
2014, Theorem 5.3].

2. Levi algebra

We prove Theorem 1.4 and its variant on the subalgebra £}, C £, its image in H,
on $y as a localisation of §)§, and on # as an almost left localisation of 9(557(,[),
and almost left localisation of 6*();,).
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2A. Monoid Wyge. Let Sy C S and € € {+, —}. To S*T is associated a submonoid
Wire C Wy defined as follows.

Let © denote the reduced root system of affine Weyl group W, V the real
vector space of dual generated by ¥, X% = ¥ 4 Z the set of affine roots of ¥ and
H={Kery(y)|y € > the set of kernels of the affine roots in V. We fix a Wy-
invariant scalar product on V. The affine Weyl group W' identifies with the group
generated by the orthogonal reflections with respect to the affine hyperplanes of $).

Let 2 denote the alcove of vertex 0 of (V, $3) such that S is the set of orthogonal
reflections with respect to the walls of 2 and S is the subset associated to the walls
containing 0. An affine root which is positive on 2 is called positive. Let X+
denote the set of positive affine roots, £F := £ N T f, Bt~ = —yaf~ and
T i=-3 .

Let Ay denote the set of positive roots & € X such that Ker « is a wall of 2
and the orthogonal reflection s, of V with respect to Ker « belongs to Sy, Xy C X
the reduced root system generated by Ay, and X5, := X, N X%

Definition 2.1. The positive monoid W+ C Wy, is
(we Wy |wEt—3i) c oty

The negative monoid Wy := {w € Wy, | w™! € Wy+} is the inverse monoid.

It is well known that the finite Weyl group Wy, o is the Wy-stabilizer of ¢ — X5,.
This implies

Ware = Ape X Wyro,  where Apge := AN Wiye.

Let A — V denote the homomorphism such that A € A acts on V by translation
by v(X).
Lemma2.2. Ay ={LeA|—(yov)(A) >0 forally € ¢ —Z},}.

Proof. Let A € A. By definition, A € A+ if and only if A(y) is positive for all
yext— E;C[. We have A(y) =y — v(X). The minimum of the values of y on 2
is 0 [Vignéras 2013a, (35)]. So y(v —v(A)) >0 fory € £* — X, and v € A is
equivalent to —(y ov)(A) >0 for all y € - E;C[. U
When Sy C Sy C S, we have the inclusion Xj, C X§,,, the inverse inclusion
X —X§, C X — X, and the inclusions Wy, C Wy and Wy, C Wj,,.
Remark 2.3. Set D¢ :={v e V | y(v) > 0 for y € ¢} and A€ := (—v)~ (D).
The antidominant Weyl chamber of V is D~ and the dominant Weyl chamber is D+.
Careful: [Vignéras 2015a, §1.2(v)] uses a different notation: A€ = ) ~H(D9).
The Bruhat order < of the affine Coxeter system (WA 52ty extends to W: for
wi, wr € WAy uy € Q, we have wiuy < wous if uy = up and wy < ws [Vignéras
2006, Appendice]. We write w < w’ if w < w’ and w # w' for w, w’ € W. Careful:
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the Bruhat order <,; on W}, associated to (ij, S;‘éf) is not the restriction of <
when Sﬁf is not contained in St [Vignéras 2015b].

Remark 2.4. The basic properties of (W, §2T) extend to W:
() Ifx <yforx,ye W ands e S,

sx <(yorsy), xs<(yorys), (xorsx)<sy, (xorxs)<ys

[Vignéras 2015a, Lemma 3.1, Remark 3.2].
(i) W =], crc WoA W, [Henniart and Vignéras 2015, §6.3, Lemmal].

(iii) For A € A", WyA W, admits a unique element of maximal length w; = woA,
where wy is the unique element of maximal length in Wy, and £(w; ) = £(wp) +
£(A) [Vignéras 2015a, Lemma 3.5].

(iv) For A e AT, {we W |w < wy} D Ll ica+ s WouWo [Vignéras 2015a,
Lemma 3.5].

Remark 2.5. The set {w € W |w < w,} is a union of (Wy, Wy)-classes only if
A, € AT, < woh implies 1 < A. I see no reason for this to be true.

Lemma 2.6. The monoid Wy« is a lower subset of Wy for the Bruhat order <;:
for w € Wye, any element v € Wy such that v <p; w belongs to Wyye.

Proof. See [Abe 2014, Lemma 4.1]. O

An element w € W admits a reduced decomposition in (W, Saff), w=s1---SU

with s; € S 4 e Q. Asin [Vignéras 2013a], we set for w, w’ € W,
2) Guw=q(s1) - q0). @y = 0oy

This is independent of the choice of the reduced decomposition. For w, w’ € Wy,
and s; € S;‘gf, u e Qy,let gy, gm ww denote the similar elements. They may be
different from gy, Guw,w'-

Lemma 2.7. We have SN Wye C S and gy ur = qutw,w if w, w' € Wiye.
In particular, £y (W) +Ly (W) =Ly (ww)=L(w)+£(w)—L(ww’) if w, w € Wpe.

Proof. See [Abe 2014, Lemma 4.4, proof of Lemma 4.5]. U

An element A € Ay such that all the inequalities in Lemma 2.2 are strict is
called strictly positive if € = +, and strictly negative if € = 4. We choose

a central element [iy; of Wy (1) lifting a strictly positive element .y of A.

We set fiy+ == iy and 1), := ;1;,11. The center of the pro-p Iwahori Weyl
group Wy, (1) is the set of elements in the center of A(1) fixed by the finite Weyl
group Wy o [Vignéras 2014]. Hence fip- is an element of the center of A(1) fixed
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by Wiy0 and —y ov(ppe) > 0 forall y € € — Xf,. We have y ov(upe) =0 for
y € Xy. The length of ppe is 0 in Wy, and is positive in W when Sy # S.

Let #H e denote the R-submodule of the Iwahori—-Hecke R-algebra Hj of M
of basis (Té)” ) and Hy —% # the linear map sending Tlg’[ to T, for
w e Wy (1).

IDEWMé (1)’

The proofs of the properties (i), (ii), (iii) of Theorem 1.4 and its variant are as
follows:

(1) Hpe is a subring of Hy,, because Tﬂj)” Tlg,l is a linear combination of elements
T; such that v <p; ww’ [Vignéras 2013a].

(iii) We have Q(Ta’)"llTa’)‘;’):TwlTwz and 9*((T£f)*(T£§)*):T£I T5 forwi, waeWye.
This follows from the braid relations if £, (w) + £ (w7) = £ (ww,) because
E(wy) + €(wy) = €(wywy) (Lemma 2.7). If wy = s € SU with £y (w)) — 1 =
£y (wys), this follows from the quadratic relations

T Ts = Ty 51 (9() B)* + T5¢()) = () Toy5 + Ty, (5,
T3 T3 =a(s) Ty s — T, c(3),

W) §
s €S ¢(wy)—1=~£(w;s) (Lemma 2.7) and q(s) = qur(s), ¢(5) = cps (5) [Vignéras
2015b]. In general the formula is proved by induction on £,,(w>) [Abe 2014, §4.1].
The proof of [Abe 2014, Lemma 4.5] applies.

(1) Hy = HMe[(TI%E)_l], because for w € Wy, there exists r € N such that
uf‘;w € Wyye.

Remark 2.8. If the parameters q(s) are invertible in R, then H -+ —&> H extends
uniquely to an algebra homomorphism Hj; < H, sending T[f/{”w to Tﬂ_[;e Ty for
W e Wy (1), r e N, "

Remark 2.9. The trivial character x; : H — R of # is defined by
x1(Ty) =qw (W e W()).

When H is the Hecke algebra of the pro-p-Iwahori subgroup of a reductive p-adic
group G, we know that H acts on the trivial representation of G by x;. Note that
the restriction of the trivial character of H s to 0 (H +) is not equal to x; o & when
En(pm) =0, £(upr) # 0.

2B. An anti-involution {. The R-linear bijective map
(3) H <> suchthat ¢(Ty) =Tz forwe W(l)

is an anti-involution when ¢ (h1hy) = ¢ (hy)¢ (hy) for hy, hy € H because ¢ o ¢ =id.
For Sy C S, let H Lu, ‘Hps denote the linear map such that {(Ti])” ) = Tuaﬁ{ , for
w e Wy (1).
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Lemma 2.10. 1. The following properties are equivalent:

(1) ¢ is an anti-involution.
(i) ¢(c(8)) = c(z)-1 for § € S*(D).
(iii) oc=rco (=)', where (1) = R[Z\] is the parameter map.

2. If ¢ is an anti-involution then Cyy is an anti-involution.

Proof. Let w = 57 - - - Syt be a reduced decomposition, §; € Sy, 1 e W(1),
£(it) = 0 and let § € S¥T(1). Then,

{(Ti) = Ty = Ty Tyt - Ty = LT (Tiy,)) -+~ £ (T,
€T =TE =q()§ >+ HT,0.

The map ¢ is an antiautomorphism if and only if  (¢(5)) = ¢(57!) for § € $(1).

This is equivalent to { oc = co(—)~! because & (1) is the union of the W(1)-conjugates

of S¥(1), ¢ is W (1)-equivariant and { commutes with the conjugation by W(1).
If ¢ satisfies (iii), its restriction ¢;s to Gy (1) satisfies (iii). ([l

Lemma 2.11. When H="H(G) is the pro- p Iwahori Hecke R-algebra of a reductive

p-adic group G, we have that ¢ is an anti-involution.

Proof. Let s € G, § be an admissible lift and ¢ € Z;. Then ¢(§) is invariant by ¢
[Vignéras 2013a, Proposition 4.4]. If u e Uj fory =a +r € CID';Igj, then u~! € U,
and my(u) ™' = my(u™"). Hence the set of admissible lifts of s is stable by the

inverse map. As the group Z; is commutative, we have
(Coc)(t5) =C(te(s)) =t e(s) = c(s)r™ = c(r5) 7. O

From now on, we suppose that ¢ is an anti-involution. We recall the involutive
automorphism [Vignéras 2013a, Proposition 4.24]

H—>H  suchthat «(T;) = (=DTE forw e W(),
and [Vignéras 2013a, Proposition 4.13 2)]:
4) T7:=T.—c(5) for§e st (1), T :=TF...TT. forwe W(1)

w 51 S
of reduced decomposition W = 57 - - - S¢(w).

Remark 2.12. We have{(ng):T(’;))_l forw e W(1), ¢ and « commute, {p (Hpe) =
H, and @ oly =C 00,0 0ly = 0b*.

2C. e-alcove walk basis. We define a basis of #H associated to € € {+, —} and an
orientation o of (V, £), which we call an e-alcove walk basis associated to o.

For s € ST, let oy denote the positive affine root such that s is the orthogonal
reflection with respect to Ker «;. For an orientation o of (V, $), let D, denote the
corresponding (open) Weyl chamber in (V, $), 2, the (open) alcove of vertex 0
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contained in D,, and o.w the orientation of Weyl chamber w(®,) forw e W.
We recall [Vignéras 2013a]:

Definition 2.13. The following properties determine uniquely elements E,(w) € H
for any orientation o of (V, $) and w € W (1). For w € W(1), 5 € S*(1), & € Q(1),

- T; if o is negative on A,
5) E,&)=1." o e
T =T;—c(5) if a is positive on 2,
(6) E,(u) =Ty,
(7 Ey($)Eos(W) = g5, Eo(SW).

They imply, for w’ € W, 1 € A,
(8)  E,(W)E,uw (@) =qu wE, (W), Ey(A)Eo(®) = q.uwEo(AiD).

We recall that A acts on V by translation by v(}). The Weyl chamber D, of the
orientation o is characterized by

) E, ()1) = T;\ when v(X) belongs to the closure of D,.

The alcove walk basis of H associated to 0 is (E,(w))gew (1) [Vignéras 2013a]. The
Bernstein basis (E (w))gew (1) is the alcove walk basis associated to the antidominant
orientation (of Weyl chamber D). By Remark 2.3 and [Vignéras 2013a],

EW)=Tz forweATUW,, EWw)=T; forweA™.
Definition 2.14. The e-alcove walk basis (E;(w))gew 1) of H associated to o is

E, (i) if € =+,

1 Fol:= {;<Eo(w-1)> ife=—.

Lemma 2.15. The elements E (w) for any orientation o of (V,H) and w € W(1)
are determined by the following properties. For w € W(1),5 € (1), &1 € Q(1),
(11) E;§)=E,(, E, @ =E,(,
(12) E, (WE, (5) =qusE, (WS).
They imply, for w' € W, A € A,
(13)  E L (DE, (@) =quwE, @), E, @)E, (})=quiE, @h).
Proof.

E; () =¢(E, ()™ = E,@®),

E; (Wii) = ¢ (E (W) ") = ¢(E, (@)~ (@) ™) = ¢(Tay-1 E, (D) ™))
= {(E (W)™ Tz = E; () T;,
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E,,(WE, ()= ¢(E, (D) "NE (G =¢(E,(HE, (D))
=Gy w1 C(Eo(B) T @)™ = qusC(E,(05) ™) = qu s E, (03).
We used that ¢,, = ¢,,-1 implies

_1 12 1 \172
Gyt = @14, 4,0, ) 12 = (@, G, Gy

w; = Quy,uw,

for wy, wp € W. O
The e-alcove walk bases satisfy the triangular decomposition

(14) ES(b) — Ty € Z RT;.

weW(l),w <w

Remark 2.16. The basis £_(w) introduced in [Abe 2014] is the — alcove walk
basis associated to the dominant Weyl chamber, satisfying E_(w) =T if w € Wy
and E_(A) =T; if A e A™.

Let Vs be the real vector space of dual generated by X, with a W), o-invariant
scalar product and the corresponding set ), of affine hyperplanes.

Lemma 2.17. If €, €' € {+, —} and oy is any orientation of (Viy, Hum), then
(ES,, (D)) gew,c 1) 18 @ basis of Hae.

When q(s) =0, see [Abe 2014, Lemma 4.2].

Proof. A basis of H e is (Ti’)"’)weWMe(l). As w <y w’ and w’'e Wye implies we Wy
(Lemma 2.6), the triangular decomposition (14) implies that (Eg;w(u?))w eWype (1) is
a basis of H pye.

Lemma 2.18. The e-Bernstein basis satisfies E€(w) = Ty if w € AU W,.
Proof. The inverse of AT U Wy is A~ U Wy; hence
E™() = {(E(@) ™) =t (Tay1) = Ty O
The e-Bernstein elements on Wy (1) are compatible with 8 and 6*:

Proposition 2.19 [Ollivier 2010, Proposition 4.7; 2014, Lemma 3.8; Abe 2014,
Lemma 4.5].

O(E5 () = 0% (E5 (w)) = E(W) for w € Wye(1).

Proof. 1t suffices to prove the proposition when the q(s) are invertible. Let w € W(1).
We write W = Al = A;(A2) "' with u € Wy, and A;, A, in A€. We have

EGDE(G) ™ D =q, ;nEQ), EGE(G2)™) =4, 101 =aq,
EGE(G) VE@ = q; ;1. E@WD).
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We suppose the q(s) are invertible. Then,

(15) E@W) = 43,(4,, ;100" EGDEG2) ™ E@),

-1 . _
TX] TX2 T, if e =+,

_ -1

—CIM(%I,,\;lq/\,u) T* (T~*)_1T~ fe——
AR i

We suppose now w € Wy, thatis, A € Aye,u € Wy 0. Note A® C Apye and
qm y.u = gy (Lemma 2.7). If € = +, we have

Ev(@) = qma @y 5, 000 T T T,
and
O(Ep (D)) = Moy 519000 T3, T3 T,

=4qM ., (qM*}‘l’)‘z_l CIA,u)_lq,\_zlq,\l,AZ—I CI)MME(QI))

= ‘IM,)Q(qMJ\l’)LZ*IQ)»z)ilqM’)&;l E(w).

The triangular decomposition of E;(w) and E (w) implies

-1
qM,A,2(qM,Al’A;lqA,2) qkl,kgl =1

and 0 (Ey (w)) = E(w) for w € Wy+. If € = —, the same argument applied to 6*
gives 0*(Ey(w)) = E(w) for w € Wy,-.

By Remark 2.12, 00 =60 o0&y, § 00" =0 0 &y, Wy is the inverse of Wyye
and E~ () = ¢(E((w)~")). Hence for w € Wy-,

E~ (@) = (€ o0)(Em((@)™1) = (0 o i) (Ex(D)™1)) = 0(E}, (0)).
Similarly, for w € Wy+, we have E™ () = 0*(E,;(w)). [l

2D. wo-twist. Let Sy C S, wo denote the longest element of Wy and Sy,m) =
woSywo C woSwo = S. The longest element wyy o of W)y ¢ satisfies wy,0(X5,) =
E;,f, and wyy,0(X€ — Xj,) = L€ — X},. The longest element w,,a1),0 of Wagar),0
18 WoW pm,0Wo-

Letw)! :=wowy 0. Its inverse Mwo:=wy owo is wé”"(M) and w(’)"’(E,ﬁ,,):EfUO(M).
This implies that w/ (Eigf’e) = E;f(f’(j,l). Indeed the image by w)/ of the simple roots
of Xy is the set of simple roots of ,,,(m), and this remains true for the simple affine
roots which are not roots. Note that the irreducible components X, ; of X, have a
unique highest root ayy ;, and that the —ay, ; 4+ 1 are the simple affine roots of X
which are not roots. We have wé"’(—aM’; +1)=wowpo(—am.i+1) =wolap ;)+1.
The irreducible components of X,y are the wo(Xp,;) and —wo(ay ;) is the
highest root of wo (X ;).
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We deduce
ff, M1 ff
S (W )™ = Sugany:
ff, My—1 ff
a (w ) Wlil)()(M )0 W WM O(w() ) wo(M,)0*
We have A = w) Awd)~" and wlf A, (wiH ™! = Ay Recalling Wy =

A X Wyr.0, Wye = A pe X Wiy o and the group Q2,7 of elements which stabilize 2A,
we deduce

—1
W (wih ™ = Wiy,

(16) - - -
wy Qu(weH) ™ = Quoany. wg Wi (wg) ™! = Woan):

Let vy, denote the action of Wy, on Vj, and 2(; the dominant alcove of (Vyy, $Har).
The linear isomorphism

M
Vir =2 Vo, (@ x) = (i (@), w) (x))  fora € Ty,

satisfies

w ovy(w) = va(M)(w(I)VIw(wéVI)_I) owd!  forwe Wy.
It induces a bijection Hy — Hy,(m) sending Ay, to Ay, mry. a bijection Dy +—
wg’l (® ) between the Weyl chambers, and a bijection oy wé” (oym) between
the orientations such that © u, ) = wi (Do)

Proposition 2.20. Let wo € Wo(1) be a lift of wO The R-linear map
j M (M) ~
HM AN Hwo(M)s Tu~) = Tz;j;’gﬁ;(ﬁ)(’)”)*l fOV w e WM(l),

is an R-algebra isomorphism sending Hye onto Hy,m-< and respecting the
€’-alcove walk basis

j(E ) = E€ @Y @YH™Y  for b € Wy (1)

wil (om)
for any orientation oy of (Vy, Hu) and €, €' € {+, —}.

Proof. The proof is formal using the properties given above the proposition and the
characterization of the elements in the €’-alcove walks bases given by (5), (6), (7)
if ¢ =+ and (11), (12) if ' = —. (]

We study now the transitivity of the wq-twist. Let Sy C Sy C S. We have
the subset wyy oSywm 0 = Su,, ,m) of S and we assomate to the conjugation
by a hft w0 of wyr o in W(1) an isomorphism H N HwM/O(M) similar to
Huyr —L> Huym) in Proposition 2.20. We will show that j factorizes by j'.
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’ .
We have wé"’ = wé” w%,, where w%, ‘= wprownm.o (equal to w(])” if = Su),

Wy oht) = wig Wiy (wig) ™",
Wug(m) = wp)! WwM/O(M)(w(l)VI)_ = wy Wy, (wg) ™"

For Sy, C Sy, let W M C Wy, denote the submonoid associated to Sﬁ, as in
Definition 2.1 and replace the pair (X — E+1, x4y by (TF, — E+ Zaff ).
We note that

M M—1
WwM’,O(M)_G'M, - wM/ WMe (U)M/) 5
M M'\—1 1
W« = wy WwM/VO(M)—va’ (wy )™ =wy WMe(wo )

Let 11)34 , o M, be in Wo(1) lifting w!, w', w¥, and satisfying @} =

w(’)"’ wM - The algebra isomorphisms

Hy > Huwyy oMys  Hu > Huomry,  Hu =5 Hugmn

defined by w AA,’II,, 111(1)” /, 111(1)” respectively, as in Proposition 2.20, send the e-subalgebra
to the —e-subalgebra and are compatible with the €’-Bernstein bases. We cannot
compose ;' with the map j” defined by J)éw, but we can compose j with the
bijective R-linear map defined by the conjugation by 12)84 "in W(1)

wyr o (M) — Two(M)

k// ~
Huyyr o) —> Hug(m1) @ A Dy for w € Wy, i) (1).

Proposition 2.21. We have j = k" o j' and k" is an R-algebra isomorphism re-
specting the e-subalgebras and the 6 Bernstezn bases: k" (Hy, . oye) = Huy(m)e
and k" (E, ,O(M)(w)) = wO(M)(wO w(w0 N Yforee{+, -}, we W o(M)-

Proof. The relations between the groups W, and W, imply obviously that j =k" o j’
and that k” respects the e-subalgebras.

Now, k” is an algebra isomorphism respecting the ¢’-Bernstein bases because j, j’
are algebra isomorphisms respecting the €’-Bernstein bases and k" = j o (j)~'. O

2E. Distinguished representatives of Wy modulo Wy g. The classical set ¥ W,
of representatives on Wy 0\ Wy is equal to s D| = p D,, where

(17) uDi={d e Wo|d~'(Zf) e =7},

(18) uDy:=1{d e Wy | L(wd) = £(w) 4 £(d) for all w € Wy o}

[Carter 1985, §2.3.3]. The properties of ¥ Wy used in this article that we are going
to prove are probably well known. Note that the classical set of representatives of

Wo\W is studied in [Vignéras 2015a], that + can be replaced by € € {4, —} in the
definition of D1, that Mwo = wy owo € ¥ Wy and that ¥ Wy N S = S — Sy,.
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Taking inverses, we get the classical set Wé"’ of representatives on Wy/ Wy o
equal to Dy 1 = Dy .2, where

(19) Dy1:=1{d e Wy |d(Z},) c =1},
(20) Dy = {d € Wy | £(dw) = £(d) + £(w) for all w € Wy 0}.

The length of an element of W is equal to the length of its inverse, and [Vignéras
2013a, Corollary 5.10] gives that for A € A, w € Wy,

1) owy= " > [BovMWI+ Y [—Bov(M)+1],

ez Nw(=+) Bed,,

where @, ;=T Nw((Z7). fw =s7-- - S¢w) 15 a reduced decomposition in
(Wo, ), @y = {a5, 1 Us1(Py,y) and £(w) is the order of ®,,. If w € W)y 0, we have
d, C E;f[. Let £g(Aw) denote the contribution of B € =t to the right side of (21).

We show now that Wy, ¢ can be replaced by W+ in (18) and by Wy~ in (20)
(taking the inverses). It is also a variant of the equivalence £(Aw) < £(X) +£(w) &
Bov(r) > 0 for some 8 € &, for A, w as in (21).

Lemma 2.22.
Lwd) = L(w)+L£(d) forw e Wy+ and d € MW,
L(dw) =L(d)+L(w) forwe Wy-and d € Wé”.
(i) If L € A, w € Wir0,d € MWy, then L(Awd) < £(Aw) + £(d) is equivalent to
w(B)ov(A) >0 and d_l(,B) €eX™ forsomepBeXt — Z;f[.

Proof. [Ollivier 2010, Lemma 2.3; Abe 2014, Lemma 4.8]. Let L € A, w €
WM,O7 de MW() and /3 ext,

Suppose B € £},. Then £5(d) =0, 4 = & because d ! (X§,) C T€ by (17), and
Lp(Awd) = £g(hw) because w ' (B) e Z¢ s w () € =, = d 'w I (B) € =€
by (17).

Suppose B € £ — =7 . Then w™!(B) € =¥ — =7 and £g(Aw) = |Bov()|.

The number £(d) of Be X1 — E;f[ such that d~'(8) € =~ is equal to the number
of € £ — =}, such that (wd)~'(B) e =~

When A € Ay+ and (wd)~'(B) € £, we have Bov(A) <0 and Lg(Awd) =
|Bov(A)|+ 1. Therefore £(Awd) = £(Aw) + £(d), which gives (i).

When A & A — Ay+, £0wd) < £(Aw) + £(d) if and only if there exists
Bext — Z,t, such that Bov(X) >0and d~'w~'(B8) € =~. This gives (ii) because
B — w!(B) is a permutation map of T+ — E;(,I. (]

@)

Lemma 2.23. (i) For A € A, w € Wy, we have g, = qy5-1> Quw = Guowwy> and
L(wo) = £(w) +£(w ™ wp) = L(wow™") + £ (w).

(i) For w € Wi 0, we have qu = gy, uit)-1-
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Proof. (i) See [Vignéras 2013a, Proposition 5.13]. The length on Wy is invariant by
inverse and by conjugation by wg because woSwg = S and by [Bourbaki 1968, VI,
§1, Corollaire 3].

(ii) We have g, = Duypg guwyyly = Dt w(wit)y ! for w € Wy 0. U
Lemma 2.24. Wl = w M wl = woWw,, .

Proof. By (19),

deW) = d(z)) c 2t e=dwih™ (3] 1) C =T e dw)h ™ e w™,

This proves the equality W = W™ wM. The equality WM = woWM w0,

follows from
dweh ™' (B ) € =T <= wodwy owo(E 4y C T
= wodwpy o(Zy;) C T~ <= wodwyoe Wy, O

Remark 2.25. Wy = A x Wy o but gy, = Gl rw ()~ could be false for A € A,
w € Wy o such that £(lw) < £(A) + £(w).

Lemma 2.26. We have E(wg’l) = Z(wé”dfl) +£(d) for any d € Wé”.

Proof. Ford € WM we have L(dwp,0) =€(d) +£(wp0) by (20) and w = w(/)”d_1
satisfies wo =wdw 0 and £(wo) = £(w)+L(dwp,0). We have w) = Wowy o=wd
and £(wi!) = E(wg) — L(wy, ) = Lw) + £(d). O

The Bruhat order x < x" in Wy is defined by the following equivalent two
conditions:

(i) There exists a reduced decomposition of x” such that by omitting some terms
one obtains a reduced decomposition of x.

(ii) For any reduced decomposition of x’, by omitting some terms one obtains a
reduced decomposition of x.

A reduced decomposition of w € Wy followed by a reduced decomposition of
w’ € Wy is a reduced decomposition of ww’ if and only £(ww’) = £(w) + £(w’). A
reduced decomposition of d € Wé"’ cannot end by a nontrivial element w € Wy, g.

Lemma 2.27. For w,w’ € Wy o,d,d’ € Wé"’, we have dw < d'w’ if and only if
there exists a factorisation w = wyw, such that £(w) = £(w1) + £(w»), dw, <d’
and wy < w'.

Proof. We prove the direction “only if” (the direction “if”” is obvious). If dw < d'w’,
a reduced decomposition of dw is obtained by omitting some terms of the product
of a reduced decomposition of d’ and of a reduced decomposition of w’. We have
dw =djwy with d; <d’, wo, < w’ and £(dyw;) = €(dy) + £(w;). We have d| =
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dw, wy := ww2_1. Asw,wyewpypandd e WM, we have £(dw;) = €(d) +£(w;)
and £(dw) = £(d) + £(w). Hence £(w;) + £(wy) = £(w). O
Lemma 2.28. Let d' € "MW, d € W)

(i) Ifthere existsu € Wy, u' € Wé” such that v = wé"lu <w=du', thend = wg’l.

(ii) We have d'd € w}! Wy o if and only if d'd = w}!.

Proof. (i) As £(w) = £(d) + £(u), we have u = uju, with wé”ul <d,up; <u' and
uy, uy € Wy o (Lemma 2.27). We have

Cwiluy) = Ll + €uy) = el d™") + £(d) + L(uy)
(Lemma 2.26). Hence d = wg”, uy=1.

(ii) If there exists u € Wy o such that d =d’ _lw{)” u, we have d = d ’_1w6” because
d'wl € W) (Lemma 2.24). O

2F. H as a left 0(H y+)-module and as a right 0*(H y;-)-module. We prove
Theorem 1.4(iv) on the structure of the left 6(#+)-module A and its variant
for the right 0*(# ;- )-module H. We suppose Sy #= S.

Recalling the properties (i), (ii), (iii) of Theorem 1.4, H s = Hpr+ (T~ )~ 1]is the
localisation of the subalgebra H s+ at the central element TA;[{ The algebra Hyr+
embeds in H by 6. Recalling (17), (18) we choose a lift de W (1) for any element d
in the classical set of representatives Mw, of War.0\Wo. We define

(22) Vir= Y 0(Hyo)Ty
deMw,
Proposition 2.29. (i) Vy+ is a free left 0 (Hy+)-module of basis (T5)emw,-
(i1) For any h € H, there exists r € N such that Tl{Mh € Vyr+.
(iii) If 9 =0, Ty,, is a left and right zero divisor in H.

For GL(n, F), (ii) is proved in [Ollivier 2010, Proposition 4.7] for (q(s)) = (0).
When the q(s) are invertible, Ty is invertible in H for w € W(1).

Proof. (i) As MW, is a set of representatives of Wy;+\W, a set of representatives
of Wy+(1)\W (1) is the set {ci | d € MW,)} of lifts of ¥ Wy in W(1). The canonical
bases of H y+ and of H are respectively (T ) wyew,,+ (1) ad (T;.7) (.d)ew, 4 (1)xM Wo>
and T ; = T;; T; by the additivity of lengths (Lemma 2.22).

(i) We can suppose that A runs over in a basis of 7. We cannot take the Iwahori—
Matsumoto basis (T;)sew (1) and we explain why. For w = J)Mci with Wy, €
W+ (1), d € MW, we choose r € N such that iy wy € Wy+(1). By the length
additivity (Lemma 2.22) Tan i =Tpr iy T lies in 6 (H p7+) T, but we cannot deduce
that Tll?u Ty lies in 0 (Hpy+)Tj.
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We take the Bernstein basis satisfying Lemma 2.18 and we suppose that q(s) = ¢;
is indeterminate (but not invertible) with the same arguments as in [Ollivier 2010,
Proposition 4.8]. Then E(d) = T; for d € M W,. If we prove that E (i, ) lies
in 6(Hp+)T; then E(iiy)" Eo(w) = qﬂywwE(ﬂjwu?) lies also in 6 (Hp+)T;. This
implies T[:M E,(w) € 0(Hy+)T;.

Now we prove E (i1, w) € 0(H p+)T;. We write wy =)~Lu~)M,0, reA(l), W0 €
Wa0(1). Recalling E(x) = T, for x € Wy(1) and the additivity of the length
(Lemma 2.22),

Gy wu0d E(1yd) = E (@5 M E (Wa0d) = E(ihy M Ty, 5= E(y ) Ty o Ty
= qujw)\,wM,oE(/l;le)Tj-
The monoid Wy is a lower subset of (Wy;, <;7) (Lemma 2.6). The triangular

decomposition (14) implies £, (i), w,,) € H,,.. By Proposition 2.19, E (i), w,,) €
0(Hp+) and by the additivity of the length (Lemma 2.22),

quQ()d = qu,()qda q,uﬁ,,)»wMY()d = qu;,,)»wM,oqd’
implying

ql'L )\qu OquM)»wM od — q/LM)»qu OqM’M)LwM 0

hence q/l.;\,,}\,,wM_od = qug,,)»,wM.o-
(ii1) We have £(1pr) # 0 and equivalently, v(uy) # 0 in V. We choose w € Wy

with w((uar)) # v(uar). Then v(wuyw™") = ww(uy)) and v(uy) belong to
different Weyl chambers. The alcove walk basis (E,(w))gzew (1) of H associated to
an orientation o of V of Weyl chamber containing v(u ) satisfies

E (lu/M) ,l,LM ’
Eo(im) Eo(@fiy®™") = Eo(in ™) Eq(fin) =0. O
The properties of the left 6 (H y;+)-module H transfer to properties of the right

0* (H - )-module H, with the involutive antiautomorphism ¢ ot of H (Remark 2.12)
exchanging Tz and (— 1)@ T* | for v € W(1), O(Hp+) and 0*(Hp-), Vag+ and

(23)

(@)~

(24) Vi = Y TI0* (o),
deWé"’

where W¢' = {d'~! | d’ € M Wo} is the set of classical representatives of Wo/Wa o
(19), and d=@)ifd=d"".

Corollary 2.30. (i) Vi, _ is a free right 0*(Hy-)-module of basis (T )
(ii) For any h € H, there exists r € N such that h(T(’;lM),l)’ €V

(i) If q=0, T;&l is a left and right zero divisor in H.

dewpt
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3. Induction and coinduction

3A. Almost localisation of a free module. In this chapter, all rings have unit ele-
ments.

Definition 3.1. Let A be aring and a € A a central nonzero divisor. We say that a left
A-module B is an almost a-localisation of a left A-module Bp C B of basis D when:

(i) D is afinite subset of B, and the map ®,epA — B, (x4) = Y x4d, is injective,
(ii) for any b € B, there exists r € N such that a”b lies in Bp := ) _,., Ad.

Example 3.2. Our basic example is (A, a, B, D) = (Hy+, Ty s H, (T7) gemw,)
(Proposition 2.29).

As a is central and not a zero divisor in A, the a-localisation of A is ;,A = A, =
UnenAa™". The left multiplication by a in A is an injective A-linear endomorphism
A — A, x — ax, and the left multiplication by a in B is an A-linear endomorphism
agp : x — ax of B which may be not injective; hence B may be not a flat A-module.
The ring B is the union for r € N of the A-submodules

+Bp = {b €B | a'be BD},
and looks like a localisation of Bp at a.

Definition 3.3. Let A be aring and a € A a central nonzero divisor. We say that a
right A-module B is an almost a-localisation of a right A-module p B of basis D if:

(i) D is a finite subset of B, and the map ®sepA — B, (xg) — Y dxg4, is
injective,
(ii) for any b € B, there exists r € N such that ba” € pB =) ;. dA.

The ring B is the union for r € N of the A-submodules
pB, = {b €B | ba" € DB}.

Example 3.4. Our basic example is (A, a, B, D) = (Hy-, Tu&u, H, (Tj)dewgw)
(Corollary 2.30).

We note that (A,, B) = (H, H) in Example 3.2 and in Example 3.4.

3B. Induction and coinduction.

3B1. For aring A, let Mod,4 denote the category of right A-modules, and 4 Mod
the category of left A-modules. The A-duality X — X™* :=Hom4 (X, A) exchanges
left and right A-modules.

A functor from Mody to a category admits a left adjoint if and only if it is left
exact and commutes with small direct products (small projective limits); it admits a
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right adjoint if and only if it is right exact and commutes with small direct sums
(small injective limits) [Vignéras 2013b, Proposition 2.10].
For two rings A C B, we define two functors

the induction I¥ := — ®4 B,

the coinduction I]ﬁ := Homyu (B, —) : Mod4 — Modg,

where B is seen as an (A, B)-module for the induction, and as a (B, A)-module for
the coinduction. For M € Mod,, we have (m @ x)b =m Q@ xb, (fb)(x) = f(bx)
ifx,be Bandm e M, f € Homu (B, M).

The restriction Resﬁ : Modp — Mod, is equal to Homg (B, —) = — ®p B,
where B is seen first as an (A, B)-module and then as a (B, A)-module. The
induction and the coinduction are the left and right adjoints of the restriction
[Benson 1998, §2.8.2].

For two rings A and B and an (A, B)-module 7, the functor

—®4 J : Modg — Modgp is left adjoint to Hompg(J, —) : Modp — Mody.
Let M € Mods, N € Modg. The adjunction is given by the functorial isomorphism
Homp(M ®4 J, N) <> Homa (M, Homg (T, N)),  f(m®@x) =a(f)(m)(x),

for f € Homg(M ®4 J,N),m € M, x € J [Benson 1998, Lemma 2.8.2].
For three rings A C B, A C C, the isomorphism « appliedto M =C,J =B
gives an isomorphism

Hompg(C ®4 B, —) ~Homu (C, —) : Modg — Modc¢ .

3B2. Let A C B be two rings and a € A a central nonzero divisor. Let A, = Ala™!]
denote the localisation of A at a. There is a natural inclusion A C A,. The restriction
Mod,, — Mod, identifies Mod,, with the A-modules where the action of a is

invertible. For M, M’ in Mod, , we have

(25)  Homy,(M, M') =Hompa(M, M), M4, M =M@ M.

For f € Homy(M, M'),m € M, m' € M, we have f(aa™'m) =af(a"'m) =
a ' fm)=f@a'm),andm@a~"'m'=ma"'a®a"'m' =ma"'®@m’ in MRM'.
We view Mody, as a full subcategory of Mody.

The restriction followed by the induction, respectively the coinduction, Mod4 —
Modjp defines an induction, respectively coinduction,

Ifa = If oResﬁ“ =—®a B, ﬂﬁa = ﬂﬁoResﬁ“ =Homy (B, —) : Mod4, — Modp,
even when A, is not contained in B. The induction / fg admits a right adjoint

I]ﬁ““ oResﬁ =Homy(A,, —) : Modp — Mody,
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because the restriction Resﬁ“ and the induction /¥ admit a right adjoint: the
coinduction I]ﬁ“ and the restriction Res3. The coinduction I]ﬁa admits a left adjoint

I:“ oResﬁ =—Q®a A; : Modp — Mody,

because the restriction Resﬁ“ and the induction / ff admit a left adjoint: the induction
If” and the corestriction Res¥.

When a is invertible in B, we have A, C B and they coincide with the induction
and coinduction from A, to B.

The induction and the coinduction of A, seen as a right A,-module, are the
(A,, B)-modules

(26) I (A) = Aq®a B, 15 (Ay) =Homa(B, A,).

Lemma 3.5. Let M € Moda,. Then I} (M) = M®a, I} (A,) in Modp.
Proof. M ®@s B=(M®u, Au) ®4 B=M®,, (A, Q4 B). O
3B3. Let (A, a, B, D) satisfy Definition 3.1. Let M € Mod,,. As R-modules,

(27) I (M)=M®a Bp

because the action of a on M is invertible; hence M ®4 ,Bp = M ®4 Bp for
r € N. In particular, we have the following:

Lemma 3.6. The left A,-module Ifa (Ap) is free of basis (1 @ d)gep.

Remark 3.7. The A-dual (Bp)* of the left A-module B is the right A-module
@uaepd* A of basis the dual basis D* = {d* | d € D} of D. Let M € Mod,,. We
have canonical isomorphisms of R-modules

®gepM —> M ®4 Bp —> Homu ((Bp)*, M),

(xg) > Y xa®d > (d* > Xg)aep-
deD

The tensor product over A by a free A-module is exact and faithful; hence the
induction is exact and faithful.

Let R C A be a subring central in B. The ring R is automatically commutative
and a central subring of the localisation A, of A. The modules over A, or B are
naturally R-modules.

Let M €Mod,, be a finitely generated R-module. The R-module M®4, 1 fa (Ay)
is finitely generated.

Let A € Modp be a finitely generated R-module. The R-module Hom4 (A,, ')
is finitely generated if R is a field by the Fitting lemma applied to the action
of a on /. There exists a positive integer n such that A is a direct sum N =
No @ N, where a" acts on N, as an automorphism and a” is 0 on . Then,
Homyu (A,, N) >~ N, is finite-dimensional.
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We obtain the following:
Proposition 3.8. Let (A, a, B, D) satisfy Definition 3.1. The induction functor

Ifa =—Q®uB: MOdAa — Modp

is exact, faithful and admits a right adjoint R/Ifa :=Homu (Ag, —).
Let R C A be a subring central in B. Then I fa respects finitely generated
R-modules. If R is a field, Rfa respects finite dimension over R.

3B4. Let (A, a, B, D) satisfy Definition 3.3.

For M € Mody, the set M, of f € Homy(p B, M) vanishing on D — {d} is
isomorphic to M by the value at d. The A-dual (p B)* of p B is a free left A-module
of basis D*. We have

(28)  Homu(pB, M) = @yep My = Bgrep-Md* = M®4 (pB)*.

The A-modules M, and M ® d* are isomorphic by f — f(d) ® d*.
For M € Mod,,, we have linear isomorphisms

15 (M)=Hom(B, M)~Homy(pB, M), M®a(pB)*=M®4A.®4(pB)".

Ford e D, let f; e Homy (B, A;) equal to 1 on d and O on D — {d}. We deduce
from these arguments:

Lemma 3.9. Let (A, a, B, D) satisfy Definition 3.3. The left A,-module l]ga (Ap)
is free of basis (fq)aep and ﬂﬁa (M) =2 M®aq, I]g(Aa).

Let R C A be a subring central in B. Let M € Mod,, be a finitely generated
R-module. The R-module M ®4, I]ﬁa (Ap) is finitely generated. If R is a field, and
the dimension of N' € Modj is finite over R, then N ®4 A, =N, @4 A, >~ N, has
finite dimension over R by the Fitting lemma, as in the proof of Proposition 3.8.
We obtain the following:

Proposition 3.10. Let (A, a, B, D) satisfy Definition 3.3. The coinduction
I]ﬁa = Homu (B, —) : Mod,, — Modp

is exact, faithful, and admits a left adjoint Lf;a =—®4 A,
Let R C A be a subring central in B. Then I]ga respects finitely generated
R-modules. If R is a field, Lﬁa respects finite dimension over R.

4. Parabolic induction and coinduction from 7 ; to H

We prove Theorems 1.6, 1.8 and 1.9 giving the properties of the parabolic induction
from H s to H.
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4A. Basic properties of the parabolic induction and coinduction. Example 3.2
satisfies Definition 3.1 and Example 3.4 satisfies Definition 3.3. In these two
examples, (A,, B) = (Hp, H). The first one,
(A,a, D) = (0(Hu+), Tap» (TDacuw,)s

where we identify Hy+ with 6(H+), defines the parabolic induction I;fM =
— ®n,,+.0 H : Mody;,, — Mody,. The second one,

(Aa a’ D) - (0*(HM_)7 T(EM)il ’ (Td:k)dEWéw)’
where we identify H ;- with 6*(H,-), defines the parabolic coinduction I]ﬁM =
Homy,, . (H,—): Mody;,, — Mody,. Propositions 3.8 and 3.10 imply:
Proposition 4.1. The parabolic induction I;'{‘M and the coinduction I]%M are exact,
faithful and respect finitely generated R-modules. The parabolic induction admits a
right adjoint

R} =Homy,, o(Hy, —): Mody — Mody,, .
The parabolic coinduction admits a left adjoint
L% = —®m, .o Hu : Mody — Mody, .
If R is a field, the adjoint functors R%M and I]_%M respect finite dimension over R.
4B. Transitivity. Let Sy C Sy C S. Let Wy emr = Aypemr X Wiy o denote the sub-

monoid of Wy, associated to S j,ff, as in Definition 2.1 (see before Proposition 2.21),
and

Ay =ANWyew ={Ae Al —(yov)(h) >0forall y € X5, — Xj,}.

By the properties (i), (ii), (iii) of Theorem 1.4, the R-submodule H y,c.ur of Hps of
basis (Tufj” ) is a subring of H yy, the restriction to H ,,..» of the injective

' BEW, ¢y (1)°
linear map

Hy 25y, T = TM forw e Wy (1),

respects the product, and Hyr = H e [(T[% . )y 1. Obviously, the map H AN Y}
satisfies & = 6,y 0 0’ for the linear map

’HM/M'H, Ti’)"”|—> Ty, forwe Wy (l).

Lemma 4.2. We have:
(i) Wy C Wi, Wayge = Wyper N Wapre, 0/ (Hpge) = 60" (H pperr) N Hpgre,

(1) fiygefipge is central in Wy (1), satisfies —(y o v)(upeuppe) > 0 for all y €
%€ — Xy, and the additivity of the lengths £(pupge pygre) = €(pre) +L(pprre),

(iil) MWy =MWy oM Wy,
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Proof. (i) We have Wy 0 C Wy o and A ye = Ay N Appe. Therefore

Wu=AXWyoCAXxWyo=Wy,

and
WM&M’ NWwW;, = (A;We X WM,()) N (A/M,e X WM’,O)

= (Aye N Apre) X Wi o
= AMe X WM,O = WMe.

(i) Now fip< is central in Wy (1), which contains Wy, (1), and i« is central in
Wi (1); hence [i e fippe is central in Wy, (1). We have

—(yov)(upy<) >0 forally e £€—Xj,,
—(yov)(uy<) =0 forall y € Xy,
—(yov)(upe) >0 forally € € — %Y,
—(yov)(upe) =0 forall y € Zy.
Hence —(y o v) (i) pipre) > 0 for all y € € — X, and
pemepimre) = Cpme) +E(pmre).
(iil) Let u € MWy 9, v € M Wy and let w € Wy 9. We have
L(wuv) = L(wu) +£(v) = L(w) + L) + £(v) = L(w) + £(uv);

. . . ! .
hence uv € MW,. The injective map (u, v) — uv : MWM/,O x MWy — MW, is
bijective because

M Wol = [War.0\Wol = [War.0\Warr.ol I W0\ Wol = [" W o] [M W,
where | X| denotes the number of elements of a finite set X. U
Proposition 4.3. The induction is transitive:

Hap
I;_fM = I;fM, ol :Mody,, — Mody,, — Mody, .
The coinduction is also transitive. This is proved at the end of this paper.

Proof. By Lemma 3.5, the proposition is equivalent to
Hm @y HEHM @, Hie O,y H

in Mody,. As Hy = ’}-[M,+[(T[i”'+)*1] is the localisation of the ring H,,+ at the
! M,
central element T[ﬁ"’ . € Hyyp+, the right H-module Hy Q@ ,, H is the inductive
! M/
limit of (T[f” +)_’ ® H for r € N with the transition maps
M/

(Té"’M//Jr)_’ Rx > (T/%;w)_r_] Ty, X forx e H.
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As Hy = H e [(T~M BE 11 is the localisation of the ring .., at the central
element TM+ € HM+ w, the right H-module Hy @ ., Hu ®x,,. H is the
inductive 11m1t of (TM ) S Hyr Qn,,+ H for s e N w1th the transition maps

M \—s—1 M
(T~ DN "Ry~ (T/lm) 5 ®T/1M+y for y € Hyp ®n,,+ H.
Using that TM" s central in H,, and T~M/ € Hyp+, we have, for y = (T~M/ )" ®x,
l’LMHr H/MHr

iy Ly=TM (1M ,+)— ®x—(T~ )_’T~ ®x:(T~M//+)_r®T~ X

Hop+

Altogether, the right -module H 3 Q@ M Huy Qu - H is the inductive limit of
(TM ) ® (TM DT ®Hforr, s €N "with the transition maps

(73! )S®(T~ DT ®x e (T4 )7 1®(TM )TeT, X,
T )@@ ) exm T )o@ Yy eT;  x

The right #-module ’HM Qn e Hur ®H - H is also the inductive limit of the
modules (TM )7® (TM )" ®H for r € N with the transition maps

(T )T ,+)_ Qx> (T3 )~ ’_1®(T~ DT, (T

By Lemma 4.2Gi), T, Tq . = T

fiy+ i, - Hence, in Mody, we have

Hu ®HM+,M’ Hm ®HM/+ Hx~ hALn H.
r—>TﬂM+ﬁM,+x

On the other hand, Hjy = 3’-[M+[(T~ MM/+) 11 is the localisation of H+ at
™ (Lemma 4.2); hence Hy Q@ ﬂ-[ is the inductive limit of (TM e ) "QH

2] M+H +
for r € N with the transition maps

Ay

( M

M
) ®x e (T

)—r 1
/‘LM+/4 HMJrM
We deduce that
Hup ®HM+ H ~ lLrg H
HT'IM+[‘M’+X

is isomorphic to H 1, \ Hy @, H in Mody. O

4C. wo-twisted induction is equal to coinduction. We prove Theorem 1.8. When
‘H =HRr(G) is the pro- p Iwahori Hecke algebra of a reductive p-adic group G over
an algebraically closed field R of characteristic p, Theorem 1.8 is proved by Abe
[2014, Proposition 4.14]. We will extend his arguments to the general algebra H.

Let wO € W, (1) lifting wo The algebra isomorphism H s 2 H (1) defined
by w (Proposmon 2.20) induces an equivalence of categories

=M
(29) Mody,, ~2> Modyy,
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called a wo-twist. Let M be a right H y-module. The underlying R-module of
10}/ (M) and of M is the same; the right action of 72! on M is equal to the right
action of TI,Z)DA?I(ILWI)D w1 on ) (M) for w € Wy (1). The inverse of 1o/ is the algebra
iSOIIlOI'phiSIIOl induced by (ﬂ)é” )~ ! lifting

M wo (M)

e g MN—1 _ _
wy = (wy ) = Wy oWo = WoWoW s oWy = W

Remark 4.4. The lifts of w{)” are tt]}é” = 111(1)” t’ with t,t € Zj, the elements

T,I,W € Hy T,wO(M) € Huy(m) are invertible, and the conjugation by 7; in Hy, by

T,w"(M) in Hy, (M) induce equivalences of categories

Mody,,, = Mody,,,  Modyy,, ,, — Mods,
such that )/ =tow)! =l ot = ]t.
Remark 4.5. The trivial characters of H s and H,,, ) correspond by rﬁg” .
We will prove that, for all S3; C S, the coinduction
Mody,,, H;‘—M> Mody

is equivalent to the wy-twist induction
H

=M 1
mo HwO(M)
Mods,, 2 Mody, .y —=2*"> Mody, .

This proves Theorem 1.8 because

(30) 17 o~ 1;';{“0“%) o) &= I} ~ u;jwow) oo
Indeed, if the left-hand side is true for all Sy; C §, permuting M and wog(M) we
have ﬂHwO(M) ~ I;jM o t{)(l)”O(M), and composing with (FOBUO(M))_I, we get
;i =0t o (g M) =1 ~ 07, o 0100
as wg) oM — (wé"’ )~!. The arguments can be reversed to get the equivalence.

Let M € Mody,,,. We will construct an explicit functorial isomorphism in Mody,:
= b
(31) (lﬁwm ooy (M) 2> 17 (M).
From Lemmas 3.5, 3.6, 3.9 and Examples 3.2, 3.4, we get

@) Iﬁwow) (Hwo( M)) = ’Hwo( M) ®Hwo 0 H is a left free H,,,(ar)-module of basis
1® T; for d’ € Yo ™MW, and

H ~ M ~ M H
Brtgary © 100 ) (M) = 100" (M) 34,41y L1, 00 Fusoan))-

(ii) I]%M (Hm)=Homy, _ g+« (H, H), where H is seen as aright 6* (H y-)-module,
is aleft fre(;[HM—module of basis (fg)dew(y, where fg(T&*) =1and fj(T;*) =0
for x € W" —{d}, and

17 (M) = M®u, U (Hu).
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It is an exercise to prove that the left H y,-module I]ﬁM (H pr) admits also the basis
(f)aewp where f3(T;) =1 and f;(T:) =0 for x € W — {d}. We will prove
that the linear map

(32) m®Ty > m® fanTy : By cwony, o) (M) ® T b, Duewp M ® f;
is a functorial isomorphism in Mody,. The bijectivity follows from the bijectivity
of the map d’ — d'~'w{! : MWy — W} (Lemma 2.24) and the following:
Lemma 4.6. The map fw{)” Ty — f(d/flw(l)lfly lies in Drew x<d-1wl! M® fz.
Proof. For d € WM, we have

(fau Ti)(Ty) = fam Ty Ty) = fam (Tgq) +x,
where x € > Rfﬁ)(z)w(T,;)) and the sum is over the w € W, (1) with w < d'd and w €

wy' Wy o I d'd wl! Wy, o, there is no w € wi! W,  with w < d'd (Lemma 2.26).
We have d'd € w)'W,,  if and only if d = d'~'w{ (part (ii) of Lemma 2.28). OJ

The restriction
H .
ReSHwO(M)'F’Q :Mody — MOdeO(M)Jr

is left adjoint to — ®3_ . ¢ H, and the H,,,(ar)+-equivariance of the linear map

wo (M)

(33) mi>m® fau g (M) — 17 (M)

implies the H-equivariance of (31), i.e., of (32). Let Hy AN Huo(m) denote the
isomorphism induced by ﬁ)g’l (Proposition 2.20), and ), the linear map H y 2> H.
The H,,(m)+-invariance of the map m — m ® fﬁ;é” is equivalent to

(34) SamOuyuny () = j 7 () fp - for h € oy

We can suppose that £ lies in the Bernstein basis of H,u)+. Let w € Wy, an+(1)
and h = EwO(M)(IZ)). As ewO(M)(EwO(M)(II))) = E(IZ)), and j_l(EwO(M)(lZJ)) is equal
to Ey (@)~ 'wwl!), (34) is equivalent to the following:

Proposition 4.7. For w € Wy, uy+, we have fau E(W) = Ey (")~ ddg") fu-

Proof. By the usual reduction arguments, we suppose that the q(s) are invertible in R.
Using Wy,om)+ = Ao+ X Wag(ar),0, the product formula (8) and Lemma 2.23,
we reduce to w € Ay, m)+ U Wyoum),0. By induction on the length in Wy, ar),0 with
respect to Sy, (m), we reduce to w € A+ Y Swom)-

Letd € Wé”. We have (fng(ﬁ)))(Tg) = fu~)(1)v1 (E(w)T;) in Hp. We must prove

I [ if d;éw(])”,
(35) fw(?‘(E(w)Td)_{EM((W)—‘M{)”) if d=wM

for w € Awo(M)+ U Swo(M)-
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(i) Suppose w = A € Ayym)+- Let A denote the subalgebra of H of basis
(E(X))zea(n) [Vignéras 2013a, Corollary 2.8]. By the Bernstein relations [Vignéras
2013a, Theorem 2.9], we have

EG)T;=T;E(d) ')+ ) Taas,

where a; € A and the sum s over w € Wo(1), w <d. If d #wy M. the image by f;, u of
the right-hand side vanishes because w € wo WM 0» W =< d implies w =d = w(l,” ;
hence f; M(E(A)T ) = 0 as we want. For d= wO , using (u)0 )~ 1Aw0 € Wyom)-»
we have 3 3

Say (EQTgp) = fau(Tau E(yH ™ Awgh)

= 0" (E((0p") ™ hing")
= En (")~ R,
(i1) Suppose w =5 € Sy,(m). We have wyswy € Sy, wpSwWow,, o < Wy, o and
swé” = SWoW )y o = WoWoSWoW s o > WoWyy o = wé”.

Assume sd < d. We deduce d # wo Assume d = s(sd) Then

EG)T;=T;T; = T2 T = @) ) + T T, 5 = 4() )T, + (T

We deduce that f; i (E($)Ty =

Assume sd > d We write sd dlu withd, e WY, u e WMo Then I.T; =
T;; = dlu Therefore f; M(E(s)T ) = f; M(leu) =0if 4, ;é w0 We suppose
now d; = wo We have d < wo < sd; hence wO =d or wO = sd. In the latter
case, a reduced decomposition of wo starts by s. But this is incompatible with
5 € Suy(m because wdl =My We deduce that d = w)!. For d = w}!, we have

fu*)g/’ (E(g)TgJ(/)W) = fu*,g/’ (Tg uy(/JW) = fu*)(’)w (TI;J(/)W T(wy)flgwéw)
= fwy(TwME(wM)flgmM) = 0% (Equy-15a))
= EM((J)() ) Swo )
This ends the proof of Proposition 4.7, and hence of Theorem 1.8. (]

Corollary 4.8. The right H-modules Hy @y, oH and Homgy, .~ o+ (H, Huy(ar))
are isomorphic.

4D. Transitivity of the coinduction. Let Sy C Sy C S. By Proposition 2.21, the
algebra isomorphisms

Hu L Hugry, Hu - Howyyr o(M) SLAN Huwo M)
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. ~ ~ 4 ~
corresponding to wé” , w%,, wé” , wé” = wo ‘M A satisfy j =k"oj’. The associated
equivalences of categories, denoted by

‘:{)3/] M 10, )
(36)  Maty o Moy s Moy~ Masy 0~ Moy,

satisfy 0! = o} oto},. We refer to this as the transitivity of the wo-twisting.

Lemma 4.9. The functors o} Co It and I, wO(M !

Hayy 00 t’oO X from ModeM,
to MOde '

. . O(M)
Lo are isomorphic.

The proof gives an explicit isomorphism.

Proof. Let M eMody, , ,- The R-module M®y
action of Hym) deﬁned by

oM with the right

w /(M

(X®T~ ) wo(M) —X®TL;M,TI~} ’

wM/v( M’) 1

s M Hyy
forx € M, u,ve Wy, is gy o IHwM/ O<M>(M)’

As K" (Hu,, yon)+) = Huomn)+ (Proposition 2.21), the R-linear map

M®g Hyr — 0 (M) ®%H, 40y 0 Hug(417)

wo(M')
~M’ ( (1;4/)71

defined by x ® T~ > xQT is the composite of the quotient map

Mg Har — 0} o M @ Hums

wyyr o DT
and of the bijective linear map

B o IHM,

o M) = DM @31, -6 Hug(a-
The above map is clearly ’Hwo( Mmry-equivariant. ([
Proposition 4.10. The coinduction is transitive.

Proof. By the transitivity of the wg-twisting (36), Lemma 4.9, and the transitivity
of the induction (Proposition 4.3), we have

H HM/ H ~ wO(M/)M’ ~M
I3 ol IHwO(M’) o mo ol ooy
H
_TH wo (M) ~M
et IH“)O(M/) o IHwO(M) mo k o mM/
wO(M’) wo (M)
_JH M __ H
- IHUJO(M) o mo - HHM' D

Proof of Theorem 1.9. The induction I;_fM is equivalent to I]% o © 17084 . The
. . . . . . U)O
coinduction I]%M is the composite of the restriction Mody,, — Mody,,_ and

of Homy;, _ ¢+(H, —) : Mody, . — Mody. These functors admit left adjoints,
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the restriction Mody — Mody,, . for Homy,  ¢+(H, —), and the induction
— ®wn,,- Hm :Mody,, — Mody,,, for the restriction Mody,, — Mody,, _; hence
— ®,,- .0+ Hu : Mody, — Mody,, for 17, and

~ My—1 ~ wo(M
(g )™ 0 (= ®n,, -0 Hupon)) = w0y o (— ®n, - 0" Huo(M))

H ~ M
for ﬂHwOW) oty . O
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