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ROBERT STEINBERG (1922–2014): IN MEMORIAM

V. S. VARADARAJAN

He touched nothing that he did not adorn.

The quotation above is by Samuel Johnson, writing about his friend Oliver Gold-
smith. I think it is the most satisfying way to describe the work and legacy of
Robert Steinberg, who passed away on May 25, 2014 on his 92nd birthday. His
towering stature as one of the great masters of the theory of algebraic groups and
finite groups, the vast scope, depth, and beauty of his papers (some key ones were
published in the PJM), and his gigantic presence in the algebraic scene in Southern
California, are the reasons that led the Board of Governors of the PJM to request
that a special volume of the PJM be published in his memory. In this brief essay
I shall try to sketch a portrait of a master who wore his mantle of greatness with
unassuming simplicity and charm.

This is a melancholy task for me, to write about someone who was a good friend
and role model for me for nearly fifty years. In these days of ever multiplying awards,
million dollar grants, medals, and so on, it is refreshing, even humbling, to talk
about a man who never sought the limelight, who worked quietly on the problems
that appealed to him, and evolved into one of the great masters and innovators
of the theory of semisimple algebraic groups. The problems he worked on and
considered important became the central problems of the subject. His influence
on the subject was enormous. Even after he retired he could surprise experts with
new and easier proofs of some of the fundamental theorems of the subject. His
monumental set of lecture notes on Chevalley groups [1968] has been studied by
hundreds of mathematicians (I myself lectured twice on them) and will appear as a
publication of the AMS. In spite of his greatness he was a gentle and modest man,
aware of his gifts certainly, but accepting them and trying to get the job done.

His work is widely available in his Collected papers [1997] and its scope is
extraordinary. It is a very difficult task to present his work in one short essay and I
will not even attempt it, nor do I have the competence for it. But I will describe
some highlights so that most of the readers will get some idea of what he achieved
in his lifetime. I thank Professor Alexander Merkurjev for enlightening me on the
impact of Steinberg’s work on algebraic K-theory and other parts of mathematics.

Keywords: Robert Steinberg, memorial issue.

3

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2015.279-1-2
http://dx.doi.org/10.2140/pjm.2015.279.1


4 V. S. VARADARAJAN

He told me that he and his collaborators have used every major theorem of Steinberg
in their work.

I was spiritually close to Steinberg as a mathematician. In his words I was also a
semisimple mathematician, as he said when he first introduced me to his close friend
and collaborator Tonny Springer, a Dutch semisimple mathematician. However I
was more interested in the transcendental aspects of real semisimple Lie groups,
such as infinite dimensional representations and harmonic analysis.

After his beloved wife Maria passed away, he gradually lost the desire and will
to do things, and I became closer to him in those days by visiting him as frequently
as I could. His passing away was traumatic to his nephew and nieces and to all of
his friends and relatives.

He was born in Romania but his parents settled in Canada very soon afterwards.
I am sure he was deeply influenced by the wide open spaces of Canada and thereby
acquired his lifelong love for long hikes and camping trips. He and Maria spent a
part of almost every summer by hiking and camping in the high sierras. Maria’s
strength of mind and decisiveness blended well with his gentle personality, and
they became one soul.

He studied under Richard Brauer and got his doctorate degree in 1948. He came
to UCLA in 1948 and never left it. In 1985 he was given the Leroy P. Steele Prize
of the AMS for lifetime achievement. He was elected to the National Academy
of Sciences in the same year. He wrote a letter to me on that occasion and said
that this proves he still has friends. He was awarded the Jeffery–Williams Prize
of the Canadian Mathematical Society in 1990. He was an avid fan of basketball
and hockey, and the Bruins and Lakers were his favorite teams, and Jerry West his
all-time favorite player. He was generally taciturn but always charming, and could
open up to close friends.

To understand roughly the scope of his achievement, it is essential to know what
simple and semisimple groups are. In 1894, Elie Cartan classified all simple Lie
algebras over C, and found that they fall into four infinite families (the classical
algebras), and five isolated ones (the exceptional algebras). This is the same as the
classification of simply connected complex Lie groups which are essentially simple.
The semisimple groups are, up to a cover, products of simple groups. The classical
groups (so christened by Weyl) are the group of matrices of determinant 1, the orthog-
onal (or spin) groups, and the symplectic groups. These groups have the remarkable
property that they make sense over any field or even any commutative ring with unit.
Over a finite field they become finite groups which are almost simple and these were
studied intensively by Dickson in the late nineteenth century. It is a natural question
to ask if the exceptional groups also make sense over finite fields. In the early 1950s,
Chevalley had started to study algebraic groups over fields of characteristic 0 by
using the exponential map and coming down to the Lie algebras. But this method was
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not very successful and certainly could not touch the case when the field had positive
characteristic. But Borel changed the entire landscape by studying the algebraic
groups directly using algebraic geometric methods, proving the existence of what are
now called Borel subgroups, and their conjugacy, over any algebraically closed field.
Chevalley then used Borel’s work as a starting point and completed the classification
of all semisimple affine algebraic groups by methods of algebraic geometry (up to a
finite cover, semisimple groups are products of simple groups, and reductive groups
are products of semisimple groups and tori). He found that the simple groups are
classified in the same way as Cartan’s. He then discovered the further remarkable
fact that any semisimple group is naturally a group scheme over Z, and hence it
makes sense to look at its points over any field (this is an oversimplification). In
particular it makes sense to speak of the simple groups over finite fields, and this
process led Chevalley to discover new simple finite groups hitherto unknown. The
groups he constructed over any field became known as the Chevalley groups.

In my opinion, the fact that the semisimple groups are really group schemes over
Z accounts for their great importance, depth, and vitality. Over arbitrary fields it
led Borel, Chevalley, Tits, Steinberg, Lusztig, Deligne, Curtis, and others to erect
a beautiful theory of their structure and representations. Over the real and p-adic
fields they become Lie groups on which one could do geometry and analysis, as
Weyl, Gel’fand, Mautner, Harish-Chandra, Mostow, Bruhat, Kazhdan, and others
did. Over the adeles their structure and representation theory led Langlands to
formulate his program linking the harmonic analysis on the adelic groups to the
most fundamental aspects of algebraic number theory, the so-called Langlands
program, which has inspired and animated a huge number of mathematicians of his
and later generations.

Chevalley’s discovery that semisimple groups are group schemes over Z was the
mathematical context when Steinberg started his research. In his words, he wanted
to become a semisimple mathematician, and soon became one. His field was the
entire theory of Chevalley groups and the associated finite groups, their structure
and their linear representations. He had important things to say on all aspects
of these groups. But the striking fact was that he used only elementary methods,
including basic algebraic geometry, and seldom ventured into the cohomological
aspects. I feel he resembled Harish-Chandra in this: he got to where he wanted to
go with very simple ideas and methods.

In his Collected papers, he discussed all his papers, elaborating some fine points
and putting his work within the framework of current knowledge, occasionally
adding some personal reminiscences. About one paper he wrote that it was entirely
worked out in the High Sierras when he was in his sleeping bag looking at the
stars! About another paper he wrote that this was his only paper for which he got
money from the Russians when they translated it, and mentions that the translation
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of his Lectures on Chevalley groups [1975] fetched him no money as it was before
glasnost!!

New finite simple groups. In what follows I shall describe some highlights of his
vast opus. His first major work was a couple of papers starting with the famous
Variations on a theme of Chevalley [1959] in the PJM, where he constructed new
families of finite simple groups not covered by the Chevalley groups and obtained
for them structure properties similar to those of the Chevalley groups. Suzuki and
Ree and others followed him with further families of new finite simple groups,
all of them collectively known as the twisted Chevalley groups. The Chevalley
groups and their twists were called finite simple groups of Lie type, and the great
classification theorem of finite simple groups is just the statement that apart from the
cyclic groups of prime order p, the alternating groups An (n� 5), and 26 sporadic
groups, a finite simple group is of Lie type.

Generators and relations for Chevalley groups. In the famous paper Générateurs,
relations et revêtements de groupes algébriques [1962], Steinberg considers Cheval-
ley groups corresponding to a root system † and field K. They are generated by
unipotent elements gr .t/ with r 2†, t 2K. Among all the relations between the
generators there are (obvious) ones (R) that can be written uniformly for all †, K.
He then considers the abstract group yG generated by symbols xr .t/ (r 2†, t 2K)
subject to the relations (R) and the natural surjective homomorphism

� W yG �!G:

Thus, Ker.�/ describes all the relations between the generators modulo the obvious
relations. Steinberg proves the remarkable result that the covering � is central, i.e.,
Ker.�/ is contained in the center of yG, and that � is a universal central extension.
J. Milnor has used Steinberg’s construction in the case of a general linear group over
an arbitrary ring S to define the group K2.S/ that describes the relations between
the elementary matrices over S modulo the obvious relations. The corresponding
group yG is known as the Steinberg group of S . Thus, this paper of Steinberg made
a great impact on the development of higher algebraic K-theory. The kernel of �
was studied in a profound manner by Moore and Matsumoto over a p-adic field, and
their work led to deep relationships with the norm residue symbol of number theory.
Among other things the work of Moore and Matsumoto highlighted the importance
of the two-fold covering of the symplectic group, the so-called metaplectic group,
over the local fields and the adeles. The adelic metaplectic group was the platform
which Weil used in his reformulation of Siegel’s work on quadratic forms.

Regular elements of semisimple algebraic groups [Steinberg 1965]. This is one of
his most admired and beautiful papers. Here he studies conjugacy classes of regular
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elements in a semisimple group G. For simplicity let us assume that the ground
field is algebraically closed. An element g 2G is called regular if the dimension of
the orbit of g under the action of G by conjugacy has maximal dimension (which is
dim.G/� rank.G//. In this paper he proves that the regular conjugacy classes have
an affine space section in the algebraic geometric sense, for every simply connected
semisimple group. For example, for SL.n/ we get the space of companion matrices,
a result that goes back at least to Gantmacher. Actually he does not restrict himself
to the algebraically closed ground field and proves that if G is a simply connected
quasisplit group over a field K (that is, it contains a Borel subgroup defined over
K), then every conjugacy class defined over K contains an element defined over
K. As a consequence of the main result, Steinberg proves that every principal
homogeneous space of a quasisplit semisimple group admits reduction to a maximal
torus. This result yields the solution of the famous Serre conjecture:

If K is a field of cohomological dimension 1, then all principal homoge-
neous spaces of a connected algebraic group over K are trivial.

The result that the regular conjugacy classes have a section in the algebraic
geometric sense led to an interesting interaction between us. I was looking at this
question on a semisimple Lie algebra over C. Kostant had constructed a beautiful
affine cross section for the regular orbits of the adjoint representation (which reduces
to the companion matrices for sl.n/), roughly at the same time as Steinberg’s work.
When I looked at the Lie algebra problem, it occurred to me that by making use of
some ideas of Harish-Chandra I could obtain a proof of many of Kostant’s results
in a very simple way. I had this published in the American Journal of Mathematics
and left a reprint in Bob’s mail box. He then asked me to come to his office and
explained the corresponding global result. I treasure the memory of that discussion
between us which had no element of condescension in it, when I was a young
researcher and he was at the peak of his powers.

The Steinberg representation. The complex representations of the finite Chevalley
groups are difficult to construct, even though Green had quite early worked out the
irreducible characters of GL.n/. The final results were obtained by Deligne and
Lusztig who realized the representations using certain étale cohomology spaces.
But Steinberg found one of the most important and ubiquitous ones very early in his
career. It is now called the Steinberg representation, and one can find a masterful
essay on its various incarnations in his Collected papers. For a Chevalley group G

over a finite field, if B is a Borel subgroup, and 1G
B

is the representation of G induced
by the trivial representation of B, then St is the unique irreducible component of
1G

B
which does not occur in any 1G

P
where P is any parabolic subgroup containing

B properly. Correspondingly, there is a formula for its character as an alternating
sum of the characters of the 1G

P
. Remarkably, this character formula makes sense in
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a p-adic field and its properties play a fundamental role in the harmonic analysis on
the p-adic semisimple groups, as developed by Harish-Chandra, Jacquet, and others.
Borel and Serre proved, using the cohomology of the Bruhat–Tits buildings, that St is
an irreducible square integrable (hence unitary) representation of the p-adic group.

The Steinberg representation also plays a basic role in the Langlands correspon-
dence. For example, an elliptic curve over Q has split multiplicative reduction
at a prime p if and only if the unitary automorphic representation associated to
it by the Langlands correspondence has for its component at p the Steinberg
representation. In general, under the correspondence, ignoring scalar twists by
one dimensional representations, a Steinberg representation at p corresponds to a
Galois representation for which the image of a decomposition group at p contains
a regular unipotent element.1

For lack of time I cannot discuss some of the other major discoveries in his work. I
mention the new and easier proofs of the isomorphism and isogeny theorems of
algebraic semisimple groups, which say that an isomorphism (isogeny) between
semisimple algebraic groups is always induced by an isomorphism (isogeny) of
their corresponding root data and conversely. The other item is his new and simpler
counterexample to Hilbert’s 14th problem, which asks one to prove that the ring
of invariant polynomials of a linear action of any algebraic group is finitely gener-
ated. For semisimple groups over the complex field this was proved for SL.n/ by
Hilbert, and for all semisimple groups over a field of characteristic 0 by Weyl, as
a consequence of his famous result that all finite dimensional representations of
a semisimple Lie algebra are direct sums of irreducible representations. In prime
characteristic the Weyl reducibility fails to hold and one needs a weakening of
it, called geometric reductivity, conjectured by Mumford and proved by Haboush.
The finite generation of invariants then follows from geometric reductivity, as was
shown by Nagata. So to find counterexamples to the finite generation of invariants,
one has to leave the category of semisimple or even reductive groups. Nagata
found a counterexample for a finite-dimensional action of a product of the additive
groups. In the late 1990s, Steinberg found much simpler classes of examples in all
characteristics, and made a thorough analysis of the problem, sharpening Nagata’s
construction and relating the examples to plane cubic curves and their geometry.

I know I have given only a brief discussion of a very minute part of Steinberg’s
work which is astonishing in its scope, depth, and beauty. His profound insights
about semisimple groups, and the easy grace and charm of his personality, cannot
ever be forgotten by people who came into contact with him. I have known very
few like him.

1These remarks on the Steinberg representation and elliptic curves were pointed out to me by
Professor Don Blasius.
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CELLULARITY OF CERTAIN
QUANTUM ENDOMORPHISM ALGEBRAS

HENNING H. ANDERSEN, GUSTAV I. LEHRER AND RUIBIN ZHANG

Dedicated to the memory of Robert Steinberg.

For any ring Ã such that Z[q±1/2] ⊆ Ã ⊆ Q(q1/2), let 1Ã(d) be an Ã-form
of the Weyl module of highest weight d ∈ N of the quantised enveloping
algebra UÃ of sl2. For suitable Ã, we exhibit for all positive integers r an
explicit cellular structure for EndUÃ

(1Ã(d)
⊗r). This algebra and its cellular

structure are described in terms of certain Temperley–Lieb-like diagrams.
We also prove general results that relate endomorphism algebras of special-
isations to specialisations of the endomorphism algebras. When ζ is a root
of unity of order bigger than d we consider the Uζ -module structure of the
specialisation 1ζ (d)⊗r at q 7→ ζ of 1Ã(d)

⊗r . As an application of these
results, we prove that knowledge of the dimensions of the simple modules
of the specialised cellular algebra above is equivalent to knowledge of the
weight multiplicities of the tilting modules for Uζ (sl2). As an example, in
the final section we independently recover the weight multiplicities of inde-
composable tilting modules for Uζ (sl2) from the decomposition numbers of
the endomorphism algebras, which are known through cellular theory.

1. Introduction

1A. Notation. Let A be the ring Z[q±1/2
] where q is an indeterminate, and let UA

be the Lusztig A-form [1988; 1990; 1993] of the quantised enveloping algebra
Uq(sl2) [Drinfeld 1987; Jimbo 1986; Chari and Pressley 1994], which has basis
consisting of products of “divided powers” of the generators of sl2 and binomials in
the Cartan generators. Let 1A(d) be the Weyl module for UA with highest weight
d ∈ N. This has dimension d + 1 and quantum dimension equal to the quantum
number [d + 1], where for any integer n,

[n] = [n]q :=
qn
− q−n

q − q−1 .

MSC2010: primary 17B37, 20G42; secondary 81R50.
Keywords: quantum invariants, cellular algebras, tilting modules.
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For any commutative A-algebra Ã, we write U Ã := Ã⊗A UA, and similarly for
1 Ã(d), etc. For any positive integer r , let Er (d, Ã) := EndU Ã(1 Ã(d)⊗r ).

Let s1, . . . , sN−1 be the standard Coxeter generators of Sym N . For w ∈ Sym N ,
write `(w) for its length as a word in the generators si , and define the left set
L(w) := {i | `(siw) < `(w)}; the right set R(w) is defined similarly.

1B. The main result. Let K = Q(q1/2) be the field of fractions of A. Writing
Br for the r-string braid group (r a positive integer), it is known that there is an
action of Br on 1A(d)⊗r , in which the standard generators of the braid group act
on successive tensor factors via the R-matrix Ř. This is evident over K , and from
[Lehrer and Zhang 2006; 2010] and [Andersen et al. 2008] or [Andersen 2012]
(using [Kirillov and Reshetikhin 1990]) in the above integral form. This action
respects the U Ã-action on the tensor space, and so there is a homomorphism

(1-1) η : ÃBr −→ EndU Ã(1 Ã(d)⊗r )= Er (d, Ã).

We define A using q1/2 instead of q because then, with the usual definitions of Uq ,
the R-matrix is defined over A with respect to a basis of weight vectors.

In [Lehrer and Zhang 2006] it was shown that when Ã= K , η is surjective. This
provides a means of studying the relevant endomorphism algebras. When d = 2
this surjectivity was proved in [Andersen 2012] for most Ã. We haven’t been able
to establish this result for d > 2. However, inspired in part by the methods used in
[loc. cit.] we show in this paper that the endomorphism algebras have a nice cellular
structure, even though the R-matrix generators satisfy a polynomial equation of
degree d + 1.

We shall work with the Temperley–Lieb algebra TLN ( Ã), which has generators
fi , i = 1, . . . , N − 1 and relations

fi f j fi = fi if |i − j | = 1,
fi f j = f j fi if |i − j |> 1,
f 2
i = (q + q−1) fi .

This has an Ã-basis consisting of planar diagrams, as explained in [Graham and
Lehrer 1996, §1] (see also [2003; 2004]); these are in one-to-one correspondence
with the set of fully commutative elements of Sym N ; see [Fan and Green 1997].

Theorem 1.1. Let d ≥ 1 be an integer. For any Ã such that [d]! is invertible
in Ã, the algebra Er (d, Ã) is isomorphic to a cellular subalgebra of TLrd( Ã). In
particular, it has an Ã-basis labelled by planar diagrams D ∈ TLrd( Ã) such that
L(D), R(D)⊆ {d, 2d, . . . , (r−1)d}, where the left and right sets L(D) and R(D)
are as in Definition 3.2 below.

We remark that the cellular subalgebra in Theorem 1.1 has an identity different
from that of TLrd( Ã), and is therefore not a unital subalgebra.
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Note that the planar diagrams are labelled by the set Symc
rd of fully commutative

elements in Symrd ; the requirement in the theorem is equivalent to taking those
w ∈ Symc

rd such that L(w), R(w) ⊆ {d, 2d, . . . , (r − 1)d} (see [Fan and Green
1997]).

We shall give further details of the cellular structure below, both in terms of
diagrams, and in terms of pairs of standard tableaux.

2. The case d = 1

2A. The Temperley–Lieb action. It is known (see, for example, [Lehrer and Zhang
2010, §3.4]) that in this case, the R-matrix acts on 1K (1)⊗2 with eigenvalues
q1/2 and −q3/2. If we adjust the map η of (1-1) by sending the generators to
Ti := q1/2 Ri , where Ri is the relevant R-matrix, then η factors through the algebra
Hr (A) := ABr/〈(Ti +q−1)(Ti −q)〉, which is well known to be the Hecke algebra,
and has A-basis {Tw | w ∈ Symr }. We therefore have, after tensoring with Ã,

(2-1) µ : Hr ( Ã)−→ EndU Ã(1 Ã(1)⊗r )= Er (1, Ã).

Moreover it is a special case of the main result of [Du et al. 1998] (see also
[Andersen et al. 2008]) that µ is surjective for any choice of Ã, even when Ã is
taken to be A. Further, the arguments in [Lehrer and Zhang 2010, Theorem 3.5],
generalised to the integral case, show that the kernel ofµ is the ideal generated by the
element a3 :=

∑
w∈Sym3

(−q)−`(w)Tw; hence, for any Ã, we have an isomorphism

(2-2) η : Hr ( Ã)/〈a3〉 ∼= TLr ( Ã)−−→∼ EndU Ã(1 Ã(1)⊗r )= Er (1, Ã),

where TLr ( Ã) :=Hr ( Ã)/〈a3〉 is the r -string Temperley–Lieb algebra. The generator
fi acts as q − Ti on 1 Ã(1)⊗r . It is easily shown that f 2

i = (q + q−1) fi , and that
the other Temperley–Lieb relations are satisfied.

2B. Projection to 1 Ã(d). Now it is elementary that

(2-3) 1K (1)⊗d ∼=1K (d)⊕1′,

where 1′ is the direct sum of simple modules 1K (i) with i < d. We therefore
have a canonical projection pd :1K (1)⊗d

−→1K (d), which may be considered
an element of Ed(1, K )= EndU K (1K (1)⊗d).

Lemma 2.1. The projection pd is the image under µ (see (2-1)) of the element
ed := Pd(q)−1∑

w∈Symd
q`(w)Tw ∈ Hd( Ã), where Pd(q)= qd(d−1)/2

[d]!.

Proof. We begin by showing that for i = 1, . . . , d − 1,

(2-4) Ti pd = pd Ti = qpd

as endomorphisms of 1K (1)⊗d .
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By symmetry, it suffices to prove (2-4) for i = 1. Now

1K (1)⊗d
=1K (1)⊗1K (1)⊗1K (1)⊗(d−2)

∼= (1K (0)⊕1K (2))⊗1K (1)⊗(d−2)

∼= (1K (0)⊗1K (1)⊗(d−2))⊕ (1K (2)⊗1K (1)⊗(d−2))

But pd acts as zero on the first summand (since the highest occurring weight
is d − 2) and T1 acts as q on the second summand. This proves the relation (2-4).
Now since fi =µ(q−Ti ), this shows that pd is the “Jones idempotent” of TLd(K ),
defined by the relations fi pd = pd fi = 0 for all i .

It follows that if p′d is the unique idempotent in Hd(K ) corresponding to the
algebra homomorphism Tw 7→ q`(w), then pd = µ(p′d). But this idempotent is
precisely the element ed in the statement. �

The next statement is immediate.

Corollary 2.2. Let Ã = A[[d]!−1
]. Then

(2-5) 1 Ã(1)⊗rd ∼=1 Ã(d)⊗r
⊕0,

where 0 is a U Ã-submodule, and the corresponding projection p ∈ Endrd(1, Ã)
such that p(1 Ã(1)⊗rd) =1 Ã(d)⊗r is given by p = p⊗r

d , where we now consider
pd as an element of Ed(1, Ã)⊂ Ed(1, K ).

3. Endomorphisms of 1 Ã(d)⊗r

3A. Identification of Er(d, Ã). Throughout this section we take Ã to be Ã =
A[[d]!−1

]. Recall that Er (d, Ã)= EndU Ã(1 Ã(d)⊗r ). We are now in a position to
identify Er (d, Ã) on the nose, as a subalgebra of TLrd( Ã) ∼= EndU Ã(1 Ã(1)⊗rd).
This will lead to the identification of the cellular structure on Er (d, Ã).

Proposition 3.1. There is an isomorphism Er (d, Ã)−−→∼ pTLrd( Ã)p, where p is
the idempotent p = p⊗r

d of TLrd( Ã) described above.

Proof. For any endomorphism α ∈ Er (d, Ã) we obtain an endomorphism α̃ of
1 Ã(1)⊗rd by extending α by zero, using the decomposition (2-5), that is, by defining
α̃ to be zero on 0. The map α 7→ α̃ is an inclusion Er (d, Ã) ↪→ Erd(1, Ã), and its
image is clearly the space of endomorphisms β ∈ Erd(1, Ã) such that ker(β)⊇ 0
and Im(β)⊂1 Ã(d)⊗r (as in the decomposition (2-5)). This image is pTLrd( Ã)p.

�

3B. Temperley–Lieb diagrams. The key step in proving cellularity is the identifi-
cation of a certain Ã-basis of pTLrd( Ã)p. This will be done in terms of certain
diagrams. The Temperley–Lieb algebra TLrd( Ã) has Ã-basis consisting of planar
diagrams from rd to rd, in the language of [Graham and Lehrer 1998]. These
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1

1

2

2

3

3

4

4

5

5

6

6

Figure 1. A planar diagram from 6 to 6.

1 i i + 1 N

1 i i + 1 N

· · · · · ·

· · · · · ·

Figure 2. The generator fi as a planar diagram from N to N .

diagrams are in bijection with the set Symc
rd of fully commutative elements [Fan

and Green 1997] of Symrd , which in turn is in bijection with those elements of
Symrd which correspond, under the Robinson–Schensted correspondence, to pairs
of standard tableaux with two rows.

We shall describe now how to obtain a pair (S(D), R(D)) of standard tableaux
directly from a planar diagram D. We use the planar diagram from 6 to 6 in Figure 1
to illustrate the description.

Each planar diagram from N to N consists of a set of N nonintersecting arcs.
These may be through-arcs, joining an upper node to a lower node, or upper (top
to top) or lower (bottom to bottom). The latter two are referred to as horizontal
arcs. The diagrams are multiplied in the usual way, by concatenation, with each
closed circle being replaced by [2] = q + q−1. The generator fi corresponds to the
diagram in Figure 2. Note that if there are t through-arcs, then there are equally
many top arcs and bottom arcs, and if this number is k, then t + 2k = N .

Now to each such planar diagram D, we associate an ordered pair (S(D), T (D))
of standard tableaux with two rows, as follows. Let i1, . . . , ik be the right nodes of
the upper arcs written in ascending order. Then S(D) has second row i1, . . . , ik ,
and first row the complement of {i1, . . . , ik}, written in ascending order. Note that
the first row has t + k ≥ k elements. The tableau T (D) is defined similarly, using
the sequence j1, . . . , jk of right ends of the lower arcs. Note that both S(D) and
T (D) correspond to the partition (t + k, k), and hence the diagram corresponds via
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the Robinson–Schensted correspondence to an element w(D) ∈ Sym N , which is
fully commutative (see [Fan and Green 1997, Definition 3.3.1]).

Say that a horizontal arc is small if its vertices are i, i + 1 for some i .

Definition 3.2. The left set L(D) of a planar diagram D is the set of left vertices
of the small upper arcs of D. Similarly, the right set R(D) is the set of left vertices
of the small lower arcs of D.

It is well known, and proved in a straightforward way using the Robinson–
Schensted correspondence, that in the notation from Section 1A we have L(D)=
L(w(D)), and similarly R(D)= R(w(D)).

For the diagram D in Figure 1, L(D)= {2}, while R(D)= {2, 5}. The tableaux
S(D) and T (D) are given by

S(D)=
1 2 5 6

3 4
and T (D)=

1 2 4 5

3 6
.

Note that if D(S) := {i | i + 1 is in a lower row than i} is the descent set of a
standard tableau S, then L(D)= D(S(D)) and R(D)= D(T (D)).

4. Proof of the main theorem

In this section we prove Theorem 1.1, and give some of its consequences. We keep
the convention Ã = A[([d]!)−1

] from Section 3.

4A. A key lemma. We begin by proving the following key result.

Lemma 4.1. The Ã-algebra pTLdr ( Ã)p has Ã-basis given by the set of elements
pDp, where D is a diagram in TLdr ( Ã) such that

L(D)∪ R(D)⊆ {d, 2d, . . . , (r − 1)d}.

Proof. The Ã-algebra Er (d, Ã)∼= pTLrd( Ã)p is evidently spanned by the elements
pDp, where D ranges over planar diagrams from rd to rd . But for i = 1, . . . , d−1,
we have seen that pd fi = fi pd = 0. It follows that pDp = 0 unless L(D) and
R(D) are both contained in {d, 2d, . . . , (r − 1)d}. Let B(d, r) be the set of planar
diagrams satisfying these conditions. By the above remarks, it will suffice to show
that

(4-1) {pDp | D ∈B(d, r)} is linearly independent.

To prove (4-1) it suffices to work over the field K ; in particular we are reduced
to showing that

(4-2) |B(d, r)| = dimK
(
EndU K (1K (d)⊗r).
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We shall prove (4-2) essentially by showing that both sides of (4-2) satisfy the same
recurrence. Let us begin with the left side.

Observe that if a diagram D ∈ B(d, r) has t through-arcs, it may be thought
of as a pair of diagrams D1, D2, where the Di are monic diagrams from t to rd.
Recall that a diagram from t to N (t ≤ N ) is monic if it has t through-arcs. One
thinks of D1 as the top half of D, and D2 as the ∗ of the bottom half of D,
where ∗ is the cellular involution on the Temperley–Lieb category that reflects
diagrams in a horizontal line. It follows that if we write |B(d, r)| = b(d, r) and
|B(d, r; t)| = b(d, r; t), where B(d, r; t) is the set of monic planar diagrams
D : t→ rd such that L(D)⊆ {d, 2d, . . . , (r − 1)d}, then

(4-3) b(d, r)=
∑

0≤t≤dr

b(d, r; t)2.

Now consider the right side of (4-2). Define the positive integers m(d, r; t) by

(4-4) 1K (d)⊗r ∼=

dr⊕
t=0

m(d, r; t)1K (t).

Thus the m(d, r; t) are multiplicities, and m(d, r; t) = 0 unless t ≡ rd (mod 2).
Moreover, we obviously have, if m(d, r) := dimK

(
EndU K (1K (d)⊗r

)
,

(4-5) m(d, r)=
∑

0≤t≤dr

m(d, r; t)2.

It is clear that in view of (4-3) and (4-5), the lemma will follow if we prove that for
all d , r and t ,

(4-6) m(d, r; t)= b(d, r; t).

We shall prove (4-6) by induction on r . If r = 1, then

(4-7) m(d, 1; t)= b(d, 1; t)=
{

0 if t 6= d,
1 if t = d.

Now by the Clebsch–Gordan formula, we have, for any integer n,

1K (d)⊗1K (n)∼=1K (d + n)⊕1K (d + n− 2)⊕ · · ·⊕1K (|d − n|).

It follows that

(4-8) m(d, r + 1; t)=
t+d∑

s=t−d

m(d, r; s),

where m(d, r; s)= 0 if s < 0 or if s > dr .
We shall complete the proof of the lemma by showing that the numbers b(d, r; t)

satisfy a recurrence analogous to (4-8). For this observe that any diagram D in
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1 dr dr + 1 dr + i dr + i + 1 d(r + 1)

· · ·
k− i

· · ·
d − i

· · ·
i

· · ·
i

D

Figure 3. From diagram D to diagram D′.

B(d, r; k) gives rise to a unique diagram in B(d, r + 1; k + d − 2i), for 0 ≤ i ≤
min{d, k}, as depicted in Figure 3, and each diagram D′ ∈B(d, r + 1; t) arises in
this way from a unique diagram in B(d, r; k) for a uniquely determined k. In fact,
k = t − d + 2i where i is the number of arcs in D′ whose right vertices belong to
{dr + 1, · · · , d(r + 1)}. It follows that

(4-9) b(d, r + 1; t)=
t+d∑

s=t−d

b(d, r; s),

where b(d, r; s)= 0 if s < 0 or if s > dr .
Comparing (4-8) with (4-9), and taking into account (4-7), it follows that

m(d, r; k)= b(d, r; k) for all d, r and k. This completes the proof of (4-6) above,
and hence of the lemma. �

4B. Cellular structure.

Proof of Theorem 1.1. We have seen that Er (d, Ã) ∼= pTLrd( Ã)p, and that the
latter algebra has the basis B(d, r), as stated in the theorem. It remains only to
show that pTLrd( Ã)p has a cellular structure. Following [Graham and Lehrer 1996,
Definition 1.1] we need to produce a cell datum (3,M,C,∗ ) for pTLrd( Ã)p.

Take 3 to be the poset {t ∈ Z | 0 ≤ t ≤ dr and dr − t ∈ 2Z}, ordered as
integers. For t ∈ 3, let M(t) := B(d, r; t), the set of monic planar diagrams
D : t→ dr such that L(D)⊆ {d, 2d, . . . , (r − 1)d} (see Section 3B and the proof
of Lemma 4.1). Then the map C : qt∈3M(t)×M(t)−→ pTLrd( Ã)p is defined by
C(D1, D2)= pD1 ◦ D∗2 p, where ◦ indicates concatenation of diagrams. We shall
henceforth simply use juxtaposition to indicate composition in the Temperley–Lieb
category. Since each diagram D ∈B(r, d) is expressible uniquely as D= D1 D∗2 for
some t ∈3 and D1, D2∈M(t), it follows from Lemma 4.1 that C is a bijection from
qt∈3M(t)× M(t) to a basis of pTLrd( Ã)p. Finally, the anti-involution ∗ is the
restriction to pTLrd( Ã)p of the anti-involution on TLdr ( Ã), namely, reflection in a
horizontal line. Since p∗ = p, we have C(D1, D2)

∗
= (pD1 D∗2 p)∗ = pD2 D∗1 p =

C(D2, D1).
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If S, T ∈ M(t), we shall write C(S, T )= C t
S,T , and for this proof only, write

A= pTLrd( Ã)p and A(< i)=
∑
j<i,

S,T∈M( j)

ÃC j
S,T .

It remains only to prove the axiom (C3) of [Graham and Lehrer 1996, Definition 1.1].
For this, let S1, S2 ∈ M(s) and T1, T2 ∈ M(t). Then

(4-10) C s
S1,S2

C t
T1,T2
= pS1(S∗2 pT1)T ∗2 p,

so that if s < t , the left side is in A(< t), and there is nothing to prove. Hence we
take s ≥ t .

Now S∗2 pT1 is a morphism from t to s, and hence is an Ã-linear combination of
planar diagrams D from t to s. Thus the left side of (4-10) is an Ã-linear combination
of elements of the form pS1 DT ∗2 p. If D is not monic, then pS1 DT ∗2 p ∈A(< t);
if D is monic, then clearly pS1 DT ∗2 p = pS′T ∗2 p for some monic S′ : t→ dr .

It follows from (4-10) that modulo A(< t), C s
S1,S2

C t
T1,T2
=
∑

S∈B(d,r;t) a(S)C t
S,T2

,
and a(S) is independent of T2. This proves the axiom (C3), and hence the cellularity
of A. The proof of Theorem 1.1 is now complete. �

5. Endomorphism algebras and specialisation

We shall prove in this section results showing how the multiplicities of the indecom-
posable summands of the specialisations of 1A(d)⊗r corresponding to homomor-
phisms A→ k where k is a field, relate to the dimensions of the simple modules
for the corresponding endomorphism rings. It turns out that this is a consequence
of a result on tilting modules which is valid for general quantum groups. Therefore
in Sections 5A and 5B we deal with this general situation. Then in Section 5C we
deduce the explicit consequences in our sl2 case where we take advantage of our
cellularity result from Section 4 on the endomorphism rings.

5A. Integral endomorphism algebras and specialisation. We now provide some
rather general base change results for Hom-spaces between certain representations
of quantum groups. So in this section we shall work with a general quantum group
Uq over K with integral form UA. We denote by k an arbitrary field (in this section
k may even be any commutative noetherian A-algebra) made into an A-algebra by
specializing q to ζ ∈ k \ {0} and set Uζ = UA⊗Ak. When M is a UA-module we
write Mq and Mζ for the corresponding Uq - and Uζ -modules, respectively.

For each dominant weight λ we write 1q(λ),1A(λ) and 1ζ (λ) for the Weyl
modules for Uq , UA and Uζ respectively. Similarly, we have the dual Weyl modules
∇q(λ),∇A(λ) and ∇ζ (λ) respectively. Then it is well known that, writing w0 for
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the longest element of the Weyl group,

∇ζ (λ)=1ζ (−w0λ)
∗,

and similarly for ∇A(λ) and ∇q(λ).
We shall make repeated use of the following result. For any two weights λ,µ∈ X ,

we have

(5-1) Ext i
UA
(1A(λ),∇A(µ))=

{
A if λ= µ and i = 0,
0 otherwise.

This is proved exactly as in the corresponding classical case (see, for example,
[Jantzen 2003, Proposition II.B.4]) by invoking the quantised Kempf vanishing
theorem proved in general in [Ryom-Hansen 2003].

Lemma 5.1. Let M, N be UA-modules that are finitely generated as A-modules.
If M has a filtration by Weyl modules 1A(λ) and N has a filtration by dual
Weyl modules ∇A(µ), then HomUA(M, N ) is a free A-module of rank equal to
dimQ(q) HomUq(Mq , Nq). Further, we have

HomUζ
(Mζ , Nζ )' HomUA(MA, NA)⊗A k.

Proof. We have a spectral sequence with E2-terms

E−p,q
2 = Tor A

p (Extq
UA
(M, N ), k)

converging to Extq−p
Uζ

(Mζ , Nζ ). By (5-1) we have E−p,q
2 = 0 if either q > 0 or

q = 0< p. Hence the spectral sequence collapses and we can read off the result. �

Corollary 5.2. Let V be a UA-module which satisfies the assumption

(5-2) V ∗⊗A V has a ∇A-filtration.

Then EndUζ
(V⊗r
ζ )' EndUA(V

⊗r )⊗A k.

Proof. We have EndUA(V
⊗r )'HomUA(1A(0), (V ∗⊗V )⊗r ) because 1A(0) is the

trivial UA-module A. By the assumption (5-2), we may apply Lemma 5.1 to obtain
the statement. �

As usual we denote by ρ half the sum of the positive roots. Recall the concept of
strongly multiplicity-free modules from [Lehrer and Zhang 2006]. A Uq-module
Vq is strongly multiplicity-free if the weights of Uq occurring in Vq form a chain in
the usual ordering on weights.

There are significant cases where the above result applies:

Proposition 5.3. Suppose V = 1A(λ) for some dominant weight λ. Assume that
Vq is strongly multiplicity-free, and that −w0λ+µ+ρ is dominant for each weight
µ of V . Then V ∗⊗ V has a ∇A-filtration.
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Proof. Recall that UA has a triangular decomposition UA = U+A U 0
A U−A , and each

weight µ defines a 1-dimensional representation of the subalgebra U 0
A U−A , which

we also denote by µ.
We have V ∗=∇A(λ

′)where λ′=−w0λ. Moreover∇A is realised as the induction
functor IndUA

U 0
A U−A

. Hence by a standard property of induction,

V ∗⊗ V = IndUA

U 0
A U−A

(λ′)⊗ V = IndUA

U 0
A U−A

(λ′⊗ V ),

where in this formula the last occurrence of V is its restriction to U 0
A U−A . Now the

hypothesis that Vq is strongly multiplicity-free implies that the weights of V are
linearly ordered. But the weights of λ′⊗ V are {λ′ +µ}, where µ runs over the
weights of V . This set is therefore a linearly ordered chain, and accordingly, λ′⊗V
has a U0

A U−A -module filtration

0= F0 ⊂ F1 ⊂ · · · ⊂ Fd = λ
′
⊗ V,

where d = dim Vq , with the quotients Fi/Fi−1 running over the U 0
A U−A -modules

λ′+µ. Our hypothesis, together with (the quantised) Kempf’s vanishing theorem
imply that the higher (degree > 0) cohomology of the corresponding line bundles
vanishes, and hence that induction is exact on this filtration. We therefore have a
corresponding filtration of UA-modules

0⊂∇A(F1)⊂ · · · ⊂ ∇A(Fd)=∇A(λ
′
⊗ V )= V ∗⊗ V . �

Corollary 5.4. The conclusion of Proposition 5.3 holds in the following cases.

(1) V is a Weyl module with minuscule highest weight. This includes the natural
modules in types A,C and D (but not type B).

(2) V is any Weyl module for UA(sl2).

(3) V is the Weyl module in type G2 with highest weight 2α1+α2, where α1 and
α2 denote the two simple roots, with α2 long.

Proof. When V is minuscule, it is well known that for any weight µ of V we have
(µ, α∨)=±1 or 0, and hence (1) is clear. The case of sl2 is evident, while in the
case of type G2, the weights of the Weyl module in question are the short roots,
together with 0. This easily gives (3). �

5B. Multiplicities of tilting modules and dimensions of irreducibles. In this sec-
tion we shall prove some rather general results which will allow us to relate
multiplicities of indecomposable tilting summands in tensor powers of certain
representations of quantum groups to the dimensions of simple modules for the
corresponding endomorphism algebras.
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We note that the results of this section are similar in spirit to those of [Brundan
and Kleshchev 1999, §3], which in turn have their genesis in some aspects of
[Mathieu and Papadopoulos 1999, §3].

Theorem 5.5. Let k be a field, U a k-algebra, and M a finite-dimensional (over k)
U-module. Let E = EndU(M), and assume that for each indecomposable direct
summand M ′ of M , we have E ′/Rad E ′ ' k where E ′ = EndU(M ′). Then

E
Rad E

'

⊕
i

Mdi (k),

where Md(k) is the algebra of n× n matrices over k, i runs over the isomorphism
classes of indecomposable U-modules (of course only a finite number occur), and
the di are the multiplicities of the indecomposable summands of M.

Proof. Let M=M1⊕M2⊕· · ·⊕Mn be a decomposition of M into indecomposables.
Then any endomorphism φ ∈ E may be written φ = (φi j )1≤i, j≤n , where φi j is in
HomU(M j ,Mi ).

Now by Fitting’s lemma, any endomorphism of Mi is either an automorphism or
is nilpotent. With the notation Ei := EndU(Mi ), it follows that for each i , the set
Ri := {ψ ∈ Ei | ψ is not an automorphism} is a nilpotent ideal of Ei . In particular
there is an integer Ni such that RNi

i = 0.
Next, suppose that we have a sequence i = i1, i2, . . . , i p+1 = i , and φ j :=

φi j ,i j+1 ∈HomU(Mi j+1,Mi j ) for j = 1, 2, . . . , p. Consider ψ1 := φ1 . . . φp−1φp in
HomU(Mi ,Mi ). We shall show that:

(5-3) ψ1 is an automorphism =⇒
the Mi j are all isomorphic, and φ j is an isomorphism for each j .

To see (5-3), let ψ j = φ j . . . φpφ1 . . . φ j−1 ∈ Hom(Mi j ,Mi j ). If ψ j is an auto-
morphism for each j , then for each j , φ j−1 is injective and φ j is surjective, whence
each φ j is an automorphism, and we are done. If not, then there is some j such
that ψ j is nilpotent. It follows that ψN

1 = 0 for large N , which is a contradiction.
This proves (5-3).

Now let J be the subspace of E consisting of the endomorphisms φ such that
φi j is not invertible for each pair i, j . If

Ji j := {φi j ∈ HomU(M j ,Mi ) | φi j is not invertible},

then again by Fitting’s lemma, Ji j is an (Ei , E j ) bimodule, and using the observation
(5-3) above, it is clear that J is an ideal of E . We shall show that J is nilpotent.

Let φ(1), . . . , φ(`) be a sequence of elements of J . Then

(φ(1) . . . φ(`))i j =
∑

k1,k2,...,k`−1

φ
(1)
ik1
φ
(2)
k1k2
· · ·φ

(`)
k`−1 j ,
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where the sum is over all sequences k1, k2, . . . , k`−1 with 1≤ ki ≤ n for all i .
Now we have seen that for any j , if R j =Rad E j , then there is an integer N j such

that RN j
j = 0. If we take `≥ N1+ N2+· · ·+ Nn + 2, then there some index a that

occurs among the ki at least Na+1 times. Then each summand in the expression for
(φ(1) . . . φ(`))i j contains a product of Na noninvertible elements of Ea for some a,
and hence is 0. Thus J N1+···+Nn+2

= 0.
Finally, it is clear that since Ei/Ri ' k for each i , E/J '

⊕n
i=1 Mdi (k). �

The proof above actually yields the following corollary of the Artin–Wedderburn
theorem.

Corollary 5.6. Let M be as in Theorem 5.5 but drop the assumption on the endo-
morphism rings of direct summands of M. Then there are division rings Di over k
such that

E
Rad E

'

⊕
i

Mdi (Di ).

Proof. In this case Fitting’s lemma yields that Ei/Ri is a division algebra Di over k,
and the argument above proves the assertion. �

The application to our situation arises through the following property of finite-
dimensional tilting modules for quantum groups. Let k be a field considered as an
A-algebra via q 7→ ζ ∈ k \ {0} and let Uζ be as in Section 5A.

Proposition 5.7. Let M be a finite-dimensional indecomposable tilting module for
Uζ and set E = EndUζ

(M). Then E/Rad E ' k.

Proof. By the Ringel–Donkin classification [Donkin 1993] (see [Andersen 1992] for
the adaption to the quantum case) of indecomposable tilting modules we get that M
has a unique highest weight λ ∈ X+ and that the weight space Mλ is 1-dimensional.
Therefore any ϕ ∈ EndUζ

(M) is given by a scalar a ∈ k on Mλ. But then ϕ−a idM

is not an automorphism; i.e., ϕ− a idM ∈ Rad E . �

We denote the indecomposable tilting module for Uζ with highest weight λ
by Tζ (λ) and for an arbitrary tilting module T for Uζ we write (T : Tζ (λ)) for
the multiplicity with which Tζ (λ) occurs as a summand of T. Then Theorem 5.5
together with Proposition 5.7 give the following result.

Corollary 5.8. For any tilting module T for Uζ and any λ ∈ X+ we have

(T : Tζ (λ))= dimk Lζ (λ),

where Lζ (λ) is the simple module for E = EndUζ
(T) corresponding to λ.
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5C. Multiplicities for Uζ (sl2). We now apply the above general results to sl2.
With k and ζ as above, the indecomposable tilting modules in this case are Tζ (m)
with m ∈N. If ζ is not a root of unity in k then the category of finite-dimensional
Uζ -modules is semisimple and behaves exactly like the corresponding category for
the generic quantum group Uq .

From now on we assume that ζ is a root of unity; for the specialisation Uζ , etc., we
assume that the homomorphism A→k is given by q 7→ ζ (so q1/2

7→
√
ζ ) and we set

`= ord(ζ 2). If d is a positive integer with d <` we have1ζ (d)=Tζ (d) and all the
tensor powers Tr =1ζ (d)⊗r are also tilting modules. We set Eζ (d, r)=EndUζ

(Tr ).
By Lemma 5.1 we have

Eζ (d, r)= Er (d, Ã)⊗ Ã k,

where as before Ã = A[([d]!)−1
]. Note that our assumption ` > d ensures that the

specialization φζ : A→ k factors through Ã making k into an Ã-algebra.
Our cellularity results from Section 3 imply that

(5-4) Eζ (d, r)∼= pζTLdr (k)pζ ,

where pζ is the specialisation at q = ζ of the idempotent p ∈ TLdr ( Ã). Note that
in TLdr (k)= TLdr,ζ (k) the generators fi satisfy f 2

i = (ζ + ζ
−1) fi .

The simple modules for the cellular algebra pζTLdr (k)pζ are parametrised by
the poset 3= {m ∈ Z | 0≤ m ≤ dr and dr −m ∈ 2Z}; see Section 4B. We denote
the simple module associated with m ∈3 by Lζ (m).

Theorem 5.9. In the above notation, in particular assuming `= ord(ζ 2) > d, we
have for m ∈3,

(Tr : Tζ (m))= dimk Lζ (m).

This multiplicity is the rank of the matrix whose rows and columns are labelled
by B(d, r;m) (see Section 4A) and whose (D1, D2)-entry is the coefficient of the
identity map m→ m (in the Temperley–Lieb category) in the expansion of D∗2 pζ D1

as a linear combination of diagrams from m to m.

Proof. The equality in the theorem is an immediate consequence of Corollary 5.8.
To see the second statement note that Lζ (m) is realised as follows: Let Wζ (m) be
the cell module corresponding to m. This has k-basis CS , S ∈B(d, r;m), the monic
diagrams D from m to dr such that L(D)⊆ {d, 2d, . . . , (r − 1)d}. We may think
of CS as pζ S, and then the Eζ (d, r)-action is by left composition: for x ∈ Eζ (d, r),
xCS =

∑
T∈B(d,r;m) a(T, S)CT , where

xpζ S =
∑

T∈B(d,r;m)

a(T, D)pζT + lower terms,

where “lower” means “having fewer through-arcs”.
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There is an invariant form (− ,− ) on Wζ (m), defined by

(5-5) Cm
S,T

2
∈ (CS,CT )Cm

S,T + Eζ (d, r)(< m) for S, T in B(d, r;m).

The radical Radζ (m) of this form is a submodule of Wζ (m), and

Lζ (m)=Wζ (m)/Radζ (M).

It is therefore evident that dim Lζ (m) is equal to the rank of the Gram matrix Mm,ζ ,
whose rows and columns are indexed by B(d, r;m), and whose (S, T )-entry is
(CS,CT ).

Finally, since Cm
S,T

2
= pζ S(T ∗ pζ S)T ∗ pζ , and noting that T ∗ pζ S is a linear

combination of diagrams from m to m, it follows from (5-5) that (CS,CT ) is the
coefficient of id : m→ m. �

Since dim Wζ (dr) = 1 and the coefficient of id : d → d in pd(ζ ) is 1, it is
immediate from the theorem that the multiplicity of Tζ (dr) is 1. We finish this
section with a less trivial example.

Example 5.10. Take k = dr − 2 and recall that d < `. We shall compute the multi-
plicity of Tζ (k) in1ζ (d)⊗r for any d, r . Here B(d, r; dr−2)={S1, S2, . . . , Sr−1},
where Si is as shown in the figure:

1 id id + 1 drd (i − 1)d + 1 (i + 1)d (r − 1)d + 1

· · · · · ·pd (ζ ) pd (ζ ) pd (ζ ) pd (ζ )

Now by repeated use of the diagrammatic recursion

(*) pd = pd−1 −
[d−1]

[d]

pd−1

pd−1

it is straightforward to compute the Gram matrix Mdr−2,ζ of the invariant form (see
the proof above). One shows that

(Si , S j )=


0 if j 6= i or i ± 1,
[2]

ζd

[d]ζ
if j = i,

(−1)d+1
[d]−1

ζ if j = i ± 1.



26 HENNING ANDERSEN, GUSTAV LEHRER AND RUIBIN ZHANG

Hence the Gram matrix of the invariant form is the (r − 1)× (r − 1) matrix

Mdr−2,ζ =
1
[d]ζ



δ (−1)d+1 0 · · · · · · 0

(−1)d+1 δ (−1)d+1 0 · · ·
...

0 (−1)d+1 δ (−1)d+1 0
...

...
. . .

. . .
. . .

. . . (−1)d+1

0 · · · · · · 0 (−1)d+1 δ


,

where δ = ζ d
+ ζ−d

= [2]ζ d .
Now it is easily shown by induction that any n× n matrix of the form

A =



a1 b1 0 · · · · · · 0

1 a2 b2 0 · · ·
...

0 1 a3 b3 0
...

...
. . .

. . .
. . .

. . . bn−1

0 · · · · · · 0 1 an


with entries in a principal ideal domain may be transformed by row and column
operations into

A′ =



1 0 0 · · · · · · 0

0 1 0 0 · · ·
...

0 0 1 0 0
...

...
. . .

. . .
. . .

. . . 1 0
0 · · · · · · 0 0 D


,

where D = det(A). It follows that the rank of the Gram matrix Mdr−2,ζ is r − 1 if
det Mdr−2,ζ 6= 0, while if det Mdr−2,ζ = 0, the rank is r − 2.

Now the determinant of [d]ζ Mdr−2,ζ is easily computed (cf. [Graham and Lehrer
1996, Equation 6.18.2]), and using this, we see that

det Mdr−2,ζ = (−1)(d+1)(r+1)([d]ζ )−(r−1)
[r ](−1)d+1ζ d .

It therefore follows that the multiplicity of Tζ (dr − 2) in 1ζ (d)⊗r is{
r − 1 if [r ](−1)d+1ζ d 6= 0,
r − 2 otherwise.
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Finally, observe that

[r ](−1)d+1ζ d = 0 ⇐⇒ ζ 2dr
= 1.

Hence if we write (using the convention that for any root of unity ξ , we denote by
|ξ | or by ord(ξ) the multiplicative order of ξ )

(5-6) `=

{
|ζ | if |ζ | is odd,
1
2 |ζ | if |ζ | is even,

then `= |ζ 2
|, whence the multiplicity of Tζ (dr − 2) in 1ζ (d)⊗r is given by

(5-7) (Tr : Tζ (dr − 2))=
{

r − 1 if ` - dr,
r − 2 if ` | dr.

This shows also by standard cellular theory that the cell module Wζ (dr − 2) of
Eζ (d, r)) is simple if ` - dr , while if ` | dr , then Wζ (dr − 2) has composition
factors Lζ (d, r; dr − 2) and Lζ (d, r; dr) (the latter being the trivial module), each
with multiplicity one.

6. Complex roots of unity

In this section we take k = C and fix a root of unity ζ ∈ C. As before we set `=
ord(ζ 2). In this case the structure of the tilting modules Tζ (m) is well understood,
and hence, when ` > d, provides an alternative approach to the computation of
the multiplicities µζ (d, r;m) := (1ζ (d)⊗r

: Tζ (m)), and thus of the dimensions
of the simple modules for the cellular algebra Eζ (d, r) (see Theorem 5.9). In this
section we demonstrate how this is done. We then show how these results on tilting
modules may alternatively be deduced from results on the decomposition numbers
of the algebras Eζ (d, r), which are also proved in this section.

6A. Structure of tilting modules.

Proposition 6.1. The indecomposable tilting module Tζ (m) for Uζ =Uζ (sl2) with
highest weight m has the following description.

(1) If either m < ` or m ≡−1 (mod `) then Tζ (m)'1ζ (m) is irreducible.

(2) Write m = a`+ b, where a ≥ 1 and 0≤ b < `− 1. Then Tζ (m) is the unique
nontrivial extension

0−→1ζ (m)−→ Tζ (m)−→1ζ (m− 2b− 2)−→ 0.

Proof. This result is certainly well known and follows from the results of [Soergel
1998]. As we haven’t been able to find a reference where this is explicitly stated
we sketch the easy proof.
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Denote by Lζ (m) the simple Uζ -module with highest weight m ∈ N (not to
be confused with the simple Eζ (d, r)-module Lζ (m)). It follows from the strong
linkage principle [Andersen 2003] (or by direct calculations) that Lζ (m)=1ζ (m)
if and only if m satisfies the conditions in (1); in particular, (1) holds.

So assume m=a`+b with a and b as in (2). The module1(a`−1)⊗C1ζ (b+1)
has a Weyl filtration with factors 1ζ (m),1ζ (m−2), · · · ,1ζ (m−2(b+1)). Note
that the first and the last factors belong to the same linkage class and that none of
the other factors are in this class. Hence by the linkage principle [loc. cit.] there is
a summand T of 1ζ (a`− 1)⊗C1ζ (b+ 1) which has these two Weyl factors, i.e.,
fits into an exact sequence

0−→1ζ (m)−→ T−→1ζ (m− 2b− 2)−→ 0.

By case (1) we see that 1ζ (a` − 1) ⊗C 1ζ (b + 1) is tilting. Hence so is our
summand T. The proof of case (2) will therefore be complete if we prove that T

is indecomposable. This in turn would follow if there were no nontrivial homo-
morphisms T of 1ζ (a`− 1)⊗C 1ζ (b+ 1) −→ Lζ (m), for if the last sequence
splits, there would be such a homomorphism. To check the last statement, we
need the quantised Steinberg tensor product theorem [Andersen and Wen 1992,
Theorem 1.10] for simple modules, Lζ (m)'Lζ (a`)⊗Lζ (b) (again in the case at
hand this can alternatively be checked by direct calculations).

Using this together with the self-duality of simple modules and the result in (1)
we get

HomUζ

(
1ζ (a`− 1)⊗C1ζ (b+ 1),Lζ (m)

)
' HomUζ

(
Lζ (a`− 1)⊗C Lζ (b+ 1),Lζ (m)

)
' HomUζ

(
Lζ ((a− 1)`)⊗C Lζ (`− 1)⊗C Lζ (b+ 1),Lζ (a`)⊗C Lζ (b)

)
' HomUζ

(
Lζ ((a− 1)`)⊗C Lζ (b+ 1)⊗C Lζ (b),Lζ (a`)⊗C Lζ (`− 1)

)
' HomUζ

(
Lζ ((a− 1)`)⊗C Lζ (b+ 1)⊗C Lζ (b),Lζ ((a+ 1)`− 1)

)
.

The last Hom-space is 0 because, by our condition on b, the weight (a+ 1)`− 1 is
strictly larger than all weights of Lζ ((a− 1)`)⊗C Lζ (b+ 1)⊗C Lζ (b). �

Since the weights of 1ζ (m) are m,m− 2, · · · ,−m, each occurring with multi-
plicity one, we deduce the following result.

Corollary 6.2. We have

dim Tζ (m)t =


1 if t = m− 2i, 0≤ i ≤ m in case (1),
2 if t = m− 2 j, b+ 1≤ j ≤ m− (b+ 1) in case (2),
1 if t = m− 2 j, with 0≤ j ≤ b or m ≥ j ≥ m− b in case (2),
0 otherwise.
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6B. Multiplicities and dimensions. Now the equation

(6-1) 1ζ (d)⊗r ∼=

dr⊕
m=0

µζ (d, r;m)Tζ (m).

may be used to relate the multiplicities to the dimensions of the weight spaces. For
this purpose, we make the following definitions.

Definition 6.3. (1) Let w(d, r;m) := dim(1ζ (d)⊗r )m . This is independent of ζ .

(2) Let am = am(d, r) :=
∣∣{(i1, . . . , ir )

∣∣ 0≤ i j ≤ d for all j and
∑

j i j = m
}∣∣.

Note that am = adr−m for all m.

Lemma 6.4. (1) For 0≤ m ≤ dr, m ≡ dr (mod 2), w(d, r;m)= a(m+dr)/2.

(2) We have

w(d, r;m)= µζ (d, r;m)+
(dr−m)/2∑

j=1

dim Tζ (m+ 2 j)mµζ (d, r;m+ 2 j).

The first statement follows easily from the fact that 1ζ (d)⊗r has q-character
[d+1]r, while the second arises from (6-1) by taking the dimension of the m-weight
spaces on both sides, taking into account that Tζ (t) has only weights m that satisfy
m = t − 2i , i ≥ 0, and rd ≥ m ≥−rd.

Lemma 6.4(2) may be used to determine the multiplicitiesµζ (d, r;m) recursively.
We shall do this for the case considered in Example 5.10.

Example 6.5. Let us compute µζ (d, r, dr − 2). By Lemma 6.4(2),

w(d, r; dr − 2)= µζ (d, r; dr − 2)+ dim Tζ (dr)dr−2.

Moreover, it follows from Corollary 6.2 that

dim Tζ (dr)dr−2 =

{
2 if b = 0,
1 if b 6= 0.

Noting that by Lemma 6.4(1) we have w(d, r, dr − 2)= adr−1 = a1 = r , we get

µζ (d, r; dr − 2)=
{

r − 1 if ` - dr,
r − 2 if ` | dr,

in accord with (5-7).

Example 6.6. In Example 6.5 we considered multiplicities µζ (d, r; t), where t
was large, namely t = dr − 2. We now consider the case where t is small.

Assume t < `. Then we may apply [Andersen and Paradowski 1995, For-
mula 3.20 (1)]. Using the notation from Section 4A this formula reads in our
case

µζ (d, r; t)=
∑
j≥0

m(d, r; t + 2 j`)−
∑
i>0

m(d, r; 2i`− t − 2).
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Recall that the multiplicities m(d, r; t) are given by the recursion relation (4-8);
i.e., they may be calculated by induction on r .

In fact this formula is valid in general: maintaining the notation of Example 6.6
(except that the integer t below may now be arbitrary) we have the following result.

Proposition 6.7. Let t ∈ N.

(1) If t ≡−1 (mod `) then µζ (d, r; t)= m(d, r; t).

(2) If t 6≡ −1 (mod `) then, writing t = a`+ b with 0≤ b ≤ `− 2, we have

µζ (d, r; t)=
∑
j≥0

m(d, r; t + 2 j`)−
∑
i≥1

m(d, r; t − 2b− 2+ 2i`)

=

∑
j≥0

m(d, r; t + 2 j`)−
∑

i≥a+1

m(d, r; 2i`− t − 2).

Proof. This follows easily from the description of the indecomposable tilting
modules Tζ (m) in Proposition 6.1 by taking characters in the relation 1ζ (d)⊗r ∼=⊕

m µ(d, r;m)Tζ (m). Let C1 be the set of positive integers occurring in case (1)
of Proposition 6.1, and similarly let C2 be those occurring in case (2).

If we denote by ct the q-character of 1q(t), then Proposition 6.1 shows that
if t ∈ C1, then char(Tζ (t)) = ct , while if t ∈ C2, then char(Tζ (t)) = ct + ct−2b−2.
Now substitute these values and compare coefficients of ct in the equation∑

t∈N

m(d, r; t)ct =
∑
t∈C1

µζ (d, r; t) char(Tζ (t))+
∑
t∈C2

µζ (d, r; t) char(Tζ (t)).

One obtains µζ (d, r; t) = m(d, r; t) if t ≡ −1 (mod `), while if t = a`+ b with
a ≥ 0 and 0≤ b ≤ `− 2, we have

(6-2) m(d, r; t)= µζ (d, r; t)+µζ (d, r; (a+ 2)`− b− 2).

Now for any integer t = a` + b ≥ 0 such that t 6≡ −1 (mod `), write g(t) =
(a+2)`−b−2; then g(t) 6≡ −1 (mod `), and the relation above reads m(d, r; t)=
µζ (d, r; t)+µζ (d, r; g(t)). It follows that

µζ (d, r; t)=
∑
i≥0

m(d, r; g2i (t))−
∑
j≥0

m(d, r; g2 j+1(t)).

The statements (1) and (2) are now immediate. �

As these multiplicities are also dimensions of simple modules for our cellular
algebra from Section 4, we may rewrite these formulae as follows (again using
notation from Section 4A).

Corollary 6.8. Let t ∈ N.

(1) If t ≡−1 (mod `) then dimC Lζ (t)= b(d, r; t).
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(2) If t 6≡ −1 (mod `) then, writing t = a`+ b with 0≤ b ≤ `− 2, we have

dimC Lζ (t)=
∑
j≥0

b(d, r; t + 2 j`)−
∑

i≥a+1

b(d, r; 2i`− t − 2).

Note that the numbers b(d, r; t) are dimensions of the cell modules of the cellular
algebra pTLdr ( Ã)p that do not change under specialisation.

6C. Decomposition numbers. In this section we shall determine the decomposi-
tion numbers of the cellular algebra Eζ (d, r), and show how the weight multiplicities
of the tilting modules are determined by these, giving an alternative proof of
Corollary 6.2. The algebra has cell modules Wζ (t) as implied in Section 4B and
dim(Wζ (t)) = b(d, r; t). If Lζ (t) is the corresponding simple module, we write
dst = [Wζ (t) : Lζ (s)] for the multiplicity of Lζ (s) in Wζ (t). It is known by the
theory of cellular algebras that the matrix (dst) is lower unitriangular.

We have dim(Lζ (t))= µζ (d, r; t), and therefore we clearly have

(6-3) b(d, r; t)=
∑
s≥t

dstµζ (d, r; s).

Theorem 6.9. Maintain the notation above. Suppose `∈N is such that `= ord(ζ 2)

and ` > d, and write N = N1 qN2, where N1 = {t ∈ N | t ≡ −1 (mod `)} and
N2=N\N1. Let g :N2−→N2 be the function defined in the proof of Proposition 6.7,
viz. if t = a`+b with 0≤ b≤ `−2, then g(t)= (a+1)`+ `−b−2. Observe that
g(t)= t + 2(`− b− 1)≥ t + 2, and that g(t)≡ t (mod 2).

(1) For each t ∈ N2 such that 0 ≤ t < g(t) ≤ dr and t ≡ dr (mod 2), there is a
nonzero homomorphism θt :Wζ (g(t))−→Wζ (t) which is uniquely determined
up to scalar multiplication.

(2) The θt are the only nontrivial homomorphisms between the cell modules of
Eζ (d, r).

(3) Let t ∈ N be such that 0 ≤ t ≤ dr and t ≡ dr (mod 2). If t ∈ N2 and
g(t)≤ dr , then Wζ (t) has composition factors Lζ (t) and Lζ (g(t)), each with
multiplicity 1. All other cell modules are simple.

(4) The decomposition numbers of Eζ (d, r) are all equal to 0 or 1.

Note that (3) and (4) are formal consequences of (1) and (2).

Proof. We begin by observing that the statement is true when d = 1. In this case
Eζ (1, r) = TLr,ζ (C), the structure of whose cell modules (as well as all homo-
morphisms between them) is treated in [Graham and Lehrer 1998]. In particular,
Theorem 5.3 of that reference asserts that (in our notation above) if s 6= t , then Lζ (s)
is a composition factor of Wζ (t) if and only if s satisfies both (i) t + 2` > s > t
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and (ii) s+ t + 2≡ 0 (mod 2`). It is an easy exercise to show that (i) and (ii) are
equivalent to (iii) t 6≡ −1 (mod `) and (iv) s = g(t). This yields all the statements
of the theorem for this case.

Next recall that Eζ (d, r) ∼= pd(ζ )TLdr,ζ (C)pd(ζ ), where pd(ζ ) is the spe-
cialisation at ζ of the idempotent pd . Thus we may define the exact functor
Fd :Mod(TLdr,ζ (C))−→Mod(Eζ (d, r)) by M 7→ pd(ζ )M , where Mod indicates
the category of left modules for the relevant algebra. Now it is evident from the
description in Section 4B of the cell module W (t) and its basis B(d, r; t) that
Fd(WTLdr,ζ (C)(t))=WEζ (d,r)(t) for all t with 0≤ t ≤ dr and t + dr ∈ 2Z.

Moreover by exactness, for any simple TLdr,ζ (C)-module L , Fd(L) is either
a simple Eζ (d, r)-module or zero. Thus it follows (also from the explicit dia-
grammatic description) that Fd(LTLdr,ζ (C)(t))= L Eζ (d,r)(t) whenever the latter is
nonzero. Given the description in Section 4B of the cellular structure, and the fact
that TLdr,ζ (C) is quasihereditary when ζ 6= ζ4 = exp(π i/2), Fd does not kill any
nontrivial simple TLdr,ζ (C)-module (this may be checked directly when ζ = ζ4).
The quasiheredity of TLdr,ζ (C) when ζ 6= ζ4 is well known, but may be seen as
follows.

Since ζ + ζ−1
6= 0, if t ∈ N, 0 ≤ t ≤ dr , t ≡ dr (mod 2), then for any monic

diagram u : t→dr , we have u∗u= (ζ+ζ−1)(dr−t)/2 idt 6=0; hence, if u is thought of
as an element of Wζ (t), then (u, u) 6= 0. Thus, for any such t , Lζ (t) 6= 0. Although
it is not needed for the proof of the theorem, the fact that if LTLdr,ζ (C)(t) 6= 0 then
Fd(LTLdr,ζ (C)(t)) 6= 0 is verified in the same way, but requires a computation, using
the recurrence (5-6) in Example 5.10 above, to show that for a nonzero element
u = pd D ∈Wζ (t), where D : t→ dr is a monic diagram, we have (u, u) 6= 0. That
such elements exist is easily verified.

By the case d = 1 of Theorem 6.9 or, more precisely, [Graham and Lehrer 1998,
Theorem 5.3] applied to TLdr,ζ (C), if t ∈N2, 0≤ t < g(t)≤ dr and t ≡ dr (mod 2),
then WTLdr,ζ (C)(t) has composition factors LTLdr,ζ (C)(t) and LTLdr,ζ (C)(g(t)). All
other cell modules for TLdr,ζ (C) are simple. It follows from the previous paragraph
that similarly, if t ∈ N2, 0 ≤ t < g(t) ≤ dr and t ≡ dr (mod 2), then WEζ (d,r)(t)
has composition factors L Eζ (d,r)(t) and L Eζ (d,r)(g(t)), and that other cell modules
for Eζ (d, r) are simple. All statements in the theorem are now easy consequences
of standard cellular theory. �

Remark 6.10. (1) From Theorem 6.9 it follows that (6-3) implies (6-2) and the
other statements in Proposition 6.7. Thus the multiplicities µζ (d, r; t) are
determined by Theorem 6.9.

(2) Since the dimensions w(d, r; t) are known (Lemma 6.4(1)), it follows from
Lemma 6.4(2) that the dimensions of the weight spaces Tζ (dr)m are determined
by Theorem 6.9.
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(3) There are some analogies between this work and the modular theory developed
by Erdmann [1995]. In the case n = 2, Erdmann dealt only with the 2-
dimensional representation of gl2. Nonetheless, there appear to be some
similarities between her formulae and the Gram determinants of the cell
modules in our situation.
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LOWER BOUNDS FOR
ESSENTIAL DIMENSIONS IN CHARACTERISTIC 2

VIA ORTHOGONAL REPRESENTATIONS

ANTONIO BABIC AND VLADIMIR CHERNOUSOV

Dedicated to the memory of Robert Steinberg

We give a lower bound for the essential dimension of a split simple algebraic
group of “adjoint” type over a field of characteristic 2. We also compute the
essential dimension of orthogonal and special orthogonal groups in charac-
teristic 2.

1. Introduction

Informally speaking, the essential dimension of an algebraic object can be thought
of as the minimal number of independent parameters needed to define it. Essential
dimension assigns a numerical invariant (a nonnegative integer) to each algebraic
object and allows us to compare their relative complexity. Naturally, the fewer
parameters needed for definition, the simpler the object is.

The notion of essential dimension first appeared in the work of J. Buhler and
Z. Reichstein [1997] in the context of finite groups. Later on, A. Merkurjev
generalized this notion to arbitrary functors from the category of fields to the
category of sets; see [Berhuy and Favi 2003]. For the definition, properties, and
results on essential dimension of algebraic groups and various functors, we refer to
the recent surveys [Merkurjev 2013] and [Reichstein 2010].

In the past 15 years this numerical invariant has been extensively studied by
many people. To the best of our knowledge, in all publications on this topic the
only approach for computing the essential dimension ed(G) of an algebraic group
G consisted of finding its upper and lower bounds. If, by lucky circumstance, both
bounds for G are equal then of course their common value is ed(G). We remark
that this strategy has worked in all cases where ed(G) is known.

V. Chernousov was partially supported by the Canada Research Chairs Program and an NSERC
research grant.
MSC2010: primary 11E04, 11E57, 11E72; secondary 11E81, 14L35, 20G15.
Keywords: linear algebraic group, torsor, essential dimension, orthogonal representation, Killing

form, quadratic form.

37

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2015.279-1-2
http://dx.doi.org/10.2140/pjm.2015.279.37


38 ANTONIO BABIC AND VLADIMIR CHERNOUSOV

The aim of the current paper is two-fold. We recall that a general method for
computing lower bounds of the essential dimensions of simple algebraic groups
defined over fields of characteristic 6= 2 via orthogonal representations was devel-
oped in [Chernousov and Serre 2006]. Our first goal is to extend this approach
to characteristic 2. In Section 12, we prove the incompressibility of the so-called
canonical monomial quadratic forms and this result leads us to Theorem 2.1 below,
which says that for any simple split “adjoint group” G defined over a field of
characteristic 2 one has ed(G)≥ r + 1 where r = rank(G). Second, we show that
for an adjoint split group G of type Br one has ed(G) = r + 1. Thus, this result
indicates that the lower bound r + 1 of the essential dimension in Theorem 2.1 is
optimal for groups of adjoint type in the general case and it seems inevitable that
any future progress, if possible, will be based on case by case consideration.

2. The main theorems

We now pass to the precise description of the main results of the paper. In what
follows, we assume that k is an algebraically closed field of characteristic 2 and all
fields and rings under consideration will contain k.

Let G◦ be a simple algebraic group over k of adjoint type, and let T be a maximal
torus of G◦. Let c ∈Aut(G◦) be such that c2

= 1 and c(t)= t−1 for every t ∈ T (it
is known that such an automorphism exists; see, e.g., [SGA 3 III 1970, exposé XXIV,
proposition 3.16.2, p. 355]). This automorphism is inner (i.e., belongs to G◦) if
and only if −1 belongs to the Weyl group of (G, T ). When this is the case, we put
G = G◦. If not, we define G to be the subgroup of Aut(G◦) generated by G◦ and c.
We have

• G = G◦ for types A1, Br , Cr , Dr (r even), G2, F4, E7, E8;

• (G : G◦)= 2 and G = Aut(G◦) for types Ar (r ≥ 2), Dr (r odd), E6.

Let r = dim(T ) be the rank of G.

Theorem 2.1. If G is as above, we have ed(G)≥ r + 1.

Our second main theorem deals with orthogonal and special orthogonal groups.

Theorem 2.2. Let q be a nondegenerate n-dimensional quadratic form over k.

(a) If n = 2r, then ed(O(q))= r + 1.

(b) If n = 2r and r is even, then ed(SO(q))= r + 1.

(c) If n = 2r and r is odd, then r ≤ ed(SO(q))≤ r + 1.

(d) If n = 2r + 1, then ed(O(q))= ed(SO(q))= r + 1.
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3. Strategy of the proof of main theorems

For groups of type G2 and F4 in Theorem 2.1 there is an easy reduction to orthogonal
groups (see Section 14 below). For all other adjoint types, orthogonal and special
orthogonal groups, we follow the same approach as in [Chernousov and Serre 2006].
Namely:

(a) We construct a G-torsor θG over a suitable extension K/k with tr. degk(K )=
r + 1 (see below).

(b) We show that there exists a suitable representation ρ : G→ ON such that the
image of θG in H 1(K ,ON ) is incompressible; this implies that θG itself is
incompressible, and Theorems 2.1 and 2.2 follow.

For the readers’ convenience, we recall that a class [θ ] ∈ H 1(K ,G) is called
incompressible if it doesn’t descend to a subfield F ⊂ K of smaller transcendence
degree.

Let us start with part (a) for an adjoint group G. Let R be the root system of G
with respect to T, and let Rsh be the (sub-) root system formed by the short roots
of R. Let 1= {α1, . . . , αr } be a basis of Rsh. The root lattices of R and Rsh are the
same; hence 1 is a basis of the character group X (T ). This allows us to identify T
with Gm × · · ·×Gm using the basis 1.

Call A0 the kernel of “multiplication by 2” on T. Let

A = A0×{1, c}

be the subgroup of G generated by A0 and by the element c defined above. The
group A is isomorphic to µ2× · · ·×µ2×Z/2.

Take K = k(t1, . . . , tr , x) where t1, . . . , tr and x are independent indeterminates.
We have

H 1(K , A)= H 1(K , µ2)× . . .× H 1(K , µ2)× H 1(K ,Z/2).

We make the identifications

H 1(K , µ2)' K×/(K×)2 and H 1(K ,Z/2)' K/℘(K )

as usual. Here℘ :K→K is the Artin–Schreier map given by℘(a)=a2
+a. Then x

and the ti define elements (x) and (ti ) of H 1(K ,Z/2) and H 1(K , µ2), respectively.
Let θA be the element of H 1(K , A) with components ((t1), . . . , (tr ), (x)). Let θG

be the image of θA in H 1(K ,G). We will prove in Section 14:

Theorem 3.1. (K , θG) is incompressible.

Note that Theorem 3.1 implies Theorem 2.1 since tr. deg K =r+1. Its proof relies
on studying properties of the so-called monomial quadratic forms (see Section 10
below) which are also crucial for the proof of Theorem 2.2.
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4. Review: quadratic spaces in characteristic 2

The purpose of this section is to review some properties of quadratic forms in
characteristic 2 needed for construction of a representation of our group G with the
required property explained above. To this end we will introduce the notion of a
“normalization” (or “smoothing”) of a quadratic form which may not be standard.

Let K be an arbitrary field of characteristic 2. Recall that a quadratic space
over K is a pair (V, q) where V is a vector space over K and q is a quadratic form
on V. As usual, for any a, b ∈ K we will denote by [a, b] a 2-dimensional quadratic
form given by [a, b] = ax2

+ xy + by2. The form [0, 0] is called the hyperbolic
plane and is denoted by H. Similarly, for a ∈ K we denote by 〈a〉 the quadratic
form ax2.

There is a special class of quadratic forms called n-fold Pfister forms; see [Elman
et al. 2008]. Recall that, by definition, a quadratic form [1, a] where a ∈ K is called
a 1-fold Pfister form and denoted 〈〈a]]. A quadratic form isometric to

〈〈a1, . . . , an]] := 〈〈a1, . . . , an−1〉〉b⊗〈〈an]]

for some a1, . . . , an ∈ K is called a quadratic n-fold Pfister form. In this expression,
〈〈a1, . . . , an−1〉〉b is a symmetric bilinear form given by

〈〈a1, . . . , an−1〉〉b = 〈1, a1〉b⊗ · · ·⊗ 〈1, an−1〉b.

Let K/k be a finitely generated field extension of our base field k and q a
quadratic form over K. Then, if there exists another quadratic form g defined over
a field L/k satisfying

• k ⊂ L ⊂ K,

• tr. degk L < tr. degk K, and

• g⊗L K ' q ,

we say that q is compressible. Otherwise, it is incompressible.
The bilinear form bq : V × V → K (called the polar form) associated to a

quadratic form q is given by

bq(u, v)= q(v+ u)− q(u)− q(v).

Its radical is

rad(bq)= {v ∈ V | bq(v,w)= 0 for all w ∈ V }

and the quadratic radical of q is defined as

rad(q)= {v ∈ rad(bq) | q(v)= 0}.

Obviously, both rad(bq) and rad(q) are vector subspaces in V.
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One says that q is regular if rad(q)= 0 and q is nondegenerate if it is regular
over any field extension L/K. Note that nondegeneracy is equivalent to the property
dim(rad(bq))≤ 1.

It is well-known (see [Elman et al. 2008]) that any nondegenerate quadratic
form q of even dimension n = 2m is isometric to

⊕m
i=1[ai , bi ] where ai , bi ∈ K.

In this case the element c =
∑

ai bi modulo ℘(K ) is called the Arf invariant of q.
If q is nondegenerate and has odd dimension n = 2m+ 1, then

q '
m⊕

i=1
[ai , bi ] + 〈c〉,

where c ∈ K× is unique up to squares. This element c (modulo (K×)2) is called
the determinant (or discriminant) of q .

Let q :V→ K be a quadratic form. We denote V :=V/ rad(q) and let π :V→V
be the canonical map. It is straightforward to check that the mapping q : V → K
given by q(v)= q(v) is well defined. Thus, a quadratic space (V, q) gives rise to a
quadratic space (V, q). We will see in the example below that q is nondegenerate,
but first we state the following definition.

Definition 4.1. We will say that q is the (nondegenerate) normalization of q .

Example. Let q be a quadratic form over k. Since k is algebraically closed, it is
isometric to a quadratic form

〈0〉⊕ · · ·⊕ 〈0〉⊕H⊕ · · ·⊕H or 〈0〉⊕ · · ·⊕ 〈0〉⊕ 〈1〉⊕H⊕ · · ·⊕H.

It easily follows from the definition that its normalization is the quadratic form

H⊕ · · ·⊕H or 〈1〉⊕H⊕ · · ·⊕H.

In particular, q is nondegenerate.

Lastly, we want to relate the orthogonal group of a quadratic form q to that of
its normalization. Recall that given a quadratic space (V, q) the orthogonal group
of (V, q) is

O(V, q)= {x ∈ GL(V ) | q(x(v))= q(v) for all v ∈ V }.

We define a map

λ : O(V, q)−→ O(V, q).

by x 7→ x , where x(v)= x(v) for all v ∈ V.
Let us first show that x is well defined, i.e., x(rad(q))⊂ rad(q) or, equivalently,

x(v) ∈ rad(bq) for v ∈ rad(q) (because x preserves length of vectors). Let w0 ∈ V.
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Since x is invertible, we have x(w)= w0 for some w ∈ V. Then

bq(x(v), w0)= q(x(v)+w0)+ q(x(v))+ q(w0)

= q(x(v)+ x(w))+ q(x(v))+ q(x(w))

= q(x(v+w))+ q(x(v))+ q(x(w))

= q(v+w)+ q(v)+ q(w)= bq(v,w)= 0,

because v ∈ rad(q)⊂ rad(bq). Thus, x(v) ∈ rad(q), as required.
It remains to see that x ∈ O(V, q). Indeed,

q(x(v))= q
(
x(v)

)
= q(x(v))= q(v)= q(v).

Thus, we have the following result:

Lemma 4.2. The canonical map V → V induces a natural morphism

λ : O(V, q)−→ O(V, q).

5. Killing forms of simple Lie algebras over Z

Let G be as in Theorem 2.1 and let G̃ be a universal simply connected covering of
its connected component G◦. To construct the required orthogonal representation ρ
of G (see part (b) of our strategy described in Section 3) we need to know what the
“normalized” Killing symmetric bilinear form Kb (and quadratic form Kq) of the
Lie algebra Lie(G̃) look like.

Since our base field has characteristic 2, we begin by computing Kq in a Chevalley
basis of the Lie algebra L of a split simple simply connected algebraic group defined
over Z. We then pass to k by first normalizing Kb, i.e., by dividing all its coefficients
by their gcd, and then applying the base change Z→ F2 = Z/2Z ↪→ k.

Recall that a Chevalley basis is a canonical basis of L which arises from a
decomposition of

L= L0⊕
⊕
α 6=0

Lα

into a direct sum of the weight subspaces Lα with respect to a split maximal
toral subalgebra H = L0 ⊂ L. Note that the set of all nontrivial weights in the
above decomposition forms a simple root system and that for every root α we have
dim(Lα)= 1.

In what follows 8 will denote the set of all roots of L with respect to H, 1⊂8
its basis, and 8+ and 8− its positive and negative roots, respectively. It is known
(see [Steinberg 1968]) that there exist elements {Hαi | αi ∈1} in H and Xα ∈ Lα,
α ∈8, such that the set

(5.0.1) {Hαi | αi ∈1 } ∪ {Xα | α ∈8+} ∪ {X−α | α ∈8+}



ESSENTIAL DIMENSIONS IN CHARACTERISTIC 2 43

forms a basis for L, known as a Chevalley basis, and these generators are subject to
the following relations:

• [Hαi , Hαj ] = 0;

• [Hαi , Xα] = 〈α, αi 〉Xα;

• Hα := [Xα, X−α] =
∑

αi∈1
ni Hαi , where ni ∈ Z;

• [Xα, Xβ] =
{

0 if α+β /∈8,
±(p+ 1)Xα+β otherwise,

where p is the greatest positive integer such that α− pβ ∈8. Here, for two roots
α, β ∈8, the scalar 〈α, β〉 is given by

〈α, β〉 =
2(α, β)
(β, β)

,

where ( · , · ) denotes the standard inner product on the root lattice. It is in this
Chevalley basis (5.0.1) that we will compute the Killing form Kq of L.

Many people have addressed the computation of Killing forms (see, for example,
[Gross and Nebe 2004; Malagon 2009; Seligman 1957; Springer and Steinberg
1970]), but we could not find in the literature explicit formulas valid in characteris-
tic 2. Below we produce such formulas for the normalized Killing forms for each
type with the use of the following known facts.

Recall that for any X, Y ∈ L one has

Kb(X, Y )= Tr(ad(X) ◦ ad(Y )) and Kq(X)= Kb(X, X)

where ad : L→ End(L) is the adjoint representation of L. It is straightforward to
check that

Kb(Hαi , Xα)= 0 and Kb(Xα, Xβ)= 0

for all i and for all roots α, β ∈ 8 such that α+ β 6= 0; in particular, Kq(Xα) =
Kb(Xα, Xα)= 0. Thus, as a vector space L is decomposed into an orthogonal sum
of its subspaces H and 〈Xα, X−α〉, for α ∈8+.

It is shown in [Springer and Steinberg 1970] that, for any long root α ∈8,

(5.0.2) Kb(Hα, Hα)= Tr(ad(Hα) ◦ ad(Hα))= 4ȟ,

where ȟ is the dual Coxeter number of the given Lie algebra. Also, for any root
α ∈8, we have

(5.0.3) Kb(Xα, X−α)= 1
2 Tr(ad(Hα) ◦ ad(Hα)).

Lastly, we need one more result from [Malagon 2009]:

(5.0.4) Kb(Hαi , Hαj )= 2ȟ(α̌i , α̌ j ), where α̌i =
2αi

(αi , αi )
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and (α̌, β̌) is the Weyl-invariant inner product such that (α̌, α̌)= 2 for a long root α.
Note that the above formula requires (α̌, α̌) = 2 for a long root α, so that for
groups of type Cn and G2 we will have to multiply the standard inner product by
an appropriate scalar to match this condition.

Combining the above mentioned results, we see that for computation of Kb we
need to know only how Kb looks on the Cartan subalgebra H. Indeed, (5.0.3) allows
us to compute the restriction of Kb to each 2-dimensional subspace 〈Xα, X−α〉.
Furthermore, for each long root α we know by (5.0.2) that

Kb(Hα, Hα)= 4ȟ.

Similarly, by using (5.0.4) and the fact that the Killing form is W -invariant, where
W is the corresponding Weyl group, we see that Kb(Hβ, Hβ) is a constant value for
all short roots β, but this value will depend on the type of 8. Finally, we remark
that if αi , αj ∈1⊂8 are nonadjacent roots, then

Kb(Hαi , Hαj )= Tr
(
ad(Hαi ) ◦ ad(Hαj )

)
= 0.

Indeed, this is equivalent to saying that (αi , αj )= 0, which is true for nonadjacent
roots.

Below we skip straightforward computations of Kb(Hαi , Hαi ) and Kb(Hαi , Hαi+1)

for each type and present the final result only.

5.1. Type An. We have:

Tr(ad(Hαi ) ◦ ad(Hαi ))= 4ȟ and Tr(ad(Hαi ) ◦ ad(Hαi+1))=−2ȟ.

Thus, the Killing quadratic form Kq restricted to the Cartan subalgebra H of the
Lie algebra L of type An is of the form

Kq |H = 4ȟ
( n∑

i=1

x2
i

)
− 4ȟ

( n−1∑
i=1

xi xi+1

)
.

and the Killing form on all of L is

Kq = Kq |H+ 4ȟ
(∑
|8+|

yi yi+1

)
.

To pass to the main field k we first modify (normalize) Kq by dividing all
coefficients of Kq by 4ȟ. After doing so, our modified Killing form (still denoted
by Kq ) becomes

Kq =

n∑
i=1

x2
i −

n−1∑
i=1

xi xi+1+
∑
|8+|

yi yi+1.
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Passing from Z to Z/2Z, which is a field of characteristic 2, we finally would like
to “diagonalize” our form. Simple computations show that a diagonalization of Kq

looks like

Kq '



(n−1)/2⊕
i=1
[0, 0]⊕ 〈1〉⊕

⊕
|8+|

[0, 0], if n ≡ 1 (mod 4);

(n−1)/2⊕
i=1
[0, 0]⊕ 〈0〉⊕

⊕
|8+|

[0, 0], if n ≡ 3 (mod 4);

(n−1)/2⊕
i=1
[0, 0]⊕

⊕
|8+|

[0, 0], if n is even.

Similar arguments work for each type. Below we present the final result only.

5.2. Type Bn.

Kq '



(n−2)/2⊕
i=1
[0, 0]⊕

⊕
|8+long|

[0, 0]⊕ 〈c〉⊕m〈0〉, if n is even, with c ∈ {0, 1}

(n−1)/2⊕
i=1
[0, 0]⊕

⊕
|8+long|

[0, 0]⊕m〈0〉, if n is odd,

where m = 2|8+short| + 1.

5.3. Type Cn.
Kq ' 〈1〉⊕

⊕
|8+long |

[0, 0]⊕m〈0〉

where m = (n− 1)+ 2|8+short|.

5.4. Type Dn.

Kq '



(n−1)/2⊕
i=1
[0, 0]⊕ 〈0〉⊕

⊕
|8+|

[0, 0], if n is odd,

(n−2)/2⊕
i=1
[0, 0]⊕ 〈c1〉⊕ 〈c2〉⊕

⊕
|8+|

[0, 0], if n is even, with c1, c2 ∈ {0, 1},

where one of c1 or c2 equals 0.

5.5. Type E6.
Kq ' [0, 0]⊕ [0, 0]⊕ [0, 0]⊕

⊕
|8+|

[0, 0].

5.6. Type E7.

Kq ' [0, 0]⊕ [0, 0]⊕ [0, 0]⊕ 〈1〉⊕
⊕
|8+|

[0, 0].
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5.7. Type E8.

Kq ' [0, 0]⊕ [0, 0]⊕ [0, 0]⊕ [0, 0]⊕
⊕
|8+|

[0, 0].

5.8. Type F4.
Kq ' [0, 0]⊕

⊕
|8+long|

[0, 0]⊕m〈0〉,

where m = 2+ |8+short|.

5.9. Type G2.
Kq ' [0, 0]⊕

⊕
|8+|

[0, 0].

6. An orthogonal representation

Proposition 6.1. Let G◦ be a split simple adjoint algebraic group over k of one
of the following types: Ar , Br , Cr , Dr , E6, E7, E8. Then, there exists a quadratic
space (V, q) over k, and an orthogonal linear representation

ρ : G◦ −→ O(V, q)

with the following property:

(∗)


q is nondegenerate;
the nonzero weights of T on V are the short roots;
each nonzero weight occurs with multiplicity 1.

Proof. We treat each root system individually.

Types An , Dn , E6, E7, E8. Let W = Lie(G̃). Then, the adjoint representation
G̃→O(W,Kq) factors through G̃→G◦, so it induces the representation µ :G◦→
O(W,Kq). Let ρ be the composition of µ and the map λ : O(W,Kq)→ O(W,Kq)

constructed in Lemma 4.2, and let V = W. Inspection of the normalized Killing
form Kq presented in Section 5 shows that ρ has the required property.

Type Br . We take V to be the standard representation of SO2r+1 of dimension 2r+1.

Type Cr . The formula for Kq presented in Section 5.3 shows that the adjoint
representation doesn’t work. So, instead of the adjoint representation of G = PSp2r ,
we consider its representation on the exterior square.

More precisely, let V1 be the standard representation of G̃ = Sp2r over Z

equipped with a standard skew-symmetric bilinear form ω. Choose a standard basis
{e1, . . . , er , e−r , . . . , e−1} of V1. There is a natural embedding

∧2
(V1)→ V1⊗ V1

given by v∧w→ v⊗w−w⊗ v. We extend ω to a symmetric bilinear form on
V1⊗ V1 by

ω(v1⊗ v2, w1⊗w2)= ω(v1, w1)ω(v2, w2)
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and take its restriction (still denoted by ω) to V2 =
∧2
(V1).

Consider the natural action of G on V2. This action preserves ω, and thus we
have a natural representation G→ O(V2, ω). Let q2(x)= ω(x, x) be the quadratic
form on V2 corresponding to ω. Denote vi = ei ∧e−i . Also if i < j let vi j = ei ∧ej ,
wi j = e−i ∧ e−j and ui j = ei ∧ e−j for all i 6= j . It is straightforward to check that
the subspaces 〈vi 〉, 〈vi j , wi j 〉, 〈ui j , uj i 〉 of V2 are orthogonal to each other and that
q2 written in the bases vi , vi j , ui j , wi j of V2 is of the form

q2 = 2
(∑

x2
i
)
⊕ 4

(∑
yi j zi j

)
.

Note that by dividing all coefficients of q2 by 2 and passing from Z to Z/2 we
don’t achieve our goal since the resulting quadratic form is “highly degenerate”.
So instead of considering the representation of G on V2 we do the following. One
can easily check that any (hyperplane) reflection τ : V1→ V1 acts trivially on a
1-dimensional subspace of V2 spanned by v= v1+· · ·+vr . It follows that Sp2r acts
trivially on 〈v〉 and hence so does G. This implies that G acts on the orthogonal
complement V = 〈v〉⊥ (with respect to ω). This subspace is spanned by linearly
independent vectors v1− v2, v2− v3, . . . , vr−1− vr , vi j , ui j , wi j . In this basis of
V, the restriction q of q2 to V is of the form

q = 4
(∑

x2
i −

∑
xi xi+1

)
⊕ 4

(∑
yi j zi j

)
.

By dividing all coefficients of q by 4 and applying the base change Z→ Z/2⊂ k,
we obtain an orthogonal representation of G over k with the required property. �

7. The Witt group in characteristic 2

In this section we summarize Arason’s results [2006b; 2006a] on the structure of
the Witt group of quadratic forms over complete fields of characteristic 2 used in
our present work.

Let K be a field of characteristic 2, π an indeterminate over K, and let K ((π))
be the field of formal Laurent series with coefficients in K. If f is a nondegenerate
quadratic form over K ((π)) of even dimension, we will denote its image in the Witt
group Wq(K ((π))) by fW .

Theorem 7.1. The Witt group Wq(K ((π))) is the additive group generated by
the elements [α, βπ−m

]W and [απ−1, βπ−m+1
]W , where m ∈ Z, m ≥ 0, and

α, β ∈ K, with the condition that [α, βπ−m
]W and [απ−1, βπ−m+1

]W are biadditive
as functions of α, β and satisfy the following sets of relations:

[α, βρ2π−m
]W + [β, αρ

2π−m
]W = 0 if m is even,(7.1.1a)

[απ−1, βρ2π−m+1
]W + [βπ

−1, αρ2π−m+1
]W = 0 if m is even,(7.1.1b)

[α, βρ2π−m
]W + [βπ

−1, αρ2π−m+1
]W = 0 if m is odd,(7.1.1c)
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and

[α, αρ2π−2m
]W + [α, ρπ

−m
]W = 0,(7.1.2a)

[απ−1, αρ2π−2m+1
]W + [απ

−1, ρπ−m+1
]W = 0.(7.1.2b)

Here m runs through the nonnegative integers and α, β, and ρ run through K.

Theorem 7.2. Let m ≥ 0 and let Wq(K ((π)))m be the subgroup of Wq(K ((π)))
generated by [α, βπ−i

]W and [απ−1, βπ−i+1
]W , where i ∈ Z, 0 ≤ i ≤ m and

α, β ∈ K. Then:

(a) Wq(K ((π)))0 is isomorphic to Wq(K ) ⊕ Wq(K ). A generator [α, β]W of
Wq(K ((π)))0 is sent to [α, β]W in the first summand Wq(K ), but a generator
[απ−1, βs]W corresponds to [α, β]W in the second summand.

(b) If n > 0, then Wq(K ((π)))2n/Wq(K ((π)))2n−1 is isomorphic to K ∧K 2 K ⊕
K ∧K 2 K. The class of a generator [α, βπ−2n

]W corresponds to α∧β in the
first summand, but the class of a generator [απ−1, βπ−2n+1

]W corresponds to
α∧β in the second summand.

(c) If n ≥ 0, then Wq(K ((π)))2n+1/Wq(K ((π)))2n is isomorphic to K ⊗K 2 K. The
class of a generator [α, βπ−2n+1

]W corresponds to α⊗ β, but the class of a
generator [απ−1, βπ−2n

]W corresponds to β⊗α.

The filtration

Wq(K ((π)))0 ⊂Wq(K ((π)))1 ⊂Wq(K ((π)))2 ⊂ · · ·

of the group Wq(K ((π))) will be called Arason’s filtration. Note that by the above
theorem,

Wq(K ((π)))0 'Wq(K )⊕Wq(K ),

so that we have two natural projections:

∂1 :Wq(K ((π)))0→Wq(K ) and ∂2 :Wq(K ((π)))0→Wq(K ),

which we will call the first and second residues (of the zero term of Arason’s
filtration).

Using the fact that [ f, g] 'H for all f, g ∈ K ((π)) such that f g ∈ πK [[π ]], it is
straightforward to show that the zero term of the Witt group of Arason’s filtration
and the first residue don’t depend on the presentation L = K ((π)). In other words,
they don’t depend on a choice of a coefficient field K̃ ⊂ L (for the notion of
coefficient fields we refer to Section 9 below) nor of a choice of a uniformizer of L ,
and the second residue is defined up to similarity only. We leave the details of the
verification to the reader.
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8. Presentation of quadratic forms in the Witt group

In this section we will work with the Witt group of quadratic forms over a field of
Laurent series K ((π)), where the coefficient field K is of characteristic 2 and is
finitely generated over k. By Theorems 7.1 and 7.2, given a nondegenerate quadratic
form f defined over K ((π)), we may decompose its image fW in the Witt group as

(8.0.1) fW = f ′m,W + f ′m−1,W + · · ·+ f ′0,W

where f ′i,W ∈Wq(K ((π)))i is homogeneous of degree i , i.e., a sum of elements of
the form [α, βπ−i

] and [απ−1, βπ−i+1
] with α, β ∈ K. Such a decomposition is not

unique. The following lemma allows us to choose the homogeneous components
of fW in a canonical way.

Lemma 8.1. Let {αi }
N
i=1 be a basis for K as a K 2-vector space and let f be a

nondegenerate quadratic form over K ((π)). Then, fW admits a decomposition
fW = fm,W + fm−1,W + · · ·+ f0,W satisfying these conditions:

• If n is even, then

fn,W =
∑
i< j

[αi , u2
j α jπ

−n
]W +

∑
i< j

[αiπ
−1, v2

jα jπ
−n+1
]W ,

where u j , v j ∈ K .

• If n is odd, then

fn,W =

N∑
i, j=1

[αi , u2
j α jπ

−n
]W ,

where uj ∈ K .

Proof. Take decomposition (8.0.1). Suppose first that n = 2s is even. Write f ′2s,W
in the form

f ′2s,W =
∑
[pi , qiπ

−2s
]W +

∑
[p′iπ

−1, q ′iπ
−2s+1

]W ,

where pi , qi , p′i , q ′i ∈ K. Since {αi }
N
i=1 is a basis for K/K 2, one has

pi =

N∑
i, j=1

e2
i jαj ,

where ei, j ∈ K and similarly for the qi , p′i , q ′i . Replacing the pi , qi , p′i , q ′i with
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these expressions and using the biadditivity of [ · , · ]W and the fact that [uv2, w] =

[u, v2w] for all u, v, w ∈ K ((π)), we can write f ′2s,W in the form

f ′2s,W =

N∑
i, j=1

[u2
i αi , v

2
j αjπ

−2s
]W +

N∑
i, j=1

[u′2i αiπ
−1, v′2j αjπ

−2s+1
]W

=

N∑
i, j=1

[αi , w
2
i jαjπ

−2s
]W +

N∑
i, j=1

[αiπ
−1, w′2i j αjπ

−2s+1
]W ,

where ui , vj , u′i , v
′

j ∈ K and wi j = uivj , w
′

i j = u′iv
′

j . If i = j , we have

[αi , w
2
i iαiπ

−2s
]W

(7.1.2a)
= [αi , wi iπ

−s
]W

and
[αiπ

−1, w′2i i αiπ
−2s+1

]W
(7.1.2b)
= [αiπ

−1, w′i iπ
−s+1
]W .

If i > j we get

[αi , w
2
i jαjπ

−2s
]W

(7.1.1a)
= [αj , w

2
i jαiπ

−2s
]W

and
[αiπ

−1, w′2i j αjπ
−2s+1

]W
(7.1.1b)
= [αjπ

−1, w′2i j αiπ
−2s+1

]W .

If n= 2s−1 is odd, similar arguments show that f ′2s−1,W can be written as a sum
of symbols of the form [αi , u2αjπ

−2s+1
]W where u ∈ K. Collecting all summands

in the above decompositions of all f ′2s,W and f ′2s−1,W of the same degree together,
we obtain the required decomposition of fW . �

The following proposition shows the decomposition above is unique.

Proposition 8.2. Given a quadratic form f, its image in the Witt group can be
decomposed uniquely as fW = fm,W + fm−1,W +· · ·+ f0,W , where fm,W , . . . , f0,W

are as in Lemma 8.1.

Proof. We already know that a decomposition exists, so we only need to prove
uniqueness. Suppose

fW = fm,W + fm−1,W + · · ·+ f0,W = gn,W + gn−1,W + · · ·+ g0,W

are two different decompositions of fW . We first claim that n=m. Suppose not, say
m > n. Let us compare the images of these decompositions in the quotient group
Wq(K ((s)))m/Wq(K ((s)))m−1. Since n<m, the image of gn,W+gn−1,W+· · ·+g0,W

equals 0 whereas the other decomposition has image the class of fm,W . We consider
separately the cases when m is even and odd.

When m is even: By Lemma 8.1, write

fm,W =
∑
i< j

[αi , u2
j αj s

−m
]W +

∑
i< j

[αi s
−1, v2

j αj s
−m+1
]W ,
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and by Theorem 7.2,

φ :Wq(K ((s)))m/Wq(K ((s)))m−1 ' K ∧K 2 K ⊕ K ∧K 2 K

be the canonical isomorphism. Then,

φ( fm,W )=

(∑
i< j

u2
j (αi ∧αj ),

∑
i< j

v2
j (αi ∧αj )

)
.

Since {αi ∧αj }i< j is a basis for K ∧K 2 K,

φ( fm,W )= 0 ⇐⇒ u2
j = v

2
j = 0 for all j.

This would imply that fm,W = 0, a contradiction.

When m is odd: By Lemma 8.1, write

fm,W =

N∑
i, j=1

[αi , u2
j αj s

−m
]W

and by Theorem 7.2,

φ :Wq(K ((s)))n/Wq(K ((s)))n−1 ' K ⊗K 2 K .
Then,

φ( fm,W )=

N∑
i, j=1

u2
j (αi ⊗αj ).

Since {αi ⊗αj }
N
i, j=1 is a basis for K ⊗K 2 K,

φ( fm,W )= 0 ⇐⇒ u2
j = 0 for all j,

a contradiction.
Thus m = n. If m is even, we conclude from φ( fm,W )= φ(gm,W ) that∑

u2
j (αi ∧αj )=

∑
u′2j (αi ∧αj ),

where u′2j are the corresponding coefficients of gm,W , and similarly,∑
v2

j (αi ∧αj )=
∑

v′2j (αi ∧αj ).

This implies that u2
j = u′2j and v2

j = v
′2
j , hence fm,W = gm,W . Similarly, we can

easily see that fm,W = gm,W if m is odd. Then, from the equality

( f0,W + · · ·+ fm−1,W )+ fm,W = (g0,W + · · ·+ gm−1,W )+ gm,W ,

it follows that

f0,W + · · ·+ fm−1,W = f ′0,W + · · ·+ f ′m−1,W .
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By induction, the proof is completed. �

The same arguments as in the proofs of Lemma 8.1 and Proposition 8.2 lead us
to the following result needed later to establish incompressibility of the so-called
canonical monomial quadratic forms.

Corollary 8.3. Let fW be as in (8.0.1), and assume that fW ∈Wq(K ((π)))0. Then,
f ′m,W + f ′m−1,W + · · ·+ f ′1,W = 0.

9. Differential bases, 2-bases, the Cohen structure theorem,
and coefficient fields

Let K/k be a finitely generated field extension. Recall that �K/k denotes the
K-vector space of Kähler differentials. A differential basis for K/k is a set of
elements {αi }i∈I of K such that {dαi } ⊂ �K/k is a vector space basis. Recall
also that a set of elements {xλ}λ∈3 of K is a 2-basis for K over k if the set W of
monomials in the xλ having degree < 2 in each xλ separately forms a vector space
basis for K over its subfield k · K 2

= K 2
⊂ K. The following facts are well known.

Theorem 9.1. Let B = {x1, . . . , xn} ⊂ K be a subset. The following are equivalent:

(a) B is a separating transcendence basis for K over k.

(b) B is a 2-basis for K over k.

(c) B is a differential basis for K/k.

Proof. See [Eisenbud 1995, Theorem 16.14]. �

Assume now that K is equipped with a discrete valuation, trivial on k. We denote
its valuation ring by R and the residue field by K. Since our valuation is trivial on k
the residue field K contains a copy of k. Throughout we assume that v is geometric
of rank 1 (for the definition of geometric valuations, see [Merkurjev 2008]), i.e.,
tr. degk K = tr. degk K + 1.

Let π be a uniformizer and I = (π) ⊂ R be the corresponding maximal ideal
in R. Choose a1, . . . , an ∈ R such that their images a1, . . . , an under the canonical
map R→ K form a differential basis for K/k. Note that, by Theorem 9.1, we have
tr. degk(K )= n, hence tr. degk(K )= n+ 1. We now claim that

(9.1.1) B = {a1, . . . , an, π}

is a differential basis for K/k.
Indeed, it suffices to see that da1, . . . , dan, dπ is a system of generators of �K/k

(because the K -vector space �K/k has dimension n+1). For that in turn, it suffices
to show that this is a system of generators for �R/k , for formation of differentials
commutes with localization. But this easily follows from the conormal sequence

I/I 2 d
−→ K ⊗R �R/k

Dφ
−→�K/k −→ 0
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(see [Eisenbud 1995, p. 389]) and Nakayama’s lemma. Thus, B is a differential
basis for K/k.

We will say that a differential basis {a1, a2, . . . , an+1} for K/k comes from K
if there exists a subscript i ∈ {1, 2, . . . , n+ 1} such that ai is a uniformizer in K,
a1, . . . , ai−1, ai+1, . . . , an+1 are units in R, and the images of these elements in K
form a differential basis for K/k.

Now, let R be a complete discrete valuation ring containing a field k. Denote
its quotient field by L and residue field by L . We will assume throughout that
the field extension L/k is finitely generated. It follows from the Cohen structure
theorem [Eisenbud 1995, Theorem 7.7] that R ' L[[π ]] and L ' L((π)), where π
is a uniformizer. Such decompositions are not unique. They depend on a choice
of π and a choice of a coefficient field in L , i.e., a subfield of L contained in R
that maps isomorphically onto L under the canonical map R→ L . Such coefficient
fields do exist because the field extension L/k is separable. The following theorem
describe all coefficient fields.

Theorem 9.2. Let R be as above. If B is a differential basis for L/k then there is
one-to-one correspondence between coefficient fields Ẽ ⊂ R containing k and the
set B̃ ⊂ R of representatives for B obtained by associating to each Ẽ the set B̃ of
representatives for B that it contains.

Proof. See [Eisenbud 1995, Theorem 7.8]. �

10. Monomial quadratic forms

Let K = k(t1, t2, . . . , tn, x) be a pure transcendental extension of k of transcendence
degree n+1. We say that a nondegenerate quadratic form f over K is monomial if
it is of the form

f =
⊕
µ∈Fn

2

m f (µ)tµ [1, x]⊕H⊕ · · ·⊕H,

where µ= (µ1, . . . , µn) ∈ Fn
2 , the tµ = tµ1

1 tµ2
2 · · · t

µn
n are monomials in t1, . . . , tn ,

and m f (µ) is the number of times a given summand appears. Note that the multi-
plicity m f (µ) may be 0. Since

tµ[1, x]⊕ tµ[1, x] ' H⊕H,

we may assume without loss of generality that m f (µ)= 0 or m f (µ)= 1.
Let V be the vector subspace of Fn

2 generated by all µ such that m f (µ) = 1.
Choose a basis of V, say µ1, µ2, . . . , µs . Then, define ui = tµi for i = 1, . . . , s. It
is easy to see that u1, . . . , us are algebraically independent over k. Furthermore,
any µ ∈ V can be written as µ =

∑s
i=1 αi ui , where αi = 0 or αi = 1, so that

tµ = uα1
1 · · · u

αs
s .
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Thus, f has descent to the subfield K ′ = k(u1, . . . , us, x) ⊂ K, and viewed
over K ′, it is of the form

f = u1[1, x]⊕ u2[1, x]⊕ · · ·⊕ us[1, x]⊕
(⊕
µ∈V

m f (µ)uµ[1, x]
)
⊕H⊕ · · ·⊕H

where uµ are monomials in u1, . . . , us of length at least 2. When a monomial
quadratic form f is written in such a way and is viewed over K ′, we say that it is a
canonical monomial form. We also say that f has rank s.

For later use we need the following easy observation.

Proposition 10.1. If f is a canonical monomial form without summands isometric
to the hyperbolic plane H, then f is anisotropic.

Proof. The argument is similar to that in [Chernousov and Serre 2006, Proposition 5],
and we leave the details to the reader. �

Our main result related to canonical monomial quadratic forms is the following.

Theorem 10.2. If f is a canonical monomial form over K, then f is incompressible.

The proof of this theorem will be given in Section 12.

11. Incompressibility of canonical monomial forms in “codimension 2”

In this section we establish an auxiliary result, Theorem 11.3 below, needed later on
to prove Theorem 10.2. Let K = k(x, t1, . . . , tn) be a pure transcendental extension
of k of degree n + 1 and v the discrete valuation on K associated to t1. It is
characterized by:

v(t1)= 1 and v(h)= 0 for all h ∈ k(x, t2, . . . , tn)×.

Let R ⊂ K be the corresponding valuation ring. Note that K 2
⊂ K is a finite

field extension of degree 2n+1. As usual, K 2(ai1, . . . , ail )⊂ K denotes the subfield
generated by K 2 and elements ai1, . . . , ail ∈ K.

Proposition 11.1. Let F ⊂ K be a subfield containing k such that tr. degk(F) <
n+ 1. Then there exists a differential basis {a1, . . . , an+1} for K/k coming from K
such that F ⊂ K 2(a1, . . . , al) with l ≤ tr. degk(F) < n+ 1.

Proof. Choose any 2-basis {b1, . . . , bs} for F/k. By hypothesis, s = tr. degk(F) <
n+1. Let L=K 2(b1, . . . , bs). Clearly, L contains F (because F= F2(b1, . . . , bs)).
Without loss of generality, we may assume that L = K 2(b1, . . . , bl) where l ≤ s
and the set of all monomials bε1

1 · · · b
εl
l with εi = 0 or εi = 1 is linearly independent

over K 2.
Let us first assume that L contains a uniformizer of v. Modifying the set

b1, . . . , bl of generators of L , if necessary, without loss of generality, we may
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assume that b1 is a uniformizer of v. Let E0 = K 2
⊂ E1 ⊂ · · · ⊂ En+1 = K be a

chain of quadratic extensions such that

E1 = K 2(b1), E2 = K 2(b1, b2), . . . , El = El−1(bl)= K 2(b1, . . . , bl).

Passing to the residues we have the chain

K 2
= E1 ⊂ E2 ⊂ · · · ⊂ En+1 = K .

Since [Ei : Ei−1] = 2, we have [E i : E i−1] ≤ 2. On the other hand, since v is a
geometric valuation of rank 1 we have [K : K 2

] = 2n. It follows that [E i : E i−1] = 2
for every 2≤ i ≤ n.

Now choose elements ai ∈ E i \ E i−1, i ≥ 2. They form a 2-basis of K over k.
Take any lifting ai of ai in Ei . Then the set {a1, a2, . . . , an+1}, where a1 = b1, is a
2-basis of K over k, and hence a differential basis for K/k coming from K, and it
has the required property.

The case when L doesn’t contain a uniformizer of v can be treated similarly. �

Let f be a canonical monomial quadratic form over K given by

(11.1.1) f =
⊕
µ∈Fn

2

m f (µ)tµ[1, x]⊕H⊕ · · ·⊕H,

where all multiplicities m f (µ) are 1 or 0. Since f is canonical, it contains summands
ti [1, x] for i = 1, . . . , n.

Below we will be considering two Witt groups: Wq(K ) and Wq(K̂ ). Here
K̂ ' k(x, t2, . . . , tn)((t1)). There exists a natural map Wq(K )→ Wq(K̂ ), and if
there is no risk of confusion we will denote the image of f in both groups by fW .

Lemma 11.2. The form ( f K̂ )W lives in Wq(K̂ )0 . Its first residue is a canonical
monomial form of rank n− 1, and its second residue up to similarity is a nontrivial
monomial form of rank ≤ n− 1.

Proof. This follows from the definitions of monomial forms and the first and second
residues. �

Theorem 11.3. There exist no differential basis B = {a1, . . . , an+1} for K/k and
a nondegenerate quadratic form g defined over L = K 2(a1, . . . , an−1) such that
gK ,W = fW .

Proof. Assume the contrary. Let B and g be the corresponding differential basis and
quadratic form. Arguing as in Proposition 11.1, we may additionally assume that
B comes from K. Then, it gives rise to the coefficient field E ⊂ K̂ containing all
units from the set B and a presentation K̂ ' E((t1)). We argue by induction on n.

Case 1: Let a1, . . . , an−1 be units in R. Since L = K 2(a1, . . . , an−1), our quadratic
form g can be written in Wq(K ) as a sum of 2-dimensional quadratic forms of the
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shape

(11.3.1) [aν1
1 · · · a

νn−1
n−1 , u2

εa
ε1
1 · · · a

εn−1
n−1 ]

where νi , εi ∈ {0, 1}, uε ∈ K , and we use multi-index notation ε = (ε1, . . . , εn−1).
We now pass to K̂ = E((t1)) and view g over K̂. Writing uε in the form

uε = t−si
1

∑
j≥0

eε j t
j

1

with eε j ∈ E and using the fact that [α, β]W = 0 if α, β ∈ K̂ with v(αβ) > 0, we
conclude that (11.3.1) can be written as a sum of symbols of the form

[aν1
1 · · · a

νn−1
n−1 , e2

ε j t−2 j
1 aε1

1 · · · a
εn−1
n−1 ]

with eε j ∈ E .
Thus, gK̂,W can be written as gK̂,W = gn,W + · · ·+ g0,W where g j,W are homo-

geneous of the form

g j,W =
∑
ν,ε

[aν1
1 · · · a

νn−1
n−1 , e2

ε j t−2 j
1 aε1

1 · · · a
εn−1
n−1 ]W

with eε j ∈ E . Since gK̂,W = fW , it lives in the zero term of Arason’s filtration
of Wq(K̂ ), where the filtration is viewed in the presentation K̂ ' E((t1)). Since
a1, . . . , an−1 ∈ E , by Corollary 8.3 we conclude that gn + · · ·+ g1 = 0. Therefore,

fW = gK̂,W = g0,W =
∑
ν,ε

[aν1
1 · · · a

νn−1
n−1 , e2

ε0 aε1
1 · · · a

εn−1
n−1 ]W .

But this implies that the second residue of fW is 0, which contradicts the second
assertion in Lemma 11.2.

Case 2: Assume that a1, . . . , an−2 are units in R and an−1 is a uniformizer for v.
Our arguments below don’t depend on the choice of a uniformizer, so by abusing
notation we will assume that an−1 = t1. Arguing as above we find that gW can be
written as a sum of symbols of the form

[aν1
1 . . . a

νn−2
n−2 tνn−1

1 , u2
εa
ε1
1 . . . a

εn−2
n−2 tεn−1

1 ],

where νi , εi ∈ {0, 1} and uε ∈ K. Furthermore, by passing to K̂ = E((t1)) and taking
expansions of uε , we can write gK̂,W as a sum

gK̂,W = gn,W + · · ·+ g1,W + g0,W ,
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where each homogeneous component gi,W is of the form

gi,W =
∑
j,ν,ε

[aν1
1 · · · a

νn−2
n−2 , α

2
ε j a

ε1
1 · · · a

εn−2
n−2 t−i

1 ]W

+

∑
j,ν′,ε′

([a
ν′1
1 · · · a

ν′n−2
n−2 t−1

1 , β
2
ε′j a

ε′1
1 · · · a

ε′n−2
n−2 t−i+1

1 ]W ,

with αε j , βε′j ∈ E .
Since gK̂,W lives in the zero term of Arason’s filtration, as above, application

of Corollary 8.3 yields gn + · · ·+ g1 = 0. Thus, gK̂,W = g0,W is homogeneous of
degree 0, where the component g0,W is a sum of symbols of the form

[a
ν′1
1 · · · a

ν′n−2
n−2 t1, α2

ε′0 a
ε′1
1 · · · a

ε′n−2
n−2 t−1

1 ]W and [aν1
1 · · · a

νn−2
n−2 , β

2
ε0 aε1

1 · · · a
εn−2
n−2 ]W ,

with αε′0, βε0 ∈ E . Then, the first residue of gK̂,W (and hence of fW ) is a sum of
symbols

[aν1
1 · · · a

νn−2
n−2 , β

2
ε0 aε1

1 · · · a
ε′n−2
n−2 ]W ,

where βε0 ∈ E ' K.
Now recall that by construction, B = {a1, . . . , an−2, an, an+1} is a differential

basis for E ' K over k and that the first residue of f K̂,W is a canonical monomial
form of rank n− 1. On the other side, as we have seen above, it comes from the
subfield E2(a1, . . . , an−2)⊂ E . This contradicts the induction assumption. �

Corollary 11.4. The quadratic form f does not descend to a subfield k ⊂ F ⊂ K
of transcendence degree ≤ n− 1.

Proof. This follows from Proposition 11.1 and Theorem 11.3. �

12. Incompressibility of canonical monomial quadratic forms

Proof of Theorem 10.2. We continue to keep the above notation. In particular,
K = k(x, t1, t2, . . . , tn) is a pure transcendental extension of k of transcendence
degree n + 1, equipped with the discrete valuation v associated to t1 and R the
corresponding discrete valuation ring. As a matter of notation we denote π = t1
and K1 = k(t2, . . . , tn, x). Thus, K̂ ' K1((π)) and K ' K1.

Consider a canonical monomial quadratic form f over K given by (11.1.1). The
proof of incompressibility of f will be carried out by induction on rank n. More
precisely, we will prove by induction on n that the image fW of f in Wq(K ) is
incompressible. Of course, this would imply incompressibility of f itself. The base
of induction n = 0 is obvious.

Lemma 12.1. If K = k(x) and f = [1, x]⊕H⊕· · ·⊕H, then fW is incompressible.

Proof. Any subfield of K of transcendence degree 0 over k coincides with k. Hence,
if fW were compressible then it would be represented by a nondegenerate quadratic
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form defined over k, which is automatically hyperbolic. On the other hand, by
Proposition 10.1, fW is represented by an anisotropic form [1, x], a contradiction.

�

Now let n > 0 and suppose that for all canonical monomial quadratic forms
of rank < n their classes in the Witt group are incompressible. Suppose that
fW is compressible. Then, there exists a subfield F ⊂ K containing k (which
may be assumed to have transcendence degree n over k by Proposition 11.1 and
Theorem 11.3) and a nondegenerate quadratic form g over F such that (gK )W = fW .

For the restriction w = v|F of v to F there are three possibilities.

Case 1: w is trivial. Write g as a direct sum of 2-dimensional forms [bi , ci ]

with bi , ci ∈ F ⊂ R. Consider Arason’s filtration of Wq(K̂ ) with respect to the
presentation K̂ = K1((π)). Since bi , ci are in R, gW lives in the zero term of
Arason’s filtration; moreover, its second residue is trivial. On the other hand, since
gK̂,W = f K̂,W it has nontrivial second residue by Lemma 11.2, a contradiction.

Case 2: w is nontrivial and the ramification index e(v/w) is even. Then, the same
arguments as in Theorem 11.3 show that the second residue of g is trivial, which
is impossible since f K̂,W = gK̂,W . Indeed, arguing as in Proposition 11.1, we can
choose a differential basis B = {a1, . . . , an, π} for K/k coming from K such that

(12.1.1) F ⊂ K 2(a1, . . . , an).

By Theorem 9.2, B gives rise to the coefficient field E ⊂ K̂ containing a1, . . . , an

and presentation K̂ ' E((π)). We then fix this presentation and below we consider
the corresponding Arason’s filtration.

We now pass to computing the residues of gK̂ using our presentation K̂ = E((π))
and inclusion (12.1.1). Since g is nondegenerate, it can be written as a direct sum of
2-dimensional forms [bi , ci ] with bi , ci ∈ F. In turn, in view of (12.1.1), bi and ci

can be written as sums of elements of the form α2
i1...is

ai1ai2 · · · ais with αi1...is ∈ K.
Then arguing as in Theorem 11.3 we conclude that the image of gK̂ in Wq(K̂ ) can
be written as a sum of symbols[

ai1ai2 · · · ais ,
α2

j1... jp

π2l a j1a j2 · · · a jp

]
W
,

where α j1... jp ∈ E . Thus, we can write gK̂,W as the sum

gW = g2m + g2(m−1)+ · · ·+ g0,

where all homogeneous components g2i have even degree and are sums of symbols[
ai1ai2 · · · ais ,

α2
j1... jp

π2i a j1a j2 · · · a jp

]
W
,
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with α j1... jp ∈ E . By Corollary 8.3 we obtain g2m+· · ·+g2 = 0. Hence, the second
residue of gW is trivial.

Case 3: e = e(v/w) is odd. Let π ′ ∈ F be a uniformizer for w. Write π ′ = uπ e

where u ∈ R×. Our argument below doesn’t depend on a choice of a uniformizer
for v. So, after replacing π with uπ if necessary, we may assume without loss of
generality that u = v2 for some v ∈ R×.

Note that we may assume additionally that the extension F ·K 2/K 2 has degree 2n,
since otherwise we would be in the “codimension” 2 case and so we could apply
Theorem 11.3. Then, [F · K 2

: K 2
] = 2n−1 (because the extension K/K 2 is

unramified and [K : K 2
] = 2n). This implies that there exists a differential basis

B ′ = {a1, . . . , an−1, π
′
}

for F/k coming from residue field F and a unit an ∈ R× such that B = B ′ ∪ {an}

is a differential basis for K/k coming from K.
We now pass to the completions F̂ ⊂ K̂ with respect to w and v, respectively.

The differential bases B ′ and B for F/k and K/k give rise to the coefficients field
E ′ and E and representations

F̂ = E ′((π ′))⊂ K̂ = E((π))

such that E ′ ⊂ E . According to Proposition 8.2 our quadratic form g viewed over
F̂ admits a unique decomposition gF̂,W = gm + · · ·+ g0. Taking into account the
facts that E1 ⊂ E , that π ′ = v2π e with odd e, and that g viewed over K̂ lives in
the zero term of Arason’s filtration of the field E((π)), one can easily see that the
homogeneous components gm, . . . , g1 are trivial, so that gF̂,W can be written as a
sum of symbols

[aν1
1 · · · a

νn−1
n−1 , u2

εa
ε1
1 · · · a

εn−1
n−1 ] and [aν1

1 · · · a
νn−1
n−1π

′, v2
εaε1

1 · · · a
εn−1
n−1 (π

′)−1
]

where uε, vε ∈ E1. It follows that the first residue of gK̂,W = f K̂,W lives in the
subfield E1 of K = E of transcendence degree n− 1 over k. On the other side, this
residue is a canonical monomial form of rank n− 1, which is impossible by the
induction assumption. This completes the proof of incompressibility of f . �

13. Orthogonal and special orthogonal groups

Let g be a nondegenerate n-dimensional quadratic form on a vector space V over k,
and let F be any extension of k.

Orthogonal groups. It is well known (see [Knus et al. 1998, §29.E]) that if n = 2r
is even, then there exists a natural bijection between H 1(F,O(V, g)) and the
set of isometry classes of n-dimensional nondegenerate quadratic spaces (V ′, g′).
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Similarly, if n=2r+1 is odd, then H 1(F,O(V, g)) is in one-to-one correspondence
with the set of isometry classes of (2r + 1)-dimensional nondegenerate quadratic
spaces (V ′, q ′) over F such that disc(q ′) = 1. Note that any such q ′ is isometric
to a quadratic form of the shape ([a1, b1] ⊕ · · · ⊕ [ar , br ])⊕ 〈1〉. Then, in both
cases the incompressibility of canonical monomial quadratic forms provides us
with the required lower bound ed(O(V, g))≥ r + 1. What is left to finish the proof
of Theorem 2.2 for orthogonal groups is to find a “good” upper bound.

Proposition 13.1. In the above notation, ed(O(V, g))≤ r + 1.

Proof. It suffices to show that any 2r-dimensional nondegenerate quadratic form
depends on at most 2r parameters. Let h be such form over F, and write h =
a1[1, b1]⊕ · · ·⊕ ar [1, br ]. Each summand [1, bi ] corresponds to a unique element
ξi ∈ H 1(F,Z/2). Let H = Z/2 ⊕ · · · ⊕ Z/2 be the direct sum of r copies of
the constant group scheme Z/2 and let ξ = (ξ1, . . . , ξr ). Choose any embedding
H ↪→ Ga,k , which exists because k is infinite. The exact sequence

0−→ H −→ Ga,k
φ
−→ Ga,k −→ 0

gives rise to

F
φ
−→ F

ψ
−→ H 1(F, H)−→ 1.

Let a ∈ F be such that ψ(a) = ξ . It follows that ξ has descent to the subfield
k(a) of F. This amounts to the fact that there exist b′1, . . . , b′r ∈ k(a) such that
the quadratic form [1, b′i ] viewed over F is isometric to [1, bi ]. Therefore, h is
isometric to the quadratic form h′ = a1[1, b′1] ⊕ · · · ⊕ ar [1, b′r ] defined over the
subfield k(a, a1, . . . , ar ) of F of transcendence degree (over k) at most r + 1. �

Remark 13.2. If h has trivial Arf invariant then taking a suitable quadratic extension
of k(a, a1, . . . , ar ) contained in F, if necessary, we may also assume that h′ is
defined over a subfield of F of transcendence degree ≤ r + 1 and has trivial Arf
invariant.

Special orthogonal groups. We first find upper bounds.
By [Knus et al. 1998, §29.E], if n=2r is even, then there exists a natural bijection

between H 1(F,SO(V, g)) and the set of isometry classes of (2r)-dimensional
nondegenerate quadratic spaces (V ′, g′) over F such that the Arf invariant of g′ is
trivial. Therefore, ed(SO(V, g))≤ r + 1, by Remark 13.2.

If n=2r+1 is odd, then there exists a natural bijection between H 1(F,SO(V, g))
and the set of isometry classes of (2r + 1)-dimensional nondegenerate quadratic
spaces (V ′, g′) over F such that disc(g′)= 1. As we mentioned above, any such g′

is isometric to a quadratic form of the shape ([a1, b1] ⊕ · · · ⊕ [ar , br ])⊕ 〈1〉 for
some ai , bi ∈ F. It follows that ed(SO(V, g))≤ r + 1, by Proposition 13.1.
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To find a “good” lower bound, we recall that SO2r+1(g) = O2r+1(g)red, the
reduced subscheme of O2r+1(g). Thus, we have a natural closed embedding
SO2r+1(g) ↪→O2r+1(g). Fix a decomposition g ' h⊕〈1〉 where h =H⊕· · ·⊕H.
It induces a natural closed embedding φ1 :O2r (h) ↪→ SO2r+1(g) (because O2r (h) is
smooth). Furthermore, we can view 〈1〉 as a subform of [1, 0]'H. This allows us to
view g as a subform of a (2r+2)-dimensional split quadratic form q =H⊕· · ·⊕H

and this induces a natural map

φ2 : SO2r+1(g) ↪→ O2r+1(g) ↪→ O2r+2(q).

The maps φ1 and φ2, in turn, induce the natural maps

ψ1 : H 1(F,O2r (h))→ H 1(F,SO2r+1(g))

and
ψ2 : H 1(F,SO2r+1(g))→ H 1(F,O2r+2(q)).

It easily follows from the above discussions thatψ1 is surjective. Also, identifying
elements in H 1(F,O2r (h)) and H 1(F,O2r+2(q)) with the isometry classes of the
corresponding quadratic spaces, the isometry class of a quadratic form

⊕r
i=1[ai , bi ]

goes to the isometry class of
⊕r

i=1[ai , bi ]⊕H under the composition ψ2 ◦ψ1.

Theorem 13.3. If g is a nondegenerate quadratic form of dimension 2r + 1 over k,
then ed (SO2r+1(g))≥ r + 1.

Proof. Take a pure transcendental extension K = k(x, t1, . . . , tr ) of k of degree
r + 1 and a canonical monomial form f = t1[1, x] ⊕ · · · ⊕ tr [1, x] of dimension
2r. We will show that its image ξ under ψ1 is incompressible. Indeed, if ξ is
compressible, so is ψ2(ξ). However, ψ2(ξ) is represented by a canonical monomial
form t1[1, x]⊕ · · ·⊕ tr [1, x]⊕H, which is incompressible by Theorem 10.2, a
contradiction. Thus, ξ is incompressible itself, implying ed(SO2r+1(g))≥ r+1. �

14. Proof of Theorem 3.1

Types Ar , Br , Cr , Dr , E6, E7, E8. Let ρ : G◦→ O(V, q) be as in Proposition 6.1.
As in [Chernousov and Serre 2006], we can extend it to ρG : G→ O(V, q). Let
θO = ρG(θG) be the image of θG in H 1(K,O(V, q)). Consider the quadratic form
qO on V corresponding to θO . If dim(q) is even, then arguing as in [loc. cit.] we
conclude that qO is a canonical monomial form of rank r. By Theorem 10.2, qO is
incompressible and hence so is θG .

If dim(q) is odd, then we can write it as q =〈1〉⊕q ′, where q ′ is a nondegenerate
quadratic form of even dimension. The twist qO of q by θO is then of the form
qO = 〈1〉⊕ g, where g is a canonical monomial form of rank r. Finally, the proof
of Theorem 13.3 shows that qO is incompressible as well.
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Type G2. Let F be a field of arbitrary characteristic. By [Serre 1995, Théorème 11],
there is a canonical one-to-one correspondence between H 1(F,G2) and the set of
isometry classes of 3-fold Pfister forms defined over F, where G2 denotes a split
group of type G2 over F. Clearly, any 3-fold Pfister form depends on at most 3
parameters implying ed(G2) ≤ 3. Conversely, a generic 3-fold Pfister form is a
canonical monomial form of rank 2, hence incompressible. It follows ed(G2)≥ 3.

Type F4. Let F be a field of arbitrary characteristic. It is known that there is a
canonical one-to-one correspondence between H 1(F, F4) and the set of isomor-
phism classes of 27-dimensional exceptional Jordan algebras over F, where F4

denotes a split group of type F4 over F. To each such reduced Jordan algebra J
one associates a unique (up to isometry) 5-fold Pfister form f5(J ) [Petersson 2004,
§4.1]. Moreover, it is known that any 5-fold Pfister form over F corresponds to
some Jordan algebra J over F. Since a generic 5-Pfister form is incompressible,
we conclude that ed(F4)≥ 5.
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In memory of Robert Steinberg

Let k be a field, let G be a reductive k-group and V an affine k-variety on
which G acts. In this note we continue our study of the notion of cocharacter-
closed G(k)-orbits in V . In earlier work we used a rationality condition on
the point stabilizer of a G-orbit to prove Galois ascent/descent and Levi
ascent/descent results concerning cocharacter-closure for the correspond-
ing G(k)-orbit in V . In the present paper we employ building-theoretic
techniques to derive analogous results.

1. Introduction

Let k be a field and let G be a reductive linear algebraic group acting on an affine
variety V , with G, V and the action all defined over k. Let 1k be the (simplicial)
spherical building of G over k, and let 1k(R) be its geometric realisation (for
precise definitions, see below). In this paper we continue the study, initiated in
[Bate et al. 2013; 2012; 2015], of the notion of cocharacter-closed orbits in V for
the group G(k) of k-rational points of G, and of interactions with the geometry
of 1k(R). The philosophy of this paper is as follows (cf. [Bate et al. 2015]): for
a point v in V , we are interested in Galois ascent/descent questions — given a
separable algebraic extension k ′/k of fields, how is the G(k ′)-orbit of v related to
the G(k)-orbit of v? — and Levi ascent/descent questions — given a k-defined torus
S of the stabilizer Gv, how is the CG(S)(k)-orbit of v related to the G(k)-orbit of
v? (See [Bate et al. 2015, Section 5, Paragraph 1] for an explanation of the terms
Galois/Levi ascent/descent in this context.) These questions are related, and have
natural interpretations in 1(K).

Our results complement those of [Bate et al. 2015]: they give similar conclusions
but under different assumptions. It was shown in [loc. cit.] (see Proposition 2.6
below) that Galois descent — passing from G(k ′)-orbits to G(k)-orbits — is always
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well-behaved. Certain results on Galois ascent were also proved [loc. cit., Theo-
rem 5.7] under hypotheses on the stabilizer Gv. The mantra in this paper is that
when the centre conjecture (see Theorem 1.2 below) is known to hold, one can use
it to prove Galois ascent results, and hence deduce Levi ascent/descent results. The
idea is that when the extension k ′/k is separable and normal, questions of Galois
ascent can be interpreted in terms of the action of the Galois group of k ′/k on the
building; moreover, if one has such Galois ascent questions under control, then it is
easier to handle Levi ascent/descent because one may assume that the torus S is
split (cf. [loc. cit., Theorem 5.4(ii)]).

When k is algebraically closed (or more generally when k is perfect), our setup
is also intimately related to the optimality formalism of [Kempf 1978; Rousseau
1978; Hesselink 1978]. Indeed, one may interpret this formalism in the language
of the centre conjecture (see [Bate et al. 2012, Section 1]). The idea is to study
the G-orbits in V via limits along cocharacters of G: limits are formally defined
below, but given v in V , if we take the set of cocharacters λ of G for which the
limit lima→0 λ(a) · v exists, and interpret this set in terms of the set of Q-points
1(Q) of the building of G, then we obtain a convex subset 6v of 1(Q). In case
G ·v is not Zariski-closed, one can find a fixed point in the set 6v and an associated
optimal parabolic subgroup P of G with many nice properties: in particular, the
stabilizer Gv normalises P . It is not currently known in general how to produce
analogues of these optimality results over arbitrary fields (or even whether such
results exist); see [Bate et al. 2013, Section 1] for further discussion. Our first main
theorem gives a rational analogue of the Kempf–Rousseau–Hesselink ideas when
6v,ks (the points of 6v coming from ks-defined cocharacters of G) happens to be a
subcomplex of 1(Q), and also answers in this case the ascent/descent questions
posed earlier.

Theorem 1.1. Let v ∈ V . Suppose 6v,ks is a subcomplex of 1ks (Q). Then the
following hold:

(i) Suppose v ∈ V (k) and G(ks) · v is not cocharacter-closed over ks . Let S be
any k-defined torus of Gv and set L = CG(S). Then there exists σ ∈ Yk(L)
such that lima→0 σ(a) · v exists and lies outside G(ks) · v.

(ii) Suppose v ∈ V (k). For any separable algebraic extension k ′/k, G(k ′) · v is
cocharacter-closed over k ′ if and only if G(k) · v is cocharacter-closed over k.

(iii) Let S be any k-defined torus of Gv and set L = CG(S). Then G(k) · v is
cocharacter-closed over k if and only if L(k) · v is cocharacter-closed over k.

The hypothesis that 6v,ks is a subcomplex allows us to apply the following
result — Tits’ centre conjecture — in the proof of Theorem 1.1:
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Theorem 1.2. Let2 be a thick spherical building and let6 be a convex subcomplex
of 2 such that 6 is not completely reducible. Then there is a simplex of 6 that
is fixed by every building automorphism of 2 that stabilizes 6. (We call such a
simplex a centre of 6.)

For definitions and further details, see [Ramos-Cuevas 2013]; in particular, note
that the spherical building of a reductive algebraic group is thick. The conjecture
was proved by Mühlherr and Tits [2006], Leeb and Ramos-Cuevas [2011] and
Ramos-Cuevas [2013], and a uniform proof for chamber subcomplexes has also
now been given by Mühlherr and Weiss [2013]. The condition that 6v,ks is a
subcomplex is satisfied in the theory of complete reducibility for subgroups of
G and Lie subalgebras of Lie(G), and our results yield applications to complete
reducibility (see Theorem 1.4 below).

By [Bate et al. 2015, Theorem 5.7], the conclusions of Theorem 1.1(ii) and (iii)
hold if Gv has a maximal torus that is k-defined. Our second main result gives
alternative hypotheses on Gv , this time of a group-theoretic nature, for the conclu-
sions of Theorem 1.1 to hold, without the assumption that 6v,ks is a subcomplex.
The proof of this result relies in an essential way on known cases of a strengthened
version of the centre conjecture (this time from [Bate et al. 2012]).

Theorem 1.3. Let v ∈ V (k). Suppose that (a) G0
v is nilpotent, or (b) every simple

component of G0 has rank 1. Then the following hold:

(i) Suppose G(ks) · v is not cocharacter-closed over ks . Let S be any k-defined
torus of Gv and set L = CG(S). Then there exists σ ∈ Yk(L) such that Gv(ks)

normalises Pσ (G0) and lima→0 σ(a) · v exists and lies outside G(ks) · v.

(ii) For any separable algebraic extension k ′/k, G(k ′) · v is cocharacter-closed
over k ′ if and only if G(k) · v is cocharacter-closed over k.

(iii) Let S be any k-defined torus of Gv and set L = CG(S). Then G(k) · v is
cocharacter-closed over k if and only if L(k) · v is cocharacter-closed over k.

The hypothesis in Theorem 1.1(i) that v is a k-point ensures that the subset
6v is Galois-stable, and it is also needed in our proof of Theorem 1.3 (but see
Remark 4.6). Sometimes, however, one can get away with a weaker hypothesis.
This happens for G-complete reducibility in the final section of the paper, where
we prove the following ascent/descent result:

Theorem 1.4. Suppose that G is connected. Let H be a subgroup of G. Let S be a
k-defined torus of CG(H) and set L = CG(S). Then H is G-completely reducible
over k if and only if H is L-completely reducible over k.

Remark 1.5. (i) Theorem 1.4 gives an alternative proof and also slightly generalises
Serre’s Levi ascent/descent result [Serre 1997, Proposition 3.2]; cf. [Bate et al. 2005,
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Corollary 3.21, Corollary 3.22] — for in the statement of Theorem 1.4, we do not
require H to be a subgroup of G(k).

(ii) The counterpart of Theorem 1.1(ii) (Galois ascent/descent for G-complete
reducibility) was proved in [Bate et al. 2009].

We spend much of the paper recalling relevant results from geometric invariant
theory and the theory of buildings. Although the basic ideas are familiar, we need
to extend many of them: for instance, the material on quasi-states in Section 3D
was covered in [Bate et al. 2012] for algebraically closed fields, but we need it
for arbitrary fields. We work with the geometric realisations of buildings rather
than with buildings as abstract simplicial complexes; some care is needed when the
reductive group G has positive-dimensional centre.

The paper is laid out as follows. In Section 2, we set up notation and collect
terminology and results relating to cocharacter-closedness. In Section 3, we translate
our setup into the language of spherical buildings; we use notation and results from
[Bate et al. 2012] on buildings, some of which we extend slightly. In Section 4, we
combine the technology from both of the preceding sections to give proofs of our
main results. In the final section we give our applications to the theory of complete
reducibility.

2. Notation and preliminaries

Let k denote a field with separable closure ks and algebraic closure k̄. Let 0 :=
Gal(ks/k) = Gal(k̄/k) denote the Galois group of ks/k. Throughout, G denotes
a (possibly nonconnected) reductive linear algebraic group defined over k, and V
denotes a k-defined affine variety upon which G acts k-morphically. Let G(k),
G(ks), V (k), V (ks) denote the k- and ks-points of G and V ; we usually identify G
with G(k̄) and V with V (k̄). If X is a variety then we denote its Zariski closure by
X .

More generally, we need to consider k-points and ks-points in subgroups that are
not necessarily k-defined or ks-defined; note that if k is not perfect then even when
v is a k-point, the stabilizer Gv need not be k-defined. If k ′/k is an algebraic field
extension and H is a closed subgroup of G then we set H(k ′)= H(k̄)∩G(k ′), and
we say that a torus S of H is k ′-defined if it is k ′-defined as a torus of the k-defined
group G. Note that a ks-defined torus of H is a torus of H(ks).

2A. Cocharacters and G-actions. Given a k-defined algebraic group H , we let
Y (H) denote the set of cocharacters of H , with Yk(H) and Yks (H) denoting the
sets of k-defined and ks-defined cocharacters, respectively. The group H acts on
Y (H) via the conjugation action of H on itself. This gives actions of the group of
k-points H(k) on Yk(H) and the group of ks-points H(ks) on Yks (H). There is also
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an action of the Galois group 0 on Y (H) which stabilizes Yks (H), and the 0-fixed
elements of Yks (H) are precisely the elements of Yk(H). We write Y = Y (G),
Yk = Yk(G) and Yks = Yks (G).

Definition 2.1. A function ‖ ‖ : Y→R≥0 is called a 0-invariant, G-invariant norm
if:

(i) ‖g · λ‖ = ‖λ‖ = ‖γ · λ‖ for all λ ∈ Y , g ∈ G and γ ∈ 0;

(ii) for any maximal torus T of G, there is a positive definite integer-valued form
( , ) on Y (T ) such that (λ, λ)= ‖λ‖2 for any λ ∈ Y (T ).

Such a norm always exists: To see this, take a k-defined maximal torus T and any
positive definite integer-valued form on Y (T ). Since T splits over a finite extension
of k, we can average the form over the Weyl group W and over the finite Galois group
of the extension to obtain a W -invariant 0-invariant form on Y (T ), which defines a
norm satisfying (ii). One can extend this norm to all of Y because any cocharacter
is G-conjugate to one in Y (T ); this procedure is well-defined since the norm on
Y (T ) is W -invariant. See [Kempf 1978] for more details. If G is simple then ‖ ‖
is unique up to nonzero scalar multiples. We fix such a norm once and for all.

For each cocharacter λ ∈ Y and each v ∈ V , we define a morphism of varieties
φv,λ : k̄∗→ V via the formula φv,λ(a) = λ(a) · v. If this morphism extends to a
morphism φ̂v,λ : k̄→ V , then we say that lima→0 λ(a) · v exists, and set this limit
equal to φ̂v,λ(0); note that such an extension, if it exists, is necessarily unique.

Definition 2.2. For λ ∈ Y and v ∈ V , we say that λ destabilizes v provided
lima→0 λ(a) · v exists, and if lima→0 λ(a) · v exists and does not belong to G · v,
then we say λ properly destabilizes v. We have an analogous notion over k: if
λ∈ Yk then we say that λ properly destabilizes v over k if lima→0 λ(a) ·v exists and
does not belong to G(k) · v. Finally, if k ′/k is an algebraic extension, and λ ∈ Yk ,
then we say that λ properly destabilizes v over k ′ if lima→0 λ(a) · v exists and does
not belong to G(k ′) · v; that is, if λ— regarded as an element of Yk′(G)— properly
destabilizes v over k ′.

2B. R-parabolic subgroups. When V = G and G is acting by conjugation, for
each λ ∈ Y we get a set Pλ := {g ∈ G | lima→0 λ(a)gλ(a)−1 exists}; this is a
parabolic subgroup of G. We distinguish these parabolic subgroups by calling
them Richardson-parabolic or R-parabolic subgroups. For basic properties of these
subgroups, see [Bate et al. 2005, Section 6]. We recall here that Lλ = CG(Im(λ))
is called an R-Levi subgroup of Pλ, Ru(Pλ) is the set of elements sent to 1 ∈ G
in the limit, and Pλ = Ru(Pλ)o Lλ. Further, Ru(Pλ) acts simply transitively on
the set of all Lµ such that Pµ = Pλ (that is, on the set of all R-Levi subgroups of
Pλ): note that this is a transitive action of Ru(Pλ) on the set of subgroups of the
form Lµ, not on the set of cocharacters for which Pµ = Pλ. Most of these things
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work equally well over the field k: for example, if λ is k-defined then Pλ, Lλ and
Ru(Pλ) are; moreover, given any k-defined R-parabolic subgroup P , Ru(P)(k) acts
simply transitively on the set of k-defined R-Levi subgroups of P [Bate et al. 2013,
Lemma 2.5]. Note that if P is k-defined and G is connected then P = Pλ for some
k-defined λ, but this can fail if G is not connected [Bate et al. 2013, Section 2].

When H is a reductive subgroup of G the inclusion Y (H)⊆ Y (G) means that
we get an R-parabolic subgroup of H and of G attached to any λ ∈ Y (H). When
we use the notation Pλ, Lλ, etc., we are always thinking of λ as a cocharacter of
G. If we need to restrict attention to the subgroup H for some reason, we write
Pλ(H), Lλ(H), etc.

2C. The sets Y(Q) and Y(R). Form the set Y (Q) by taking the quotient of Y×N0

by the relation λ ∼ µ if and only if nλ = mµ for some m, n ∈ N, and ex-
tend the norm function to Y (Q) in the obvious way. For any torus T in G,
Y (T,Q) := Y (T )⊗Z Q is a vector space over Q. Now one can form real spaces
Y (T,R) := Y (T,Q) ⊗Q R for each maximal torus T of G and a set Y (R) by
glueing the Y (T,R) together according to the way the spaces Y (T,Q) fit together
[Bate et al. 2012, Section 2.2]. The norm extends to these sets. One can define
sets Yk(Q), Yk(R), Yk(T,Q), Yk(T,R), Yks (Q), Yks (R), Yks (T,Q) and Yks (T,R)

analogously by restricting attention to k-defined cocharacters and maximal tori,
or ks-defined cocharacters and maximal tori, as appropriate. For the rest of the
paper, K denotes either of Q or R when the distinction is not important. The sets
Y (K), Yk(K) and Yks (K) inherit G-, G(k)-, G(ks)- and 0-actions from those on
Y , Yk and Yks , as appropriate, and each element λ ∈ Y (K) still corresponds to
an R-parabolic subgroup Pλ and an R-Levi subgroup Lλ of G (see [Bate et al.
2012, Section 2.2] for the case K = R). If H is a reductive subgroup of G
then we write Y (H,Q), etc., to denote the above constructions for H instead
of G.

2D. G-varieties and cocharacter-closure. We recall the following fundamental
definition from [Bate et al. 2015, Definition 1.2], which extends the one given in
[Bate et al. 2013, Definition 3.8].

Definition 2.3. A subset S of V is said to be cocharacter-closed over k (for G) if
for every v ∈ S and λ ∈ Yk such that v′ := lima→0 λ(a) · v exists, we have v′ ∈ S.

This notion is explored in detail in [Bate et al. 2015]. In this section, we content
ourselves with collecting some results from that paper, together with the earlier
paper [Bate et al. 2013]. These results, most of which are also needed in the sequel,
give a flavour of what is known about the notion of cocharacter-closure in the case
that the subset involved is a single G(k)-orbit.
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Remark 2.4. The geometric orbit G · v is Zariski-closed if and only if it is
cocharacter-closed over k̄, by the Hilbert–Mumford Theorem [Kempf 1978, Theo-
rem 1.4].

Theorem 2.5 [Bate et al. 2015, Corollary 5.1]. Suppose v ∈ V is such that G(k) · v
is cocharacter-closed over k. Then whenever v′ = lima→0 λ(a) · v exists for some
λ ∈ Yk , there exists u ∈ Ru(Pλ)(k) such that v′ = u · v.

Proposition 2.6 [Bate et al. 2015, Proposition 5.5]. Let v ∈ V such that Gv(ks) is
0-stable and let k ′/k be a separable algebraic extension. If G(k ′) ·v is cocharacter-
closed over k ′, then G(k) · v is cocharacter-closed over k.

Theorem 2.7 [Bate et al. 2015, Theorem 5.4]. Suppose S is a k-defined torus of
Gv and set L = CG(S).

(i) If G(k) · v is cocharacter-closed over k, then L(k) · v is cocharacter-closed
over k.

(ii) If S is k-split, then G(k) · v is cocharacter-closed over k if and only if L(k) · v
is cocharacter-closed over k.

We note that, as described in the introduction, one of the main points of this
paper is to show that the converse of Proposition 2.6 holds under certain extra
hypotheses, and that the hypothesis of splitness can be removed in Theorem 2.7(ii)
under the same hypotheses; see also [Bate et al. 2015, Theorem 1.5].

Our final result, a strengthening of Lemma 5.6 of [Bate et al. 2015], follows
from the arguments given in the proof of that lemma.

Lemma 2.8. Let V be an affine G-variety over k and let v ∈ V (k). Suppose there
exists λ ∈ Yks such that λ properly destabilizes v. Then there exists µ ∈ Yk such that
v′ = lima→0 µ(a) · v exists, v′ is not G(ks)-conjugate to v and Gv(ks) normalises
Pµ. In particular, G(k) · v is not cocharacter-closed over k.

Remark 2.9. The hypotheses of Lemma 2.8 are satisfied if λ ∈ Yks (Z(G
0)) desta-

bilizes v but does not fix v. For if v′ := lima→0 λ(a) · v is G-conjugate to v then v′

is Ru(Pλ)-conjugate to v [Bate et al. 2013, Theorem 3.3]; but Ru(Pλ)= 1, so this
cannot happen.

3. Spherical buildings and Tits’ centre conjecture

The simplicial building 1k of a semisimple algebraic group G over k is a simplicial
complex, the simplices of which correspond to the k-defined parabolic subgroups
of G ordered by reverse inclusion. See [Tits 1974, §5] for a detailed description.
Our aim in this section is to construct for an arbitrary reductive group G over k,
objects 1k(K) for K = R or Q that correspond to the geometric realisation of
the spherical building of G0 over k (or the set of Q-points thereof) when G0 is
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semisimple. These are slightly more general objects (possibly with a contribution
from Z(G0)) when G0 is reductive. Recall that 0 denotes the Galois group of ks/k.
Most of the notation and terminology below is developed in full detail in the paper
[Bate et al. 2012] — we point the reader in particular to the constructions in [Bate
et al. 2012, Sections 2, 6.3, 6.4]. For the purposes of this paper, we need to extend
some of the results in [loc. cit.] (for example by incorporating the effect of the
Galois group 0), but rather than reiterating all the details, we just gather enough
material to make our exposition here coherent.

3A. Definition of 1k(K). We first form the vector building Vk(K) by identifying λ
in Yk(K) with u ·λ for every u ∈ Ru(Pλ)(k). The norm function on Yk(K) descends
to Vk(K), because it is G-invariant. This gives a well-defined function on Vk(K),
which we also call a norm, and makes Vk(K) into a metric space.

Definition 3.1. (i) Define 1k(R) to be the unit sphere in Vk(R) and 1k(Q) to be
the projection of Vk(Q) \ {0} onto 1k(R).

(ii) Two points of 1k(K) are called opposite if they are antipodal on the sphere
1k(R).

(iii) It is clear that the conjugation action of G(k) on Yk gives rise to an action
of G(k) on 1k(K) by isometries, and there is a natural G(k)-equivariant,
surjective map ζ : Yk(K) \ {0} →1k(K).

(iv) The apartments of 1k(K) are the sets 1k(T,K) := ζ(Yk(T,K)) where T runs
over the maximal k-split tori of G.

(v) The metric space1k(K) and its apartments have a simplicial structure, because
any point x = ζ(λ) of 1k(K) gives rise to a k-defined parabolic subgroup Pλ
of G0 (see Section 2C); the simplicial complex consists of the proper k-defined
parabolic subgroups of G0, ordered by reverse inclusion. We write 1k for
the spherical building of G over k regarded purely as a simplicial complex.
The simplicial spherical buildings of G0 and of [G0,G0

] are the same. Our
notion of opposite is compatible with the usual one for parabolic subgroups:
if λ ∈ Y (G) then P−λ is an opposite parabolic to Pλ.

To avoid tying ourselves in knots, when the distinction is not important to the
discussion at hand, we loosely refer to either of the objects 1k(Q) and 1k(R) as
the building of G over k.

One can make analogous definitions of objects 1ks (K) and 1(K)=1k̄(K) over
ks and k̄, respectively, with corresponding systems of apartments and maps ζ . We
write 1ks and 1 for these spherical buildings regarded as simplicial complexes.

Because we are interested in rationality results, we need to know the relationship
between 1k(K) and 1ks (K). Given a k-defined reductive subgroup H of G, we
also want to relate 1k(H,K) to 1k(K), where 1k(H,K) denotes the building of
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H over k. It is easy to see that the 0-action on cocharacters descends (via ζ ) to
0-actions by isometries on 1ks (K) and 1(K).

Lemma 3.2. (i) There are naturally occurring copies of 1k(K) inside 1ks (K)

and 1(K). We can in fact identify 1k(K) with the set of 0-fixed points of
1ks (K).

(ii) Let H be a k-defined reductive subgroup of G. Then there is a naturally
occurring copy of 1k(H,K) inside 1k(K).

Proof. (i) It is clear that Yk(K) ⊆ Yks (K) ⊆ Y (K), and Yk(K) is precisely the
set of 0-fixed points in Yks (K). Since Ru(Pλ)(k) acts simply transitively on the
set of k-defined R-Levi subgroups of Pλ, two k-defined cocharacters λ and µ are
Ru(Pλ)-conjugate if and only if they are Ru(Pλ)(ks)-conjugate if and only if they are
Ru(Pλ)(k)-conjugate. Following this observation through the definition of 1k(K),
1ks (K) and 1(K) is enough to prove the first assertion of (i). It is clear that 1k(K)

is fixed by 0. Conversely, let x ∈ 1ks (K) be fixed by 0. Let P be the parabolic
subgroup associated to x . Then P is ks-defined and 0-stable, so P is k-defined.
Pick a k-defined maximal torus T of P . There exists λ∈Yks (T,K) such that P = Pλ
[Springer 1998, 8.4.4, 8.4.5]. Each γ ∈ 0 maps λ to a Ru(P)(ks)-conjugate of λ.
Now Ru(P) acts simply transitively on the set of Levi subgroups of P , and each
maximal torus of P is contained in a unique Levi subgroup [Springer 1998, 8.4.4],
so Ru(P) acts freely on the set of maximal tori of P . But T is 0-stable, so we must
have that 0 fixes λ. Hence x ∈1k(K), as required.

(ii) In analogy with the first assertion of (i) (although it is slightly more subtle), the
key observation is that if λ,µ ∈ Yk(H) are Ru(Pλ(G))(k)-conjugate, then they are
in fact Ru(Pλ(H))(k)-conjugate (see [Bate et al. 2011, Lemma 3.3(i)]). Observe
also that the restriction of a 0- and G-invariant norm on Y to Y (H) gives a 0- and
H -invariant norm on Y (H). �

Henceforth, we write1k(K)⊆1ks (K)⊆1(K) and1k(H,K)⊆1k(K) without
any further comment. One note of caution: the inclusion 1k(H,K)⊆1k(K) does
not in general respect the simplicial structures on these objects.

3B. Convex subsets. Because any two parabolic subgroups of G contain a common
maximal torus, any two points x, y ∈1(K) are contained in a common apartment
and, as long as these points are not opposite each other, there is a unique geodesic
[x, y] joining them. This geodesic does not depend on the apartment we find
containing x and y; in particular, this can be done inside 1k(K) if x, y ∈1k(K)

and inside 1k(H) if x, y ∈1k(H) for some reductive subgroup H of G. This leads
to the following key definitions:
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Definition 3.3. (i) A subset 6 ⊆1(K) is called convex if whenever x, y ∈6 are
not opposite then [x, y] ⊆6. It follows from the discussion above that 1k(K)

is a convex subset of 1(K).

(ii) Given a convex subset 6 of 1(K), its preimage C := ζ−1(6)∪{0} in Y (K) is
a union of cones CT := C ∩ Y (T,K), where T runs over the maximal tori of
G. The subset 6 is called polyhedral if each CT is a polyhedral cone and 6 is
said to have finite type if the set of cones {g ·Cg−1T g | g ∈ G} is finite for all T .

(iii) A convex subset 6 of 1(K) is called a subcomplex if it is a union of simplices
(that is, if λ,µ ∈ Y (K) are such that Pλ = Pµ, then ζ(λ) ∈ 6 if and only if
ζ(µ) ∈6) and if that union of simplices forms a subcomplex in the simplicial
building 1. In such a circumstance, we denote the subcomplex of 1 arising in
this way by 6 also; note that 6 is convex in the sense of part (i) above if and
only if 6— regarded as a subcomplex of the simplicial building — is convex
in the sense of simplicial buildings.

The definitions above have obvious analogues for the buildings 1k(K) and
1ks (K).

There is an addition operation on the set V (K), given as follows. Let ϕ : Y (K)→
V (K) be the canonical projection. Choose a maximal torus T of G and λ,µ ∈
Y (T,K) such that ϕ(λ) = x and ϕ(µ) = y; we define x + y ∈ V (K) by x + y =
ϕ(λ+µ). It can be shown that this does not depend on the choice of T ; moreover,
for any g ∈ G, g · (x + y)= g · x + g · y.

3C. The destabilizing locus and complete reducibility. For this paper, a particu-
larly important class of convex subsets arises from G-actions on affine varieties.
Given an affine G-variety V and a point v ∈ V , set

6v := {ζ(λ) | λ ∈ Y and lim
a→0

λ(a) · v exists} ⊆1(Q).

We call this subset the destabilizing locus for v; it is a convex subset of 1(Q)
by [Bate et al. 2012, Lemma 5.5] (note that 6v coincides with EV,{v}(Q) in the
language of [Bate et al. 2012]). Similarly we write 6v,k (resp. 6v,ks ) for the image
in 1k(Q) (resp. 1ks (Q)) of the k-defined (resp. ks-defined) characters destabilizing
v. If H is a reductive subgroup of G, then we write 6v,k(H) for the destabilizing
locus for v with respect to H .

Definition 3.4. A subset 6 of 1(K) is called completely reducible if every point
of 6 has an opposite in 6.

Lemma 3.5. Let v ∈ V . Then:

(i) Given λ ∈ Yk such that ζ(λ) ∈ 6v,k , λ has an opposite in 6v,k if and only if
there exists u ∈ Ru(Pλ)(k) such that u · λ fixes v, if and only if there exists
u ∈ Ru(Pλ)(k) such that lima→0 λ(a) · v = u−1

· v.
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(ii) The subset 6v,k is completely reducible if and only if G(k) · v is cocharacter-
closed over k.

(iii) The subset 6v is completely reducible if and only if the orbit G · v is closed
in V .

Proof. We have that 6v (resp. 6v,k) is completely reducible if and only if for every
λ∈ Y (resp. λ∈ Yk) such that lima→0 λ(a) ·v exists, there is some u ∈ Ru(Pλ) (resp.
u ∈ Ru(Pλ)(k)) such that both u ·λ and −(u ·λ) destabilize v. But this is true if and
only if u · λ fixes v, which is equivalent to the fact that lima→0 λ(a) · v = u−1

· v,
by [Bate et al. 2013, Lemma 2.12]. This gives part (i). Part (ii) now follows from
Theorem 2.5, and part (iii) from Remark 2.4. �

3D. The strong centre conjecture and quasi-states. The aim of the paper [Bate
et al. 2012] is to study a strengthened version of Tits’ centre conjecture for 1ks (K).
Let G denote the group of transformations of 1ks (K) generated by the isometries
arising from the action of G(ks) and the action of 0. Note that elements of G map
ks-defined parabolic subgroups of G to ks-defined parabolic subgroups of G, so
they give rise to automorphisms of the simplicial building 1ks . Given a convex
subset6 of1ks (K), we call a point x ∈6 a G-centre if it is fixed by all the elements
of G that stabilize 6 setwise. We can now formulate the original centre conjecture
in our setting.

Theorem 3.6. Suppose 6 ⊆1ks (K) is a convex non-completely reducible subcom-
plex. Then 6 has a G-centre.

Proof. Theorem 1.2 asserts the existence of a stable simplex in the subcomplex
(note that the simplicial structure on 1(K) does not “see” the difference between G
and G0, or between G0 and its semisimple part, so the proof of the centre conjecture
for subcomplexes of spherical buildings still works for the more general class of
objects we have described). Now any element of G that fixes a simplex also fixes
its barycentre (because the action is via isometries), and we are done. �

In the strong centre conjecture [Bate et al. 2012, Conjecture 2.10], one replaces
convex non-completely reducible subcomplexes with convex non-completely re-
ducible subsets. Most of [loc. cit.] deals with the special case when k = k̄ and
considers only the isometries of 1k(K) coming from the action of G. We need to
take the action of 0 into account, so we briefly indicate some of the key changes
that must be made to the constructions in [loc. cit.] in order to make the results go
through; see also the comments in [loc. cit., Section 6.3].

Definition 3.7. We recall the notion of a K-quasi-state 4 from [Bate et al. 2012,
Definition 3.1]: this is an assignment of a finite set of characters 4(T ) to each
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maximal torus T of G satisfying certain conditions (see [loc. cit.] for a precise
statement).

The groups G and 0 act on quasi-states: given a K-quasi-state 4 and g ∈ G and
γ ∈ 0 we define new quasi-states g∗4 and γ∗4 by

g∗4(T ) := g
!
4(g−1T g), γ∗4(T ) := γ!(γ

−1
· T ),

where for a character χ of a torus T , g
!
χ is a character of the torus gT g−1 given by

(g
!
χ)(gtg−1) := χ(t) for all t ∈ T , and similarly γ

!
χ is a character of γ · T given

by (γ
!
χ)(γ · t) := χ(t) for all t ∈ T .

We say a quasi-state is defined over a field k ′ if it assigns k ′-defined characters to
k ′-defined maximal tori. Recall also the notions of boundedness, admissibility and
quasi-admissibility for K-quasi-states, [Bate et al. 2012, Definitions 3.1 and 3.2].

With these definitions in hand, we can extend [loc. cit., Lemma 3.8] as follows:

Lemma 3.8. Let ϒ be a K-quasi-state which is defined over ks and define 4 :=⋃
γ∈0 γ∗ϒ by 4(T ) :=

⋃
γ∈0(γ∗ϒ)(T ) for each maximal torus T of G. Then 4 is

a K-quasi-state which is defined over ks , and it is bounded (resp. quasi-admissible,
admissible at λ) if ϒ is. Moreover, by construction, 4 is 0-stable.

Proof. There are two points which need to be made in order for the arguments
already in the proof of [Bate et al. 2012, Lemma 3.8] to go through. First note that
given a ks-defined maximal torus T of G the set of Galois conjugates of T is finite
(because T is defined over some finite extension of k). This means that, because ϒ
is ks-defined, 4(T ) is still finite, so 4 is a K-quasi-state. Now, for boundedness we
need to check that if ϒ is bounded then the set

⋃
γ∈0

(⋃
g∈G g∗(γ∗ϒ)(T )

)
is finite

for some (and hence all) ks-defined maximal tori T of G. Since we can choose any
ks-defined maximal torus T , we choose one that is actually k-defined, and then

g∗(γ∗ϒ)(T )= g
!
(γ∗ϒ)(g−1T g)= g

!

(
γ
!
ϒ
(
γ−1
· (g−1T g)

))
= g
!

(
γ
!
ϒ
(
(γ−1
· g)−1T (γ−1

· g)
))

= γ
!
(γ−1
· g)
!
ϒ
(
(γ−1
· g)−1T (γ−1

· g)
)
= γ
!
((γ−1

· g)∗ϒ)(T ).

Therefore, we can write⋃
γ∈0

(⋃
g∈G

(g∗(γ∗ϒ))(T )
)
=

⋃
γ∈0

γ
!

(⋃
g∈G

(γ−1
· g)∗ϒ(T )

)
.

Now, since ϒ is bounded, the second union on the RHS is finite for every γ , and
because ϒ is ks-defined and the set of Galois conjugates of a ks-defined character
is finite, the whole RHS is finite. This proves the boundedness assertion. The other
assertions follow as in [loc. cit.] �
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Using Lemma 3.8 we can ensure that, when appropriate, the states and quasi-
states constructed during the course of the paper [Bate et al. 2012] are Galois-stable.
In particular, we get the following variant of [loc. cit., Theorem 5.5]:

Theorem 3.9. Suppose6⊆1(Q) is a convex polyhedral non-completely reducible
subset of finite type contained in a single apartment of1(Q). Then6 has a G-centre.
In particular, if 6 is stabilized by all of 0, then there exists a 0-fixed point in 6.

Proof. Using Lemma 3.8, one can ensure that the quasi-state constructed in [Bate
et al. 2012, Lemma 5.2] which is used in the proof of [loc. cit., Theorem 5.5] is also
stable under the relevant elements of G. The proofs in [loc. cit.] now go through. �

Remark 3.10. In our application of Theorem 3.9 to the proof of Theorem 1.3 below,
6 is a 0-stable subset of 1ks (Q) and we want to show that 6 has a 0-fixed point.
A striking feature of Theorem 3.9 is that we do not require the apartment containing
6 to be ks-defined: it can be any apartment of the building 1(K)=1k̄(K).

We note here that, unfortunately, we do not know a priori that any cocharacter
corresponding to the fixed point given by Theorem 3.9 properly destabilizes v.
Moreover, we may need to consider cocharacters of Z(G0), which do not correspond
to simplices of the spherical building at all. These technical issues are at the heart
of many of the complications in the proofs in Section 4 below.

4. Proofs of the main results

Having put in place the building-theoretic technology needed for our proofs, we start
this section with a few more technical results to be used for the main theorems. As
always, V denotes a k-defined affine G-variety, and v ∈ V . One obstacle to proving
Theorems 1.1 and 1.3 is that we need to deal with cocharacters that live in Z(G0),
which are not detected by the simplicial building (cf. the proof of Theorem 3.6). An
extra problem for Theorem 1.3 is that we need to factor out some simple components
of G0. The following results let us deal with these difficulties.

Let N be a product of certain simple factors of G0, and let S be a torus of Z(G0).
Let M be the product of the remaining simple factors of G0 together with Z(G0).
Suppose that N and S are normal in G (this implies that M is normal in G as well),
and that N and S both fix v. Set G1 = G/N S and let π : G→ G1 be the canonical
projection. Since Z(G0) is ks-defined and ks-split, S is ks-defined, and it is clear
that N is ks-defined. So G1 and π are ks-defined. We have a ks-defined action of
G1 on the fixed point set V N S (note that V N S is G-stable).

Lemma 4.1. (i) For any µ1 ∈ Yks (G1), there exist n ∈ N and µ ∈ Yks (M) such
that π ◦µ= nµ1.

(ii) Let λ ∈ Yks . Then λ destabilizes v over ks in V if and only if π ◦ λ destabi-
lizes v over ks in V N S . Moreover, if this is the case then lima→0 λ(a) · v =
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lima→0(π ◦ λ)(a) · v belongs to Ru(Pλ(G))(ks) · v if and only if it belongs to
Ru(Pπ◦λ(G1))(ks) · v.

(iii) G1(ks) · v is cocharacter-closed over ks if and only if G(ks) · v is cocharacter-
closed over ks .

Proof. (i) Let µ1 ∈ Yks (G1). Since µ1 is ks-defined, we can choose a ks-defined
maximal torus T1 ⊆ G1 with µ1 ∈ Yks (T1). Since π is separable and ks-defined,
π−1(T1) ⊆ G is ks-defined [Springer 1998, Corollary 11.2.14]. Hence π−1(T1)

has a ks-defined maximal torus T . Let T ′ = T ∩M , a k̄-defined torus of M . Now
π(T ′)= π(T ) is a maximal torus of G1 by [Borel 1991, Proposition 11.14(1)]; but
π(T ′) is contained in T1, so we must have π(T ′) = T1. The surjection T ′→ T1

induces a surjection Q⊗Z Yk̄(T
′)→Q⊗Z Yk̄(T1) (the map before tensoring maps

onto a finite-index subgroup: e.g., by transposing the injective map on character
groups [Waterhouse 1979, Theorem 7.3]), hence there exist n ∈ N and µ ∈ Yk̄(T

′)

such that π ◦µ= nµ1. As µ ∈ Yk̄(T )= Yks (T ), µ is ks-defined as required.

(ii) The first assertion is immediate, as is the assertion that the limits coincide.
Since π is an epimorphism, we have π(Ru(Pλ(G)))= Ru(Pπ◦λ(G1)) (see [Conrad
et al. 2010, Corollary 2.1.9]). Moreover, since λ normalises N S, the restriction
of π to Ru(Pλ(G)) is separable (see [Conrad et al. 2010, Proposition 2.1.8(3) and
Remark 2.1.11]) and ks-defined, and hence is surjective on ks-points (cf. [Wa-
terhouse 1979, Corollary 18.5]). This implies that if the common limit v′ is in
Ru(Pπ◦λ(G1))(ks) ·v, it is contained in Ru(Pλ(G))(ks) ·v. The reverse implication
is clear, since π is ks-defined.

(iii) Suppose G(ks) · v is not cocharacter-closed over ks . Then there exists λ ∈ Yks

such that lima→0 λ(a) · v exists but does not belong to Ru(Pλ(G))(ks) · v. Then
lima→0(π ◦ λ)(a) · v exists but does not belong to Ru(Pλ(G1))(ks) · v, by part (ii).
Hence G1(ks) · v is not cocharacter-closed over ks , by Theorem 2.5.

Now suppose G1(ks) · v is not cocharacter-closed over ks . Then there exists
µ1 ∈ Yks (G1) such that v′ := lima→0 µ1(a) · v exists and does not belong to
Ru(Pµ(G1))(ks) · v. Replacing µ1 with a positive multiple nµ1 of µ1 if necessary,
it follows from part (i) that there exists µ ∈ Yks such that π ◦ µ = µ1. Then
lima→0 µ(a) · v is equal to v′ and v′ does not belong to Ru(Pλ(G))(ks) · v, by part
(ii). Hence G(ks) · v is not cocharacter-closed over ks , by Theorem 2.5. �

Remark 4.2. We insist in Lemma 4.1(i) that λ be a cocharacter of M because we
need this in the proof of Theorem 1.3.

Lemma 4.3. Let G be connected, let S be a ks-torus of Gv and set L = CG(S).
Suppose that for every λ,µ ∈ Yks such that Pλ = Pµ, either both of λ and µ
destabilize v or neither does. Then for every λ,µ∈Yks (L) such that Pλ(L)= Pµ(L),
either both of λ and µ destabilize v or neither does.
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Proof. Let λ,µ ∈ Yk(L) such that Pλ(L) = Pµ(L). We can choose σ ∈ Yk(S)
such that Lσ = L [Bate et al. 2015, Lemma 2.5]. Then Pλ(Lσ ) = Pµ(Lσ ) and
there exists n ∈N such that Pnσ+λ = Pλ(Lσ )Ru(Pσ ) and Pnσ+µ = Pµ(Lσ )Ru(Pσ )
[Bate et al. 2005, Lemma 6.2(i)]. By hypothesis, either both of nσ +λ and nσ +µ
destabilize v, or neither one does. In the first case, since σ fixes v, both λ and µ
must destabilize v. Conversely, in the second case neither λ nor µ can destabilize
v. �

Lemma 4.4. Let T be a maximal torus of G, let µ1, . . . , µr ∈ Y (T )\{0}, let µ =∑r
i=1 µi and assume µ 6= 0. Suppose g ∈ G and g · ζ(µi )= ζ(µi ) for all 1≤ i ≤ r .

Then g · ζ(µ)= ζ(µ).

Proof. Clearly, there is a permutation τ ∈ Sr such that none of the sums
∑t

i=1 µτ(i)

is 0 for 1≤ t ≤ r . Consider the special case r = 2 (the general case follows easily
by induction on r). Recall the addition operation + on V (K) and the canonical
projection ϕ : Y (K)→ V (K) from Section 3B. Let ξ : V (K)\{0} →1(K) be the
canonical projection. Note that ϕ and ξ are G-equivariant. Moreover, as g fixes
ζ(µ1) and g acts as an isometry, g fixes ϕ(µ1), and likewise g fixes ϕ(µ2). We
have

g · ζ(µ)= g · ζ(µ1+µ2)= g · ξ(ϕ(µ1+µ2))= ξ(g ·ϕ(µ1+µ2))

= ξ(g · (ϕ(µ1)+ϕ(µ2)))= ξ(g ·ϕ(µ1)+ g ·ϕ(µ2))

= ξ(ϕ(µ1)+ϕ(µ2))= ξ(ϕ(µ1+µ2))= ζ(µ1+µ2)= ζ(µ),

as required. �

We now have everything in place to prove Theorem 1.1.

Proof of Theorem 1.1. For part (i), suppose v ∈ V (k) and G(ks)·v is not cocharacter-
closed over ks . Clearly there is no harm in assuming S is a maximal k-defined torus
of Gv , so we shall do this. Since the closed subgroup Gv(ks) generated by Gv(ks)

is ks-defined and 0-stable, it is k-defined. Hence S is a maximal torus of Gv(ks);
in particular, S is a maximal ks-defined torus of Gv . Set H =CG(S). If σ ∈ Yk(H)
and σ destabilizes v but does not fix v then σ properly destabilizes v over ks for G,
by [Bate et al. 2015, Lemma 2.8]. Hence it is enough to prove that such a σ exists.

By Theorem 2.7(ii), H(ks)·v is not cocharacter-closed over ks . So we can choose
µ ∈ Yks (H) such that µ properly destabilizes v over ks for H . If µ ∈ Yks (Z(H

0))

then we are done by Lemma 2.8 and Remark 2.9. So assume otherwise. Then
Pµ(H 0) is a proper subgroup of H 0. By Lemma 4.3, 6v,ks (H) is a subcomplex of
1ks (H,K). It follows from Lemma 3.5 that 6v,ks (H) is not completely reducible,
since if Q is an opposite parabolic to Pµ(H 0) in H 0 then there exists µ′ ∈ Yks (H)
such that Pµ′ = Q and µ′ is opposite to µ, which is impossible. Clearly, 6v,ks (H)
is 0- and Hv(ks)-stable, so by Theorem 3.6 there is a 0- and Hv(ks)-fixed simplex
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s ∈ 6v,ks(H), corresponding to some proper parabolic subgroup P of H 0. There
exists σ ∈ Yk(H) such that P = Pσ (H 0) [Bate et al. 2013, Lemma 2.5(ii)], and σ
destabilizes v by construction. Now σ 6∈ Yks (Z(H

0)) since P is proper. But every
ks-defined torus of Hv(ks) is contained in Z(H 0) (since S is contained in Z(H 0)),
so σ does not fix v. As σ commutes with S, it follows from [Bate et al. 2015,
Lemma 2.8] that v′ := lima→0 σ(a) ·v does not lie in H(ks) ·v. This completes the
proof of (i).

For part (ii), Proposition 2.6 shows that if G(k ′) · v is cocharacter-closed over
k ′ then G(k) · v is cocharacter-closed over k. For the other direction, suppose that
G(k ′) · v is not cocharacter-closed over k ′. Again by Proposition 2.6, we may
assume k ′ = ks . Applying part (i) with S = 1, we find σ ∈ Yk such that σ properly
destabilizes v over ks . In particular, G(k) · v is not cocharacter-closed over k. This
finishes part (ii).

Part (iii) of Theorem 1.1 follows using similar arguments to those in the proof
of [Bate et al. 2015, Theorem 5.7(ii)]. Let S be a k-defined torus of Gv and let
L =CG(S). First, by the argument of [Bate et al. 2015, Lemma 6.2], we can assume
without loss that v ∈ V (ks) without changing 6v,ks . Second, by [Bate et al. 2015,
Lemma 6.3] and the argument of the proof of [Bate et al. 2015, Theorem 6.1], we can
pass to a suitable G-variety W and find w ∈W (k) such that 6w,ks =

⋂
γ∈0 γ ·6v,ks ;

in particular, 6w,ks is a subcomplex of 1k(Q) and 6w,k =6v,k . The arguments of
[Bate et al. 2015, Section 6] also show that S fixes w. Hence we can assume without
loss that v ∈ V (k). As before, Lemma 4.3 implies that 6v,ks (L) is a subcomplex of
1ks (L ,K). We may thus apply part (ii) and assume k = ks . But then S is k-split,
so the result follows from Theorem 2.7. �

Remark 4.5. We do not know how to prove that Pσ (G0) from Theorem 1.1(i)
is normalised by Gv(ks), but the proof does show that Pσ (G0) is normalised by
Hv(ks).

Proof of Theorem 1.3. For part (i), suppose v ∈ V (k) and G(ks)·v is not cocharacter-
closed over ks . Recall that a connected algebraic group is nilpotent if and only if
it contains just one maximal torus (see [Humphreys 1975, §21.4 Proposition B]).
Let Gi be a simple component of G0. If rank(Gi ) = 1 and dim(Gi )v ≥ 2 then
(Gi )

0
v must contain a Borel subgroup Bi of Gi : but then the orbit map Gi → Gi · v

factors through the connected projective variety Gi/Bi and hence is constant, so
(Gi )v = Gi .

Let N be the product of the simple components of G0 that fix v, and let K be the
product of the remaining simple components of G0 together with Z(G0)0. Then
N and K are 0-stable, so they are k-defined. The next step is to factor out N and
reduce to the case when the stabilizer has nilpotent identity component. As in the
proof of Theorem 1.1, Gv(ks) is k-defined and we may assume S is a maximal
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k-defined torus of Gv and a ks-defined maximal torus of Gv(ks). We can choose
k-defined tori S0 of K and S2 of N such that S = S0S2. Note that K 0

v is nilpotent —
this holds by assumption in case (a), and by the above argument in case (b) — so
S0 is the unique maximal k-defined torus of Kv(ks).

Let H0 = NG(S0), let H = NH0(N ) and let M = CK (S0). Then H0 is k-defined
[Conrad et al. 2010, Lemma A.2.9], so H is k-defined as it is 0-stable and has
finite index in H 0. Note that H 0

= N M = CG(S0)
0, so N is a product of simple

components of H 0 and M is the product of Z(H 0)0= S0 Z(G0)0 with the remaining
simple components of H 0. The subgroup M of H is normal, so it is 0-stable and
hence k-defined. Now M0

v is nilpotent since K 0
v is, so M0

v has a unique maximal
torus S′— in particular, S0 ⊆ S′ and S0 is the unique maximal torus of Mv(ks).
Since Gv(ks) normalises N and K , Gv(ks) normalises N and S0, so Gv(ks)⊆ H ;
it follows that Hv(ks)= Gv(ks).

Let H1 = H/N S0 and let π : H → H1 be the canonical projection. We wish
to find λ1 ∈ Yks (H1) such that λ1 properly destabilizes v over ks and Pλ1(H1)

is k-defined. Note that no nontrivial ks-defined cocharacter of H1 fixes v; for if
0 6= λ1 ∈ Yks (H1) fixes v then by Lemma 4.1, there exist n ∈ N and λ ∈ Yks (M)
such that π ◦λ= nλ1, and 〈Im(λ)∪ S〉 is a ks-defined torus of Gv(ks) that properly
contains S, contradicting the maximality of S. Clearly, (H1)

0
v is nilpotent with

unique maximal torus S′1 :=π(S
′). Since H 0

=CG(S0)
0, H(ks)·v is not cocharacter-

closed over ks , by Theorem 2.7(ii) and [Bate et al. 2015, Corollary 5.3]. Hence
H1(ks) · v is not cocharacter-closed over ks (Lemma 4.1). Let λ1 ∈ Yks (H1) such
that λ1 destabilizes v. By Lemmas 2.8 and 4.1, we can assume λ1 does not properly
destabilize v over k̄. Therefore, there exists u ∈ Ru(Pλ1(H1)) such that u · λ1 fixes
v; then u · λ1 must be a cocharacter of S′1. It follows that 6v,ks (H1)⊆1ks (T1,Q),
where T1 is a fixed maximal torus of H1 that contains S′1. Note that T1 and S′1
need not be k-defined, or even ks-defined. As H1(ks) · v is not cocharacter-closed
over ks , 6v,ks (H1) is not completely reducible (Lemma 3.5(ii)). Now 6v,ks (H1) is
stabilized by 0 and by (H1)v(ks), so it follows from Theorem 3.9 that 6v,ks (H1)

contains a 0-fixed and (H1)v(ks)-fixed point x1. We can write x1 = ζ(µ1) for some
µ1 ∈ Yks (H1). Then µ1 destabilizes v but does not fix v; moreover, Pµ1(H

0
1 ) is

0-stable and is normalised by (H1)v(ks). In particular, Pµ1(H
0
1 ) is k-defined.

By Lemma 4.1, there exist n ∈ N and µ ∈ Yks (M) such that π ◦µ= nµ1 and µ
destabilizes v; note that µ does not fix v, because µ1 does not. The map π gives a
bijection between the parabolic subgroups of M0 and the parabolic subgroups of
H 0

1 . So Pµ(M0) is 0-stable — because Pµ1(H
0
1 ) is — and hence is defined over k.

As π(Hv(ks)) is contained in (H1)v(ks) and (H1)v(ks) normalises Pµ1(H
0
1 ), Hv(ks)

normalises Pµ(M0).
After replacing µ if necessary with an Ru(Pµ(H 0))(ks)-conjugate of µ, we can

assume that µ is a cocharacter of a k-defined maximal torus T of Pµ(H 0). Let
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µ(1), . . . , µ(r) be the 0-conjugates of µ. These are cocharacters of T , so they all
commute with each other. Set σ =

∑r
i=1 µ

(i), a k-defined cocharacter of T . Note
that σ centralizes S = S0S2. Now π ◦ σ destabilizes v but does not fix v (since
π ◦ σ 6= 0), so σ does not fix v. This implies by [Bate et al. 2015, Lemma 2.8]
that σ properly destabilizes v over ks for G. Since Hv(ks) is 0-stable and fixes
ζ(µ), Hv(ks) fixes ζ(µ(i)) for all 1≤ i ≤ r . It follows from Lemma 4.4 that Hv(ks)

fixes ζ(σ ): that is, for all h ∈ Hv(ks), there exists u ∈ Ru(Pσ (H 0))(ks) such that
h · σ = u · σ . Hence Pσ (G0) is normalised by Hv(ks) = Gv(ks). This completes
the proof of (i).

Parts (ii) and (iii) now follow as in the proof of Theorem 1.1 (there is no need to
reduce to the case when v is a k-point in (iii) because we already assume this). �

Remark 4.6. It can be shown that Theorem 1.3(iii) actually holds without the
assumption that v is a k-point. Here is a sketch of the proof. It is enough to
prove that Levi ascent holds. Without loss, assume S is a maximal k-defined torus
of Gv. As in the proof of Theorem 1.1(iii), we replace v with a k-point w of a
k-defined G-variety W , with the property that 6w,ks ⊆ 6v,ks and 6w,ks = 6v,ks .
By the arguments of [Bate et al. 2015, Section 6], we can assume that S and N
fix w. Suppose G(k) · v is not cocharacter-closed over k. Then G(k) ·w is not
cocharacter-closed over k, so L(ks) ·w is not cocharacter-closed over ks , by Galois
descent and split Levi ascent. It follows that H1(ks) ·w is not cocharacter-closed
over ks , where H1 is defined as in the proof of Theorem 1.3. We do not know
whether hypotheses (a) and (b) of Theorem 1.3 hold for w. The key point, however,
that makes the proof of Theorem 1.3(i) work is that 6v,ks (H1) is contained in
a single apartment of 1ks (H1,Q). The analogous property holds for 6w,ks (H1)

since 6w,ks (H1) ⊆ 6v,ks (H1). Hence Galois ascent holds and H1(k) · w is not
cocharacter-closed over k. Then H1(k) · v is not cocharacter-closed over k, and the
result follows.

5. Applications to G-complete reducibility

Many of the constructions in this paper, and in the key references [Bate et al. 2013;
2012; 2015], were inspired originally by the study of Serre’s notion of G-complete
reducibility for subgroups of G. We refer the reader to [Serre 2005] and [Bate
et al. 2005] for a thorough introduction to the theory. We simply record the basic
definition here:

Definition 5.1. A subgroup H of G is said to be G-completely reducible over k if
whenever H is contained in a k-defined R-parabolic subgroup P of G, there exists
a k-defined R-Levi subgroup L of P containing H . (We do not assume that H is
k-defined.)
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Theorem 5.2 ([Bate et al. 2015, Theorem 9.3]). Let H be a subgroup of G and let
h ∈ H n be a generic tuple of H (see [Bate et al. 2013, Definition 5.4]). Then H is
G-completely reducible over k if and only if G(k) · h is cocharacter-closed over k,
where G acts on Gn by simultaneous conjugation.

Theorem 5.2 allows us to prove results about G-complete reducibility over k
using our results on geometric invariant theory. If G is connected, and h ∈ Gn is a
generic tuple for a subgroup H of G, then 6h is a subcomplex of 1G(Q), since
for any λ ∈ Y , λ destabilizes h if and only if H ⊆ Pλ; this means that we are in the
territory of Theorem 1.1.

Proof of Theorem 1.4. Let h be a generic tuple of H . Then 6h,ks is a subcomplex of
1G,ks , and CG(H)=Gh. The result now follows from Theorems 5.2 and 1.1(iii). �

This theory has a counterpart for Lie subalgebras of g := Lie(G). The basic
definitions and results were covered for algebraically closed fields in [McNinch
2007] and [Bate et al. 2011, Section 3.3], but the extension to arbitrary fields is
straightforward (cf. [Bate et al. 2011, Remark 4.16]).

Definition 5.3. A Lie subalgebra h of g is G-completely reducible over k if when-
ever P is a k-defined parabolic subgroup of G such that h⊆ Lie(P), there exists a
k-defined Levi subgroup L of P such that h⊆ Lie(L). (We do not assume that h is
k-defined.)

The group G acts on gn via the simultaneous adjoint action for any n∈N. The next
result follows from [Bate et al. 2011, Lemma 3.8] and the arguments in the proofs
of [Bate et al. 2011, Theorems 4.12(iii)] (cf. [Bate et al. 2011, Theorem 3.10(iii)]).

Theorem 5.4. Let h be a Lie subalgebra of g and let h∈hn such that the components
of h generate h as a Lie algebra. Then h is G-completely reducible over k if and
only if G(k) · h is cocharacter-closed over k.

We now give the applications of our earlier results to G-complete reducibility
over k for Lie algebras.

Theorem 5.5. Let h be a Lie subalgebra of g.

(i) Suppose h is k-defined, and let k ′/k be a separable algebraic extension. Then
h is G-completely reducible over k ′ if and only if h is G-completely reducible
over k.

(ii) Let S be a k-defined torus of CG(h) and set L=CG(S). Then h is G-completely
reducible over k if and only if h is L-completely reducible over k.

Proof. Pick h∈ hn for some n ∈N such that the components of h generate h as a Lie
algebra. If h is k-defined then we can assume that h ∈ h(k)n . Part (i) now follows
from Theorems 5.4 and 1.1(ii), and part (ii) from Theorems 5.4 and 1.1(iii). �
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EMBEDDING FUNCTOR FOR CLASSICAL GROUPS
AND BRAUER–MANIN OBSTRUCTION

EVA BAYER-FLUCKIGER, TING-YU LEE AND RAMAN PARIMALA

In memory of Robert Steinberg

Let K be a global field of characteristic not 2. The embedding problem for
maximal tori in a classical group G can be described in terms of algebras
with involution. The aim of this paper is to give an explicit description of the
obstruction group to the Hasse principle in terms of ramification properties
of certain commutative étale algebras, and to show that this group is iso-
morphic to one previously defined by the second author. This builds on our
previous work as well as on results of Borovoi. In particular, we show that
this explicit obstruction group can be identified with the group of Borovoi
(J. Reine Angew. Math. 473 (1996), 181–194), where X is the homogeneous
space associated to the embedding functor defined by the second author
(Comment. Math. Helv. 89 (2014), 671–717).

Introduction

Let K be a field of characteristic 6= 2, and let G be a reductive linear algebraic group
defined over K . The paper [Lee 2014] is concerned with embeddings of maximal
tori into G. In particular, if K is a global field, then results of Borovoi [1999] are
used to show that the Brauer–Manin obstruction is the only obstruction to the Hasse
principle. More precisely, the paper [Lee 2014] defines a homogeneous space X
over G having the property that the obstruction to the Hasse principle can be seen
as an element of the dual of the group B(X), where B(X) is the locally trivial
subgroup of the algebraic Brauer group of X (see [Borovoi 1999, p. 493, p. 499]).

If G is a classical group, then the above-mentioned embedding problem can
be described in terms of embeddings of algebras with involution. The aim of the
present paper is to give an explicit description of the obstruction group B(X) in
terms of ramification properties of certain commutative étale algebras.
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We are not aware of similar descriptions in the case of exceptional groups. Note
however that when G is of type G2, the group B(X) vanishes; in particular, the
Hasse principle holds (see [Beli et al. 2015, Proposition 6.1]).

The paper is structured as follows. In Section 1, we recall from [Lee 2014]
the definition of the oriented embedding functor, and we discuss its relationship
with embedding questions of algebras with involution. In Sections 2–5, we assume
moreover that K is a global field. In these sections we give the description of the
obstruction group B, and prove that B'B(X) (see Theorem 2.1). Finally, Section 6
discusses Brauer–Manin obstructions to the Hasse principle, and the relationship of
the results of the present paper with those of [Bayer-Fluckiger et al. 2014].

1. Embedding functor, algebras with involution and orientation

1.1. The embedding functor. Let K be a field of characteristic 6= 2, let Ks be a
separable closure of K , and let 0K = Gal(Ks/K ). Let G be a reductive group
over K . Let T be a torus and let 9 be a root datum attached to T (see [Demazure
and Grothendieck 2011, Exposé XXI, Definition 1.1.1]). For a maximal torus T ′

in G, we let 8(G, T ′) be the root datum of G with respect to T ′. If 8(G, T ′)Ks

and 9Ks are isomorphic, then we say that G and 9 have the same type.
Assume that G and9 have the same type. Let Isom(9,8(G, T ′)) be the scheme

of isomorphisms between the root data 9 and 8(G, T ′). Define

Isomext(9,8(G, T ′))= Isom(9,8(G, T ′))/W(9),

where W(9) is the Weyl group of 9. The scheme Isomext(9,8(G, T ′)) is inde-
pendent of the choice of the maximal torus T ′, and we denote it by Isomext(9,G).
An orientation is by definition an element of Isomext(9,G)(K ).

The embedding functor E(G, 9) is defined as follows: for any K-algebra C ,
let E(G, 9)(C) be the set of embeddings f : TC → GC such that f is both a
closed immersion and a group homomorphism which induces an isomorphism
f 9 :9C −→

∼ 8(GC , f (TC)) such that f 9(α)= α ◦ f −1
| f (TC ′ )

for all the C ′-roots α
in 9C ′ for each C-algebra C ′ (see [Lee 2014, §2.1]). Given an orientation ν in
Isomext(9,G)(K ), we define the oriented embedding functor as follows (see [Lee
2014, §2.2]): for any K-algebra C , set

E(G, 9, ν)(C)= { f : TC ↪→ GC | f ∈ E(G, 9)(C) and

the image of f 9 in Isomext(9,G)(C) is ν}.

The oriented embedding functor is a homogeneous space under the adjoint action
of G. For each root datum9, we can associate a simply connected root datum sc(9)
to it (see [Demazure and Grothendieck 2011, Exposé XXI, §6.5.5 (iii)]). Let sc(T )
be the torus associated to sc(9).
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1.2. Algebras with involution and the embedding functor. Let L be a field of
characteristic 6= 2, and let A be a central simple algebra over L . Let τ be an
involution of A, and let K be the fixed field of τ in L . Recall that τ is said to be
of the first kind if K = L and of the second kind if K 6= L; in this case, L is a
quadratic extension of K . Let dimL(A)= n2. Let E be a commutative étale algebra
of rank n over L , and let σ : E→ E be a K-linear involution such that σ |L = τ |L .
An embedding of (E, σ ) in (A, τ ) is by definition an injective homomorphism
f : E→ A such that τ( f (e))= f (σ (e)) for all e ∈ E .

The unitary groups U(A, τ ) and U(E, σ ) are defined as follows. For any com-
mutative K-algebra C , set

U(A, τ )(C)= {x ∈ A⊗K C | xτ(x)= 1}
and

U(E, σ )(C)= {x ∈ E ⊗K C | xσ(x)= 1}.

Let G = U(A, τ )◦ be the connected component of U(A, τ ) containing the neutral
element, and let T =U(E, σ )◦ be the connected component of U(E, σ ) containing
the neutral element.

Set F = {e ∈ E | σ(e) = e}. If L 6= K , then we have dimK (F) = n (see for
instance [Prasad and Rapinchuk 2010, Proposition 2.1]). If L = K , then let us
assume that dimK (F)= [(n+ 1)/2].

Then one can associate a root datum 9 to the torus T such that G is of type 9
(see [Lee 2014, §2.3.1]). Moreover, except for A of degree 2 with τ orthogonal,
there exists a K-embedding from (E, σ ) to (A, τ ) if and only if there exists an
orientation ν such that E(G, 9, ν)(K ) is nonempty (see [Lee 2014, Theorem 2.15
and Proposition 2.17]).

1.3. Orientations in terms of algebras. Let (E, σ ) and (A, τ ) be as above. As-
sume moreover that (A, τ ) is orthogonal, and that the degree of A is even. Let
1(E) be the discriminant of the étale algebra E (see [Knus et al. 1998, Chapter V,
§18, p. 290]), and let Z(A, τ ) be the center of the Clifford algebra of (A, τ ) (see
[Knus et al. 1998, Chapter II (8.7)]). Then an orientation can be thought of as the
choice of an isomorphism 1(E)→ Z(A, τ ). More precisely:

Proposition 1.3.1. We have an isomorphism

Isom(1(E), Z(A, τ ))' Isomext(9,G).

Proof. Let Eτ be a maximal τ-invariant étale subalgebra of A. Let Tτ = U(Eτ , τ )◦;
then Tτ is a maximal torus of G. Let 8(G, Tτ ) be the root datum of G with respect
to Tτ . Then we have a natural map α : Isom((E, σ ), (Eτ , τ ))→ Isom(9,8(G, Tτ )).
Using the identification of Aut(E, σ ) and Aut(9), we see that α is equivariant
under the action of Aut(E, σ ). Let 00 be the subgroup of Aut(E, σ ) corresponding
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to the Weyl group of 9 under this identification. Note that 00 is the twisted constant
scheme which consists of even permutations in Aut(E, σ )⊂ Aut(E). Indeed, by
[Lee 2014, Lemma 2.1.1 (2)] the automorphisms of (E, σ ) are in bijection with
those of the root datum 9. By [Bourbaki 1981, Planche IV, numéro X], these
consist of even permutations. Let us consider the following commutative diagram:

Isom((E, σ ), (Eτ , τ ))

��

// Isom(9,8(G, Tτ ))

��

Isom((E, σ ), (Eτ , τ ))/00 // Isom(9,8(G, Tτ ))/W(9)

Recall that Isom(9,8(G, Tτ ))/W(9)= Isomext(9,8(G, Tτ )), and note that we
have Isom((E, σ ), (Eτ , τ ))/00 ' Isom(1(E),1(Eτ )).

If we pick another maximal étale subalgebra E ′τ of A invariant by τ , then
the method used for Isomext(9,9τ ) in [Lee 2014, §2.2.1] shows that we have a
canonical isomorphism between Isom(1(E),1(E ′τ )) and Isom(1(E),1(Eτ )).

Let us fix an isomorphism 1(Eτ )→ Z(A, τ ) as in [Bayer-Fluckiger et al. 2014,
§2.3]. This gives an isomorphism Isom(1(E),1(Eτ ))→ Isom(1(E), Z(A, τ )).
Hence, we have

Isom(1(E), Z(A, τ ))' Isomext(9,8(G, Tτ ))= Isomext(9,G). �

See [Bayer-Fluckiger et al. 2014, §2] for details concerning the construction and
properties of orientation in terms of algebras with involution.

2. Obstruction groups

Assume now that K is a global field, let (E, σ ), (A, τ ) be as in Section 1, and
suppose that τ is either orthogonal or unitary. Note that L = K in the first case, and
L 6= K in the second case. The aim of this section and the following ones is to recall
the definition of the obstruction group to the Hasse principle defined in [Bayer-
Fluckiger et al. 2014, §3, §5.1], and show that it is isomorphic to the obstruction
group of [Lee 2014] (see Proposition 2.2), as well as to the one considered by
Borovoi [1996; 1999] (see Theorem 2.1). As we will see, the group B(E, σ ) is
defined in terms of ramification properties of the algebra (E, σ ).

Let us denote by �K the set of places of K . For all v ∈ �K , we denote by Kv
the completion of K at v. For all K-algebras B, set Bv = B⊗K Kv.

The commutative étale algebra E is by definition a product of separable field
extensions of L . Let us write E=E1×· · ·×Em , with σ(Ei )=Ei for all i=1, . . . ,m,
and such that Ei is either a field stable by σ or a product of two fields exchanged
by σ . Recall that F = Eσ .
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Set I = {1, . . . ,m}. We have F = F1 × · · · × Fm , where Fi is the fixed field
of σ in Ei for all i ∈ I . Note that either Ei = Fi = K or Ei = Fi × Fi or Ei is a
quadratic field extension of Fi .

Let us write
E = E1× · · ·× Em1 × Em1+1× · · ·× Em,

where Ei/Fi is a quadratic extension for all i = 1, . . . ,m1 and where Ei = Fi × Fi

or Ei = K if i = m1+ 1, . . . ,m. Set E ′ = E1× · · · × Em1 and I ′ = {1, . . . ,m1}.
If i ∈ I ′, let 6i be the set of places v ∈�K such that all the places of Fi over v split
in Ei . Given an m1-tuple x = (x1, . . . , xm1) ∈ (Z/2Z)m1 , set

I0 = I0(x)= {i | xi = 0}, I1 = I1(x)= {i | xi = 1}.

Note that (I0, I1) is a partition of I ′. Let S′ be the set

S′ =
{
(x1, . . . , xm) ∈ (Z/2Z)m1 |

(⋂
i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
=�K

}
,

and set
S = S′ ∪ (0, . . . , 0)∪ (1, . . . , 1).

We define an equivalence relation on S by

(x1, . . . , xm1)∼ (x
′

1, . . . , x ′m1
) if (x1, . . . , xm1)+ (x

′

1, . . . , x ′m1
)= (1, . . . , 1)

or (x1, . . . , xm1)= (x
′

1, . . . , x ′m1
).

Let us denote by B(E, σ ) the set of equivalence classes of S under the above
equivalence relation. It is easy to check that B(E, σ ) is a group under compo-
nentwise addition (see [Bayer-Fluckiger et al. 2014, Lemma 3.1.1]). Note that
in [Bayer-Fluckiger et al. 2014], the group B(E, σ ) is denoted by X(E ′, σ ) (see
[Bayer-Fluckiger et al. 2014, §3, §5.1]).

Set X = E(G, 9, u). Recall that we are assuming that τ is either orthogonal (and
L = K ) or unitary (and L 6= K ). The group B(X) is defined in [Borovoi 1999, §3].

Theorem 2.1. The groups B(E, σ ) and B(X) are isomorphic.

This theorem is a consequence of Propositions 2.2 and 2.3 below.

Proposition 2.2. The groups X1(K , sc(T̂ )) and B(E, σ ) are isomorphic.

Proposition 2.3. The groups X1(K , sc(T̂ )) and B(X) are isomorphic.

The proofs of these propositions will be given in the next sections. Let us start by
introducing some notation that will be used in both proofs. For any finite separable
field extension N/N′ and any discrete 0N-module M , set IN/N′(M) = Ind0N′

0N
(M).

Note that IN/N′(Z) is the character group of RN/N′(Gm). Let ŜN/N′ be the character
group of the norm-one torus R(1)N/N′(Gm).
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3. Proof of Proposition 2.2 when L = K and τ is orthogonal

We keep the notation of the previous sections, and assume that L = K and that τ is
orthogonal. The aim of this section is to prove Proposition 2.2 in this case. The
proof of Proposition 2.2 when L 6= K is the subject matter of Section 4.

Let us consider the diagram

(1)

1

��

1

��

1 // R(1)F/K (Gm) //

��

R(1)E/K (Gm) //

��

sc(T ) // 1

1 // RF/K (Gm) //

��

RE/K (Gm)

��

1 // Gm
×2

//

��

Gm

��

1 1

where the first row (see [Lee 2014, Lemma 3.16]) and the columns are exact. Then
consider the corresponding diagram of character groups:

(2)

0

��

0

��

Z
×2

//

��

Z

��

IE/K (Z)
π
//

��

IF/K (Z) //

��

0

0 // sc(T̂ ) // ŜE/K
π

//

��

ŜF/K //

��

0

0 0

Note that we have IE/K (Z) =
⊕m

i=1 IEi/K (Z) and IF/K (Z) =
⊕m

i=1 IFi/K (Z).
The module IEi/K (Z) can also be written as IFi/K (IEi/Fi (Z)). Let d be the degree
map from IEi/Fi (Z) ' Z⊕ Z to Z, which sends (x, y) to x + y. Then on each
IFi/K (IEi/Fi (Z)), the map π is the map induced by the degree map from IEi/Fi (Z)

to Z.



EMBEDDING FUNCTOR FOR CLASSICAL GROUPS 93

Set 0 = 0K . We derive the following long exact sequence from diagram (2):

0→ sc(T̂ )0→ (ŜE/K )
0 π
−→ (ŜF/K )

0
→ H1(K , sc(T̂ ))→ H1(K , ŜE/K ).

Thus we have the exact sequence

0→ (ŜF/K )
0/π((ŜE/K )

0) δ
−→H1(K , sc(T̂ ))→ H1(K , ŜE/K ).

Note that H2(K ,R(1)E/K (Gm)) injects into H2(K ,RE/K (Gm)) by Hilbert’s The-
orem 90. By the Brauer–Hasse–Noether Theorem, X2(K ,RE/K (Gm)) vanishes,
hence so does X2(K ,R(1)E/K (Gm)). By Poitou–Tate duality, we have

X1(K , ŜE/K )'X2(K ,R(1)E/K (Gm))
∗
= 0.

Therefore, X1(K , sc(T̂ )) is in the image of (ŜF/K )
0/π((ŜE/K )

0).
Since the Fi s are field extensions of K , we have IFi/K (Z)

0
' Z. Thus, we have

IF/K (Z)
0
'
⊕m

i IFi/K (Z)
0
' Zm , and (ŜF/K )

0
' Zm/(1, . . . , 1).

If Ei = Fi×Fi , then π sends IEi/K (Z)
0
' IFi/K (Z)

0
×IFi/K (Z)

0 surjectively onto
IFi/K (Z)

0
' Z. If Ei = K , then IEi/K (Z)' Z' IFi/K (Z). If Ei is a quadratic field

extension of Fi , the map π sends IEi/K (Z)
0
'Z to IFi/K (Z)

0
'Z by multiplication

by 2. Recall that m =m1+m2, where m1 is the number of indices i such that Ei is
a quadratic field extension of Fi , and m2 is the number of indices i such that either
Ei = Fi × Fi or Ei = K . Then we have

(ŜF/K )
0/π((ŜE/K )

0)' (Z/2Z)m1/(1, . . . , 1).

We claim that the map δ : (ŜF/K )
0/π((ŜE/K )

0)→ H1(K , sc(T̂ )) sends bijec-
tively B(E, σ ) to X1(K , sc(T̂ )).

Let (I0, I1) ∈ B(E, σ ), let a be the corresponding element in

(ŜF/K )
0/π((ŜE/K )

0)

and let x be the image of a in H1(K , sc(T̂ )). We claim that x is in X1(K , sc(T̂ )).
It suffices to prove that, for any v ∈�K , we have av = 0.

For a place v ∈
⋂

i∈I1
6i , we have that Evi splits over Fvi for all i ∈ I1. Hence,

π maps IEvi /Kv (Z)
0v ' IFvi /Kv (Z)

0v ⊕ IFvi /Kv (Z)
0v onto IFvi /Kv (Z)

0v for each i ∈ I1,
and so (ŜF/K )

0v/π((ŜE/K )
0v ) = 0 for each i ∈ I1 and avi = 0. On the other hand,

for each i ∈ I0, we have ai = 0 by definition. Therefore, av = 0.
For a place v ∈

⋂
i∈I0
6i , we replace (a1, . . . , am1) by (a1, . . . , am1)+(1, . . . , 1).

Note that (a1, . . . , am1)+ (1, . . . , 1) and (a1, . . . , am1) represent the same class a
in (ŜF/K )

0/π((ŜE/K )
0). By the same argument as above, we have av = 0. Since(⋂

i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
=�K , we have av = 0 for all v ∈�K , which proves that

x is an element of X1(K , sc(T̂ )).
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This proves that δ induces a map B(E, σ )→X1(K , sc(T̂ )). We already know
that this map is injective. Let us prove that it is also surjective.

Let 0 6= x ∈ X1(K , sc(T̂ )). Let a ∈ (ŜF/K )
0/π((ŜE/K )

0) be the preimage
of x , let av be the localization of a at the place v, and let (a1, . . . , am1) be a lift
of a in (Z/2Z)m1 . Let (I0, I1) be the corresponding partition. Now we claim that(⋂

i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
=�K . Suppose that

(⋂
i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
6=�K , and let

v ∈�K \
(⋂

i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
. Therefore, there exist i0 ∈ I0 and i1 ∈ I1 such that

Evi0
is not split over Fvi0

and Evi1
is not split over Fvi1

. Let Fvi =
∏ni

j=1 L i, j , where
the L i, j s are field extensions of Kv . Let Evi =

∏ni
j=1 Mi, j , where Mi, j is a quadratic

étale algebra over L i, j . Set 0v = 0Kv . Then we have

IFvi /Kv (Z)
0v/π(IEvi /Kv (Z)

0v )=

ni⊕
j=1

IL i, j/Kv (Z)
0v/π(IMi, j/Kv (Z)

0v ).

If Mi, j is split over L i, j , then

IMi, j/Kv (Z)
0v = IL i, j×L i, j/Kv (Z)

0v = IL i, j/Kv (Z)
0v ⊕ IL i, j/Kv (Z)

0v ,

so π sends IMi, j/kv (Z)
0v surjectively to IL i, j/kv (Z)

0v . On the other hand, if Mi, j is a
field extension over L i, j , then π maps IMi, j/Kv (Z)

0v ' Z to 2Z⊆ Z' IL i, j/Kv (Z)
0v

and we have
IL i, j/Kv (Z)

0v/π(IMi, j/Kv (Z)
0v )' Z/2Z.

For ai ∈ IFi/K (Z)
0/π(IEi/K (Z)

0)' Z/2Z, the localization map sends ai diago-
nally into

IFvi /Kv (Z)
0v/π(IEvi /Kv (Z)

0v )'
⊕

j where Mi, j
is nonsplit

Z/2Z.

Let avi be the image of ai in IFvi /Kv (Z)
0v/π(IEvi /Kv (Z)

0v ). By our choice of v,
we have that IFvi0/Kv (Z)

0v/π(IEvi0/Kv (Z)
0v ) (resp. IFvi1/Kv (Z)

0v/IEvi1/Kv (Z)
0v ) is non-

trivial. In particular, avi1
is nonzero as ai1 is nonzero. Note that⊕

i

(ŜFvi /Kv )
0v/π((ŜEvi /Kv )

0v )=

⊕
i IFvi /Kv (Z)

0v/π(IEvi /Kv (Z)
0v )

(1̄, . . . , 1̄)
,

where 1̄ denotes the image of the diagonal element of IFvi /Kv (Z)
0v in

IFvi /Kv (Z)
0v/π(IEvi /Kv (Z)

0v ).

Since av = 0, we have either avi = 0 ∈ IFvi /Kv (Z)
0v/π(IEvi /Kv (Z)

0v ) for all i , or
avi = 1̄ ∈ IFvi /Kv (Z)

0v/π(IEvi /Kv (Z)
0v ) for all i . In particular, this implies that avi0

and avi1
are either both 0 or both 1, which is a contradiction. Therefore, we have(⋂

i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
=�K and (I0, I1) ∈ B(E, σ ). �
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4. Proof of Proposition 2.2 when L 6= K

We keep the notation of the previous sections and assume that L 6= K . The aim of
this section is to prove Proposition 2.2 in this case.

In this case, the torus sc(T ) fits in the following exact sequence:

(3) 1→ sc(T )→ RF/K (R
(1)
E/F (Gm))→ R(1)L/K (Gm)→ 1.

We take the dual sequence of exact sequence (3):

(4) 0→ ŜL/K
ι
−→ IF/K (ŜE/F )

p
−→ sc(T̂ )→ 0,

from which we derive the long exact sequence

(5)
· · · → H1(K , ŜE/K )

ι1
−→H1(K , IF/K (ŜE/F ))

p1
−→H1(K , sc(T̂ ))→ H2(K , ŜE/K ).

By Poitou–Tate duality, we have X2(K , ŜE/K )'X1(K ,R(1)E/K (Gm))
∗. We claim

that X2(K , ŜE/K )'X1(K ,R(1)E/K (Gm))
∗
= 0. To see this, we consider the follow-

ing exact sequence:

1→ R(1)L/K (Gm)→ RL/K (Gm)→ Gm→ 1.

By Hilbert Theorem 90, we have H1(K ,R(1)L/K (Gm)) = K×/NL/K (L×), where
NL/K is the norm map from L to K . Since the norms of the quadratic extension
L over K satisfy the local-global principle, we have X1(K ,R(1)L/K (Gm))= 0. Hence
X2(K , ŜL/K )= 0. Therefore, the group X1(K , sc(T̂ )) is contained in the image
of H1(K , IF/K (ŜE/F )).

Let us consider the following exact sequence:

(6) 1→ Gm→ RL/K (Gm)
π
−→R(1)L/K (Gm)→ 1,

where π(x)= x/σ(x). Considering the dual sequence, we get

(7) 0→ ŜL/K → IL/K (Z)
d
−→Z→ 0,

where d is the degree map which maps (a, b) ∈ Z⊕Z' IL/K (Z) to a+ b. Taking
the long exact sequence associated to (7), we have

(8) IL/K (Z)
0 d
−→Z→ H1(K , ŜL/K )→ H1(K , IL/K (Z))= 0.

Since L is a quadratic field extension of K , we obtain

H1(K , ŜL/K )' Z/d(IL/K (Z)
0)= Z/2Z.
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Similarly, we have

H1(K , IF/K (ŜE/F ))= H1(F, ŜE/F )=

m∏
i=1

H1(Fi , ŜEi/Fi ).

If Ei = Fi× Fi , then H1(Fi , ŜEi/Fi )= 0 since d is surjective. If Ei is a quadratic
extension of Fi , then H1(Fi , ŜEi/Fi )= Z/2Z. Recall that m = m1+m2, where m1

is the number of indices i such that Ei is a quadratic extension of Fi , and m2 is the
number of indices i such that Ei = Fi × Fi . Then H1(K , IF/K (ŜE/F ))' (Z/2Z)m1 .

The map ι1 : H1(K , ŜL/K )→ H1(K , IF/K (ŜE/F )) maps Z/2Z diagonally into
(Z/2Z)m1 . Therefore, we have

X1(k, sc(T̂ ))⊆ Im(p1)' (Z/2Z)m1/(1, . . . , 1).

Let us show that p1 maps B(E, σ ) bijectively to X(K , sc(T̂ )).
Let (I0, I1) be in B(E, σ ), and let a in H1(K , IF/K (ŜE/F )) be the corresponding

element. We want to show that p1(a) is an element of X1(K , sc(T̂ )). Let v ∈�K .
If v ∈

⋂
j∈I1
6j , then av = 0. Hence, it suffices to prove that, for v ∈�K \

⋂
i∈I1
6i ,

we have av = ι1v(1)= ι
1(1)v. Now, since

(⋂
i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
=�K , we have

v ∈
⋂

i∈I0
6i . Consequently, H1(Fi , ŜEvi /Fvi ) = 0 for all i ∈ I0, and the projection

of ι1v(1) to these components are trivial. For i ∈ I1, we have that ai and the i-th
coordinate of ι1(1) are both 1, so their images in H1(Fvi , ŜEvi /Fvi ) are equal. This
proves that av = ι1v(1), hence p1(av)= 0.

We next show that the restriction of the map p1 to B(E, σ ) is surjective onto
X1(K , sc(T̂ )).

Let a = (a1, . . . , am1) ∈ (Z/2Z)m1 ' H1(K , IEσ/k(ŜE/F )) and let (I0, I1) be
the associated partition. If a = 0 or a = (1, . . . , 1), then a is in the image of ι1

and we have p1(a) = 0 ∈X1(K , sc(T̂ )). Hence, we may assume that I0 and I1

are nonempty.
We claim that 0 6= p1(a) ∈X1(K , sc(T̂ )) if and only if I0 and I1 are nonempty

and
(⋂

i∈I0
6i
)
∪
(⋂

j∈I1
6j
)
=�K .

Suppose 0 6= p1(a)∈X1(K , sc(T̂ )). Let v ∈�K \
⋂

i∈I0
6i . Then Lv � Kv

×Kv

and we have H1(Lv, ŜLv/Kv
)=Z/2Z. Let av denote the localization of a at v. Since

p1(a)∈X1(K , sc(T̂ )), we have av in the image of ι1v , so either av= 0 or av= ι1v(1).
It suffices to show that v ∈

⋂
i∈I1
6i . Consider the i-th component of (Z/2Z)m1 ,

which corresponds to H1(K , IFi/K (ŜEi/Fi )) = H1(Fi , ŜEi/Fi ). If Ei splits over Fi

at a place v ∈ �K , then by the exact sequence (8), the map d is surjective and
H1(Fvi , ŜEvi /Fvi ) = 0, which means that the i-th component vanishes at place v.
Since v /∈

⋂
i∈I0
6i , there exists an i ∈ I0 such that Evi is not split over Fvi . Let

Fvi =
∏ni

j=1 L i, j , where the L i, j s are field extensions of Kv. Let Evi =
∏ni

j=1 Mi, j ,
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where Mi, j is a quadratic étale algebra over L i, j . Then

H1(Fvi , ŜEvi /Fvi )=
∏

j

H1(L i, j , ŜMi, j/L i, j ).

By the choice of i , there is a j such that Mi, j is not split over L i, j , and hence
H1(L i, j , ŜMi, j/L i, j ) 6= 0. Therefore, the projection of ι1v(1) to H1(L i, j , ŜMi, j/L i, j )

is 1. On the other hand, the projection of av to the same component is 0 since
i ∈ I0. Therefore, av = 0 which means that H1(Fvi , ŜEvi /Fvi )= 0 for all i ∈ I1, hence
v ∈

⋂
i∈I1
6i . This proves that a ∈ B(E, σ ). �

5. The proofs of Proposition 2.3 and Theorem 2.1

We keep the notation of the previous sections. As we will see, Theorem 2.1 follows
from Propositions 2.2 and 2.3, which we’ll now prove.

Proposition 2.3. The groups X1(K , sc(T̂ )) and B(X) are isomorphic.

For a connected reductive group H , we denote by H tor the quotient of H by its
derived group. Note that H tor is a torus.

Proof of Proposition 2.3. Let sc(G) be the simply connected cover of G. Recall
that X = E(G, 9, u). Since X is a homogeneous space under the adjoint action
of G, we can view X as a homogeneous space under sc(G). Let x be in X (Ks)

and let H = Stabsc(G)Ks
(x) be the stabilizer of x over Ks . Then H is isomorphic

to sc(T )Ks (see [Lee 2014, Lemma 3.9]). Let H m be the K-form of the multiplicative
quotient of H constructed in [Borovoi 1999, §§1.1–1.2, pp. 493–494] (note that
the hypotheses of [Borovoi 1999, §1.1]. are satisfied: (1.1.1) holds since sc(G) is
simply connected, and (1.1.2) is satisfied since H ' sc(T )Ks ). We have H m

' sc(T )
(see [Lee 2014, Lemma 3.9]). Let i : H m

→ sc(G)tor be the morphism of algebraic
groups constructed in [Borovoi 1999, §1.2, p. 494]. Let Ĥ m (resp. sc(Ĝ)tor) be the
character group of H m (resp. sc(G)tor). We view the dual map of i as a complex of
finitely generated Galois modules sc(Ĝ)tor

→ Ĥ m , where sc(Ĝ)tor is in degree 0 and
Ĥ m is in degree 1. Then we have B(X)=X2(K , sc(Ĝ)tor

→ Ĥ m). This follows
from [Borovoi and van Hamel 2012, Theorem 3] (note that the statement was already
proved in [Borovoi 1999, Theorem 3.3] under the condition that X (Kv) 6=∅ for all
v ∈�K , and that Theorem 3 of [Borovoi and van Hamel 2012] was conjectured in
[Borovoi 1999, Conjecture 3.2]). Since sc(G) is semisimple, we have sc(G)tor

= 1.
Therefore, we have X2(K , sc(Ĝ)tor

→ Ĥ m)=X2(K , 1→ Ĥ m). On the other hand,
we have X2(K , 1→ Ĥ m)=X1(K , Ĥ m) by the definition of hypercohomology.
Recall that H m

' sc(T ). Therefore, B(X)'X1(K , sc(T̂ )). �

Theorem 2.1. The groups B(E, σ ) and B(X) are isomorphic.

Proof of Theorem 2.1. By Proposition 2.3 we have B(X) 'X1(K , sc(T̂ )), and
Proposition 2.2 implies that X1(K , sc(T̂ ))' B(E, σ ). �



98 EVA BAYER-FLUCKIGER, TING-YU LEE AND RAMAN PARIMALA

6. Hasse principle and Brauer–Manin obstruction

We keep the notation of the previous sections and assume that K is a global field. In
particular, (E, σ ) is an étale algebra with involution and (A, τ ) is a central simple
algebra with involution, as in Section 2.

The embeddings of (E, σ ) into (A, τ ) were investigated in several papers; see
for instance [Prasad and Rapinchuk 2010; Lee 2014; Bayer-Fluckiger et al. 2014].
In particular, Prasad and Rapinchuk proved in [2010, Theorem 5.1] that the Hasse
principle holds if τ is symplectic, and they obtained partial results for τ orthogonal
and unitary as well (see the introduction of the same paper).

Since the case where τ is symplectic is covered by the results of Prasad and
Rapinchuk, we henceforth assume that τ is either orthogonal or unitary.

In [Bayer-Fluckiger et al. 2014] we defined the obstruction group B(E, σ ) (see
Section 4 of the present paper; note that this group is denoted by X(E ′, σ ) in [Bayer-
Fluckiger et al. 2014, §3, §5.1]). Under the hypothesis that (E, σ ) can be embedded
into (A, τ ) everywhere locally, we also defined an element f̄ = f̄ ((E, σ ), (A, τ ))
of B(E, σ )∗ which gives a complete obstruction to the Hasse principle:

Theorem 6.1. (E, σ ) can be embedded into (A, τ ) if and only if

f̄ ((E, σ ), (A, τ ))= 0.

This is proved in [Bayer-Fluckiger et al. 2014, Theorem 4.6.1 and Proposi-
tion 5.1.1].

On the other hand, Borovoi [1996] studied the Hasse principle for homogeneous
spaces of connected linear algebraic groups with connected or abelian stabilizers.
If Y is such a space, he defined a group B(Y ) and, provided Y (Kv) 6= ∅ for all
v ∈�K , an element mH (Y ) ∈B(Y )∗ such that Y (K ) 6=∅ if and only if mH (Y )= 0.

Borovoi’s results were applied to the embedding problem of algebras with
involution in [Lee 2014]. Recall that G = U(A, τ )◦ and T = U(E, σ )◦ (see
Section 1), and that X = E(G, 9, u) (see Sections 1 and 4). By Theorem 2.1 we
have B(E, σ )' B(X).

We don’t know whether the isomorphism between B(E, σ ) and B(X) carries
f̄ ((E, σ ), (A, τ )) to mH (X). However, these elements vanish simultaneously, and
they both provide complete obstructions to the Hasse principle. More precisely:

Theorem 6.2. Assume that (E, σ ) can be embedded into (A, τ ) everywhere locally
(or, equivalently, that X (Kv) 6=∅ for all v ∈�K ). Then the following assertions
are equivalent:

(i) (E, σ ) can be embedded into (A, τ ).

(ii) X (K ) 6=∅.

(iii) f̄ ((E, σ ), (A, τ ))= 0.
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(iv) mH (X)= 0.

Proof. The equivalence of (i) and (ii) follows from [Lee 2014, Theorem 2.1.5]. The
equivalence of (i) and (iii) is proved in [Bayer-Fluckiger et al. 2014, Theorem 4.6.1
and Proposition 5.1.1]. Finally, the equivalence between (ii) and (iv) follows from
[Borovoi 1996, Theorem 2.2]. �
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ON MAXIMAL TORI OF ALGEBRAIC GROUPS OF TYPE G2

CONSTANTIN BELI, PHILIPPE GILLE AND TING-YU LEE

To the memory of Robert Steinberg

Given an octonion algebra C over a field k, its automorphism group is an
algebraic semisimple k-group of type G2. We study the maximal tori of G

in terms of the algebra C .

1. Introduction

For classical algebraic groups, and in particular for arithmetic fields, the investiga-
tion of maximal tori is an interesting topic in the theory of algebraic groups and
arithmetic groups; see [Prasad and Rapinchuk 2009, § 9; 2010] and also [Garibaldi
and Rapinchuk 2013]. It is also related to the Galois cohomology of quasisplit
semisimple groups by Steinberg’s section theorem; that connection is an important
ingredient of this paper.

Let k be a field, let ks be a separable closure and denote by �k D Gal.ks=k/
the absolute Galois group of k. In this paper, we study maximal tori of groups of
type G2. We recall that a semisimple algebraic k-group G of type G2 is the group
of automorphisms of a unique octonion algebra C [Knus et al. 1998, 33.24]. We
come now to the following invariant of maximal tori [Gille 2004; Raghunathan
2004]. Given a k-embedding of i W T ! G of a rank -2 torus, we have a natural
action of �k on the root system ˆ.Gks

; i.Tks
//, and the yoga of twisted forms

defines then a cohomology class type.T; i/ 2H 1.k;W0/, which is called the type
of the couple .T; i/. Here W0 Š Z=2Z� S3 is the Weyl group of the Chevalley
group of type G2. By Galois descent [Knus et al. 1998, 29.9], a W0-torsor is
nothing but a couple .k0; l/, where k0 (resp. l) is a quadratic (resp. cubic) étale
k-algebra. The main problem is then the following: given an octonion algebra C
and such a couple .k0; l/, under which additional conditions is there a k-embedding
i W T !G D Aut.C / of type Œ.k0; l/� 2H 1.k;W0/?

C. Beli and P. Gille were supported by the Romanian IDEI project PCE–2012-4-364 of the Ministry
of National Education CNCS-UEFISCIDI.
MSC2010: primary 20G15, 17A75; secondary 11E57, 20G41.
Keywords: Octonions, tori, Galois cohomology, homogeneous spaces.
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We give a precise answer when the cubic extension l is not a field (Section 4.4).
When l is a field, we use subgroups of type A2 of G to relate with maximal tori
of special unitary groups where we can apply results of Knus, Haile, Rost and
Tignol [Haile et al. 1996]. This provides a criterion which is quite complicated (see
Proposition 5.2.6).

The problem above can be formulated in terms of existence of k-points for a
certain homogeneous space X under G associated to k0; l ; see [Lee 2014, §1] or
Section 2.6. We recall here Totaro’s general question [2004, Question 0.2].

For a smooth connected affine k-group G over the field k and a homogeneous
G-variety Y such that Y has a zero-cycle of degree d > 0, does Y necessarily have
a closed étale point of degree dividing d?

Starting with Springer’s odd extension theorem for quadratic forms, there are
several cases where the question has a positive answer, mainly for principal homo-
geneous spaces (i.e., torsors). We quote here the results by Totaro [2004, Theorem
5.1] and Garibaldi and Hoffmann [2006] for certain exceptional groups, Black
[2011] for classical adjoint groups and Black and Parimala [2014] for semisimple
simply connected classical groups of rank � 2.

If the base field k is large enough (e.g., Q.t/, Q..t///, we can construct a homo-
geneous space X under G of the shape above having a quadratic point and a cubic
point but no k-point (Theorem 4.5.3). This provides a new class of counterexamples
to the question in the case d D 1 which are geometrically speaking simpler than
those of Florence [2004] and Parimala [2005].

Finally, in case of a number field, we show that this kind of variety satisfies the
Hasse principle. In this case, our results are effective; that is, we can describe the
type of the maximal tori of a given group of type G2, for example, for the “compact”
G2 over the rational numbers (see Examples 6.4).

Let us review the contents of the paper. In Section 2, we recall the notion of
type and oriented type for a k-embedding i W T ! G of a maximal k-torus in a
reductive k-group G. We study then the image of the map H 1.k; T /!H 1.k;G/

of Galois cohomology and relate it, in the quasisplit case, with Steinberg’s theorem
on Galois cohomology. Section 3 gathers basic facts on octonion algebras which
are used in the core of the paper, namely Sections 4 and 5. The number field case
is considered in the short Section 6. Finally, the Appendix deals with the Galois
cohomology of k-tori and quasisplit reductive k-groups over Laurent series fields.

A. Fiori [2015] investigated independently maximal tori of algebraic groups of
type G2 and their rational conjugacy classes. Though his scope is different, certain
tools are common with our paper, for example, the definition and the study of the
subgroup of type A2 attached to a maximal torus (Proposition 5.5 in [loc. cit.],
§5.1 here).
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2. Maximal tori of reductive groups and image of the cohomology

Let G be a reductive k-group. We are interested in maximal tori of G and also
in the images of the map H 1.k; T /! H 1.k;G/. We shall discuss refinements
of the application of Steinberg’s theorem on rational conjugacy classes to Galois
cohomology.

2.1. Twisted root data.

2.1.1. Definition. In [Lee 2014, 1.3] and [Gille 2014, §6.1], in the spirit of [De-
mazure and Grothendieck 1970a; 1970b; 1970c], the notion of twisted root data is
defined over an arbitrary base scheme S . We focus here on the case of the base
field k and use the equivalence of categories between étale sheaves over Spec.k/
and the category of Galois sets, namely sets equipped with a continuous action of
the absolute Galois group �k .

We recall from [Springer 1998, §7.4] that a root datum is a quadruple ‰ D
.M;R;M_; R_/, where M is a lattice, M_ its dual, R �M a finite subset (the
roots), R_ a finite subset of M_ (the coroots), and a bijection ˛ 7! ˛_ of R onto
R_ which satisfy the next axioms (RD1) and (RD2).

For each ˛ 2R, we define endomorphisms s˛ of M and s_˛ of M_ by

s˛.m/Dm� hm; ˛
_
i˛; s_˛ .f /D f � h˛; f i˛

_ .m 2M;f 2M_/:

(RD1) For each ˛ 2R, h˛; ˛_i D 2;

(RD2) For each ˛ 2R, s˛.R/DR and s_˛ .R
_/DR_.

We denote by W.‰/ the subgroup of Aut.M/ generated by the s˛; it is called
the Weyl group of ‰.

2.1.2. Isomorphisms, orientation. An isomorphism of root data

‰1 D .M1; R1;M
_
1 ; R

_
1 / �!
� ‰2 D .M2; R2;M2

_; R2
_/

is an isomorphism f W M1 �!
� M2 such that f induces a bijection R1 �!� R2

and f induces a dual isomorphism f _ W M_2 �!
� M_1 such that f _ induces a

bijection R2_ �!� R_1 . Let Isom.‰1; ‰2/ be the scheme of isomorphisms be-
tween ‰1 and ‰2. We define the quotient Isomext.‰1; ‰2/ by Isomext.‰1; ‰2/D
W.‰2/n Isom.‰1; ‰2/, which is isomorphic to Isom.‰1; ‰2/=W.‰1/.

An orientation u between‰1 and‰2 is an element u2 Isomext.‰1; ‰2/. We can
then define the set Isomintu.‰1; ‰2/ of inner automorphisms with respect to the ori-
entation u as the preimage of u by the projection Isom.‰1; ‰2/! Isomext.‰1; ‰2/.

We denote by Aut.‰/ D Isom.‰;‰/ the group of automorphisms of the root
datum ‰, and we have an exact sequence

1!W.‰/! Aut.‰/! Autext.‰/! 1;
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where Autext.‰/D Isomext.‰;‰/ stands for the quotient group of automorphisms
of ‰ (called the group of exterior or outer automorphisms of ‰). The choice
of an ordering on the roots permits us to define a set of positive roots ‰C, its
basis and the Dynkin index Dyn.‰/ of ‰. Furthermore, we have an isomorphism
Aut.‰;‰C/ �!� Autext.‰/ so that the above sequence is split.

2.1.3. Twisted version. A twisted root datum is a root datum equipped with a
continuous action of �k . To distinguish from the absolute case, we shall use
the notation ‰. The Weyl group W.‰/ is then a finite group equipped with
an action of �k . If ‰1, ‰2 are two twisted root data, the sets Isom.‰1; ‰2/,
Isomext.‰1; ‰2/ are Galois sets. An orientation between ‰1, ‰2 is an element
u 2 Isomext.‰1; ‰2/.k/, and the set Isomintu.‰1; ‰2/ is then a Galois set.

2.2. Type of a maximal torus. We denote by G0 the split form of G. We denote
by T0 a maximal k-split torus of G0 and by ‰0 D‰.G0; T0/ the associated root
datum. We denote by W0 the Weyl group of ˆ0 and by Aut.‰0/ its automorphism
group.

Let i W T !G be a k-embedding as a maximal torus. The root datum

‰.G; i.T //D‰.G.T /ks
; i.T /ks

/

is equipped with an action of the absolute Galois group �k , so it defines a twisted
root datum. It is a k-form of the constant root datum ‰0 and we define the type of
.T; i/ as the isomorphism class of

Œ‰.G; i.T //� 2H 1.k;Aut.‰0//:

Recall that by Galois descent, those ks=k-forms are classified by the Galois coho-
mology pointed set H 1.k;Aut.‰0//.

If two embeddings i; j have the same image, then type.T; i/ D type.T; j / 2
H 1.k;Aut.‰0//. If we compose i W T !G by an automorphism f 2 Aut.G/.k/,
we have type.T; i/D type.T; f ı i/ 2H 1.k;Aut.‰0//.

Remark 2.2.1. If G is semisimple and has no outer isomorphism (as is the case for
groups of typeG2),W0DAut.‰0/ and the next considerations will not add anything.

We would like to have an invariant with value in the Galois cohomology of some
Weyl group. The strategy is to “rigidify” by adding an extra data to i W T ! G,
namely an orientation with respect to a quasisplit form of G.

Given a k-embedding i W T ! G, we denote by Dyn.G; i.T // the Dynkin
diagram k-scheme of ‰.G; i.T //; it is finite étale and then encoded in the Galois
set Dyn.Gks

; i.T /ks
/. There is a canonical isomorphism: Dyn.G/ŠDyn.G; i.T //

[Demazure and Grothendieck 1970c, XXIV, 3.3].
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We denote by G0 a quasisplit k-form of G. Let .T 0; B 0/ be a Killing couple
of G0, and denote by ‰0 D ‰.G0; T 0/ the associated twisted root datum and by
W 0 DNG0.T

0/=T 0 its Weyl group, which is a twisted constant finite k-group.
Suppose that G is semisimple simply connected or adjoint; in this case, the ho-

momorphism Autext.G/!AutDyn.Dyn.G// is an isomorphism [ibid., XXIV, 3.6].
We fix then an isomorphism v W Dyn.G0/ �!� Dyn.G/. Together with the canonical
isomorphism Dyn.G/ŠDyn.G; i.T //, it induces an isomorphism Qv WDyn.G0/�!�

Dyn.G; i.T //. For G semisimple simply connected or adjoint, the isomorphism Qv
defines equivalently an orientation

u 2 Isomext
�
‰.G0; T 0/.k/;‰.G; i.T //

�
:

Then the Galois set Isomintu
�
‰.G0; T 0/; ‰.G; i.T //

�
is a right W 0-torsor and its

class in H 1.k;W 0/ is called the oriented type of i W T ! G with respect to the
orientation v. It is denoted by typev.T; i/ and we bear in mind that it depends on
the choice of G0 and on v.

2.3. The quasisplit case. We deal here with the quasisplit k-group G0 and with
the exact sequence 1! T 0! NG0.T

0/ �
�!W 0! 1. Here we have a canonical

isomorphism id WDyn.G0/ŠDyn.G0/ and then a natural way to define an orientation
for a k-embedding j WE!G0 of a maximal k-torus. Keeping the notations above,
let us state the following result.

Theorem 2.3.1 (Kottwitz). (1) The map

Ker
�
H 1.k;NG0.T

0//!H 1.k;G0/
� ��
��!H 1.k;W 0/

is onto.

(2) For each  2H 1.k;W 0/, there exists a k-embedding j WE!G0 of a maximal
k-torus such that typeid..E; j //D  .

In [Kottwitz 1982, Corollary 2.2], this result occurs only as a result on embeddings
of maximal tori. It was rediscovered by Raghunathan [2004] and independently
by the second author [Gille 2004]. The proof of (1) uses Steinberg’s theorem on
rational conjugacy classes, and we can explain quickly how one can derive (2)
from (1). Given  2H 1.k;W 0/, assertion (1) provides a principal homogeneous
space P under N 0 D NG0.T 0/ together with a trivialization � W G0 �!� P ^N

0

G0

such that ��ŒP �D  . Then � induces a trivialization at the level of twisted k-groups
�� WG

0 �!� PG0. Now if we twist i 0 W T 0!G0 by P , we get a k-embedding

P i 0 W PT 0! PG0
��
 �� G0;

and one checks that typeid
�
PT 0;P i 0

�
D  .
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2.4. Image of the cohomology of tori. We give now a slightly more precise form
of Steinberg’s theorem [1965, Theorem 11.1]; see also [Serre 1994, III.2.3].

Theorem 2.4.1. Let Œz� 2 H 1.k;G0/. Let i W T ! zG
0 be a maximal k-torus

of the twisted k-group zG
0. Then there exists a k-embedding j W T ! G0 and

Œa� 2H 1.k; T / such that j�Œa�D Œz� and such that typecan.T; i/D typeid.T; j /.

In the result, the first orientation is the canonical one, namely arising from the
canonical isomorphism Dyn.G0/ �!� Dyn.z.G0//.

Proof. If the base field is finite, there is nothing to do since H 1.k;G0/ D 1 by
Lang’s theorem. We can then assume that k is infinite. We denote by P.z/ the
G0-homogeneous space defined by z and by � W G0

ks
�!� P.z/ks

, a trivialization
satisfying z� D ��1 ı �.�/ for each � 2 �k . It induces a trivialization ' WG0

ks
�!�

.z.G
0//ks

satisfying int.z� /D '�1 ı �.'/ for each � 2 �k .
We denote by .G0/sc the simply connected cover of DG0 and by f W .G0/sc!G0

the natural k-homomorphism. Let T sc be .zf /�1.i.T //. Let gsc be a regular
element in T sc.k/ and consider the G0sc

.ks/-conjugacy class C of '�1.gsc/ in
.G0/sc.ks/. This conjugacy class is rational in the sense that it is stabilized by �k
since .'�1.gsc// D z�

�.'�1.gsc//z�1� for each � 2 �k . According to Steinberg
[1965, Corollary 10.1] (and [Borel and Springer 1968, 8.6] in the nonperfect case),
C\ .G0/sc.k/ is not empty, so there exist gsc

1 2 .G
0/sc.k/ and hsc 2 .G0/sc.ks/ such

that '�1.gsc/ D .hsc/�1gsc
1 h

sc. We put g D zf .g
sc/, g1 D f .gsc

1 /, h D f .h
sc/,

T1 DZG0.g1/ and i1 W T1!G0.
Since g 2 .z.G0//.k/ and g1 2G0.k/, we have h�1g1hD z� �.h�1g1h/z�1� D

z�h
��g1

�hz�1� for each s 2 �k , whence

g1 D a�g1a
�1
� ;

where a� D hz�h�� is a 1-cocycle cohomologous to z with values in T1.ks/ D
ZG0.g1/.ks/. It remains to show the equality on the oriented types. By the rigidity
trick (see the proof of Proposition 3.2 in [Gille 2004]), up to replacing k by the
function field of the T1-torsor defined by a, we can assume that Œa�D 12H 1.k; T1/.
We write a� D b�1�b for some b 2 T1.ks/, and we have that z� D .bh/�1 �.bh/
and '�1.g/D .bh/�1g1bh.

Putting h2Dbh2G0.ks/, we have z�Dh�12
�h2 and '�1.g/Dh�12 g1h2. We get

k-isomorphisms �2 D �ıLh�1
2
WG0! P.z/ and '2 D 'ıint.h�12 / WG0 �!� z.G

0/

such that the following diagram commutes

T1
i1
//

'2o

��

G0

'2o

��

T
i
//
z.G

0/
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Thus typecan.T; i/D typeid.T1; i1/ 2H
1.k;W 0/. �

2.5. Image of the cohomology of tori, II. Recall the following well-known fact.

Lemma 2.5.1. Let H be a reductive k-group and T be a k-torus of the same rank
as H . Let i; j W T !H be k-embeddings of a maximal k-torus T . If j D Int.h/ı i
for some h 2 H.ks/, then we have h�1 �h 2 i.T /.ks/ for all � in the absolute
Galois group �k .

Proof. For any � 2� and any t 2T .ks/, we have j.�t /D �h�i.�t /��h�1. Therefore,
we have j D Int.�h/ ı i D Int.h/ ı i , and h�1 �h is a ks-point of the centralizer
CH .i.T //D i.T /. �

Lemma 2.5.2. Let H be a reductive k-group and let T be a k-torus of the same
rank as H . Let v be an orientation of H with respect to a quasisplit form H 0. Let
i; j W T !H be k-embeddings of a maximal k-torus T which areH.ks/-conjugate.
Then we have Im.i�/D Im.j�/�H 1.k;H/ and typev.T; i/D typev.T; j /.

Proof. Let j D Int.h/ı i for some h 2H.ks/. By Lemma 2.5.1, we have h�1 �h 2
i.T /.ks/. Let Œ˛� 2 Im.j�/ and ˛ be a cocycle with values in j.T .ks// which
represents Œ˛�. Define ˇ� D h�1˛��h. Then ˇ is cohomologous to ˛ and ˇ� D
.h�1˛�h/ � .h

�1 �h/ 2 i.T .ks//. Hence Œ˛� D Œˇ� 2 Im.i�/, which shows that
Im.i�/D Im.j�/�H 1.k;H/.

Let T1 D i.T / and T2 D j.T /. Let TransptG.T1; T2/ be the strict transporter
from T1 to T2 [Demazure and Grothendieck 1970a, VIB, Définition 6.1(ii)]. Note
that TransptG.T1; T2/ is a right NG.T1/-torsor. We have a canonical isomorphism

TransptG.T1; T2/^ Isomintv.‰0; ‰.G; T1// �!� Isomintv.‰0; ‰.G; T2//:

Since j D Int.h/ıi , we have h2TransptG.T1; T2/.ks/ and h defines a trivialization
�h W NG.T1/ ! TransptG.T1; T2/ which sends the neutral element to h. Let
W1 DNG.T1/=T1. Since ��1

h
ı �.�h/D h

�1 �h 2 T1.ks/, the image of the class
of TransptG.T1; T2/ in H 1.k;W1/ is trivial. Hence Isomintv.‰0; ‰.G; T1// '
Isomintv.‰0; ‰.G; T2//; i.e., typev.T; i/D typev.T; j /. �

Proposition 2.5.3. Let T be a k-torus of the same rank as G. Let i1; i2 W T !G be
k-embeddings of T in G. Let v be an orientation of G with respect to a quasisplit
form G0. If typev.T; i1/D typev.T; i2/ 2H 1.k;W 0/, then there is a k-embedding
j W T ! G such that j.T /D i1.T / and j , i2 are G.ks/-conjugate. In particular,
the images of i1;�, i2;�, j WH 1.k; T /!H 1.k;G/ coincide.

Proof. Let T1D i1.T / and T2D i2.T / and again put Wi DNG.Ti /=Ti for i D 1; 2.
Let � denote the class of the NG.T1/-torsor TransptG.T1; T2/ in H 1.k;NG.T1//

and N� be the image of � in H 1.k;W1/. We have a canonical isomorphism

TransptG.T1; T2/^ Isomintv.‰0; ‰.G; T1// �!� Isomintv.‰0; ‰.G; T2//:
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Since typev.T; i1/D typev.T; i2/, we have

Isomintv.‰0; ‰.G; T1//' Isomintv.‰0; ‰.G; T2//:

Hence N� is the trivial class inH 1.k;W1/. Thus theNG.T1/-torsor TransptG.T1; T2/
admits a reduction to T1. More precisely, there exist a T1-torsor E1 and an isomor-
phism E1 ^

T1 NG.T1/ �!
� TransptG.T1; T2/ of NG.T1/-torsors. We take a point

e1 2E1.ks/ and consider its image g in G.ks/ under the mapping

E1 ^
T1 NG.T1/ �!

� TransptG.T1; T2/ ,!G:

Then hD g�1 �g is a ks-point of the centralizer CG.T1/D T1 for all � 2 �k . We
define a k-embedding j W T ! G as j.t/ D .Int.g�1/ ı i2/.t/. To see that j is
indeed defined over k, we check as follows:

j.�t /D .Int.g�1/ ı i2/.�t /

D Int.g�1/.�i2.t//

D h � �..Int.g�1/ ı i2/.t// � h�1

D
�.j.t//:

By our construction, we have j.T / D i1.T / and i2, j are conjugated. Let f D
.j jT1

/�1 ı i1. Then f is an automorphism of T and i1 D j ıf . Hence the images
of i1;� and j� coincide. By Lemma 2.5.2, the images of j and i2;� coincide. �

This applies to the quasisplit case and enables us to slightly refine Theorem 2.4.1.

Corollary 2.5.4. With the notations of Theorem 2.4.1, for each class  2H 1.k;W 0/,
choose (by Theorem 2.3.1) a k-embedding i./ W E./! G0 of oriented type  .
Then the map G

2H1.k;W 0/

H 1.k; E.//
ti./�
���!H 1.k;G0/

is onto.

2.6. Varieties of embedding k-tori. Let T be a k-torus and ‰ be a twisted root
datum of ‰0 attached to T ; i.e., the character group of T is isomorphic to the
character group encoded in ‰. In this section, we will define a k-variety X such
that the existence of a k-point of X is equivalent to the existence of a k-embedding
of T into G with respect to ‰.

We start with a functor. The embedding functor E.G;‰/ is defined as follows:
for any k-algebra C , E.G;‰/.C / is the set of all f W TC ,! GC such that f
is both a closed immersion and a group homomorphism which induces an iso-
morphism f ‰ W‰C �!

� ‰.GC ; f .TC // such that f ‰.˛/D ˛ ı f �1jf .TC 0 /
is in

‰.GC 0 ; f .TC 0// for allC 0-roots ˛ for allC -algebraC 0. In fact, the functor E.‰;G/
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is representable by a k-scheme [Lee 2014, Theorem 1.1]. Define the Galois set
Isomext.‰;G/ by Isomext.‰;G/D Isomext.‰;‰.G;E//, where E stands for an
arbitrary maximal k-torus of G. Given an orientation v 2 Isomext.‰;G/.k/, we
define the oriented embedding functor as follows: for any k-algebra C ,

E.G;‰; v/.C /D
˚
f W TC ,!GC j f 2 E.G;‰/.C / and

the image of f ‰ in Isomext.‰;G/.C / is v
	
:

We have the following result:

Theorem 2.6.1. In the sense of the étale topology, E.G;‰; v/ is a left homogeneous
space under the adjoint action of G and a torsor over the variety of the maximal
tori of G under the right W.‰/-action. Moreover, E.G;‰; v/ is representable by
an affine k-scheme.

Proof. We refer to [Lee 2014, Theorem 1.6]. �

Remark 2.6.2. The definition of varieties of embeddings is quite abstract but is
simplified a lot if there is a k-embedding i W T !G of oriented type isomorphic
to .‰; v/. Indeed in this case, the k-variety E.G;‰; v/ is G-isomorphic to the
homogeneous spaceG=i.T /, and we observe that the mapG=i.T /!G=NG.i.T //

is a WG.i.T //-torsor over the variety of maximal tori of G.

Remark 2.6.3. We sketch another way to prove Theorem 2.4.1. With the notations
of that result, let z 2Z1.k;G0/ and put GD zG

0. Let T be a maximal k-torus of G
and consider the twisted root data‰D‰.G; T / attached to T . Let v be the canonical
element in Isomext.‰;G/.k/ and let v0 D c ı v, where c 2 Isomext.G;G0/.k/
corresponds to the canonical orientation Dyn.G/ Š Dyn.G0/. We denote by X
(resp. X 0) the k-variety of oriented embeddings of T in G (resp. G0) with respect
to ‰ and v (resp. v0). Note that G0 acts on X 0 and we have a natural isomorphism
X �!� zX

0. Theorem 2.3.1(2) shows that X 0.k/ 6D∅ and the choice of a k-point
x0 of X 0 defines a G0-equivariant isomorphism G0=T �!� X 0. In the other hand,
the embedding i defines a k-point x 2 X.k/. Since X Š zX

0, we have that
z.G

0=T /.k/ 6D∅; hence the class Œz�2H 1.k;G/ admits a reduction to i 0 WT ,!G0

such that typecan.T; i/D typeid.T; i
0/ 2H 1.k;W 0/.

3. Generalities on octonion algebras

Let C be an octonion algebra. We denote by G the automorphism group of C ; it is
a semisimple k-group of type G2. We denote by NC the norm of C ; it is a 3-fold
Pfister form. In particular, NC is hyperbolic (equivalently isotropic) if and only if
G is split (equivalently isotropic).
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3.1. Behavior under field extensions. If l=k is a field extension of odd degree,
the Springer odd extension theorem [Elman et al. 2008, 18.5] implies that C is split
if and only if Cl is split. More generally, we have the following criterion.

Lemma 3.1.1. Let .kj /jD1;:::;n be a family of finite field extensions such that
g:c:d:.Œkj W k�/ is odd. Then C is split if and only if Ckj

is split for jD1; : : : ;n. �

Proof. The left implication is obvious. Conversely, assume that Ckj
is split for j D

1; : : : ; n. Then there exists an index j such that Œkj W k� is odd, hence C splits. �

Remark 3.1.2. This is a special case of the following more general result by
Garibaldi and Hoffmann [2006, Theorem 0.3] answering positively Totaro’s question.
Let .kj /jD1;:::;n be a family of finite field extensions and put dDg:c:d:.Œkj Wk�/. Let
C , C 0 be Cayley k-algebras such that Ckj

and C 0
kj

are isomorphic for j D 1; : : : ; n.
Then there exists a separable finite field extension K=k of degree dividing d such
that CK is isomorphic to C 0K . This is the case of groups of type G2 in that theorem
which includes also the case of certain groups of type F4 and E6.

We recall also the behavior with respect to quadratic étale algebras.

Lemma 3.1.3. Let k0=k be a quadratic étale algebra. Then the following are
equivalent:

(i) C ˝k k0 splits.

(ii) There is an isometry .k0; nk0=k/! .C;NC /, where nk0=k W k0! k stands for
the norm map.

(iii) There exists an embedding of unital composition k-algebras k0! C .

Proof. If C is split, all three facts hold so that we can assume that C is not split.

.i/) .ii/: Since C is not split, it follows that k0 is a field. Since NC is split over
k0, there exists a nontrivial and nondegenerate symmetric bilinear form B such that
B˝nk0=k is a subform ofNC [Elman et al. 2008, 34.8]. SinceNC is multiplicative,
there is an isometry .k0; nk0=k/! .C;NC /.

.ii/) .iii/: Since the orthogonal group O.NC /.k/ acts transitively on the sphere
fx 2 C j NC .x/ D 1g, we can assume that our isometry .k0; nk0=k/! .C;NC /

maps 1k0 to 1C . It is then a map of unital composition k-algebras.

.iii/) .i/: If k0 D k � k, then NC is isotropic and C is split. Hence k0 is a field
and NC is k0-isotropic so that Ck0 is split. �

3.2. The Cayley–Dickson process. We know that C , up to k-isomorphism, can be
obtained by the Cayley–Dickson doubling process; that is, C ŠC.Q; c/DQ˚Qa,
whereQ is a k-quaternion algebra and c 2 k� [Springer and Veldkamp 2000, § 1.5].
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We denote by �QD trdQ � idQ the canonical involution ofQ and recall that the mul-
tiplicativity rule on C , the norm NC , and the canonical involution �C are given by

.xCya/.uC va/D .xuC c�Q.v/y/C .vxCy�Q.u//a .x; y; u; v 2Q/;

NC .xCya/DN.x/� cN.y/;

�C .xCya/D �Q.x/�ya:

Then NC is isometric to the 3-Pfister form nQ˝h1;�ci and that form determines
the octonion algebra [ibid., Corollary 1.7.3]. Also it provides an embedding j of the
k-groupH.Q/D .SL1.Q/�kSL1.Q//=�2 in Aut.C.Q; c//. This map is given by
.g1; g2/:.q1; q2/D .g1q1g

�1
1 ; g2q2g

�1
1 /. Another corollary of the determination

of an octonion algebra by its norm is the following well-known fact.

Corollary 3.2.1. Let C be a octonion k-algebra and letQ be a quaternion algebra.
Then the following are equivalent:

(i) There exists c 2 k� such that C Š C.Q; c/.

(ii) There exists an isometry .Q;NQ/! .C;NC /.

Proof. .i/) .ii/ is obvious. Assume that there exists an isometry .Q;NQ/!
.C;NC /. By the linkage property of Pfister forms [Elman et al. 2008, 24.1(1)], there
exists a bilinear 1-Pfister form � such that NC ŠNQ˝�. Since NC represents 1,
we can assume that � represents 1 so that � Š h1;�ci. Therefore C and C.Q; c/
have isometric norms and are isomorphic. �
Remark 3.2.2. In odd characteristic, Hooda provided an alternative proof, see
[Hooda 2014, Theorem 4.3] and also a nice generalization [ibid., Proposition 4.2].

Lemma 3.2.3. Let C be a nonsplit octonion k-algebra. If D � C is a unital
composition subalgebra and u 2 C nD then D ˚Du is a unital composition
subalgebra as well.

Proof. Since C is nonsplit, the corresponding norm map NC is anisotropic. Let bC
be the polar map of NC . Since the map x 7! bC .u; x/ is linear and the restriction
of bC on D �D is regular, there is v 2D such that bC .v; x/D bC .u; x/ for all
x 2 D. Let u0 D u � v. We have bC .u0; x/ D bC .v; x/ � bC .u; x/ D 0 for all
x 2D, so u0 2D?. Since v 2D and u …D, we have u0 ¤ 0, so NC .u0/¤ 0. By
the doubling process [Springer and Veldkamp 2000, Proposition 1.5.1], we have
that D˚Du0 is a unital composition subalgebra of C . But u0 D u� v and v 2D,
so D˚Du0 DD˚Du. �

3.3. On the dihedral group, I. In this case, W0 D Aut.‰0/ and W0 D D6 D

Z=6ZÌZ=2ZDC2�S3 is the dihedral group of order 12. More precisely, C2Dhci
stands for its center. The right way to see it is by its action on the root system
‰.G0; T0/� yT0 D Z˛1˚Z˛2 D Z2, as provided by the following picture:
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where ˛1; ˛2 stand for a base of the root system G2 and Q̨ D 3˛1C 2˛2.
Let f�ig3iD1 be an orthonormal basis of Q3. We can view the root space of G2

as the hyperplane in Q3 defined by
˚P3

iD1�i�i j
P3
iD1 �i D 0

	
, and identify ˛1,

˛2 with �1� �2 and �2�1C �2C �3 respectively [Bourbaki 1981, planche IX]. For
a root ˛, let s˛ be the reflection orthogonal to ˛. Under the above identification,
the element c D s2˛1C˛2

s˛2
acts on the roots by � id and S3 D hs˛1

; s2˛1C˛2
i

acts by permuting the �i . Note that although s2˛1C˛2
s˛2

acts on the subspace˚P3
iD1 �i�i j

P3
iD1 �i D 0

	
by � id, s2˛1C˛2

s˛2
does not act as � id on f�ig3iD1.

Remarks 3.3.1. (a) In the G2 root system, for any long root ˇ and any short root ˛
orthogonal to ˇ, we have s˛ ısˇ D c. Also observe that yT0 is a sublattice of index 2
of the lattice Z˛

2
˚Z

ˇ
2

. This is related to the fact that the morphism SL2 �SL2!G0
defined by the coroots ˛_ and ˇ_ has kernel equal to the diagonal subgroup �2.
(b) The roots ˛1, Q̨ generate a closed symmetric subsystem of type A1 �A1 of G2.
Any subroot system (not necessarily closed ) of G2 which is of type A1 �A1 is
a W0-conjugate of the previous one.

3.4. Subgroups of type A1�A1. Given an octonion k-algebraC , we relate Cayley–
Dickson decomposition to subgroups of G D Aut.C /.

Lemma 3.4.1. Let H be a semisimple k-subgroup of G of type A1 �A1. Then
there exists a quaternion algebra Q, c 2 k�, an isomorphism C Š C.Q; c/ and an
isomorphism H �!� H.Q/ such that the following diagram commutes:

H

o

��

� � // G

o

��

H.Q/
� � j

// Aut.C.Q; c//

Proof. We start with a few observations on the split case G D G0 D Aut.C0/,
where we have the k-subgroup H0 D .SL2 �SL2/=�2 acting on C0. The root
subsystem ˆ.H0; T0/ is Z˛1˚Z Q̨ so that the first (resp. the second) factor SL2 of
H0 corresponds to a short (resp. long) root. We denote byH0;<Š SL2 (resp.H0;>)
the “short” subgroup (resp. the “long” one) of H0. Taking the decomposition



ON MAXIMAL TORI OF ALGEBRAIC GROUPS OF TYPE G2 113

C0 D M2.k/˚M2.k/], the point is that we have M2.k/ D .C0/
H0;> . In other

words, we can recover the composition subalgebra M2.k/ of C0 from H0.
We come now to our problem. We are given a k-subgroup H of G DAut.C / of

type A1�A1. Let T be a maximal k-torus ofH . Then the root systemˆ.Hks
; Tks

/

is a subsystem of ˆ.Gks
; Tks

/Š‰0 of type A1 �A1; hence W0-conjugated to the
standard one (Remarks 3.3.1(b)). Since the Galois action preserves the length of a
root, it follows that we can define by Galois descent the k-subgroups H< and H>
of H . We define then QD .C /H> . By Galois descent, it is a quaternion subalgebra
of C which is normalized by H . It leads to a Cayley–Dickson decomposition
C DQ˚L, where L is the orthogonal complement of Q in C . Then L is a right
Q-module and we choose a 2 L such that L D Qa. The k-subgroup H.Q/ of
Aut.C / is nothing but Aut.C;Q/ [Springer and Veldkamp 2000, §2.1], so we have
H �H.Q/. For dimension reasons, we conclude that H DH.Q/ as desired. �

4. Embedding a torus in a group of type G2

We assume that G is a semisimple k-group of type G2. As in Section 2, we denote
its split form by G0, and T0, W0, etc. are defined as before.

4.1. On the dihedral group, II. We continue to discuss the action of the dihedral
group W0 (of order 12) on the root system of type G2 started in Section 3.3. Let
˚3iD1Z�i be a W0-lattice, where the S3-component of W0 acts by permuting the �i
and the center acts by � id. Note that G0 is of type G2, so G0 is both adjoint and
simply connected and the dual group of G0 is isomorphic to G0 itself. Hence we
have the following exact sequence of W0-lattices, where W0 acts on Z through its
center Z=2Z by � id:

0! yT0
f
�!˚

3
iD1Z�i

deg
��!Z! 0;

where f .˛1/ D �1 � �2 and f .˛2/ D �2�1C �2C �3. We also consider its dual
sequence

0! Z!˚3iD1Z�_i !
yT _0 '

yT0! 0:

4.2. Subtori. Keep the notations in Section 3.3. Let us fix an isomorphism

� W Z=2Z�S3! hci � hs˛1
; s2˛1C˛2

i DW0;

where �..�1; 1//D c, �..1; .12///D s˛1
and �..1; .23///D s2˛1C˛2

.
We identify Z=2Z � S3 with W0 by � in the rest of this paper. Under this

identification, we have

H 1.k;W0/DH
1.k;Z=2Z/�H 1.k; S3/:
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Hence a class of H 1.k;W0/ is represented uniquely (up to k-isomorphism) by a
couple .k0; l/, where k0 is a quadratic étale algebra of k and l=k is a cubic étale
algebra of k.

Given such a couple .k0; l/, we denote by‰.k0;l/D Œ.k0; l/�^W0‰0 the associated
twisted root datum. Let l 0 D l ˝k k0 and define the k-torus

T .k
0;l/
D Ker

�
Rk0=k.R

1
l 0=k0.Gm;l 0//

Nk0=k
���!R1l=k.Gm;l/

�
:

In the following, we prove that the torus encoded in ‰.k0;l/ is indeed T .k
0;l/.

However, we should keep in mind that two nonisomorphic root data ‰ may encode
the same torus (Remark 4.2.2).

Lemma 4.2.1. Let T be a k-torus of rank 2 and let i W T !G be a k-embedding
such that type.T; i/D Œ.k0; l/�. Then:

(1) The k-torus T is k-isomorphic to T .k
0;l/.

(2) If there exists a quadratic étale algebra l2 such that l D k � l2, then there is a
k-isomorphism

T Š
�
R1k1=k

.Gm/�k R
1
k2=k

.Gm/
�
=�2;

where k1; k2 are quadratic étale algebras such that k2 D k0 and Œk1� D
Œk2�C Œl2� 2H

1.k;Z=2Z/.

Proof. (1) We haveW0DZ=2Z�S3 and from Section 4.1, we have aW0-resolution

0! Z!˚3iD1Z�_i !
yT0! 0:

It follows that yT0 is isomorphic to the W0-module ˚3iD1Z�_i =h.1; 1; 1/i.
Let N be the W0-lattice ˚3iD1Zei=h.1; 1; 1/i, where S3 acts by permuting the

indices and Z=2Z acts trivially. Note that as Z-lattices, we can identify N with yT0.
Let M D N ˚N and equip M with a W0-action: S3 acts on N diagonally and
Z=2Z acts on M by exchanging the two copies of N . Embed N diagonally into
M and we get the exact sequence of W0-modules

0!N
f
�!M DN ˚N

g
�! yT0! 0;

where f .x/D .x; x/ and g.x; y/D x�y. After twisting the above exact sequence
by the W0-torsor attached to .k0; l/ and taking the corresponding tori, we have

1! T !Rk0=k
�
R1l 0=k0.Gm;l 0/

� nk0=k
���!R1l=k.Gm;l/! 1:

Hence T is the k-torus T .k
0;l/.

(2) If l D k � l2, then there is an injective homomorphism � W Z=2Z! S3 and a
class Œz� 2 im.�� WH 1.k;Z=2Z/!H 1.k; S3// such that l corresponds to Œz�. Let
˛ be a short root such that the corresponding reflection s˛ is �.�1/, and let ˇ be a
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long root orthogonal to ˛. As we mentioned in Remarks 3.3.1(a), the center of W0
is generated by s˛ ı sˇ . Therefore, the image of the map

Id�� W Z=2Z�Z=2Z ,! Z=2Z�S3 DW0

is generated by fs˛; sˇ g. Let us call it W .k0;l2/. Let H0 ' .SL2 �k SL2/=�2 be
the subgroup of G0 generated by T0 and the root groups associated to ˙˛ and
˙ˇ. Then H0 is of type A1 �A1 and the Weyl group of H0 with respect to T0 is
exactlyW .k0;l2/. Hence there is Œx�2 im.H 1.k;NH0

.T0//!H 1.k;G0// such that
.G; i.T // is isomorphic to x.G0; T0/. Moreover, the embedding i factorizes through
H D x.H0/. Let the first (resp. second) copy of SL2 of H0 correspond to the root
group ˙ˇ (resp. ˙˛). Let � be the projection from NH0

.T0/ to NH0
.T0/=T0 D

W .k0;l2/. Since

.Œk0�; Œl2�/ 2H
1.k; hsˇ ı s˛i/�H

1.k; hs˛i/DH
1.k;W .k0;l2//

is equivalent to

.Œk0�; Œk0�C Œl2�/ 2H
1.k; hsˇ i/�H

1.k; hs˛i/DH
1.k;W .k0;l2//;

we have

��.Œx�/D
�
Œk0�C Œl2�; Œk

0�
�
2H 1.k; hs˛i/�H

1.k; hsˇ i/:

Therefore,
T ' x.T0/Š

�
R1k1=k

.Gm/�k R
1
k2=k

.Gm/
�
=�2;

where Œk2�D k0 and Œk1�D Œk2�C Œl2�. �

Remark 4.2.2. A natural question is whether the class of Œ.k0; l/� is determined
by the isomorphism class of the torus T .k

0;l/ as a k-torus. It is not the case; there
are indeed examples of nonequivalent pairs .k0; l/ and .k0

]
; l]/ such that the k-tori

T .k
0;l/ and T .k

0
]
;l]/ are isomorphic whenever the field k admits a biquadratic field

extension k1˝k k2. We put then k1;] D k2 and k2;] D k1. With the notations of
the proof of Lemma 4.2.1(2), we consider the k-tori

T D
�
R1k1=k

.Gm/�k R
1
k2=k

.Gm/
�
=�2;

T] D
�
R1k1;]=k

.Gm/�k R
1
k2;]=k

.Gm/
�
=�2:

Then the k-tori T and T] are obviously k-isomorphic. However, the root data
‰.k0;l/ and ‰.k0

]
;l]/

are not isomorphic as k2 6Š k2;] D k1.

Since the pointed set H 1.k;GL2.Z// classifies two-dimensional k-tori, the map
H 1.k;W0/!H 1.k;GL2.Z// is in this case not injective. It is due to the fact that
the normalizer of C2 � .1�Z=2Z/ in GL2.Z/ is larger than the normalizer in W0.

We deal now with the Galois cohomology of those tori.
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Lemma 4.2.3. (1) We have an exact sequence

0! Ker.l�! k�/=Nl 0=l
�
Ker

�
.l 0/�

nl0=k0
���! .k0/�

��
!H 1.k; T .k

0;l//

! .k0/�=Nl 0=k0..l
0/�/

nk0=k
���! k�=Nl=k.l

�/! 0;

and the map nk0=k admits a section.

(2) Assume that k0 and l are fields. Then H 1.k; .
1
T .k

0;l//0/D 0.

Proof. We put T D T .k
0;l/.

(1) The Hilbert theorem 90 produces an isomorphism

k�=Nl=k.l
�/ �!� H 1.k; R1l=k.Gm;l//:

Combined with the Shapiro isomorphism, we get an isomorphism

.k0/�=Nl 0=k0.l
0�/ �!� H 1

�
k0; R1l 0=k0.Gm;l 0/

�
�!� H 1

�
k;Rk0=k

�
R1l 0=k0.Gm;l 0/

��
:

Putting these two facts together, the long exact sequence of Galois cohomology is

� � � ! Ker
�
.l 0/�! .k0/�

� Nl0=l
���!Ker.l�! k�/!H 1.k; T /

! .k0/�=Nl 0=k0..l
0/�/

nk0=k
���! k�=Nl=k.l

�/! � � � :

Since k�=Nl=k.l�/ is of 3-torsion, half of the “diagonal map” k�=Nl=k.l�/!
.k0/�=Nl 0=k0..l

0/�/ provides a section of .k0/�=Nl 0=k0..l 0/�/
nk0=k
���!k�=Nl=k.l

�/.

(2) We have an exact sequence

0! yT 0! Coindk
0

k .Il 0=k0/
nk0=k
���! Il=k! 0

of Galois modules, where Il=k D Ker
�
Coindlk.Z/! Z

�
. It gives rise to the long

exact sequence of groups

0!H 0.k; yT 0/!H 0.k;Coindk
0

k .Il 0=k0//!H 0.k; Il=k/! � � �

!H 1.k; yT 0/!H 1.k;Coindk
0

k .Il 0=k0//!H 1.k; Il=k/! � � � :

We consider the exact sequence 0! Il=k ! Coindlk.Z/! Z! 0 and the corre-
sponding sequence

0!H 0.k; Il=k/!H 0.k;Coindlk.Z//!H 0.k;Z/! � � �

!H 1.k; Il=k/!H 1.k;Coindlk.Z//!H 1.k;Z/:

The group Z D H 0.k;Coindlk.Z// embeds in Z by multiplication by 3; also
we have H 1.k;Coindlk.Z// �!

� H 1.l;Z/ D 0 by Shapiro’s isomorphism. The
above sequence induces an isomorphism Z=3Z �!� H 1.k; Il=k/. On the other
hand, we have H 1.k; Indk

0

k .Il 0=k0// �!
� H 1.k0; Il 0=k0/ �

� Z=3Z. The norm map
nk0=k WH

1.Coindk
0

k .Il 0=k0//!H 1.k; Il=k/ is multiplication by 2 on Z=3Z. Hence
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it is injective. By using the starting exact sequence, we conclude thatH 1.k; yT 0/D 0

as desired. �

4.3. A necessary condition. There is a basic restriction on the types of maximal
tori of G.

Proposition 4.3.1. (1) Let T be a k-torus of rank two and let i W T ! G be a
k-embedding such that type.T; i/D Œ.k0; l/�. Then G �k k0 is split.

(2) Assume that l D k � k � k. Then the following are equivalent:

(i) There exists a k-embedding i W T ! G of a rank-2 torus T such that
type.T; i/D Œ.k0; k3/�.

(ii) Gk0 splits.
(iii) There is an isometry .k0; nk0=k/ ,! .C;NC /.

Proof. (1) Since G is of type G2, it is equivalent to show that G �k k0 is isotropic.
We may assume that T D T .k

0;l/. We consider first the case when l D k � l2,
where l2 is a quadratic étale k-algebra. Then we have

T �k k
0
�!� R1l 0=k0.Gm;l 0/ �

� Rl2˝k0=k0.Gm;l2˝k0/:

Hence T �k k0 is isotropic.
It remains to consider the case when the cubic k-algebra l is a field. From the

first case, we see that Gl 0 is split. In other words, the k0-group Gk0 is split by the
cubic field algebra l D l ˝k k0 of k0. Hence Ck0 is split, and hence C splits.

(2) .i/) .ii/ follows from (1).

.ii/) .i/: If G is split, (i) holds according to Theorem 2.3.1. We may assume that
G is not split, and hence is anisotropic. In particular, k is infinite. Since Gk0 splits,
k0 is a field and we denote by � W k0! k0 the conjugacy automorphism. We use now
a classical trick. Since G.k0/ is Zariski dense in the Weil restriction Rk0=k.Gk0/,
there exists a Borel k-subgroup B of Rk0=k.Gk0/ such that its conjugate �.B/ is
opposite to B . The k-group T D B \ �.B/\G of G is then a rank-2 torus. If we
write B DRk0=k.B 0/, with B 0 a Borel k0-subgroup of Gk0 , then Tk0 is a maximal
torus of B 0. We denote the natural embedding of the maximal torus T by i W T !G.
By seeing i.Tk0/ as a maximal k0-torus of B 0, it follows that the action of � on the
root system ‰.Gk0 ; T

0/ is by �1. Thus type.T; i/D .k0; k3/ as desired.
For the equivalence .ii/() .iii/, see Lemma 3.1.3. �

Remark 4.3.2. Another proof of (2) is provided by the next Proposition 4.4.1; it is
the case k1 D k2.
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4.4. The biquadratic case. In the dihedral group D6�GL2.Z/, it is convenient to
change coordinates by considering the diagonal subgroup .Z=2Z/2 D hc1; c2i. The
map .Z=2Z/2 �!� C2 � .1�Z=2Z/� C2 �S3 is given by .c1; c2/ 7! .c1; c1c2/.

We are interested in the case when the class of .k0; l/ belongs to the image
of H 1.k;Z=2Z/�H 1.k;Z=2Z/!H 1.k;Z=2Z/�H 1.k; S3/. In terms of étale
algebras, it rephrases by saying that there are quadratic étale k-algebras k1=k, k2=k
such that k0 D k2 and l D k � l2, where Œk2�D Œk1�C Œl2�. We call that case the
biquadratic case. In that case, T .k

0;l/ is k-isomorphic to�
R1k1=k

.Gm/�R
1
k2=k

.Gm/
�
=�2:

Proposition 4.4.1. Let k1; k2 be quadratic étale k-algebras and denote by �1; �2 2
H 1.k;Z=2Z/ their classes. We consider the couple .k0; l/ D .k2; k � l2/, where
Œl2� D Œk1� C Œk2�. We denote by ‰ D ‰.k0;l/, defined in Section 4.2, and by
X D E.G;‰/ the K-variety of embeddings defined in Section 2.6.

(a) The following are equivalent:
(1) X.k/ 6D∅; that is, G admits a maximal k-torus of type Œ.k0; l/�.
(2) C ˝k kj is split for j D 1; 2.
(3) C admits a quaternion subalgebraQ such that there exists c2k� satisfying

ŒQ�D �1[ .c/D �2[ .c/ 2 2Br.k/:

(b) If the k-variety X has a zero-cycle of odd degree then it has a k-point.

Proof. (a) If C is split, the statement is trivial since the three assertions hold.
We can then assume that C is nonsplit. We choose scalars a1; a2 2 k such that
kj Š kŒt �=t

2�aj for j D 1; 2 if k is of odd characteristic and kj Š kŒt �=t2CtCaj
in the characteristic-two case.

.1/) .2/: We assume that T D T k
0;l Š

�
R1
k1=k

.Gm/�R
1
k2=k

.Gm/
�
=�2 embeds

in G. Then Tkj
is isotropic so that Gkj

is isotropic, and hence split for j D 1; 2.
We conclude that Ckj

is split for j D 1; 2.

.2/) .3/: We shall construct a quaternion subalgebra Q of C which contains k1
and k2. Since Ckj

splits for j D 1; 2, we know that kj embeds in C as a unital
composition subalgebra (Lemma 3.1.3). If k1 D k2 then Q can be obtained from
k1 by the doubling process from [Springer and Veldkamp 2000, Proposition 1.2.3].
So we can assume that k1 6D k2. Let x 2 k2 n k1. Then Lemma 3.2.3 shows that
Q D k1˚ k1x is a unital composition subalgebra of C . It is of dimension 4, so
it is a quaternion subalgebra which contains k1 and k2. The common slot lemma
yields that there exists c 2 k� such that ŒQ� D �1 [ .c/ D �2 [ .c/ 2 Br.k/. In
odd characteristic, a reference for the common slot lemma is [Lam 2005, Chapter
III, Theorem 4.13]. A characteristic-free version is a consequence of a fact on
Pfister forms pointed out by Garibaldi and Petersson [2011, Proposition 3.12]. The
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1-Pfister quadratic forms nk1=k and nk2=k are subforms of the Pfister quadratic
form NQ, so there exists a bilinear quadratic Pfister form h D h1; ci such that
NQ Š h˝ nk1=k Š NQ D h˝ nk2=k . Thus ŒQ� D �1 [ .c/ D �2 [ .c/ 2 Br.k/
according to the characterization of quaternion algebras by their norm forms.

.3/) .1/: We have that C Š C.Q; c/, so we get an embedding

.SL1.Q/�SL1.Q//=�2! Aut.C.Q; c// �!� G:

By embedding k1 in Q (resp. k2 in Q), we get an embedding

R1k1=k
.Gm/�R

1
k2=k

.Gm/! SL1.Q/�SL1.Q/;

so that

i W .R1k1=k
.Gm/�R

1
k2=k

.Gm//=�2! .SL1.Q/�SL1.Q//=�2!G

is an embedding. By the computations of the proof of Lemma 4.2.1(2), it indeed
has type Œ.k0; l/�.

(b) Assume that X has a 0-cycle of odd degree; i.e., there are finite field extensions
K1; : : : ;Kr of k such thatX.Ki/ 6D∅ for iD1; : : : ; r and g:c:d:.ŒK1 WK�; : : : ; ŒKr WK�/
is odd. By (a), it follows that CKi˝kk1

and CKi˝kk2
are split for i D 1; : : : ; r . Then

there exists an index i such that ŒKi W k� is odd. If k1D k�k, then C splits overKi ;
it follows that C is split by Lemma 3.1.1, whence X.k/ 6D ∅ by Theorem 2.3.1.
We can then assume that k1 is a field. Then Ki ˝k k1 is a field extension of Kj
so that CKj˝kk1

splits; since ŒKi ˝k k1 W k1� is odd, Lemma 3.1.1 shows then that
Ck1

is split. Similarly Ck2
is split, and by (a), we conclude that X.k/ 6D∅. �

In the following, we consider a special case where k0 and l have the same
discriminant.

Corollary 4.4.2. Let k0=k be a quadratic étale algebra and let l be a cubic étale
k-algebra of discriminant k0. If C admits a maximal k-torus of type Œ.k0; l/�, then
C splits.

Proof. First, assume that l is not a field, so that l Š k � k0. Then Proposition 4.4.1
yields that C is split by the quadratic étale k-algebra k1 which satisfies Œk1� D
Œk0�C Œl2�D 0, whence C is split.

If l is a field, the octonion l-algebra Cl admits a maximal l-torus of type
Œ.k0˝k l; l ˝k l/�. Since l ˝k l �!� l � .l ˝k k

0/, the first case shows that Cl is
split. We conclude that C is split by Lemma 3.1.1. �

Remark 4.4.3. Take k D R and let C be the “anisotropic” Cayley algebra (or we
simply call it a Cayley algebra). We consider the case where .k0; l/D .C;R�C/.
By Corollary 4.4.2, there is no R-embedding of a maximal torus of type .k0; l/.
However, Gk0 splits and this example shows that only the direct implication holds
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in Proposition 4.3.1(1). The only possible type is then Œ.C;R3/�, which is realized
according to Proposition 4.3.1(2).

We can now provide a description of such maximal tori.

Proposition 4.4.4. Let k1; k2 be quadratic étale k-algebras. We consider the couple
.k0; l/D .k2; k � l2/, where Œl2�D Œk1�C Œk2�, and we assume that C is split by k1
and k2. We put T D .R1

k1=k
.Gm/�R

1
k2=k

.Gm//=�2 and consider a k-embedding
i W T ! G of type Œ.k0; l/�. Then there exists a quaternion subalgebra Q of C
containing k1 and k2 and a Cayley–Dickson decomposition C Š C.Q; c/ such that
i W T !G Š Aut.C.Q; c// factorizes by the k-subgroup .SL1.Q/�SL1.Q//=�2
of Aut.C.Q; c//.

Proof. Consider the case where k1˝k k2 is a field. We denote by �DZ=2Z�Z=2Z

the Galois group of the biquadratic field extension k1˝k k2. This group acts on
the root system ˆ.Gks

; i.Tks
// through a W0-conjugate of the standard subgroup

Z=2Z�Z=2Z of W0 generated by the central symmetry and the symmetry with the
horizontal axis (see the figure in Section 3.3). It follows that � stabilizes a subroot
system ˆ1 of type A1 �A1 of ˆ.Gks

; Tks
/. By Galois descent, the ks-subgroup

generated by the root subgroups of ˆ1 descends to a k-subgroup H of G which is
semisimple of type A1 �A1. Lemma 3.4.1 shows that there is a Cayley–Dickson
decomposition C DQ˚Q:a such that H DH.Q/. We have then a factorization
of i W T !G by H.Q/ �!� .SL1.Q/�SL1.Q//=�2.

The other cases (k1 or k2 split, k1 D k2) are simpler, of the same flavor, and left
to the reader. �

4.5. The cubic field case: a first example. Beyond the previous “equal discrimi-
nant case”, the embedding problem for a given octonion algebra C and a couple
.k0; l/ whenever l is a cubic field is much more complicated. The property to carry
a maximal torus of “cubic type” encodes information on the relevant k-group, and
we shall first investigate specific examples over Laurent series fields. The next fact
is inspired by similar considerations on central simple algebras by Chernousov,
Rapinchuk and Rapinchuk [Chernousov et al. 2013, §2].

Let us start with a more general setting. Let G0 be a semisimple Chevalley group
defined over Z, equipped with a maximal split subtorus T0. Denote by ‰0 the root
datum attached to .G0; T0/. Let G0=k be a quasisplit form of G0 and denote by T 0

a maximal k-torus of G0 which is the centralizer of a maximal k-split torus of G0.
We denote by W 0 DNG0.T 0/=T 0 the Weyl group of T 0.

Lemma 4.5.1. Let K D k..t//. Let E be a W 0-torsor defined over k and put T D
E^W

0

T 0. Assume thatH 1.k; yT 0/D 0, where yT 0 is the Galois lattice of cocharac-
ters of T . Let z W Gal.Ks=K/!G0.Ks/ be a Galois cocycle and put G D zG

0=K.
Assume there is an embedding i W TK ! G satisfying typecan.i; TK/ D ŒE�K 2
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H 1.K;W 0/. Then Œz� is “unramified”; i.e., Œz� 2 Im.H 1.k;G0/!H 1.K;G0//. In
particular, there exists a semisimple k-group H such that G ŠH �k K.

Proof. By our form of Steinberg’s theorem, Theorem 2.4.1, there is a k-embedding
i 0 W TK ! G0K such that the class Œz� 2 H 1.K;G0K/ belongs to the image of
i 0� WH

1.K; T /!H 1.K;G0K/, and furthermore typecan.TK ; i/D typeid.TK ; i
0/D

ŒE�K 2H
1.K;W 0/.

On the other hand, we know by Theorem 2.3.1 that there exists a k-embedding
j W T !G0 such that typeid.T; j /D ŒE�. By Proposition 2.5.3, the images of .i 0/�
and .jK/� W H 1.K; T /! H 1.K;G0/ coincide. It follows that Œz� 2 H 1.K;G0/

belongs to the image of .jK/� WH 1.K; T /!H 1.K;G0/. We appeal now to the
localization sequence 0!H 1.k; T /!H 1.K; T /!H 1.k; yT 0/! 0 provided
by the Appendix (Lemma A.1). Using our vanishing hypothesis H 1.k; yT 0/D 0

and the commutative diagram

H 1.k; T / //

j�;k

��

H 1.K; T /

j�;K

��

// 0

H 1.k;G0/ // H 1.K;G0/

we conclude that Œz� comes from H 1.k;G0/. �

Since every semisimple K-group of type G2 is an inner form of its split form,
the following corollary follows readily.

Corollary 4.5.2. Let K D k..t// and let G=K be a semisimple k-group of type G2.
Consider a couple .k0; l/ such that k0=k is a quadratic étale algebra and l=k is a
cubic field separable extension. Denote by E=k the W0-torsor associated to .k0; l/
and put T=kDE^W0 T0. If theK-torus T �kK admits an embedding i in G such
that typecan.TK ; i/D Œ.k

0; l/�, then there exists a semisimple k-groupH of type G2
such that G ŠH �k K.

Proof. We can assume that G D z.G0/=K, where z W Gal.Ks=K/! G.Ks/ is a
Galois cocycle. By Lemma 4.2.3(2), we have H 1.k; yT 0/D 0. The corollary then
follows from Lemma 4.5.1 applied to G0 DG0=k and T 0 D T0. �

Theorem 4.5.3. LetQ be a quaternion division algebra over k, k0 a quadratic étale
subalgebra of Q and l=k a Galois cubic field extension. As before, let K D k..t//,
K 0 D k0..t//, L D l..t//. Let C=K D C.QK ; t / be the octonion algebra built out
from the Cayley–Dickson doubling process.

Let ‰ D ‰.K0;L/ be as defined in Section 4.2, and let X D E.G;‰/ be the
K-variety of embeddings defined in Section 2.6. Then X.K/D∅, X.K 0/ 6D∅ and
X.L/ 6D∅.
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Proof. We have NC DNQ;K ˝h1; ti. Since NQ is an anisotropic k-form, the qua-
dratic form NC is anisotropic and cannot be defined over k according to Springer’s
decomposition theorem [Elman et al. 2008, §19]. It follows that the k-group
G D Aut.C / cannot be defined over k; Lemma 4.5.1 shows there is no embedding
of a k-torus with type Œ.K 0; L/�, and therefore X.K/D∅.

SinceK 0 splits C , G�KK 0 is split so that we haveX.K 0/ 6D∅ by Theorem 2.3.1.
It remains to show thatX.L/ is not empty. We have Œ.K 0; L/�˝KLŠ ŒK 0˝KL;L3�.
Since K 0 splits C , K 0˝KL splits C and Proposition 4.3.1(2) yields X.L/ 6D∅. �

Remarks 4.5.4. (a) The requirements on the field k are mild and are satisfied by
any local or global field.

(b) Geometrically speaking, the variety X=K is a homogeneous space under a
k-group of type G2 whose geometric stabilizer is a maximal K-torus. As far as we
know, it is the simplest example of homogeneous space under a semisimple simply
connected group with a 0-cycle of degree one and no rational points; compare with
[Florence 2004], where stabilizers are finite and noncommutative, and [Parimala
2005], where stabilizers are parabolic subgroups.

5. Étale cubic algebras and hermitian forms

Our goal is to further investigate the cubic case by using results of Haile, Knus,
Rost and Tignol [Haile et al. 1996] on hermitian 3-forms.

Let C be an octonion algebra over k and put G D Aut.C /. Let i W T !G be a
k-embedding of a rank-2 torus, and we denote by Œ.k0; l/� its type.

We denote byR>0 the subset of long roots of the root systemRDˆ.Gks
; i.Tks

//.
Then R> is a root system of type A2 and is �k-stable, and hence defines a twisted
datum. We consider the ks-subgroup of Gks

generated by Tks
and the root groups

attached to elements of R>; it is semisimple simply connected of type A2 and de-
scends to a semisimple k-group J.T; i/ of G. Our goal is to study such embeddings
.T; i/ by means of the subgroup J.T; i/.

We shall see in the sequel that such a k-group J.T; i/ is a special unitary group
for some hermitian 3-form for k0=k.

Remarks 5.0.5. (a) J.-P. Serre explained another way to construct the k-subgroup
J.T; i/. Define the finite k-group of multiplicative type

�T;ks
D Ker

�
Tks

Q
˛

���!

Y
˛2R>

Gm;ks

�
I

it descends to a k-subgroup �T of T . We claim that

J.T; i/DZG.�T /:
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For checking that fact, it is harmless to assume that k is algebraically closed. For
simplicity, we put J D J.T; i/; it is isomorphic to SL3. Since ˆ.J; i.T ///DR>,
we have that �T D Z.J / [Demazure and Grothendieck 1970c, XIX, 1.10.3]; it
follows that �T Š �3 and that J � ZG.�T /. Since J is a semisimple subgroup
of maximal rank of G, Borel and de Siebenthal’s theorem provides a k-subgroup
�n of T such that J D ZG.�n/ [Pépin Le Halleur 2012, Proposition 6.6]. Then
�n �Z.J /Š �3 so that �n DZ.J /D �T . Thus J DZG.�T /.

(b) If k is of characteristic 3, we can associate to T another k-subgroup J<.T; i/ of
type A2. Let R< be the subset of short roots of the root system RDˆ.Gks

; i.Tks
//.

It is a 3-closed symmetric subset [Pépin Le Halleur 2012, Lemma 2.4], so the ks-
subgroup of Gks

generated by Tks
and the root groups attached to elements of

R< define a semisimple ks-subgroup J< of Gks
[ibid., Theorem 3.1]; furthermore,

we have ˆ.J; i.Tks
//DR<. The ks-group J< descends to a semisimple k-group

J<.T; i/. It is semisimple of type A2 and adjoint since R< spans yT .ks/.

5.1. Rank-3 hermitian forms and octonions. Let k0=k be a quadratic étale algebra.
From a construction of Jacobson [1958, §5] (see [Knus et al. 1994, §6] for the
generalization to an arbitrary base field), we recall that we can attach to a rank-3
hermitian form .E; h/ (for k0=k/ with trivial (hermitian) discriminant an octonion
k-algebra C.k0; E; h/D k0˚E. Furthermore, the k-group SU.k0; E; h/ embeds in
Aut.C.k0; E; h// by g:.x; e/D .x; g:e/. We denote by J.k0; E; h/ this k-subgroup
and we observe that k0 is the k-vector subspace of C.k0; E; h/ of fixed points for
the action of J.k0; E; h/ on C.k0; E; h/. Also J.k0; E; h/ is the k-subgroup of
Aut.C.k0; E; h// acting trivially on k0.

In a converse way (see [Knus et al. 1998, Exercise 6(b), page 508]), if we are
given an embedding of a unital composition k-algebra k0! C , we denote by E
the orthogonal subspace of k0 for NC . For any x; y 2 k0 and z 2E, we have

0D hxy; ziC D hy; �C .x/ziC

by using the identity [Springer and Veldkamp 2000, Lemma 1.3.2], so that the
multiplication C �C ! C induces a bilinear k-map k0 �E! E. Then E has a
natural k0-structure and the restriction of NC to E defines a hermitian form h (of
trivial discriminant) such that C D C.k0; E; h/.

Furthermore, if we have two subfields k01; k
0
2 of C isomorphic to k0, the “Skolem–

Noether” property [Knus et al. 1998, 33.21] shows that there exists g 2 G.k/
mapping k01 to k02. Hence the hermitian forms .E1; h1/, .E2; h2/ are isometric.

Remark 5.1.1. Of course, in such a situation, h can be diagonalized as h�b;�c; bci
and we have nC.k0;E;h/D nk0=k˝hhb; cii. If we take h�1;�1; 1i, we get one form
of the split octonion algebra C0 and then a k-subgroup J0 D SL3 of Aut.C0/.
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Lemma 5.1.2. In the above setting, we putGDAut.C.k0;E;h// and JDJ.k0;E;h/.

(1) There is a natural exact sequence of algebraic k-groups 1! J !NG.J /!

Z=2Z! 1.

(2) The map NG.J /.k/! Z=2Z is onto and the induced action of Z=2Z on k0 is
the Galois action.

Proof. (1) We consider the commutative exact diagram of k-groups

1

��

1 // Z.J /

��

// J

��

// J=Z.J / //

��

1

1 // ZG.J / // NG.J / // Aut.J / //

��

1

Autext.J /D Z=2Z

��

1

Let T be a maximal k-torus of J ; it is still maximal in G. Then we have ZG.J /�
ZG.T / D T , and hence ZG.J / � Z.J /, so that Z.J / D ZG.J /. The diagram
provides then an exact sequence 1! J ! NG.J /! Z=2Z. We postpone the
surjectivity.

(2) Now by the “Skolem–Noether property” [Knus et al. 1998, 33.21], the Galois
action � W k0! k0 extends to an element g 2G.k/. Given u 2 J.k/, gug�1 is an
element of G.k/ which acts trivially on k0, so it belongs to J.k/. Since it holds
for any field extension of k, we have that g 2 NG.J /.k/. We conclude that the
map NG.J /! Z=2Z is surjective and that the induced action of Z=2Z on k0 is the
Galois action. �

Let C be an octonion algebra, put G D Aut.C / and let J be a semisimple
k-subgroup of type A2 of G. Then J is of maximal rank and we can appeal again
to the Borel and de Siebenthal classification theorem [Pépin Le Halleur 2012, Theo-
rem 3.1]. If the characteristic of k is not 3, then J is geometrically conjugated to the
standard SL3 in G2 and is then simply connected. If the characteristic k is 3, then J
may arise as in Remarks 5.0.5(b) from the short roots associated to a maximal k-torus
of J ; in that case, J is adjoint. We can make a similar statement to Lemma 3.4.1.

Lemma 5.1.3. Let J be a semisimple simply connected k-subgroup of type A2 of
G D Aut.C / and we denote by k0=k the quadratic étale algebra attached to the
quasisplit form of J . Then there exists a rank-3 hermitian form .E; h/ for k0=k, an
isomorphism C ŠC.k0; E; h/, and an isomorphism J �!� J.k0; E; h/ such that the
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following diagram commutes

J

o

��

� � // G

o

��

J.E; h/
� � j

// Aut.C.k0; E; h//:

Proof. Given a k-maximal torus T of G, we consider the root system ‰.Gks
; Tks

/.
There are exactly 6 long roots in ‰.Gks

; Tks
/ which form an A2-subsystem of

‰.Gks
; Tks

/. Let H be the subgroup of Gks
which is generated by Tks

and the
root groups of long roots. Since the Galois action preserves the length of a root,
the group H is defined over k. Hence given a k-maximal torus T , there is exactly
one subgroup H of G which is a twisted form of SL3 and contains T . Since all
maximal k-split tori are conjugated over k, the split group G0 of type G2 has one
single conjugacy G0.k/-class of k-subgroups isomorphic to SL3. It follows that
the couple .G; J / is isomorphic over ks to the couple .G0; J0/. In particular, by
Galois descent, the subspace of fixed points of J on C is an étale subalgebra l of
rank 2 which is a unital composition subalgebra of C . We define then the orthogonal
subspaceE of l in C . ThenE has a natural structure of an l-vector space and carries
a hermitian form h of trivial (hermitian) discriminant such that C.l; E; h/ D C
(see [Knus et al. 1998, Exercise 6(b), page 508]). But J acts trivially on l , so that
J � J.l; E; h/. For dimension reasons, we conclude that J D J.l; E; h/. Then
l=k is the discriminant étale algebra of J , and hence k0 D l . �

Remark 5.1.4. Note that in the above proof, we didn’t put any assumption on the
characteristic of k. However, in characteristic 6D 2; 3, Hooda [2014, Theorem 4.4]
proved the above lemma in a quite different way.

5.2. Embedding maximal tori. From now on, we assume for simplicity that the
characteristic exponent of k is not 2.

Lemma 5.2.1. LetGDAut.C / be a semisimple k-group of typeG2. Let k0 (resp. l)
be a quadratic (resp. cubic) étale algebra of k. Let i W T ! G be a k-embedding
of a maximal k-torus such that type.T; i/ D Œ.k0; l/� and denote by J.T; i/ the
associated k-subgroup of G.

(1) The discriminant algebra of J.T; i/ is k0=k.

(2) By Lemma 5.1.3, we can write C D C.k0; E; h/ and identify J.T; i/ with
J.k0; E; h/. Then there is a k0-embedding f W k0˝k l !M3.k

0/ such that
f ı.�˝ id/D �h ıf on k0˝k l , where �h is the involution onM3.k

0/ induced
by h.

Proof. (1) We put J D J.T; i/. We consider the Galois action on the root system
‰.Gks

; i.T /ks
/ and its subroot system ‰.Jks

; i.T /ks
/D ‰.Gks

; i.T /ks
/>. It is
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given by a map f W �k ! Z=2Z� S3 defining Œ.k0; l/�. Since the Weyl group of
‰.Jks

; i.T /ks
/ is S3, it follows that the ?-action of �k on the Dynkin diagram A2

is the projection �k!Z=2Z. Therefore the discriminant algebra of J.T; i/ is k0=k.

(2) We have then a k-embedding i W T ! J D SU.k0; E; h/. Its type (absolute with
respect to J ) is Œ.k0; l/� 2 H 1.k;Z=2Z� S3/. By [Lee 2014, Theorem 1.15(2)],
there is a k0-embedding k0˝k l!M3.k

0/ with respect to the conjugacy involution
� ˝ id on k0˝k l and the involution �h attached to h. �

Proposition 5.2.2. Let G D Aut.C / be a semisimple k-group of type G2. Let k0

(resp. l) be a quadratic (resp. cubic) étale k-algebra. We denote by X the variety
of k-embeddings of maximal tori in G attached to the twist of ‰0 by .k0; l/ (seen as
a W0-torsor). The following are equivalent:

(i) X.k/ 6D∅; that is, there exists an embedding i W T !G of a maximal k-torus
of type Œ.k0; l/�.

(ii) There exists a rank-3 hermitian form .E; h/ for k0=k of trivial (hermitian) dis-
criminant such that C ŠC.k0; E; h/ and such that there exists a k0-embedding
of k0˝k l! Endk0.E/ with respect to the conjugacy involution on k0 and the
involution �h attached to h.

(iii) There exists a rank-3 hermitian form .E; h/ for k0=k of trivial (hermitian)
discriminant such that C Š C.k0; E; h/ and an element � 2 l� such that
.l ˝k k

0; t0
�
/' .E; h/, where t0

�
.x; y/D trl˝k0=k0.�x�.y//.

Proof. The implication .i/) .ii/ follows from Lemma 5.2.1(2). Conversely, we
assume (ii). Then G Š Aut.C.k0; E; h// admits the k-subgroup J.k0; E; h/ �!�

SU.k0; E; k/. By [Lee 2014, Theorem 1.15(2)], there is a k-embedding i W T !
SU.k0; E; k/ of a maximal torus whose absolute type (with respect to J ) is Œ.k0; l/�.
The k-embedding i W T ! SU.k0; E; k/!G also has absolute type Œ.k0; l/�.

The equivalence .ii/() .iii/ follows from the embedding criterion of k0˝k l!
Endk0.E/ given by [Bayer-Fluckiger et al. 2015, Proposition 1.3.1]. �

Let k0, l be as in Proposition 5.2.2. Let ı 2 k�=k�
2

be the discriminant of l
and d 2 k�=k�

2

be the discriminant of k0. Let B be a central simple algebra over
k0 with an involution � of the second kind. Let Trd be the reduced trace on B .
Let .B; �/C be the k-vector space of �-symmetric elements of B . Let Q� be the
quadratic form on .B; �/C defined by

Q� .x; y/D Trd.xy/:

Let us recall some results in [Haile et al. 1996].

Lemma 5.2.3. Assume that k is not of characteristic 2. Let B be a central simple
K-algebra of odd degree nD 2m� 1 with involution � of the second kind. There
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is a quadratic form q� of dimension n.n� 1/=2 and trivial discriminant over k
such that

Q� ' h1i ? h2i � hh˛ii˝ q� :

Proof. We refer to [ibid., Proposition 4]. �

Theorem 5.2.4. Assume that k is not of characteristic 2 or 3. Let � , � be involutions
of the second kind on a central simple algebra B of degree 3. Then � and � are
isomorphic if and only if Q� and Q� are isometric.

Proof. We refer to [ibid., Theorem 15]. �

Let .B; �/ be as in Lemma 5.2.3 with degreeBD3 and assume that 6 is invertible
in k. Let b0, c0 2 k� such that q� ' h�b0;�c0; b0c0i: Define �.B; �/ to be the
Pfister form hhd; b0; c0ii. An involution � of the second kind is called distinguished
if �.B; �/ is hyperbolic. Let .E; h/ be a rank-3 hermitian form over k0 with trivial
(hermitian) discriminant. We can find b, c 2 k� such that h' h�b;�c; bcik0 :

Now consider the special case where .B; �/D .Endk0.E/; �h/. Then we have
q�h
D h�b;�c; bci and �.Endk0.E/; �h/D hhd; b; cii, which is the norm form of

the octonion C.k0; E; h/. It is then possible to recover with that method at least the
two following facts.

Remarks 5.2.5. (a) Theorem 2.3.1 for G2, i.e., all possible types of tori occur in
the split case: Given a couple .k0; l/, we can write the split octonion algebra C as
C.k0; E; h/ for E D .k0/3 hD h�1;�1; 1i. First we note that l can be embedded
into Endk0.E/ since Endk0.E/ is split. As NC is isotropic, we have that �h is
distinguished. By [Haile et al. 1996, Corollary 18], every cubic étale algebra l can
be embedded as a subalgebra in Endk0.E/ with its image in .Endk0.E/; �h/C. By
Proposition 5.2.2(2), there is an embedding i WT !G of type Œ.k0; l/�2H 1.k;W0/.

(b) Corollary 4.4.2 for the “equal discriminant case”, i.e., the discriminant algebra
of l is k0: In this case, there is an embedding i W T ! G of type Œ.k0; l/� if and
only if NC is isotropic. For a proof in the present setting, we assume there is an
embedding i W T ! G of type Œ.k0; l/�. According to Proposition 5.2.2(2), there
exists a 3-hermitian form .E; h/ of trivial determinant such that C Š C.k0; E; h/
and an embedding l ˝k k0! Endk0.E/ with respect to the conjugacy involution
on k0 and the involution �h attached to h. Then .Endk0.E/; �h/C contains a cubic
étale algebra isomorphic to l whose discriminant is d . By [ibid., Theorem 16(e)],
we have �.Endk0.E/; �h/DNC is isotropic. Thus C is split.

Proposition 5.2.6. Assume that k is not of characteristic 2; 3. Let G D Aut.C / be
a semisimple k-group of type G2. Let k0 (resp. l) be a quadratic (resp. cubic) étale
k-algebra. Then there is a k-embedding i W T !G of type Œ.k0; l/� 2H 1.k;W0/ if
and only if the following two conditions both hold:



128 CONSTANTIN BELI, PHILIPPE GILLE AND TING-YU LEE

(i) There is a rank-3 k0=k-hermitian form .E; h/ of trivial (hermitian) discrimi-
nant such that C ' C.k0; E; h/.

(ii) Let b; c 2 k� such that h�b;�c; bcik0 is isometric to the form h in (i).
Then there is � 2 l� such that Nl=k.�/ 2 k�

2

and the k-quadratic form
hhd ii˝ hıi � tl=k.h�i/ is isometric to hhd ii˝ h�b;�c; bci, where tl=k denotes
the Scharlau transfer with respect to the trace map tr W l! k.

Proof. Suppose that there is a k-embedding i WT !G of type Œ.k0; l/�2H 1.k;W0/.
By Proposition 5.2.2(2), there is a rank-3 .k0=k/-hermitian form .E; h/ such that
C 'C.k0; E; h/, and there exists an embedding � Wk0˝k l!Endk0.E/ with respect
to the conjugacy involution on k0 and the involution �h attached to h. By [Haile
et al. 1996, Corollary 12], we can find � 2 l� such that Nl=k.�/ 2 k�

2

and the q�h

in Lemma 5.2.3 is the k-quadratic form hıi � tl=k.h�i/. Since

Q�h
D 3h1i ? h2i � hhd ii˝ h�b;�c; bci;

condition (ii) follows from the Witt cancellation.
Conversely, suppose that (i) and (ii) hold. By Proposition 5.2.2(2), it suffices

to prove that there is a k-embedding of l into .M3.k
0/; �h/C. Note that every

cubic étale k-algebra l can be embedded into M3.k
0/ as a k-algebra. By [ibid.,

Corollary 14], for every � 2 l� such that Nl=k.�/ 2 k�
2

, there is an involution �
of the second kind on M3.k

0/ leaving l elementwise invariant such that

Q� D h1; 1; 1i ? h2i � hhd ii˝ hıi � tl=k.h�i/:

Condition (ii) implies that we can choose � so that Q� and Q�h
are isometric.

By Theorem 5.2.4, the involutions � and �h are isomorphic, and hence there is a
k-embedding of l into .M3.k

0/; �h/C. �

6. Hasse principle

We assume that the base field k is a number field.

Proposition 6.1. Let .k0; l/ be a couple where k0 is a quadratic étale k-algebra
and l=k is a cubic étale k-algebra. Let G be a semisimple k-group of type G2 and
let X be the G-homogeneous space of the embeddings of maximal tori with respect
to the type Œ.k0; l/�. Then X satisfies the Hasse principle.

Proof. Since G0 is simply connected, we have H 1.kv; G0/ D 1 for each finite
place v of k. The Hasse principle states that the map

H 1.k;G0/ �!
�

Y
v real place

H 1.kv; G0/

is bijective. IfG is split, X.k/ is not empty (Theorem 2.3.1), so we may assume that
G is not split. By [Lee 2014, Proposition 2.8], X.k/ is not empty if and only if the
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Borovoi obstruction  2X2.k; T .k
0;l// vanishes. There is a real place v such that

Gkv
is not split and then is kv-anisotropic. Since there is a kv-embedding of T .k

0;l/

in Gkv
, the torus T .k

0;l/ is kv-anisotropic. By a lemma due to Kneser [Sansuc 1981,
lemme 1.9.3], we know that X2.k; T .k

0;l//D 0, so that  D 0. Thus X.k/ 6D∅. �
Remark 6.2. Under the hypothesis of Proposition 6.1, the existence of a k-point
on X is controlled by the Borovoi obstruction. It follows from the restriction-
corestriction principle in Galois cohomology that X has a k-point if and only if X
has a 0-cycle of degree one. In other words, examples like those in Theorem 4.5.3
do not occur over number fields.

Corollary 6.3. Let k be a number field and k0 (resp. l) be quadratic (resp. cubic)
étale algebra over k. Let ı 2 k�=k�

2

be the discriminant of l and d 2 k�=k�
2

be the discriminant of k0. Let † be the set of (real) places where G is not split.
Then T .k

0;l/ can be embedded in G with respect to the type Œ.k0; l/� if and only if
d D�1 2 k�v =k

�2
v and ı D 1 2 k�v =k

�2
v for each v 2†.

Proof. According to Proposition 6.1, T .k
0;l/ can be embedded in G with respect

to the type Œ.k0; l/� if and only if this holds everywhere locally or equivalently (by
Theorem 2.3.1) if and only if this holds locally on†. The problem boils down to the
real anisotropic case where the only type is Œ.C;R3/�, according to Remark 4.4.3. �
Examples 6.4. Keep the notations in Corollary 6.3.

(a) Consider the special case where k is the field of rational numbers Q. Suppose
that G is anisotropic over Q. Since there is only one real place of Q, by
Corollary 6.3, the torus T .k

0;l/ can be embedded in G with respect to type
Œ.k0; l/� if and only if k0 is imaginary and the discriminant of l is positive.

(b) Let k be a number field. Suppose that G is anisotropic. Note that in this case,
k is a real extension over Q. Let k0 be an imaginary field extension of k and
let the discriminant of l be Œa� 2 k�=k�

2

for some positive a 2 Q. Then by
Corollary 6.3, the torus T .k

0;l/ can always be embedded in G with respect to
type Œ.k0; l/�.

Appendix: Galois cohomology of tori and semisimple groups
over Laurent series fields

This appendix first provides a reference for a well-known fact on the Galois cohomol-
ogy of tori in the vein of the short exact sequence computing the tame Brauer group
of a Laurent series field. This fact is used in the proof of Lemma 4.5.1. Secondly
we apply our version of Steinberg’s theorem to Bruhat–Tits theory, answering a
question of A. Merkurjev.

We recall that an affine algebraic k-group G is a k-torus if there exists a finite
Galois extension k0=k such thatG�kk0�!� .Gm;k0/

r . If T is a k-torus, we consider



130 CONSTANTIN BELI, PHILIPPE GILLE AND TING-YU LEE

its Galois lattice of characters yT D Homks�gp.Tks
;Gm;ks

/ and its Galois lattice
of cocharacters yT 0 D Homks�gp.Gm;ks

; Tks
/.

Lemma A.1. We put K D k..t//. Let T=k be an algebraic k-torus. Then we have
a natural split exact sequence

0!H 1.k; T /!H 1.K; T / @
�!H 1.k; yT 0/! 0:

Proof. Let k0 be a Galois extension which splits T . We put � D Gal.k0=k/ and
K 0 D k0..t//. We have the exact sequence [Serre 1994, I.2.6(b)]

0!H 1.�; T .k0//!H 1.k; T /!H 1.k0; T /:

Since Tk0 is split, Hilbert’s theorem 90 shows thatH 1.k0; T /D0, whence there is an
isomorphism H 1.�; T .k0// �!� H 1.k; T /. Similarly, we have H 1.�; T .K 0// �!�

H 1.K; T /. We consider the (�-split) exact sequence

1! .k0ŒŒt ��/�! .K 0/�! Z! 0

induced by the valuation. Tensoring with yT 0, we get a �-split exact sequence

1! T .k0ŒŒt ��/! T .K 0/! yT 0! 1:

It gives rise to a split exact sequence

0!H 1
�
�; T .k0ŒŒt ��/

�
!H 1.�; T .K 0//!H 1.�; yT 0/! 0:

Now we use the filtration argument of [Gille and Szamuely 2006, 6.3.1] by putting

U j D fx 2 k0ŒŒt ��� j vt .x� 1/� j g

for each j �0. The V j D yT 0˝U j filter T .k0ŒŒt ��/ and each V j =V jC1Š yT 0˝kk0

is a k0-vector space equipped with a semilinear action, and hence is �-acyclic.1

According to the limit fact [Gille and Szamuely 2006, 6.3.2], we conclude that
the specialization map H 1

�
�; T .k0ŒŒt ��/

�
!H 1.�; T .k0// is an isomorphism. We

have then a split exact sequence

0!H 1.�; T .k0//!H 1.�; T .K 0//!H 1.�; yT 0/! 0:

Since H 1.k0; yT 0/ D 0, we have H 1.�; yT 0/ �!� H 1.k; yT 0/, whence the desired
exact sequence. �

Now we relate Bruhat–Tits theory and our version of Steinberg’s Theorem 2.4.1.
LetG0 be a quasisplit semisimple k-group equipped with a maximal k-split subtorus
S 0. We denote by W 0 the Weyl group of the maximal torus T 0 D CG0.T 0/ of G0.
Put K D k..t// and denote by Knr the maximal unramified closure of K.

1Speiser’s lemma shows that V j =V jC1 D Ej ˝k k0 for a k-vector space Ej on which � acts
trivially.



ON MAXIMAL TORI OF ALGEBRAIC GROUPS OF TYPE G2 131

Proposition A.2. Let E be a G0K-torsor. Then the following are equivalent:

(i) E.Knr/ 6D∅.

(ii) There exists a k-torus embedding i0 W T0! G0 such that ŒE� belongs to the
image of i0;� WH 1.K; T0/!H 1.K;G/.

Proof. We denote by G=K D EG0 the inner twist of G0K by E.

.i/) .ii/: Then G is split by the extension Knr=K and the technical condition
(DE) of Bruhat–Tits theory is satisfied [Bruhat and Tits 1984, Proposition 5.1.6]. It
follows that G admits a maximal K-torus j W T !G which is split over Knr [ibid.,
Corollary 5.1.2].

In particular, there exists a k-torus T0 such that T D T0;K . We consider now
the oriented type  D typecan.T; j / 2 H

1.K;W 0/ provided by the action of the
absolute Galois group of K on the root system ˆ.GKs

; j.T /Ks
/. Since T and G

are split by Knr , it is given by the action of Gal.Knr=K/ŠGal.ks=k/ on the root
system ˆ.GKnr

; j.T /Knr
/ and then defines a constant class 0 2H 1.k;W 0/ such

that  D .0/K .
In the other hand, by the Kottwitz embedding (Theorem 2.3.1), there exists a

k-embedding i0 W T0! G0 of oriented type 0. By Theorem 2.4.1, we conclude
that ŒE� belongs to the image of i0;� WH 1.K; T0/!H 1.K;G0/.

.ii/) .i/: We assume there is a k-embedding i0 W T0!G0 such that ŒE� belongs
to the image of i0;� WH 1.K; T0/!H 1.K;G0/. Since T0;K is split by Knr , the
Hilbert theorem 90 shows that H 1.Knr ; T0/D 0, whence E.Knr/ 6D∅. �

Remarks A.3. (a) If k is perfect, we have that cd.Knr/D 1 (by Lang, see [Gille
and Szamuely 2006, Theorem 6.2.11]) so condition (i) is always satisfied
according to Steinberg’s theorem.

(b) If k is not perfect, there exist examples when condition (i) is not satisfied, even
in the semisimple split simply connected case; see [Gille 2002, Proposition 3
and Theorem 1].
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ON EXTENSIONS OF ALGEBRAIC GROUPS
WITH FINITE QUOTIENT

MICHEL BRION

Consider an exact sequence of group schemes of finite type over a field k,

1−→ N −→ G −→ Q −→ 1,

where Q is finite. We show that Q lifts to a finite subgroup scheme F of G;
if Q is étale and k is perfect, then F may be chosen étale as well. As applica-
tions, we obtain generalizations of classical results of Arima, Chevalley, and
Rosenlicht to possibly nonconnected algebraic groups. We also show that
every homogeneous space under such a group has a projective equivariant
compactification.

1. Introduction

Consider an extension of algebraic groups, that is, an exact sequence of group
schemes of finite type over a field,

(1) 1 −−−→ N −−−→ G
f

−−−→ Q −−−→ 1.

Such an extension is generally not split, i.e., f admits no section which is a
morphism of group schemes. In this note, we obtain the existence of a splitting in a
weaker sense, for extensions with finite quotient group:

Theorem 1.1. Let G be an algebraic group over a field k, and N a normal subgroup
of G with G/N finite. Then there exists a finite subgroup F of G such that G= N ·F.

Here N ·F denotes, as in [SGA 3 I 1970, VIA.5.3.3], the quotient of the semidirect
product N o F by N ∩ F embedded as a normal subgroup via x 7→ (x, x−1). If
G/N is étale and k is perfect, then the subgroup F may be chosen étale as well.
But this fails over any imperfect field k, see Remark 3.3 for details.

In the case where G is smooth and k is perfect, Theorem 1.1 was known to
Borel and Serre, and they presented a proof over an algebraically closed field of
characteristic 0 (see [Borel and Serre 1964, Lemma 5.11 and footnote on p. 152]).
That result was also obtained by Platonov [1966, Lemma 4.14] for smooth linear
algebraic groups over perfect fields. In the latter setting, an effective version of
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Keywords: algebraic groups, finite quotients, extensions, equivariant compactifications.
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Theorem 1.1 has been obtained recently by Lucchini Arteche [2015a, Theorem
1.1]; see [Lucchini Arteche 2015b, Proposition 1.1; Chernousov et al. 2008, p. 473;
Lötscher et al. 2013, Lemma 5.3] for earlier results in this direction.

Returning to an extension (1) with an arbitrary quotient Q, one may ask whether
there exists a subgroup H of G such that G = N · H and N ∩ H is finite (when Q
is finite, the latter condition is equivalent to the finiteness of H ). We then say that
(1) is quasisplit, and H is a quasicomplement of N in G, with defect group N ∩ H .

When Q is smooth and N is an abelian variety, every extension (1) is quasisplit
(as shown by Rosenlicht [1956, Theorem 14]; see [Milne 2013, Section 2] for a
modern proof). The same holds when Q is reductive (i.e., Q is smooth and affine,
and the radical of Q k̄ is a torus), N is arbitrary and char(k)= 0, as we will show in
Corollary 4.8. On the other hand, the group G of unipotent 3× 3 matrices sits in a
central extension

1−→ Ga −→ G −→ G2
a −→ 1,

which is not quasisplit. It would be interesting to determine which classes of groups
N , Q yield quasisplit extensions. Another natural problem is to bound the defect
group in terms of N and Q. The proof of Theorem 1.1 yields some information
in that direction; see Remark 3.4, and [Lucchini Arteche 2015a] for an alternative
approach via nonabelian Galois cohomology.

This article is organized as follows. In Section 2, we begin the proof of
Theorem 1.1 with a succession of reductions to the case where Q = G/N is
étale and N is a smooth connected unipotent group, a torus, or an abelian variety.
In Section 3, we show that every class of extensions (1) is torsion in that setting
(Lemma 3.1); this quickly implies Theorem 1.1. Section 4 presents some applica-
tions of Theorem 1.1 to the structure of algebraic groups: we obtain analogues of
classical results of Chevalley, Rosenlicht and Arima on smooth connected algebraic
groups (see [Rosenlicht 1956; 1961; Arima 1960]) and of Mostow [1956] on linear
algebraic groups in characteristic 0. Finally, we show that every homogeneous
space under an algebraic group admits a projective equivariant compactification;
this result seems to have been unrecorded so far. It is well known that any such
homogeneous space is quasiprojective (see [Raynaud 1970, Corollary VI.2.6]);
also, the existence of equivariant compactifications of certain homogeneous spaces
having no separable point at infinity has attracted recent interest (see, e.g., [Gabber
2012; Gabber et al. 2014]).

2. Proof of Theorem 1.1: some reductions

We first fix notation and conventions which will be used throughout this article.
We consider schemes and their morphisms over a field k, and choose an algebraic
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closure k̄. Given a scheme X and an extension K/k of fields, we denote by X K the
K -scheme obtained from X by the base change Spec(K )→ Spec(k).

We use mostly [SGA 3 I 1970; SGA 3 II 1970; SGA 3 III 1970], and occasionally
[Demazure and Gabriel 1970], as references for group schemes. Given such a group
scheme G, we denote by eG ∈ G(k) the neutral element, and by G0 the neutral
component of G, with quotient map π : G→ G/G0

= π0(G). The group law of G
is denoted by µ : G×G→ G, (x, y) 7→ xy.

Throughout this section, we consider an extension (1) and a subgroup F of G.
Then the map

ν : N o F −→ G, (x, y) 7−→ xy

is a morphism of group schemes with kernel N ∩ F , embedded in N o F via
x 7→ (x, x−1). Thus, ν factors through a morphism of group schemes

ι : N · F −→ G.

Also, the composition F → G → G/N factors through a morphism of group
schemes

i : F/(N ∩ F)−→ G/N .

By [SGA 3 I 1970, VIA.5.4], ι and i are closed immersions of group schemes.

Lemma 2.1. The following conditions are equivalent:

(i) ι is an isomorphism.

(ii) i is an isomorphism.

(iii) ν is faithfully flat.

(iv) For any scheme S and g ∈ G(S), there exists a faithfully flat morphism of finite
presentation f : S′→ S and x ∈ N (S′), y ∈ F(S′) such that g = xy in G(S′).

When G/N is smooth, these conditions are equivalent to:

(v) G(k̄)= N (k̄)F(k̄).

Proof. (i)⇔ (ii): Recall from [SGA 3 I 1970, VIA.5.5.3] that i factors through an
isomorphism F/(N ∩ F)→ (N · F)/N . Thus, we obtain a commutative diagram

N · F
ι

−−−→ G

ϕ

y f
y

F/(N ∩ F)
i

−−−→ G/N

where both vertical arrows are N -torsors for the action of N by right multiplication.
As a consequence, this diagram is cartesian. In particular, i is an isomorphism if
and only if so is ι; this yields the desired equivalence.
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(i)⇒ (iii): Since ν is identified with the quotient map of N o F by N ∩ F , the
assertion follows from [SGA 3 I 1970, VIA.3.2].

(iii)⇒ (iv): This follows by forming the cartesian square

S′ −−−→ Sy g
y

N o F
ν

−−−→ G

and observing that ν is of finite presentation, since the schemes G, N and F are of
finite type.

(iv)⇒ (i): By our assumption applied to the identity map G→ G, there exists
a scheme S′ and morphisms x : S′ → N , y : S′ → F such that the morphism
ν ◦ (x × y) : N o F→ G is faithfully flat of finite presentation. As a consequence,
the morphism of structure sheaves OG→ ν∗(x × y)∗(OS′) is injective. Thus, so are
OG→ ν∗(ONoF ), and hence OG→ i∗(ON ·F ). Since i is a closed immersion, it must
be an isomorphism.

(ii)⇔ (v): When G/N is smooth, i is an isomorphism if and only if it is surjective
on k̄-rational points. Since (G/N )(k̄)= G(k̄)/N (k̄) and likewise for F/(N ∩ F),
this yields the desired equivalence. �

We assume from now on that the quotient group Q in the extension (1) is finite.

Lemma 2.2. If the exact sequence 1→ H 0
→ H → π0(H)→ 1 is quasisplit for

any smooth algebraic group H such that dim(H)= dim(G), then (1) is quasisplit
as well.

Proof. Consider first the case where G is smooth. Then Q is étale, and hence N
contains G0. By our assumption, there exists a finite subgroup F ⊂ G such that
G = G0

· F . In view of Lemma 2.1 (iv), it follows that G = N · F .
If char(k)= 0, then the proof is completed as every algebraic group is smooth

(see, e.g., [SGA 3 I 1970, VIB.1.6.1]). So we may assume that char(k) = p > 0.
Consider the n-fold relative Frobenius morphism

Fn
G : G −→ G(pn)

and its kernel Gn . Then Fn
G is finite and bijective, so that Gn is an infinitesimal

normal subgroup of G. Moreover, the quotient G/Gn is smooth for n � 0 (see
[SGA 3 I 1970, VIIA.8.3]). We may thus choose n so that G/Gn and N/Nn are
smooth. The composition N → G→ G/Gn factors through a closed immersion
of group schemes N/Nn→ G/Gn by [SGA 3 I 1970, VIA.5.4] again. Moreover,
the image of N/Nn is a normal subgroup of G/Gn , as follows, e.g., from our
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smoothness assumption and [SGA 3 I 1970, VIB.7.3]. This yields an exact sequence

1−→ N/Nn −→ G/Gn −→ Q′ −→ 1,

where Q′ is a quotient of Q and hence is finite; moreover, dim(G/Gn)= dim(G).
By our assumption and the first step, there exists a finite subgroup F ′ of G/Gn such
that G/Gn= (N/Nn)·F ′. In view of [SGA 3 I 1970, VIA.5.3.1], there exists a unique
subgroup F of G containing Gn such that F/Gn = F ′; then F is finite as well.

We check that G = N · F by using Lemma 2.1 (iv) again. Let S be a scheme, and
g ∈G(S). Then there exists a faithfully flat morphism of finite presentation S′→ S
and x ′ ∈ (N/Nn)(S′), y′ ∈ F ′(S′) such that Fn

G(g)= x ′y′ in (G/Gn)(S′). Moreover,
there exists a faithfully flat morphism of finite presentation S′′→ S′ and x ′′ ∈ N (S′′),
y′′ ∈ F(S′′) such that Fn

G(x
′′) = x ′ and Fn

G(y
′′) = y′. Then y′′−1x ′′−1g ∈ Gn(S′′),

and hence g ∈ N (S′′)F(S′′), since F contains Gn . �

Remark 2.3. With the notation of the proof of Lemma 2.2, there is an exact
sequence of quasicomplements

1−→ Gn −→ F −→ F ′ −→ 1.

When N = G0, so that Gn ⊂ N , we also have an exact sequence of defect groups

1−→ Gn −→ N ∩ F −→ (N/Gn)∩ F ′ −→ 1.

By Lemma 2.2, it suffices to prove Theorem 1.1 when G is smooth and N = G0,
so that Q=π0(G). We may thus choose a maximal torus T of G (see [SGA 3 II 1970,
XIV.1.1]). Then the normalizer NG(T ) and the centralizer ZG(T ) are (represented
by) subgroups of G (see [SGA 3 I 1970, VIB.6.2.5]). Moreover, NG(T ) is smooth
by [SGA 3 II 1970, XI.2.4]. We now gather further properties of NG(T ):

Lemma 2.4. (i) G = G0
· NG(T ).

(ii) NG(T )0 = ZG0(T ).

(iii) We have an exact sequence 1→ W (G0, T )→ π0(NG(T ))→ π0(G)→ 1,
where W (G0, T ) := NG0(T )/ZG0(T )= π0(NG0(T )) denotes the Weyl group.

Proof. (i) By Lemma 2.1 (v), it suffices to show that G(k̄)= G0(k̄)NG(T )(k̄). Let
x ∈ G(k̄), then xT x−1 is a maximal torus of G0(k̄), and hence xT x−1

= yT y−1

for some y ∈ G0(k̄). Thus, x ∈ yNG(T )(k̄), which yields the assertion.

(ii) We may assume that k is algebraically closed and G is connected (since
NG(T )0 = NG0(T )0). Then ZG(T ) is a Cartan subgroup of G, and hence equals
its connected normalizer by [SGA 3 II 1970, XII.6.6].

(iii) By (i), the natural map NG(T )/NG0(T )→ π0(G) is an isomorphism. Com-
bined with (ii), this yields the statement. �
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Remark 2.5. If NG(T ) = NG(T )0 · F for some subgroup F ⊂ NG(T ), then by
Lemmas 2.1 and 2.4, G = G0

· F . Moreover, the commutative diagram of exact
sequences

1−→NG(T )0 ∩ F−→F−→π0(NG(T ))−→ 1y id

y y
1−→ G0

∩ F −→F−→ π0(G) −→ 1

together with Lemma 2.4 yields the exact sequence

1−→ ZG0(T )∩ F −→ G0
∩ F −→W (G0, T )−→ 1.

In view of Lemma 2.1 (iv) and Lemma 2.4 (i), it suffices to prove Theorem 1.1
under the additional assumption that T is normal in G. Then T is central in G0, and
hence G0

k̄
is nilpotent by [SGA 3 II 1970, XII.6.7]. It follows that G0 is nilpotent,

in view of [SGA 3 I 1970, VIB.8.3]. To obtain further reductions, we will use the
following:

Lemma 2.6. Let N ′ be a normal subgroup of G contained in N. Assume that the
resulting exact sequence 1→ N/N ′→ G/N ′→ Q→ 1 is quasisplit, and that any
exact sequence of algebraic groups 1→ N ′→ G ′→ Q′→ 1, where Q′ is finite, is
quasisplit as well. Then (1) is quasisplit.

Proof. By assumption, there exists a finite subgroup F ′ of G/N ′ for which
G/N ′ = (N/N ′) · F ′. Denote by G ′ the subgroup of G containing N ′ such that
G ′/N ′ = F ′. By assumption again, there is a finite subgroup F of G ′ containing
N ′ such that G ′ = N ′ · F . We check that G = N · F using Lemma 2.1 (iv). Let S be
a scheme, and g ∈ G(S); denote by f ′ : G→ G/N ′ the quotient map. Then there
exists a faithfully flat morphism of finite presentation S′→ S and x ∈ (N/N ′)(S′),
y ∈ F ′(S′) such that f ′(g)= xy in (G/N ′)(S′). Moreover, there exists a faithfully
flat morphism of finite presentation S′′→ S′ and z ∈ N (S′′), w ∈ G ′(S′′) such that
f ′(z)= x and f ′(w)= y. Then w−1z−1g ∈ N ′(S′′), and hence g ∈ N (S′′)G ′(S′′),
as G ′ contains N ′. This shows that G = N ·G ′ = N · (N ′ · F). We conclude by
observing that N · (N ′ · F)= N · F , in view of Lemma 2.1 (iv) again. �

Remark 2.7. With the notation of the proof of Lemma 2.6, we have an exact
sequence 1→ N ′ → G ′ = N ′ · F → F ′ → 1, and hence an exact sequence of
quasicomplements

1−→ N ′ ∩ F −→ F −→ F ′ −→ 1.

Moreover, we obtain an exact sequence 1→ N ′→ N ∩G ′→ (N/N ′)∩ F ′→ 1,
by using [SGA 3 I 1970, VIA.5.3.1]. Since N ∩G ′ = N ∩ (N ′ · F)= N ′ · (N ∩ F),
where the latter equality follows from Lemma 2.1 (iv), this yields an exact sequence
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of defect groups

1−→ N ′ ∩ F −→ N ∩ F −→ (N/N ′)∩ F ′ −→ 1.

Next, we show that it suffices to prove Theorem 1.1 when G0 is assumed in
addition to be commutative.

We argue by induction on the dimension of G (assumed to be smooth, with
G0 nilpotent). If dim(G) = 1, then G0 is either a k-form of Ga or Gm , or an
elliptic curve; in particular, G0 is commutative. In higher dimensions, the derived
subgroup D(G0) is a smooth, connected normal subgroup of G contained in G0,
and the quotient G0/D(G0) is commutative of positive dimension (see [SGA 3 I

1970, VIB.7.8, 8.3]). Moreover, G/D(G0) is smooth, and π0(G/D(G0))= π0(G).
By the induction assumption, it follows that the exact sequence

1−→ G0/D(G0)−→ G/D(G0)−→ π0(G)−→ 1

is quasisplit. Also, every exact sequence 1→ D(G0)→ G ′→ Q′→ 1, where Q′

is finite, is quasisplit, by the induction assumption again together with Lemma 2.2.
Thus, Lemma 2.6 yields the desired reduction.

We now show that we may further assume G0 to be a torus, a smooth connected
commutative unipotent group, or an abelian variety.

Indeed, we have an exact sequence of commutative algebraic groups

1−→ T −→ G0
−→ H −→ 1,

where T is the maximal torus of G0, and H is smooth and connected. Moreover,
we have an exact sequence

1−→ H1 −→ H −→ H2 −→ 1,

where H1 is a smooth connected affine algebraic group, and H2 is a pseudoabelian
variety in the sense of [Totaro 2013], i.e., H2 has no nontrivial smooth connected
affine normal subgroup. Since H1 contains no nontrivial torus, it is unipotent; also,
H2 is an extension of a smooth connected unipotent group by an abelian variety
A, in view of [Totaro 2013, Theorem 2.1]. Note that T is a normal subgroup of G
(the largest subtorus). Also, H1 is a normal subgroup of G/T (the largest smooth
connected affine normal subgroup of the neutral component), and A is a normal
subgroup of (G/T )/H1 as well (the largest abelian subvariety). Thus, arguing
by induction on the dimension as in the preceding step, with D(G0) replaced
successively by T , H1 and A, yields our reduction.

When G0 is unipotent and char(k)= p > 0, we may further assume that G0 is
killed by p. Indeed, by [SGA 3 II 1970, XVII.3.9], there exists a composition series
{eG} = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G0 such that each Gi is normal in G, and each
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quotient Gi/Gi−1 is a k-form of some (Ga)
ri ; in particular, Gi/Gi−1 is killed by

p. Our final reduction follows by induction on n.

3. Proof of Theorem 1.1: extensions by commutative groups

In this section, we consider smooth algebraic groups Q, N such that Q is finite and
N is commutative. Given an extension (1), the action of G on N by conjugation
factors through an action of Q by group automorphisms, which we denote by
(x, y) 7→ yx , where x ∈ Q and y ∈ N . Recall that the isomorphism classes of such
extensions with a prescribed Q-action on N form a commutative (abstract) group,
which we denote by Ext1(Q, N ); see [SGA 3 II 1970, XVII.App. I] (and [Demazure
and Gabriel 1970, III.6.1] for the setting of extensions of group sheaves).

Lemma 3.1. With the above notation and assumptions, the group Ext1(Q, N ) is
torsion.

Proof. Any extension (1) yields an N -torsor over Q for the étale topology, since
Q is finite and étale. This defines a map τ : Ext1(Q, N )→ H 1

ét(Q, N ), which is a
group homomorphism (indeed, the sum of any two extensions is obtained by taking
their direct product, pulling back under the diagonal map Q→ Q×Q, and pushing
forward under the multiplication N × N → N ; and the sum of any two torsors is
obtained by the analogous operations). The kernel of τ consists of those classes
of extensions that admit a section (which is a morphism of schemes). In view of
[SGA 3 II 1970, XVII.App. I.3.1], this yields an exact sequence

0−→ HH 2(Q, N )−→ Ext1(Q, N )
τ
−→ H 1

ét(Q, N ),

where HH i stands for Hochschild cohomology (denoted by H i in [SGA 3 I 1970;
SGA 3 II 1970; SGA 3 III 1970], and by H i

0 in [Demazure and Gabriel 1970]). More-
over, the group H 1

ét(Q, N ) is torsion (as follows, e.g., from [Rosenlicht 1956,
Theorem 14]), and HH 2(Q, N ) is killed by the order of Q, as a special case of
[SGA 3 II 1970, XVII.5.2.4]. �

Remark 3.2. The above argument yields that Ext1(Q, N ) is killed by md if Q
is finite étale of order m, and N is a torus split by an extension of k of degree d.
Indeed, we just saw that HH 2(Q, N ) is killed by m; also, H 1

ét(Q, N ) is a direct sum
of groups of the form H 1

ét(Spec(k ′), N ) for finite separable extensions k ′ of k, and
these groups are killed by d . This yields a slight generalization of [Lucchini Arteche
2015b, Proposition 1.1], via a different approach.

End of the proof of Theorem 1.1. Recall from our reductions in Section 2 that we
may assume G0 to be a smooth commutative unipotent group, a torus, or an abelian
variety. We will rather denote G0 by N , and π0(G) by Q.
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We first assume in addition that char(k) = 0 if N is unipotent. Then the n-th
power map

nN : N −→ N , x 7−→ xn

is an isogeny for any positive integer n. Consider an extension (1) and denote
by γ its class in Ext1(Q, N ). By Lemma 3.1, we may choose n so that nγ = 0.
Also, nγ = (nN )∗(γ ) (the pushout of γ by nN ); moreover, the exact sequence of
commutative algebraic groups

1 −−−→ N [n] −−−→ N
nN
−−−→ N −−−→ 1

yields an exact sequence

Ext1(Q, N [n]) −−−→ Ext1(Q, N )
(nN )∗
−−−→ Ext1(Q, N )

due to [SGA 3 II 1970, XVII.App. I.2.1]. Thus, there is a class γ ′ ∈ Ext1(Q, N [n])
with pushout γ , i.e., we have a commutative diagram of extensions

1−→N [n]−→G ′−→Q−→ 1y y id

y
1−→ N −→G−→Q−→ 1,

where the square on the left is cartesian. It follows that G ′ is a finite subgroup of
G, and G = N ·G ′.

Next, we consider the remaining case, where N is unipotent and char(k)= p> 0.
In view of our final reduction at the end of Section 2, we may further assume that
N is killed by p. Then there exists an étale isogeny N → N1, where N1 is a vector
group (see [Conrad et al. 2015, Lemma B.1.10]). This yields another commutative
diagram of extensions

1−→ N −→ G −→Q−→ 1y y id

y
1−→N1−→G1−→Q−→ 1.

Assume that there exists a finite subgroup F1 of G1 such that G1= N1 ·F1. Let F be
the pullback of F1 to G; then F is a finite subgroup, and one checks that G = N · F
using Lemma 2.1 (iv). Thus, we may finally assume that N is a vector group.

Under that assumption, the N -torsor G→ Q is trivial, since Q is affine. Thus,
we may choose a section s : Q→G. Also, we may choose a finite Galois extension
of fields K/k such that QK is constant. Then s yields a section sK : QK → G K ,
equivariant under the Galois group 0K := Gal(K/k). So we may view G(K ) as
the set of the y s(x), where y ∈ N (K ) and x ∈ Q(K ), with multiplication

y s(x) y′ s(x ′)= y y′x c(x, x ′) s(xx ′),
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where c ∈ Z2(Q(K ), N (K ))0K . Consider the (abstract) subgroup H ⊂ N (K )
generated by the c(x ′, x ′′)x , where x, x ′, x ′′ ∈ Q(K ). Then H is finite, since N (K )
is killed by p and Q(K ) is finite. Moreover, H s(Q(K )) is a subgroup of G(K ), in
view of the above formula for the multiplication. Clearly, H s(Q(K )) is finite and
stable under 0K ; thus, it corresponds to a finite (algebraic) subgroup G ′ of G. Also,
we obtain as above that G = N ·G ′. This completes the proof of Theorem 1.1. �

Remark 3.3. If k is perfect, then the subgroup F as in Theorem 1.1 may be chosen
étale. Indeed, the reduced subscheme Fred is then a subgroup by [SGA 3 I 1970,
VIA.0.2]. Moreover, G(k̄) = G0(k̄)Fred(k̄), and hence G = G0

· Fred in view of
Lemma 2.1 (v).

In contrast, when k is imperfect, there exists a finite group G admitting no étale
subgroup F such that G = G0

· F . Consider for example (as in [SGA 3 I 1970,
VIA.1.3.2]) the subgroup G of Ga,k defined by the additive polynomial X p2

− t X p,
where p := char(k) and t ∈ k \ k p. Then G has order p2 and G0 has order p. If
G=G0

·F with F étale, then G0
∩F is trivial. Thus, G∼=G0oF and F has order p.

Let K := k(t1/p). Then FK is contained in (G K )red, which is the subgroup of Ga,K

defined by the additive polynomial X p
− t1/p X . By counting dimensions, it follows

that FK = (G K )red, which yields a contradiction as (G K )red is not defined over k.

Remark 3.4. One may obtain information on the defect group N ∩F by examining
the steps in the proof of Theorem 1.1 and combining Remarks 2.3, 2.5 and 2.7. For
instance, if G is smooth, then N∩F is an extension of the Weyl group W (G0, T ) by
the nilpotent group ZG0(T )∩ F , where T is a maximal torus of G. If char(k)= 0
(so that G is smooth), then ZG0(T ) ∩ F is commutative. Indeed, ZG0(T ) is a
connected nilpotent algebraic group, and hence an extension of a semiabelian
variety S by a connected unipotent algebraic group U . Thus, U ∩ F is trivial, and
hence ZG0(T )∩ F is isomorphic to a subgroup of S.

Remark 3.5. When k is finite, Theorem 1.1 follows readily from our first reduction
step (Lemma 2.2) together with a theorem of Lang [1956, Theorem 2]. More specif-
ically, let H be a smooth algebraic group and choose representatives x1, . . . , xm of
the orbits of the Galois group 0 := Gal(k̄/k) in π0(H)(k̄). Denote by 0i ⊂ 0 the
isotropy group of xi and set ki := k̄0i for i = 1, . . . ,m. Then xi ∈ π0(H)(ki ), and
hence the fiber π−1

ki
(xi ) (a torsor under H 0

ki
) contains a ki -rational point. Consider

the subfield

K :=
n∏

i=1

ki ⊂ k̄.

Then the finite étale group scheme π0(H)K is constant, and π is surjective on
K -rational points. Thus, π0(H) has a quasicomplement in H : the finite étale group
scheme corresponding to the constant, 0-stable subgroup scheme H(K ) of HK .
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4. Some applications

We first recall two classical results on the structure of algebraic groups. The first
one is the affinization theorem (see [Demazure and Gabriel 1970, III.3.8] and also
[SGA 3 I 1970, VIB.12.2]): any algebraic group G has a smallest normal subgroup
H such that G/H is affine. Moreover, H is smooth, connected and contained in
the center of G0; we have O(H)= k (such an algebraic group is called antiaffine)
and O(G/H)= O(G).

Consequently, H is the fiber at eG of the affinization morphism G→ Spec O(G);
moreover, the formation of H commutes with arbitrary field extensions. Also, note
that H is the largest antiaffine subgroup of G; we will denote H by Gant. The
structure of antiaffine groups is described in [Brion 2009] and [Sancho and Sancho
2009].

The second structure result is a version of a theorem of Chevalley, due to Raynaud
[1970, Lemma IX.2.7] (see also [Bosch et al. 1990, 9.2 Theorem 1]): any connected
algebraic group G has a smallest affine normal subgroup N such that G/N is an
abelian variety. Moreover, N is connected; if G is smooth and k is perfect, then N
is smooth as well. We will denote N by Gaff.

We will also need the following observation:

Lemma 4.1. Let G be an algebraic group, and N a normal subgroup. Then the
quotient map f : G→ G/N yields an isomorphism Gant/(Gant ∩ N )∼= (G/N )ant.

Proof. We have a closed immersion of group schemes Gant/(Gant ∩ N )→ G/N ;
moreover, Gant/(Gant ∩ N ) is antiaffine. So we obtain a closed immersion of
commutative group schemes i : Gant/(Gant ∩ N )→ (G/N )ant. The cokernel of
i is antiaffine, as a quotient of (G/N )ant. Also, this cokernel is a subgroup of
(G/N )/(Gant/(Gant∩N )), which is a quotient of G/Gant. Since the latter is affine,
it follows that Coker(i) is affine as well, by using [SGA 3 I 1970, VIB.11.17]. Thus,
Coker(i) is trivial, i.e., i is an isomorphism. �

We now obtain a further version of Chevalley’s structure theorem, for possibly
nonconnected algebraic groups:

Theorem 4.2. Any algebraic group G has a smallest affine normal subgroup N
such that G/N is proper. Moreover, N is connected.

Proof. It suffices to show that G admits an affine normal subgroup N such that
G/N is proper. Indeed, given another such subgroup N ′, the natural map

G/(N ∩ N ′)−→ G/N ×G/N ′

is a closed immersion, and hence G/(N∩N ′) is proper. Taking for N a minimal such
subgroup, it follows that N is the smallest one. Moreover, the natural morphism
G/N 0

→ G/N is finite, since it is a torsor under the finite group N/N 0 (see
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[SGA 3 I 1970, VIA.5.3.2]). As a consequence, G/N 0 is proper; hence N = N 0 by
the minimality assumption. Thus, N is connected.

Also, we may reduce to the case where G is smooth by using the relative
Frobenius morphism as in the proof of Lemma 2.2.

If in addition G is connected, then we just take N =Gaff. In the general case, we
consider the (possibly nonnormal) subgroup H := (G0)aff; then the homogeneous
space G/H is proper, since G/G0 is finite and G0/H is proper. As a consequence,
the automorphism functor of G/H is represented by a group scheme AutG/H ,
locally of finite type; in particular, the neutral component Aut0G/H is an algebraic
group (see [Matsumura and Oort 1967, Theorem 3.7]). The action of G by left
multiplication on G/H yields a morphism of group schemes

ϕ : G −→ AutG/H .

The kernel N of ϕ is a closed subscheme of H , and hence is affine. To complete
the proof, it suffices to show that G/N is proper. In turn, it suffices to check that
(G/N )0 is proper. Since (G/N )0 ∼= G0/(G0

∩ N ), and G0
∩ N is the kernel of the

restriction G0
→ Aut0G/H , we are reduced to showing that Aut0G/H is proper (by

using [SGA 3 I 1970, VIA.5.4.1] again).
We claim that Aut0G/H is an abelian variety. Indeed, (G/H)k̄ is a finite disjoint

union of copies of (G0/H)k̄ , which is an abelian variety. Also, the natural morphism
A → Aut0A is an isomorphism for any abelian variety A. Thus, (Aut0G/H )k̄ is
an abelian variety (a product of copies of (G0/H)k̄); this yields our claim, and
completes the proof. �

Remark 4.3. The formation of Gaff (for a connected group scheme G) commutes
with separable algebraic field extensions, as follows from a standard argument of
Galois descent. But this formation does not commute with purely inseparable field
extensions, in view of [SGA 3 II 1970, XVII.C.5].

Likewise, the formation of N as in Theorem 4.2 commutes with separable
algebraic field extensions. As a consequence, N = (G0)aff for any smooth group
scheme G (since (G0)aff is invariant under any automorphism of G, and hence is a
normal subgroup of G when k is separably closed). In particular, if k is perfect and
G is smooth, then N is smooth as well.

For an arbitrary group scheme G, we may have N 6= (G0)aff, e.g., when G is
infinitesimal: then N is trivial, while (G0)aff = G.

We do not know if the formations of Gaff and N commute with arbitrary separable
field extensions.

The structure of proper algebraic groups is easily described as follows:

Proposition 4.4. Given a proper algebraic group G, there exists an abelian variety
A, a finite group F equipped with an action F → AutA and a normal subgroup
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D ⊂ F such that D acts faithfully on A by translations and G ∼= (Ao F)/D, where
D is embedded in AoF via x 7→ (x, x−1). Moreover, A=Gant and F/D∼=G/Gant

are uniquely determined by G. Finally, G is smooth if and only if F/D is étale.

Proof. Note that Gant is a smooth connected proper algebraic group, and hence an
abelian variety. Moreover, the quotient group G/Gant is affine and proper, hence
finite. By Theorem 1.1, there exists a finite subgroup F ⊂G such that G =Gant · F .
In particular, G ∼= (F nGant)/(F ∩Gant); this implies the existence assertion. For
the uniqueness, just note that O(G) ∼= O(G/A) ∼= O(F/D), and this identifies the
affinization morphism to the natural homomorphism G→ F/D, with kernel A.

If G is smooth, then so is G/A ∼= F/D; as F/D is finite, it must be étale. Since
the homomorphism G→ F/D is smooth, the converse holds as well. �

Remark 4.5. The simplest examples of proper algebraic groups are the semidirect
products G = Ao F , where F is a finite group acting on the abelian variety A. If
this action is nontrivial (for example, if A is nontrivial and F is the constant group
Z/2Z acting via x 7→ x±1), then every morphism of algebraic groups f : G→ H ,
where H is connected, has a nontrivial kernel. (Otherwise, A is contained in the
center of G by the affinization theorem.) This yields examples of algebraic groups
which admit no faithful representation in a connected algebraic group.

Remark 4.6. With the notation and assumptions of Proposition 4.4, consider a
subgroup H ⊂ G and the homogeneous space X := G/H . Then there exists an
abelian variety B quotient of A, a subgroup I ⊂ F containing D, and a faithful
homomorphism I → AutB such that the scheme X is isomorphic to the associated
fiber bundle F ×I B. Moreover, the schemes F/I and B are uniquely determined
by X , and X is smooth if and only if F/I is étale.

Indeed, let K := A · H , then X ∼= G×K K/H ∼= F ×I K/H , where I := F ∩ K .
Moreover, K/H ∼= A/(A ∩ H) is an abelian variety. This shows the existence
assertion; those on uniqueness and smoothness are checked as in the proof of
Proposition 4.4.

Conversely, given a finite group F and a subgroup I ⊂ F acting on an abelian
variety B, the associated fiber bundle F ×I B exists (since it is the quotient of the
projective scheme F× B by the finite group I ), and is homogeneous whenever F/I
is étale (since (F ×I B)k̄ is just a disjoint union of copies of Bk̄). We do not know
how to characterize the homogeneity of F ×I B when the quotient F/I is arbitrary.

Returning to an arbitrary algebraic group G, we have the “Rosenlicht decompo-
sition” G = Gant ·Gaff when G is smooth and connected (see, e.g., [Brion 2009]).
We now extend this result to possibly nonconnected groups:

Theorem 4.7. Let G be an algebraic group. Then there exists an affine subgroup
H of G such that G = Gant · H. If G is smooth and k is perfect, then H may be
chosen smooth.
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Proof. By Theorem 4.2, we may choose an affine normal subgroup N ⊂ G such
that G/N is proper. In view of Proposition 4.4, there exists a finite subgroup F of
G/N such that G/N = (G/N )ant · F , and (G/N )ant is an abelian variety. Let H be
the subgroup of G containing N such that G/H = F . Then H is affine, since it
sits in an extension 1→ N → H → F→ 1. We check that G = Gant · H by using
Lemma 2.1 (iv). Let S be a scheme, and g ∈ G(S). Denote by g′ the image of g in
(G/N )(S). Then there exist a faithfully flat morphism of finite presentation S′→ S
and x ′ ∈ (G/N )ant(S′), y′ ∈ F(S′) such that g′ = x ′y′ in (G/N )(S′). Moreover, in
view of Lemma 4.1, x ′ lifts to some x ′′ ∈ Gant(S′′), where S′′→ S′ is faithfully flat
of finite presentation. So gx ′′−1

∈ G(S′′) lifts y′, and hence g ∈ Gant(S′′)H(S′′).
If G is smooth and k is perfect, then N may be chosen smooth by Remark 4.3;

also, F may be chosen smooth by Remark 3.3. Then H is smooth as well. �

We now derive from Theorem 4.7 a generalization of our main Theorem 1.1,
under the additional assumption of characteristic 0 (then reductivity is equivalent to
linear reductivity, also known as full reducibility):

Corollary 4.8. Every extension (1) with reductive quotient group Q is quasisplit
when char(k)= 0.

Proof. Choose an affine subgroup H ⊂ G such that G = Gant · H and denote by
Ru(H) its unipotent radical. By a result of Mostow [1956, Theorem 6.1], H has a
Levi subgroup, i.e., a fully reducible algebraic subgroup L such that H = Ru(H)oL .
Note that Ru(H) is normal in G, since it is normalized by H and centralized by
Gant. It follows that Gant · Ru(H) is normal in G, and G = (Gant · Ru(H)) · L . Also,
note that the quotient map f : G→ Q sends Gant to eQ (since Q is affine), and
Ru(H) to eQ as well (since Q is reductive). It follows that the sequence

1−→ N ∩ L −→ L
f
−→ Q −→ 1

is exact, where N = Ker( f ). If N ∩ L has a quasicomplement H in L , then H is
a quasicomplement to N in G (as follows, e.g., from Lemma 2.1 (v)). Thus, we
may assume that G is reductive. Since every quasicomplement to N 0 in G is a
quasicomplement to N , we may further assume that N is connected.

We have a canonical decomposition

G0
= D(G0) · R(G0),

where the derived subgroup D(G0) is semisimple, the radical R(G0) is a central
torus, and D(G0)∩ R(G0) is finite (see, e.g., [SGA 3 III 1970, XXII.6.2.4]). Thus,
G = D(G0) · (R(G0) · F), where F ⊂ G is a quasicomplement to G0. Likewise,
N = D(N ) · R(N ), where D(N ) ⊂ D(G0), R(N ) ⊂ R(G0) and both are normal
in G. Denote by S the neutral component of the centralizer of D(N ) in D(G0).
Then S is a normal semisimple subgroup of G, and a quasicomplement to D(N )
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in D(G0). If R(N ) admits a quasicomplement T in R(G0) · F , then one readily
checks that S · T is a quasicomplement to N in G. As a consequence, we may
replace G with R(G0) · F , and hence assume that G0 is a torus.

Denote by X∗(G0) the character group of G0
k̄
; this is a free abelian group of

finite rank, equipped with a continuous action of F(k̄) o 0, where 0 denotes
the absolute Galois group of k. Moreover, we have a surjective homomorphism
ρ : X∗(G0)→ X∗(N ), equivariant for F(k̄)o0. Thus, ρ splits over the rationals,
and hence there exists a subgroup3⊂ X∗(G0), stable by F(k̄)o0, which is mapped
isomorphically by ρ to a subgroup of finite index of X∗(N ). The quotient X∗(G0)/3

corresponds to a subtorus H ⊂ G0, normalized by G, which is a quasicomplement
to N in G0. So H · F is the desired quasicomplement to N in G. �

Remark 4.9. Corollary 4.8 does not extend to positive characteristics, due to the
existence of groups without Levi subgroups (see [Conrad et al. 2015, Appendix A.6;
McNinch 2010, Section 3.2]). As a specific example, when k is perfect of charac-
teristic p > 0, there exists a nonsplit extension of algebraic groups

1−→ V −→ G
f
−→ SL2 −→ 1,

where V is a vector group on which SL2 acts linearly via the Frobenius twist of its
adjoint representation. We show that this extension is not quasisplit. Otherwise, let
H be a quasicomplement to N in G. Then so is the reduced neutral component of
H , and hence we may assume that H is smooth and connected. The quotient map
f restricts to an isogeny H → SL2, and hence to an isomorphism. Thus, the above
extension is split, a contradiction.

Next, we obtain an analogue of the Levi decomposition (see [Mostow 1956]
again) for possibly nonlinear algebraic groups:

Corollary 4.10. Let G be an algebraic group over a field of characteristic 0. Then
G = R · S, where R ⊂ G is the largest connected solvable normal subgroup, and
S ⊂ G is an algebraic subgroup such that S0 is semisimple; also, R ∩ S is finite.

Proof. By a standard argument, G has a largest connected solvable normal subgroup
R. The quotient G/R is affine, since R ⊃ Gant. Moreover, R/Gant contains the
radical of G/Gant, and hence (G/R)0 is semisimple. In particular, G/R is reductive.
So Corollary 4.8 yields the existence of the quasicomplement S. �

Remark 4.11. One may ask for a version of Corollary 4.10 in which the normal
subgroup R is replaced with an analogue of the unipotent radical of a linear alge-
braic group, and the quasicomplement S is assumed to be reductive. But such a
version would make little sense when G is an antiaffine semiabelian variety (for
example, when G is the extension of an abelian variety A by Gm , associated with
an algebraically trivial line bundle of infinite order on A). Indeed, such a group G
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has a largest connected reductive subgroup: its maximal torus, which admits no
quasicomplement.

Also, recall that the radical R may admit no complement in G, e.g., when
G = GLn with n ≥ 2.

Finally, one may also ask for the uniqueness of a minimal quasicomplement in
Corollary 4.10, up to conjugacy in R(k) (as for Levi complements, see [Mostow
1956, Theorem 6.2]). But this fails when k is algebraically closed and G is the
semidirect product of an abelian variety A with a group F of order 2. Denote by σ
the involution of A induced by the nontrivial element of F ; then R = A, and the
complements to R in G are exactly the subgroups generated by the involutions xσ
where x ∈ A−σ (k), i.e., σ(x)= x−1. The action of R(k) on complements is given
by yxσ y−1

= xyσ(y)−1σ ; moreover, the homomorphism A→ A−σ , y 7→ yσ(y)−1

is generally not surjective. This holds for example when A= (B× B)/C , where B
is a nontrivial abelian variety, C is the subgroup of B× B generated by (x0, x0) for
some x0 ∈ B(k) of order 2, and σ arises from the involution (x, y) 7→ (y−1, x−1)

of B× B; then A−σ has 2 connected components.

Another consequence of Theorem 4.7 concerns the case where k is finite; then
every antiaffine algebraic group is an abelian variety (see [Brion 2009, Proposition
2.2]). This yields readily:

Corollary 4.12. Let G be an algebraic group over a finite field. Then G sits in an
extension of algebraic groups

1−→ F −→ A× H −→ G −→ 1,

where F is finite, A is an abelian variety, and H is affine. If G is smooth, then H
may be chosen smooth as well.

Returning to an arbitrary base field, we finally obtain the existence of equivariant
compactifications of homogeneous spaces:

Theorem 4.13. Let G be an algebraic group, and H a closed subgroup. Then
there exists a projective scheme X equipped with an action of G, and an open
G-equivariant immersion G/H ↪→ X with schematically dense image.

Proof. When G is affine, this follows from a theorem of Chevalley asserting that
H is the stabilizer of a line L in a finite-dimensional G-module V (see [SGA 3 I

1970, VIB.11.16]). Indeed, one may take for X the closure of the G-orbit of L in
the projective space of lines of V ; then X satisfies the required properties in view
of [Demazure and Gabriel 1970, III.3.5.2]. Note that X is equipped with an ample
G-linearized invertible sheaf.

When G is proper, the homogeneous space G/H is proper as well, and hence is
projective by [Raynaud 1970, Corollary VI.2.6] (alternatively, this follows from the
structure of X described in Remark 4.5).
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In the general case, Theorem 4.2 yields an affine normal subgroup N of G such
that G/N is proper. Then N · H is a subgroup of G, and G/(N · H) is proper as
well, hence projective. It suffices to show the existence of a projective scheme
Y equipped with an action of N · H , an open immersion (N · H)/H → Y with
schematically dense image, and a N · H -linearized ample line bundle: indeed, by
[Mumford et al. 1994, Proposition 7.1] applied to the projection G× Y → Y and
the N · H -torsor G→ G/(N · H), the associated fiber bundle G×N ·H Y yields the
desired equivariant compactification. In view of Chevalley’s theorem used in the
first step, it suffices in turn to check that N · H acts on (N · H)/H via an affine
quotient group; equivalently, (N · H)ant ⊂ H .

By Lemma 4.1, (N · H)ant is a quotient of (N o H)ant. The latter is the fiber at
the neutral element of the affinization morphism N o H → Spec O(N o H). Also,
N o H ∼= N × H as schemes, N is affine and the affinization morphism commutes
with products; thus, (N o H)ant = Hant. As a consequence, (N · H)ant = Hant; this
completes the proof. �

Remark 4.14. If char(k)= 0, the equivariant compactification X of Theorem 4.13
may be taken smooth, as follows from the existence of an equivariant desingular-
ization (see [Kollár 2007, Proposition 3.9.1, Theorem 3.36]).

In arbitrary characteristics, X may be taken normal if G is smooth. Indeed, the
G-action on any equivariant compactification X stabilizes the reduced subscheme
Xred (since G× Xred is reduced), and lifts to an action on its normalization X̃ (since
G × X̃ is normal). But the existence of regular compactifications (equivariant or
not) is an open question.

Over any imperfect field k, there exist smooth connected algebraic groups G
having no smooth compactification. Indeed, we may take for G the subgroup of Ga×

Ga defined by y p
− y− t x p

= 0, where p := char(k) and t ∈ k \k p. This is a smooth
affine curve, and hence has a unique regular compactification X . One checks that X
is the curve (y p

− yz p−1
− t x p

= 0)⊂P2, which is not smooth at its point at infinity.
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To the memory of Robert Steinberg

One of the important open problems in the theory of central simple algebras
is to compute the essential dimension of GLn =�m, i.e., the essential dimen-
sion of a generic division algebra of degree n and exponent dividing m. In
this paper we study the essential dimension of groups of the form

G D .GLn1
� � � � �GLnr /=C;

where C is a central subgroup of GLn1
� � � � �GLnr . Equivalently, we are

interested in the essential dimension of a generic r-tuple .A1; : : : ;Ar/ of
central simple algebras such that deg.Ai / D ni and the Brauer classes of
A1; : : : ;Ar satisfy a system of homogeneous linear equations in the Brauer
group. The equations depend on the choice of C via the error-correcting
code Code.C / which we naturally associate to C . We focus on the case
where n1; : : : ; nr are powers of the same prime. The upper and lower
bounds on ed.G/ we obtain are expressed in terms of coding-theoretic pa-
rameters of Code.C /, such as its weight distribution. Surprisingly, for many
groups of the above form the essential dimension becomes easier to estimate
when r � 3; in some cases we even compute the exact value. The Appendix
by Athena Nguyen contains an explicit description of the Galois cohomol-
ogy of groups of the form .GLn1

� � � � �GLnr /=C . This description and its
corollaries are used throughout the paper.

1. Introduction

Let k be a base field. Unless otherwise specified, we will assume that every field
appearing in this paper contains k and every homomorphism (i.e., inclusion) of
fields restricts to the identity map on k.

This paper is based on a portion of Cernele’s Ph.D. thesis completed at the University of British
Columbia. Cernele and Reichstein gratefully acknowledge financial support from the University of
British Columbia and the Natural Sciences and Engineering Research Council of Canada.
MSC2010: primary 20G15, 16K20, 16K50; secondary 94B05.
Keywords: essential dimension, central simple algebra, Brauer group, error-correcting code,

Hamming distance.
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We begin by recalling the definition of the essential dimension of a covariant
functor F from the category of fields to the category of sets. Given a field K and an
object ˛ 2 F.K/, we will say that ˛ descends to an intermediate field k �K0 �K
if ˛ lies in the image of the natural map F.K0/! F.K/. The essential dimension
ed.˛/ of ˛ is defined as the minimal value of trdegk.K0/ such that ˛ descends to a
subfield k �K0 �K. Given a prime integer p, the essential dimension edp.˛/ of
˛ at p is defined as the minimal value of trdegk.K0/, where the minimum is taken
over all finite field extensions L=K and all intermediate fields k �K0 � L, such
that ŒL WK� is prime to p and ˛L descends to K0.

The essential dimension ed.F / (respectively, the essential dimension edp.F /
at p) of the functor F is defined as the maximal value of ed.˛/ (respectively of
edp.˛/), where the maximum is taken over all field extensions K=k and all objects
˛ 2 F.K/.

Informally speaking, ed.˛/ is the minimal number of independent parameters
required to define ˛, ed.F / is the minimal number of independent parameters
required to define any object in F , and edp.˛/, edp.F / are relative versions of these
notions at a prime p. These relative versions are somewhat less intuitive, but they
tend to be more accessible and more amenable to computation than ed.˛/ and ed.F /.
Clearly ed.˛/> edp.˛/ for each ˛, and ed.F /> edp.F /. In most cases of interest,
ed.˛/ is finite for every ˛. On the other hand, ed.F / (and even edp.F /) can be
infinite. For an introduction to the theory of essential dimension, we refer the reader
to the surveys [Berhuy and Favi 2003; Reichstein 2010; 2012; Merkurjev 2013].

To every algebraic group G one can associate the functor

FG WDH 1.�; G/ WK 7! fisomorphism classes of G-torsors over Spec.K/g:

If G is affine, then the essential dimension of this functor is known to be finite;
it is usually denoted by ed.G/, rather than ed.FG/. For many specific groups G,
H 1.K;G/ is in a natural bijective correspondence with the set of isomorphism
classes of some algebraic objects defined over K. In such cases, ed.G/ may be
viewed as the minimal number of independent parameters required to define any
object of this type. This number is often related to classical problems in algebra.

For example, in the case whereG is the projective linear group PGLn, the objects
in question are central simple algebras. That is,

(1) H 1.K;PGLn/D fisomorphism classes of
central simple K-algebras of degree ng:

The problem of computing ed.PGLn/ is one of the important open problems in the
theory of central simple algebras; see [Auel et al. 2011, Section 6]. This problem
was first posed by C. Procesi, who showed (using different terminology) that

(2) ed.PGLn/6 n2 I
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see [Procesi 1967, Theorem 2.1]. Stronger (but still quadratic) upper bounds can
be found in [Lorenz et al. 2003, Theorem 1.1] and [Lemire 2004, Theorem 1.6].

A more general but closely related problem is computing ed.GLn =�m/, where
m and n are positive integers and m divides n. Note that

(3) H 1.K;GLn =�m/D fisomorphism classes of central simple K-algebras
of degree n and exponent dividing mg:

In particular, ed.PGLn/D ed.GLn =�n/. The problem of computing ed.GLn =�m/
partially reduces to the case where m D ps and n D pa are powers of the same
prime p and 16 s 6 a.

From now on we will always assume that char.k/¤ p. The inequalities

(4) p2a�2Cpa�s > edp.GLpa =�ps />
�
.a�1/2a�1 if p D 2 and s D 1,
.a�1/paCpa�s otherwise,

proved in [Baek and Merkurjev 2012] represent a striking improvement on the best
previously known bounds. (Here a > 2.) Yet the gap between the lower and upper
bounds in (4) remains wide. The gap between the best known upper and lower
bounds becomes even wider when edp.GLpa =�ps / is replaced by ed.GLpa =�ps /.

These gaps in our understanding of ed.GLn =�m/ will not deter us from con-
sidering the vastly more general problem of computing the essential dimension of
groups of the form

(5) G WD .GLn1
� � � � �GLnr

/=C

in the present paper. Here n1; : : : ; nr > 2 are integers, and C � Grm is a central
subgroup of GLn1

� � � � �GLnr
.

As usual, we will identify elements .m1; : : : ; mr/ of Zr with characters

xWGrm! Gm; where xW .�1; : : : ; �r/ 7! �
m1

1 � � � �
mr
r :

The subgroup C � Grm is completely determined by the Z-module

(6) X.Grm=C /D
˚
.m1; : : : ; mr/ 2 Zr j �

m1

1 � � � �
mr
r D 1 8.�1; : : : ; �r/ 2 C

	
;

consisting of characters of Grm which vanish on C . The Galois cohomology of G
is explicitly described in the Appendix: by Theorem A.1, H 1.K;G/ is naturally
isomorphic to the set of isomorphism classes of r-tuples .A1; : : : ; Ar/ of central
simple K-algebras such that

deg.Ai /D ni and A
˝m1

1 ˝ � � �˝A˝mr
r is split over K

for every .m1; : : : ; mr/ 2 X.Grm=C /. (Note that in the special case where r D 1,
we recover (1) and (3).) It follows from this description that the essential dimension
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of G does not change if C is replaced by C \�, where

(7) � WD �n1
� � � � ��nr

I

see Corollary A.2. Thus we will assume throughout that C � �. Unless otherwise
specified, we will also assume that n1D pa1 ; : : : ; nr D p

ar are powers of the same
prime p. Here a1; : : : ; ar > 1 are integers. Under these assumptions, instead of
X.Grm=C /� Zr , we will consider the subgroup of

X.�/D .Z=pa1Z/� � � � � .Z=par Z/

given by

(8) Code.C / WDX.�=C/D˚
.m1; : : : ; mr/ 2X.�/ j �

m1

1 � � � �
mr
r D 1 8.�1; : : : ; �r/ 2 C

	
:

In other words, Code.C / consists of those characters of � which vanish on C . The
symbol “Code” indicates that we will view this group as an error-correcting code.
In particular, we will define the Hamming weight w.y/ of

y D .m1; : : : ; mr/ 2 .Z=p
a1Z/� � � � � .Z=par Z/

as follows. Write mi WD uipei with ui 2 .Z=pai Z/� and 0� ei � ai . Then

w.y/ WD
rX
iD1

.ai � ei /:

Our main results relate ed.G/ to coding-theoretic invariants of Code.C /, such as its
weight distribution; see also Corollary A.3. For an introduction to error-correcting
coding theory, see [MacWilliams and Sloane 1977].

At this point we should warn the reader that our notions of error-correcting
code and Hamming weight are somewhat unusual. In coding-theoretic literature
(linear) codes are usually defined as linear subspaces of Fnq , where Fq is the field
of q elements. In this paper, by a code we will mean an additive subgroup of
.Z=pa1Z/ � � � � � .Z=par Z/. Nevertheless, in an important special case, where
a1 D � � � D ar D 1, our codes are linear codes of length r over Fp in the usual
sense of error-correcting coding theory, and our definition of the Hamming weight
coincides with the usual definition.

Theorem 1.1. Let p be a prime, G WD .GLpa1 � � � � � GLpar /=C , where C �
�pa1 � � � � � �par is a central subgroup, and y1; : : : ; yt be a minimal basis for
Code.C /; see Definition 3.2. Then

(a) edp.G/>
�Pt

iD1 p
w.yi /

�
�p2a1 � � � � �p2ar C r � t ,

(b) ed.G/6
�Pt

iD1p
w.yi /

�
�tCed.G/ and edp.G/6

�Pt
iD1p

w.yi /
�
�tCedp.G/,

where G WD PGLpa1 � � � � �PGLpar .
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Although the upper and lower bounds of Theorem 1.1 never meet, for many
central subgroups C � ��G, the term

Pt
iD1 p

w.yi / is much larger than any of
the other terms appearing in the above inequalities and may be viewed as giving
the asymptotic value of ed.G/. In particular, note that in view of (2),

(9) edp.G/6 ed.G/6 ed.PGLpa1 /C � � �C ed.PGLpar /6 p2a1 C � � �Cp2ar :

Under additional assumptions on C , we will determine the exact value of ed.G/;
see Theorem 1.2.

The fact that we can determine ed.G/ for many choices of C , either asymptoti-
cally or exactly, was rather surprising to us, given the wide gap between the best
known upper and lower bounds on ed.G/ in the simplest case, where r D 1; see (4).
Our informal explanation of this surprising phenomenon is as follows. If Code.C /
can be generated by vectors y1; : : : ; yt of small weight, then

Pt
iD1 p

w.yi / no longer
dominates the other terms. In particular, this always happens if r 6 2. In such cases
the value of ed.G/ is controlled by the more subtle “lower order effects”, which
are poorly understood.

To state our next result, we will need the following terminology. Suppose
that 2 6 n1 6 � � � 6 nt and z D .z1; : : : ; zr/ 2 .Z=n1Z/� � � � � .Z=nrZ/, where
zj1
; : : : ; zjs

¤ 0 for some 16 j1 < � � �<js 6 r and zj D 0 for any j 62 fj1; : : : ; jrg.
We will say that z is balanced if

(i) njs
6 1
2
nj1
nj2
� � �njs�1

and

(ii) .nj1
; : : : ; njs

/¤ .2; 2; 2; 2/; .3; 3; 3/ or .2; n; n/ for any n> 2.

Note that condition (i) can only hold if s> 3. In particular, .Z=n1Z/�� � ��.Z=nrZ/

has no balanced elements if r 6 2. In the sequel, we will usually assume that
n1; : : : ; nr are powers of the same prime p. In this situation, condition (ii) is
vacuous, unless p D 2 or 3.

Theorem 1.2. Let p be a prime,

G WD .GLpa1 � � � � �GLpar /=C;

where ar > � � �> a1 > 1 are integers, and C is a subgroup of �, as in (7). Assume
that the base field k is of characteristic zero and Code.C / has a minimal basis
yi D .yi1; : : : ; yir/, i D 1; : : : ; t satisfying the following conditions:

(a) yij D�1, 0 or 1 in Z=paj Z for every i D 1; : : : ; t and j D 1; : : : ; r .

(b) For every j D 1; : : : ; r , there exists an i 2 f1; : : : ; tg such that yi is balanced
and yij ¤ 0.

Then ed.G/D edp.G/D
�Pt

iD1 p
w.yi /

�
�p2a1 � � � � �p2ar C r � t .

Specializing Theorem 1.2 to the case where Code.C / is generated by the single
element .1; : : : ; 1/, we obtain the following.
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Theorem 1.3. Let ar > ar�1 > � � �> a1 > 1 be integers and F W Fieldsk! Sets be
the covariant functor where F.K/ is defined as the set of isomorphism classes of
r-tuples .A1; : : : ; Ar/ of central simple K-algebras such that deg.Ai /D pai for
all i D 1; : : : ; r , and A1˝ � � �˝Ar is split over K.

(a) If ar > a1C � � �C ar�1, then ed.F /D ed.PGLpa1 � � � � �PGLpar�1 / and

edp.F /D edp.PGLpa1 � � � � �PGLpar�1 /:

In particular, ed.F /6 p2a1 C � � �Cp2ar�1 .

(b) Assume that char.k/D 0, ar < a1C � � �C ar�1, and .pa1 ; : : : ; par / is not of
the form .2; 2; 2; 2/, .3; 3; 3/ or .2; 2a; 2a/ for any a > 1. Then

(10) ed.F /D edp.F /D pa1C���Car �

rX
iD1

p2ai C r � 1:

(c) If .pa1 ; : : : ; par /D .2; 2; 2/, then ed.F /D ed2.F /D 3.

Here part (c) treats the smallest of the exceptional cases in part (b). Note that in
this case p D 2, r D 3 and a1 D a2 D a3 D 1. Thus

pa1C���Car �

rX
iD1

p2ai C r � 1D�2;

and formula (10) fails. The values of ed.F / and edp.F / in the other exceptional
cases, where .pa1 ; : : : ; par /D .2; 2; 2; 2/, .3; 3; 3/, or .2; 2a; 2a/ for some a > 2,
remain open.

The results of this paper naturally lead to combinatorial questions, which we
believe to be of independent interest but will not address here. For each code
(i.e., subgroup) X � .Z=pa1Z/� � � �� .Z=par Z/ of rank t , let .w1; : : : ; wt / be the
minimal profile of X with respect to the Hamming weight function, in the sense
of Proposition 3.1. That is, wi D w.yi /, where y1; : : : ; yt is a minimal basis of X .
Fixing p, a1 6 � � � 6 ar and t , and letting X range over all possible codes with
these parameters:

� What is the lexicographically largest profile .w1; : : : ; wt /?

� What is the maximal value of wt?

� What is the probability that w1 D � � � D wt?

� What is the maximal value of pw1 C � � �Cpwt ?

� What is the average value of pw1 C � � �Cpwt ?

� What is the probability that wt > 2ar?
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Note that the expression pw1 C � � � C pwt appears in the formulas given in
Theorem 1.1. For large p, the condition that wt > 2ar makes pw1 C � � �Cpwt the
dominant term in these formulas. To the best of our knowledge, questions of this
type (focusing on the minimal profile of a code, rather than the minimal weight)
have not been previously investigated by coding theorists, even in the case where
a1 D � � � D ar D 1.

The rest of this paper is structured as follows. In Section 2 we prove general
bounds on the essential dimension of certain central extensions of algebraic groups.
These bounds will serve as the starting point for the proofs of the main theorems.
To make these bounds explicit for groups of the form .GLpa1 � � � � �GLpar /=C ,
we introduce and study the notion of a minimal basis in Section 3. Theorems 1.1,
1.2 and 1.3 are then proved in Sections 4, 5 and 6, respectively. The Appendix by
Athena Nguyen contains an explicit description of the Galois cohomology of groups
of the form (5). This description and its corollaries are used throughout the paper.

2. Essential dimension and central extensions

Let T D Grm be a split k-torus of rank r , and

(11) 1! T !G!G! 1

be a central exact sequence of affine algebraic groups. This sequence gives rise to
the exact sequence of pointed sets

H 1.K;G/!H 1.K;G/ @
�!H 2.K; T /

for any field extension K of the base field k. Any character xWT !Gm, induces
a homomorphism x�WH

2.K; T / ! H 2.K;Gm/. We define indx.G; T / as the
maximal index of x� ı @K.E/ 2H 2.K; T /, where the maximum is taken over all
field extensions K=k and over all E 2H 1.K;G/. In fact, this maximal value is
always attained in the case where E DEvers! Spec.K/ is a versal G-torsor (for a
suitable field K). That is,

(12) indx.G; T /D ind.x� ı @K.Evers//

for every x 2X.T /; see [Merkurjev 2013, Theorem 6.1]. Finally, we set

(13) ind.G; T / WDmin
n rP
iD1

indxi .G; T /
ˇ̌
x1; : : : ; xr generate X.T /

o
:

Our starting point for the proof of the main theorems is the following proposition.

Proposition 2.1. Assume that the image of every E 2H 1.K;G/ under

@WH 1.K;G/!H 2.K; T /



162 SHANE CERNELE AND ZINOVY REICHSTEIN

is p-torsion for every field extension K=k. Then

(a) edp.G/> ind.G; T /� dim.G/,

(b) ed.G/6 ind.G; T /C ed.G/� r and edp.G/6 ind.G; T /C edp.G/� r .

These bounds are variants of results that have previously appeared in the literature.
Part (a) is a generalization of [Brosnan et al. 2011, Corollary 4.2] (where r is taken
to be 1). In the case where T is �rp , rather than Grm, a variant of part (a) is proved
in [Reichstein 2010, Theorem 4.1] (see also [Merkurjev 2013, Theorem 6.2]) and a
variant of part (b) in [Merkurjev 2013, Corollaries 5.8 and 5.12].

Our proof of Proposition 2.1 proceeds along the same lines as these earlier proofs;
it relies on the notions of essential and canonical dimension of a gerbe (for which we
refer the reader to [Brosnan et al. 2011] and [Merkurjev 2013]), and the computation
of the canonical dimension of a product of p-primary Brauer–Severi varieties
in [Karpenko and Merkurjev 2008, Theorem 2.1]. In fact, the argument is easier for
T DGrm than for�rp . In the former case (which is of interest to us here), the essential
dimension of a gerbe banded by T is readily expressible in terms of its canonical
dimension (see formula (15) below), while an analogous formula for gerbes banded
by �rp requires a far greater effort to prove. (For r D 1, compare the proofs of parts
(a) and (b) of [Brosnan et al. 2011, Theorem 4.1]. For arbitrary r > 1, see [Karpenko
and Merkurjev 2008, Theorem 3.1] or [Merkurjev 2013, Theorem 5.11].)

Proof. If K=k is a field, and E 2H 1.K;G/, i.e., E! Spec.K/ is a G-torsor, then
the quotient stack ŒE=G� is a gerbe over Spec.K/ banded by T . By [Brosnan et al.
2011, Corollary 3.3] and [Merkurjev 2013, Corollary 5.7],

ed.G/>max
K;E

ed.ŒE=G�/�dim.G/ and edp.G/>max
K;E

edp.ŒE=G�/�dim.G/;

where the maximum is taken over all field extensions K=k and all E 2H 1.K;G/.
On the other hand, by [Lötscher 2013, Example 3.4(i)],

ed.G/6 ed.G/Cmax
K;E

ed.ŒE=G�/ and edp.G/6 edp.G/Cmax
K;E

edp.ŒE=G�/I

see also [Merkurjev 2013, Corollary 5.8]. Since dim.G/D dim.G/C r , it remains
to show that

(14) max
K;E

ed.ŒE=G�/Dmax
K;E

edp.ŒE=G�/D ind.G; T /� r:

Choose a Z-basis x1; : : : ; xr for the character group X.T /' Zr and let P WD
P1 � � � � �Pr , where Pi is the Brauer–Severi variety associated to .xi /� ı @.E/ 2
H 2.K;Gm/. Since T is a special group (i.e., every T -torsor over every field K=k
is split), the set ŒE=G�.K/ of isomorphism classes of K-points of ŒE=G� consists
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of exactly one element if P.K/¤∅ and is empty otherwise. Thus

(15) ed.ŒE=G�/D cdim.P / and edp.ŒE=G�/D cdimp.P /;

where cdim.P / denotes the canonical dimension of P . (The same argument is used
in the proof of [Brosnan et al. 2011, Theorem 4.1(a)] in the case where r D 1.)
Since we are assuming that @.E/ is p-torsion, the index of each Brauer–Severi
variety Pi is a power of p. Thus by [Karpenko and Merkurjev 2008, Theorem 2.1],

cdim.P /Dcdimp.P /Dmin
n rP
iD1

ind
�
.xi /�ı@K.E/

�ˇ̌
x1; : : : ;xr generateX.T /

o
�r I

see also [Merkurjev 2013, Theorem 4.14]. TakingE WDEvers to be a versalG-torsor,
we obtain

cdim.P /D cdimp.P /Dmin
n rP
iD1

indxi .G; T //
ˇ̌
x1; : : : ; xr generate X.T /

o
� r I

see (12). By the definition (13) of ind.G; T /, the last formula can be rewritten as
cdim.P /D cdimp.P /D ind.G; T /� r . Combining these equalities with (15), we
obtain (14). �

Remark 2.2. Our strategy for proving Theorem 1.1 will be to apply Proposition 2.1
to the exact sequence (11) with G D .GLpa1 � � � � �GLpar /=C , and T WD Grm=C .
The only remaining issue is to find an expression for ind.G; T / in terms of Code.C /.

Usually, the term ind.G; T / is computed using the formula

indx.G; T /D gcd dim.�/;

as �WG!GL.V / ranges over all finite-dimensional representations of G such that
� 2 T acts on V via scalar multiplication by x.�/. See, for example, [Karpenko and
Merkurjev 2008, Theorem 4.4] or [Merkurjev 2013, Theorem 6.1] or [Lötscher et al.
2013, Theorem 3.1]. We will not use this approach in the present paper. Instead, we
will compute the values of indx.G; T / and ind.G; T / directly from the definition,
using the description of the connecting map @WH 1.K;G/!H 2.K; T / given by
Theorem A.1; see the proof of Proposition 4.1 below.

3. Minimal bases

To carry out the program outlined in Remark 2.2, we will need the notion of a
minimal basis. This section will be devoted to developing this notion.

The general setting is as follows. Let R be a local ring with maximal ideal
I � R and A be a finitely generated R-module. We will refer to a generating
set S � A as a basis if no proper subset of S generates A. In the sequel we will
specialize R to Z=paZ and A to a submodule of .Z=pa1Z/�� � ��.Z=pat Z/, where
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aDmax.a1; : : : ; ar/. However, in this section it will be convenient for us to work
over an arbitrary local ring R.

Let � WA ! A=IA be the natural projection. We will repeatedly appeal to
Nakayama’s lemma, which asserts that a subset S �A generates A as an R-module
if and only if �.S/ generates A=IA as an R=I -vector space; see [Lang 2002,
Section X.4].

By a weight function on A we shall mean any function w W A ! N, where
N denotes the set of nonnegative integers. We will fix w throughout and will
sometimes refer to w.y/ as the weight of y 2 A. For each basis B D fy1; : : : ; ytg
of A, we will define the profile of B as

w.B/ WD .w.y1/; : : : ;w.yt // 2 Nt ;

where y1; : : : ; yt are ordered so that w.y1/6w.y2/6 � � �6w.yt /. Let Prof.A/�Nt

denote the set of profiles of bases of A.

Proposition 3.1. Prof.A/ has a unique minimal element with respect to the partial
order on Nt given by .˛1; : : : ; ˛t /� .ˇ1; : : : ; ˇt / if ˛i 6 ˇi for every i D 1; : : : ; t .

Note that since every descending chain in .Prof.A/;�/ terminates, the unique
minimal element is comparable to every element of Prof.A/.

Proof. We argue by contradiction. Set t WD dim.A=IA/. Suppose X D fx1; : : : ; xtg
and Y Dfy1; : : : ; ytg are bases of A such that w.X/ and w.Y / are distinct minimal
elements of Prof.A/. Let us order X and Y so that w.x1/ 6 � � � 6 w.xt / and
w.y1/6 � � �6 w.yt /. Since w.X/¤ w.Y /, there exists an s between 0 and t � 1
such that

w.xi /D w.yi / for all i D 1; : : : ; s;

but w.xsC1/¤ w.ysC1/. After possibly interchanging X and Y , we may assume
without loss of generality that w.xsC1/ < w.ysC1/.

Let � WA! A=IA be the natural projection, as above. By Nakayama’s lemma,
�.x1/; : : : ; �.xsC1/ are R=I -linearly independent in A=IA. Choose t � s� 1 ele-
ments of Y , say yjsC2

; : : : ; yjt
, such that �.x1/; : : : ; �.xsC1/; �.yjsC2

/; : : : ; �.yjt
/

form an R=I -basis of A=IA. After permuting yjsC2
; : : : ; yjt

, we may assume that
w.yjsC2

/ 6 � � � 6 w.yjt
/. Applying Nakayama’s lemma once again, we see that

Z D fx1; : : : ; xsC1; yjsC2
; : : : ; yjt

g is a basis of A.
We claim that w.Z/� w.Y /, where the inequality is strict. Since we assumed

that w.Y / is minimal in Prof.A/, this claim leads to a contradiction, thus completing
the proof of Proposition 3.1.

To prove the claim, let z1; : : : ; zt be the elements of Z, in increasing order of
their weight: w.z1/6 w.z2/6 � � �6 w.zt /. It suffices to show that w.zi /6 w.yi /
for every i D 1; : : : ; t , and w.zsC1/ < w.ysC1/. Let us consider three cases.
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Case 1: i 6 s. Since

w.x1/D w.y1/6 w.x2/D w.y2/6 � � �6 w.xi /D w.yi /;

Z has at least i elements whose weight is at most w.yi /, namely x1; : : : ; xi . Thus
w.zi /6 w.yi /.

Case 2: i D s C 1. Z has at least s C 1 elements, namely x1; : : : ; xsC1 whose
weight is at most w.xsC1/. Hence, w.zsC1/6 w.xsC1/ < w.ysC1/, as desired.

Case 3: i > sC 1. Recall that both y1; : : : ; yt and yjsC2
; : : : ; yjt

are arranged in
weight-increasing order. For any i > sC 2, there are at least t � i C 1 elements
of Y whose weight is at least w.yji

/, namely yji
; yjiC1

; : : : ; yjt
. Thus

w.yji
/6 w.yi /

for any i D s C 2; : : : ; t . Consequently, Z has at least i elements of weight at
most w.yi /, namely x1; : : : ;xsC1;yjsC2

; : : : ;yji
. Hence, w.zi /6w.yi /, as desired.

This completes the proof of the claim and hence of Proposition 3.1. �

Definition 3.2. We will say that a basis y1; : : : ; yt ofA is minimal if its profile is the
minimal element of Prof.A/, as in Proposition 3.1. Note that a minimal basis in A
is usually not unique; however, any two minimal bases have the same profile in Nt .

Remark 3.3. We can construct a minimal basis of A using the following “greedy
algorithm”. Select y12A of minimal weight, subject to the condition that �.y1/¤0.
Next select y2 of minimal weight, subject to the condition that �.y1/ and �.y2/
are R=I -linear independent in A=IA. Then select y3 of minimal weight, subject to
the condition that �.y1/; �.y2/ and �.y3/ are R=I -linear independent in A=IA.
Continue recursively. After t D dimR=I .A=IA/ steps, we obtain a minimal basis
y1; : : : ; yt for A.

Example 3.4. Set R WD Fp, I WD .0/, G a finite p-group, D WD Z.G/Œp� the
subgroup of p-torsion elements of the center Z.G/, and A WD X.D/ the group
of characters of D. For x 2 A, define w.x/ to be the minimal dimension of a
representationG!GL.Vx/, such thatD acts on Vx via scalar multiplication by x. If
fx1; : : : ; xtg is a minimal basis of A, then Vx1

˚� � �˚Vxt
is a faithful representation

of G of minimal dimension; see [Karpenko and Merkurjev 2008, Remark 4.7].

4. Conclusion of the proof of Theorem 1.1

Recall that we are interested in the essential dimension of the group

G D .GLpa1 � � � � �GLpar /=C;

where C is a subgroup of � WD �pa1 � � � � ��par . We will think of the group of
characters X.Grm/ as Zr by identifying the character x.�1; : : : ; �r/D �

m1

1 � � � �
mr
r
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with .m1; : : : ; mr/ 2 Zr . Characters of T WD Grm=C are identified in this man-
ner with the r-tuples .m1; : : : ; mr/ 2 Zr such that �m1

1 � � � �
mr
r D 1 for every

.�1; : : : ; �r/ 2 C . The relationship among these character groups is illustrated
by the following diagram:

X.Grm=C /

��

� � // X.Grm/

�

��

Z� � � � �Z (r times)

�

��

Code.C / X.�=C/
� � // X.�/ .Z=pa1Z/� � � � � .Z=par Z/

Here Code.C / is as in (8) and � is the natural projection, given by restricting a
character from Grm to �.

Our proof of Theorem 1.1 will be based on the strategy outlined in Remark 2.2.
In view of Proposition 2.1 it suffices to establish the following:

Proposition 4.1. Consider the central exact sequence

(16) 1! T !G!G! 1;

where G D .GLpa1 � � � � �GLpar /=C , C is a subgroup of � WD �pa1 � � � � ��par ,
T WD Grm=C and G WD PGLpa1 � � � � �PGLpar .

(a) If x 2X.T / and y D �.x/ 2 Code.C / then indx.G; T /D pw.y/.

(b) ind.G; T /D pw.z1/C� � �Cpw.zt /Cr� t , where z1; : : : ; zt is a minimal basis
of Code.C /.

Proof of Proposition 4.1(a). Consider the connecting map @WH 1.K;G/!H 2.K;T /

associated to the central exact sequence (16). Given a character xWT ! Gm,
x.�1; : : : ; �r/ D �

m1

1 � � � �
mr
r , indx.G; T / is, by definition, the maximal value of

ind.x�@.E//, asK ranges over all fields containing k andE ranges overH 1.K;G/.
In this case, G D PGLpa1 � � � � � PGLpar , and thus H 1.K;G/ is the set of r-
tuples .A1; : : : ; Ar/ of central simple algebras, where the degree of Ai is pai .
The group H 2.K;Gm/ is naturally identified with the Brauer group Br.K/, and
the map x�@ takes an r-tuple .A1; : : : ; Ar/, as above, to the Brauer class of
A WD A

˝m1

1 ˝ � � �˝A
˝mr
r .

Since deg.Ai /D pai , the Brauer class of A depends only on

y D �.x/D .m1 mod pa1 ; : : : ; mr mod par / 2 .Z=pa1Z/� � � � � .Z=par Z/:

Moreover, if mi � uipei .mod pai /, where ui is prime to p and 06 ei 6 ai , then
ind.A˝mi

i /6 pai�ei . Now recall that w.y/ is defined as
Pr
iD1.ai � ei /. Thus

ind.A/6
rY
iD1

ind.A˝mi

i /6
rY
iD1

pai�ei D pw.y/:
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To prove the opposite inequality, we set Ai to be the symbol algebra .˛i ; ˇi /pai ,
over the fieldKDk.�/.˛1; : : : ; ˛r ; ˇ1; : : : ; ˇr/, where � is a primitive root of unity
of degree pmax.a1;:::;ar / and ˛1; : : : ; ˛r ; ˇ1; : : : ; ˇr are 2r independent variables
over k. Writing mi D uipei , as above, we see that A˝mi

i is Brauer equivalent to
Bi WD .˛i ; ˇ

ui

i /pai�ei over K. An easy valuation-theoretic argument shows that
B WD B1˝K � � � ˝K Bt is a division algebra. (In particular, the norm form of B is
a Pfister polynomial and hence, is anisotropic; see [Reichstein 1999, Theorem 3.2
and Proposition 3.4].) Thus

ind.A/D ind.B/D ind.B1/ � � � � � ind.Bt /D p.a1�e1/C���C.at�et / D pw.y/;

as desired. We conclude that indx.G; T / > ind.A/D pw.y/, thus completing the
proof of Proposition 4.1(a). �

Our proof of Proposition 4.1(b) will rely on the following elementary lemma.

Lemma 4.2. Let p be a prime,M be a finite abelian p-group, and f WZn!M be a
surjective Z-module homomorphism for some n>1. Then for every basis y1; : : : ; yt
of M , there exists a Z-basis x1; : : : ; xn of Zn and an integer c prime to p such that
f .x1/D cy1; f .x2/D y2; : : : ; f .xt /D yt and f .xtC1/D � � � D f .xn/D 0.

Proof. By [Lang 2002, Theorem III.7.8], there exists a basis e1; : : : ; en of Zn

such that Ker.f / is generated by pdi ei for some integers d1; : : : ; dt > 0. Since
M has rank t , we may assume without loss of generality that d1; : : : ; dt > 1 and
dtC1D � � � D dnD 0. That is, we may identify M with .Z=pd1Z/�� � ��.Z=pdt Z/

and assume that

f .r1; : : : ; rn/D .r1 mod pd1 ; : : : ; rt mod pdt / 8.r1; : : : ; rn/ 2 Zn:

It now suffices to lift cy1; : : : ; yt 2M to a basis x1; : : : ; xt of Zt for a suitable
integer c, prime to p. Indeed, if we manage to do this, then we will obtain a basis
of Zn of the desired form by appending

xtC1 WD etC1; : : : ; xn WD en 2 Ker.f /

to x1; : : : ; xt . Thus we may assume that nD t .
Now observe that f WZn!M , factors as Zn! .Z=pdZ/n!M , where d WD

max.d1; : : : ; dt /. Lift each yi 2M to some y0i 2 .Z=p
dZ/n. By Nakayama’s lemma,

y01; : : : ; y
0
n form a Z=pdZ-basis of .Z=pdZ/n. It now suffices to lift cy01; y

0
2; : : : ; y

0
n

to a basis of Zn for a suitable integer c, prime to p. In other words, we may assume
without loss of generality that M D .Z=pdZ/n, and f WZn ! .Z=pdZ/n is the
natural projection.

Now suppose yi D .yi1; : : : ; yin/ for some yij 2Z=pdZ. Since y1; : : : ; ym form
a basis of .Z=pdZ/n, the matrix A D .yij / is invertible, i.e., A 2 GLn.Z=pdZ/.
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After rescaling y1 by c WD det.A/�1 in Z=pdZ, we may assume that det.A/D 1.
The lemma now follows from the surjectivity of the natural projection

SLt .Z/! SLt .Z=pdZ/I

see [Shimura 1971, Lemma 1.38]. �

Proof of Proposition 4.1(b). By definition, ind.G; T / is the minimal value of
indx1.G; T /C� � �C indxr .G; T /, as x1; : : : ; xr range over the bases of X.T /�Zr .
By part (a), we can rewrite this as

ind.G; T /Dmin
˚
pw.�.x1//C � � �Cpw.�.xr // j x1; : : : ; xr is a Z-basis of X.T /

	
:

Here, as before, �.xi / 2Code.C / is the restriction of xi from T DGrm=C to �=C .
Let z1; : : : ; zt 2 Code.C / be a minimal basis, as in the statement of the proposi-

tion. We will prove part (b) by showing that

(i) pw.�.x1//C � � �Cpw.�.xr // > pw.z1/C � � �Cpw.zt /C r � t for every Z-basis
x1; : : : ; xr of X.T /, and

(ii) there exists a particular Z-basis x1; : : : ; xr ofX.T / such that pw.�.x1//C� � �C

pw.�.xr // D pw.z1/C � � �Cpw.zt /C r � t .

To prove (i), note that if x1; : : : ; xr form a Z-basis ofX.T /, then�.x1/; : : : ;�.xr/
form a generating set for Code.C /. By Nakayama’s lemma, every generating set
for Code.C / contains a basis. After renumbering x1; : : : ; xr , we may assume
that �.x1/; : : : ; �.xt / is a basis of Code.C / and w.�.x1//6 � � �6 w.�.xt //. By
Proposition 3.1, w.zi /6 w.�.xi // for every i D 1; : : : ; t . Thus

pw.�.x1//C� � �Cpw.�.xr //

> pw.�.x1//C� � �Cpw.�.xt //Cp0C� � �Cp0„ ƒ‚ …
r�t times

> pw.z1/C� � �Cpw.zt /Cr�t:

To prove (ii), recall that by Lemma 4.2 there exists an integer c, prime to p, and
a Z-basis x1; : : : ; xr of X.T / such that �.x1/D cz1; �.x2/D z2; : : : ; �.xt /D zt ,
and �.xtC1/D � � � D �.xr/D 0. Since c is prime to p, w.cz1/D w.z1/. Thus for
this particular choice of x1; : : : ; xr , we have

pw.�.x1//C� � �Cpw.�.xr // D

pw.cz1/Cpw.z2/C� � �Cpw.zt /Cp0C� � �Cp0„ ƒ‚ …
r�t times

D pw.z1/C� � �Cpw.zt /Cr�t;

as desired. �



ESSENTIAL DIMENSION AND ERROR-CORRECTING CODES 169

5. Proof of Theorem 1.2

Consider the action of a linear algebraic group � on an absolutely irreducible
algebraic variety X defined over k. We say that a subgroup S � � is a stabilizer
in general position for this action if there exists a dense open subset U �X such
that the scheme-theoretic stabilizer Stab�.x/ is conjugate to S over k for every
x 2 U.k/. Here, as usual, k denotes the algebraic closure of k. In the sequel we
will not specify U and will simply say that Stab�.x/ is conjugate to S for x 2X.k/
in general position. Note that a stabilizer in general position S for a �-action on X
does not always exist, and when it does, it is usually not unique. However, over k,
S is unique up to conjugacy.

For the rest of this section we will always assume that char.k/D 0. A theorem
of R. W. Richardson [1972] tells us that under this assumption every linear action
of a reductive group � on a vector space V has a stabilizer S � � in general
position. Note that in [Richardson 1972], k is assumed to be algebraically closed.
Thus a priori the subgroup S and the open subset U � V , where all stabilizers
are conjugate to S , are only defined over k. However, U has only finitely many
Galois translates. After replacing U by the intersection of all of these translates,
we may assume that U is defined over k. Moreover, we may take S WD StabG.x/
for some k-point x 2U.k/ and thus assume that S is defined over k. For a detailed
discussion of stabilizers in general position over an algebraically closed field of
characteristic zero, see [Popov and Vinberg 1994, Section 7].

We will say that a �-action on X is generically free if the trivial subgroup
S D f1�g � � is a stabilizer in general position for this action.

Lemma 5.1. Let � be a reductive linear algebraic group and �W�! GL.V / be a
finite-dimensional representation. If Stab�.v/ is central in � for v 2 V in general
position, then the induced action of �=Ker.�/ on V is generically free.

Proof. Let S �� be the stabilizer in general position for the �-action on V . Clearly
Ker.�/ � S . We claim that, in fact, Ker.�/ D S ; the lemma easily follows from
this claim.

To prove the opposite inclusion, S � Ker.�/, note that under the assumption
of the lemma, S is central in � . Let U � V be a dense open subset such that the
stabilizer of every v 2 U.k/ is conjugate to S . Since S is central, Stab�.v/ is, in
fact, equal to S . In other words, S stabilizes every point in U and thus every point
in V . That is, S � Ker.�/, as claimed. �

Our interest in generically free actions in this section has to do with the following
fact: if there exists a generically free linear representation G! GL.V / then

(17) ed.G/6 dim.V /� dim.G/I
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see, e.g., [Reichstein 2010, (2.3)] or [Merkurjev 2013, Proposition 3.13]. This
inequality will play a key role in our proof of Theorem 1.2.

Now set � WD GLn1
� � � � �GLnr

and � 0 WD SLn1
� � � � � SLnr

. Let Vi be the
natural ni -dimensional representation, V �1i be the dual representation, and V 0i be
the trivial 1-dimensional representation of GLni

. For �D .�1; : : : ; �r/, where each �i
is�1, 0 or 1, we define �� to be the natural representation of � on the tensor product

(18) V� D V
�1

1 ˝ � � �˝V
�r
r :

Lemma 5.2. Suppose 26 n1 6 � � �6 nr 6 1
2
n1 � � �nr�1, and

.n1; : : : ; nr/¤ .2; 2; 2; 2/; .3; 3; 3/ or .2; n; n/ for any n> 2:

If � D .�1; : : : ; �r/ 2 f˙1gr , then the induced action of �=Ker.��/ on V� is generi-
cally free.

Proof. By Lemma 5.1 it suffices to prove the following claim: the stabilizer Stab�.v/
is central in � for v 2 V� in general position. To prove this claim, we may assume
without loss of generality that k is algebraically closed.

We first reduce to the case where �D .1; : : : ; 1/. Suppose the claim is true in this
case, and let .�1; : : : ; �r/2f˙1gr . By choosing bases of V1; : : : ; Vr , we can identify
Vi with V �i

i (we can take the identity map if �i D 1). Define an automorphism

� W �! �;

.g1; : : : ; gr/ 7! .g�1 ; : : : ; g
�
r /;

where

g�i D

�
gi if �i D 1;
.g�1i /T if �i D�1:

Now �.�1;:::;�r / is isomorphic to the representation �.1;:::;1/ ı � . Since the center
of � is invariant under � , we see that the claim holds for �� as well.

From now on we will assume � D .1; : : : ; 1/. By [Popov 1987, Theorem 2],

�=Z.�/D PGLn1
� � � � �PGLnr

D � 0=Z.� 0/

acts generically freely on the projective space P.V�/D V�=Z.�/. In other words,
for v 2 V� in general position, the stabilizer in � of the associated projective point
Œv� 2 P.V�/ is trivial. Hence, the stabilizer of v is contained in Z.�/; see the exact
sequence in [Reichstein and Vonessen 2007, Lemma 3.1]. This completes the proof
of the claim and thus of Lemma 5.2. �

We are now ready to proceed with the proof of Theorem 1.2. We begin by special-
izing ni to pai for every i D 1; : : : ; r , so that � becomes GLpa1 � � � ��GLpar . Let

y1; : : : ; yt 2 .Z=p
a1Z/� � � � � .Z=par Z/
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be a basis of Code.C / satisfying the conditions of Theorem 1.2. Lift each yi D
.yi1; : : : ; yir/ to xi WD .xi1; : : : ; xir/ 2 Zr by setting xij WD �1, 0 or 1, depending
on whether yij is �1, 0 or 1 in Z=paj Z. (If paj D 2, then we define each xij to be
0 or 1.) By Nakayama’s lemma, the images of y1; : : : ; yt are Fp-linearly indepen-
dent in Code.C /=p Code.C /. Thus the integer vectors x1; : : : ; xt are Z-linearly
independent. (Note that, unlike in the situation of Lemma 4.2, here it will not matter
to us whether x1; : : : ; xt can be completed to a Z-basis of Zr .) We view each xi
as a character Grm! Gm and set

zC WD Ker.x1/\ � � � \Ker.xt /� Grm:

Since x1; : : : ; xt are linearly independent,

(19) dim. zC/D r � t:

Set G WD �=C and zG WD �= zC . By our construction, zC \�D C . Corollary A.2
now tells us that edp.G/6 ed.G/D ed. zG/. By Theorem 1.1(a),

ed.G/> edp.G/>
� tX
iD1

pw.yi /

�
�p2a1 � � � � �p2ar C r � t:

It thus suffices to show that ed. zG/ 6
�Pt

iD1 p
w.yi /

�
�p2a1 � � � � �p2ar C r � t ,

or equivalently,

ed. zG/6
� tX
iD1

pw.yi /

�
� dim. zG/I

see (19). By (17), in order to prove the last inequality, it is enough to construct
a generically free linear representation of zG of dimension

Pt
iD1 p

w.yi /. Such a
representation is furnished by the lemma below.

Recall that xi D .xi1; : : : ; xir/2Zr , where each xij D�1, 0 or 1, and �xi
is the

natural representation of � WD GLpa1 � � � � �GLpar on Vxi
WD V

xi1

1 ˝ � � �˝V
xir
r ,

as in (18), with dim.Vi /D ni D pai .

Lemma 5.3. Let V D Vx1
˚� � �˚Vxt

and � WD �x1
˚� � �˚�xt

W�!GL.V /. Then

(a) dim.V /D pw.y1/C � � �Cpw.yt /,

(b) Ker.�/D zC , and

(c) the induced action of zG D �= zC on V is generically free.

Proof. For each i D 1; : : : t , we have

dim.Vxi
/D

Y
xij¤0

paj D

Y
yij¤0

paj D p
P

yij¤0 aj :

Since each yij D �1, 0 or 1,
P
yij¤0

aj D w.yi /. Thus dim.Vxi
/D pw.yi /, and

part (a) follows.
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Now choose vi 2 Vxi
in general position and set v WD .v1; : : : ; vr/. We claim

that Stab�.v/ is central in � .
Suppose for a moment that this claim is established. Since the centerZ.�/DGrm

acts on Vxi
via scalar multiplication by the character xi WGrm! Gm, we see that

Ker.�/D Ker.�jGr
m
/D Ker.x1/\ � � � \Ker.xt /D zC ;

and part (b) follows. Moreover, by Lemma 5.1, the induced action of �=Ker.�/ on
V is generically free. By part (b), Ker.�/D zC and part (c) follows as well.

It remains to prove the claim. Choose vi 2 Vxi
in general position and assume

that g D .g1; : : : ; gr/ stabilizes v WD .v1; : : : ; vt / in V for some gj 2 GLpaj . Our
goal is to show that gj is, in fact, central in GLpaj for each j D 1; : : : ; r .

Let us fix j and focus on proving that gj is central for this particular j . By
assumption (b) of Theorem 1.2, there exists an i D 1; : : : ; t such that yi is balanced
and yij ¤ 0. Let us assume that yij1

; : : : ; yijs
D ˙1 and yih D 0 for every

h 62 fj1; : : : ; jrg and consequently, xij1
; : : : ; xijs

D ˙1 and xih D 0 for every
h 62 fj1; : : : ; jrg. By our assumption, j 2 fj1; : : : ; jsg.

The representation �xi
of � D GLpa1 � � � � �GLpar on

Vxi
WD V xi1 ˝ � � �˝V xit D V xij1 ˝ � � �˝V xijs

factors through the projection �!GL
p

aj1
�� � ��GLpajs . Thus if gD .g1; : : : ;gr/

stabilizes vD .v1; : : : ;vt /2V then, in particular, g stabilizes vi and so .gj1
; : : : ;gjs

/

stabilizes vi .
Since yi is assumed to be balanced, the conditions of Lemma 5.2 for the action

of GLnj1
� � � � �GLnjs

on Vxi
D V xj1 ˝� � �˝V xjs are satisfied. (Recall that here

ni D p
ai .) Since .gj1

; : : : ; gjs
/ stabilizes vi 2 Vxi

in general position, Lemma 5.2
tells us that gj1

; : : : ; gjs
are central in GLnj1

; : : : ;GLnjs
, respectively. In particular,

gj is central in GLnj
, as desired. This completes the proof of Lemma 5.3 and thus

of Theorem 1.2. �

6. Proof of Theorem 1.3

Consider the central subgroups zC and C of � D GLpa1 � � � � �GLpar given by

zC Df.�1; : : : ; �r/2Grm j�1 � � � �rD1g and C Df.�1; : : : ; �r/2� j�1 � � � �rD1g:

Set G WD �=C and zG WD �= zC . Note that C D zC \ �. By Theorem A.1 and
Corollary A.2, H 1.�; G/ and H 1.�; zG/ are both isomorphic to the functor F
defined in the statement of Theorem 1.3. In particular, ed. zG/D ed.G/D ed.F /
and edp. zG/D edp.G/D edp.F /. We are now ready to proceed with the proof of
Theorem 1.3.
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(a) If A1˝ � � �˝Ar is split over K, then Ar can be recovered from A1; : : : ; Ar�1
as the unique central simple K-algebra of degree par which is Brauer-equivalent to

.A1˝ � � �˝Ar�1/
op:

(Here Bop denotes the opposite algebra of B .) In other words, the morphism of
functors

(20) F !H 1.�;PGLpa1 /� � � � �H
1.�;PGLpar�1 /

given by .A1; : : : ; Ar�1; Ar/ ! .A1; : : : ; Ar�1/ is injective. We claim that if
ar > a1C � � �C ar�1 (which is our assumption in part (a)), then this morphism is
also surjective. Indeed,

deg.A1˝ � � �˝Ar�1/D pa1C���Car�1

for any choice of central simpleK-algebras A1; : : : ; Ar�1 such that deg.Ai /Dpai .
Hence, for any such choice, there exists a central simple algebra of degree par

which is Brauer-equivalent to .A1˝ � � �˝Ar�1/op. This proves the claim.
We conclude that if ar > a1C � � �C ar�1 then (20) is an isomorphism and thus

ed. zG/D ed.G/D ed.F /D ed.PGLpa1 � � � � �PGLpar�1 /;

edp. zG/D edp.G/D edp.F /D edp.PGLpa1 � � � � �PGLpar�1 /:

The inequality ed.F /6 p2a1 C � � �Cp2ar�1 now follows from (9).

(b) Now suppose ar < a1C � � � C ar�1. Note that Code.C / has a minimal basis
consisting of the single element .1; : : : ; 1/2 .Z=pa1Z/�� � ��.Z=par Z/. Moreover,
par 6 1

2
pa1 � � �par�1 and consequently, Theorem 1.2 applies. It tells us that if the

r-tuple .pa1 ; : : : ; par / is not of the form .2; 2; 2; 2/, .3; 3; 3/ or .2; 2a; 2a/, then

ed.F /D edp.F /D ed. zG/D edp. zG/D

ed.G/D edp.G/D pa1C���Car �

rX
iD1

p2ai C r � 1;

as claimed.

(c) In the case where .pa1 ; : : : ; par /D .2; 2; 2/, F.K/ is the set of isomorphism
classes of triples .A1; A2; A3/ of quaternion K-algebras, such that A1˝A2˝A3
is split over K. We will show that (i) ed.F /6 3 and (ii) ed2.F /> 3.

To prove (i), recall that by a theorem of Albert [Lam 2005, Theorem III.4.8], the
condition thatA1˝A2˝A3 is split overK implies thatA1 andA2 are linked overK.
That is, there exist a; b; c 2 K� such that A1 ' .a; b/ and A2 ' .a; c/ over K.
Hence, the triple .A1; A2; A3/2F.K/ descends to the triple .B1; B2; B3/2F.K0/,
where K0 D k.a; b; c/, B1 D .a; b/, B2 D .a; c/ and B3 D .a; bc/ over K0. Since
trdeg.K0=k/6 3, assertion (i) follows.
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To prove (ii), consider the morphism of functors f WF !H 1.�;SO4/ given by

f W .A1; A2; A3/ 7! ˛;

where ˛ is a 4-dimensional quadratic form such that

˛˚H˚HŠN.A1/˚ .�N.A2//:

Here H denotes the 2-dimensional hyperbolic form h1;�1i,N.A1/ denotes the norm
form of A1, and �N.A2/ denotes the opposite norm form of A2, i.e., the unique
4-dimensional form such that N.A2/˚ .�N.A2// is hyperbolic. Since N.A1/ and
N.A2/ are forms of discriminant 1, so is ˛ (this will also be apparent from the
explicit computations below). Thus we may view ˛ as an element of the Galois
cohomology set H 1.K;SO4/, which classifies 4-dimensional quadratic forms of
discriminant 1 over K, up to isomorphism. Note also that by the Witt cancellation
theorem, ˛ is unique up to isomorphism. We conclude that the morphism of
functors f is well-defined.

Equivalently, using the definition of the Albert form given in [Lam 2005, p. 69],
˛ is the unique 4-dimensional quadratic form such that ˛˚HŠ q, where q is the
6-dimensional Albert form of A1 and A2. Here the Albert form of A1 and A2 is
isotropic, and hence, can be written as ˛˚H, because A1 and A2 are linked; once
again, see [Lam 2005, Theorem III.4.8].

Suppose A1 D .a; b/, A2 D .a; c/, and A3 D .a; bc/, as above. Then

N.A1/D hh�a;�bii D h1;�a;�b; abi;

and similarly N.A2/ D h1;�a;�c; aci; see, e.g., [Lam 2005, Corollary III.2.2].
Thus

N.A1/˚.�N.A2//Dh1;�1;�a; a;�b; c; ab;�aci' h�b; c; ab;�aci˚H˚H;

and we obtain an explicit formula for ˛ D f .A1; A2; A3/: ˛ Š h�b; c; ab;�aci.
It is easy to see that any 4-dimensional quadratic form of discriminant 1 over K

can be written as h�b; c; ab;�aci for some a; b; c 2 K�. In other words, the
morphism of functors f WF !H 1.�;SO4/ is surjective. Consequently,

ed2.F /� ed2.H 1.�;SO4//D ed2.SO4/I

see, e.g., [Berhuy and Favi 2003, Lemma 1.9] or [Reichstein 2010, Lemma 2.2]. On
the other hand, ed2.SO4/D 3; see [Reichstein and Youssin 2000, Theorem 8.1(2)
and Remark 8.2] or [Reichstein 2010, Corollary 3.6(a)]. Thus

ed2.F /> ed2.SO4/D 3:

This completes the proof of (ii) and thus of part (c) of Theorem 1.3. �
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Appendix: Galois cohomology of central quotients
of products of general linear groups

Athena Nguyen1

In this appendix we will study the Galois cohomology of algebraic groups of the
form

G WD �=C;

where � WD GLn1
� � � � �GLnr

and C �Z.�/D Grm is a central subgroup. Here
n1; : : : ; nr > 1 are integers, not necessarily prime powers. Let

G WDG=Z.G/D PGLn1
� � � � �PGLnr

D �=Z.�/:

Recall that for any field K=k, H 1.K;PGLn/ is naturally identified with the set of
isomorphism classes of central simple K-algebras of degree n, and

H 1.K;G/DH 1.K;PGLn1
/� � � � �H 1.K;PGLnr

/

is identified with the set of r-tuples .A1; : : : ; Ar/ of central simple K-algebras
such that deg.Ai / D ni . Denote by @iK the coboundary map H 1.K;PGLni

/!

H 2.K;Gm/ induced by the short exact sequence

1! Gm! GLni
! PGLni

! 1:

This map sends a central simple algebra Ai to its Brauer class ŒAi � inH 2.K;Gm/D

Br.K/.
Of particular interest to us will be

X.Grm=C /D
˚
.m1; : : : ; mr/ 2 Zr j �

m1

1 � � � �
mr
r D 1 8.�1; : : : ; �r/ 2 Grm

	
;

as in (6). We are now ready to state the main result of this appendix.

Theorem A.1. Let � WG! G WD PGLn1
� � � � � PGLnr

be the natural projection
and ��WH 1.K;G/!H 1.K;G/ be the induced map in cohomology. Here K=k is
a field extension. Then:

(a) The map ��WH 1.K;G/!H 1.K;G/ is injective for every field K=k.

(b) The map �� identifies H 1.K;G/ with the set of isomorphism classes of
r-tuples .A1; : : : ; Ar/ of central simple K-algebras such that deg.Ai / D ni
and A˝m1

1 ˝ � � �˝A
˝mr
r is split over K for every .m1; : : : ; mr/ 2X.Grm=C /.

1This appendix is based on a portion of Nguyen’s master’s thesis completed at the University
of British Columbia. Nguyen gratefully acknowledges the financial support from the University of
British Columbia and the Natural Sciences and Engineering Research Council of Canada.
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Proof. Throughout, we will identify H 2.K;Grm/ with H 2.K;Gm/
r and X.Grm/

with Zn. A character x D .m1; : : : ; mr/ 2 Zn, i.e., a character xWGrm! Gm given
by .�1; : : : ; �r/! �

m1

1 � � � �
mr
r , induces a map x�WH 2.K;Gm/

r !H 2.K;Gm/ in
cohomology given by

(21) x�.˛1; : : : ; ˛r/D ˛
m1

1 � � � � �˛
mr
r :

Let us now consider the diagram

1 // Grm
//

�

��

� //

��

rQ
iD1

PGLni
// 1

1 // Grm=C
// G

�
//
rQ
iD1

PGLni
// 1

Since H 1.K;Grm=C / D f1g by Hilbert’s theorem 90, we obtain the following
diagram in cohomology with exact rows:

H 1.K;
rQ
iD1

PGLni
/

.@1
K ;:::;@

r
K/

// H 2.K;Grm/

��

��

1 // H 1.K;G/
��
// H 1.K;

rQ
iD1

PGLni
/

@K
// H 2.K;Grm=C /

(a) It follows from [Serre 1997, I.5, Proposition 42] that �� is injective.

(b) Thus, �� identifiesH 1.K;G/ with the set of r-tuples .A1; : : : ; Ar/, where Ai 2
H 1.K;PGLni

/ is a central simple algebra of degree ni , and .@1K.A1/; : : : ;@
r
K.Ar//2

Ker.��/. Recall that @iK sends a central simple algebra Ai to its Brauer class
ŒAi �2H

2.K;Gm/. In the sequel we will use additive notation for the abelian group
H 2.K;Gm/D Br.K/.

Consider an r-tuple ˛ WD .ŒA1�; : : : ; ŒAr �/ 2 H 2.K;Grm/. Since Grm=C is di-
agonalizable, ��.˛/ D 0 if and only if x�.��.˛// D 0 for all x 2 X.Grm=C /. If
x D .m1; : : : ; mr/ 2X.G

r
m=C /, then x� ı �� D .m1; : : : ; mr/ 2X.Grm/. By (21),

x�.��.˛//D ŒA
˝m1

1 ˝ � � �˝A
˝mr
r �, and part (b) follows. �

Corollary A.2. Let � WDGLn1
� � � ��GLnr

, C1; C2 be k-subgroups ofZ.�/DGrm,
G1 D �=C1 and G2 D �=C2. Denote the central subgroup �n1

� � � � ��nr
of �

by �.
If C1 \ � D C2 \ � then the Galois cohomology functors H 1.�; G1/ and

H 1.�; G2/ are isomorphic.
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Proof. By Theorem A.1, H 1.K;Gi / is naturally identified with the set of r-tuples
.A1; : : : ; Ar/ of central simple algebras such that deg.Ai /D ni and

A
˝m1

1 ˝ � � �˝A˝mr
r is split over K for every .m1; : : : ; mr/ 2X.Gm=Ci /:

Note that since A˝ni

i is split for every i , this condition depends only on the image
of .m1; : : : ; mr/ under the natural projection

� WX.Grm/D Zr ! .Z=n1Z/� � � � � .Z=nrZ/DX.�/:

Our assumption thatC1\�DC2\� is equivalent toX.Grm=C1/ andX.Grm=C2/
having the same image under � , and the corollary follows. �

In order to state the second corollary of Theorem A.1, we will need the following
definition. By a code we shall mean a subgroup ofX.�/D .Z=n1Z/�� � ��.Z=nrZ/.
Given a subgroup C � �, we define the code Code.C / WDX.�=C/, as in (8).

We will say that two codes are called equivalent if one can be obtained from the
other by repeatedly performing the following elementary operations:

(1) Permuting entries i and j in every vector of the code, for any i; j with ni D nj .

(2) Multiplying the i -th entry in every vector of the code by an integer c prime to ni .

Corollary A.3. Suppose C1 and C2 are subgroups of � WD �n1
� � � � ��nr

, G1 D
�=C1 and G2 WD �=C2. If Code.C1/ and Code.C2/ are equivalent, then

(a) the Galois cohomology functors H 1.�; G1/, H 1.�; G2/ are isomorphic, and

(b) in particular, ed.G1/D ed.G2/ and edp.G1/D edp.G2/ for every prime p.

Proof. To prove part (a), it suffices to show that H 1.�; G1/ and H 1.�; G2/ are
isomorphic if C2 is obtained from C1 by an elementary operation.
(1) Suppose ni D nj for some i; j D 1; : : : ; r , and Code.C2/ is obtained from
Code.C1/ by permuting entries i and j in every vector. In this case C2 D ˛.C1/,
where ˛ is the automorphism of � D GLn1

� � � � �GLnr
which swaps the i -th and

the j -th components. Then ˛ induces an isomorphism between G1 D �=C1 and
G2 D �=C2, and thus an isomorphism between H 1.�; G1/ and H 1.�; G2/.
(2) Now suppose that Code.C1/ is obtained from Code.C2/ by multiplying the
i -th entry in every vector by some c 2 .Z=niZ/�. The description of H 1.K;G=�/

given by Theorem A.1 now tells us that

H 1.K;G1/!H 1.K;G2/;

.A1; : : : ; Ar/ 7! .A1; : : : ; Ai�1; ŒA
˝c
i �ni

; AiC1; : : : ; Ar/;

is an isomorphism. Here, by ŒA˝ci �ni
we mean the unique central simple K-algebra

of degree ni which is Brauer equivalent to A˝ci .
Part (b) follows from (a), because ed.G/ and edp.G/ are defined entirely in

terms of the Galois cohomology functor H 1.�; G/. �
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NOTES ON THE STRUCTURE CONSTANTS OF
HECKE ALGEBRAS OF INDUCED REPRESENTATIONS OF

FINITE CHEVALLEY GROUPS

CHARLES W. CURTIS

This paper is dedicated to the memory of Robert Steinberg.

This paper contains an algorithm for the structure constants of the Hecke
algebra of a Gelfand–Graev representation of a finite Chevalley group.

1. Introduction

Let G be a Chevalley group over a finite field k = Fq of characteristic p (as in
[Chevalley 1955] or [Steinberg 1968]). Let B be a Borel subgroup of G with
U = Op(B) (the unipotent radical of B), and let T be a maximal torus such that
B =U T . Let W be the Weyl group of G. Then W is a finite Coxeter group with
distinguished generators S = {s1, . . . , sn}.

Let 8 be the root system associated with W , with {α1, . . . , αn} the set of simple
roots corresponding to the generators si ∈ S, and 8± the set of positive roots
(respectively, negative roots) associated with them. For each root α, let Uα be the
root subgroup of G corresponding to it. The subgroup U is generated by the root
subgroups Uα, α > 0.

From [Steinberg 1968, §3], the Chevalley group G has a B,N -pair, with Borel
subgroup B, N the subgroup generated by all elements wα(t), and B ∩ N equal
to T , the subgroup generated by all elements hα(t) (see the definitions of wα(t)
and hα(t) in Section 2). Then N/T ∼=W . (If the field k contains more than three
elements, then N is the normalizer N = NG(T ); see [Steinberg 1968, p. 36]).

By the Bruhat decomposition, the (U,U )-double cosets are parametrized by the
elements of N , while the (B, B)-double cosets are parametrized by the elements
of W .

We consider induced representations γ of the formψG , for a linear representation
ψ of U . Let

e = |U |−1
∑
u∈U

ψ(u−1)u
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Keywords: representation theory, finite Chevalley groups.

181

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2015.279-1-2
http://dx.doi.org/10.2140/pjm.2015.279.181


182 CHARLES W. CURTIS

be the primitive idempotent affording ψ in the group algebra CU of U over the
field of complex numbers. Then γ = ψG is afforded by the left CG-module CGe.
The Hecke algebra of γ is the subalgebra H = eCGe of CG, and is isomorphic
to (EndCG CGe)◦. These representations and their Hecke algebras were first in-
vestigated by Gelfand and Graev [1962a; 1962b]. In particular, they introduced
the important class of Gelfand–Graev representations of G, which are the induced
representation ψG , for a linear representation ψ of U in general position, that is,
ψ |Uαi 6= 1 for each simple root subgroup Uαi , 1 ≤ i ≤ n, and ψ |Uα = 1 for each
positive and not simple root α.

It is known (see [Gelfand and Graev 1962b] for the case of G = SLn(k) for a
finite field k, and [Steinberg 1968, Theorem 49] for the general case) that the Hecke
algebra H of a Gelfand–Graev representation is a commutative algebra, so that a
Gelfand–Graev representation is multiplicity-free.

A basis for the Hecke algebra H of a Gelfand–Graev representation ψG is given
by the nonzero elements of the form ene with n∈N . The standard basis elements are
the nonzero elements of the form cn = ind(n) ene, where ind(n)= |U : nUn−1

∩U |.
The structure constants for the standard basis elements, defined by the formulas

c`cm =
∑

n

[c`cm : cn]cn,

with `,m, n ∈ N ∗, are algebraic integers (here N ∗ is the set of elements n ∈ N such
that ene 6= 0).

The structure constants of H are given by the formula

[c`cm : cn] =
∑

u`u1=nvm−1∈U`U∩nUm−1 m−1

ψ((uu1)
−1v),

by [Curtis and Reiner 1981, Proposition 11.30], and the fact that U`U ∩nUm−1m−1

is a set of representatives of the left U -cosets in U`U ∩nUm−1m−1U . As in [Curtis
1988; 2009], Un =U ∩ nU−n−1 for n ∈ N . The structure constants are exponential
sums involving the linear character ψ of U and combinatorial information about
multiplication and intersections patterns of (U,U )-double cosets. The latter infor-
mation is also given at least partially for the algebraic group G(k̄) over the algebraic
closure k̄ of k corresponding to G, with some questions about the geometry not
completely settled at this time. A main result in the paper is an algorithm given in
Section 4 for the solutions (u, u1, v) of the equation u`u1 = nvm−1 in the formula
above, so that in some sense the structure constants are computable. The approach
taken here is based on the theory of cells Uτ developed in [Curtis 1988; 2009]. The
algorithm for the solutions of the equations is a refined version of an algorithm for
them given in [Curtis 2009, Theorem 2.1]. At the end of Section 4, some problems
for further research are mentioned.
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In case ψG is a Gelfand–Graev representation, the values of the irreducible repre-
sentations of the commutative semisimple algebra H on standard basis elements are
obtained as eigenvalues of matrices giving the regular representation of H and whose
entries are the structure constants [c`cm : cn]; see [Curtis 2009, Proposition 1.1].

Formulas for the structure constants based on different algorithms and a different
set of representatives of the cosets of U were obtained by Simion [2015].

The irreducible representations of H were obtained in [Curtis 1993] using the
results of Deligne and Lusztig [1976] on representations of G defined on the
`-adic cohomology of locally closed subsets of the algebraic group G(k̄) with
Frobenius endomorphism F on which the finite group G acts. The formulas for
the irreducible representations of H in [Curtis 1993] involve a homomorphism of
algebras fT : H → CT for each F-stable maximal torus T of G, proved using the
character formula of Deligne and Lusztig [1976] for the virtual representations RT,θ .
The homomorphisms fT provide an approach to the representations of H , and are
of independent interest (see [Bonnafé and Kessar 2008]).

A combinatorial approach to the representations of H based on the structure
constants of the Hecke algebra H and the internal structure of the finite Chevalley
group G is a main objective of this paper.

Two final sections contain examples in which a combinatorial construction of
the homomorphisms fT is obtained. These include the Bessel functions over finite
fields of Gelfand and Graev [1962a], for the groups SL2(k) and k a finite field of
odd characteristic, and a construction of the homomorphisms fT : H→ CT for the
split torus T in a general Chevalley group.

2. Background and preliminary results

For each root α, there is a homomorphism (see [Steinberg 1968, page 46]) ϕ = ϕα :
SL2(k)→ G such that ϕ takes(1 t

0 1

)
→xα(t),

(1 0
t 1

)
→x−α(t),

( 0 t
−t−1 0

)
→wα(t)∈ N ,

( t 0
0 t−1

)
→hα(t)∈ T

for all t ∈ k. The elements wα(t) and hα(t) are given by

wα(t)= xα(t)x−α(−t−1)xα(t), hα(t)= wα(t)wα(1)−1,

by [Steinberg 1968, p. 30]. If w = sk · · · s1 is a reduced expression of an element
w∈W then ẇ= ṡk · · · ṡ1, with ṡi =wαi (ti ) for some fixed choice of ti ∈ k∗= k−{0},
is a representative in N of w which is independent of the choice of the reduced
expression chosen, by [Steinberg 1968, Lemma 83, p. 242]. In what follows we
assume that representatives ẋ ∈ N of all elements x ∈W have been chosen in this
way, for a fixed choice of representatives ṡi of the generators si ∈ S.
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We may assume that

ṡk = ϕαk

(( 0 1
−1 0

))
for a simple root αk, 1≤ k ≤ n.

Using the homomorphisms ϕα, we obtain the so-called SL2-IDENTITY:

ṡ−1
k xαk (t)ṡk = xαk (−t−1)ṡkhαk (t)xαk (−t−1),

for a simple root αk and t ∈ k∗ (cf. [Curtis 2009, Lemma 2.1]).
As in [Deodhar 1985], a subexpression τ of a fixed reduced expression w =

sk · · · s1 is a sequence τ = (τk, . . . , τ1, τ0) of elements of W such that τiτ
−1
i−1∈{1, si }

for i = 1, . . . , k and τ0 = 1. Then the set of terminal elements τk of subexpressions
of w = sk · · · s1 coincides with the set of elements x ∈ W such that x ≤ w in the
Chevalley–Bruhat order. In what follows, the length of an element w ∈W in terms
of the generators si ∈ S is denoted by `(w). A subexpression τ = (τk, . . . , τ1, τ0)

is called a K -sequence relative to the triple w = sk · · · s1, x, y of elements of W if
it satisfies conditions (2.10)(a-c) of [Kawanaka 1975]. It is understood that a K -
sequence for the triple (w, x, y) is always given with reference to a fixed reduced
expression w = sk · · · s1. Let Jτ = { j : τ jτ

−1
j−1 = s j } ∪ {0}. Then the defining

conditions for a K -sequence state that τk x = y and

`(spτ j x) < `(τ j x)

for each j ∈ Jτ and p in the interval between j and the next element in Jτ (or
simply all p > j if j is the maximal element of Jτ ). For each K -sequence τ , set

J−τ = { j ∈ Jτ : `(s jτ j ′x) < `(τ j ′x)}

where j ′ ∈ Jτ is the predecessor of j , and define a pair of nonnegative integers by

a(τ )= |J−τ |, b(τ )= k− |Jτ | + 1= card{ j > 0 : τ jτ
−1
j−1 = 1}.

For each element w ∈ W , let Uw = U ∩w U− where U− =w0 U and w0 is the
element of maximal length in W . Then U =UwUww0 and BwB =UwẇB, in both
cases with uniqueness of expression. Let w = sk . . . s1 be a reduced expression of
w ∈W . Then Uw =Uαk ṡkUsk−1...s1 ṡ−1

k with uniqueness of expression. An element
of Uw expressed in this way, for a fixed reduced expression of w, is said to be in
standard form (see [Deodhar 1985, Lemma 2.2]), and can be assigned coordinates
in the field k.

Let w, x, y be elements of W , and ẇ, ẋ, ẏ corresponding elements of N . Let

U (w, x, y)=
{
u ∈Uw : uẇB ∩ ẏUx−1 ẋ−1

6=∅
}
.

Then U (w, x, y) is independent of the choice of representatives ẇ, ẋ, ẏ of w, x, y
in N . Moreover, UwẇB ∩ ẏUx−1 ẋ−1 is a set of representatives of the left B-cosets
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in BwB ∩ y(Bx B)−1, and its cardinality is the structure constant [ewex : ey] of the
standard basis elements ew, ex , ey , for w, x, y ∈W , in the Iwahori Hecke algebra.

The K -sequences were first applied by Kawanaka to prove the following result
[Kawanaka 1975, Lemma 2.14b]. For a finite Chevalley group G over k = Fq the
nonzero structure constants of the Iwahori Hecke algebra are given by the formula

[ewex : ey] = |BẇB ∩ ẏUx−1 ẋ−1
| = |U (w, x, y)| =

∑
τ

qa(τ )(q − 1)b(τ )

where the sum is taken over all K -sequences τ for w, x, y, and a(τ ) and b(τ ) are
the nonnegative integers defined above.

As a consequence, it follows that U (w, x, y) 6= ∅ if and only if there exist
K -sequences for w, x, y (see also [Borel and Tits 1972, Remark 3.19], where the
conditions are stated in a different way).

In [Curtis 1988] a geometric version of Kawanaka’s formula was proved. It states
that U (w, x .y), viewed as a subset of the algebraic group G(k̄), is a disjoint union of
subsets Uτ , which we shall call (in this paper) cells. The cells Uτ are subsets of G(k̄)
parametrized by K -sequences τ for w, x, y relative to a fixed reduced expression of
the element w, with corresponding subsets Uτ , also called cells (defined in [Curtis
1988]), in the finite Chevalley group G = G(k) (see Lemma 3.3 below for a review
of the definition of cells). The result extends Deodhar’s decomposition ([Deodhar
1985], and [Curtis 2009, §4]) of the intersection By B ∩ B−x B, viewed as subsets
of the flag variety G/B in the algebraic group G(k̄), with B− the Borel subgroup
opposite to B. Each cell Uτ is isomorphic (in bijective correspondence as a set, or
isomorphic as a variety in G(k̄)) to a product,

Uτ
∼=

∏
α

Uα ×

∏
β

U∗β

for certain subsets {α} and {β} of cardinalities a(τ ) and b(τ ) of the positive root
subgroups determined by τ and where U∗β is the set of nonidentity elements in
Uβ . From the decomposition of U (w, x, y) as a union of cells Uτ , it follows that
UwẇB ∩ ẏUx−1 ẋ−1 can be identified with the set of triples (u, b, v) with u ∈ Uτ

for some τ , b ∈ B, and v ∈Ux−1 satisfying the equation uẇb = ẏv ẋ−1 with b and
v uniquely determined by u by [Curtis 2009, Lemma 2.4].

3. Relations between cells

Let `,m, n in N ∗ correspond to elements w, x, y in W . Then `,m, n are multiples
by elements of T of representatives ẇ, ẋ, ẏ in N determined as above. The set
U``U ∩ nUm−1m−1 will be obtained by an algorithm based on a fixed reduced
expression w = sk · · · s1 of the element w ∈ W in terms of the generators si ∈ S,
and the theory of cells Uτ associated with K -sequences τ for w, x, y.
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As the cells Uτ are contained in the set U (w, x, y) each element u ∈Uτ satisfies
a structure equation

uẇb = ẏv ẋ−1

with b ∈ B and v ∈ Ux−1 . The subgroup B is a semidirect product B = U T , so
one has b = u1s with u1 ∈U, s ∈ T , and it will be important to keep track of these
factors in the discussion to follow.

In this section, it will be shown how elements u ∈ Uτ ⊆ U (w, x, y), with
τ = (τk, . . . , τ1, τ0) a K -sequence for w, x, y, are related to elements u′ in cells
Uτ ′ with τ ′ = (τk−1, . . . , τ1, τ0) a K -sequence for sk−1 · · · s1, x ′, y′, and how the
structure equations for u and u′ are related. We keep in mind that U (w, x, y) 6=∅
if and only if there exist K -sequences for w, x, y.

Lemma 3.1. Let τ = (τk, . . . , τ1, τ0) be a K -sequence for w, x, y for k ≥ 1, and
consider τ ′ = (τk−1, . . . , τ0).

(i) τ ′ is a K -sequence for s−1
k w, x, s−1

k y if τkτ
−1
k−1 = sk and `(sk y) < `(y).

(ii) τ ′ is a K -sequence for s−1
k w, x, y if τkτ

−1
k−1 = 1 and `(sk y) < `(y).

(iii) τ ′ is a K –sequence for s−1
k w, x, s−1

k y if `(sk y) > `(y) and τkτ
−1
k−1 = sk .

It is understood that τ0= 1 is a K -sequence for (1, x, x) and that a(τ0)= b(τ0)= 0.
These sets of conditions are the only possibilities for τ ′ to be a K -sequence, and
one of them must occur.

We first note that either `(sk y)<`(y) or `(sk y)>`(y), since either y−1(αk) ∈8+

or y−1(αk) ∈ 8−. The proof then follows immediately from the definition of
K -sequence (see the proof of Lemma 2.14 of [Kawanaka 1975]). For example, we
verify that the condition `(sk y) > `(y) implies τk 6= τk−1, and hence τkτ

−1
k−1 = sk .

Otherwise τk=τk−1, τk−1x= y, and k /∈ Jτ . This implies that `(skτk−1x)<`(τk−1x)
by a defining property of K -sequences, and hence `(sk y) < `(y), contrary to
assumption.

The next result is background for the relation between cells Uτ and Uτ ′ , with τ
and τ ′ as in the preceding lemma. It is a version of Lemma 2.3 of [Curtis 2009].
(Parts (i) and (ii) were misstated in that article and are corrected here. We also take
the opportunity to correct the statement on page 220 of [Curtis 2009] that the cells
Uτ are invariant under conjugation by elements of T ; this was not shown there.)

Lemma 3.2. Let w = sk · · · s1 be a reduced expression with k ≥ 1 and let x, y ∈W .
Then U (w, x, y) is either empty or is related to sets U (s−1

k w, x ′, y′), with x ′ and y′

depending on the K -sequence τ associated with w, x, y as follows.

(i) Let `(sk y) < `(y) and assume τkτ
−1
k−1 = sk . Then ṡkUs−1

k w ṡ−1
k ∩U (w, x, y) is

either empty or

ṡkUs−1
k w ṡ−1

k ∩U (w, x, y)= ṡkU (s−1
k w, x, s−1

k y)ṡ−1
k .
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(ii) Let `(sk y) < `(y) and assume τkτ
−1
k−1 = 1. Then the part U (w, x, y)[ of

U (w, x, y) not in ṡkUs−1
k w ṡ−1

k consists of the elements u = xαk (t)ṡk ũṡ−1
k , with

xαk (t) ∈ U∗αk
and ũ ∈ Us−1

k w such that π(xαk (−t−1)ũ) ∈ U (s−1
k w, x, y), and

t ∈k∗; here π is the projection π :U→Us−1
k w accompanying the decomposition

U =Us−1
k wUs−1

k ww0
. The map

u = xαk (t)ṡk ũṡ−1
k → π(xαk (−t−1)ũ)

from U (w, x, y)[ to U (s−1
k w, x, y) is surjective. There is a bijection of sets

U (w, x, y)[ ∼=U∗αk
×U (s−1

k w, x, y).

(iii) Let `(sk y) > `(y) and τkτ
−1
k−1 = sk . Then

U (w, x, y)=Uαk ṡkU (s−1
k w, x, s−1

k y)ṡ−1
k

and there is a bijection of sets U (w, x, y)∼=Uαk ×U (s−1
k w, x, s−1

k y).

The proof is included in the proof of Lemma 2.3 of [Curtis 2009].

Lemma 3.3. Let w, x, y be elements of W and let w = sk · · · s1 be a reduced
expression for w. Let τ = (τk, . . . τ1, τ0) be a K -sequence for w, x, y with τ0 = 1,
and let Uτ be the corresponding cell, viewed as a subset of U (w, x, y)⊆Uw. Let
τ ′ = (τk−1, . . . , τ1, τ0) be a K -sequence for sk−1 · · · s1, x ′, y′ as in one of the cases
in Lemma 3.1, and let Uτ ′ be the corresponding cell in U (sk−1 · · · s1, x ′, y′). The
construction of the cell Uτ from Uτ ′ , reviewed below, defines a surjective map of
sets λ :Uτ →Uτ ′ . Let Uτ (k̄) and Uτ ′(k̄) be the corresponding cells in the algebraic
group G(k̄) over the algebraic closure k̄ of k. Then the map λ : Uτ (k̄)→ Uτ ′(k̄),
defined as in part (i), is a surjective morphism of algebraic sets, defined over k.

The construction of Uτ (k̄) from Uτ ′(k̄) was given in the three cases of Lemma 3.1
in the proof of Theorem 1.6 of [Curtis 1988] and in [Curtis 2009, page 220], and
will be reviewed here in the case of the algebraic group G(k̄). We abbreviate Uτ (k̄)
to Uτ , etc.

(i) τkτ
−1
k−1 = sk and `(sk y) < `(y). In this case, we have Uτ ⊆ ṡkUs−1

k w ṡ−1
k and

Uτ ′ ⊆ U (s−1
k w, x, s−1

k y), and one has Uτ ′ = ṡ−1
k Uτ ṡk . The map λ : u→ ṡ−1

k uṡk

is clearly a surjective morphism from Uτ to Uτ ′ and is defined over k because ṡk

belongs to the finite Chevalley group G(k).

(ii) τkτ
−1
k−1 = 1 and `(sk y) < `(y). This time Uτ is in the part of U (w, x, y) which

is not contained in ṡkUs−1
k w ṡ−1

k and consists of the elements xαk (tk)ṡk ũṡ−1
k such that

tk 6= 0, ũ ∈Us−1
k w and π(xαk (−t−1

k )ũ) ∈Uτ ′ , where π is the projection U→Us−1
k w

associated with the factorization U =Us−1
k wUs−1

k ww0
. The map

λ : xαk (tk)ṡk ũṡ−1
k → π(xαk (−t−1

k )ũ)

is a surjective morphism defined over k from Uτ to Uτ ′ .
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(iii) τkτ
−1
k−1 = sk and `(sk y) > `(y). In this situation, we have Uτ =Uαk ṡkUτ ′ ṡ−1

k ,
in terms of the factorization: Uw =Uαk ṡkUsk−1···s1 ṡ−1

k , and Uτ ′ ⊆U (s−1
k w, x, sk y).

Then the map
λ : xαk (tk)ṡk ũṡ−1

→ ũ

is a surjective morphism defined over k from Uτ to Uτ ′ (as the projection from Uw to
ṡkUsk−1···s1 ṡ−1

k in the factorization given above, followed by the inner automorphism
by an element of G(k)). This completes our discussion of the proof of the lemma.

We now have a reduction process for cells, Uτ → Uτ ′ , as in the preceding
lemma. Let u ∈ Uτ correspond to u′ ∈ Uτ ′ as in the lemma. Then the structure
equation uẇu1s = ẏv ẋ−1 satisfied by u corresponds to the structure equation
u′ṡ−1

k ẇu′1s ′= ẏ′v ẋ ′−1 satisfied by u′, with uniquely determined factors {u, u1, s, v}
and {u′, u′1, s ′, v′}. The next lemma shows how the elements u′, u′1, v

′ in U and
s ′ ∈ T are related to u, u1, v in U and s ∈ T , using the standard form and facts
about the multiplicative structure of the Chevalley group such as the decomposition
U = UxUxw0 for elements x ∈ W . It is also shown that the process is reversible,
assuming u ∈Uτ is known.

Lemma 3.4. Suppose that the cell Uτ ⊆ U (w, x, y) maps onto the cell Uτ ′ ⊆

U (sk−1 · · · s1, x ′, y′) as in cases (i)–(iii) of Lemma 3.1, and let the structure equation
satisfied by u ∈ Uτ be uẇu1s = ẏv ẋ−1 with factors u ∈ Uτ , u1 ∈ U, s ∈ T , and
v ∈ Ux−1 uniquely determined by u ∈ Uτ . Let u → u′ = λ(u) with u′ ∈ Uτ ′ as
in Lemma 3.3, and consider the structure equation satisfied by u′ with factors
u′ ∈U, s ′ ∈ T, u′1 ∈U , and v′ ∈Ux−1 in each of the cases. Then the factors u′, u′1, s ′

and v′ are given as in the proof of the lemma. Conversely, assuming u ∈ Uτ is
known, u1, s and v are obtained from u′, s ′, u′1, and v′, as shown in the proof of the
lemma.

In case (i), we have τkτ
−1
k−1 = sk , `(sk y) < `(y) and Uτ ′ = ṡ−1

k Uτ ṡk . Then the
equation satisfied by u ∈Uτ is uẇu1s = ẏv ẋ−1 with u = ṡku′ṡ−1

k and u′ ∈Uτ ′ . It
becomes the equation for u′ ∈ Uτ ′ after multiplication by ṡ−1

k , and the lemma is
proved in this case.

For the proof in case (ii) recall that τkτ
−1
k−1 = 1 and `(sk y) < `(y). Then, using

the standard form for u, the structure equation satisfied by u= xαk (t)ṡk ũṡ−1
k ∈Uτ is

xαk (t)ṡk ũṡ−1
k ẇu1s = ẏv ẋ−1,

with xαk (t)∈U∗αk
, ũ ∈Us−1

k w, s ∈ T, u1 ∈U, v∈Ux−1 . We want to derive an equation
of the form

u′s−1
k wu′1s ′ = ẏv′ ẋ−1

with u′ = π(xαk (−t−1)ũ) ∈ Uτ ′ , s ′ ∈ T , u′1 ∈ U and v′ ∈ Ux−1 , where π is the
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projection U →Us−1
k w as in the proof of Lemma 3.3. As

ṡk xαk (−t−1)ṡ−1
k = ṡ−1

k xαk (−t−1)ṡk,

we can multiply the equation for xαk (t)ṡk ũṡ−1
k ∈Uτ by ṡk ṡk

−1 and apply the SL2-
IDENTITY from Section 2 to obtain

ṡk xαk (−t−1)ṡkhαk (t)xαk (−t−1)ũṡ−1
k ẇu1s = ẏv ẋ−1.

One has xαk (−t−1)ũ=π(xαk (−t−1)ũ)u∗ for u∗ ∈Us−1
k ww0

so the equation becomes

π
(
xαk(−t−1)ũ

)
ṡ−1

k ẇ(ṡ−1
k ẇ)−1u∗ṡ−1

k ẇu1s=ẏ ẏ−1(ṡk xαk(−t−1)ṡ−1
k ṡ2

k hαk(t)
)−1 ẏv ẋ−1

where (ṡ−1
k ẇ)−1u∗ṡ−1

k ẇ ∈ U because u∗ ∈ Us−1
k ww0

. Note also that ṡ2
k hαk (t) =

hαk (−t), and that the right side of the equation is

ẏ ẏ−1(hαk (−t)
)−1 ẏ ẏ−1ṡk

(
xαk (−t−1)−1)ṡ−1

k ẏv ẋ−1.

Because `(sk y) < `(y), one has ẏ−1ṡk xαk (−t−1)ṡ−1
k ẏ ∈ U , and we consider first

the case where ẏ−1ṡk xαk (−t−1)ṡ−1
k ẏ ∈Ux−1 . Then the equation above becomes the

structure equation for u′ ∈Uτ ′ with u′= π(xαk (−t−1)ũ), u′1= (ṡ
−1
k ẇ)−1u∗ṡ−1

k ẇu1,

s ′ = s
(
ẋ ẏ−1(hαk (−t))−1 ẏ ẋ−1)−1

,

and v′ is
ẏ−1ṡk

(
xαk (−t−1)

)−1ṡ−1
k ẏv ∈Ux−1

conjugated by ẏ−1hαk (−t)−1 ẏ. Note that ẏ−1hαk (−t)−1 ẏ ∈ T , and that we have
conjugated this element past ẏv ẋ−1 and brought the result to the left-hand side as a
factor of s ′. We have also used the fact that Ux−1 is invariant under conjugation by
elements of T .

For the reversibility, consider u′, u′1, s ′, v′ and u = xαk (t)ṡk ũṡ−1
k in Uτ . Then

xαk (−t−1)ũ = u′u∗, so u∗ = (u′)−1
(
xαk (−t−1)ũ

)
. Then s = s ′(ẋ ẏ−1hαk (−t)ẏ ẋ−1),

u1 =
(
(ṡ−1

k ẇ)−1u∗ṡ−1
k ẇ

)−1u′1 and

v =
(
ẏ−1ṡk xαk (−t−1)ṡ−1

k ẏ
)−1 ẏ−1hαk (−t)−1 ẏv′ ẏ−1hαk (−t)ẏ ∈Ux−1,

completing the proof of reversibility in this case, using the fact again that Ux−1 is
invariant under conjugation by elements of T .

Now we have to discuss the case ẏ−1ṡk xαk (−t−1)
˙s−1
k ẏ /∈Ux−1 . Then we obtain

a new formula for v′ as follows. We have

ẏ−1ṡk xαk (−t−1)−1 ˙s−1
k ẏv = v′v′′,

with uniquely determined factors v′ ∈ Ux−1 and v′′ ∈ Ux−1w0 . Then v′′ ẋ−1
=

ẋ−1 ẋv′′ ẋ−1 with ẋv′′ ẋ−1
∈ U . Then the structure equation in this case for u′ =
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π(xαk (−t−1)ũ) has as factors u′1 = (ṡ
−1
k ẇ)−1u∗ṡ−1

k ẇu1s ′(ẋv′′ ẋ−1)−1(s ′)−1, s ′ as
in the first case, and v′ as defined at the beginning of this paragraph, conjugated by
ẏ−1hαk (−t)−1 ẏ.

For the reversibility in this case, suppose we have u = xαk (t)ṡk ũṡ−1
k ∈ Uτ ,

u′ = π(xαk (−t−1)ũ), and u′1, s ′, and v′ as above. We have to solve for u1, s, and v.
Then, after reversing the conjugation by ẏ−1hαk (−t)−1 ẏ, we obtain(

ẏ−1ṡk xαk (−t−1)
˙s−1
k ẏ

)−1
v′ = v(v′′)−1.

Then v is the projection of the left-hand side in Ux−1 . Then from

u′1 = (ṡ
−1
k ẇ)−1u∗ṡ−1

k ẇu1s ′(ẋv′′ ẋ−1)−1(s ′)−1,

we can express u∗ as the projection of xαk (−t−1)ũ in Us−1
k ww0

and (ẋv′′ ẋ−1)−1

from xαk (−t−1) and v′, so we recover u1. Finally the element s is computed as in
the first case. Therefore we have obtained u1, s, and v, completing the proof of
reversibility in this case.

In case (iii), the structure equation satisfied by u = xαk (t)ṡk ũṡ−1
k ∈Uτ is

xαk (t)ṡk ũṡ−1
k ẇu1s = ẏv ẋ−1

as in case (ii). This time `(sk y) > `(y), so ẏ−1xαk (t)ẏ ∈ U and the structure
equation for ũ ∈Uτ ′ becomes

ũṡ−1
k ẇu1s = ṡ−1

k ẏ ẏ−1xαk (t)
−1 ẏv ẋ−1,

and the rest of the proof is handled as in case (ii), depending on whether ẏ−1xαk (t)ẏ∈
Ux−1 or not. This completes the proof of the lemma.

4. Solution of the structure equation

Let `,m, n ∈ N ∗ be representatives of w, x, y in W , and let w= sk · · · s1 be a fixed
reduced expression of w. From the Introduction, the structure constants of standard
basis elements c`, cm, cn of the Hecke algebra H of an induced representation
γ = ψG of G are given by the formula

[c`cm : cn] =
∑

u`u1=nvm−1∈U`U∩nUm−1 m−1

ψ((uu1)
−1v),

where U`U ∩ nUm−1m−1 is the set of elements u ∈U, u1 ∈U, v ∈Um−1 satisfying
the equation

u`u1 = nvm−1.

The elements `,m, n are multiples of ẇ, ẋ, ẏ by elements of T , `= ẇs,m = ẋs ′,
etc. for elements s, s ′, s ′′ in T . The equations u`u1 = nvm−1 as above can be
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rewritten in the form uẇû1ŝ = ẏv̂ ẋ−1 for u ∈U, ŝ = s(ẋs ′′(s ′)−1 ẋ−1)−1
∈ T, û1 =

su1s−1
∈U, v̂ = s ′′v(s ′′)−1

∈Ux−1 , using the fact that the subsets Ux , for x ∈ W ,
are invariant under conjugation by elements of T . Each element u ∈U satisfying
the equation above belongs to the set U (w, x, y), and consequently u ∈Uτ for a
cell Uτ defined by a K -sequence τ for the elements {w, x, y} in W . An algorithm
for the solutions u, û1, v̂ of these equations is the main result of this section.

As u ∈Uτ is known in terms of the root subgroups from the main result of [Curtis
1988], the problem is to calculate û1 and v̂ in terms of a given expression of u.

The following remarks may throw some light on these problems. Let τ be a
K -sequence for w, x, y in W , and let Uτ be the corresponding cell in U (w, x, y).
Each element u ∈Uτ satisfies a structure equation

uẇb = ẏv ẋ−1

with b ∈ B and v ∈ Ux−1 . It is known that the elements b and v in the structure
equation are uniquely determined by u [Curtis 2009, Lemma 2.4]. A main theorem
in [Curtis 2009] was an inductive construction of the solutions of the structure
equation. Theorem 4.1 below gives more information, and in a sense, calculates b
and v from an expression of u in standard form using a fixed reduced expression
of w. In particular, this result determines, for each element u ∈Uτ , the solutions
(u1, v), of the equations u`u1 = nvm−1 with u ∈Uτ , u1 ∈U , and v ∈Ux−1 , needed
for the structure constants of H .

Theorem 4.1. Let w, x, y be elements of W , and let Uτ be a cell associated with a
K -sequence τ for w, x, y, and a fixed reduced expression w = sk · · · s1 for w. The
algorithm given below determines the set of elements s ∈ T, u1 ∈U and v ∈Ux−1

satisfying the equation uẇu1s = ẏv ẋ−1, for a given element u ∈Uτ . The possibility
that the set of solutions is empty is not excluded.

Let w, x, y, the cell Uτ , and w = sk · · · s1 be as in the hypothesis of the theorem.
Let u be a fixed element of Uτ . With these as a starting point, the algorithm gives the
elements s ∈ T, u1 ∈U and v ∈Ux−1 satisfying the equation stated in the theorem.
It is proved by induction on `(w).

We begin with the case `(w)= 1, so ẇ= ṡ1 and let τ = (τ1, τ0) be a K -sequence
for (s1, x, y) corresponding to one of the three cases in Lemma 3.1.

Case (i). τ1 = s1, `(s1 y) < `(y). Then Uτ0 = 1,Uτ = ṡ1Uτ0 ṡ−1
1 = 1, s1x = y and

it is easily proved using Lemma 83 of [Steinberg 1968] that ṡ1 ẋ = ẏ. Then there is
a unique solution, namely (1, 1, 1), of the structure equation uṡ1b = ṡ1 ẋv(ẋ)−1.

Case (ii). τ1 = τ0, and `(s1 y) < `(y). In this case the definition of K -sequence
implies x = y. We also have (by part (ii) of the proof of Lemma 3.3) Uτ =U∗α1

. First
assume `(x)= 1. Then the assumptions imply that x = s1, ẋ = ẏ = ṡ1, and for each
element u ∈U∗α1

there is a unique solution of the structure equation uṡ1b = ṡ1vṡ−1
1



192 CHARLES W. CURTIS

by the SL2-IDENTITY, so that quadruples (u, s, u1, v) with u ∈Uτ , b = u1s ∈ B,
and v ∈Ux−1 satisfying the equation exist, and are known. Now let `(x) > 1; then
`(s1x) < `(x) implies ẋ = ṡ1 ẋ1 with `(s1x1) > `(x1). For each v ∈ U∗α1

one has
ẋ−1

1 v ẋ1 ∈U because `(s1x1) > `(x1). Moreover

ṡ1 ẋ1(ẋ−1
1 v ẋ1)ẋ−1

1 ṡ−1
1 = ṡ1vṡ−1

1 ∈U−

so ẋ−1
1 v ẋ1 ∈ Ux−1 . The unique solution of the structure equation uṡ1b = ṡ1vṡ−1

1
with u ∈U∗α1

from the case `(x)= 1 now yields the unique solution (u, b, ẋ−1
1 v ẋ1)

of the structure equation for (s1, x, y), namely

uṡ1b = ẏ ẋ−1
1 v ẋ1 ẋ−1

as ẏ ẋ−1
1 = ṡ1 and ẋ1 ẋ−1

= ṡ−1
1 . Note that in case (ii) there is no solution of the

structure equation uṡ1b= ẏv ẋ−1 in case u=1 and x = y as this would contradict the
fact that B ẏ−1ṡ1 B 6= Bẋ−1 B by the uniqueness part of the Bruhat decomposition.

Case (iii). τ1 = s1, and `(s1 y) > `(y). In this case Uτ = Uα1 and the unique
solution of the structure equation uṡ1b = ẏv ẋ−1 for u ∈Uα1 is

(u, hα1(−1), ẏ−1u ẏ),

for each u ∈ Uα1 , noting that ẏ−1u ẏ ∈ Ux−1 , and ẏ ẋ−1
= ṡ−1

1 = ṡ1hα1(−1) by
[Steinberg 1968, Lemma 83] again. This completes the discussion of the solutions
of the structure equation for the case `(w)= 1.

We now proceed to the general case, with `(w) > 1. Let τ be a K -sequence for
w, x, y and let u ∈Uτ . Let u correspond to u′ = λ(u) ∈Uτ ′ (as in Lemma 3.3) for
the K -sequence τ ′ for sk−1 . . . s1, x ′, y′ in one of the three cases of Lemma 3.1,
and let

u′sk−1 . . . s1u′1s ′ = ẏ′v′ ẋ ′

be the structure equation satisfied by u′. By the induction hypothesis, the factors
u′1, s ′, and v′ of the structure equation for u′ are determined by u′. As u′= λ(u), the
elements u1, s, and v satisfying the equation uẇb= uẇu1s= ẏv ẋ−1 are determined
by u, using Lemma 3.4. This completes the proof of the theorem.

At the beginning of the section, it was explained how the solutions u ∈U, u1 ∈U ,
and v ∈ Ux−1 of the equations u`u1 = nvm−1, for `,m, n ∈ N ∗, required for the
formulas for the structure constants are obtained from the solutions u ∈ Uτ , u1 ∈ U ,
s ∈ T, v ∈ Ux−1 of the equations uẇu1s = ẏv ẋ−1 solved by the algorithm in
Theorem 4.1. For this step, it is necessary to determine the elements t, t ′, t ′′ in T
such that `= ẇt,m = ẋ t ′, n = ẏt ′′, in order to transform the first set of equations
to the second by the algorithms for multiplication the Chevalley group. This
information can be obtained from Steinberg’s proof of Theorem 49 in [Steinberg
1968, §14], in case ψG is a Gelfand–Graev representation. The theorem states that
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the Hecke algebra H of a Gelfand–Graev representation is a commutative algebra,
and the proof is obtained by constructing a certain antiautomorphism f of the
Chevalley group G whose extension to the group algebra is at the same time an
antiautomorphism of the group algebra and whose restriction to the Hecke algebra
H is the identity. As shown in [Steinberg 1968], the representatives ` ∈ N ∗ of the
basis elements of H have the form tẇ for elements w ∈ W such that w = w0wπ ,
where w0 is the element of maximal length in W and wπ is the element of maximal
length in the subgroup of the Weyl group generated by the reflections taken from a
subset π of the set of simple roots, and t is an element of T such that tẇ is fixed
by the antiautomorphism f . From the discussion on page 262 of [Steinberg 1968],
it follows directly that ẇt , with w = w0wπ as above, represents a basis element
of H , fixed by the antiautomorphism f , whenever t commutes with wπ .

We recall the connection between the solutions of the equation u`u1 = nvm−1

and the solutions of the equation uẇû1ŝ = ẏv̂ ẋ−1 with `= ẇs,m = ẋs ′, n = ẏs ′′,
s, s ′, s ′′ ∈ T and û1 = su1s−1

∈U, v̂ = s ′′v(s ′′)−1
∈Ux−1 , for u ∈U . For a solution

u ∈U , we have u ∈U (w, x, y) so u ∈Uτ for a K -sequence τ for w, x, y. We can
now state a formula for the structure constants [c`cm : cn] based on Theorem 4.1.

Corollary 4.2. The structure constants are given by the formula

[c`cm : cn] =
∑
τ

∑
u∈Uτ

ψ((uu1)
−1v)

where for each K -sequence τ forw, x, y, the sum is taken over solutions of the equa-
tion uẇû1ŝ= ẏv̂ ẋ−1 obtained by Theorem 4.1, with u∈Uτ and û1, v̂, ŝ satisfying the
conditions û1= su1s−1

∈U , v̂= s ′′v(s ′′)−1
∈Ux−1 and ŝ= s(ẋs ′′(s ′)−1 ẋ−1)−1

∈ T .
If there are no solutions satisfying these conditions, then the structure constant
is zero.

We end this section with two problems for further research.

1. The first problem is to apply the algorithm obtained in Theorem 4.1 and
Corollary 4.2 to obtain formulas for the structure constants [c`cm : cn] which can
be used to give a combinatorial proof of the existence of the homomorphisms fT

mentioned in the Introduction.
2. The second problem is to develop a theory of cells for Chevalley groups over

a p-adic field K , using the Bruhat decomposition for these groups obtained by
Iwahori and Matsumoto [1965].

5. Example: application to SL2(k)

Let G be the Chevalley group SL2(k) for a finite field k of odd characteristic, and
let H be the Hecke algebra of a Gelfand–Graev representation of G. Gelfand and
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Graev [1962a] stated formulas for the structure constants of the standard basis of H ,
and calculated the irreducible representations of H .

As an application of the ideas in Section 4, we shall calculate the structure
constants of H relative to the standard basis of the Hecke algebra, and apply them
to give a self-contained proof, different from the one obtained by Gelfand and
Graev, of formulas for the irreducible representations of H (for another approach,
using the Deligne-Lusztig character formula, see [Curtis 1993, §5]).

We begin with a Gelfand–Graev character ψG of G = SL2(k), for a linear
character ψ of U in general position. Then we may assume that

ψ
(1 α

0 1

)
= χ(α),

(1 α

0 1

)
∈U, α ∈ k

for a nontrivial additive character χ on k. The standard basis elements of the Hecke
algebra H of ψG are the elements

cλ = qeψnλeψ , nλ =
(

0 λ

−λ−1 0

)
, λ 6= 0, q = |k|

together with the identity element eψ and one other basis element e−1=eψ
(
−1

0
0
−1

)
eψ ,

where
eψ = |U |−1

∑
u∈U

ψ(u−1)u

as in the Introduction.

Lemma 5.1. The algebra H is commutative with identity element eψ . One has
e2
−1 = eψ , and e−1cλ = c−λ for each λ 6= 0. The other nonzero structure constants

of H for the standard basis elements are as follows. For cλ, cµ, cν as above one has

[cλcµ : cν] = χ(λµν−1
+ λµ−1ν+ λ−1µν),

and
[cλcλ : e−1] = q, [cλc−λ : eψ ] = q,

for λ,µ, ν 6= 0 in k, and q = |k|.

The structure constants are computed using the formula at the beginning of §4
and the solutions of the structure equation

u`u1 = nv(m)−1

with `,m, n ∈ N (see [Curtis 2009, §3] for more details).
The group G = SL2(k) can be viewed as the group of fixed points by the usual

Frobenius endomorphism F of the semisimple algebraic group SL2(k̄), over the
algebraic closure k̄ of k. There are two conjugacy classes of F-stable maximal
tori in SL2(k̄) with representatives in the finite group G given by the split torus
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T0 consisting of the matrices
(
µ
0

0
µ−1

)
with µ 6= 0 in k, and the Coxeter torus T1,

isomorphic to the set C of elements ξ of norm 1 in the quadratic extension of k, that
is, ξq+1

= 1. The main theorem on the representations of the Hecke algebra H of a
Gelfand–Graev representation of G states that the irreducible representations of H
factor through the group algebra of one of the maximal tori of G. More precisely,
one has:

Theorem 5.2. Each irreducible representation f of the Hecke algebra H of a
Gelfand–Graev representation of G can be factored as

f = θ ◦ fT ,

where fT is a homomorphism, independent of θ , of H into the group algebra of a
maximal torus T of G, and θ is an irreducible representation of the group algebra
of the maximal torus. The homomorphisms from H into the group algebras of the
two types of maximal tori are given as follows. For the split torus T0, consisting of
diagonal matrices with entries in k∗, the homomorphism fT0 : H→ CT0 is given by

fT0(cλ)=
∑

t

χ(λ(t + t−1))
( t 0

0 t−1

)
, t ∈ k∗, and fT0(e−1)=

(
−1 0

0 −1

)
,

where cλ is a standard basis element of H as above. For the Coxeter torus, the
homomorphism fT1 : H → CC is given by

fT1(cλ)(ξ)=−χ(λ(ξ + ξ
−1)), ξ ∈ C, and fT1(e−1)= ξ−1,

where ξ−1 is the unique element in C of order two.

Lemma 5.3. Let a, b ∈ k. Then:

(i)
∑
t∈k∗

χ(at)=−1+ qδa,0.

(ii)
∑
t∈k∗

χ(at + bt−1)=
∑
t∈k∗

χ(t + abt−1)+ qδa,0δb,0.

(iii) For the Coxeter torus C , we first note that ξ + ξ−1
∈ k because ξq+1

= 1 for
ξ ∈ C implies that ξ + ξ−1

= ξ + ξq
∈ k. Let ξ ∈ C, η ∈ Fq2 . Then∑

ξ∈C

χ(ξη+ ξqηq)=−
∑
t∈k∗

χ(t + ηηq t−1)+ δη,0q.

We refer to [Chang 1976, Lemma 1.2]. Part (iii) is proved using an analysis of
quadratic equations over k. The result, and extensions of it to F-stable maximal tori
in general finite reductive groups, are suggested by the Davenport–Hasse Theorem
on Gauss sums.
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For the proof that fT0 is a homomorphism, let cλ, cµ, cν be standard basis ele-
ments of H as above. Then

cλcµ =
∑
ν

[cλcµ : cν]cν + δλ,µqe−1+ δλ,−µqeψ ,

with the structure constants as in Lemma 5.1. We have

fT0(cλ) fT0(cµ)=
∑
t∈k∗

∑
s∈k∗

χ
(
λ(ts+ t−1s−1)

)
χ
(
µ(s+ s−1)

)( t 0
0 t−1

)
=

∑
t

∑
s

χ
(
(λt +µ)s+ (λt−1

+µ)s−1)( t 0
0 t−1

)
=

∑
t

∑
s′
χ
(
s ′+ (λ2

+µ2
+ λµ(t + t−1)(s ′)−1)

)( t 0
0 t−1

)
by Lemma 5.3(ii), and have to show this is equal to∑

t

∑
ν

[cλcµ : cν] fT0(cν)(t)
( t 0

0 t−1

)
+ δλ,µq

(
−1 0

0 −1

)
+ δλ,−µq

(1 0
0 1

)
=

∑
t

∑
ν

χ
(
λµν−1

+ λµ−1ν+ λ−1µν+ ν(t + t−1)
)( t 0

0 t−1

)
,

etc. The result is clear, by another application of Lemma 5.3(ii), in case λ 6= ±µ.
Now let λ= µ. The expressions to be checked agree except possibly at

(
−1

0
0
−1

)
.

At
(
−1

0
0
−1

)
, the first expression becomes∑

s

χ
(
λ(t + 1)s+ λ(t−1

+ 1)s−1)
with t = −1, which is q − 1 by Lemma 5.3. The second expression at

(
−1

0
0
−1

)
becomes ∑

ν

χ
(
ν+ (2λ2

+ (−2λ2))ν−1)
+ q =−1+ q

by Lemma 5.3 again, completing the proof in this case. The proof in case λ=−µ
is similar and will be omitted.

For the homomorphism from H into the group algebra of C , we first have

fT1(cλ) fT1(cµ)=
∑
ξ∈C

∑
η∈C

χ
(
λ(ξη+ (ξη)−1)+µ(η+ η−1)

)
ξ

=

∑
ξ

∑
η

χ
(
(λξ +µ)η+ (λξ−1

+µ)η−1)ξ
=−

∑
ξ

∑
t∈k∗

χ
(
t + (λξ +µ)(λξq

+µ)t−1)ξ
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by Lemma 5.3(ii). We have to show that this is equal to∑
ξ∈C

∑
ν∈k∗

χ
(
λµν−1

+λµ−1ν+λ−1µν
)

fT1(cν))ξ+δλ,µq fT1(e−1)+δλ,−µq fT1(eψ)

=−

∑
ξ∈C

∑
ν∈k∗

χ
(
ν(ξ+ξ−1

+λµ−1
+λ−1µ)+ν−1λµ

)
ξ+δλ,µq fT1(e−1)+δλ,−µq fT1(eψ)

=−

∑
ξ

∑
ν′

(
χ(ν ′+ν ′−1(ξ+ξq)λµ+λ2

+µ2)
)
ξ+δλ,µq fT1(e−1)+δλ,−µq fT1(eψ),

where we have used Lemma 5.3(ii) and Lemma 5.1 for the structure constant
formula. Together, these formulas prove the multiplication formula in case λ 6= ±µ.

In case λ= µ, it is only necessary to check the expressions at ξ = ξ−1, where
ξ−1 is the unique element of C such that ξ 2

−1 = 1, ξ−1 6= 1, so ξ−1 = −1 in Fq2 .
The contribution from the first expression is∑
η

χ
(
λ(ξ−1+1)η+λ(ξ−1

−1 +1)η−1)
=−

∑
t∈k∗

χ
(
t+ (2λ2

+λ2(ξ−1+ξ
q
−1))t

−1)
+q

by Lemma 5.3(iii). As ξ−1+ ξ
q
−1 =−2 in Fq2 , this expression is equal to 1+ q by

Lemma 5.3. For the second expression at ξ−1 we obtain

−

∑
ν′

χ
(
ν ′+ (ν ′)−1((ξ−1+ ξ

q
−1)λ

2
+ 2λ2)

)
+ q = q + 1,

completing the proof in this case.
For the remaining case λ=−µ it is only necessary to check both expressions at

ξ = 1 and this is immediate.

Corollary 5.4. The formulas for the irreducible representations of the Hecke
algebra H are

f (cλ)= θ ◦ fT (cλ)=
∑
t∈T

χ
(
λ(t + t−1)

)
θ(t), f (e−1)= θ(−1)

for the split torus T , and an irreducible representation θ of T , and

f (cλ)= π ◦ fT1(cλ)=−
∑
ξ∈C

χ
(
λ(ξ + ξ−1)

)
π(ξ), f (e−1)= π(−1)

for the Coxeter torus T1 represented by C , and an irreducible representation π of C.

The fact that all the irreducible representations of H are obtained in this way
follows by a counting argument.

Gelfand and Graev [1962a] obtained these formulas, and pointed out that they
are similar to the integral formulas for Bessel functions over C (see [Whittaker and
Watson 1927, Chapter XVII]). They mentioned that the formulas in Corollary 5.4
can be called Bessel functions over finite fields.
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The group G = SL2(k), for q = |k| odd, has two classes of Gelfand–Graev
representations. For a determination of the irreducible characters of G, and how
they appear in the Gelfand–Graev representations, including for example the subtle
cases of those of degree 1

2(q+ 1) and 1
2(q− 1), see [Gelfand and Graev 1962a, §4]

and [Digne and Michel 1991, §15.9].

6. Example: the homomorphisms fT associated with principal series
representations of finite Chevalley groups

We return to the set-up described in the Introduction, with G a Chevalley group
over a finite field k, with a Borel subgroup B = U T containing the torus T , and
Weyl group W . Let ψG be a Gelfand–Graev representation of G, and H = eCGe
the Hecke algebra associated with it, with

e = |U |−1
∑
u∈U

ψ(u−1)u

(remember that H is a commutative algebra!). In this section, we give a character the-
oretic construction of a homomorphism fT : H→ CT and the resulting irreducible
representations of H . An open problem is to find a combinatorial construction of ho-
momorphisms fT for twisted tori T . Such a result would define a family of functions
associated with the Hecke algebra H and maximal tori in G, starting from the Bessel
functions over k in the case of SL2(k) and the Coxeter torus C . A proof would
require information about the structure constants, and extensions of Lemma 5.3(iii),
which would be of independent interest. Homomorphisms fT : H → CT from
a Gelfand–Graev Hecke algebra H to the group algebra of a maximal torus are
known to exist, for a connected reductive algebraic group G defined over a finite
field, with Frobenius endomorphism F ([Curtis 1993] and [Bonnafé and Kessar
2008]), and are derived using the trace formula in `-adic cohomology.

We are concerned with the principal series representations of G. These are the
induced representations λG , where λ is a linear character of the Borel subgroup
B with U in its kernel, and the irreducible representations of G which occur as
constituents of λG for some choice of lambda. We require the following result of
Kilmoyer [1978, Proposition 6.1].

Lemma 6.1. Let ψG be a fixed Gelfand–Graev character of G. Each induced
character λG , as above, contains a unique irreducible constituent ξλ which appears
with multiplicity one in both λG and the Gelfand–Graev character ψG .

As in [Curtis 1993], we introduce the notation a for the element of the group
algebra CG given by

a =
∑
g∈G

α(g−1)g
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for a complex valued function α on G. If α is an irreducible character of G, then a
is a multiple of the central primitive idempotent in the group algebra associated
with α.

Theorem 6.2. Let lλ and xλ be the elements of the group algebra corresponding to
the induced character λG and the irreducible character ξλ as in Lemma 6.1. Then

elλ = exλ 6= 0

and affords an irreducible representation fξλ : H → C∗ of H of degree one, such
that

h(exλ)= fξλ(h)exλ, h ∈ H.

The representation fξλ is the restriction to H of the unique irreducible character of
the group algebra CG obtained from the character ξλ of G as in Lemma 6.1.

By Lemma 6.1, the class function lλ = xλ+ y where y is a linear combination of
central primitive idempotents corresponding to irreducible characters of G which do
not appear in the Gelfand–Graev representation ψG . Then e y= 0, so elλ= exλ 6= 0
and exλ is a nonzero multiple of the primitive central idempotent in H affording the
irreducible representation fξλ of H of degree one, as in the statement of the theorem,
by [Curtis and Reiner 1981, Corollary 11.26 and Theorem 11.25]. The last statement
of the theorem also follows from [Curtis and Reiner 1981, Theorem 11.25].

Theorem 6.3. Let λ be an irreducible character of B with U in its kernel. Let ξλ
be the irreducible character of G which appears with multiplicity one in λG and in
the Gelfand–Graev character ψG , and let fξλ : H → C be the irreducible repre-
sentation of the Hecke algebra H of the Gelfand–Graev representation ψG defined
in Theorem 6.2. There exists a unique homomorphism of algebras fT : H → CT ,
independent of λ, such that, for each linear character λ of T , one has

fξλ(h)= λ̃ ◦ fT (h), h ∈ H,

where λ̃ is the extension of λ : T →C to the group algebra CT . The homomorphism
fT is given by the formula fT (cn)=

∑
t∈T fT (cn)(t)t , where

fT (cn)(t)= ind n|B|−1
|U |−1

∑
g∈G,u∈U,gung−1=tu′

ψ(u−1),

for a standard basis element cn of H and gung−1
= tu′, t ∈ T, u′ ∈U , is an element

of B which projects onto the element t ∈ T by the homomorphism B→ T . If there
are no solutions to the equation gung−1

= tu′, then fT (cn)(t)= 0.

By the proof of Theorem 6.2, the representation fξλ of the Hecke algebra H is
the restriction to H of the unique irreducible character (see Lemma 6.1) ξλ extended
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to the group algebra CG. Moreover, the proof of Theorem 6.2 shows that

fξλ(h)= λ
G(h), h ∈ H,

with λG extended to the group algebra, because elλ = exλ and exλ affords the
representation fξλ of H = eCGe ⊆ CG. In more detail, h lies in H , and is viewed
as an element of the group algebra CG. Then λG(h) is the trace of the action of h on
a module M affording the induced character λG . As he = h, the trace is computed
on the module eM , which is one dimensional, and affords the representation fξλ
of H , by Theorem 6.2.

For a standard basis element cn of H , we have

cn = ind n ene = |U |−1
∑

u1nu2∈UnU

ψ(u−1
1 u−1

2 )u1nu2,

by [Curtis and Reiner 1981, Proposition 11.30(i)]. Then, with λG extended to the
group algebra, we obtain

λG(cn)=|U |−1
∑

u1nu2∈UnU

ψ(u−1
1 u−1

2 )λG(u1nu2)= ind n|U |−1
∑
u∈U

ψ(u−1)λG(un).

We have used the fact that the double coset UnU contains ind n one sided cosets.
For the induced character we have, by [Curtis and Reiner 1981, 10.3],

λG(un)= |B|−1
∑
g∈G

λ̇(g−1ung),

where λ̇(x)= 0 if x /∈ B. Then λ̇(g−1ung) 6= 0 only if g−1ung = u′t with u′ ∈U
and t ∈ T , and in that case, λ̇(g−1ung)= λ(t). Therefore

λG(cn)= ind n|B|−1
|U |−1

∑
t∈T

∑
g−1ung=u′t

ψ(u−1)λ(t).

Then, for t ∈ T ,

fT (cn)(t)= ind n|B|−1
|U |−1

∑
g−1ung=u′t

ψ(u−1)

is independent of λ, and we have

fξλ(h)= λ̃ ◦ fT (h), h ∈ H.

The facts that fT : H → CT is a homomorphism of algebras and is a uniquely
determined linear map with the factorization property stated in the theorem both
follow from the orthogonality relations for the linear characters λ of T . This
completes the proof of the theorem.

It is a nice exercise to derive the formula for the homomorphism fT0 : H→ CT0

given in Theorem 5.2 from the statement of the preceding theorem.
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Theorem 6.3, for principal series representations of finite Chevalley groups, is a
special case of Theorem 4.2 in [Curtis 1993] for representations RT,θ of connected
reductive algebraic groups defined over finite fields. The point of including it here
is that in the special case of principal series representations, it is possible to give a
combinatorial proof of the existence of the homomorphisms fT .
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COMPLEMENTS ON DISCONNECTED REDUCTIVE GROUPS

FRANÇOIS DIGNE AND JEAN MICHEL

Dedicated to the memory of Robert Steinberg

We present several results on disconnected reductive groups, in particular,
on the characteristic-zero representation theory of finite groups of Lie type
coming from disconnected reductive groups in positive characteristic. We
generalize slightly the setting of our 1994 paper on that subject and show
how most of our earlier results extend to the new situation. In particular, we
give a classification of quasi-semisimple conjugacy classes over an arbitrary
algebraically closed field, and over finite fields; we generalize a formula of
Steinberg on the number of unipotent classes to disconnected groups and
a formula for the tensor product of the Steinberg character with a Lusztig
induced character.

1. Introduction

Let G be a (possibly disconnected) linear algebraic group over an algebraically
closed field. We assume that the connected component G0 is reductive, and then
call G a (possibly disconnected) reductive group. This situation was studied by
Steinberg [1968] where he introduced the notion of quasi-semisimple elements.

Assume now that G is over an algebraic closure Fq of the finite field Fq , defined
over Fq with corresponding Frobenius endomorphism F . Let G1 be an F-stable
connected component of G. We want to study (G0)F-class functions on (G1)F ;
if G1 generates G, they coincide with GF-class functions on (G1)F .

This setting, adopted here, is also taken up by Lusztig in his series of papers on
disconnected groups [Lusztig 2003; 2004a; 2004b; 2004c; 2004d; 2004e; 2005;
2006b; 2006a; 2009] and is slightly more general than the setting of our paper
“Groupes réductifs non connexes”, which we will refer to as [DM 1994], where we
assumed that G1 contains an F-stable quasicentral element. A detailed comparison
of both situations is done in the next section.

As the title says, this paper contains a series of complements to [DM 1994] which
are mostly straightforward developments that various people have asked us about
and that, except when mentioned otherwise (see the introductions to Sections 4 and
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8) have not appeared in the literature, as far as we know; we thank in particular
Olivier Brunat, Gerhard Hiss, Cheryl Praeger and Karine Sorlin for asking these
questions.

In Section 2 we show how quite a few results of [DM 1994] are still valid in our
more general setting.

In Section 3 we take a “global” viewpoint to give a formula for the scalar product
of two Deligne–Lusztig characters on the whole of GF .

In Section 4 we show how to extend to disconnected groups the formula of
Steinberg [1968, 15.1] counting unipotent elements.

In Section 5 we extend the theorem that tensoring Lusztig induction with the
Steinberg character gives ordinary induction.

In Section 6 we give a formula for the characteristic function of a quasi-semi-
simple class, extending the case of a quasicentral class which was treated in [DM
1994].

In Section 7 we show how to classify quasi-semisimple conjugacy classes, first
for a (possibly disconnected) reductive group over an arbitrary algebraically closed
field, and then over Fq .

Finally, in Section 8 we extend to our setting previous results on Shintani descent.
We thank Gunter Malle for a careful reading of the manuscript.

2. Preliminaries

In this paper, we consider a (possibly disconnected) algebraic group G over Fq

(except at the beginning of Section 7 where we accept an arbitrary algebraically
closed field), defined over Fq with corresponding Frobenius endomorphism F .
If G1 is an F-stable component of G, we define the class functions on (G1)F to
be the complex-valued functions invariant under (G0)F-conjugacy (or equivalently
under (G1)F-conjugacy). Note that if G1 does not generate G, there may be less
functions invariant by GF-conjugacy than by (G1)F-conjugacy; but the propositions
we prove will apply in particular to the GF-invariant functions so we do not lose
any generality. The class functions on (G1)F are provided with the scalar product

〈 f, g〉(G1)F = |(G1)F
|
−1

∑
h∈(G1)F

f (h)g(h).

We call G reductive when G0 is reductive.
When G is reductive, following [Steinberg 1968], we call an element quasi-semi-

simple if it normalizes a pair T 0
⊂ B0 of a maximal torus of G0 and a Borel subgroup

of G0. Following [DM 1994, définition-théorème 1.15], we call a quasi-semisimple
element σ quasicentral if it has maximal dimension of the centralizer CG0(σ ) (that
we will also denote by G0σ ) amongst all quasi-semisimple elements of G0

· σ .
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In the sequel, we fix a reductive group G and (except in the next section where
we take a “global” viewpoint) an F-stable connected component G1 of G. In most
of [DM 1994] we assumed that (G1)F contained a quasicentral element. Here we
do not assume this. Note however that by [DM 1994, proposition 1.34], G1 contains
an element σ which induces an F-stable quasicentral automorphism of G0. Such
an element will be enough for our purpose, and we fix one from now on.

By [DM 1994, proposition 1.35], if H 1(F, Z G0)= 1 then (G1)F contains quasi-
central elements. Here is an example where (G1)F does not contain quasicentral
elements.

Example 2.1. Take s =
(
ξ
0

0
1

)
, where ξ is a generator of F×q , take G0

= SL2 and
let G = <G0, s> ⊂ GL2 endowed with the standard Frobenius endomorphism
on GL2, so that s is F-stable and GF

= GL2(Fq). We take G1
= G0

· s. Here
quasicentral elements are central and coincide with G0

· s∩ Z G, which is nonempty
since if η ∈ Fq2 is a square root of ξ then

(
η
0

0
η

)
∈ G0

· s ∩ Z G; but G0
· s does not

meet (Z G)F . �

In the above example G1/G0 is a semisimple element of G/G0. No such example
exists when G1/G0 is unipotent:

Lemma 2.2. Let G1 be an F-stable connected component of G such that G1/G0

is a unipotent element of G/G0. Then (G1)F contains unipotent quasicentral
elements.

Proof. Let T 0
⊂ B0 be a pair of an F-stable maximal torus of G0 and an F-stable

Borel subgroup of G0. Then NGF (T 0
⊂ B0) meets (G1)F , since any two F-stable

pairs T 0
⊂ B0 are (G0)F -conjugate. Let su be the Jordan decomposition of an

element of N(G1)F (T 0
⊂ B0). Then s ∈ G0 since G1/G0 is unipotent, and u is

F-stable, unipotent and still in N(G1)F (T 0
⊂ B0) thus quasi-semisimple, and so is

quasicentral by [DM 1994, corollaire 1.33]. �

Note, however, that there may exist a unipotent quasicentral element σ which is
rational as an automorphism but such that there is no rational element inducing the
same automorphism.

Example 2.3. We give an example in G = SL5 o<σ ′>, where G0
= SL5 has the

standard rational structure over a finite field Fq of characteristic 2 with q ≡ 1 mod 5
and σ ′ is the automorphism of G0 given by g 7→ J tg−1 J where J is the antidiagonal
matrix with all nonzero entries equal to 1, so that σ ′ stabilizes the pair T 0

⊂ B0,
where T 0 is the maximal torus of diagonal matrices and B0 is the Borel subgroup of
upper triangular matrices; hence σ ′ is quasi-semisimple. Let t be the diagonal matrix
with entries (a, a, a−4, a, a), where aq−1 is a nontrivial 5-th root of unity ζ ∈ Fq .
We claim that σ = tσ ′ is as announced: it is still quasi-semisimple; we have
σ 2
= tσ ′(t)= t t−1

= 1 so that σ is unipotent; we have Fσ = Ft t−1σ = ζσ , so that



206 FRANÇOIS DIGNE AND JEAN MICHEL

σ is rational as an automorphism but not rational. Moreover a rational element
inducing the same automorphism must be of the form zσ with z central in G0 and
z · Fz−1

= ζ Id; but the center Z G0 is generated by ζ Id and for any z= ζ k Id∈ Z G0,
we have z · Fz−1

= ζ k(q−1) Id= Id 6= ζ Id. �

As in [DM 1994] we call a Levi of G a subgroup L of the form NG(L0
⊂ P0)

where L0 is a Levi subgroup of the parabolic subgroup P0 of G0. A particular case
is a “torus” NG(T 0, B0) where T 0

⊂ B0 is a pair of a maximal torus of G0 and a
Borel subgroup of G0; note that a “torus” meets all connected components of G,
while (contrary to what is stated erroneously after [DM 1994, définition 1.4]) this
may not be the case for a Levi.

We define a Levi of G1 to be a set of the form L1
= L ∩G1, where L is a Levi

of G and the intersection is nonempty; note that if G1 does not generate G, there
may exist several Levis of G which have same intersection with G1. Nevertheless
L1 determines L0 as the identity component of <L1>.

We assume now that L1 is an F-stable Levi of G1 of the form NG1(L0
⊂ P0). If

U is the unipotent radical of P0, we define Y 0
U = {x ∈ G0

| x−1
·

Fx ∈U} on which
(g, l) ∈ GF

× LF such that gl ∈ G0 acts by x 7→ gxl, where L = NG(L0, P0).
Along the same lines as [DM 1994, proposition 2.10] we define the following:

Definition 2.4. Let L1 be an F-stable Levi of G1 of the form NG1(L0
⊂ P0) and

let U be the unipotent radical of P0. For λ a class function on (L1)F and g ∈ (G1)F ,
we set

RG1

L1 (λ)(g)= |(L1)F
|
−1

∑
l∈(L1)F

λ(l)Trace
(
(g, l−1) | H∗c (Y

0
U )
)
,

and for γ a class function on (G1)F and l ∈ (L1)F , we set

∗RG1

L1 (γ )(l)= |(G1)F
|
−1

∑
g∈(G1)F

γ (g)Trace
(
(g−1, l) | H∗c (Y

0
U )
)
.

In the above, H∗c denotes the `-adic cohomology with compact support, where
we have chosen once and for all a prime number ` 6= p. In order to consider the
virtual character Trace(x | H∗c (X))=

∑
i (−1)i Trace(x | H i

c (X,Q`)) as a complex
character we chose once and for all an embedding Q` ↪→ C.

Writing RG1

L1 and ∗RG1

L1 is an abuse of notation: the definition needs the choice of
a P0 such that L1

= NG1(L0
⊂ P0). Our subsequent statements will use an implicit

choice. Under certain assumptions, we will prove a Mackey formula (Theorem 2.6)
which when true implies that RG1

L1 and ∗RG1

L1 are independent of the choice of P0.
By the same arguments as for [DM 1994, proposition 2.10] (using that (L1)F is

nonempty and [DM 1994, proposition 2.3]) Definition 2.4 agrees with the restriction
to (G1)F and (L1)F of [DM 1994, définition 2.2].
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The two maps RG1

L1 and ∗RG1

L1 are adjoint with respect to the scalar products on
(G1)F and (L1)F .

We note the following variation on [DM 1994, proposition 2.6] where, for u
(resp. v) a unipotent element of G (resp. L), we set

QG0

L0 (u, v)=
{

Trace
(
(u, v) | H∗c (Y

0
U )
)

if uv ∈ G0,

0 otherwise.

Proposition 2.5. Let su be the Jordan decomposition of an element of (G1)F and λ
a class function on (L1)F .

(i) If s is central in G, we have

(RG1

L1 λ)(su)= |(L0)F
|
−1

∑
v∈(L0·u)F

unip

QG0

L0 (u, v−1)λ(sv).

(ii) In general,

(RG1

L1 λ)(su)=
∑

{h∈(G0)F |hL3s}

|
hL0
∩CG(s)0F

|

|(L0)F ||CG(s)0F |
RCG(s)0·su

hL1∩CG(s)0·su
(hλ)(su).

(iii) If tv is the Jordan decomposition of an element of (L1)F and γ a class function
on (G1)F , we have

(∗RG1

L1 γ )(tv)= |(Gt0)F
|
−1

∑
u∈(Gt0·v)F

unip

QGt0

Lt0 (u, v−1)γ (tu).

In the above we abused notation to write hL 3 s for <L1> 3 h−1
s.

Proof. Part (i) results from [DM 1994, proposition 2.6(i)] using the same arguments
as the proof of [DM 1994, propsition 2.10]; we then get (ii) by plugging (i) into
[DM 1994, proposition 2.6(i)]. �

In our setting the Mackey formula [DM 1994, définition 3.1] is still valid in the
cases where we proved it: théorèmes 3.2 and 4.5 in [DM 1994]. Before stating it
we remark that [DM 1994, proposition 1.40] remains true without the assumption
that (G1)F contains quasicentral elements; we need only replace (G0)F .σ with
(G1)F in the proof. Thus any F-stable Levi of G1 is (G0)F -conjugate to a Levi
containing σ . This explains why we only state the Mackey formula in the case of
Levis containing σ .

Theorem 2.6. If L1 and M1 are two F-stable Levis of G1 containing σ then under
one of the following assumptions:

• L0 (resp. M0) is a Levi subgroup of an F-stable parabolic subgroup normal-
ized by L1 (resp. M1),

• one of L1 and M1 is a “torus”,
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we have

∗RG1

L1 RG1

M1 =

∑
x∈[Lσ0 F

\SGσ0 (Lσ0,Mσ0)F/Mσ0 F
]

RL1

(L1∩x M1)
∗R

x M1

(L1∩x M1)
ad x,

where SGσ0(Lσ0, Mσ0) is the set of elements x ∈Gσ0 such that Lσ0
∩

x Mσ0 contains
a maximal torus of Gσ0.

Proof. We first prove the theorem in the case of F-stable parabolic subgroups
P0
= L0 nU and Q0

= M0 n V following the proof of [DM 1994, théorème 3.2].
The difference is that the variety we consider here is the intersection with G0 of
the variety considered in [loc. cit.]. Here, the left-hand side of the Mackey formula
is given by Q`[(U F

\(G0)F/V F )σ ] instead of Q`[(U F
\(G0)F .<σ>/V F )σ ]. Nev-

ertheless we can use [DM 1994, lemme 3.3], which remains valid with the same
proof. As for [DM 1994, lemme 3.5], we have to replace it with the following:

Lemma 2.7. For any x ∈ SGσ0(Lσ0, Mσ0)F , the map(
l(L0
∩

xV F ), (x M0
∩U F ) · xm

)
7→ U F lxmV F

is an isomorphism from (L0)F/(L0
∩

xV F )×(L0∩x M0)F (x M0
∩U F )\x(M0)F to

U F
\(P0)F x(Q0)F/V F, compatible with the following action of (L1)F

×((M1)F )−1:
(λ, µ−1) ∈ (L1)F

× ((M1)F )−1 acts by mapping (l(L0
∩

xV F ), (x M0
∩U F ) · xm)

to the class of (λlν−1(L0
∩

xV F ), (x M0
∩U F ) ·ν xmµ−1) with ν ∈ (L1)F

∩
x(M1)F

(independent of ν).

Proof. The isomorphism of the lemma involves only connected groups and is a
known result (see, e.g., [Digne and Michel 1991, 5.7]). The compatibility with the
actions is straightforward. �

This allows us to complete the proof in the first case.
We now prove the second case following Section 4 of [DM 1994]. We first notice

that the statement and proof of lemme 4.1 in [DM 1994] don’t use the element
σ but only its action. In lemmes 4.2, 4.3 and 4.4 there is no σ involved but only
the action of the groups LF and M F on the pieces of a variety depending only on
L, M and the associated parabolics. This gives the second case. �

We now rephrase [DM 1994, proposition 4.8] and [DM 1994, proposition 4.11]
in our setting, specializing the Mackey formula to the case of two “tori”. Let T1

be the set of “tori” of G1; if T 1
= NG1(T 0, B0) ∈ T F

1 then T 0 is F-stable. We
define Irr((T 1)F ) as the set of restrictions to (T 1)F of extensions to <(T 1)F> of
elements of Irr((T 0)F ).

Proposition 2.8. If T 1, T ′1 ∈ T F
1 and θ ∈ Irr((T 1)F ), θ ′ ∈ Irr((T ′1)F ) then

〈RG1

T 1(θ), RG1

T ′1(θ
′)〉(G1)F = 0
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unless (T 1, θ) and (T ′1, θ ′) are (G0)F -conjugate.
Additionally,

(i) if for some n ∈ N(G0)F (T 1) and ζ 6= 1 we have nθ = ζθ then RG1

T 1(θ)= 0;

(ii) otherwise 〈RG1

T 1(θ), RG1

T 1(θ)〉(G1)F =
∣∣{n ∈ N(G0)F (T 1) | nθ = θ}

∣∣/|(T 1)F
|.

If T 1
= T ′1, the above can be written as

〈RG1

T 1(θ), RG1

T 1(θ
′)〉(G1)F = 〈Ind

NG1 (T 0)F

(T 1)F θ, Ind
NG1 (T 0)F

(T 1)F θ ′〉NG1 (T 0)F ,

where when A1
⊂ B1 are cosets of finite groups A0

⊂ B0 and χ is an A0-class
function on A1 for x ∈ B1, we set IndB1

A1 χ(x)= |A0
|
−1∑

{y∈B0| yx∈A1} χ(
yx).

Proof. As noticed above Theorem 2.6, we may assume that T 1 and T ′1 contain σ .
By [DM 1994, proposition 1.39], if T 1 and T ′1 contain σ , they are (G0)F-conjugate
if and only if they are conjugate under Gσ0 F . The Mackey formula shows then that
the scalar product vanishes when T 1 and T ′1 are not (G0)F-conjugate.

Otherwise we may assume T 1
= T ′1 and the Mackey formula gives

〈RG1

T 1(θ), RG1

T 1(θ)〉(G1)F = |(Tσ0)F
|
−1

∑
n∈NGσ0 (Tσ0)F

〈θ, nθ〉(T 1)F .

The term 〈θ, nθ〉(T 1)F is 0 unless nθ = ζnθ for some constant ζn and, in this last
case, 〈θ, nθ〉(T 1)F = ζ̄n . If n′θ = ζn′θ then nn′θ = ζn′

nθ = ζn′ζnθ , and thus the ζn

form a group; if this group is not trivial, that is, some ζn is not equal to 1, we have

〈RG1

T 1(θ), RG1

T 1(θ)〉(G1)F = 0,

which implies that in this case RG1

T 1(θ) = 0. This gives (i) since by [DM 1994,
proposition 1.39], if T 1

3 σ then N(G0)F (T 1) = NGσ0(Tσ0)F
· (T 0)F , so that if

there exists n as in (i), there exists an n ∈ NGσ0(Tσ0)F with same action on θ since
(T 0)F has trivial action on θ .

In case (ii), for each nonzero term we have nθ = θ and we have to check that the
value |((Tσ )0)F

|
−1
∣∣{n ∈ NGσ0(Tσ0)F

|
nθ = θ}

∣∣ given by the Mackey formula is
equal to the stated value. This results again from [DM 1994, proposition 1.39], writ-
ten as N(G0)F (T 1)= NGσ0(T 1)F

·(T 0)F , and from NGσ0(T 1)F
∩(T 0)F

= ((Tσ )0)F .
We now prove the final remark. By definition we have

〈Ind
NG1 (T 0)F

(T 1)F θ, Ind
NG1 (T 0)F

(T 1)F θ ′〉NG1 (T 0)F

= |NG1(T 0)F
|
−1
|(T 1)F

|
−2

∑
x∈NG1 (T 0)F

∑
{n,n′∈NG1 (T 0)F |nx,n′x∈T 1}

θ(nx)θ(n′x).

Doing the summation over t = nx and n′′ = n′n−1
∈ NG0(T 0)F , we get

|NG1(T 0)F
|
−1
|(T 1)F

|
−2

∑
t∈(T 1)F

∑
n∈NG1 (T 0)F

∑
{n′′∈NG0 (T 0)F |n

′′t∈T 1}

θ(t)θ(n′′t).
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The condition n′′ ∈ NG0(T 0)F , together with n′′t ∈ T 1, is equivalent to n′′ ∈
NG0(T 1)F , so that we get

|(T 1)F
|
−1

∑
n′′∈NG0 (T 1)F

〈θ, n′′θ〉(T 1)F .

As explained in the first part of the proof, the scalar product 〈θ, n′′θ〉(T 1)F is zero
unless n′′θ = ζn′′θ for some root of unity ζn′′ and arguing as in the first part of the
proof, we find that the above sum is zero if there exists n′′ such that ζn′′ 6= 1 and
is equal to |(T 1)F

|
−1
|{n ∈ N(G0)F (T 1) | nθ = θ}| otherwise. �

Remark 2.9. In the context of Proposition 2.8, if σ is F-stable then we may apply θ
to it and for any n ∈ NGσ0(Tσ0)F , we have θ(nσ)= θ(σ ), so for any n ∈ N(G0)F (T 1)

and ζ such that nθ = ζθ , we have ζ = 1. When H 1(F, Z G0)= 1, we may choose
σ to be F-stable so that ζ 6= 1 never happens.

Here is an example where ζn = −1, and thus RG1

T 1(θ) = 0: we take again the
context of Example 2.1 and take T 0

=
{(a

0
0

a−1

)}
and let T 1

= T 0
· s; let us define θ

on ts ∈ (T 1)F by θ(ts) = −λ(t), where λ is the nontrivial order-2 character of
(T 0)F (Legendre symbol); then for any n ∈ N(G0)F (T 1)\T 0, we have nθ =−θ . �

We define uniform functions as the class functions on (G1)F which are linear
combinations of the RG1

T 1 (θ) for θ ∈ Irr((T 1)F ). Proposition 4.11 in [DM 1994]
extends as follows to our context:

Corollary 2.10 (of Proposition 2.8). Let pG1
be the projector to uniform functions

on (G1)F . We have

pG1
= |(G1)F

|
−1

∑
T 1∈T F

1

|(T 1)F
|RG1

T 1 ◦
∗RG1

T 1 .

Proof. We need only check that for any θ ∈ Irr((T 1)F ) such that RG1

T 1(θ) 6= 0 and
any class function χ on (G1)F , we have 〈pG1

χ, RG1

T 1(θ)〉(G1)F = 〈χ, RG1

T 1(θ)〉(G1)F .
By Proposition 2.8, to evaluate the left-hand side we may restrict the sum to tori
conjugate to T 1, so we get

〈pG1
χ, RG1

T 1(θ)〉(G1)F= |N(G0)F (T 1)|−1
|(T 1)F

|〈RG1

T 1◦
∗RG1

T 1 χ, RG1

T 1(θ)〉(G1)F

= |N(G0)F (T 1)|−1
|(T 1)F

|〈χ, RG1

T 1◦
∗RG1

T 1 ◦RG1

T 1(θ)〉(G1)F.

The equality to be proved is true if RG1

T 1(θ)= 0; otherwise by Proposition 2.8, we
have ∗RG1

T 1 ◦ RG1

T 1(θ)= |(T 1)F
|
−1∑

n∈N
(G0)F (T

1)
nθ , whence in that case

RG1

T 1 ◦
∗RG1

T 1 ◦ RG1

T 1(θ)= |(T 1)F
|
−1
|N(G0)F (T 1)|RG1

T 1(θ)

since RG1

T 1(
nθ)= RG1

T 1(θ), and hence the result. �

We now adapt the definition of duality to our setting.
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Definition 2.11. • For a connected reductive group G, we define the Fq -rank as
the maximal dimension of a split torus, and define εG = (−1)Fq -rank of G and
ηG = εG/ rad G .

• For an F-stable connected component G1 of a (possibly disconnected) reduc-
tive group, we define εG1 = εGσ0 and ηG1 = ηGσ0 , where σ ∈ G1 induces an
F-stable quasicentral automorphism of G0.

Let us see that these definitions agree with [DM 1994]: in [DM 1994, défini-
tion 3.6(i)], we define εG1 to be εG0τ , where τ is any quasi-semisimple element
of G1 which induces an F-stable automorphism of G0 and lies in a “torus” of the
form NG1(T0 ⊂ B0), where both T 0 and B0 are F-stable; by [DM 1994, proposi-
tion 1.36(ii)], a σ as above is such a τ .

We fix an F-stable pair (T0 ⊂ B0) and define duality on Irr((G1)F ) by

(2.12) DG1 =

∑
P0⊃B0

ηL1 RG1

L1 ◦
∗RG1

L1 ,

where in the sum, P0 runs over F-stable parabolic subgroups containing B0 such
that NG1(P0) is nonempty, and L1 denotes NG1(L0

⊂ P0), where L0 is the Levi
subgroup of P0 containing T 0. The duality thus defined coincides with the duality
defined in [DM 1994, définition 3.10] when σ is in (G1)F .

In our context we can define StG1 similarly to [DM 1994, définition 3.16], as
DG1(IdG1), and [DM 1994, proposition 3.18] remains true:

Proposition 2.13. StG1 vanishes outside quasi-semisimple elements, and if x ∈
(G1)F is quasi-semisimple, we have

StG1(x)= εG1ε(Gx )0 |(Gx)0|p.

3. A global formula for the scalar product of Deligne–Lusztig characters

In this section we give a result of a different flavor, where we do not restrict our
attention to a connected component G1.

Definition 3.1. For any character θ of T F , we define RG
T as in [DM 1994, défini-

tion 2.2]. If for a “torus” T and α = gG0
∈ G/G0 we denote by T [α] or T [g] the

unique connected component of T which meets gG0, this is equivalent to

RG
T (θ)(g)= |(T

0)F
|/|T F

|

∑
{a∈[GF/(G0)F ]|ag∈T F (G0)F }

RG[ag]

T [ag] (θ)(
ag)

for g ∈ GF, where the right-hand side is defined by Definition 2.4 (see [DM 1994,
proposition 2.3]).
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We deduce from Proposition 2.8 the following formula for the whole group G:

Proposition 3.2. Let T , T ′ be two “tori” of G and let θ ∈ Irr(T F ), θ ′ ∈ Irr(T ′F ).
Then 〈RG

T (θ), RG
T ′(θ

′)〉GF = 0 if T 0 and T ′0 are not GF-conjugate, and if T 0
= T ′0,

we have

〈RG
T (θ), RG

T ′(θ
′)〉GF =

〈
IndNG(T 0)F

T F (θ), IndNG(T 0)F

T ′F (θ ′)
〉
NG(T 0)F .

Proof. Definition 3.1 can be written

RG
T (θ)(g)= |(T

0)F
|/|T F

|

∑
{a∈[GF/(G0)F ]|ag∈T F (G0)F }

RG[g]

(a−1T )[g]
(a−1

θ)(g).

So the scalar product we want to compute is equal to

〈RG
T (θ), RG

T ′(θ
′)〉GF =

1
|GF|

|(T 0)F
|

|T F|

|(T ′0)F
|

|T ′F|

×

∑
α∈GF/G0 F

g∈(G0)F .α

∑
RG.α
(a−1T )[α]

(a−1
θ)(g)RG.α

(a′−1T ′)[α]
(a′−1

θ ′)(g),

where the inner sum runs over a ∈ [GF/(G0)F
] such that aα ∈ T F (G0)F and

a′ ∈ [GF/(G0)F
] such that a′α ∈ T ′F (G0)F . This product can be written

〈RG
T (θ), RG

T ′(θ
′)〉GF =

|(G0)F
|

|GF|

|(T 0)F
|

|T F|

|(T ′0)F
|

|T ′F|

×

∑
α∈GF/G0 F

∑〈
RG.α
(a−1T )[α]

(a−1
θ), RG.α

(a′−1T ′)[α]
(a′−1

θ ′)
〉
(G0)F .α

,

where the inner sum is as above. By Proposition 2.8 the scalar product on the right-
hand side is zero unless (a−1T )[α] and (a′−1T ′)[α] are (G0)F-conjugate, which implies
that T 0 and T ′0 are (G0)F -conjugate. So we can assume that T 0

= T ′0. Moreover
for each a′ indexing a nonzero summand, there is a representative y ∈ a′−1(G0)F

such that (yT ′)[α] = (a−1T )[α]. This last equality and the condition on a imply
the condition a′α ∈ T ′F (G0)F since this condition can be written (yT ′)[α] 6= ∅.
Thus we can do the summation over all such y ∈ GF , provided we divide by
|N(G0)F ((a−1T )[α])|. So we get, applying Proposition 2.8, that the above expression
is equal to

|(G0)F
|

|GF|

|(T 0)F
|
2

|T F||T ′F|

∑
α∈GF/G0 F

∑
{a∈[GF/(G0)F ]|aα∈T F (G0)F }

|N(G0)F ((a−1
T )[α])|−1

×

∑
{y∈GF |( yT ′)[α]=(a−1T )[α]}

〈
Ind

NG0 .α(
a−1T 0)F

(a−1T )[α]
a−1
θ, Ind

NG0 .α(
a−1T 0)F

(a−1T )[α]
yθ ′
〉
NG0 .α(T

0)F .



COMPLEMENTS ON DISCONNECTED REDUCTIVE GROUPS 213

We now conjugate everything by a, take ay as new variable y, set b = aα and get

(3.3)
|(T 0)F

|
2

|T F||T ′F|

∑
b∈T F/(T 0)F

|N(G0)F (T [b])|−1

×

∑
{y∈GF |( yT ′)[b]=T [b]}

〈
Ind

NG0 .b(T
0)F

T [b]F θ, Ind
NG0 .b(T

0)F

T [b]F
yθ ′
〉
NG0 .b(T

0)F

since for b ∈ T F/(T 0)F , any choice of a ∈ GF/(G0)F gives an α = a−1
b which

satisfies the condition aα ∈ T F (G0)F .
Let us now transform the right-hand side of Proposition 3.2. Using the definition

we have

〈IndNG(T 0)F

T F (θ), IndNG(T 0)F

T ′F (θ)〉NG(T 0)F

= |T F
|
−1
|T ′F|−1

|NG(T 0)F
|
−1

∑
{n,x,x ′∈NG(T 0)F |xn∈T ,x ′n∈T ′}

θ(xn)θ ′(x ′n)

= |T F
|
−1
|T ′F|−1

|NG(T 0)F
|
−1

×

∑
b,a,a′∈[NG(T 0)F/NG0 (T 0)F ]

∑
{

n∈NG0 (T 0)F b
x0,x ′0∈NG0 (T 0)F

∣∣∣∣∣ x0n∈(a−1T )[b]
x ′0n∈(a′−1T ′)[b]

} a−1
θ(x0n)a′−1

θ ′(x ′0n)

=
|(T 0)F

|

|T F|

|(T ′0)F
|

|T ′F|
|NG0(T 0)F

|

|NG(T 0)F|

×

∑
b,a,a′∈[NG(T 0)F/NG0 (T 0)F ]

〈Ind
NG0 (T 0)F

·b

(a−1T )[b]F
a−1
θ, Ind

NG0 (T 0)F
·b

(a′−1T ′)[b]F
a′−1
θ ′〉NG0 (T 0)F b.

We may simplify the sum by conjugating the terms in the scalar product by a to get〈
Ind

NG0 (T 0)F
·
ab

T [ab]F θ, Ind
NG0 (T 0)F

·
ab

(aa′−1T ′)[ab]F
aa′−1

θ ′
〉
NG0 (T 0)F ab.

Then we may take, given a, the conjugate ab as new variable b, and aa′−1 as the
new variable a′ to get

|(T 0)F
|

|T F|

|(T ′0)F
|

|T ′F|

∑
b,a′∈

[
NG (T0)F

NG0 (T0)F

]
〈
Ind

NG0 (T 0)F
·b

T [b]F θ, Ind
NG0 (T 0)F

·b

(a′T ′)[b]F
a′θ ′
〉
NG0 (T 0)F b.

Now, by Frobenius reciprocity, for the inner scalar product not to vanish, there
must be some element x ∈ NG0(T 0)F such that x(a′T ′)[b]F meets T [b]F which,
considering the definitions, implies that (xa′T ′)[b] = T [b]. We may then conjugate



214 FRANÇOIS DIGNE AND JEAN MICHEL

the term

Ind
NG0 (T 0)F

·b

(a′T ′)[b]F
a′θ ′

by such an x to get

Ind
NG0 (T 0)F

·b
T [b]F

xa′θ ′

and take y = xa′ as a new variable, provided we count the number of x for a
given a′, which is |NG0(T [b])F

|. We get

(3.4)
|(T 0)F

|

|T F|

|(T ′0)F
|

|T ′F|

∑
b∈[NG(T 0)F/NG0 (T 0)F ]

|NG0(T [b])F
|
−1

×

∑
{y∈NG(T 0)F |( yT ′)[b]=T [b]}

〈
Ind

NG0 (T 0)F
·b

T [b]F θ, Ind
NG0 (T 0)F

·b
T [b]F

yθ ′
〉
NG0 (T 0)F b.

Since any b ∈ [NG(T 0)F/NG0(T 0)F
] such that T [b]F is not empty has a represen-

tative in T F , we can do the first summation over b ∈ [T F/(T 0)F
] so that (3.3) is

equal to (3.4). �

4. Counting unipotent elements in disconnected groups

A proof of the following result appeared recently in [Lawther et al. 2014, Theo-
rem 1.1]; our proof given below, that we wrote in February 1994 in answer to a
question of Cheryl Praeger, is much shorter and case-free.

Proposition 4.1. Assume G1/G0 is unipotent and take σ ∈ G1 unipotent F-stable
and quasicentral (see Lemma 2.2). Then the number of unipotent elements of (G1)F

is given by |(Gσ0)F
|
2
p |G0 F

|/|(Gσ0)F
|.

Proof. Let χU be the characteristic function of the set of unipotent elements of (G1)F .
Then |(G1)F

unip| = |(G
1)F
|〈χU , Id〉(G1)F and

〈χU , Id〉(G1)F = 〈DG1(χU ),DG1(Id)〉(G1)F = 〈DG1(χU ),StG1〉(G1)F ,

where the first equality holds since DG1 is an isometry by [DM 1994, corollaire 3.12].
According to [DM 1994, proposition 2.11], for any σ -stable and F-stable Levi
subgroup L0 of a σ -stable parabolic subgroup of G0, setting L1

= L0.σ , we have
RG1

L1 (π.χU |(L1)F ) = RG1

L1 (π).χU and ∗RG1

L1 (ϕ).χU |(L1)F =
∗RG1

L1 (ϕ.χU ). Thus, by
(2.12), DG1(π.χU )=DG1(π).χU ; in particular, DG1(χU )=DG1(Id).χU =StG1 .χU .
Now, by Proposition 2.13, the only unipotent elements on which StG1 does not vanish
are the quasi-semisimple (thus quasicentral) ones; by [DM 1994, corollaire 1.37],
all such elements are in the G0 F-class of σ and, again by Proposition 2.13, we have
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StG1(σ )= |(Gσ0)F
|p. We get

|(G1)F
|〈DG1(χU ),StG1〉(G1)F = |(G1)F

|〈StG1 .χU ,StG1〉(G1)F

=
∣∣{G0 F

-class of σ }
∣∣∣∣(Gσ0)F

∣∣2
p,

whence the proposition. �

Example 4.2. The formula of Proposition 4.1 applies in the following cases where σ
induces a diagram automorphism of order 2 and q is a power of 2:

• G0
= SO2n , (Gσ0)F

= SO2n−1(Fq);

• G0
= GL2n , (Gσ0)F

= Sp2n(Fq);

• G0
= GL2n+1, (Gσ0)F

= SO2n+1(Fq)' Sp2n(Fq);

• G0
= E6, (Gσ0)F

= F4(Fq);

And it applies to the case where G0
= Spin8, where σ induces a diagram

automorphism of order 3 and q is a power of 3, in which case (Gσ0)F
= G2(Fq).

5. Tensoring by the Steinberg character

Proposition 5.1. Let L1 be an F-stable Levi of G1. Then, for any class function γ
on (G1)F , we have

∗RG1

L1 (γ · εG1 StG1)= εL1 StL1 Res(G
1)F

(L1)F γ.

Proof. Let su be the Jordan decomposition of a quasi-semisimple element of
G1 with s semisimple. We claim that u is quasicentral in Gs . Indeed su, being
quasi-semisimple, is in a “torus” T ; thus s and u also are in T . By [DM 1994,
théorème 1.8(iii)], the intersection of T ∩ Gs is a “torus” of Gs ; thus u is quasi-
semisimple in Gs , and hence quasicentral since unipotent.

Let tv be the Jordan decomposition of an element l∈ (L1)F , where t is semisimple.
Since StL1 vanishes outside quasi-semisimple elements, the right-hand side of the
proposition vanishes on l unless it is quasi-semisimple, which by our claim means
that v is quasicentral in Lt . By the character formula Proposition 2.5 the left-hand
side of the proposition evaluates at l to

∗RG1

L1 (γ · εG1 StG1)(l)= |(Gt0)F
|
−1

∑
u∈(Gt0·v)F

unip

QGt0

Lt0 (u, v−1)γ (tu)εG1 StG1(tu).

By the same argument as above, applied to StG1 , the only nonzero terms in the
above sum are for u quasicentral in Gt . For such u, by [DM 1994, proposition 4.16],
QGt0

Lt0 (u, v−1) vanishes unless u and v are (Gt0)F-conjugate. Hence both sides of
the equality-to-prove vanish unless u and v are quasicentral and (Gt0)F-conjugate.
In that case, by [DM 1994, proposition 4.16] and [Digne and Michel 1991, (**),
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p. 98], we have QGt0

Lt0 (u, v−1)= QGl0

Ll0 (1, 1)= εGl0εLl0 |(Gl0)F
|p′ |(Ll0)F

|p. Taking
into account that the (Gt0)F-class of v has cardinality |(Gt0)F

|/|(Gl0)F
| and that

by Proposition 2.13 we have StG1(l)= εGσ0εGl0 |(Gl0)F
|p, the left-hand side of the

proposition reduces to γ (l)εLl0 |(Ll0)F
|p, which is also the value of the right-hand

side by applying Proposition 2.13 in L1. �

By adjunction, we get the following:

Corollary 5.2. For any class function λ on (L1)F , we have

RG1

L1 (λ)εG1 StG1 = Ind(G
1)F

(L1)F (εL1 StL1 λ).

6. Characteristic functions of quasi-semisimple classes

One of the goals of this section is Proposition 6.4 where we give a formula for the
characteristic function of a quasi-semisimple class which shows, in particular, that
it is uniform; this generalizes the case of quasicentral elements given in [DM 1994,
proposition 4.14].

If x ∈ (G1)F has Jordan decomposition x = su, we will denote by dx the map
from class functions on (G1)F to class functions on (CG(s)0 · u)F given by

(dx f )(v)=
{

f (sv) if v ∈ (CG(s)0 · u)F is unipotent,
0 otherwise.

Lemma 6.1. Let L1 be an F-stable Levi of G1. If x = su is the Jordan decomposi-
tion of an element of (L1)F , we have dx ◦

∗RG1

L1 =
∗RCG(s)0·u

CL(s)0·u
◦ dx .

Proof. For v unipotent in (CG(s)0 · u)F and f a class function on (G1)F , we have

(dx
∗RG1

L1 f )(v)= (∗RG1

L1 f )(sv)= (∗RCG(s)0·su
CL(s)0·su f )(sv)= (∗RCG(s)0·u

CL(s)0·u
dx f )(v),

where the second equality is by [DM 1994, corollaire 2.9] and the last is by the
character formula Proposition 2.5(iii). �

Proposition 6.2. If x = su is the Jordan decomposition of an element of (G1)F , we
have dx ◦ pG1

= pCG(s)0·u ◦ dx .

Proof. Let f be a class function on (G1)F . For v ∈ (CG(s)0 · u)F unipotent, we
have

(dx pG1
f )(v)= pG1

f (sv)= |(G1)F
|
−1

∑
T 1∈T F

1

|(T 1)F
|(RG1

T 1 ◦
∗RG1

T 1 f )(sv),

where the last equality is by Corollary 2.10, and which by Proposition 2.5(ii) is∑
T 1∈T F

1

∑
{h∈(G0)F |hT3s}

|
hT 0
∩CG(s)0F

|

|(G0)F||CG(s)0F|

(
RCG(s)0·su

hT∩CG(s)0·su ◦
h∗RG1

T 1 f
)
(sv).
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Using that h∗RG1

T 1 f = ∗RG1

hT 1 f and summing over the hT 1, this becomes∑
{T 1∈T F

1 |T3s}

|T 0
∩CG(s)0F

|

|CG(s)0F|

(
RCG(s)0·su

T 1∩CG(s)0·su ◦
∗RG1

T 1 f
)
(sv).

Using that by Proposition 2.5(i) for any class function χ on T 1
∩CG(s)0 · suF,

(RCG(s)0·su
T 1∩CG(s)0·suχ)(sv)= |T

0
∩CG(s)0F

|
−1

∑
v′∈(T∩CG(s)0·u)F

unip

Q(Gs)0

(T s)0
(v, v′−1)χ(sv′)

= RCG(s)0·u
T∩CG(s)0·u

(dxχ)(v),

and using Lemma 6.1, we get

|CG(s)0 · su
F
|
−1

∑
{T 1∈T F

1 |T3s}

|(T s)0
F
|
(
RCG(s)0·u

T∩CG(s)0·u
◦
∗RCG(s)0·u

T∩CG(s)0·u
dx f

)
(v),

which is the desired result if we apply Corollary 2.10 in CG(s)0 · u and remark that
by [DM 1994, théorème 1.8(iv)], the map T 1

7→ T ∩CG(s)0 · u induces a bijection
between {T 1

∈ T F
1 | T 3 s} and F-stable “tori” of CG(s)0 · u. �

Corollary 6.3. A class function f on (G1)F is uniform if and only if for every
x ∈ (G1)F , the function dx f is uniform.

Proof. Indeed, f = pG1
f if and only if for any x ∈ (G1)F , we have dx f =

dx pG1
f = pCG(s)0·udx f , where the last equality holds by Proposition 6.2. �

For x ∈ (G1)F , we consider the class function πG1

x on (G1)F defined by

πG1

x (y)=
{

0 if y is not conjugate to x,
|CG0(x)F

| if y = x .

Proposition 6.4. For a quasi-semisimple x ∈ (G1)F , the function πG1

x is uniform,
given by

πG1

x = εGx0 |CG(x)0|−1
p

∑
{T 1∈T F

1 |T 13x}

εT 1 RG1

T 1 (π
T 1

x )

= |W 0(x)|−1
∑

w∈W 0(x)

dim RCG(x)0
Tw (Id) RG1

CG1 (Tw)(π
CG1 (Tw)
x ),

where in the second equality W 0(x) denotes the Weyl group of CG(x)0 and Tw
denotes an F-stable torus of type w of this last group.

Proof. First, using Corollary 6.3 we prove that πG1

x is uniform. Let su be the
Jordan decomposition of x . For y ∈ (G1)F , the function dyπ

G1

x is zero unless the
semisimple part of y is conjugate to s. Hence it is sufficient to evaluate dyπ

G1

x (v)

for elements y whose semisimple part is equal to s. For such elements, dyπ
G1

x (v)
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is up to a coefficient equal to πCG(s)0·u
u . This function is uniform by [DM 1994,

proposition 4.14], since u being the unipotent part of a quasi-semisimple element
is quasicentral in CG(s) (see the beginning of the proof of Proposition 5.1).

Thus we have πG1

x = pG1
πG1

x . We use this to get the formula of the proposition.
We start by using Proposition 2.13 to write πG1

x StG1 = εG1εGx0 |(Gx0)F
|pπ

G1

x ,
or equivalently, πG1

x = εG1εGx0 |(Gx0)F
|
−1
p pG1

(πG1

x StG1). Using Corollary 2.10
and that by Proposition 5.1 we have ∗RG1

T 1 (π
G1

x StG1)= εG1εT 1 StT 1 Res(G
1)F

(T 1)F (π
G1

x ),
we get

pG1
(πG1

x StG1)= εG1 |(G1)F
|
−1

∑
T 1∈T F

1

|(T 1)F
|εT 1 RG1

T 1

(
StT 1 Res(G

1)F

(T 1)F (π
G1

x )
)
.

The function StT 1 is constant equal to 1. Now we have

Res(G
1)F

(T 1)F π
G1

x = |(T
0)F
|
−1

∑
{g∈(G0)F |gx∈T 1}

πT 1
gx .

To see this, do the scalar product with a class function f on (T 1)F :〈
Res(G

1)F

(T 1)F π
G1

x , f
〉
(T 1)F = 〈π

G1

x , IndG1

T 1 f 〉(G1)F = |(T 0)F
|
−1

∑
{g∈(G0)F |gx∈T 1}

f (gx).

Using that |(T 0)F
| = |(T 1)F

|, we then get

pG1
(πG1

x StG1)= εG1 |(G1)F
|
−1

∑
T 1∈T F

1

∑
{g∈(G0)F |gx∈T 1}

εT 1 RG1

T 1 (π
T 1
gx ).

Taking g−1T 1 as summation index, we get

pG1
(πG1

x StG1)= εG1

∑
{T 1∈T F

1 |T 13x}

εT 1 RG1

T 1 (π
T 1

x ),

and hence
πG1

x = εGx0 |(Gx0)F
|
−1
p

∑
{T 1∈T F

1 |T 13x}

εT 1 RG1

T 1 (π
T 1

x ),

which is the first equality of the proposition.
For the second equality of the proposition, we first use [DM 1994, théorème 1.8(iii)

and (iv)] to sum over tori of CG(x)0: the T 1
∈ T F

1 containing x are in bijection
with the maximal tori of CG(x)0 by T 1

7→ (T 1x
)0 and conversely S 7→ CG1(S).

This bijection satisfies εT 1 = εS by the definition of ε.
We then sum over (CG(x)0)F-conjugacy classes of maximal tori, which are

parameterized by F-conjugacy classes of W 0(x). We then have to multiply by
|(CG(x)0)F

|/|N(CG(x)0)(S)
F
| the term indexed by the class of S. Then we sum

over the elements of W 0(x). We then have to multiply the term indexed by w
by |CW 0(x)(wF)|/|W 0(x)|. Using |N(CG(x)0)(S)

F
| = |SF

||CW 0(x)(wF)|, and the
formula for dim RCG(x)0

Tw (Id) we get the result. �
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7. Classification of quasi-semisimple classes

The first items of this section, before Proposition 7.7, apply for algebraic groups
over an arbitrary algebraically closed field k.

We denote by C(G1) the set of conjugacy classes of G1, that is, the orbits under
G0-conjugacy, and denote by C(G1)qss the set of quasi-semisimple classes.

Proposition 7.1. For T 1
∈ T1, write T 1

= T 0
· σ , where σ is quasicentral. Then

C(G1)qss is in bijection with the set of NG0(T 1)-orbits in T 1, which itself is in
bijection with the set of W σ -orbits in C(T 1), where W = NG0(T 0)/T 0. We have
C(T 1)' T 1/Lσ (T 0), where Lσ is the map t 7→ t−1.σ t .

Proof. By definition, every quasi-semisimple element of G1 is in some T 1
∈ T1

and T1 is a single orbit under G0-conjugacy. It is thus sufficient to find how classes
of G1 intersect T 1. By [DM 1994, proposition 1.13], two elements of T 1 are
G0-conjugate if and only if they are conjugate under NG0(T 0). We can replace
NG0(T 0) by NG0(T 1) since if g(σ t)= σ t ′, where g ∈ NG0(T 0), then the image of
g in W lies in W σ . By [DM 1994, définition-théorème 1.15(iii)], elements of W σ

have representatives in Gσ0. Write g = sẇ, where ẇ is such a representative and
s ∈ T 0. Then sẇ(tσ)= Lσ (s−1)wtσ , whence the proposition. �

Lemma 7.2. T 0
= Tσ0.Lσ (T 0).

Proof. This is proved in [DM 1994, corollaire 1.33] when σ is unipotent (and then the
product is direct). We proceed similarly to that proof: Tσ0

∩Lσ (T 0) is finite since
its exponent divides the order of σ (if σ(t−1σ t) = t−1σ t then (t−1σ t)n = t−1σ n

t
for all n ≥ 1), and dim(Tσ0)+ dim(Lσ (T 0)) = dim(T 0) as the exact sequence
1→ T 0σ

→ T 0
→ Lσ (T 0)→ 1 shows, using that dim(Tσ0)= dim T 0σ . �

It follows that T 0/Lσ (T 0) ' Tσ0/(Tσ0
∩ Lσ (T 0)); since the set C(Gσ0)ss of

semisimple classes of Gσ0 identifies with the set of W σ -orbits on Tσ0, this induces
a surjective map C(Gσ0)ss→ C(G1)qss.

Example 7.3. We will describe the quasi-semisimple classes of G0
· σ , where

G0
= GLn(k) and σ is the quasicentral automorphism given by σ(g)= J tg−1 J−1,

where, if n is even, J is the matrix
( 0

J0

−J0
0

)
with

J0 =

0 1
. . .

1 0

 ,
and if n is odd, J is the antidiagonal matrix

J =

0 1
. . .

1 0
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(any outer algebraic automorphism of GLn is equal to σ up to an inner automor-
phism).

The automorphism σ normalizes the pair T 0
⊂ B0, where T 0 is the diagonal torus

and B0 the group of upper triangular matrices. Then T 1
= NG1(T 0

⊂ B0)= T 0
·σ

is in T1. For diag(x1, . . . , xn) ∈ T 0, where xi ∈ k×, we have σ(diag(x1, . . . , xn))=

diag(x−1
n , . . . , x−1

1 ). It follows that Lσ (T 0) = {diag(x1, x2, . . . , x2, x1)}— here
xm+1 is a square when n = 2m + 1 but this is not a condition since k is al-
gebraically closed. As suggested above, we could take as representatives of
T 0/Lσ (T 0) the set Tσ0/(Tσ0

∩ Lσ (T 0)), but since Tσ0
∩ Lσ (T 0) is not trivial

(it consists of the diagonal matrices with entries ±1 placed symmetrically), it is
more convenient to take for representatives of the quasi-semisimple classes, the set
{diag(x1, x2, . . . , xbn/2c, 1, . . . , 1)}σ . In this model, the action of W σ is generated
by the permutations of the bn/2c first entries, and by the maps xi 7→ x−1

i , so the
quasi-semisimple classes of G0

· σ are parameterized by the quasi-semisimple
classes of Gσ0.

We continue the example, computing group of components of centralizers.

Proposition 7.4. Let sσ = diag(x1, x2, . . . , xbn/2c, 1, . . . , 1)σ be a quasi-semi-
simple element as above. If char k = 2 then CG0(sσ) is connected. Otherwise,
if n is odd, A(sσ) := CG0(sσ)/CG0(sσ)0 is of order two, generated by −1 ∈
Z G0

= Z GLn(k). If n is even, A(sσ) 6= 1 if and only if for some i , we have
xi =−1; then xi 7→ x−1

i is an element of W σ which has a representative in CG0(sσ)
generating A(sσ), which is of order 2.

Proof. We will use that for a group G and an automorphism σ of G, we have an
exact sequence (see, for example, [Steinberg 1968, 4.5])

(7.5) 1→ (ZG)σ → Gσ
→ (G/ZG)σ → (Lσ (G)∩ ZG)/Lσ (ZG)→ 1.

If we take G=G0
=GLn(k) in (7.5) and sσ for σ , since on Z G0 the map Lσ =Lsσ

is z 7→ z2, hence surjective, we get that G0sσ
→ PGLsσ

n is surjective and has kernel
(Z G0)σ = {±1}.

Assume n odd and take G = SLn(k) in (7.5). We have Z SLσn = {1} so that we
get the following diagram with exact rows:

1 // {±1} // GLsσ
n

// PGLsσ
n

// 1

1 // SLsσ
n

?�

OO

// PGLsσ
n

// 1

This shows that GLsσ
n /SLsσ

n ' {±1}; by [Steinberg 1968, 8.1], SLsσ
n is connected,

hence PGLsσ
n is connected. Thus GLsσ

n = (GLsσ
n )

0
×{±1} is connected if and only

if char k = 2.
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Assume now that n is even; then (T 0)σ is connected, and hence −1 ∈ (GLsσ
n )

0

for all s ∈ T 0. Using this, the exact sequence 1→ {±1} → GLsσ
n → PGLsσ

n → 1
implies A(sσ) = Gsσ/G0sσ

= GLsσ
n /(GLsσ

n )
0
' PGLsσ

n /(PGLsσ
n )

0. To compute
this group we use (7.5) with SLn(k) for G and sσ for σ :

1→ {±1} → SLsσ
n → PGLsσ

n → (Lsσ (SLn)∩ Z SLn)/Lσ (Z SLn)→ 1,

which, since SLsσ
n is connected, implies that

A(sσ)= (Lsσ (SLn)∩ Z SLn)/Lσ (Z SLn)

is nontrivial (of order 2) if and only if Lsσ (SLn)∩ Z SLn contains an element which
is not a square in Z SLn; thus A(sσ) is trivial if char k = 2. We assume now that
char k 6= 2. Then a nonsquare is of the form diag(z, . . . , z) with zm

=−1 if we set
m = n/2.

The following lemma is a transcription of [Steinberg 1968, 9.5].

Lemma 7.6. Let σ be a quasicentral automorphism of the connected reductive
group G which stabilizes the pair T ⊂ B of a maximal torus and a Borel subgroup;
let W be the Weyl group of T and let s ∈ T . Then

T ∩Lsσ (G)= {Lw(s−1) | w ∈W σ
} ·Lσ (T ).

Proof. Assume t = Lsσ (x) for t ∈ T , or equivalently xt = sσx . Then if x is in the
Bruhat cell BwB, we must have w ∈W σ . Taking for w a σ -stable representative ẇ
and writing the unique Bruhat decomposition x = u1ẇt1u2, where u2 ∈ U, t1 ∈ T
and u1 ∈ U ∩ wU−, where U is the unipotent radical of B and U− the unipotent
radical of the opposite Borel, the equality xt = sσx implies that ẇt1t = sσ(ẇt1), or
equivalently, t = Lw−1(s−1)Lσ (t1), whence the lemma. �

We apply this lemma taking SLn for G and T ′0 = T 0
∩ SLn for T : we get

Lsσ (SLn)∩ Z SLn = {Lw(s−1) | w ∈W σ
} ·Lσ (T ′0)∩ Z SLn . The element

diag(x1, x2, . . . , xm, 1, . . . , 1)σ

is conjugate to

sσ = diag(y1, y2, . . . , ym, y−1
m , . . . , y−1

1 )σ ∈ (T ′0)σ · σ,

where y2
i = xi . It will have a nonconnected centralizer if and only if for somew∈W σ

and some t ∈ T ′0, we have Lw(s−1)·Lσ (t)= diag(z, . . . , z) with zm
=−1, and then

an appropriate representative of w (multiplying if needed by an element of Z GLn)
will be in CG0(sσ) and have a nontrivial image in A(sσ). Since s and w are σ -fixed,
we have Lw(s) ∈ (T ′0)σ ; thus it is of the form diag(a1, . . . ,am,a−1

m , . . .a−1
1 ). Since

Lσ (T ′0)= {diag(t1, . . . , tm, tm, . . . , t1) | t1t2 · · · tm = 1},
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we get z = a1t1 = a2t2 = · · · = am tm = a−1
m tm = · · · = a−1

1 t1; in particular, ai =±1
for all i and a1a2 · · · am = −1. We can take w up to conjugacy in W σ since
Lvwv−1(s−1)= vLw(v

−1
s−1) and Lσ (T ′0) is invariant under W σ -conjugacy. We see

W σ as the group of permutations of {1, 2, . . . ,m,−m, . . . ,−1} which preserves
the pairs {i,−i}. A nontrivial cycle of w has, up to conjugacy, either the form
(1,−1) or (1,−2, 3, . . . , (−1)i−1i,−(i+1),−(i+2), . . . ,−k,−1, 2,−3, . . . , k)
with 0 ≤ i ≤ k ≤ n and i odd, or (1,−2, 3, . . . , (−1)i−1i, i + 1, i + 2, . . . , k)
with 0 ≤ i ≤ k ≤ n and i even (the case i = 0 meaning that there is no sign
change). The contribution to a1 · · · am of the orbit (1,−1) is a1 = y2

1 , and hence
is 1 except if y2

1 = x1 = −1. Let us consider an orbit of the second form. The k
first coordinates of Lw(s−1) are (y1 y2, . . . , yi yi+1, yi+1/yi+2, . . . , yk/y1). Hence
there must exist signs ε j such that y2 = ε1/y1, y3 = ε2/y2, . . . , yi+1 = εi/yi and
yi+2 = εi+1 yi+1, . . . , yk = εk−1 yk−1, y1 = εk yk . This gives

y1 =

{
ε1 · · · εk y1 if i is even,
ε1 · · · εk/y1 if i is odd.

The contribution of the orbit to a1 · · · am is ε1 · · · εk and thus is 1 if i is even
and x1 = y2

1 if i is odd. Again, we see that one of the xi must equal −1 to get
a1 · · · am =−1. Conversely if x1 = −1, for any z such that zm

= −1, choos-
ing t such that Lσ (t)= diag(−z, z, z, . . . , z,−z) and taking w = (1,−1), we get
Lw(s−1)Lσ (t)= diag(z, . . . , z) as desired. �

We now go back to the case where k=Fq , and in the context of Proposition 7.1, we
now assume that T 1 is F-stable and that σ induces an F-stable automorphism of G0.

Proposition 7.7. Let T 1rat
= {s ∈ T 1

| ∃n ∈ NG0(T 1), nFs = s}; then T 1rat is stable
by T 0-conjugacy, which gives a meaning to C(T 1rat). Then c 7→ c∩ T 1 induces a
bijection between (C(G1)qss)

F and the W σ -orbits on C(T 1rat).

Proof. A class c ∈ C(G1)qss is F-stable if and only if given s ∈ c, we have Fs ∈ c. If
we take s ∈ c∩T 1 then Fs ∈ c∩T 1, which as observed in the proof of Proposition 7.1
implies that Fs is conjugate to s under NG0(T 1), that is, s ∈T 1rat. Thus c is F-stable
if and only if c∩ T 1

= c∩ T 1rat. The proposition then results from Proposition 7.1,
observing that T 1rat is stable under NG0(T 1)-conjugacy and that the corresponding
orbits are the W σ -orbits on C(T 1rat). �

Example 7.8. When G1
= GLn(Fq) · σ with σ as in Example 7.3, the map

diag(x1, x2, . . . , xbn/2c,1, . . . ,1) 7→ diag(x1, x2, . . . , xbn/2c,†, x−1
bn/2c, . . . , x

−1
2 , x−1

1 ),

where † represents 1 if n is odd and an omitted entry otherwise, is compatible with
the action of W σ as described in Example 7.3 on the left-hand side and the natural
action on the right-hand side. This map induces a bijection from C(G1)qss to the



COMPLEMENTS ON DISCONNECTED REDUCTIVE GROUPS 223

semisimple classes of (GLσn )
0 which restricts to a bijection from (C(G1)qss)

F to
the F-stable semisimple classes of (GLσn )

0.

We now compute the cardinality of (C(G1)qss)
F .

Proposition 7.9. Let f be a function on (C(G1)qss)
F . Then∑

c∈(C(G1)qss)F

f (c)= |W σ
|
−1

∑
w∈W σ

f̃ (w),

where f̃ (w) :=
∑

s f (s), where s runs over representatives of T 1wF
/Lσ (T 0)wF

in T 1wF .

Proof. We have

C(T 1rat)=
⋃
w∈W σ

{
sLσ (T 0) ∈ T 1/Lσ (T 0) | sLσ (T 0) is wF-stable

}
.

The conjugation by v ∈ W σ sends a wF-stable coset sLσ (T 0) to a vwFv−1-
stable coset; and the number of w such that sLσ (T 0) is wF-stable is equal to
NW σ (sLσ (T 0)). It follows that∑

c∈(C(G1)qss)F

f (c)= |W σ
|
−1

∑
w∈W σ

∑
sLσ (T 0)∈(T 1/Lσ (T 0))wF

f (sLσ (T 0)).

The proposition follows since, because Lσ (T 0) is connected, we have

(T 1/Lσ (T 0))wF
= T 1wF

/Lσ (T 0)wF . �

Corollary 7.10. We have |(C(G1)qss)
F
| = |(C(Gσ0)ss)

F
|.

Proof. Let us take f = 1 in Proposition 7.9. We need to sum over w ∈ W σ the
value |T 1wF

/Lσ (T 0)wF
|. First note that |T 1wF

/Lσ (T 0)wF
| = |T 0wF

/Lσ (T 0)wF
|.

By Lemma 7.2 we have the exact sequence

1→ Tσ0
∩Lσ (T 0)→ Tσ0

×Lσ (T 0)→ T 0
→ 1,

whence the Galois cohomology exact sequence is

1→ (Tσ0
∩Lσ (T 0))wF

→ Tσ0wF
× (Lσ (T 0))wF

→ T 0wF
→ H 1(wF, (Tσ0

∩Lσ (T 0)))→ 1.

Using that for any automorphism τ of a finite group G we have |Gτ
| = |H 1(τ,G)|,

we have
|(Tσ0

∩Lσ (T 0))wF
| = |H 1(wF, (Tσ0

∩Lσ (T 0)))|.
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Together with the above exact sequence, this implies that |T 0wF
/Lσ (T 0)wF

| =

|Tσ0wF
|, whence

|(C(G1)qss)
F
| = |W σ

|
−1

∑
w∈W σ

|Tσ0wF
|.

The corollary follows by either applying the same formula for the connected
group Gσ0, or referring to [Lehrer 1992, Proposition 2.1]. �

8. Shintani descent

We now look at Shintani descent in our context; we will show it commutes with
Lusztig induction when G1/G0 is semisimple and the characteristic is good for Gσ0.
We should mention previous work on this subject: Eftekhari [1996, II.3.4] has the
same result for Lusztig induction from a torus; he does not need to assume p good
but needs q to be large enough to apply results of Lusztig, identifying Deligne–
Lusztig induction with induction of character sheaves; Digne [1999, 1.1] has the
result in the same generality as here apart from the assumption that G1 contains
an F-stable quasicentral element; however, a defect of his proof is the use without
proof of the property given in Lemma 8.4 below.

As above, G1 denotes an F-stable connected component of G of the form G0
·σ ,

where σ induces a quasicentral automorphism of G0 commuting with F .
Applying Lang’s theorem, one can write any element of G1 as x · σ Fx−1σ for

some x ∈ G0, or as σ · Fx−1
· x for some x ∈ G0. Using that σ , as an automorphism,

commutes with F , it is easy to check that the correspondence x ·σ Fx−1σ 7→σ Fx−1
·x

induces a bijection nF/σ F from the (G0)F-conjugacy classes of (G1)F to the G0σ F-
conjugacy classes of (G1)σ F and that |G0σ F

||c|=|(G0)F
||nF/σ F (c)| for any (G0)F-

class c in (G1)F . It follows that the operator shF/σ F from (G0)F-class functions on
(G1)F to G0σ F-class functions on (G1)σ F defined by shF/σ F (χ)(nF/σ F x)= χ(x)
is an isometry.

The remainder of this section is devoted to the proof of the following:

Proposition 8.1. Let L1
= NG1(L0

⊂ P0) be a Levi of G1 containing σ , where
L0 is F-stable; we have L1

= L0
· σ . Assume that σ is semisimple and that the

characteristic is good for Gσ0. Then

shF/σ F ◦
∗RG1

L1 =
∗RG1

L1 ◦ shF/σ F and shF/σ F ◦RG1

L1 = RG1

L1 ◦ shF/σ F .

Proof. The second equality follows from the first by adjunction, using that the
adjoint of shF/σ F is sh−1

F/σ F . Let us prove the first equality.
Let χ be a (G0)F-class function on G1 and let σ lu = uσ l be the Jordan de-

composition of an element of (L1)σ F with u unipotent and σ l semisimple. By the
character formula Proposition 2.5(iii) and the definition of QGt0

Lt0 for t = σ l, we have
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∗RG1

L1 shF/σ F (χ)
)
(σ lu)

= |(Gσ l)0
σ F
|
−1

∑
v∈(Gσ l )0

σ F
unip

shF/σ F (χ)(σ lv)Trace
(
(v, u−1)|H∗c (YU,σ F )

)
,

where v (resp. u) acts by left- (resp. right-) translation on

YU,σ F = {x ∈ (Gσ l)0 | x−1
·
σ Fx ∈ U},

where U denotes the unipotent radical of P0; in the summation, v is in the identity
component of Gσ l since, σ being semisimple, u is in G0 and hence in (Gσ l)0 by
[DM 1994, théorème 1.8(i)] since σ l is semisimple.

Let us write l= Fλ−1
·λwith λ∈ L0, so that σ l=nF/σ F (l ′σ), where l ′= λ·σ Fλ−1.

Lemma 8.2. For v ∈ (Gσ l)0
σ F
unip, we have

σ lv = nF/σ F ((σ l · v′)σ
Fλ−1

),

where v′ = nσ F/σ Fv ∈ (Gσ l)0
σ F is defined by writing v = σ Fη · η−1, where η ∈

(Gσ t)0 and setting v′ = η−1
·
σ Fη.

Proof. We have

σ lv = σ lσ Fη · η−1
=

σ Fησ lη−1
= σ F(ηλ−1)λη−1

;

thus σ lv = nF/σ F ((λη
−1) · σ F(ηλ−1)σ ). And we have

(λη−1) · σ F(ηλ−1)σ = λv′σ Fλ−1σ = Fλlv′σ Fλ−1
= (σ lv′)σ

Fλ−1
;

thus shF/σ F (χ)(σ lv)= χ((σ lv′)σ
Fλ−1

). �

Lemma 8.3. (i) We have (σ l)σ
Fλ−1
= l ′σ .

(ii) The conjugation x 7→ xσ
Fλ−1

maps Gσ l and the action of σ F on it to Gl ′σ with
the action of F on it; in particular, it induces bijections

(Gσ l)0
σ F
−→∼ (Gl ′σ )0

F
and YU,σ F −→

∼ YU,F ,

where YU,F = {x ∈ (Gl ′σ )0 | x−1 Fx ∈ U}.

Proof. Part (i) is an obvious computation and shows that if x ∈Gσ l then xσ
Fλ−1
∈Gl ′σ .

To prove (ii), it remains to show that if x ∈ Gσ l then F(xσ
Fλ−1

)= (σ Fx)σ
Fλ−1

. From
xσ = x l−1

= xλ
−1
·

Fλ, we get xσ
Fλ−1
= xλ

−1
, whence F(xσ

Fλ−1
) = (Fx)

Fλ−1
=

((σ Fx)σ )
Fλ−1
= (σ Fx)σ

Fλ−1
. �

Applying Lemmas 8.2 and 8.3 we get

(∗RG1

L1 shF/σ F (χ))(σ lu)=

|(Gσ l)0
σ F
|
−1

∑
v∈(Gσ l )0

σ F
unip

χ((σ lv′)σ
Fλ−1

)Trace
(
(vσ

Fλ−1
, (uσ

Fλ−1
)−1) | H∗c (YU,F)

)
.
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Lemma 8.4. Assume that the characteristic is good for Gσ0, where σ is a quasi-
central element of G. Then it is also good for (Gs)0, where s is any quasi-semisimple
element of G0

· σ .

Proof. Let 6σ (resp. 6s) be the root system of Gσ0 (resp. (Gs)0). By definition, a
characteristic p is good for a reductive group if for no closed subsystem of its root
system the quotient of the generated lattices has p-torsion. The system 6s is not
a closed subsystem of 6σ in general, but the relationship is expounded in [Digne
and Michel 2002]: let 6 be the root system of G0 with respect to a σ -stable pair
T ⊂ B of a maximal torus and a Borel subgroup of G0. Up to conjugacy, we may
assume that s also stabilizes that pair. Let 6 denote the set of sums of the σ -orbits
in 6, and 6′ the set of averages of the same orbits. Then 6′ is a nonnecessarily
reduced root system, but 6σ and 6s are subsystems of 6′ and are reduced. The
system 6 is reduced, and the set of sums of orbits whose average is in 6σ (resp.
6s) is a closed subsystem that we denote by 6σ (resp. 6s).

We now need a generalization of [Bourbaki 1981, chapitre VI, §1.1, lemme 1]:

Lemma 8.5. Let L be a finite set of lines generating a vector space V over a field
of characteristic 0; then two reflections of V which stabilize L and have a common
eigenvalue ζ 6= 1 with ζ -eigenspace the same line of L are equal.

Proof. Here we mean by reflection an element s ∈ GL(V ) such that ker(s− 1) is
a hyperplane. Let s and s ′ be reflections as in the statement. The product s−1s ′

stabilizes L, so it has a power which fixes L, and thus is semisimple. On the other
hand, s−1s ′ by assumption fixes one line L ∈ L and induces the identity on V/L ,
and thus is unipotent. Being semisimple and unipotent, it has to be the identity. �

It follows from Lemma 8.5 that two root systems with proportional roots have
the same Weyl group, and thus the same good primes; therefore:

• 6s and 6s have the same good primes, as well as 6σ and 6σ .

• The bad primes for6s are a subset of those for6, since it is a closed subsystem.

It only remains to show that the good primes for6 are the same as for6σ , which can
be checked case by case: we can reduce to the case where 6 is irreducible, in which
case these systems coincide except when 6 is of type A2n; but in this case, 6 is of
type Bn and 6σ is of type Bn or Cn , which have the same set {2} of bad primes. �

Since the characteristic is good for Gσ0, hence also for (Gσ l)0 by Lemma 8.4,
the elements v′ and v are conjugate in (Gσ l)0

σ F (see [Digne and Michel 1985,
IV, corollaire 1.2]). By Lemma 8.3(ii), the element vσ

Fλ−1
runs over the unipotent

elements of (Gl ′σ )0
F

when v runs over (Gσ l)0
σ F
unip. Moreover, using the equality
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|(Gσ l)0
σ F
| = |(Gl ′σ )0

F
|, we get

(*) (∗RG1

L1 shF/σ F (χ))(σ lu)=
1

|(Gl ′σ )0
F
|

∑
u1∈(Gl′σ )0

F
unip

χ(u1l ′σ)Trace
(
(u1, (uσ

Fλ−1
)−1)|H∗c (YU,F )

)
.

On the other hand, by Lemma 8.2 applied with v = u, we have(
shF/σ F

∗RG1

L1 (χ)
)
(σ lu)= ∗RG1

L1 (χ)((σ lu)σ
Fλ−1

)

=
∗RG1

L1 (χ)(l ′σ · uσ
Fλ−1

),

where the second equality holds by Lemma 8.3(i). By the character formula this is
equal to the right-hand side of formula (*). �
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EXTENDING HECKE ENDOMORPHISM ALGEBRAS

JIE DU, BRIAN J. PARSHALL AND LEONARD L. SCOTT

We dedicate this paper to the memory of Robert Steinberg.

The (Iwahori–)Hecke algebra in the title is a q-deformation H of the group
algebra of a finite Weyl group W . The algebra H has a natural enlargement
to an endomorphism algebra A = EndH(T ) where T is a q-permutation
module. In type An (i.e., W ∼= Sn+1), the algebra A is a q-Schur algebra
which is quasi-hereditary and plays an important role in the modular rep-
resentation of the finite groups of Lie type. In other types, A is not always
quasi-hereditary, but the authors conjectured 20 year ago that T can be
enlarged to an H-module T + so that A+=EndH(T +) is at least standardly
stratified, a weaker condition than being quasi-hereditary, but with “strata”
corresponding to Kazhdan–Lusztig two-sided cells.

The main result of this paper is a “local” version of this conjecture in
the equal parameter case, viewing H as defined over Z[t, t−1], with the
localization at a prime ideal generated by a cyclotomic polynomial 82e(t),
e 6= 2. The proof uses the theory of rational Cherednik algebras (also known
as RDAHAs) over similar localizations of C[t, t−1]. In future papers, the
authors hope to prove global versions of the conjecture, maintaining these
localizations.

1. Introduction

Let G = {G(q)} be a family of finite groups of Lie type having irreducible (finite)
Coxeter system (W, S) [Curtis and Reiner 1987, (68.22)]. The pair (W, S) remains
fixed throughout this paper. Let B(q) be a Borel subgroup of G(q). There are index
parameters cs ∈ Z, s ∈ S, defined by

[B(q) : sB(q)∩ B(q)] = qcs, s ∈ S.

Research supported in part by the Australian Research Council and National Science Foundation.
MSC2010: primary 20C08, 20C33; secondary 16S50, 16S80.
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229

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2015.279-1-2
http://dx.doi.org/10.2140/pjm.2015.279.229


230 JIE DU, BRIAN J. PARSHALL AND LEONARD L. SCOTT

The generic Hecke algebra H over the ring Z =Z[t, t−1
] of Laurent polynomials

associated to G has basis Tw, w ∈W, subject to relations

(1.1) Ts Tw =
{

Tsw, sw >w,
t2cs Tsw + (t2cs − 1)Tw, sw <w,

for s ∈ S, w ∈W. This algebra is defined just using t2, but it is convenient to have its
square root t available. We call H a Hecke algebra of Lie type over Z . It is related
to the representation theory of the groups in G as follows: for any prime power q,
let R be any field (we will shortly allow R to be a ring) in which the integer q is
invertible and has a square root

√
q . Let HR =H⊗Z R be the algebra obtained by

base change through the map Z→ R, t 7→
√

q. Then HR ∼= EndG(q)
(
indG(q)

B(q) R
)
.

Thus, the generic Hecke algebra H is the quantumization (in the sense of [Deng
et al. 2008, §0.4]) of an infinite family of important endomorphism algebras.

In type An , i.e., when G = {GLn+1(q)}, one can also consider the q-Schur
algebras, viz., algebras Morita equivalent to

(1.2) SR := EndHR

(⊕
J⊆S

indHR
HJ,R

INDJ

)
.

In this case, SR is a quasi-hereditary algebra whose representation theory is closely
related to that of the quantum general linear groups. The q-Schur algebras have his-
torically played an important role in representation theory of the finite general linear
groups, thanks to the work of Dipper, James, and others. More generally, although
the definition (1.2) makes sense in all types, less is known about its properties or
the precise role it plays in the representation theory or homological algebra of the
corresponding groups in G . The purpose of this paper, and its sequels, is to enhance
SR in a way described below, so that it does become relevant to these questions.

1A. Stratifying systems. At this point, it will be useful to review the notion of a
strict stratifying system for an algebra. These systems provide a framework for
studying algebras similar to quasi-hereditary algebras. They appear in the statement
of the first main theorem. Although the algebras in Theorem 5.6 below are shown
later to be quasi-hereditary, the theory of stratifying systems is useful both in
providing a framework and as a tool in obtaining the final results.

First, recall that a preorder on a set X is a transitive and reflexive relation ≤. The
associated equivalence relation ∼ on X is defined by setting, for x, y ∈ X ,

x ∼ y ⇐⇒ x ≤ y and y ≤ x .

A preorder induces an evident partial order, still denoted ≤, on the set X of equiva-
lence classes of ∼. In this paper, a set X with a preorder is called a quasi-poset.
Also, if x ∈ X , let x ∈ X be its associated equivalence class.
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Now let R be a Noetherian commutative ring, and let A be an R-algebra, finitely
generated and projective as an R-module. Let 3 be a finite quasi-poset. For each
λ ∈ 3, it is required that there is given a finitely generated A-module 1(λ) and
a finitely generated projective A-module P(λ) together with a fixed surjective
morphism P(λ)�1(λ) of A-modules. The following conditions are required:

(1) For λ,µ ∈3,

HomA(P(λ),1(µ)) 6= 0 =⇒ λ≤ µ.

(2) Every irreducible A-module L is a homomorphic image of some 1(λ).

(3) For λ ∈3, the A-module P(λ) has a finite filtration by A-submodules with
top section 1(λ) and other sections of the form 1(µ) with µ > λ.

When these conditions all hold, the data {1(λ)}λ∈3 is a strict stratifying system
for A-mod. It is also clear that 1(λ)R′, P(λ)R′, . . . is a strict stratifying system for
AR′-mod for any base change R→ R′, provided R′ is a Noetherian commutative
ring. (Notice that condition (2) is redundant if it is known that the direct sum of the
projective modules in (3) is a progenerator — a property preserved by base change.)

An ideal J in an R-algebra A as above is called a stratifying ideal provided that
J is an R-direct summand of A (or equivalently, the inclusion J ↪→ A is R-split),
and for A/J -modules M, N inflation defines an isomorphism

(1A.1) Extn
A/J (M, N )−→∼ Extn

A(M, N ), for all n ≥ 0.

of Ext-groups. A standard stratification of length n of A is a sequence 0= J0 (
J1 ( · · ·( Jn = A of stratifying ideals of A such that each Ji/Ji−1 is a projective
A/Ji−1-module. If A-mod has a strict stratifying system with quasi-poset 3, then it
has a standard stratification of length n = |3|; see [Du et al. 1998, Theorem 1.2.8].

In the case of a finite dimensional algebra A over a field k, the notion of a strict
stratifying system {1(λ)}λ∈3 for A-mod simplifies somewhat. In this case, it can be
assumed that each 1(λ) has an irreducible head L(λ), that λ 6=µ=⇒ L(λ)� L(µ),
and that P(λ) is indecomposable. Two caveats are in order, however: (i) it may be
necessary to enlarge the base set 3 to be able to index all the irreducible modules,
though 3 can remain the same; (ii) it may be easier to verify (1), (2), and (3) over
a larger ring and then base change. The irreducible head versions of the 1(λ) can
then be obtained as direct summands of the base-changed versions.

When the algebra A arises as an endomorphism algebra A = EndB(T ), there
is a useful theory for obtaining a strict stratifying system for A-mod. In fact, this
is how such stratifying systems initially arose; see [Cline et al. 1996; Du et al.
1998]. This approach is followed in the proof of the main theorem in this paper.
For convenience, we summarize the sufficient conditions that will be used, all taken
from [Du et al. 1998, Theorem 1.2.10].
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Theorem 1.1. Let B be a finitely generated projective R-algebra and let T be a
finitely generated right B-module which is projective over R. Define A := EndB(T ).
Assume that T =⊕λ∈3Tλ, where 3 is a finite quasi-poset. For λ ∈3, assume there
is given a fixed R-submodule Sλ ⊆ Tλ and an increasing filtration F •λ : 0 = F0

λ ⊆

F1
λ ⊆ · · · ⊆ F t (λ)

λ = Tλ satisfying the following conditions:

(1) For λ ∈3, F •λ has bottom section F1
λ /F0

λ
∼= Sλ and higher sections F i+1

λ /F i
λ

(1≤ i ≤ t (λ)− 1) of the form Sν with ν > λ.

(2) For λ,µ ∈3, HomB(Sµ, Tλ) 6= 0 =⇒ λ≤ µ.

(3) For λ ∈3, Ext1B(Tλ/F i
λ, T )= 0 for all i .

Let A = EndB(T ) and, for λ ∈3, define 1(λ) := HomB(Sλ, T ) ∈ A-mod. Assume
that each 1(λ) is R-projective. Then {1(λ)}λ∈3 is a strict stratifying system for
A-mod.

It is interesting to note that these sufficient conditions are not, in general,
preserved under base change, though the resulting strict stratifying systems are
preserved (becoming strict stratifying systems for the base-changed version of the
algebra A).

1B. Cells and q-permutation modules. We assume familiarity with Kazhdan–
Lusztig cell theory for the Coxeter systems (W, S). See, for instance, [Deng
et al. 2008; Lusztig 2003]. In Conjecture 1.2 below and in Theorem 5.6, the set 3
will be the set � of left Kazhdan–Lusztig cells for (W, S). For each ω ∈�, let

(1B.1) S(ω) :=H≤Lω/H<Lω ∈H-mod

be the corresponding left cell module. It is known that S(ω) is a free Z-module
with basis corresponding to certain Kazhdan–Lusztig basis elements C ′x , x ∈ ω;
see Section 2. The corresponding dual left cell module is defined

(1B.2) Sω := HomZ(S(ω),Z) ∈mod-H.

It is regarded as a right H-module. Because S(ω) and hence Sω are free over Z , if
R is a commutative Z-module, we can define{

SR(ω) := S(ω)⊗Z R,
Sω,R := Sω⊗Z R = HomR(SR(ω), R).

For the special choice R =Q — see (1C.1) below for the definition of Q — we also
use the notations

(1B.3)
{

S̃(ω) := SQ(ω),

S̃ω := Sω,Q, ω ∈�.

In addition, for λ⊆ S, let Wλ be the parabolic subgroup of W generated by the
s ∈ λ, and put xλ =

∑
w∈Wλ

Tw, with Tw as in (1.1) above. The induced modules
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xλH (also called q-permutation modules) have an increasing filtration with sections
Sω for various ω ∈� (precisely, those left cells ω whose right set R(ω) contains
λ).

Let T =
⊕

λ xλH, and A :=EndH(T ). For ω ∈�, put 1(ω) :=HomH(Sω, T )∈
A-mod. The algebra A is very well behaved in type A, a q-Schur algebra; a theme
of [Du et al. 1998] was that suitable enlargements, appropriately compatible with
two-sided cell theory, should have similar good properties for all types.

Each two-sided cell may be identified with the set of left cells it contains, and
the resulting collection � of sets of left cells is a partition of �. There are various
natural preorders on �, but we will be mainly interested in those whose associated
equivalence relation has precisely the set � as its associated partition. We call such
a preorder strictly compatible with �.

1C. A conjecture. Now we are ready to state the following conjecture, which is a
variation (see the Appendix) on [op. cit., Conjecture 2.5.2]. We informally think of
the algebra A+ in the conjecture as an extension of A as a Hecke endomorphism
algebra (justifying the title of the paper).

Conjecture 1.2. There exists a preorder ≤ on the set � of left cells in W, strictly
compatible with its partition � into two-sided cells, and a right H-module X such
that the following statements hold:

(1) X has an finite filtration with sections of the form Sω, ω ∈�.

(2) Let T + :=T ⊕X and put{
A+ := EndH(T +),
1+(ω) := HomH(Sω, T +), for any ω ∈�.

Then, for any commutative, Noetherian Z-algebra R, the set {1+(ω)R}ω∈� is a
strict stratifying system for A+R -mod relative to the quasi-poset (�,≤).

The main result of this paper, given in Theorem 5.6, establishes a special “local
case” of this conjecture. A more detailed description of this theorem requires some
preliminary notation. Throughout this paper, e is positive integer ( 6= 2 in our main
results). Let 82e(t) denote the (cyclotomic) minimum polynomial for a primitive
2eth root of unity

√
ζ = exp(2π i/2e) ∈ C. Fix a modular system (K ,Q, k) by

letting

(1C.1)


Q :=Q[t, t−1]

]p, where p= (82e(t));
K :=Q(t), the fraction field of Q;

k :=Q/m∼=Q(
√
ζ ), the residue field of Q.

Here m denotes the maximal ideal of the DVR Q. With some abuse of notation,
we sometimes identify

√
ζ with its image in k. (Without passing to an extension
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or completion, the ring Q might not have such a root of unity in it.) The algebra
HQ(t) is split semisimple, with irreducible modules corresponding to the irreducible
modules of the group algebra QW. The Q-algebra

(1C.2) H̃ :=H⊗Z Q

has a presentation by elements Tw ⊗ 1 (which will still be denoted Tw, w ∈ W )
completely analogous to (1.1). Similar remarks apply to Hk , replacing t2 by ζ .
Then Theorem 5.6 establishes that there exists an H̃-module X̃ which is filtered by
dual left cell modules S̃ω such that the analogues of conditions (1) and (2) over Q

in Conjecture 1.2 hold. The preorder used in Theorem 5.6 is constructed as in
[Ginzburg et al. 2003] from a “sorting function” f , and is discussed in detail in the
next section.

With more work, it can be shown, when e 6= 2, that the Q-algebra Ã+ := A+Q
is quasi-hereditary. This is done in Theorem 6.4. Then Theorem 6.5 identifies the
module category for a base-changed version of this algebra with a RDAHA-category
O in [Ginzburg et al. 2003]. Such an identification in type A was conjectured in
[loc. cit.], and then proved by Rouquier in [2008] (when e 6= 2).

Generally speaking, this paper focuses on the “equal parameter” case, i.e., all
cs = 1 in (1.1), which covers the Hecke algebras relevant to all untwisted finite
Chevalley groups. We will assume this condition unless explicitly stated otherwise,
avoiding a number of complications involving Kazhdan–Lusztig basis elements and
Lusztig’s algebra J. In this context, the critical Proposition 3.1 depends on results of
[Ginzburg et al. 2003] which, in part, were only determined in the equal parameter
case. Nevertheless, much of our discussion applies in the unequal parameter cases.
In particular, we mention that the elementary, but important, Lemma 4.3 is stated
and proved using unequal parameter notation. This encourages the authors to believe
the main results are also provable in the unequal parameter case, though this has
not yet been carried out. Note that all the rank 2 cases are treated in [Du et al.
1998], leaving the quasisplit cases with rank > 2. All these quasisplit cases have
parameters confined to the set {1, 2, 3}.

2. Some preliminaries

This section recalls some mostly well-known facts and fixes notation regarding cell
theory. Let W be a finite Weyl group associated to a finite root system 8 with a
fixed set of simple roots 5. Let S := {sα | α ∈5}. Let H be a Hecke algebra over
Z defined by (1.1). We assume (unless explicitly noted otherwise) that each cs = 1
for s ∈ S. Thus, (W, S) corresponds, in the language of the introduction, to some
types of split Chevalley groups, though we will have no further need of that context.
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Let
C ′w = t−l(w)

∑
y≤w

Py,wTy,

where the Py,w is a Kazhdan–Lusztig polynomial in q := t2. Then {C ′w}w∈W is
a Kazhdan–Lusztig (or canonical) basis for H. The element C ′x is denoted cx in
[Lusztig 2003], a reference we frequently quote. Let hx,y,z ∈Z denote the structure
constants. In other words,

C ′xC ′y =
∑
z∈W

hx,y,zC ′z.

Using the preorders ≤L and ≤R on W, the positivity (see [Deng et al. 2008, §7.8])
of the coefficients of the hx,y,z implies

(2.3) hx,y,z 6= 0 =⇒ z ≤L y and z ≤R x .

The Lusztig function a : W → N is defined as follows. For z ∈ W, let a(z) be
the smallest nonnegative integer such that ta(z)hx,y,z ∈N[t] for all x, y ∈W. It may
equally be defined as the smallest nonnegative integer such that t−a(x)hx,y,z ∈N[t−1

],
as used in [Lusztig 2003] (or see [Deng et al. 2008, §7.8]). In fact, each hx,y,z is
invariant under the automorphism Z→ Z sending t to t−1. It is not difficult to see
that a(z)= a(z−1). For x, y, z ∈W, let γx,y,z be the coefficient of t−a(z) in hx,y,z−1 .
Also, by [Lusztig 2003, Conjectures 14.2(P8) and 15.6],

(2.4) γx,y,z 6= 0 =⇒ x ∼L y−1, y ∼L z−1, z ∼L x−1.

The function a is constant on two-sided cells in W, and so can be regarded as a
function with values in N on (a) the set of two-sided cells; (b) the set of left (or right)
cells; and (c) the set Irr(QW ) of irreducible QW-modules.1 In addition, a is related
to the generic degrees dE , E ∈ Irr(QW ). For E ∈ Irr(QW ), let dE =btaE+· · ·+ct AE,
with aE ≤ AE and bc 6= 0, so that taE and t AE are the smallest and largest powers
of t appearing nontrivially in dE , respectively. Then aE = a(E); see [Lusztig 2003,
Proposition 20.6]. Also, as noted in [Ginzburg et al. 2003, §6], AE = N−a(E⊗det),
where N is the number of positive roots in 8. Following [Ginzburg et al. 2003, §6],
we will use the “sorting function” f : Irr(QW )→ N defined by

(2.5) f (E)= aE + AE = a(E)+ N − a(E ⊗ det).

The function f is also constant on two-sided cells: if E is an irreducible QW-
module associated to a two-sided cell c, then E ⊗ det is an irreducible module
associated to the two-sided cell w0c. See [Lusztig 1984, Lemma 5.14(iii)].

The function f is used in [Ginzburg et al. 2003] to define various order structures
on the set Irr(QW ) of irreducible QW-modules. Put E< f E ′ (our notation) provided

1It is well known that Q is a splitting field for W [Benard 1971].
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f (E) < f (E ′). There are at least two natural ways to extend < f to a preorder. The
first way, which is only in the background for us, is to set E � f E ′⇐⇒ E ∼= E ′

or E < f E ′. This gives a poset structure, and is used, in effect, by [Ginzburg et al.
2003] for defining a highest weight category O; see [op. cit., §2.5, §6.2.1].

We use < f here to define a preorder ≤ f on the set � of left cells: First, observe
that the function f above is constant on irreducible modules associated to the same
left cell (or even the same two-sided cell) and so may be viewed as a function on
�. We can now define the (somewhat subtle) preorder ≤ f on � by setting ω≤ f ω

′

(for ω,ω′ ∈ �) if and only if either f (ω) < f (ω′), or ω and ω′ lie in the same
two-sided cell. Note that the “equivalence classes” of the preorder ≤ f identify with
the set of two-sided cells — thus, ≤ f is strictly compatible with the set of two-sided
cells in the sense of Section 1. Also,

(2.6) E <L R E ′ =⇒ E ′ < f E;

see [op. cit., Lemma 6.6]. Here E, E ′ are in Irr(QW ), and the notation E <L R E ′

means that the two-sided cell associated with E is strictly smaller than that associated
with E ′, with respect to the Kazhdan–Lusztig order on two-sided cells. A property
similar to (2.6) holds if <L R is replaced with <L , defined similarly, but using left
cells. In terms of �, this left cell version reads:

(2.7) ω,ω′ ∈�, ω <L ω
′
=⇒ f (ω) > f (ω′).

Notice that (2.7) follows from (2.6) using [Lusztig 1987a, Corollary 1.9(c)]. (The
latter result implies that ω,ω′ on the left in (2.7) cannot belong to the same two-
sided cell.) Thus, the preorder ≤ f is a refinement of the preorder ≤op

L on �, and ≤ f

induces on the set of two-sided cells a refinement of the partial order ≤op
L R . For

further discussion, see the Appendix.

3. (Dual) Specht modules of Ginzburg–Guay–Opdam–Rouquier

The asymptotic form J of H is a ring with Z-basis { jx | x ∈W } and multiplication

jx jy =
∑

z

γx,y,z−1 jz.

This ring was originally introduced in [Lusztig 1987a], though we follow [Lusztig
2003, §18.3], using a slightly different notation.

3A. The mapping $ and its properties. As per [op. cit., §18.9], define a Z-algebra
homomorphism

(3A.1) $ :H→ JZ = J ⊗Z, C ′w 7→
∑
z∈W

∑
d∈D

a(d)=a(z)

hw,d,z jz,
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where D is the set of distinguished involutions in W. Also, for any Z-algebra R,
there is an algebra homomorphism$R :HR =H⊗Z R→JR =JZ⊗Z R, obtained
by base change. In obvious cases, we often drop the subscript R from $R .

In particular, $Q(t) becomes an isomorphism

(3A.2) $ =$Q(t) :HQ(t) −→
∼ JQ(t).

See [Lusztig 1987a]. Also, $ induces a monomorphism

(3A.3) $ =$Q[t,t−1
]
:HQ[t,t−1] ↪→ JQ[t,t−1

]
= JQ⊗Q[t, t−1

].

Moreover, base change to Q[t, t−1
]/(t − 1) induces an isomorphism

(3A.4) $ =$Q :QW −→∼ JQ

(compare [Lusztig 1987b, Proposition 1.7]). This allows us to identify irreducible
QW-modules with irreducible JQ-modules.2

For the irreducible (left) JQ-module identified with E ∈ Irr(QW ), the (left)
HQ[t,t−1

]
-module

S(E) :=$ ∗(E ⊗Q[t, t−1
])=$ ∗(EQ[t,t−1

]
)

is called here a dual Specht module for HQ[t,t−1
]
; compare [Ginzburg et al. 2003,

Corollary 6.10].3 Note that S(E) ∼= EQ[t,t−1
]

as a Q[t, t−1
]-module. Therefore,

S(E) is a free Q[t, t−1
]-module. Putting SE =HomQ[t,t−1

]
(S(E),Q[t, t−1

]), define

(3A.5)
{

S̃(E) := SQ(E),
S̃E := SE,Q,

where, in general, for base change to a commutative, Noetherian Q[t, t−1
]-algebra R,{

SR(E) := S(E)⊗Q[t,t−1
]

R,
SE,R := SE ⊗Q[t,t−1

]
R ∼= HomR(SR(E), R).

2The map $ is the composition φ ◦ †, where φ and † are defined in [Lusztig 2003, §18.9] and
[op. cit., §3.5], respectively. The numbers n̂z appearing there (which are ±1 by definition in [op. cit.,
§18.8]) are all equal to 1, because of the positivity (see [op. cit., §7.8]) of the structure constants
appearing in [op. cit., 14.1]. This $ is not the same one as defined in [Ginzburg et al. 2003, p. 647],
where the C-basis was used. Nevertheless, the arguments of [op. cit., §6] go through, using the
C ′-basis and our $ (see Remark 5.2 below), so [op. cit., Theorem 6.8] guarantees the modules SC(E)
defined below using our setup are the same, at least up to a (two-sided cell preserving) permutation
of the isomorphism types labeled by the E , as the modules S(E) defined in [op. cit., Definition 6.1]
with R = C. The proof of [op. cit., Theorem 6.8] also establishes such an identification of the various
modules SR(E) when R is a completion of C[t, t−1

].
3In [Ginzburg et al. 2003, Definition 6.1], the module S(E) there is called a standard module. Our

choice of terminology is justified by the discussion following the proof of Lemma 5.1 below.
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The following proposition is proved using RDAHAs, and it is the only ingredient
in the proof of Theorem 5.6 where these algebras are used.

Proposition 3.1. Assume that e 6= 2. Suppose E, E ′ are irreducible QW-modules.
If E � E ′ and

HomHk (Sk(E), Sk(E ′)) 6= 0,

then f (E) < f (E ′). Also, HomHk (Sk(E), Sk(E))∼= k.

Proof. Without loss, we replace k in the statement of the proposition by C, using
the analogous definitions of SC(E). In addition, the statement of the proposition
is invariant under any two-sided cell preserving permutation of the labeling of the
irreducible modules. After applying such a permutation on the right (say) we may
assume, by [Ginzburg et al. 2003, Theorem 6.8] and taking into account note 1 on
page 235, that

KZ(1(E))∼= SC(E),

where

(1) 1(E) is the standard module for a highest weight category O given in [op. cit.],
having partial order ≤ f (see [op. cit., Lemma 2.9, §6.2.1]) on its set of isomorphism
classes of irreducible modules, which are indexed by isomorphism classes of
irreducible QW-modules. We take kH,1 = 1/e > 0 in [op. cit.] above Theorem 6.8
and in Remark 3.2 there.

(2) The functor KZ :O→O is naturally isomorphic to the quotient map M 7→M in
[op. cit., Proposition 5.9 and Theorem 5.14], the quotient category there identifying
with HC-mod.

Using [Ginzburg et al. 2003, Proposition 5.9], which requires e 6= 2, we have,
for any irreducible CW-modules E and E ′,

HomO(1(E),1(E ′))∼= HomO(1(E),1(E
′))∼= HomHC

(SC(E), SC(E ′)).

If E � E ′, then1(E)�1(E ′) and HomO(1(E),1(E ′)) 6= 0 implies that E < f E ′,
i.e., f (E) < f (E ′).

On the other hand, if E ∼= E ′, then HomO(1(E),1(E ′))∼= C. This implies

HomHC
(SC(E), SC(E ′))∼= C.

Returning to the original k = Q(
√
ζ ), we may conclude the same isomorphism

holds in the original setting as well. �

Corollary 3.2. Assume e 6= 2. Let E, E ′ be irreducible QW-modules. Then

Ext1H̃(S̃(E), S̃(E ′)) 6= 0 =⇒ f (E) < f (E ′).

In particular, Ext1H̃(S̃(E), S̃(E))= 0.
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Proof. In (1C.1) let π =82e(t) be the generator of the maximal ideal m of Q, and
consider the short exact sequence

0−→ S̃(E ′)
π
−→ S̃(E ′)−→ Sk(E ′)−→ 0.

By the long exact sequence of Ext, there is an exact sequence

0→ HomH̃(S̃(E), S̃(E ′))
π
−→ HomH̃(S̃(E), S̃(E ′))−→ HomH̃k

(Sk(E), Sk(E ′))

−→ Ext1H̃(S̃(E), S̃(E ′))
π
−→ Ext1H̃(S̃(E), S̃(E ′))

−→ Ext1H̃k
(Sk(E), Sk(E ′)).

Because HQ(t) = H̃Q(t) is semisimple,

Ext1H̃(S̃(E), S̃(E ′))Q(t) ∼= Ext1HQ(t)
(S(E)Q(t), S(E ′)Q(t))= 0.

In other words, if it is nonzero, Ext1H̃(S̃(E), S̃(E ′)) is a torsion module, so the map

Ext1H̃(S̃(E), S̃(E ′))
π
−→ Ext1H̃(S̃(E), S̃(E ′))

is not injective. Thus, it suffices to prove that when f (E) 6= f (E ′), the map

(3A.6) HomH̃(S̃(E), S̃(E ′))−→ HomH̃k
(Sk(E), Sk(E ′))

is surjective. If E � E ′, Proposition 3.1 gives HomH̃k
(Sk(E), Sk(E ′))= 0 implying

the surjectivity of (3A.6) trivially. On the other hand, if E ∼= E ′, the proposition
gives HomHk (Sk(E), Sk(E ′))∼= k. This also gives surjectivity of the map in (3A.6),
since it becomes surjective upon restriction to Q ⊆ HomH̃(S̃(E), S̃(E ′)) (taking
E ′ = E). �

4. Two preliminary lemmas

Let R be a commutative ring and let C be an abelian R-category. For A, B ∈ C , let
Ext1C (A, B) denote the Yoneda group of extensions of A by B. (We do not require
the higher Ext-groups in this section.) Let M, Y ∈C , and suppose that Ext1C (M, Y ) is
generated as an R-module by elements ε1, . . . , εm . Let χ :=⊕iεi ∈Ext1C (M

⊕m, Y )
correspond to the short exact sequence 0→ Y → X→ M⊕m

→ 0.

Lemma 4.1. The map Ext1C (M, Y ) −→ Ext1C (M, X), induced by the inclusion
Y ↪→ X , is the zero map.

Proof. Using the “long” exact sequence of Ext•, it suffices to show that the map δ
in the sequence

HomC (M, X)−→ HomC (M,M⊕m)
δ
−→ Ext1C (M, Y )
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is surjective — equivalently, that each εi ∈ Ext1C (M, Y ) lies in the image of δ. Let
0→ Y → X i → M→ 0 correspond to εi ∈ Ext1C (M, Y ). By construction, εi is the
image of χ under the natural map

j∗i : Ext1C (M
⊕m, Y )−→ Ext1C (M, Y ),

which is the pull-back of the inclusion ji of M into the i-th summand of M⊕m. So
there is a natural commutative diagram:

0 −−−→ Y −−−→ X −−−→ M⊕m
−−−→ 0x x x ji

0 −−−→ Y −−−→ X i −−−→ M −−−→ 0

There is a corresponding commutative diagram

(4.7)

HomC (M, X) −−−→ HomC (M,M⊕m)
δ

−−−→ Ext1C (M, Y )x x ∥∥∥
HomC (M, X i ) −−−→ HomC (M,M)

δi
−−−→ Ext1C (M, Y )

where each row is part of a “long” exact sequence. Then δi (1M)= εi . Therefore,
the commutativity of the right hand square in (4.7) immediately says that εi lies in
the image of δ. �

This lemma together with the additivity of the functor Ext1C gives immediately
the following.

Corollary 4.2. Maintain the setup above. If Ext1C(M,M)= 0, then Ext1C(M, X)=
0.

Next, let R be a commutative ring which is a Z-algebra and write q = t2
· 1, the

image in R of t2
∈ Z. We allow general parameters cs and s ∈ S in (1.1) for the

rest of this section.

Lemma 4.3. Let N⊆M be left ideals in HR , with each spanned by the Kazhdan–
Lusztig basis elements C ′y that they contain. Let s ∈ S be a simple reflection and
assume either N= 0 or that qcs+1 is not a zero divisor in R. Suppose 0 6= x ∈M/N

satisfies

(4.8) Ts · x = qcs x .

Then x is represented in M by an R-linear combination of Kazhdan–Lusztig basis
elements C ′y with sy < y.

Proof. Let [m] denote the image in M/N of m ∈M. Note that M, N, and M/N

are all R-free, since the C ′y which belong to M and N form a basis for M and N,
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respectively. The R-module M/N has a basis consisting of all [C ′y] 6= 0 with
C ′y ∈M.

Write x=
∑

y ay[C ′y]with ay[C ′y] 6=0 and C ′y ∈M. Observe that, for y∈W, s∈ S,

(4.9) sy < y =⇒ TsC ′y = qcs C ′y .

Therefore, in the above expression for x , it may also be assumed that sy > y for
each nonzero term ay[C ′y]. Let aw[C ′w] 6= 0 be chosen with w maximal among
these y. In general, for sy > y, we have

TsC ′y =−C ′y +C ′sy +
∑
z<y
sz<z

bzC ′z

for various bz ∈ R. Equating coefficients of [C ′w] gives by (4.8) that (qcs+1)aw = 0,
since C ′w does not appear with any coefficient in the expressions TsC ′y with y 6= w
and sy > y. Now the hypothesis on zero divisors forces aw = 0, a contradiction. �

Remark 4.4. As observed in (4.9) above, elements x ∈M/N satisfying the conclu-
sion of Lemma 4.3 also satisfy its hypothesis (4.8). Next, suppose that λ⊆ S and
L is any HR-module. By Frobenius reciprocity, the R-module HomHR (HR xλ,L)
identifies with the R-submodule X ⊆ L consisting of all x ∈ L satisfying (4.8) for
all s ∈ λ. Suppose L can be realized as L=M/N, with M,N as in the statement
of Lemma 4.3. If qcs + 1 is invertible in R for all s ∈ λ, then the lemma implies
that X has an R-basis consisting of all nonzero [C ′y] in L with sy < y for all s ∈ λ.

Thus, if R′ is an R-algebra, then the R′-module HomHR′
(HR′xλ,LR′) has essen-

tially the “same basis.” This fact will be used in proving the following corollary.

In the result below, we allow cs 6= 1. In case cs = 1, assumption (2) is satisfied
for R =Q if and only if e 6= 2.

Corollary 4.5. Suppose R is a commutative domain with fraction field F, and
assume that R is also a Z-algebra. Let λ⊆ S. Assume that

(1) HF is semisimple;

(2) qcs + 1 is invertible in R, for each s ∈ λ.

Then, for any dual left cell module Sω,R over R,

Ext1HR
(Sω,R, xλHR)= 0.

Proof. Put S := Sω,R . Using condition (1) and [Du et al. 1998, Lemma 1.2.13], it
suffices to prove, for each R′ = R/〈d〉 (d ∈ R), that the map

HomHR (S, xλHR)−→ HomHR′
(SR′, xλHR′)

is surjective. Here SR′ = S⊗R R′.
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By [op. cit., Lemma 2.1.9], the left HR-module (xλHR)
∗
:= HomR(xλHR, R)

is naturally isomorphic to HR xλ. By hypothesis, S = L∗ is the dual of a left cell
module L, R-free by definition. Thus, L ∼= S∗; also, (HR xλ)∗ ∼= xλHR . There
are similar isomorphisms for analogous R′-modules (for which we use the same
notation (−)∗). The functor (−)∗ provides a contravariant equivalence from the
category of finitely generated R-free left HR-modules and the corresponding right
HR-module category. A similar statement holds with R replaced by R′. Finally,
there is a natural isomorphism (−)∗⊗R R′ −→∼ (−⊗R R′)∗.

Consequently, it is sufficient to prove that

HomHR (HR xλ,L)−→ HomHR′
(HR′xλ,LR′)

is surjective. (Here LR′ denotes the left cell module in HR′ defined by the same left
cell as L for H.) However, viewing L and LR′ as cell modules (over HR and HR′ ,
respectively), hypothesis (2), Lemma 4.3, and Remark 4.4 give the “same basis”
(over R and R′, respectively). �

5. The construction of X̃ω and the main theorem

In this section, we prove the main result of the paper (Theorem 5.6).
Let Q be as in (1C.1). Recall that H̃ denotes the Q-algebra H⊗Z Q. In general,

modules for H̃ are decorated with a “tilde” (e.g., X̃ ). In particular, we recall from
(1B.3) the notations S̃(ω) and S̃ω.

5A. Preliminaries. Consider a left cell ω and let Jω =
∑

y∈ω Z jy . Then (2.4)
implies that Jω is a left J -module. Using the monomorphism $ in Section 3, form
the left H-module $ ∗(Jω⊗Z), the restriction of the JZ -module Jω⊗Z to H.

Lemma 5.1. There is an H-module isomorphism

σ :$ ∗(Jω⊗Z)−→ S(ω) :=H≤Lω/H<Lω

induced by the map σ : JZ→H, jy 7→ C ′y . In particular, S̃(ω) is a direct sum of
modules S̃(E) for some E ∈ Irr(QW ).

Proof. This is a refinement of [Lusztig 2003, §18.10]. We first observe that the map
σ clearly induces a Z-module isomorphism. It remains to check for y ∈ ω that

σ($(C ′x) jy)≡ C ′xC ′y mod H<Lω, (x ∈W )

The proof of [op. cit, §18.10(a)]4 gives the left hand equality in the expression

(5A.1) σ($(C ′x) jy)= σ

( ∑
u

a(y)=a(u)

hx,y,u ju

)
=

∑
u

a(y)=a(u)

hx,y,uC ′u ≡C ′xC ′y mod H<Lω.

4The main ingredient is [op. cit, §18.9(b)]. As previously noted, the n̂z may be set equal to 1.
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The middle equality is just the definition of σ. Finally, the right hand congruence
follows from the fact that, when hx,y,uC ′u is nonzero mod H<Lω, u must belong to
the same left cell ω as y, and hence have the same a-value. �

If W is of type A and ω is the left cell containing the longest word w0,λ for a
partition λ. Then $ ∗(Jω ⊗Z) is isomorphic to the left cell module whose dual
is the Specht module Sλ. So S̃(E) above could be called a “dual Specht module,”
with S̃(E)∗ a “Specht module.” The modules S̃ω are also candidates for the name
“Specht module” [Du et al. 1998, p. 198].

Remark 5.2. A completely analogous result to Lemma 5.1 holds if the Kazhdan–
Lusztig C-basis (instead of the C ′-basis here) is used, as in [Ginzburg et al. 2003].
First, it follows from [Lusztig 1985, (3.2)] that the map (which we call τ ) Z→ Z ,
sending t 7→ −t , takes the coefficients hx,y,z to analogous coefficients for the
C-basis. Extend τ to an automorphism, still denoted τ , of JZ , taking jx to its
C-analogue; we may put τ( jx)= (−1)`(x) jx . Thus, any expression hx,y,z jz is sent
to a C-basis analogue. In particular, $(C ′x) is sent to $(Cx), where the latter $
is taken in the C-basis set-up. Now it is clear from (5A.1) that the analogue of
Lemma 5.1 holds in the C-basis set-up. Note the resulting left cell modules in H
do not depend on which canonical basis is used. This allows an identification of
the module S(ω) in Lemma 5.1 with its C-basis counterpart.

An analogous result holds for two-sided cells, e.g., the H-module $ ∗(Jc⊗Z Z)
in [Ginzburg et al. 2003, Corollary 6.4] does not depend on the whether the C ′-basis
is used (as in this paper) or the C-basis is used (as in [op. cit]). We do not
know, however, if the base-change of the automorphism τ to JQ(t) preserves the
isomorphism types of irreducible JQ(t)-modules, though their associated two-sided
cells are preserved. This leads to the “permutation” language used in footnote 2.
In particular, we do not know if the bijection noted below [Ginzburg et al. 2003,
Definition 6.1] depends on the choice of C- or C ′-basis set-up, and could result
in one choice leading to an identification which is a (two-sided cell preserving)
permutation of the other.

Corollary 5.3. Assume that e 6= 2. For left cells ω,ω′, we have

Ext1H̃(S̃ω, S̃ω′) 6= 0 =⇒ f (ω) > f (ω′).

Proof. By Lemma 5.1 and Corollary 3.2 (which requires e 6= 2),

Ext1H̃(S̃(ω
′), S̃(ω)) 6= 0 =⇒ f (ω) > f (ω′). �

For λ⊆ S, the induced (right) H-module xλH (see Section 1B) has an increasing
filtration

(5A.2) F •λ : 0= F0
λ ⊆ F1

λ ⊆ · · · ⊆ Fmλ

λ
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with sections F i+1
λ /F i

λ
∼= Sωi and bottom section F1

λ = F1
λ /F0

λ
∼= Sω1 , where ω1

is the left cell containing the longest word wλ,0 in the parabolic subgroup Wλ. If
i > 1, then ω1 >L ωi ; see [Du et al. 1998, (2.3.7)]. The indexing ωi of (some of)
the left cells depends on λ, and is formally “opposite” (in reverse order) to that
used in [op. cit]. We write ωλ := ω1 to denote its dependence of the latter cell on λ.

Lemma 5.4. In the filtration (5A.2), if i > 1, then f (ωi ) > f (ωλ).

Proof. This follows from (2.7), since ω1>L ωi for all 2≤ i ≤mλ, as noted above. �

5B. First construction of a module X̃ω. Let ω ∈ � be a fixed left cell. The
construction of X̃ω relies on Corollary 5.3.

We iteratively construct an H̃-module X̃ω, filtered by dual left cell modules, such
that S̃ω ⊆ X̃ω is the lowest nonzero filtration term, and

Ext1H̃(S̃ω′, X̃ω)= 0 for all left cells ω′.

It will also be a consequence of the construction that every other filtration term S̃ν ,
ν ∈�, satisfies f (ν) > f (ω).

For j ∈ N, let
� j = {ν ∈� | f (ν)= j}.

Fix i= f (ω). Suppose Ext1H̃(S̃τ , S̃ω) 6=0 for some τ ∈�. Then, by the Corollary 5.3,
f (τ ) > f (ω) = i . Assume f (τ ) = j is minimal with this property. Since Q is
a DVR and Ext1H̃(S̃τ , S̃ω) is finitely generated, it follows that Ext1H̃(S̃τ , S̃ω) is a
direct sum of mτ (≥ 0) nonzero cyclic Q-modules. Let Ỹτ be the extension of S̃⊕mτ

τ

by S̃ω, constructed as above Lemma 4.1 (using generators for the cyclic modules).
Then by Lemma 4.1, Corollary 4.2, and Corollary 5.3,

Ext1H̃(S̃τ , Ỹ τ )= 0.

Let
� j,ω = {ν ∈� j | Ext1H̃(S̃ν, S̃ω) 6= 0}.

If ν ∈ � j,ω \ {τ }, then Ext1H̃(S̃ν, S̃ω) ∼= Ext1H̃(S̃ν, Ỹτ ) by Corollary 5.3, together
with the long exact sequence for Ext.5

Thus, if Ỹτ,ν denotes the corresponding extension of S̃⊕mν
ν by Ỹτ (again using

the construction above Lemma 4.1), then

Ext1H̃(S̃ω′, Ỹτ,ν)= 0 for ω′ = τ, ν.

5We also use the fact that f (ν) 6= f (τ ) implies that HomH(S̃ν , S̃τ )= 0 since HomQ(S̃ν , S̃τ ) and
hence HomH(S̃ν , S̃τ )) are free O-modules. Thus, if HomH(S̃ν , S̃τ )) 6= 0, then it remains nonzero
upon base change to K . This is impossible since ν and τ belong to different two-sided cells and H̃K
is semisimple.
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From the general identity

Ext1H̃(A,C)⊕Ext1H̃(B,C)∼= Ext1H̃(A⊕ B,C),

one sees that Ỹτ,ν is isomorphic to the “sum” extension of S̃⊕mτ
τ ⊕ S̃⊕mν

ν by S̃ω.
Continuing this process, we obtain an extension Ỹ j of

⊕
τ∈� j,ω

S̃⊕mτ
τ by S̃ω, with

Ext1H̃(S̃ω′, Ỹ j )= 0 for all ω′ ∈
⋃
`≤ j

�`.

Thus, Ext1H̃(S̃ω′, Ỹ j ) 6= 0 implies that f (ω′) > j .
Continuing the above construction with the role of S̃ω replaced by Ỹ j1 with

j1 = j , we obtain a module Ỹ j1, j2 such that j1 < j2 and

Ext1H̃(S̃ω′, Ỹ j1, j2)= 0 for all ω′ ∈
⋃
`≤ j2

�`.

Let m be the maximal f -value. This construction will stop after a finite number
r = r(ω) of steps, resulting in an H̃-module X̃ω := Ỹ j1, j2,..., jr such that

f (ω) < j1 < j2 < · · ·< jr ≤ m, and Ext1H̃(S̃ω′, X̃ω)= 0 for all ω′ ∈�.

5C. A second construction of a module X̃ω. The construction will generally lead
to a larger module X̃ω, so is not as “efficient” as the first construction above, in
some sense. Nevertheless, the construction has similar properties, is cleaner, and
has the very considerable advantage that it first builds an H-module Xω, then sets
X̃ω = Xω,Q := (Xω)Q. Both Xω and X̃ω are built with the requirement e 6= 2, this
condition being needed in the supporting Proposition 5.5(3) below.

As before, � denotes the set of all left cells of W, and �i = {ω ∈� | f (ω)= i}
for i ∈ N.

Fix ω ∈ �, and put i0 = f (ω). For each i ∈ Z, put Xω,i = 0 if i < i0 (we use
these terms only as a notational convenience), and put Xω,i0 = Sω. Next, we give
a recursive definition of Xω, j for all j ≥ i0, with the case j = i0 just given. If
Xω, j has been defined, define Xω, j+1 as follows: Let M denote the direct sum
(possibly zero) of all H-modules Sτ with f (τ )= j +1. Using the category H-mod
for C in the construction above Lemma 4.1, and Y = Xω, j , put Xω, j+1 = X in that
construction (making some choice for the generators Ext1H(M, Y ) that are used).
For j sufficiently large, we have �i = 0 for all i > j , and so Xω,i = Xω, j . Thus,
we set Xω := Xω, j for any such sufficiently large j .

Proposition 5.5. The H-module Xω and the increasing filtration {Xω,i }i∈Z, con-
structed above, have the following properties:

(1) The smallest index of a nonzero section Xω,i/Xω,i−1 is i = f (ω)= i0, and the
section is Sω in that case.
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(2) All sections Xω,i/Xω,i−1 are direct sums of modules Sτ , τ ∈�, with varying
multiplicities (possibly 0), and with f (τ )= i .

(3) If e 6= 2, then Ext1H̃(Sν,Q, Xω,Q)= 0 for all ν, ω ∈�.

Proof. Properties (1) and (2) are immediate from the construction of Xω.
To prove (3), fix ν and ω ∈�. We will apply Corollary 5.3 several times. First,

it shows the vanishing in (3) holds section by section of Xω,Q, unless f (ν) > f (ω).
So assume that f (ν) > f (ω).

Put j = f (ν) − 1 and let M be the H-module used above in the construc-
tion of Xω, j+1 from Y = Xω, j . Lemma 4.1 implies the map Ext1H(M, Y ) →
Ext1H(M, Xω, j+1) is the zero map. Applying the flat base change from Z to Q,
we find that the map Ext1H̃(MQ, YQ)→ Ext1H̃(MQ, XQ) is zero, with X = Xω, j+1.
However, Corollary 5.3 implies Ext1H̃(MQ,MQ) = 0. Now the long exact se-
quence argument of Corollary 4.2 shows that Ext1H̃(MQ, XQ) = 0. Since Sν is
a direct summand of M (by construction, since f (ν) = j + 1), it follows that
Ext1H̃(Sν,Q, XQ)= 0.

However, Xω/Xω, j+1 is filtered by modules Sτ with f (τ ) > j + 1= f (ν). So

Ext1H̃(Sν,Q, (Xω/Xω, j+1)Q)= 0

by Corollary 4.2 again. Together with the conclusion of the previous paragraph,
this gives the required vanishing Ext1H̃(Sν,Q, Xω,Q)= 0. �

To complete the second construction, set X̃ω = Xω,Q.

5D. The main result. Let �′ be the set of all left cells that do not contain the
longest element of a parabolic subgroup. Put

T̃ =
⊕
λ⊆S

xλH̃ and X̃ =
⊕
ω∈�′

X̃ω.

Here and in the theorem below, objects (modules, algebras, etc.) are decorated with
a tilde ∼ because they are taken over the DVR Q in (1C.1).

We are now ready to prove the following main result of the paper.

Theorem 5.6. Assume that e 6= 2. Let T̃ + = T̃ ⊕ X̃ , Ã+ = EndH̃(T̃
+), and

1̃(ω)= HomH̃(S̃ω, T̃
+) for ω ∈�. Then {1̃(ω)}ω∈� is a strict stratifying system

for the category Ã+-mod with respect to the quasi-poset (�,≤ f ).

Proof. For each left cell ω, put T̃ω = xλH̃ if ω contains the longest element wλ,0
of Wλ, where λ ⊆ S. If there is no such λ for ω, put T̃ω = X̃ω as constructed in
Section 5B. (One can use the X̃ω from Section 5C with slight adjustments, left to
the reader.) In the first case, T̃ω has a filtration by dual left cell modules, and S̃ω
appears at the bottom. Moreover, f (ω) < f (ω′) for any other filtration section S̃ω′ ,
by Lemma 5.4. This same property holds also in the case T̃ω = X̃ω by construction.



EXTENDING HECKE ENDOMORPHISM ALGEBRAS 247

Put T̃ =
⊕

ω T̃ω and note T̃ + = T̃. We will apply Theorem 1.1 to T̃ and the
various T̃ω, where H̃ plays the role of the algebra B there, Q plays the role of
R there, S̃ω is Sλ, etc. We are required to the check three conditions (1), (2), (3)
in Theorem 1.1. The construction in Section 5B of dual left cell filtrations of the
various T̃ω is precisely what is required for the verification of (1).

Condition (2) translates directly to the requirement

HomH̃(S̃µ, T̃ω) 6= 0 =⇒ ω ≤ f µ

for given µ,ω. However, if HomH̃(S̃µ, T̃ω) 6= 0, then there must be a nonzero
HomH̃(S̃µ, S̃ω′) for some filtration section S̃ω′ of T̃ω. In particular, f (ω′)≥ f (ω).
Also, (S̃µ)K and (S̃ω′)K must have a common irreducible constituent, forcing the
two-sided cells containing µ and ω′ to agree. This gives f (µ) = f (ω′) ≥ f (ω);
so (2) holds.

Finally,

(5D.1) Ext1H̃(S̃µ, T̃ω)= 0 for all µ,ω.

This follows from the construction Section 5B for T̃ω = X̃ω and by Corollary 4.5
in case T̃ω = xλH̃. The conclusion of Theorem 1.1 now immediately gives the
theorem we are proving here. �

6. Identification of Ã+ = EndH̃(T̃ +)

The constructions in Section 5B of the modules X̃ω in the previous section work
just as well using the modules S̃E := S̃(E)∗ for E ∈ Irr(QW ) defined in (3A.5)
to replace the dual left cell modules S̃ω. This results in right H-modules X̃E . As
in the case of X̃ω, we have the following property, with the same proof. In the
statement of the following proposition, X̃E can be defined using either of the two
constructions.

Proposition 6.1. If e 6= 2, then Ext1H̃(S̃E ′, X̃E)= 0 for all E, E ′ ∈ Irr(QW ).

If we use the first construction given in Section 5B, the modules X̃E have strong
indecomposability properties, which the modules X̃ω, ω ∈�, generally do not have
with either construction. In the following proposition, we assume that X̃E is defined
by the first construction Section 5B.

The following result can be argued without using RDAHAs, but it is faster to quote
Rouquier’s 1-faithful covering theory, especially [Rouquier 2008, Theorem 5.3],
which applies to our e 6= 2 case, over R, where

R := (C[t, t−1
](t−
√
ζ ))
∧
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is the completion of the localization C[t, t−1
](t−
√
ζ ) at the maximal ideal (t −

√
ζ ).

Note that R is a Q-module via the natural ring homomorphism Q→R. Note also
that the set Irr(QW ) corresponds naturally to the set Irr(W ) := Irr(CW ) in [op. cit].

Proposition 6.2. Assume that e 6= 2. The right H̃-modules X̃E are indecomposable,
as is each X̃E ⊗ k. The endomorphism algebras of all these modules are local with
radical quotient k.

Proof. It is clear that X̃E,R = X̃E ⊗Q R can be constructed from S̃E,R in the same
way that X̃E is constructed from S̃E , again using the method of Section 5B. Also, the
proof of [op. cit, Theorem 6.8] shows that the R-dual of S̃E,R is the KZ-image of
the standard module1R(E) in the R-version of O. (Recall the issues in footnote 2.)

Consequently, by the 1-faithful property, (X̃E,R)
∗ is the image of a dually con-

structed module P under the functor KZ, filtered by standard modules, and with
Ext1O(P,− ) vanishing on all standard modules. Such a module P is projective in
O, by [op. cit, Lemma 4.22]. (We remark that both O and KZ would be given a
subscript R in [Ginzburg et al. 2003] though not in [Rouquier 2008].)

If we knew P were indecomposable, we could say X̃ E,R is indecomposable.
However, the indecomposability of P requires proof.6 We do this by showing P is
the projective cover in O of the standard module 1(E)=1O(E). We can, instead,
inductively show the truncation Pi , associated to the poset ideal of all E ′ ∈ Irr(QW )

with f (E ′) ≤ i , is the projective cover of 1(E) in the associated truncation Oi

of O. This requires 1(E) to be an object of Oi , or equivalently f (E)≤ i .
If f (E)= i , then Pi =1(E) is trivially the projective cover of1(E). Inductively,

Pi−1 is the projective cover of 1(E) in Oi−1 for some i > f (E). Let P ′ denote
the projective cover of 1(E) in Oi . The truncation (P ′)i−1 to Oi−1 of P ′— that is,
its largest quotient which is an object of Oi−1 — is clearly isomorphic to Pi−1. Let
θ : P ′→ Pi be a homomorphism extending a given isomorphism ψ : (P ′)i−1→ Pi−1

and let τ : Pi → P ′ be a homomorphism extending ψ−1. Let M,M ′ denote
the kernels of the natural surjections Pi � Pi−1 and P ′ � (P ′)i−1. The map
τθ : P ′→ P ′ is surjective and, consequently, it is an isomorphism. It induces the
identity on (P ′)i−1. Therefore, the induced map

τ |M θ |M ′ : M ′ −→ M ′

is an isomorphism, and M=M ′⊕M ′′ for some object M ′′ in O. By construction, M
is a direct sum of objects 1(E ′), with f (E ′)= i , each appearing with multiplicity
m E ′ = rank Ext1O(Pi ,1(E ′)). However,

Ext1O(Pi−1,1(E ′))∼= HomO(M ′,1(E ′)).

6A similar point should be made regarding the uniqueness claim in [Rouquier 2008, Proposi-
tion 4.45], which is false without a minimality assumption on Y (M) there.
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It follows that M ′′ = 0 and Pi ∼= P ′ is indecomposable.
In particular, P is indecomposable and consequently X̃E,R is indecomposable,

as noted. In turn, this implies X̃E is indecomposable. The 0-faithfulness (or just
the covering property itself) of the cover given by O and KZ imply

EndH̃R
(X̃E,R)

op ∼= EndH̃R
(X̃∗E,R)

op ∼= EndO(P).

Thus, the base-changed module P ⊗R C has endomorphism ring

EndOC
(P ⊗R C)∼= EndO(P)⊗R C,

where OC is the C-version of O. This is a standard consequence of the projectivity
of P. By [Rouquier 2008, Theorem 5.3], the C versions of KZ and O give a cover for
H̃R⊗C. So EndH̃C

(X̃E,R⊗C)op∼= EndOC
(P⊗C) is local, with radical quotient C.

However, we have

(X̃E ⊗Q k)⊗k C∼= X̃E,R ⊗C.

In particular, X̃E ⊗Q k is indecomposable since (by endomorphism ring consider-
ations) the H̃R ⊗C-module X̃E,R ⊗C is indecomposable. So the endomorphism
ring of X̃E ⊗Q k over the finite dimensional algebra H̃⊗Q k is local. The radical
quotient is a division algebra D over k with base change −⊗k C to a semisimple
quotient of EndH̃C

(X̃E,R ⊗C), which could only be C itself. Consequently, D = k.
Finally, the vanishing Ext1H̃(X̃E , X̃E)= 0 implies

EndH̃(X̃E)⊗Q k ∼= EndH̃k
(X̃E ⊗Q k).

So the ring EndH̃(X̃E) is local with radical quotient k. This completes the proof. �

Lemma 6.3. Assume e 6= 2. Let E ∈ Irr(QW ). Then X̃E is a direct summand of T̃ +.

Proof. Suppose first that S̃(E) is a direct summand of a left cell module S̃(ω)∼=
(S̃ω)∗, where ω contains the longest element of a parabolic subgroup Wλ, for λ⊆ S.
This implies S̃ω is the lowest term in the dual left cell module filtration of xλH̃.
Consequently, there is an inclusion ψ : S̃E ↪→ xλH̃ with cokernel filtered by
(sections) S̃E ′ , E ′ ∈ Irr(QW ). Thus, ψ−1

:ψ(S̃E)→ X̃E may be extended to a map
φ : xλH̃→ X̃E of H̃-modules. Similarly (using e 6= 2 and Corollary 4.5), there is
a map τ : X̃E → xλH̃ extending ψ . The composite τφ restricts to the identity on
S̃E ⊆ X̃E .

On the other hand, restriction from X̃E to S̃E defines a homomorphism

EndH̃(X̃E)−→ EndH̃(S̃E)

since (S̃E)K is a unique summand of the (completely reducible) H̃⊗Q K-module
X̃E⊗Q K . (Observe S̃E= X̃E∩(S̃E)K , since the Q-torsion module (X̃E∩(S̃E)K )/S̃E
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must be zero in the Q-torsion free module X̃E/S̃E .) Thus, τφ is a unit in the local
endomorphism ring EndH̃(X̃E), so X̃E is a summand of xλH̃, and hence of T̃ .

Next consider the case in which S̃E is a summand of a dual left cell module S̃ω
(this always happens for some ω), but ω does not contain the longest element of any
parabolic subgroup. In this case, X̃ω is one of the summands of X̃ by construction.
The argument above may be repeated with X̃ω playing the role of xλH̃. In the same
way, X̃E is a direct summand of X̃ω, and thus of X̃ .

In both cases, we conclude that X̃E is a direct summand of T̃ ⊕ X̃ = T̃ +. �

Theorem 6.4. Assume that e 6= 2. The Q-algebra Ã+ is quasi-hereditary, with
standard modules 1̃(E)= HomH̃(S̃E , T̃ +), E ∈ Irr(QW ), and partial order < f .

Proof. We have already seen that this algebra is standardly stratified with strict
stratifying system {1̃(ω)}ω∈�. Clearly, 1̃(ω) is a direct sum of various 1̃(E), and
every 1̃(E) arises as such a summand.

Put P̃(E) = (X̃E)
�
:= HomH̃(X̃E , T̃ +), E ∈ Irr(QW ). Then P̃(E) is a direct

summand of Ã+ = EndH̃(T̃
+), viewed as a left module over itself. Thus, P̃(E)

is projective as an Ã+-module, and P̃(E)� := HomÃ+(P̃(E), T̃
+) is naturally

isomorphic to X̃E . In particular, the contravariant functor (−)� gives an isomorphism

EndÃ+(P̃(E))∼= (EndH̃(X̃E))
op.

Consequently, P̃(E) also has a local endomorphism ring with radical quotient k,
as does EndÃ+k

(P̃(E)⊗Q k). It follows that P̃(E) is an indecomposable projective
Ã+-module with a irreducible head. (The arguments in this paragraph are largely
standard, many taken from [Du et al. 1998].)

By (5D.1), Ext1H̃(S̃ω, T̃
+) = 0 for all dual left cell module S̃ω. Consequently,

a similar vanishing holds with S̃ω replaced by any module S̃E ′ , E ′ ∈ Irr(QW ). It
follows that the restriction map

P̃(E)= HomH̃(X̃E , T̃ +)−→ HomH̃(S̃E , T̃ +)= 1̃(E)

is surjective. Hence, 1̃(E) has an irreducible head. Also, repeating the argument
for filtered submodules of X̃E , we find that the kernel of the above map has a
filtration with sections 1̃(E ′), E ′ ∈ Irr(QW ) (rather than X̃E itself), satisfying
f (E ′) > f (E).

Next, we claim that 1̃(E)� :=HomÃ+(1̃(E), T̃
+) is naturally isomorphic to S̃E .

More precisely, we claim that the natural map ev : S̃E→ (S̃E)
�� is an isomorphism.

We showed above that the sequence

0−→ (X̃E/S̃E)
�
−→ (X̃E)

�
−→ (S̃E)

�
−→ 0

is exact. Applying (−)� once more, we get an injection

0−→ (S̃E)
��
−→ (X̃E)

��
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with X̃E
ev
→ (X̃E)

�� an isomorphism. This gives inclusions

S̃E ∼= ev(S̃E)⊆ (S̃E)
��
⊆ (X̃E)

�� ∼= X̃E .

If (−)⊗Q K is applied, the first inclusion becomes an isomorphism. This gives

(S̃E)
��
⊆ (X̃E)

��
∩ (S̃E)K = S̃E

identifying X̃E with (X̃E)
�� and S̃E with its image in (X̃E)

��. Consequently,
ev(S̃E)= (S̃E)

��, proving the claim.
Finally, we suppose E � E ′ ∈ Irr(QW ) and HomÃ+(P̃(E

′), 1̃(E)) 6= 0. Using
the identifications P̃(E ′)= (X̃ E ′)

�, 1̃(E)= (S̃E)
�, P̃(E ′)�∼= X̃ E ′ , and 1̃(E)�∼= S̃E ,

we have

0 6= HomÃ+(P̃(E
′), 1̃(E))∼= HomH̃(S̃E , X̃ E ′)⊆ HomH̃K

(S̃E ⊗Q K , X̃ E ′ ⊗Q K ).

This implies f (E ′)< f (E). It follows now from [Du et al. 1998, Theorem 1.2.8] (in
the context of stratified algebras), [Du and Scott 1994, Corollary 2.5], or [Rouquier
2008, Theorem 4.16] that Ã+ is quasi-hereditary over Q. �

We are now ready to establish the category equivalence mentioned in the intro-
duction. Again, we use the covering theory of [Rouquier 2008].

Theorem 6.5. Assume that e 6= 2. The category of left modules over the base-
changed algebra

Ã+R := Ã+⊗Q R

is equivalent to the R-category O of modules, as defined in [Rouquier 2008] for the
RDAHA associated to W over R.

Proof. Continuing the proof of the theorem above, the projective indecomposable
Ã+-modules are the various P̃(E) = (X̃E)

�. Consequently, T̃ + = (Ã+)� is the
direct sum of the modules, X̃E , each with nonzero multiplicities. The modules X̃ E,R

remain indecomposable, as observed in the proof of the indecomposability of the
modules X̃E above. By construction, Ext1H̃(S̃E ′, X̃E)= 0 for all E, E ′ ∈ Irr(QW ).
Thus, there is a similar vanishing for S̃E ′,R and X̃E,R , and — in the reverse order —
for their R-linear duals. Observe that (S̃E ′,R)

∗∼= S̃(E ′)⊗Q R is KZ(1(E ′)), taking
1(E ′)=1O(E ′) to be the standard module for the category O over R as discussed
in [loc. cit.] together with KZ for this category.

Put
Y =

⊕
E

(X̃E,R)
∗

and set Y (S̃∗E,R)= (X̃E,R)
∗. This notation imitates that of [op. cit, Proposition 4.45].

The first part of this proposition is missing a necessary minimality assumption
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on the rank of Y (M), in the terminology there.7 However, this is satisfied for
M = (S̃E,R)

∗ and Y (M)= (X̃E,R)
∗ because (X̃E,R)

∗ is indecomposable. Several
other corrections, in addition to the minimality requirement, should be made to
[op. cit, Proposition 4.45]:

• A′ should be redefined as EndB(Y )op;

• P ′ should be redefined as HomB(Y, B)op.

In addition, B in [op. cit, §4.2.1] should be redefined as EndA(P)op. The instances
of “op” here and above insure action on the left, and consistency with [Ginzburg
et al. 2003, Theorems 5.14 and 5.15]. The definition of P ′ is given to be consistent
with the basis covering property EndA′(P ′)op ∼= B, as in [loc. cit.] — we do not
need this fact below.

With these changes, [Rouquier 2008, Theorem 5.3, Proposition 4.45, and Corol-
lary 4.46] guarantees that A′-mod is equivalent to O, where A′ = EndH̃R

(Y ). (All
we really need for this are the 0- and 1-faithfulness of the O version of the KZ
functor.) However, EndH̃R

(Y )∼= EndH̃R
(Y ∗)op, and Y ∗ is the direct sum

⊕
E X̃E,R .

Hence,
Y ∗� ∼=

⊕
E

(X̃E,R)
� ∼=

⊕
E

P̃(E)⊗Q R.

Recall that (X̃E,R)
�� ∼= X̃E,R , so that the analogous property holds for Y ∗. Thus,

EndH̃R
(Y ∗)op ∼= EndÃ+R

(Y ∗�).

Since the module Y ∗� as displayed above is clearly a projective generator for Ã+R ,
there is a Morita equivalence over R of Ã+R with A′. Hence, Ã+R-mod is equivalent
to O, as R-categories. �

Appendix: comparison with [Du et al. 1998, Conjecture 2.5.2]

Conjecture 1.2 in this paper retains the most essential features of [Du et al. 1998,
Conjecture 2.5.2], but is more flexible. In particular:

(1) Conjecture 1.2 does not specify the preorder ≤, only requiring that it be strictly
compatible with the partition of � into two-sided cells. This allows the use of
the preorder ≤ f , defined in Section 2 above. [Du et al. 1998] specifies for ≤ the
preorder ≤op

L R built from the preorder ≤L R originally used by Kazhdan–Lusztig
to define the two-sided cells. In both cases, the set � of “strata” is the same,
identifying with the set of two sided cells.

7The proposition claims uniqueness for a pair (Y (M), pm). However, one gets another pair by
adding a direct summand F(P) to the kernel of pm , where P is any finitely generated module in the
highest weight category C .
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(2) Conjecture 1.2 concerns the Hecke algebra H (defined by the relations (1.1)
over Z = Z[t, t−1

], whereas [Du et al. 1998, Conj. 2.5.2] uses Hecke algebras over
Z[t2, t−2

]. Largely, this change has been made to conform to the literature, which
most often uses the former ring. There is an additional advantage that the quotient
field Q(t) is almost always a splitting field for the Hecke algebra HQ(t). Note that
Q(t) is always a splitting field in case the rank is greater than 2. In the rank 2 case
of 2F4, HQ(t) splits after

√
2 is adjoined. The conjecture in all rank 2 cases follows

from [Du et al. 1998, §3.5].

(3) The role of A+R in Conjecture 1.2 is played by EndHR (T
+

R ) in [Du et al. 1998,
Conjecture 2.5.2]. The two R-algebras are the same whenever R is flat over
Z = Z[t, t−1

]. While it is an interesting question as to whether or not such a base
change property holds for any Z-algebra R, it seems best to separate this issue from
the main stratification proposal of the conjecture.

Finally, we mention that the original conjecture [Du et al. 1998, Conjecture 2.5.2]
was checked in that paper for all rank two types (in both the equal and unequal
parameter cases), and checked later in type A for all ranks; see [op. cit]. These
verifications show also that Conjecture 1.2 is true in these cases.
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PRODUCTS OF PARTIAL NORMAL SUBGROUPS

ELLEN HENKE

In memory of Robert Steinberg.

We show that the product of two partial normal subgroups of a locality (in
the sense of Chermak) is again a partial normal subgroup. This generalizes
a theorem of Chermak and fits into the context of building a local theory of
localities.

1. Introduction

Localities were introduced by Andrew Chermak [2013], in the context of his proof of
the existence and uniqueness of centric linking systems. Roughly speaking, localities
are group-like structures which are essentially the “same” as the transporter systems
of Oliver and Ventura [2007]; see the appendix to [Chermak 2013]. As centric
linking systems are special cases of transporter systems, the existence of centric
linking systems implies that there is a locality attached to every fusion system. It
is work in progress of Chermak to build a local theory of localities similar to the
local theory of fusion systems as developed by Aschbacher [2008; 2011]. In fact, it
seems often an advantage to work inside of localities, where some group theoretical
concepts and constructions can be expressed more naturally than in fusion systems.
Thus, one can hope to improve the local theory of fusion systems, once a way of
translating between fusion systems and localities is established. The results of this
paper can be considered as first evidence that some constructions are easier in the
world of localities. We prove that the product of partial normal subgroups of a
locality is itself a partial normal subgroup, whereas in fusion systems the product of
normal subsystems has only been defined in special cases; see [Aschbacher 2011,
Theorem 3]. It is work in progress of Chermak to show that there is a one-to-one
correspondence between the normal subsystems of a saturated fusion system F
and the partial normal subgroups of a linking locality attached to F in the sense of
[Henke 2015, Definition 2]. This is one reason why our result seems particularly
important in the case of linking localities. Another reason is that the concept of a
linking locality generalizes properties of localities corresponding to centric linking

MSC2010: 20D20, 20N99.
Keywords: fusion systems, localities, transporter systems.
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systems and is thus interesting for studying the homotopy theory of fusion systems;
see [Broto et al. 2003; 2005; 2007; Henke 2015]. It is however crucial for our
proof that we work with arbitrary localities, since our arguments rely heavily on
the theory of quotient localities introduced by Chermak [2015], and a quotient of a
linking locality is not necessarily a linking locality again. Thus, we feel that the
method of our proof gives evidence for the value of studying localities in general
rather than restricting attention only to the special case of linking localities.

To describe the results of this paper in more detail, let L be a partial group as
defined in [Chermak 2013, Definition 2.1; 2015, Definition 1.1]. Thus, there is an
involutory bijection L→ L, f 7→ f −1, called an “inversion”, and a multivariable
product 5 which is only defined on certain words in L. Let D be the domain of the
product; i.e., D is a set of words in L and 5 is a map D→ L. Following Chermak,
we call a nonempty subset H of L a partial subgroup of L if h−1

∈H for all h ∈H
and 5(v) ∈H for all words v in the alphabet H with v ∈ D. A partial subgroup N
is called a partial normal subgroup if x f

:=5( f −1, x, f ) ∈N for all x ∈N and
f ∈ L for which ( f −1, x, f ) ∈ D. Given two subsets M and N of L, the product
MN is naturally defined by

MN = {5(m, n) : m ∈M, n ∈N , (m, n) ∈ D}.

The problem is however to show that this is again a partial normal subgroup if M
and N are partial normal subgroups. Indeed, as we show in Example 2.3, this is not
true in general if L is an arbitrary partial group. It is true however in the important
case that (L,1, S) is a locality. Chermak [2015, Theorem 5.1] proved this in a
special case and we build on his result to prove the general case. More precisely,
we prove the following theorem:

Theorem 1. Let (L,1, S) be a locality and let M,N be partial normal subgroups
of L. Then MN = NM is a partial normal subgroup of L and (MN ) ∩ S =
(M∩ S)(N ∩ S). Moreover, for every g ∈MN there exists m ∈M and n ∈ N
such that (m, n) ∈ D, g =5(m, n), and Sg = S(m,n).

To understand the technical conditions stated in the last sentence of the theorem,
we recall from [Chermak 2013; 2015] that

Sg = {s ∈ S : (g−1, s, g) ∈ D and sg
∈ S}

for any g ∈ L. Moreover, for a word v = (g1, . . . , gn) in L, Sv is the set of all s ∈ S
such that there exist x0, . . . , xn ∈ S with s = x0, (g−1

i , xi−1, gi ) ∈ D and xgi
i−1 = xi

for i = 1, . . . , n. By [op. cit, Proposition 2.6 and Corollary 2.7], the sets Sg and
Sv are subgroups of S, Sg ∈ 1 for any g ∈ L, and Sv ∈ 1 if and only if v ∈ D.
Therefore, the condition Sg = S(m,n) stated in the theorem is crucial for proving that
certain products are defined in L. This is particularly important for the proof of our
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next theorem which concerns products of more than two partial normal subgroups.
Given subsets N1,N2, . . . ,Nl of L define their product via

N1N2 · · ·Nl := {5(n1, n2, · · · , nl) : (n1, n2, . . . , nl) ∈ D, ni ∈Ni for 1≤ i ≤ l}.

We prove:

Theorem 2. Let N1,N2, . . . ,Nl be partial normal subgroups of a locality (L,1, S).
Then N1N2 · · ·Nl is a partial normal subgroup of L. Moreover, the following hold:

(1) N1N2 · · ·Nl = (N1 · · ·Nk)(Nk+1 · · ·Nl) for every 1≤ k < l.

(2) N1N2 · · ·Nl =N1σN2σ · · ·Nlσ for every permutation σ ∈ Sl .

(3) For every g ∈ N1 . . .Nl there exists (n1, . . . , nl) ∈ D with ni ∈ Ni for every
i = 1, . . . , l, g =5(n1, . . . , nl), and Sg = S(n1,...,nl ).

As already mentioned above, it is work in progress of Andrew Chermak to show
that for every fusion system F and a linking locality (L,1, S) attached to F there
is a one-to-one correspondence between the normal subsystems of F and the partial
normal subgroups of L. When this work is complete, our results will imply the
existence of a product of an arbitrary finite number of normal subsystems of F.

In this text only relatively few demands will be made on understanding the
concepts introduced in [Chermak 2013; 2015]. In Section 2, we point the reader to
the few general results needed about partial groups, give a concise definition of a
locality and review some basic facts about localities. In Section 3, we summarize
what is needed about partial normal subgroups and quotient localities.

2. Partial groups and localities

We refer the reader to [Chermak 2013, Definition 2.1] or [Chermak 2015, Defini-
tion 1.1] for the precise definition of a partial group, and to the elementary properties
of partial groups stated in [2013, Lemma 2.2] or [2015, Lemma 1.4]. Adapting
Chermak’s notation we write W(L) for the set of words in a set L, ∅ for the empty
word, and v1 ◦ v2 ◦ · · · ◦ vn for the concatenation of words v1, . . . , vn ∈W(L).

For the remainder of this text let L be a partial group with product5 : D→L
defined on the domain D ⊆W(L).

Again following Chermak’s notation, we set 1 = 5(∅). Moreover, given a
word v = ( f1, . . . , fn) ∈ D, we write f1 f2 . . . fn for the product 5(v). Recall the
definitions of partial subgroups and partial normal subgroups from the introduction.
Note that a partial subgroup of L is always a partial group itself whose product is
the restriction of the product 5 to W(H)∩ D. Observe furthermore that L forms a
group in the usual sense if W(L)= D; see [op. cit., Lemma 1.3]. So it makes sense
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to call a partial subgroup H of L a subgroup of L if W(H)⊆ D. In particular, we can
talk about p-subgroups of L meaning subgroups of L whose order is a power of p.

We will need the Dedekind lemma [Chermak 2015, Lemma 1.10] in the following
slightly more general form:

2.1 (Dedekind lemma). Let H, K, A be subsets of L such that A is a partial
subgroups of L and K⊆A. Then A∩(HK)= (A∩H)K and A∩(KH)=K(A∩H).

Proof. Clearly, (A∩H)K ⊆ A∩ (HK). Taking h ∈H and k ∈ K with (h, k) ∈ D
and hk ∈ A, we have (h, k, k−1) ∈ D by [op. cit, Lemma 1.4(d)] and then h =
h(kk−1)= (hk)k−1

∈A as K ⊆A and A is a partial subgroup. Hence, h ∈A∩H
and hk ∈ (A∩H)K. The second equation follows similarly. �

Before we continue with more definitions, we illustrate the concepts we men-
tioned so far with examples. For this purpose we say that two groups G1 and G2

form an amalgam, if the set-theoretic intersection G1 ∩G2 is a subgroup of both
G1 and G2, and the restriction of the multiplication on G1 to a multiplication on
G1∩G2 is the same as the restriction of the multiplication on G2 to a multiplication
on G1 ∩G2.

Example 2.2. Let G1 and G2 be groups which form an amalgam. Set L=G1∪G2

and D = W(G1) ∪ W(G2). Define a partial product 5 : D → L by sending
v = ( f1, . . . , fn) ∈ W(Gi ) to the product f1 . . . fn in the group Gi for i = 1, 2.
Define an inversion L→ L by sending f ∈ Gi to the inverse of f in the group
Gi for i = 1, 2. Then L with these structures forms a partial group. (For readers
familiar with the concept of an objective partial group as introduced in [Chermak
2013, Definition 2.6] or [Chermak 2015, Definition 2.1] we mention that, setting
1 := {G1,G2}, (L,1) is an objective partial group if G1∩G2 is properly contained
in G1 and G2.)

Let K be a subset of L. Then K is a partial subgroup of L if and only if K∩Gi is
a subgroup of Gi for each i = 1, 2. The subset K is a subgroup of L if and only if
K is a subgroup of Gi for some i = 1, 2. Moreover, K is a partial normal subgroup
of L if and only if (K∩Gi )EGi for i = 1, 2.

We use the construction method introduced in the previous example to show that
the product of two partial normal subgroups of a partial group is not in general
itself a partial normal subgroup.

Example 2.3. Let G1∼=C2×C4 and let G2 be a dihedral group of order 16. Choose
G1 and G2 such that G1 and G2 form an amalgam with G1 ∩G2 ∼= C2×C2 and
8(G1) = Z(G2). Let M and N be the two cyclic subgroups of G1 of order 4.
Form the locality L as in Example 2.2. As G1 is abelian, a subgroup K of G1 is
normal in G1 and thus a partial normal subgroup of L if and only if K∩G2EG2.
As G1 ∩G2 ∼= C2×C2 and M and N are cyclic of order 4, we have M∩G2 =
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N ∩G2 = 8(G1) = Z(G2)EG2. Thus M and N are partial normal subgroups
of L. The product MN in L is the same as the product MN in G1 and thus equal
to G1. However, as G2 does not have a normal fours subgroup, G1 ∩ G2 is not
normal in G2 and thus MN = G1 is not a partial normal subgroup of L.

The previous example shows that the concept of a partial group (and even the
concept of an objective partial group) is too general for our purposes. Therefore,
we will focus on localities. We give a definition of a locality which, in contrast
to the definition given by Chermak [2013; 2015], does not require the reader to
be familiar with the definition of an objective partial group and can easily seen
to be equivalent to Chermak’s definition. For any g ∈ L, D(g) denotes the set of
x ∈ L with (g−1, x, g) ∈ D. Thus, D(g) denotes the set of elements x ∈ L for
which the conjugation xg

:=5(g−1, x, g) is defined. If g ∈ L and X ⊆ D(g) we
set X g

:= {xg
: x ∈ X}. If we write X g for some g ∈ L and some subset X ⊆ L, we

will always implicitly mean that X ⊆ D(g).

Definition 2.4. We say that (L,1, S) is a locality if the partial group L is finite
as a set, S is a p-subgroup of L, 1 is a nonempty set of subgroups of S, and the
following conditions hold:

(L1) S is maximal with respect to inclusion among the p-subgroups of L.

(L2) A word ( f1, . . . , fn) ∈ W(L) is an element of D if and only if there exist
P0, . . . , Pn ∈1 such that

(*) Pi−1 ⊆ D( fi ) and P fi
i−1 = Pi .

(L3) For any subgroup Q of S, for which there exist P ∈ 1 and g ∈ L with
P ⊆ D(g) and Pg

≤ Q, we have Q ∈1.

If (L,1, S) is a locality and v = ( f1, . . . , fn) ∈W(L), then we say that v ∈ D via
P0, . . . , Pn (or v ∈ D via P0), if P0, . . . , Pn ∈1 and (*) holds.

From now on let (L,1, S) be a locality.

Note that P = P1
≤ S for all P ∈ 1. As 1 6= ∅, property (L3) implies thus

S ∈1. For any g ∈ L, write cg for the conjugation map

cg : D(g)→ L, x 7→ xg.

Recall the definitions of Sg and Sv from the introduction. Note that Sg ⊆ D(g). For
any subgroup X of L set

NL(X) := { f ∈ L : X ⊆ D( f ), X f
= X}.

2.5 (Important properties of localities). The following hold:

(a) NL(P) is a subgroup of L for each P ∈1.
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(b) Let P ∈1 and g ∈ L with P ⊆ Sg. Then Q := Pg
∈1 (so in particular Q is a

subgroup of S). Moreover, NL(P)⊆ D(g) and

cg : NL(P)→ NL(Q)

is an isomorphism of groups.

(c) Let w = (g1, . . . , gn) ∈ D via (X0, . . . , Xn). Then

cg1 ◦ · · · ◦ cgn = c5(w)

is a group isomorphism NL(X0)→ NL(Xn).

(d) For every g ∈ L, Sg ∈1. In particular, Sg is a subgroup of S.

(e) For anyw∈W(L), Sw is a subgroup of S5(w), and Sw ∈1 if and only ifw∈ D.1

Proof. Properties (a)–(c) correspond to statements in [Chermak 2015, Lemma 2.3]
except for the fact stated in (b) that Q ∈1. This is however true by [op. cit., Propo-
sition 2.6(c)]. Property (d) is true by [op. cit., Proposition 2.6(a)] and property (e)
is stated in [op. cit., Corollary 2.7]. �

3. Partial normal subgroups and quotient localities

In this section we continue to assume that (L,1, S) is a locality. The following
theorem is a special case of Theorem 1 and will be used to prove the more general
theorem.

Theorem 3.1. Let M, N be partial normal subgroups of L such that M∩N = 1.
Then MN =NM is a partial normal subgroup of L. Moreover, for any f ∈MN
there exists m ∈M and n ∈N such that (m, n) ∈ D, f = mn, and S f = S(m,n).

Proof. As M ∩ N ⊆ S, it follows from [Chermak 2015, Lemma 5.3] that M
normalizes N ∩ S and N normalizes M ∩ S. So by [op. cit., Theorem 5.1],
MN =NM is a partial normal subgroup of L. Moreover, by [op. cit., Lemma 5.2],
for any f ∈MN there exist m ∈M and n ∈ N such that (m, n) ∈ D, f = mn,
and S f = S(m,n). �

To deduce Theorem 1 from Theorem 3.1, we need the theory of quotient localities
developed in [Chermak 2015]; see also [Chermak 2013, Sections 3 and 4]. For the
convenience of the reader we quickly summarize this theory here. After that we
state some more specialized lemmas needed in our proof.

Throughout let K be a partial normal subgroup of L and T = S ∩K.
3.2. (a) T is strongly closed in (L,1, S); that is, tg

∈ T for every g ∈ L and every
t ∈ T ∩ Sg. In particular, T g

= T for any g ∈ L with T ⊆ Sg.

(b) T is maximal in the poset of p-subgroups of N.

1Recall the definition of S(g1,...,gn) from the introduction.
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Proof. Let g ∈L and t ∈ T ∩Sg. Then tg
∈ S and, as N is a partial normal subgroup,

tg
∈N. Hence, tg

∈ S∩N = T. This proves (a). Property (b) is proved in [Chermak
2015, Lemma 3.1(c)]. �

We write ↑K for the relation ↑ introduced in [op. cit., Definition 3.6], but with
the partial normal subgroup N replaced by K. Thus ↑K is a relation on the set
L ◦ 1 of pairs ( f, P) ∈ L × 1 with P ≤ S f . For ( f, P), (g, Q) ∈ L ◦ 1, we
have ( f, P) ↑K (g, Q) if there exist x ∈ NK(P, Q) and y ∈ NK(P f , Qg) such
that xg = f y. We say then ( f, P) ↑K (g, Q) via (x, y). One easily sees that ↑K
is reflexive and transitive. Moreover, ( f, P) ↑K ( f, S f ) via (1, 1). An element
f ∈ L is called ↑K-maximal if ( f, S f ) is maximal with respect to the relation ↑K
(i.e., if ( f, S f ) ↑K (g, Q) implies (g, Q) ↑K ( f, S f ) for any (g, Q) ∈ L ◦1). We
summarize some important technical properties of the relation ↑K in the following
lemma.

3.3. The following hold:

(a) Every element of NL(S) is ↑K-maximal. In particular, every element of S is
↑K-maximal.

(b) If f ∈ L is ↑K-maximal, then T ≤ S f .

(c) (Stellmacher’s splitting lemma) Let (x, f ) ∈ D such that x ∈ K and f is
↑K-maximal. Then S(x, f ) = Sx f .

Proof. Property (a) is [Chermak 2015, Lemma 3.7(a)], (b) is [op. cit., Proposi-
tion 3.9], and (c) is [op. cit., Lemma 3.12]. �

The relation ↑K is crucial for defining a quotient locality L/K somewhat analo-
gously to quotients of groups. A coset of K in L is of the form

K f = {k f : k ∈ K, (k, f ) ∈ D}

for some f ∈ L. A maximal coset of K is a coset which is maximal with respect to
inclusion among the cosets of K in L. The set of these maximal cosets is denoted
by L/K .

3.4. The following hold:

(a) f ∈ L is ↑K-maximal if and only if K f is a maximal coset.

(b) The maximal cosets of K form a partition of L.

Proof. This is [op. cit., Proposition 3.14(b),(c),(d)]. �

The reader might note that what we call a coset would be more precisely called
a right coset. The distinction does however not matter very much, since we are
mostly interested in the maximal cosets and, by [op. cit., Proposition 3.14(a)], we
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have K f = f K for any ↑K-maximal element f ∈ L. By 3.4(b), we can define a
map

ρ : L→ L := L/K

sending f ∈ L to the unique maximal coset of K containing f . This should be
thought of as a “quotient map”. We adopt the bar notation similarly as used for
groups. Thus, if X is an element or a subset of L, then X denotes the image
of X under ρ. Furthermore, if X is an element or a subset of W(L) then X
denotes the image of X under ρ∗, where ρ∗ denotes the map W(L)→W(L) with
( f1, . . . , fn)ρ

∗
= ( f1ρ, . . . , fnρ). In particular,

D = Dρ∗.

We note:

3.5. Let f, g ∈ L such that g = f and f is ↑K-maximal. Then g ∈ K f .

Proof. By 3.4(a), K f is a maximal coset, so g = f = K f by the definition of ρ.
Hence, again by the definition of ρ, g ∈ K f . �

Recall the definition of a homomorphism of a partial groups from [Chermak 2013,
Definition 3.1] and [Chermak 2015, Definition 1.11]. By [op. cit., Lemma 3.16],
there is a unique mapping 5 : D→ L and a unique involutory bijection f 7→ f −1

such that L with these structures is a partial group and ρ is a homomorphism of
partial groups. Since ρ is a homomorphism, we have 5(v)=5(vρ∗)=5(v)ρ =
5(v) for v ∈ D and f −1

= f −1 by the definition of a homomorphism of partial
groups and by [op. cit., Lemma 1.13]. In particular, 1 = 5(∅) is the identity
element in L. So ρ has kernel ker(ρ) = { f ∈ L : f = 1} = K1 = K. By [op. cit.,
Proposition 4.2], (L,1, S) is a locality for 1 := {P : P ∈ 1}. We will use this
important fact throughout without further reference. We remark:

3.6. Let v = ( f1, . . . , fn) ∈ W(L) such that each fi is ↑K-maximal and v ∈ D.
Then v ∈ D and 5(v)=5(v).

Proof. As v ∈ D, there is u = (g1, . . . , gn) ∈ D such that u = v. Then gi = fi for
i = 1, . . . , n, i.e., gi ∈ K fi by 3.5. Now by [op. cit., Proposition 3.14(e)], v ∈ D.
As seen above, since ρ is a homomorphism of partial groups, 5(v)=5(v). �

There is a nice correspondence between the partial subgroups of L containing K
and the partial subgroups of L.

3.7. Let H be the set of partial subgroups of L containing K.

(a) Let H ∈ H. Then the maximal cosets of K contained in H form a partition of H.

(b) Write H for the set of partial subgroups of L. Then the map H→H with H 7→H
is well defined and a bijection. Moreover, for any H ∈H, we have HEL if and
only if HEL.
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Proof. Property (a) is [Chermak 2015, Lemma 3.15]. The map ρ is a homomorphism
of partial groups and (L,1, S) is a locality. From the way D and 1 are defined,
it follows that ρ is a projection in the sense of [op. cit., Definition 4.5]. Hence,
property (b) is a reformulation of [op. cit., Proposition 4.8]. �

3.8. For any subset X of L and for any partial subgroup H of L containing K,
X ∩H= X ∩H.

Proof. Clearly, X ∩H⊆ X ∩H. Let now x ∈ X such that x ∈H. Then there exists
h ∈H such that x = h and, by 3.7(a), we may choose h such that Kh is a maximal
coset. By the definition of ρ, this means x ∈ Kh ⊆H and hence x ∈ X ∩H. Thus
x ∈ X ∩H, proving X ∩H⊆ X ∩H. �

3.9. Let R ≤ S. Then { f ∈ L : f ∈ R} = KR.

Proof. Clearly, f ∈ R for any f ∈ KR, as K is the kernel of ρ. Let now f ∈ L
and r ∈ R with f = r . As every element of S is ↑K-maximal by 3.3(a), it follows
from 3.5 that f ∈ Kr ⊆ KR. This proves the assertion. �

3.10. Let T ≤ R ≤ S. Then R = {s ∈ S : s ∈ R} and NS(R)= NS(R).

Proof. By 3.9 and the Dedekind lemma (2.1), we have {s ∈ S : s ∈ R} = S∩(KR)=
(S ∩K)R = T R = R. Moreover, for any element t ∈ S with t ∈ NS(R) and any
r ∈ R, we have r t = r t

∈ R, so r t
∈ {s ∈ S : s ∈ R} = R. Hence, NS(R)≤ NS(R). As

ρ is a homomorphism of partial groups, NS(R)⊆ NS(R), so the assertion holds. �

3.11. For every f ∈ L such that f is ↑K-maximal, we have Sf = S f

Proof. Set P = S f and Q = P f. As ρ is a homomorphism of partial groups,
one easily observes that P ⊆ S f . As (L,1, S) is a locality, S f is a p-group. So
assuming the assertion is wrong, there exists a ∈ S such that a ∈ NS f

(P)\P. As
f is ↑-maximal, T ≤ P = S f by 3.3(b). Hence, by 3.10 applied with P in the
role of R, a ∈ NS(P). So by 3.10 now applied with NS(P) in the role of R,
a ∈ NS(P). Using 2.5(a),(b), we conclude that A := P〈a〉 is a p-subgroup of the
group NL(P) and that A f is a p-subgroup of the group NL(Q). As A f

⊆ S, we
have A f

⊆ NS(Q). By 3.2(a), T = T f
≤ Q. Thus, by 3.10, A f

⊆ NS(Q). Now 3.9
yields A f

⊆ (KNS(Q))∩ NL(Q)= NK(Q)NS(Q), where the last equality uses the
Dedekind lemma (2.1). Recall that NL(Q) is a finite group. Clearly, NK(Q) is
a normal subgroup of NL(Q). It follows from 3.2(b) that T ∈ Sylp(NK(Q)). So
NS(Q) ∈ Sylp(NK(Q)NS(Q)) and by Sylow’s theorem, there exists c ∈ NK(Q)
such that A f c

≤ NS(Q). Then ( f, P) ↑K ( f c, A) via (1, c) contrary to f being
↑K-maximal. �

3.12. Suppose that f, g ∈ L such that f = g, S f = Sg, and f is ↑K-maximal. Then
g is ↑K-maximal and K f = Kg.
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Proof. As f is ↑K-maximal and f = g, we have g ∈ K f by 3.5, i.e., there exists
k ∈ K with (k, f ) ∈ D and g = k f . By Stellmacher’s splitting lemma 3.3(c), we
have Sg = Sk f = S(k, f ). Hence, S f = Sg = S(k, f ) and thus k ∈ NL(S f ). By 2.5(c),
k−1
∈ NL(S f ) and (k−1, k, f ) ∈ D as via S f . Hence, (k−1, g) = (k−1, k f ) ∈ D,

k−1g= k−1(k f )= k−1k f = (k−1k) f = f and Sg
f = S f

f . This shows that ( f, S f )↑K

(g, S f ) via (k−1, 1). We conclude that g is ↑K-maximal as f is ↑K-maximal and
↑K is transitive. By 3.4, Kg and K f are both maximal cosets, and the maximal
cosets of K form a partition of L. So it follows that K f = Kg. �

4. Proof of Theorem 1

Throughout this section assume the hypothesis of Theorem 1. Set

K :=M∩N .

Observe that K is a partial normal subgroup of L. As in Section 3, let

ρ : L→ L := L/K

be the quotient map sending f ∈ L to the unique maximal coset of K containing f ,
and use the bar notation as introduced there. Set

T := K∩ S.

4.1. M∩N = 1.

Proof. As K is contained in M and N, this is a special case of 3.8. �

4.2. We have MN =NM, and MN is a partial normal subgroup of L. Moreover,
for any x ∈MN , there exist m ∈M and n ∈N such that (m, n) ∈ D, x =m n and
Sx = S(m,n).

Proof. By 3.7(b), M and N are partial normal subgroups of L. By 4.1, M∩N = 1.
Hence, the assertion follows from Theorem 3.1. �

4.3. Let x ∈MN . Then there exist m ∈M and n ∈N with (m, n) ∈ D such that
m, n, and mn are ↑K-maximal, x = m n = mn and Smn = S(m,n).

Proof. By 4.2, there exist m ∈M, n ∈N such that (m, n) ∈ D, x =m n, and Sx =

S(m,n). By 3.7(a), we may furthermore choose preimages m ∈M and n ∈N of m
and n such that m and n are ↑K-maximal. Then, by 3.2(a) and 3.3(b), m, n ∈ NL(T ).
By 3.6, (m, n) ∈ D and m n = mn. It remains to prove that Smn = S(m,n) and that
mn is ↑K-maximal. As an intermediate step we prove the following two properties:

S f ⊆ S(m,n) for every f ∈ L with f = x .(4-1)

S f = S(m,n) for every ↑K-maximal element f ∈ L with f = x .(4-2)
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For the proof of (4-1) and (4-2) note first that, by 3.11, Sm = Sm and Sn = Sn as m
and n are ↑K-maximal. Hence,

Sx = S(m,n) = {s : s ∈ Sm, sm
∈ Sn} = {s : s ∈ Sm, sm

∈ Sn}.

If s ∈ Sm then, by definition of Sm , (m−1, s,m) ∈ D and sm
∈ S. Moreover, as ρ is

a homomorphism of partial groups, sm = sm. So sm
∈ Sn is equivalent to sm

∈ Sn

by 3.10 since T ≤ Sn . Hence,

Sx = {s : s ∈ Sm, sm
∈ Sn} = S(m,n).

As m, n ∈ NL(T ), T ≤ S(m,n). Clearly, S f ⊆ Sx for every f ∈ L with f = x . If
such f is in addition ↑K-maximal, then S f = Sx and T ≤ S f by 3.11 and 3.3(b).
Now (4-1) and (4-2) follow from 3.10. As mn = m n = x , (4-1) yields in particular
Smn ⊆ S(m,n) and thus Smn = S(m,n) by 2.5(e). Choosing f ∈ L to be ↑K-maximal
with f = x , we obtain from (4-2) that S f = S(m,n) = Smn . So mn is ↑K-maximal
by 3.12 completing the proof. �

4.4. Let f ∈ L with f ∈MN. Then f ∈MN and there exist m ∈M, n ∈N with
(m, n) ∈ D, f = mn, and S f = S(m,n).

Proof. By 4.3, we can choose m ∈M and n ∈N with (m, n) ∈ D such that mn is
↑K-maximal, f =mn and Smn = S(m,n). Then there exists k ∈K with (k,mn) ∈ D
and f = k(mn). As Smn= S(m,n), it follows that S(k,mn)= S(k,m,n) and (k,m, n)∈ D
by 2.5(e). Hence, (km, n) ∈ D and f = (km)n by the axioms of a partial group.
As K ⊆M, we have km ∈M and so f = (km)n ∈MN. It is now sufficient
to show that S(km,n) = S f . As mn is ↑K-maximal, it follows from Stellmacher’s
splitting lemma 3.3(c) that S f = Sk(mn) = S(k,mn) = S(k,m,n) ⊆ S(km,n). By 2.5(e),
S(km,n) ⊆ S(km)n = S f . So S f = S(km,n), proving the assertion. �

Proof of Theorem 1. By 4.2 and 3.7(b), there exists a partial normal subgroup H of
L containing K such that H =MN =NM. Then for any f ∈ L with f ∈MN,
there exists h ∈H with f = h. By 3.7(a), we can choose h to by ↑K-maximal. So
by 3.5, f ∈ Kh ⊆H. This shows H= { f ∈ L : f ∈MN }.

We need to prove that H=MN =NM. As the situation is symmetric in M and
N, it is enough to prove that H=MN. Since ρ is a homomorphism, for any m ∈M
and n ∈N with (m, n) ∈ D, we have mn = m n ∈MN and thus mn ∈H. Hence,
MN ⊆ H. By 4.4, we have H ⊆MN, so H =MN. Moreover, 4.4 shows that
for every f ∈MN, there exists m ∈M and n ∈N such that (m, n) ∈ D, f = mn,
and S f = S(m,n). So it only remains to prove that S ∩ (MN ) = (S ∩M)(S ∩N ).
Clearly, (S ∩M)(S ∩N )⊆ S ∩ (MN ). Let now s ∈ S ∩ (MN ). By what we just
said, there exists m ∈M and n ∈ N with (m, n) ∈ D, s = mn, and Ss = S(m,n).
As Ss = S, it follows that m, n ∈ G := NL(S). By 2.5(a), G is a subgroup of L.
Furthermore, property (L1) in the definition of a locality implies that S is a Sylow
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p-subgroup of G. Note that X := G∩M and Y := G∩N are normal subgroups of
G. Hence, s = mn ∈ (XY )∩ S = (X ∩ S)(Y ∩ S)= (M∩ S)(N ∩ S) completing
the proof. �

5. The Proof of Theorem 2

Throughout, let (L,1, S) be a locality with partial normal subgroups N1, . . . ,Nl .
We prove Theorem 2 in a series of lemmas.

5.1. Let 1 ≤ k < l such that the products N1N2 · · ·Nk and Nk+1Nk+2 · · ·Nl are
partial normal subgroups. Suppose furthermore that for any f ∈ N1 · · ·Nk and
any g ∈Nk+1 · · ·Nl there exist u = (n1, . . . , nk), v = (nk+1, . . . , nl) ∈ D such that
ni ∈Ni for i = 1, . . . , l, f =5(u), g =5(v), S f = Su and Sg = Sv. Then

N1N2 · · ·Nl = (N1N2 · · ·Nk)(Nk+1Nk+2 · · ·Nl)

is a partial normal subgroup of L, and for every h ∈ N1, . . . ,Nl there exists
w = (n1, . . . , nl) ∈ D such that ni ∈Ni for i = 1, . . . , l, h =5(w), and Sh = Sw.

Proof. By Theorem 1, (N1N2 · · ·Nk)(Nk+1Nk+2 · · ·Nl) is a partial normal sub-
group of L. If w = (n1, . . . , nl) ∈ D with ni ∈ Ni for i = 1, . . . , l, then u =
(n1, . . . , nk), v = (nk+1, . . . , nl) ∈ D, and

5(w)=5(5(u),5(v)) ∈ (N1N2 · · ·Nk)(Nk+1Nk+2 · · ·Nl).

This proves that N1N2 · · ·Nl ⊆ (N1N2 · · ·Nk)(Nk+1Nk+2 · · ·Nl). To prove the
converse inclusion, let

h ∈ (N1N2 · · ·Nk)(Nk+1Nk+2 · · ·Nl).

Then by Theorem 1, there exist f ∈ N1 · · ·Nk and g ∈ Nk+1 · · ·Nl such that
( f, g) ∈ D, h = f g, and Sh = S( f,g). By assumption, there exist u = (n1, . . . , nk)

and v= (nk+1, . . . , nl)∈ D such that ni ∈Ni for i = 1, . . . , l, f =5(u), g=5(v),
S f = Su , and Sg = Sv. Then Sh = S( f,g) = Su◦v, u ◦ v ∈ D via Sh , and

h = f g =5(5(u),5(v))=5(u ◦ v) ∈N1N2 · · ·Nl,

proving the assertion. �

5.2. (a) The product N1N2 · · ·Nl is a partial normal subgroup, and for every
f ∈N1N2 · · ·Nl there existsw= (n1, . . . , nl)∈ D such that ni ∈Ni for i =1, . . . , l,
f =5(w), and S f = Sw.

(b) For every 1≤ k < l, we have

N1N2 · · ·Nl = (N1N2 · · ·Nk)(Nk+1Nk+2 · · ·Nl).
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Proof. We prove this by induction on l. Clearly, the claim is true for l = 1. Assume
now l>1. Then there exists always 1≤ k< l. For any such k, it follows by induction
(one time applied with N1, . . . ,Nk and one time applied with Nk+1, . . . ,Nl in place
of N1, . . . ,Nl) that the hypothesis of 5.1 is fulfilled, so the assertion follows. �

5.3. Let σ ∈ Sl be a permutation. Then N1N2 · · ·Nl =N1σN2σ · · ·Nlσ .

Proof. We may assume that σ = (i, i + 1) for some 1 ≤ i < l, as Sl is generated
by transpositions of this form. Note that N1 · · ·Ni−1, NiNi+1 and Ni+2 · · ·Nl are
partial normal subgroups by 5.2(a), where it is understood that Nr · · ·Ns = {1} if
r > s. By Theorem 1, we have MN =NM for any two partial normal subgroups.
Using this fact and 5.2(b) repeatedly, we obtain

N1N2 · · ·Nl = (N1 · · ·Ni−1)(NiNi+1)(Ni+2 · · ·Nl)

= (N1 · · ·Ni−1)(Ni+1Ni )(Ni+2 · · ·Nl)

=N1σN2σ · · ·Nlσ . �

Proof of Theorem 2. It follows from 5.2(a) that N1 · · ·Nl is a partial normal subgroup
and that (c) holds. Property (a) is 5.2(b), and property (b) is 5.3. �
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LUSZTIG INDUCTION AND `-BLOCKS OF FINITE
REDUCTIVE GROUPS

RADHA KESSAR AND GUNTER MALLE

To the memory of Robert Steinberg

We present a unified parametrisation of -̀blocks of quasisimple finite groups
of Lie type in nondefining characteristic via Lusztig’s induction functor in
terms of e-Jordan-cuspidal pairs and e-Jordan quasicentral cuspidal pairs.

1. Introduction

The work of Fong and Srinivasan for classical matrix groups and of Schewe for
certain blocks of groups of exceptional type exhibited a close relation between the
`-modular block structure of groups of Lie type and the decomposition of Lusztig’s
induction functor, defined in terms of `-adic cohomology. This connection was
extended to unipotent blocks of arbitrary finite reductive groups and large primes `
by Broué–Malle–Michel [1993], to all unipotent blocks by Cabanes–Enguehard
[1994] and Enguehard [2000], to arbitrary blocks for primes ` ≥ 7 by Cabanes–
Enguehard [1999], to nonquasi-isolated blocks by Bonnafé–Rouquier [2003] and
to quasi-isolated blocks of exceptional groups at bad primes by the authors [2013].

It is the main purpose of this paper to unify and extend all of the preceding results
in particular from [Cabanes and Enguehard 1999] so as to establish a statement in
its largest possible generality, without restrictions on the prime `, the type of group
or the type of block, in terms of e-Jordan quasicentral cuspidal pairs (see Section 2
for the notation used).

Theorem A. Let H be a simple algebraic group of simply connected type with a
Frobenius endomorphism F : H→ H endowing H with an Fq-rational structure.
Let G be an F-stable Levi subgroup of H . Let ` be a prime not dividing q and set
e = e`(q).

(a) For any e-Jordan-cuspidal pair (L, λ) of G such that λ ∈ E(LF , `′), there
exists a unique `-block bGF (L, λ) of GF such that all irreducible constituents
of RG

L (λ) lie in bGF (L, λ).
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(b) The map 4 : (L, λ) 7→ bGF (L, λ) is a surjection from the set of GF -conjugacy
classes of e-Jordan-cuspidal pairs (L, λ) of G such that λ ∈ E(LF , `′) to the
set of `-blocks of GF .

(c) The map 4 restricts to a surjection from the set of GF -conjugacy classes of
e-Jordan quasicentral cuspidal pairs (L, λ) of G such that λ ∈ E(LF , `′) to
the set of `-blocks of GF .

(d) For `≥ 3 the map 4 restricts to a bijection between the set of GF -conjugacy
classes of e-Jordan quasicentral cuspidal pairs (L, λ) of G with λ ∈ E(LF , `′)

and the set of `-blocks of GF .

(e) The map 4 itself is bijective if `≥ 3 is good for G, and moreover ` 6= 3 if GF

has a factor 3D4(q).

The restrictions in (d) and (e) are necessary (see Remark 3.15 and Example 3.16).
In fact, part (a) of the preceding result is a special case of the following charac-

terisation of the `′-characters in a given `-block in terms of Lusztig induction:

Theorem B. In the setting of Theorem A let b be an `-block of GF and denote
by L(b) the set of e-Jordan cuspidal pairs (L, λ) of G such that

{
χ ∈ Irr(b) |

〈χ, RG
L (λ)〉 6= 0

}
6=∅. Then

Irr(b)∩ E(GF , `′)=
{
χ ∈ E(GF , `′) | ∃ (L, λ) ∈ L(b) with (L, λ)�e (G, χ)

}
.

Note that at present, it is not known whether Lusztig induction RG
L is independent

of the parabolic subgroup containing the Levi subgroup L used to define it. Our
proofs will show, though, that in our case bGF (L, λ) is defined unambiguously.

An important motivation for this work comes from the recent reductions of most
long-standing famous conjectures in modular representation theory of finite groups
to questions about quasisimple groups. Among the latter, the quasisimple groups of
Lie type form the by far most important part. A knowledge and suitable inductive
description of the `-blocks of these groups is thus of paramount importance for an
eventual proof of those central conjectures. Our results are specifically tailored for
use in an inductive approach by considering groups that occur as Levi subgroups
inside groups of Lie type of simply connected type, that is, inside quasisimple
groups.

Our paper is organised as follows; in Section 2, we set up e-Jordan (quasicentral)
cuspidal pairs and discuss some of their properties. In Section 3 we prove Theorem A
(see Theorem 3.14) on parametrising `-blocks by e-Jordan-cuspidal and e-Jordan
quasicentral cuspidal pairs and Theorem B (see Theorem 3.6) on characterising
`′-characters in blocks. The crucial case turns out to be when `=3. In particular, the
whole section on pages 287–289 is devoted to the situation of extra-special defect
groups of order 27, excluded in [Cabanes and Enguehard 1999], which eventually
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turns out to behave just as the generic case. An important ingredient of Section 3
is Theorem 3.4, which shows that the distribution of `′-characters in `-blocks is
preserved under Lusztig induction from e-split Levi subgroups. Finally, in Section 4
we collect some results relating e-Jordan-cuspidality and usual e-cuspidality.

2. Cuspidal pairs

Throughout this section, G is a connected reductive linear algebraic group over the
algebraic closure of a finite field of characteristic p, and F : G→ G is a Frobenius
endomorphism endowing G with an Fq-structure for some power q of p. By G∗

we denote a group in duality with G with respect to some fixed F-stable maximal
torus of G, with corresponding Frobenius endomorphism also denoted by F .

e-Jordan-cuspidality. Let e be a positive integer. We will make use of the termi-
nology of Sylow e-theory (see for instance [Broué et al. 1993]). For an F-stable
maximal torus T , Te denotes its Sylow e-torus. Then a Levi subgroup L≤G is called
e-split if L = CG(Z◦(L)e), and λ ∈ Irr(LF ) is called e-cuspidal if ∗RL

M≤P(λ)= 0
for all proper e-split Levi subgroups M < L and any parabolic subgroup P of L
containing M as Levi complement. (It is expected that Lusztig induction is in fact
independent of the ambient parabolic subgroup. This would follow for example if
the Mackey formula holds for RG

L , and has been proved whenever GF does not have
any component of type 2E6(2), E7(2) or E8(2), see [Bonnafé and Michel 2011]. All
the statements made in this section using RG

L are valid independent of the particular
choice of parabolic subgroup — we will make clarifying remarks at points where
there might be any ambiguity.)

Definition 2.1. Let s ∈ G∗F be semisimple. Following [Cabanes and Enguehard
1999, Section 1.3] we say that χ ∈ E(GF , s) is e-Jordan-cuspidal, or satisfies
condition (J) with respect to some e ≥ 1 if

(J1) Z◦(C◦G∗(s))e = Z◦(G∗)e, and

(J2) χ corresponds under Jordan decomposition (see [Digne and Michel 1991,
Theorem 13.23]) to the CG∗(s)F-orbit of an e-cuspidal unipotent character
of C◦G∗(s)

F .

If L ≤ G is e-split and λ ∈ Irr(LF ) is e-Jordan-cuspidal, then (L, λ) is called an
e-Jordan-cuspidal pair.

It is shown in [Cabanes and Enguehard 1999, Proposition 1.10] that χ is e-
Jordan-cuspidal if and only if it satisfies the uniform criterion

(U): for every F-stable maximal torus T≤G with Te 6≤ Z(G) we have ∗RG
T (χ)=0.
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Remark 2.2. By [Cabanes and Enguehard 1999, Proposition 1.10(ii)] it is known
that e-cuspidality implies e-Jordan-cuspidality; moreover e-Jordan-cuspidality and
e-cuspidality agree at least in the following situations:

(1) when e = 1;

(2) for unipotent characters (see [Broué et al. 1993, Corollary 3.13]);

(3) for characters lying in an `′-series where ` is an odd prime, good for G, e is
the order of q modulo ` and either ` ≥ 5 or ` = 3 ∈ 0(G, F) as defined in
[Cabanes and Enguehard 1994, Notation 1.1] (see [Cabanes and Enguehard
1999, Theorem 4.2 and Remark 5.2]); and

(4) for characters lying in a quasi-isolated `′-series of an exceptional type simple
group for ` a bad prime (this follows by inspection of the explicit results in
[Kessar and Malle 2013]).

To see the first point, assume that χ is 1-Jordan-cuspidal. Suppose if possible that
χ is not 1-cuspidal. Then there exists a proper 1-split Levi subgroup L of G such
that ∗RG

L (χ) is nonzero. Then ∗RG
L (χ)(1) 6= 0 as ∗RG

L is ordinary Harish-Chandra
restriction. Hence the projection of ∗RG

L (χ) to the space of uniform functions of
LF is nonzero in contradiction to the uniform criterion (U).

It seems reasonable to expect (and that is formulated as a conjecture in [Cabanes
and Enguehard 1999, Section 1.11]) that e-cuspidality and e-Jordan-cuspidality
agree in general. See Section 4 below for a further discussion of this.

We first establish conservation of e-Jordan-cuspidality under some natural con-
structions:

Lemma 2.3. Let L be an F-stable Levi subgroup of G and λ ∈ Irr(LF ). Let
L0 = L ∩ [G, G] and let λ0 be an irreducible constituent of ResLF

LF
0
(λ). Let e ≥ 1.

Then (L, λ) is an e-Jordan-cuspidal pair for G if and only if (L0, λ0) is an e-Jordan-
cuspidal pair for [G, G].
Proof. Note that L is e-split in G if and only if L0 is e-split in G0. Let ι : G ↪→ G̃
be a regular embedding. It is shown in the proof of [Cabanes and Enguehard 1999,
Proposition 1.10] that condition (J) with respect to G is equivalent to condition (J)
with respect to G̃. Since ι restricts to a regular embedding [G, G] ↪→ G̃, the same
argument shows that condition (J) with respect to G̃ is equivalent to that condition
with respect to [G, G]. �

Proposition 2.4. Let s ∈ G∗F be semisimple, and G1 ≤ G an F-stable Levi
subgroup with G∗1 containing CG∗(s). For (L1, λ1) an e-Jordan-cuspidal pair
of G1 below E(GF

1 , s) define L := CG(Z◦(L1)e) and λ := εLεL1 RL
L1
(λ1). Then

Z◦(L1)e = Z◦(L)e, and (L1, λ1) 7→ (L, λ) defines a bijection 9G
G1

between the set
of e-Jordan-cuspidal pairs of G1 below E(GF

1 , s) and the set of e-Jordan-cuspidal
pairs of G below E(GF , s).
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We note that the character λ and hence the bijection 9G
G1

above are independent
of the choice of parabolic subgroup. This is explained in the proof below.

Proof. We first show that 9G
G1

is well-defined. Let (L1, λ1) be e-Jordan-cuspidal
in G1 below E(GF

1 , s), so s ∈ L∗1. Then L∗ := CG∗(Z◦(L∗1)e) clearly is an e-split
Levi subgroup of G∗. Moreover we have

L∗1 = CG∗1(Z
◦(L∗1)e)= CG∗(Z◦(L∗1)e)∩ G∗1 = L∗ ∩ G∗1.

Now s ∈ L∗1 by assumption, so

L∗1 = L∗ ∩ G∗1 ≥ L∗ ∩CG∗(s)= CL∗(s).

In particular, L∗1 and L∗ have a maximal torus in common, so L∗1 is a Levi subgroup
of L∗. Thus, passing to duals, L1 is a Levi subgroup of L = CG(Z◦(L1)e).

We clearly have Z◦(L1)e ≤ Z◦(L)e. For the reverse inclusion, observe that
Z◦(L)e ≤ L1, as L1 is a Levi subgroup in L, so indeed Z◦(L)e ≤ Z◦(L1)e.

Hence by [Digne and Michel 1991, Theorem 13.25], λ := εLεL1 RL
L1
(λ1) is

irreducible since, as we saw above, L∗1 ≥ CL∗(s). By [Digne and Michel 1991,
Remark 13.28], λ is independent of the choice of parabolic subgroup of L containing
L1 as Levi subgroup. Let’s argue that λ is e-Jordan-cuspidal. Indeed, for any F-
stable maximal torus T ≤ L we have by the Mackey-formula (which holds as
one of the Levi subgroups is a maximal torus by a result of Deligne–Lusztig, see
[Bonnafé and Michel 2011, Theorem 2]) that εLεL1

∗RL
T (λ) =

∗RL
T RL

L1
(λ1) is a

sum of LF -conjugates of ∗RL1
T (λ1). As λ1 is e-Jordan-cuspidal, this vanishes if

Te 6≤ Z◦(L1)e = Z◦(L)e. So λ satisfies condition (U), hence is e-Jordan-cuspidal,
and 9G

G1
is well-defined.

It is clearly injective, since if (L, λ) = 9G
G1
(L2, λ2) for some e-cuspidal pair

(L2, λ2) of G1, then Z◦(L1)e= Z◦(L)e= Z◦(L2)e, whence L1=CG1(Z
◦(L1)e)=

CG1(Z
◦(L2)e)= L2, and then the bijectivity of RL

L1
on E(LF

1 , s) shows that λ1=λ2

as well.
We now construct an inverse map. For this, let (L, λ) be an e-Jordan-cuspidal

pair of G below E(GF , s), and L∗ ≤ G∗ dual to L. Set

L∗1 := CG∗1(Z
◦(L∗)e)= CG∗(Z◦(L∗)e)∩ G∗1 = L∗ ∩ G∗1,

an e-split Levi subgroup of G∗1. Note that s ∈ L∗, so there exists some maximal
torus T∗ of G∗ with T∗≤CG∗(s)≤ G∗1, whence L∗1 is a Levi subgroup of L∗. Now
again

L∗1 = L∗ ∩ G∗1 ≥ L∗ ∩CG∗(s)= CL∗(s).

So the dual L1 := CG1(Z
◦(L)e) is a Levi subgroup of L such that εL1εL RL

L1

preserves irreducibility on E(LF
1 , s). We define λ1 to be the unique constituent

of ∗RL
L1
(λ) in the series E(LF

1 , s). Then λ1 is e-Jordan-cuspidal. Indeed, for any
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F-stable maximal torus T ≤ L1 with Te 6≤ Z◦(L)e = Z◦(L1)e we get that ∗RL1
T (λ1)

is a constituent of ∗RL
T (λ)= 0 by e-Jordan-cuspidality of λ. Here note that the set

of constituents of ∗RL1
T (η), where η is a constituent of ∗RL

L1
(λ) different from λ1, is

disjoint from the set of irreducible constituents of ∗RL1
T (λ1).

Thus we have obtained a well-defined map ∗9G
G1

from e-Jordan-cuspidal pairs
in G to e-Jordan-cuspidal pairs in G1, both below the series s. As the map 9G

G1

preserves the e-part of the centre, ∗9G
G1
◦9G

G1
is the identity. It remains to prove

that 9G
G1

is surjective. For this, let (M, µ) be any e-Jordan-cuspidal pair of G
below E(GF , s), let (L1, λ1)=

∗9G
G1
(M, µ) and (L, λ)=9G

G1
(L1, λ1). Then we

have Z◦(M)e ≤ Z◦(L1)e = Z◦(L)e, so L = CG(Z◦(L)e)≤ CG(Z◦(M)e)= M is
an e-split Levi subgroup of M . As L1 ≤ L ≤ M and εL1εM RM

L1
is a bijection from

E(LF
1 , s) to E(M F , s), it follows that εLεM RM

L is a bijection between E(LF , s) and
E(M F , s). As λ and µ are e-Jordan-cuspidal, (J1) implies that Z◦(M∗)e= Z◦(L∗)e,
so M = L, that is, (M, µ) is in the image of 9G

G1
. The proof is complete. �

The above bijection also preserves relative Weyl groups.

Lemma 2.5. In the situation and notation of Proposition 2.4 let (L,λ)=9G
G1
(L1,λ1).

Then NGF
1
(L1, λ1) ≤ NGF (L, λ) and this inclusion induces an isomorphism of

relative Weyl groups WGF
1
(L1, λ1)∼=WGF (L, λ).

Proof. Let g ∈ NGF
1
(L1, λ1). Then g normalises Z◦(L1)e and hence also L =

CG(Z◦(L1)e). Thus,

gλ= εL1εL R
g L
g L1
( gλ1)= εL1εL RL

L1
(λ1)= λ

and the first assertion follows.
For the second assertion, let g ∈ NGF (L, λ) and let T be an F-stable maximal

torus of L1 and θ an irreducible character of T F such that λ1 is a constituent of
RL1

T (θ). Since λ1 ∈ E(LF
1 , s), (T , θ) corresponds via duality (between L1 and L∗1)

to the L∗F
1 -class of s, and all constituents of RL1

T (θ) are in E(LF
1 , s). Consequently,

RL
L1

induces a bijection between the set of constituents of RL1
T (θ) and the set

of constituents of RL
T (θ). In particular, λ is a constituent of RL

T (θ). Since g
stabilises λ, λ is also a constituent of RL

g T (
gθ). Hence (T , θ) and g(T , θ) are

geometrically conjugate in L. Let l ∈ L geometrically conjugate g(T , θ) to (T , θ).
Since CG∗(s) ≤ G∗1, we have lg ∈ G1 (see for instance [Kessar and Malle 2013,
Lemma 7.5]). Hence F(l)l−1

= F(lg)(lg)−1
∈G1∩L= L1. By the Lang–Steinberg

theorem applied to L1, there exists l1 ∈ L1 such that l1l ∈ LF . Also, since l1 ∈ G1

and g ∈ GF , l1lg ∈ GF
1 . Thus, up to replacing g by l1lg, we may assume that

g ∈ GF
1 .

Since L1 = CG1(Z
◦(L)e), it follows that g ∈ NGF

1
(L1), and thus

εL1εL RL
L1
(λ1)= λ=

gλ= εL1εL RL
L1
( gλ1).
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Since RL
L1

induces a bijection between the set of characters in the geometric Lusztig
series of LF

1 corresponding to s (the union of series E(LF
1 , t), where t runs over the

semisimple elements of L∗F
1 which are L1-conjugate to s) and the set of characters

in the geometric Lusztig series of LF corresponding to s, it suffices to prove that
gλ1 ∈ E(LF

1 , t) for some t ∈ L∗F
1 which is L∗1

F-conjugate to s. Let T , θ and l
be as above. Since lg ∈ G1 and g ∈ G1, it follows that l ∈ G1 ∩ L = L1. Hence
g(T , θ) and (T , θ) are geometrically conjugate in L1. The claim follows as gλ1 is
a constituent of RL1

g T (
gθ). �

e-Jordan-cuspidality and `-blocks. We next investigate the behaviour of `-blocks
with respect to the map 9G

G1
. For this, let ` 6= p be a prime. We set

e`(q) := order of q modulo
{
` if ` 6= 2,
4 if `= 2.

For a semisimple `′-element s of G∗F , we denote by E`(GF , s) the union of all
Lusztig series E(GF , st), where t ∈ G∗F is an `-element commuting with s. We
recall that the set E`(GF , s) is a union of `-blocks. Further, if G1≤G is an F-stable
Levi subgroup such that G∗1 contains CG∗(s), then εG1εG RG

G1
induces a bijection,

which we refer to as the Jordan correspondence, between the `-blocks in E(GF
1 , s)

and the `-blocks in E(GF , s), see [Broué 1990, §2A].

Proposition 2.6. Let ` 6= p be a prime, s ∈ G∗F a semisimple `′-element and
G1 ≤ G an F-stable Levi subgroup with G∗1 containing CG∗(s). Assume that b is
an `-block in E`(GF , s), and c its Jordan corresponding block in E`(GF

1 , s). Let
e := e`(q).

(a) Let (L1, λ1) be e-Jordan-cuspidal in G1 and set (L, λ)=9G
G1
(L1, λ1). If all

constituents of RG1
L1
(λ1) lie in c, then all constituents of RG

L (λ) lie in b.

(b) Let (L, λ) be e-Jordan-cuspidal in G and set (L1, λ1) =
∗9G

G1
(L, λ). If all

constituents of RG
L (λ) lie in b, then all constituents of RG1

L1
(λ1) lie in c.

Proof. Note that the hypothesis of part (a) means that for any parabolic subgroup
P of G1 containing L1 as Levi subgroup, all constituents of RG1

L1≤P(λ1) lie in c. A
similar remark applies to the conclusion, as well as to part (b).

For (a), note that by the definition of 9G
G1

we have that all constituents of

εLεL1 RG
L (λ)= RG

L1
(λ1)= RG

G1
RG1

L1
(λ1)

are contained in RG
G1
(c), hence in b by Jordan correspondence.

In (b), suppose that η is a constituent of RG1
L1
(λ1) not lying in c. Then by Jordan

correspondence, RG
G1
(η) does not belong to b, whence RG

L1
(λ1) has a constituent

not lying in b, contradicting our assumption that all constituents of RG
L1
(λ1) =

RG
L RL

L1
(λ1)= εLεL1 RG

L (λ) are in b. �
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e-quasicentrality. For a prime ` not dividing q , we denote by E(GF , `′) the set of
irreducible characters of GF lying in a Lusztig series E(GF , s), where s ∈ G∗F

is a semisimple `′-element. Recall from [Kessar and Malle 2013, Definition 2.4]
that a character χ ∈ E(GF , `′) is said to be of central `-defect if the `-block of GF

containing χ has a central defect group and χ is said to be of quasicentral `-defect
if some (and hence any) character of [G, G]F covered by χ is of central `-defect.

Lemma 2.7. Let L be an F-stable Levi subgroup of G, and set L0 = L ∩ [G, G].
Let ` 6= p be a prime.

(a) If L0 = C[G,G](Z(L0)
F
` ), then L = CG(Z(L)F

` ).

(b) Let λ ∈ E(LF , `′) and let λ0 be an irreducible constituent of ResLF

LF
0
(λ). Then

λ0 is of quasicentral `-defect if and only if λ is of quasicentral `-defect.

Proof. Since G = Z◦(G)[G, G] and Z◦(G) ≤ L, we have that L = Z◦(G)L0.
Hence if L0 = C[G,G](Z(L0)

F
` ), then L = CG(Z(L0)

F
` )⊇ CG(Z(L)F

` )⊇ L. This
proves (a). In (b), since λ is in an `′-Lusztig series, the index in LF of the stabiliser
in LF of λ0 is prime to ` and on the other hand, λ0 extends to a character of the
stabiliser in LF of λ0. Thus, λ(1)`= λ0(1)`. Since [L0, L0] = [L, L], the assertion
follows by [Kessar and Malle 2013, Proposition 2.5(a)]. �

Remark 2.8. The converse of assertion (a) of Lemma 2.7 fails in general, even when
we restrict to e`(q)-split Levi subgroups: let ` be odd and G=GL` with F such that
GF
=GL`(q) with ` | (q−1). Let L a 1-split Levi subgroup of type GL`−1×GL1.

Then Z(L)F
`
∼= C`×C` and L = CG(Z(L)F

` ). But Z(L0)
F
`
∼= C` ∼= Z([G, G])F

` ,
hence C[G,G](Z(L0)

F
` )= [G, G].

One might hope for further good properties of the bijection of Proposition 2.6
with respect to (quasi-)centrality. In this direction, we observe the following:

Lemma 2.9. In the situation of Proposition 2.4, if (L, λ) is of central `-defect
for a prime ` with e`(q) = e, then so is (L1, λ1) =

∗9G
G1
(L, λ), and we have

Z(L)F
` = Z(L1)

F
` .

Proof. By assumption, we have that λ(1)` = |LF
: Z(L)F

|`. Now Z(L) lies in
every maximal torus of L, hence in L1, so we have that Z(L)F

` ≤ Z(L1)
F
` . As

λ= εL1εL RL
L1
(λ1), we obtain λ(1)` = λ1(1)`|LF

: LF
1 |`, whence

λ1(1)` = λ(1)`|LF
: LF

1 |
−1
` = |L

F
1 |`|Z(L)

F
|
−1
` ≥ |L

F
1 : Z(L1)

F
|`.

But clearly λ1(1)` ≤ |LF
1 : Z(L1)

F
|`, so we have equality throughout, as claimed.

�

Example 2.10. The converse of Lemma 2.9 does not hold in general. To see this,
let G = PGL` with GF

= PGL`(q), L = G, and G1 ≤ G an F-stable maximal
torus such that GF

1 is a Coxeter torus of GF , of order 8`. Assume that ` | (q − 1)
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(so e = 1). Then L1 = G1. Here, any λ1 ∈ Irr(LF
1 ) is e-(Jordan-)cuspidal, and

certainly of central `-defect, and |Z(L1)
F
` | = (8`)` = ` for ` ≥ 3, while clearly

Z(L)F
` = Z(G)F

` = 1. Furthermore

λ(1)` = λ1(1)`[LF
: LF

1 ]` = [L
F
: LF

1 ]`,

since λ1 is linear. Since |Z(LF )|` = 1 and |LF
1 |` > 1, it follows that

λ(1)`|Z(LF )|` < |LF
|`,

hence λ is not of central `-defect (and not even of quasicentral `-defect).

Example 2.11. We also recall that e-(Jordan-)cuspidal characters are not always of
central `-defect, even when ` is a good prime: let GF

= SL`2(q) with ` | (q − 1),
so e= 1. Then for T a Coxeter torus and θ ∈ Irr(T F ) in general position, RG

T (θ) is
e-(Jordan-) cuspidal but not of quasicentral `-defect.

For the next definition note that the property of being of (quasi)-central `-defect
is invariant under automorphisms of GF .

Definition 2.12. Let ` 6= p be a prime and e = e`(q). A character χ ∈ E(GF , `′)

is called e-Jordan quasicentral cuspidal if χ is e-Jordan cuspidal and the CG∗(s)F -
orbit of unipotent characters of C◦G∗(s)

F which corresponds to χ under Jordan
decomposition consists of characters of quasicentral `-defect, where s ∈ G∗F

is a semisimple `′-element such that χ ∈ E(GF , s). An e-Jordan quasicentral
cuspidal pair of G is a pair (L, λ) such that L is an e-split Levi subgroup of G
and λ ∈ E(LF , `′) is an e-Jordan quasicentral cuspidal character of LF .

We note that the set of e-Jordan quasicentral cuspidal pairs of G is closed
under GF -conjugation. Also, note that Lemma 2.3 remains true upon replacing the
e-Jordan-cuspidal property by the e-Jordan quasicentral cuspidal property. This
is because, with the notation of Lemma 2.3, the orbit of unipotent characters
corresponding to λ under Jordan decomposition is a subset of the orbit of unipotent
characters corresponding to λ0 under Jordan decomposition. Finally we note that
the bijection 9G

G1
of Proposition 2.6 preserves e-quasicentrality since, with the

notation of the proposition, λ1 and λ correspond to the same orbit of unipotent
characters under Jordan decomposition.

3. Lusztig induction and `-blocks

Here we prove our main results on the parametrisation of `-blocks in terms of
e-Harish-Chandra series, in arbitrary Levi subgroups of simple groups of simply
connected type. As in Section 2, ` 6= p will be prime numbers, q a power of p and
e = e`(q).
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Preservation of `-blocks by Lusztig induction. We first extend [Cabanes and En-
guehard 1999, Theorem 2.5]. The proof will require three auxiliary results:

Lemma 3.1. Let G be connected reductive with a Frobenius endomorphism F
endowing G with an Fq -rational structure. Let M be an e-split Levi of GF and c an
`-block of M F . Suppose that

(1) the set {d1,M F
(µ) | µ ∈ Irr(c)∩ E(M F , `′)} is linearly independent; and

(2) there exists a subgroup Z ≤ Z(M)F
` and a block d of C◦G(Z)

F such that all
irreducible constituents of R

C◦G(Z)
M (µ), where µ ∈ Irr(c)∩ E(M F , `′), lie in the

block d.

Then there exists a block b of GF such that all irreducible constituents of RG
M(µ),

where µ ∈ Irr(c)∩ E(M F , `′), lie in the block b.

Proof. We adapt the argument of [Kessar and Malle 2013, Proposition 2.16]. Let
χ ∈ Irr(GF , `′) be such that 〈RG

M(µ), χ〉 6= 0 for some µ ∈ Irr(c) ∩ E(M F , `′).
Then 〈µ, ∗RG

M(χ)〉 6= 0. In particular, c.∗RG
M(χ) 6= 0. All constituents of ∗RG

M(χ)

lie in E(M F , `′), so by assumption (1) it follows that d1,M F
(c.∗RG

M(χ)) 6= 0. Since
d1,M F

(c.∗RG
M(χ)) vanishes on `-singular elements of M F , we have that

〈d1,M F
(c.∗RG

M(χ)), c.∗RG
M(χ)〉 = 〈d

1,M F
(c.∗RG

M(χ)), d1,M F
(c.∗RG

M(χ))〉 6= 0.

If ϕ and ϕ′ are irreducible `-Brauer characters of M F lying in different `-blocks
of M F , then 〈ϕ, ϕ′〉 = 0 (see for instance [Nagao and Tsushima 1989, Chapter 3,
Exercise 6.20(ii)]). Thus,

〈d1,M F
(c.∗RG

M(χ)), c′.∗RG
M(χ)〉 = 〈d

1,M F
(c.∗RG

M(χ)), d1,M F
(c′.∗RG

M(χ)〉 = 0

for all blocks c′ of M F different from c. So, 〈d1,M F
(c.∗RG

M(χ)),
∗RG

M(χ)〉 6= 0 from
which it follows that 〈d1,M F

(µ′), ∗RG
M(χ)〉 6= 0 for some µ′ ∈ Irr(c)∩ E(M F , `′).

Continuing as in the proof of [Kessar and Malle 2013, Proposition 2.12] gives
the required result. Note that condition (1) of this proposition is not necessarily met
as stated, since µ′ may be different from µ. However, µ and µ′ are in the same
block of M F which is sufficient to obtain the conclusion of the lemma. �

Lemma 3.2. Let G be connected reductive with a Frobenius endomorphism F.
Suppose that G has connected centre and [G, G] is simply connected. Let G = XY
such that either X is an F-stable product of components of [G, G] and Y is the
product of the remaining components with Z(G), or vice versa. Suppose further
that GF/X F Y F is an `-group. Let N be an F-stable Levi subgroup of Y and set
M = X N . Let c be an `-block of M F and let c′ be an `-block of N F covered by c.
Suppose that there exists a block b′ of Y F such that every irreducible constituent of
RY

N(τ ) where τ ∈ Irr(c′)∩ E(N F , `′) lies in b′. Then there exists a block b of GF

such that every irreducible constituent of RG
M(µ) where µ ∈ Irr(c)∩ E(M F , `′) lies

in b.
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Proof. We will use the extension of Lusztig induction to certain disconnected groups
as in [Cabanes and Enguehard 1999, Section 1.1]. Let

G0 = [G, G] = [X, X]× [Y ,Y ],

M0 = G0 ∩M = [X, X]× ([Y ,Y ] ∩ N).

Then, GF
0 ⊆ X F Y F and M F

0 ⊆ X F N F . Let T be an F-stable maximal torus of
M. Since G and hence also M has connected centre, M = M F

0 T F and GF
=

GF
0 T F . Further, A := X F Y F

∩T F
= X F N F

∩T F and X F Y F
= GF

0 A= (G0 A)F ,
X F N F

= M F
0 A = (M0 A)F . As in [Cabanes and Enguehard 1999, Section 1.1],

we denote by E(X F Y F , `′) the set of irreducible characters of X F Y F that appear
in the restriction of elements of E(GF , `′) to X F Y F .

Let χ ∈ E(GF , `′). Since GF/X F Y F is an `-group, by [Cabanes and Enguehard
1999, Proposition 1.3(i)], ResGF

X F Y F (χ) is irreducible. Now if χ ′ ∈ Irr(GF ) has
the same restriction to X F Y F as χ , then again since GF/X F Y F is an `-group,
either χ ′ = χ or χ ′ /∈ E(GF , `′). In other words, the restriction from ZE(GF , `′)

to ZE(X F Y F,`′) is a bijection. Similarly, the restriction from ZE(M F,`′) to
ZE(X F N F,`′) is a bijection.

In particular, every block of GF covers a unique block of X F Y F. Since GF/X F Y F

is an `-group, there is a bijection (through covering) between the set of blocks
of GF and the set of blocks of X F Y F . Hence, by the injectivity of restriction
from ZE(GF , `′) to ZE(X F Y F , `′), it suffices to prove that there is a block b0 of
X F Y F such that every irreducible constituent of ResGF

X F Y F RG
M(µ) as µ ranges over

Irr(c)∩ E(M F , `′) lies in b0.
Following [Cabanes and Enguehard 1999, Section 1.1], we have ResGF

X F Y F RG
M =

RG0 A
M0 AResM F

X F N F on Irr(M F ) (where here RG0 A
M0 A is Lusztig induction in the discon-

nected setting). Thus, it suffices to prove that there is a block b0 of X F Y F

such that every irreducible constituent of RG0 A
M0 AResM F

X F N F (µ) as µ ranges over
Irr(c)∩ E(M F , `′) is contained in b0.

By the above arguments applied to M F and X F N F , there is a unique block
c0 of X F N F covered by c. The surjectivity of restriction from ZE(M F , `′) to
ZE(X F N F , `′) implies that it suffices to prove that there is a block b0 of X F Y F

such that every irreducible constituent of RG0 A
M0 A(µ) for µ ∈ Irr(c0)∩ E(X F N F , `′)

is contained in b0.
The group I := {(x, x−1) | x ∈ X F

∩ Y F
} ≤ X × Y is the kernel of the multi-

plication map X F
×Y F

→ X F Y F . Identifying X F Y F with X F
×Y F/I through

multiplication, Irr(X F Y F ) is the subset of Irr(X F
×Y F ) consisting of characters

whose kernel contains I . Since X F
∩Y F

≤ X∩Y ≤ Z(G)≤M , I is also the kernel
of the multiplication map X F

× N F
→ X F N F and we may identify Irr(X F Y F )

with the subset of Irr(X F
× N F ) consisting of characters whose kernel contains I .
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Any parabolic subgroup of G0 containing M0 as Levi subgroup is of the form
[X, X]P , where P is a parabolic subgroup of [Y ,Y ] containing N∩[Y ,Y ] as Levi
subgroup. Let U := Ru(X P)= Ru(P)≤ [Y ,Y ] and denote by L−1(U) the inverse
image of U under the Lang map G→ G given by g 7→ g−1 F(g).

The Deligne–Lusztig variety associated to RG0 A
M0 A (with respect to X P) is

L−1(U)∩ G0 A.

Since T = (T ∩M0)Z(G), U is normalised by T and in particular by A. Hence,

L−1(U)∩G0 A= (L−1(U)∩G0)A= [X, X]F(L−1(U)∩[Y ,Y ])A

= [X, X]F(A∩X F )(L−1(U)∩[Y ,Y ])(A∩Y F).

For the last equality, note that

A = X F Y F
∩ T = (X F

∩ T )(Y F
∩ T )= (X F

∩ A)(Y F
∩ A).

Now, L−1(U) ∩ Y = (L−1(U) ∩ [Y ,Y ])SF for any F-stable maximal torus S
of Y . Applying this with S = T ∩ Y , we have (L−1(U) ∩ [Y ,Y ])(A ∩ Y F ) =

L−1(U)∩Y . Also, [X, X]F (A∩X F )= X F . Altogether this gives L−1(U)∩G0 A=
X F (L−1(U)∩Y). Further, L−1(U)∩Y is the variety underlying RY

N (with respect
to the parabolic subgroup P Z(G)). Hence, for any τ1 ∈ Irr(X F ), τ2 ∈ Irr(Y F ) such
that I is in the kernel of τ1τ2, we have

RG0 A
M0 A(τ1τ2)= τ1 RY

N(τ2).

Further, τ1τ2 ∈ E(X F N F , `′) if and only if τ1 ∈ E(X F , `′) and τ2 ∈ E(N F , `′).
To conclude note that c′ is the unique block of N F covered by c0 and c0 = dc′,

where d is a block X F . Let b′ be the block of Y F in the hypothesis. Then, setting
b0 = db′ gives the desired result. �

We will also make use of the following well-known extension of [Enguehard
2008, Proposition 1.5].

Lemma 3.3. Suppose that q is odd. Let G be connected reductive with a Frobenius
endomorphism F. Suppose that all components of G are of classical type A, B, C
or D and that Z(G)/Z◦(G) is a 2-group. Let s ∈ G∗F be semisimple of odd order.
Then all elements of E(GF , s) lie in the same 2-block of GF .

Proof. Since s has odd order and Z(G)/Z◦(G) is a 2-group, CG∗(s) is connected.
On the other hand, since all components of G∗ are of classical type and s has odd
order, C◦G∗(s) is a Levi subgroup of G. Thus, CG∗(s) is a Levi subgroup of G∗

and by Jordan correspondence the set of 2-blocks of GF which contain a character
of E(GF , s) is in bijection with the set of unipotent 2-blocks of C F , where C is a
Levi subgroup of G in duality with CG∗(s). Since all components of C are also of
classical type, the claim follows by [Enguehard 2008, Proposition 1.5(a)]. �
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We now have the following extension of [Cabanes and Enguehard 1999, Theorem
2.5] to all primes.

Theorem 3.4. Let H be a simple algebraic group of simply connected type with a
Frobenius endomorphism F : H→ H endowing H with an Fq-rational structure.
Let G be an F-stable Levi subgroup of H . Let ` be a prime not dividing q and
set e = e`(q). Let M be an e-split Levi subgroup of G and let c be a block of M F .
Then there exists a block b of GF such that every irreducible constituent of RG

M(µ)

for every µ ∈ Irr(c)∩ E(M F , `′) lies in b.

Proof. Let dim(G) be minimal such that the claim of the theorem does not hold. Let
s ∈M∗F be a semisimple `′-element with Irr(c)∩E(M F , `′)⊆ E(M F , s). Then all
irreducible constituents of RG

M(µ) where µ ∈ Irr(c)∩ E(M F , `′) are in E(GF , s).
First suppose that s is not quasi-isolated and let G1 be a proper F-stable Levi

subgroup of G whose dual contains CG∗(s). Let M∗ be a Levi subgroup of G∗ in du-
ality with M and set M∗1 =CG∗1(Z

◦(M∗)e). Then, as in the proof of Proposition 2.4,
M∗1 is an e-split Levi subgroup of G∗1 and letting M1 be the dual of M∗1 in G, M1

is an e-split Levi subgroup of G1. Further, M∗1 ≥ CM∗(s). Hence there exists a
unique block say c1 of M F

1 such that Irr(c1)∩E(M F
1 , `

′)⊆ E(M F
1 , s) and such that

c1 and c are Jordan corresponding blocks.
By induction our claim holds for G1 and the block c1 of M1. Let b1 be the block of

GF
1 such that every irreducible constituent of RG1

M1
(µ) where µ∈ Irr(c1)∩E(M F

1 , `
′)

lies in b1 and let b be the Jordan correspondent of b1 in GF .
Now let µ ∈ Irr(c)∩ E(M F,s) and let χ be an irreducible constituent of RG

M(µ).
Let µ1 be the unique character in Irr(M F

1 ,s) with µ = ±RM
M1
(µ1). Then, µ1 ∈

Irr(c1) and
RG

M(µ)= RG
M
(
RM

M1
(µ1)

)
= RG

G1

(
RG1

M1
(µ1)

)
.

All irreducible constituents of RG1
M1
(µ1) lie in b1. Hence, by the above equation and

by the Jordan decomposition of blocks, χ lies in b, a contradiction.
So, we may assume from now on that s is quasi-isolated in G∗. By [Cabanes

and Enguehard 1999, Theorem 2.5], we may assume that ` is bad for G and hence
for H . So H is not of type A. If H is of type B, C or D, then `= 2 and we have a
contradiction by Lemma 3.3.

Thus H is of exceptional type. Suppose that s = 1. By [Broué et al. 1993,
Theorem 3.2] GF satisfies an e-Harish-Chandra theory above each unipotent e-
cuspidal pair (L, λ) and by [Enguehard 2000, Theorems A and A.bis], all irreducible
constituents of RG

L (λ) lie in the same `-block of GF .
So we may assume that s 6= 1. We consider the case that G = H . Then by

[Kessar and Malle 2013, Theorem 1.4], GF satisfies an e-Harish-Chandra theory
above each e-cuspidal pair (L, λ) below E(GF , s) and by [Kessar and Malle 2013,
Theorem 1.2], all irreducible constituents of RG

L (λ) lie in the same `-block of GF .
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So, we may assume that G is proper in H . If H is of type G2, F4 or E6, then
`= 2, all components of G are of classical type. For G2 and F4 we have that Z(H)
and therefore Z(G) is connected. If H is of type E6, since 2 is bad for G, G has a
component of type Dn , n ≥ 4. By rank considerations, [G, G] is of type D4 or D5.
Since |Z(H)/Z◦(H)| = 3 it follows again that Z(G) is connected. In either case
we get a contradiction by Lemma 3.3.

So, H is of type E7 or E8. Since G is proper in H , 5 is good for G, hence `= 3
or 2. Also, we may assume that at least one of the two assumptions of Lemma 3.1
fails to hold for G, M and c.

Suppose that `= 3. Since G is proper in H and 3 is bad for G, either [G, G]
is of type E6, or H is of type E8 and [G, G] is of type E6+ A1 or of type E7. In
all cases, Z(G) is connected (note that if H is of type E7, then [G, G] is of type
E6, whence the order of Z(G)/Z◦(G) divides both 2 and 3). If G = M, there is
nothing to prove, so we may assume that M is proper in G. Let

C := C◦G(Z(M)F
3 )≥ M.

We claim that there is a block, say d , of C F such that for allµ∈ Irr(c)∩E(M F , `′),
every irreducible constituent of RC

M(µ) lies in d. Indeed, since M is proper in G
and since Z(G) is connected, by [Cabanes and Enguehard 1993, Proposition 2.1]
C is proper in G. Also, by direct calculation either C is a Levi subgroup of G or 3
is good for C . In the first case, the claim follows by the inductive hypothesis since
M is also e-split in C . In the second case, we are done by [Cabanes and Enguehard
1999, Theorem 2.5].

Thus, we may assume that assumption (1) of Lemma 3.1 does not hold. Hence,
by [Cabanes and Enguehard 1999, Theorem 1.7], 3 is bad for M. Consequently,
M has a component of nonclassical type. Since M is proper in G, this means that
[G, G] is of type E6+ A1 or of type E7 and [M, M] is of type E6. Suppose [G, G]
is of type E6+ A1. Since [M, M] is of type E6, and since 3 is good for groups of
type A, the result follows from Lemma 3.2, applied with X being the component
of G of type E6, and [ibid., Theorem 2.5].

So we have [G, G] of type E7 and [M, M] of type E6. Suppose that s is not
quasi-isolated in M∗. Then c is in Jordan correspondence with a block, say c′ of a
proper F-stable Levi subgroup, say M ′ of M. The prime 3 is good for any proper
Levi subgroup of M, hence by [ibid., Theorem 1.7] condition (1) of Lemma 3.1
holds for the group M ′ and the block c′. By Jordan decomposition of blocks, this
condition also holds for M and c, a contradiction. So, s is quasi-isolated in M∗.
Since as pointed out above, G has connected centre, so does M whence s is isolated
in M∗. Also, note that since s is also quasi-isolated in G∗, by the same reasoning s
is isolated in G∗. Inspection shows that the only possible case for this is when s has
order three with CG∗(s) of type A5+ A2, CM∗(s) of type 3A2. Since s is supposed
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to be a 3′-element, this case does not arise here.
Now suppose that `=2. Since Z(H)/Z◦(H) has order dividing 2, by Lemma 3.3

we may assume that G has at least one nonclassical component, that is we are in one
of the cases [G, G] = E6, or H = E8 and [G, G] = E6+ A1 or E7. Again, in all
cases, Z(G) is connected and consequently CG∗(s) is connected and s is isolated.

Suppose first that [G, G] = E7. We claim that all elements of E(GF , s) lie
in the same 2-block. Indeed, let s̄ be the image of s under the surjective map
G∗→ [G, G]∗ induced by the regular embedding of [G, G] in G. By [Kessar and
Malle 2013, Table 4], all elements of E([G, G]F , s̄) lie in the same 2-block, say d
of [G, G]F . So, any block of GF which contains a character in E(GF , s) covers d .
By general block theoretical reasons, there are at most |GF/[G, G]F |2′ 2-blocks of
GF covering a given d . Now since s is a 2′-element, C[G,G]∗(s̄) is connected. Thus,
if µ ∈ E([G, G]F , s̄), then there are |GF/[G, G]F |2′ different 2′-Lusztig series of
GF containing an irreducible character covering µ. Since characters in different
2′-Lusztig series lie in different 2-blocks, the claim follows.

By the claim above, we may assume that either [G, G]= E6 or [G, G]= E6+A1.
Since s is isolated of odd order in G∗, by [Kessar and Malle 2013, Table 1] all
components of CG∗(s) are of type A2 or A1. Consequently, all components of
CM∗(s) are of type A. Suppose first that M has a nonclassical component. Then
[M, M] is of type E6, and [G, G] = E6+ A1. This may be ruled out by Lemma 3.2,
applied with X equal to the product of the component of type E6 with Z(G) and Y
equal to the component of type A1.

So finally suppose that all components of M are of classical type. Then, CM∗(s)=
C◦M∗(s) is a Levi subgroup of M with all components of type A. Hence, the first
hypothesis of Lemma 3.1 holds by the Jordan decomposition of blocks and [Cabanes
and Enguehard 1999, Theorem 1.7]. So, we may assume that the second hypothesis
of Lemma 3.1 does not hold. Let

C := C◦G(Z(M
F )2).

Since M is a proper e-split Levi subgroup of G, and since Z(G) is connected, by
[Cabanes and Enguehard 1993, Proposition 2.1] C is proper in G. By induction,
we may assume that C is not a Levi subgroup of G. In particular, the intersection
of C with the component of type E6 of G is proper in that component and hence
all components of C are of type A or D. If all components of C are of type A, then
2 is good for C and the second hypothesis of Lemma 3.1 holds by [Cabanes and
Enguehard 1999, Theorem 2.5]. Thus we may assume that C has a component of
type D. Since all components of C are classical, by Lemma 3.3, we may assume
that Z(C)/Z◦(C) is not a 2-group and consequently C has a component of type
An , with n ≡ 2 (mod 3). But by the Borel–de Siebenthal algorithm, a group of type
E6 has no subsystem subgroup of type Dm + An with n ≥ 1 and m ≥ 4. �
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Characters in `-blocks. Using the results collected so far, it is now easy to charac-
terise all characters in `′-series inside a given `-block in terms of Lusztig induction.

Definition 3.5. As in [Cabanes and Enguehard 1999, Section 1.11] (see also [Broué
et al. 1993, Definition 3.1]) for e-split Levi subgroups M1, M2 of G and µi ∈

Irr(M F
i ), we write (M1, µ1) ≤e (M2, µ2) if M1 ≤ M2 and µ2 is a constituent of

RM2
M1
(µ1) (with respect to some parabolic subgroup of M2 with Levi subgroup M1).

We let�e denote the transitive closure of the relation ≤e.

As pointed out in [Cabanes and Enguehard 1999, Section 1.11] it seems rea-
sonable to expect that the relations ≤e and�e coincide. While this is known to
hold for unipotent characters (see [Broué et al. 1993, Theorem 3.11]), it is open in
general.

We put ourselves in the situation and notation of Theorem A.

Theorem 3.6. Let b be an `-block of GF and denote by L(b) the set of e-Jordan-
cuspidal pairs (L, λ) of G such that there is χ ∈ Irr(b) with 〈χ, RG

L (λ)〉 6= 0. Then

Irr(b)∩ E(GF , `′)=
{
χ ∈ E(GF , `′) | ∃ (L, λ) ∈ L(b) with (L, λ)�e (G, χ)

}
.

Proof. Let b be as in the statement and first assume that χ ∈ Irr(b)∩ E(GF , `′).
If χ is not e-Jordan-cuspidal, then it is not e-cuspidal, so there exists a proper
e-split Levi subgroup M1 such that χ occurs in RG

M1
(µ1) for some µ1 ∈ E(M F

1 , `
′).

Thus inductively we obtain a chain of e-split Levi subgroups Mr � . . . � M1 �
M0 := G and characters µi ∈ E(M F

i , `
′) (with µ0 := χ) such that (Mr , µr ) is

e-Jordan cuspidal and such that (Mi , µi )≤e (Mi−1, µi−1) for i = 1, . . . , r , whence
(Mr , µr )�e (G, χ). Let br be the `-block of M F

r containing µr . Now Theorem 3.4
yields that for each i there exists a block, say bi , of M F

i such that all constituents
of RMi−1

Mi
(ζi ) lie in bi−1 for all ζi ∈ Irr(bi )∩ E(M F

i , `
′). In particular, χ lies in b0,

so b0 = b, and thus (Mr , µr ) ∈ L(b).
For the reverse inclusion, let (L, λ) ∈ L(b) and χ ∈ Irr(GF , `′) such that

(L, λ)�e (G, χ). Thus there exists a chain of e-split Levi subgroups L = Mr �
. . .� M0= G and characters µi ∈ Irr(M F

i ) with (Mi , µi )≤e (Mi−1, µi−1). Again,
an application of Theorem 3.4 allows us to conclude that χ ∈ Irr(b). �

`-blocks and derived subgroups. In the following two results, which will be used
in showing that the map 4 in Theorem A is surjective, G is connected reductive
with Frobenius endomorphism F , and G0 := [G, G]. Here, in the cases that the
Mackey formula is not known to hold we assume that RG0

L0
and RG

L are with respect
to a choice of parabolic subgroups P0 ≥ L0 and P ≥ L such that P0 = G0 ∩ P .

Lemma 3.7. Let b be an `-block of GF and let b0 be an `-block of GF
0 covered

by b. Let L be an F-stable Levi subgroup of G, L0 = L ∩ G0 and let λ0 ∈ Irr(LF
0 ).

Suppose that every irreducible constituent of RG0
L0
(λ0) is contained in b0. Then
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there exists λ ∈ Irr(LF ) and χ ∈ Irr(b) such that λ0 is an irreducible constituent of
ResLF

LF
0
(λ) and χ is an irreducible constituent of RG

L (λ).

Proof. Since G = Z◦(G)G0, by [Bonnafé 2006, Proposition 10.10] we have that

RG
L IndLF

LF
0
(λ0)= IndGF

GF
0

RG0
L0
(λ0).

Note that the result in [Bonnafé 2006] is only stated for the case that G has connected
centre but the proof does not use this hypothesis. The right hand side of the above
equality evaluated at 1 is nonzero. Let χ ′ ∈ Irr(GF ) be a constituent of the left
hand side of the equality. There exists λ ∈ Irr(LF ) and χ0 in Irr(GF

0 ) such that λ is
an irreducible constituent of IndLF

LF
0
(λ0), χ ′ is an irreducible constituent of RG

L (λ),
χ0 is an irreducible constituent of RG0

L0
(λ0) and χ ′ is an irreducible constituent of

IndGF

GF
0
(χ0). Since χ0 ∈ Irr(b0), χ ′ lies in a block, say b′, of GF which covers b0.

Since b also covers b0 and since GF/GF
0 is abelian, there exists a linear character,

say θ of GF/GF
0 such that b = b′⊗ θ (see [Kessar and Malle 2013, Lemma 2.2]).

Now the result follows from [Bonnafé 2006, Proposition 10.11] with χ =χ ′⊗θ . �

Lemma 3.8. Let b be an `-block of GF and let L be an F-stable Levi subgroup of
G and λ∈ Irr(LF ) such that every irreducible constituent of RG

L (λ) is contained in b.
Let L0 = L ∩ G0 and let λ0 ∈ Irr(LF

0 ) be an irreducible constituent of ResLF

LF
0
(λ).

Then there exists an `-block b0 of GF
0 covered by b and an irreducible character χ0

of GF
0 in the block b0 such that χ0 is a constituent of RG0

L0
(λ0).

Proof. Arguing as in the proof of Lemma 3.7, there exist χ ∈ Irr(GF ), λ′ ∈ Irr(LF )

and χ0 in Irr([G, G]F ) such that λ′ is an irreducible constituent of IndLF

LF
0
(λ0), χ is

an irreducible constituent of RG
L (λ
′), χ0 is an irreducible constituent of R[G,G]L0

(λ0)

and χ is an irreducible constituent of IndGF

[G,G]F (χ0). Now, λ = θ ⊗ λ′ for some
linear character θ of LF/LF

0 . By [Bonnafé 2006, Proposition 10.11], θ ⊗χ is an
irreducible constituent of RG

L (λ), and hence θ ⊗χ ∈ Irr(b). Further, θ ⊗χ is also a
constituent of IndGF

[G,G]F (χ0), hence b covers the block of [G, G]F containing χ0. �

Unique maximal abelian normal subgroups. A crucial ingredient for proving in-
jectivity of the map in parts (d) and (e) of Theorem A is a property related to the
nonfailure of factorisation phenomenon of finite group theory, which holds for the
defect groups of many blocks of finite groups of Lie type and which was highlighted
by Cabanes [1994]: for a prime `, an `-group is said to be Cabanes if it has a
unique maximal abelian normal subgroup.

Now first consider the following setting: let G be connected reductive. For
i = 1, 2, let Li be an F-stable Levi subgroup of G with λi ∈ E(LF

i , `
′), and let

ui denote the `-block of LF
i containing λi . Suppose that CG(Z(LF

i )`) = Li and
that λi is of quasicentral `-defect. Then by [Kessar and Malle 2013, Propositions
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2.12, 2.13, 2.16] there exists a block bi of GF such that all irreducible characters
of RG

Li
(λi ) lie in bi and (Z(LF

i )`, ui ) is a bi -Brauer pair.

Lemma 3.9. In the above situation, assume further that for i = 1, 2 there exists a
maximal bi -Brauer pair (Pi , ci ) such that (Z(LF

i )`, ui )E (Pi , ci ), and such that Pi

is Cabanes with Z(LF
i )` as the unique maximal abelian normal subgroup of Pi . If

b1 = b2 then the pairs (L1, λ1) and (L2, λ2) are GF -conjugate.

Proof. Suppose that b1 = b2. Since maximal b1-Brauer pairs are GF -conjugate,
it follows that g(Z(LF

2 )`, u2) ≤
g(P2, c2) = (P1, c1) for some g ∈ GF . By trans-

port of structure, g Z(LF
2 )` is a maximal normal abelian subgroup of P1, hence

g Z(LF
2 )` = Z(LF

1 )`. By the uniqueness of inclusion of Brauer pairs it follows that
g(Z(LF

2 )`, u2)=(Z(L1)
F
` , u1). Since Li=CG(Z(LF

i )`), this means that g L2=L1.
Further, since λi is of quasicentral `-defect, by [Kessar and Malle 2013, Proposition
2.5(f)], λi is the unique element of E(LF

i , `
′)∩ Irr(ui ). Thus gu2 = u1 implies that

gλ2 = λ1 and (L1, λ1) and (L2, λ2) are GF -conjugate as required. �

By the proof of Theorems 4.1 and 4.2 of [Cabanes and Enguehard 1999] we also
have:

Proposition 3.10. Let G be connected reductive with simply connected derived
subgroup. Suppose that `≥ 3 is good for G, and ` 6= 3 if GF has a factor 3D4(q).
Let b be an `-block of GF such that the defect groups of b are Cabanes. If (L, λ) and
(L′, λ′) are e-Jordan-cuspidal pairs of G such that λ ∈ E(LF , `′), λ′ ∈ E(L ′F , `′)
with bGF (L, λ)= b = bGF (L′, λ′), then (L, λ) and (L′, λ′) are GF -conjugate.

Proof. This is essentially contained in Section 4 of [Cabanes and Enguehard 1999];
all references in this proof are to this paper. Indeed, let (L, λ) be an e-Jordan-
cuspidal pair of G such that λ ∈ E(LF , `′). Let T∗, T , K = C◦G(Z(L)

F
` ), K ∗, M

and M∗ be as in the notation before Lemma 4.4. Let Z = Z(M)F
` and let λK and

λM be as in Definition 4.6, with λ replacing ζ . Then Z ≤ T and by Lemma 4.8,
M = C◦G(Z). The simply connected hypothesis and the restrictions on ` imply that
CG(Z)=C◦G(Z)=M . Let bZ = b̂Z be the `-block of M F containing λM . Then by
Lemma 4.13, (Z , bZ ) is a self centralising Brauer pair and (1, bGF (L, λ))≤ (Z , bZ ).
Further, by Lemma 4.16 there exists a maximal b-Brauer pair (D, bD) such that
(Z , bZ )≤ (D, bD), Z is normal in D and CD(Z)= Z . Note that the first three con-
clusions of Lemma 4.16 hold under the conditions we have on ` (it is only the fourth
conclusion which requires `∈0(G, F)). By Lemma 4.10 and its proof, we also have

(1, bGF (L, λ))≤ (Z(L)F
` , bK F (L, λ))≤ (Z , bZ ).

Suppose that N is a proper e-split Levi subgroup of G containing C◦G(z)= CG(z)
for some 1 6= z ∈ Z(D)Ga ∩Gb. Then N contains L, M and Z by Lemma 4.15(b).
Since L ∩ Gb = K ∩ Gb by Lemma 4.4(iii), it follows that N also contains K and
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K = CN(Z(LF )). Thus, replacing G with N in Lemma 4.13 we get that

(1, bN F (L, λ))≤ (Z(L)F
` , bK F (L, λ))≤ (D, bD).

Let (L′, λ′) be another e-Jordan-cuspidal pair of G with λ′ ∈ E(L′F , `′) such
that bGF (L, λ) = b = bGF (L′, λ′). Denote by K ′, M ′, D′ etc. the corresponding
groups and characters for (L′, λ′). Up to replacing by a GF -conjugate, we may
assume that (D′, bD′)= (D, bD).

Suppose first that there is a 1 6= z ∈ Z(D)Ga∩Gb. By Lemma 4.15(b), there is a
proper e-split Levi subgroup N containing CG(z). Moreover, N contains D, L′, M ′,
K ′ and Ga and we also have

(1, bN F (L′,λ′))≤ (Z(L′)F
` , bK ′F (L

′,λ′))≤ (D, bD).

By the uniqueness of inclusion of Brauer pairs it follows that bN F(L,λ)=bN F (L′,λ′).
Also D is a defect group of bN F (L, λ). Thus, in this case we are done by induction.

So, we may assume that Z(D)≤ Ga hence D ≤ Ga. From here on, the proof of
Lemma 4.17 goes through without change, the only property that is used being that
Z is the unique maximal abelian normal subgroup of D. �

We will also need the following observation:

Lemma 3.11. Let P = P1× P2 where P1 and P2 are Cabanes. Suppose that P0 is
a normal subgroup of P such that πi (P0)= Pi , i = 1, 2, where πi : P1× P2→ Pi

denote the projection maps. Then P0 is Cabanes with maximal normal abelian
subgroup (A1× A2)∩ P0, where Ai is the unique maximal normal abelian subgroup
of Pi , i = 1, 2.

Proof. Let A= A1× A2. The group A∩ P0 is abelian and normal in P0. Let S be a
normal abelian subgroup of P0. Since πi (P0)= Pi , πi (S) is normal in Pi and since
S is abelian, so is πi (S). Thus, πi (S) is a normal abelian subgroup of Pi and is
therefore contained in Ai . So, S≤ (π1(S)×π2(S))∩ P0≤ (A1× A2)∩ P0= A∩ P0

and the result is proved. �

Linear and unitary groups at ` = 3. The following will be instrumental in the
proof of statement (e) of Theorem A.

Lemma 3.12. Let q be a prime power such that 3 | (q−1) (respectively 3 | (q+1)).
Let G = SLn(q) (respectively SUn(q)) and let P be a Sylow 3-subgroup of G. Then
P is Cabanes unless n = 3 and 3 || (q − 1) (respectively 3 || (q + 1)). In particular,
if P is not Cabanes, then P is extra-special of order 27 and exponent 3. In this case
NG(P) acts transitively on the set of subgroups of order 9 of P.

Proof. Embed P ≤ SLn(q)≤GLn(q). A Sylow 3-subgroup of GLn(q) is contained
in the normaliser Cq−1 oSn of a maximally split torus. According to [Cabanes 1994,
Lemme 4.1], the only case in which Sn has a quadratic element on (Cn

q−1)3∩SLn(q)
is when n = 3 and 3 || (q − 1). If there is no quadratic element in this action, then
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P is Cabanes by [Cabanes 1994, Proposition 2.3]. In the case of SUn(q), the same
argument applies with the normaliser Cq+1 oSn of a Sylow 2-torus inside GUn(q).

Now assume we are in the exceptional case. Clearly |P| = 27. Let P1, P2 ≤ P
be subgroups of order 9, and let ui ∈ Pi be noncentral. Then ui is G-conjugate
to diag(1, ζ, ζ 2), where ζ is a primitive 3rd-root of unity in Fq (respectively Fq2).
In particular, there exists g ∈ G such that gu1 = u2. Let ¯ : G→ G/Z(G) denote
the canonical map. Then ḡ(ū1) = ū2. Since the Sylow 3-subgroup P̄ of Ḡ is
abelian, there exists h̄ ∈ NḠ(P̄) with h̄(ū1)= ū2. Then h ∈ NG(P) and h P1 = P2

as Pi = 〈Z(G), ui 〉. �

Lemma 3.13. Suppose that 3 || n and 3 || (q − 1) (respectively 3 || (q + 1)). Let
G̃ = GLn , G = SLn and suppose that G̃F

= GLn(q) (respectively GUn(q)). Let
s be a semisimple 3′-element of G̃F such that a Sylow 3-subgroup D of CGF (s)
is extra-special of order 27 and let P1, P2 ≤ D have order 9. There exists g ∈
NGF (D)∩CGF (CGF (D)) such that g P1 = P2.

Proof. Set d = n
3 . Identify G̃ with the group of linear transformations of an n-

dimensional Fq -vector space V with chosen basis {ei,r | 1≤ i ≤ d, 1≤ r ≤ 3}. For
g ∈ G̃, write a(g)i,r, j,s for the coefficient of ei,r in g(e j,s). Let w ∈ G̃ be defined
by w(ei,r ) = ei+1,r , 1 ≤ i ≤ d, 1 ≤ r ≤ 3. For 1 ≤ i ≤ d let Vi be the span of
{ei,1, ei,2, ei,3} and G̃i = GL(Vi ) considered as a subgroup of G̃ through the direct
sum decomposition V =

⊕
1≤i≤d Vi .

Up to conjugation in G̃ we may assume F = adw ◦ F0, where F0 is the standard
Frobenius morphism which raises every matrix entry to its q-th power in the linear
case, respectively the composition of the latter by the transpose inverse map in the
unitary case. Note that then each G̃i is F0-stable.

Thus, given the hypothesis on the structure of D, we may assume the follow-
ing up to conjugation: s has d distinct eigenvalues δ1, . . . , δd with δi+1 = δ

q
i

(respectively δ−q
i ); Vi is the δi -eigenspace of s, and CG̃(s) =

∏d
i=1 G̃i . Further,

F(G̃i )= G̃i+1 and denoting by 1 : G̃1→
∏d

i=1 G̃i , x 7→ x F(x) · · · Fd−1(x), the
twisted diagonal map we have CG̃F (s)=1(G̃Fd

1 ). Here, G̃Fd

1 = G̃Fd
0

1 is isomorphic
to either GL3(qd) or GU3(qd). Note that GU3(qd) occurs only if d is odd.

Consider G̃F0
1 ≤ G̃Fd

0
1 . Let U1 be the Sylow 3-subgroup of the diagonal matrices in

G̃F0
1 of determinant 1 and let σ1 ∈ G̃F0

1 be defined by σ1(e1,r )= e1,r+1 for 1≤ r ≤ 3.
Then D1 := 〈U1, σ1〉 is a Sylow 3-subgroup of G̃F0

1 . Since by hypothesis the Sylow
3-subgroups of CGF (s) have order 27, D :=1(D1) is a Sylow 3-subgroup of CGF (s)
with 1(U1)∼=U1 elementary abelian of order 9. Note that 1(σ1)(ei,r )= ei,r+1 for
1≤ i ≤ d and 1≤ r ≤ 3.

Let ζ ∈ Fq be a primitive third root of unity. Let u1 ∈U1 be such that u1(e1,r )=

ζ r e1,r for 1≤ r ≤ 3. For 1≤ r ≤ 3, let Wr be the span of {e1,r , . . . , ed,r }. Then Wr

is the ζ r -eigenspace of 1(u1), whence
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CG̃(D)≤ CG̃(1(U1))= CG̃(1(u1))=
∏

1≤r≤3

GL(Wr ).

Since 1(σ1)(Wr )=Wr+1, and 1(σ1) acts on CG̃(1(U1)), it follows that CG̃(D)=
1′(GL(W1)), where1′ :GL(W1)→

∏
1≤r≤3 GL(Wr ), x 7→ x σ x σ

2
x , is the twisted

diagonal.
We claim that 1(G̃F0

1 ) centralises CG̃(D). Indeed, note that g ∈ 1(G̃F0
1 ) if

and only if a(g)i,r, j,s = 0 if i 6= j and a(g)i,r,i,s = a(F i−1
0 (g))1,r,1,s = a(g)1,r,1,s

for all i and all r, s. Also, h ∈ CG̃(D) if and only if a(h)i,r, j,s = 0 if r 6= s and
a(h)i,r, j,r = a(h)i,1, j,1 for all i, j and all r . The claim follows from an easy matrix
multiplication.

Let H = [G̃F0
1 , G̃F0

1 ] and note that D1 ≤ H . By Lemma 3.12 applied to H any
two subgroups of D1 of order 9 are conjugate by an element of NH (D1). The
lemma follows from the claim above. �

Parametrising `-blocks. We can now prove our main theorem, Theorem A, which
we restate. Recall Definition 2.1 of e-Jordan (quasicentral) cuspidal pairs.

Theorem 3.14. Let H be a simple algebraic group of simply connected type with a
Frobenius endomorphism F : H→ H endowing H with an Fq-rational structure.
Let G be an F-stable Levi subgroup of H . Let ` be a prime not dividing q and set
e = e`(q).

(a) For any e-Jordan-cuspidal pair (L, λ) of G such that λ ∈ E(LF , `′), there
exists a unique `-block bGF (L, λ) of GF such that all irreducible constituents
of RG

L (λ) lie in bGF (L, λ).

(b) The map 4 : (L, λ) 7→ bGF (L, λ) is a surjection from the set of GF -conjugacy
classes of e-Jordan-cuspidal pairs (L, λ) of G with λ ∈ E(LF , `′) to the set of
`-blocks of GF .

(c) The map 4 restricts to a surjection from the set of GF -conjugacy classes of
e-Jordan quasicentral cuspidal pairs (L, λ) of G with λ ∈ E(LF , `′) to the set
of `-blocks of GF .

(d) For `≥ 3 the map 4 restricts to a bijection between the set of GF -conjugacy
classes of e-Jordan quasicentral cuspidal pairs (L, λ) of G with λ ∈ E(LF , `′)

and the set of `-blocks of GF .

(e) The map 4 itself is bijective if `≥ 3 is good for G, and moreover ` 6= 3 if GF

has a factor 3D4(q).

Remark 3.15. Note that (e) is best possible. See [Enguehard 2000; Kessar and
Malle 2013] for counterexamples to the conclusion for bad primes, and [Enguehard
2000, p. 348] for a counterexample in the case `= 3 and GF

=
3D4(q). Counterex-

amples in the case ` = 2 and G of type An occur in the following situation. Let
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GF
= SLn(q) with 4 | (q + 1). Then e = 2 and the unipotent 2-(Jordan-)cuspidal

pairs of GF correspond to 2-cores of partitions of n− 1 (see [Broué et al. 1993,
§3A]). On the other hand, by [Cabanes and Enguehard 1993, Theorem 13], GF has
a unique unipotent 2-block.

Also, part (d) is best possible as the next example shows.

Example 3.16. Consider G= SLn with n> 1 odd, G̃=GLn , and let GF
= SLn(q)

be such that q≡1 (mod n) and 4 | (q+1). Then for `=2 we have e= e2(q)=2, and
Fq contains a primitive n-th root of unity, say ζ . Let s̃= diag(1, ζ, . . . , ζ n−1)∈ G̃∗F

and let s be its image in G∗=PGLn . Then C◦G∗(s) is the maximal 1-torus consisting
of the image of the diagonal torus of G̃∗. Thus, (C◦G∗(s))2 = 1= Z◦(G∗)2.

As |CG∗(s)F
: C◦G∗(s)

F
| = n we have |E(GF , s)| = n, and all of these characters

are 2-Jordan quasicentral cuspidal. We claim that all elements of E(GF , s) lie in
the same 2-block of GF , so do not satisfy the conclusion of Theorem 3.14(d).

Let T̃ be a maximal torus of G̃ in duality with CG̃∗(s) and let θ̃ ∈ Irr(T̃ F ) in
duality with s̃. Let T = T̃ ∩G, and let θ = θ̃ |T F . Since s̃ is regular, λ̃ := R G̃

T̃
(θ) ∈

Irr(G̃F ), and E(G̃F , s̃) = {λ̃}. Further, λ̃ covers every element of E(GF , s). By
[Bonnafé 2005, Proposition 10.10(b*)],

RG
T (θ)= ResG̃F

GF R G̃
T̃ (θ̃)= ResG̃F

GF (λ̃).

Thus, every element of E(GF , s) is a constituent of RG
T (θ). On the other hand,

since T̃ is the torus of diagonal matrices, we have T = CG(T F
2 ) by explicit compu-

tation. Hence by [Kessar and Malle 2013, Propositions 2.12, 2.13(1), 2.16(1)], all
constituents of RG

T (θ) lie in a single 2-block of GF .

Proof of Theorem 3.14. Parts (a) and (b) are immediate from Theorem 3.4 and
the proof of Theorem 3.6. We next consider part (e), where it remains to show
injectivity under the given assumptions. By [Cabanes and Enguehard 1999, Theorem
4.1 and Remark 5.2] only `= 3 and G of (possibly twisted) type An remains to be
considered. Note that the claim holds if 3 ∈ 0(G, F) by [Cabanes and Enguehard
1999, Section 5.2]. Thus we may assume that the ambient simple algebraic group H
of simply connected type is either SLm or E6, and 3 6∈0(G, F). By Proposition 3.10
the claim holds for all blocks whose defect groups are Cabanes.

Let first H =SLm and G≤ H be an F-stable Levi subgroup. As 3 6∈0(G, F) we
have 3 | (q − 1) when F is untwisted. We postpone the twisted case for a moment.
Embed H ↪→ H̃ = GLm . Then G̃ = GZ(H) is an F-stable Levi subgroup of H̃ ,
so has connected centre. Moreover, as H̃ is self-dual, so is its Levi subgroup G̃. In
particular, 3 ∈ 0(G̃, F). Now let b be a 3-block of GF in E3(GF , s), with s ∈ G∗F

a semisimple 3′-element. Let b̃ be a block of G̃ covering b, contained in E3(G̃F , s̃),
where s̃ is a preimage of s under the induced map G̃∗→ G∗. Since 3 | (q − 1),
CG̃(s̃)

F has a single unipotent 3-block, and so by [Cabanes and Enguehard 1999,
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Proposition 5.1] a Sylow 3-subgroup D̃ of CG̃(s̃)
F is a defect group of b̃. Thus,

D := D̃ ∩ G = D̃ ∩ H is a defect group of b.
Now CG̃(s̃) is an F-stable Levi subgroup of G̃, so also an F-stable Levi subgroup

of H̃ = GLm . As such, it is a direct product of factors GLmi with
∑

i mi =

m. Assume that there is more than one F-orbit on the set of factors. Then by
Lemma 3.11 the Sylow 3-subgroup D̃ of CG̃(s̃)

F has the property that D = D̃∩ H
is Cabanes and we are done. Hence, we may assume that F has just one orbit on
the set of factors of CG̃(s̃). But this is only possible if F has only one orbit on the
set of factors of G̃. This implies that G̃F ∼= GLn(qm/n) and GF ∼= SLn(qm/n) for
some n | m.

Exactly the same arguments apply when F is twisted, except that now 3 | (q+1).
So replacing q by qm/n we may now suppose that G = SLn with 3 6∈ 0(G, F).
Assume that the defect groups of b are not Cabanes. Let (L, λ) be an e-Jordan-
cuspidal pair for b with λ ∈ E(LF , s) and let L̃ = Z◦(G̃)L. There exists an
irreducible character λ̃ of L̃F covering λ, an irreducible constituent χ̃ of R G̃

L̃
(λ̃) and

an irreducible constituent, say χ of RG
L (λ) such that χ̃ covers χ . By Lemma 2.3,

(L̃, λ̃) is e-Jordan-cuspidal. Let b̃ be the block of G̃F associated to (L̃, λ̃), contained
in E3(G̃F , s̃). So, b̃ covers b.

As seen above CG̃(s̃)
F has a single unipotent 3-block and a Sylow 3-subgroup D̃

of CG̃(s̃)
F is a defect group of b̃ and D := D̃∩G is a defect group of b. Moreover F

has a single orbit on the set of factors of CG̃(s̃). By Lemma 3.12, CG̃(s̃)
F
=GL3(q

n
3 )

or GU3(q
n
3 ), 3 does not divide n

3 and D is extra-special of order 27 and exponent 3.
Also, L̃ is an e-split Levi subgroup isomorphic to a direct product of 3 copies of GL n

3
.

Let U = Z(L)F
3 and let c be the 3-block of LF containing λ. From the structure

of L̃ given above, |U | = 9 and L = CG(U ). Thus, by [Cabanes and Enguehard
1999, Theorem 2.5], (U, c) is a b-Brauer pair. Let (D, f ) be a maximal b-Brauer
pair such that (U, c)≤ (D, f ).

Let (L′, λ′) be another e-Jordan-cuspidal pair for b with λ′ ∈ E(L′F , s). Let
U ′= Z(L′)F

3 and let c′ be the 3-block of L′F containing λ′, so |U ′|=9 and (U ′, c′) is
also a b-Brauer pair. Since all maximal b-Brauer pairs are GF -conjugate, there exists
h ∈ GF such that h(U ′, c′)≤ (D, f ). Thus, U and hU ′ are subgroups of order 9
of D. By Lemma 3.13, there exists g∈NGF (D)∩CGF (CGF (D)) such that ghU ′=U .
Since g centralises CGF (D), g f = f and since g normalises D, g D = D. Hence

(U, ghc′)= gh(U ′, c′)≤ g(D, f )= (D, f ).

By the uniqueness of inclusion of Brauer pairs we get that gh(U ′, c′) = (U, c).
Thus gh L′ = L and ghc′ = c. Since U is abelian of maximal order in D, (U, c) is
a self-centralising Brauer pair. In particular, there is a unique irreducible character
in c with U in its kernel. Since λ ∈ E(LF , `′), U is contained in the kernel of λ.
Hence ghλ′ = λ and injectivity is proved for type A.
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Finally suppose that H is of type E6. By our preliminary reductions we may
assume that G has only factors of type A and 3 /∈ 0(G, F). Thus G must have at
least one factor of type A2 or A5. The remaining possibilities hence are: G is of
type A5, 2A2+ A1, or 2A2. Note that for G of type 2A2+ A1, the A1-factor of the
derived subgroup [G, G] splits off, and that 2A2 is a Levi subgroup of A5. So it
suffices to show the claim for Levi subgroups of this particular Levi subgroup G of
type A5. Since H is simply connected, [G, G] ∼= SL6 and thus virtually the same
arguments as for the case of G = SLn apply. This completes the proof of (e).

Part (d) follows whenever `≥3 is good for G, and ` 6=3 if GF has a factor 3D4(q),
since then by (e) there is a unique e-Jordan-cuspidal pair for any `-block, and
its (unipotent) Jordan correspondent has quasicentral `-defect by [Cabanes and
Enguehard 1994, Proposition 4.3] and Remark 2.2. So now assume that either `≥ 3
is bad for G, or that `= 3 and GF has a factor 3D4(q).

Note that it suffices to prove the statement for quasi-isolated blocks, since then it
follows tautologically for all others using the Jordan correspondence, Proposition 2.4
and the remarks after Definition 2.12. Here note that by Lemma 2.5 the bijections
of Proposition 2.4 extend to conjugacy classes of pairs. We first prove surjectivity.
For this, by Lemma 3.7, Lemma 2.7 and by parts (a) and (b), we may assume that
G = [G, G]. Further, since [G, G] is simply connected, hence a direct product of
its components, we may assume that G is simple. Then surjectivity for unipotent
blocks follows from [Enguehard 2000, Theorems A and A.bis], while for all other
quasi-isolated blocks it is shown in [Kessar and Malle 2013, Theorem 1.2] (these
also include the case that GF

=
3D4(q)).

Now we prove injectivity. If G = H , then the claim for unipotent blocks follows
from [Enguehard 2000, Theorems A and A.bis], while for all other quasi-isolated
blocks it is shown in [Kessar and Malle 2013, Theorem 1.2] (these also include the
case that GF

=
3D4(q)). Note that in Table 4 of [Kessar and Malle 2013], each of the

lines 6, 7, 10, 11, 14 and 20 give rise to two e-cuspidal pairs and so to two e-Harish-
Chandra series, but each e-Jordan cuspidal pair (L, λ) which corresponds to these
lines has the Cabanes property of Lemma 3.9, so they give rise to different blocks.

So, we may assume that G 6= H , and thus ` = 3. Suppose first that GF has a
factor 3D4(q). Then H is of type E6, E7 or E8, there is one component of [G, G]
of type D4 and all other components are of type A. Denote by G2 the component
of type D4, and by G1 the product of the remaining components with Z◦(G). We
note that Z(G1)/Z◦(G1) is a 3′-group. Indeed, if H is of type E7 or E8, then
Z(G)/Z◦(G) is of order prime to 3, hence the same is true of Z(G1)/Z◦(G1) and
if H is of type E6, then G1 = Z◦(G).

Now, GF
= GF

1 × GF
2 . So, the map ((L1, λ1), (L2, λ2))→ (L1 L2, λ1λ2) is a

bijection between pairs of e-Jordan cuspidal pairs for GF
1 and GF

2 and e-Jordan
cuspidal pairs for GF . The bijection preserves conjugacy and quasicentrality. All
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components of G1 are of type A and as noted above 3 does not divide the order
of Z(G1)/Z◦(G1), hence by [Cabanes and Enguehard 1999, Section 5.2] we may
assume that G = G2, in which case we are done by [Enguehard 2000, Theorem
A] and [Kessar and Malle 2013, Lemma 6.13].

Thus, GF has no factor 3D4(q). Set G0 := [G, G]. Since 3 is bad for G, and G
is proper in H , we are in one of the following cases: H is of type E7 and G0 is
simple of type E6, or G is of type E8 and G0 is of type E6, E6+ A1 or E7. In all
cases, note that Z(G) is connected,

Let s ∈G∗F be a quasi-isolated semisimple 3′-element. Let s̄ be the image of s un-
der the surjection G∗→G∗0. Since Z(G) is connected, s is isolated in G∗ and conse-
quently s̄ is isolated in G∗0. In particular, if G0 has a component of type A1, then the
projection of s̄ into that factor is the identity. Since s has order prime to 3, this means
that if G0 has a component of type E6, then CG∗0(s̄) is connected. We will use this
fact later. Also, we note here that s̄ 6=1 as otherwise the result would follow from [En-
guehard 2000] and the standard correspondence between unipotent blocks and blocks
lying in central Lusztig series. Finally, we note that by [Kessar and Malle 2013, The-
orem 1.2] the conclusion of parts (a) and (d) of the theorem holds for GF

0 as all com-
ponents of G0 are of different type (so e is the same for the factors of GF

0 as for GF ).
Let b be a 3-block of GF in the series s and (L, λ) be an e-Jordan quasicentral

cuspidal pair for b such that s ∈ L∗F and λ ∈ E(LF , s). Let L0 = L ∩ G0 and let
λ0 be an irreducible constituent of the restriction of λ to LF

0 . By Lemma 3.8 there
exists a block b0 of GF

0 covered by b, and such that all irreducible constituents of
RG0

L0
(λ0) belong to b. By Lemma 2.3 and the remarks following Definition 2.12,

(L0, λ0) is an e-Jordan quasicentral cuspidal pair of GF
0 for b0.

First suppose that CG0(s̄) is connected. Then all elements of E(GF
0 , s̄) are GF -

stable and in particular, b0 is GF -stable. Now let (L′, λ′) be another e-Jordan
quasicentral cuspidal pair for b. Let L′0 = L′ ∩ G0 and λ′0 be an irreducible
constituent of the restriction of λ′ to L ′F0 . Then, as above (L′0, λ

′

0) is an e-Jordan
quasicentral cuspidal pair for b0. But there is a unique e-Jordan quasicentral cuspidal
pair for b0 up to GF

0 -conjugacy. So, up to replacing by a suitable GF
0 -conjugate we

may assume that (L0, λ0)= (L′0, λ
′

0), hence L = L′, and λ and λ′ cover the same
character λ0 = λ

′

0 of LF
0 = L0

′F .
If µ ∈ E(GF

0 , s̄), then there are |GF/GF
0 |3′ different 3′-Lusztig series of GF con-

taining an irreducible character covering µ. Since characters in different 3′-Lusztig
series lie in different 3-blocks, there are at least |GF/GF

0 |3′ different blocks of
GF covering b0. Moreover, if b′ is a block of GF covering b0, then there exists a
linear character, say θ of GF/GF

0
∼= LF/LF

0 of 3′-degree such that (L, θ⊗λ) is an
e-Jordan quasicentral cuspidal pair for b′ and λ0 appears in the restriction of θ ⊗ λ
to LF

0 . Since there are at most |LF/LF
0 |3′ = |G

F/GF
0 |3′ irreducible characters of

LF in 3′-series covering λ0, it follows that λ= λ′.
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Thus, we may assume that CG0(s̄) is not connected. Hence, by the remarks above
G0 is simple of type E7. Further s̄ corresponds to one of the lines 5, 6, 7, 12, 13,
or 14 of Table 4 of [Kessar and Malle 2013] (note that s̄ is isolated and that e-Jordan
(quasi-)central cuspidality in this case is the same as e-(quasi-)central cuspidality).

By [Kessar and Malle 2013, Lemma 5.2], L0 = CG0(Z(LF
0 )3). In other words,

(L0, λ0) is a good pair for b0 in the sense of [Kessar and Malle 2013, Defini-
tion 7.10]. In particular, there is a maximal b0-Brauer pair (P0, c0) such that
(Z(LF

0 )3, bLF
0
(λ0))E(P0, c0). Here for a finite group X and an irreducible character

η of X , we denote by bX (η) the `-block of X containing η. By inspection of the
relevant lines of Table 4 of [Kessar and Malle 2013] (and the proof of [Kessar and
Malle 2013, Theorem 1.2]), one sees that the maximal Brauer pair (P0, c0) can be
chosen so that Z(LF

0 )3 is the unique maximal abelian normal subgroup of P0.
By [Kessar and Malle 2013, Theorem 7.11] there exists a maximal b-Brauer pair

(P, c) and ν ∈ E(LF , `′) such that ν covers λ0, P0 ≤ P and we have an inclusion
of b-Brauer pairs (Z(LF )3, bLF (ν))E (P, c). Since λ also covers λ0, λ = τ ⊗ ν
for some linear character τ of LF/LF

0
∼= GF/GF

0 . Since tensoring with linear
characters preserves block distribution and commutes with Brauer pair inclusion,
replacing c with the block of CGF (P0) whose irreducible characters are of the form
τ ⊗ϕ, ϕ ∈ Irr(c), we get that there exists a maximal b-Brauer pair (P, c) such that
P0 ≤ P and (Z(LF )3, bLF (λ))E (P, c).

Being normal in GF , Z(GF )3 is contained in the defect groups of every block
of GF , and in particular Z(GF )3 ≤ P . On the other hand, since G0 has centre
of order 2, P0 Z(GF )3 is a defect group of b whence P is a direct product of
P0 and Z(GF )3. Now, Z(LF

0 )3 is the unique maximal abelian normal subgroup
of P0. Hence, Z(LF )3 = Z(GF )3× Z(LF

0 )3 is the unique maximal normal abelian
subgroup of P (see Lemma 3.11). Finally note that by Lemma 2.7, λ is also of
quasicentral `-defect. By Lemma 3.9 it follows that up to conjugacy (L, λ) is the
unique e-Jordan quasicentral cuspidal pair of GF for b.

Finally, we show (c). In view of the part (d) just proved above, it remains to
consider the prime `= 2 only. Suppose first that all components of G are of classical
type. Let s ∈ G∗F be semisimple of odd order and let b be a 2-block of GF in
series s. By Lemma 3.17 below there is an e-torus, say S of C◦G∗(s) such that
T∗ := CC◦G∗ (s)(S) is a maximal torus of C◦G∗(s). Let L∗ = CG∗(S) and let L be a
Levi subgroup of G in duality with L∗. Then L is an e-split subgroup of G and
T∗ =C◦L∗(s). Let λ ∈ Irr(LF , s) correspond via Jordan decomposition to the trivial
character of T∗F . Then (L, λ) is an e-Jordan quasicentral cuspidal pair of G.

Let G ↪→ G̃ be a regular embedding. By part (a), Lemmas 3.3 and 3.8, there
exists g∈ G̃F such that b=bGF ( g L, gλ). Now since (L, λ) is e-Jordan quasicentral
cuspidal, so is ( g L, gλ). In order to see this, first note that, up to multiplication by
a suitable element of GF and by an application of the Lang–Steinberg theorem, we
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may assume that g is in some F-stable maximal torus of Z◦(G̃)L. Thus g L= L, and
λ and gλ correspond to the same CL∗(s)F orbit of unipotent characters of C◦L∗(s)

F .
Now suppose that G has a component of exceptional type. Then we can argue

just as in the proof of surjectivity for bad ` in part (d). �

Lemma 3.17. Let G be connected reductive with a Frobenius morphism F :G→G.
Let e ∈ {1, 2} and let S be a Sylow e-torus of G. Then CG(S) is a torus.

Proof. Let C := [CG(S),CG(S)] and assume that C has semisimple rank at least
one. Let T be a maximally split torus of C. Then the Sylow 1-torus of T , hence
of C is nontrivial. Similarly, the reductive group C ′ with complete root datum
obtained from that of C by replacing the automorphism on the Weyl group by its
negative, again has a nontrivial Sylow 1-torus. But then C also has a nontrivial
Sylow 2-torus. Thus in any case C has a noncentral e-torus, which is a contradiction
to its definition. �

4. Jordan decomposition of blocks

Lusztig induction induces Morita equivalences between Jordan corresponding
blocks. We show that this also behaves nicely with respect to e-cuspidal pairs
and their corresponding e-Harish-Chandra series.

Jordan decomposition and e-cuspidal pairs. Throughout this subsection, G is a
connected reductive algebraic group with a Frobenius endomorphism F : G→ G
endowing G with an Fq-structure for some power q of p. Our results here are
valid for all groups GF satisfying the Mackey-formula for Lusztig induction. At
present this is known to hold unless G has a component H of type E6, E7 or E8

with H F
∈ {

2E6(2), E7(2), E8(2)}, see Bonnafé–Michel [2011]. The following is
in complete analogy with Proposition 2.4:

Proposition 4.1. Assume that GF has no factor 2E6(2), E7(2) or E8(2). Let
s ∈ G∗F, and G1 ≤ G an F-stable Levi subgroup with G∗1 containing CG∗(s).
For (L1, λ1) an e-cuspidal pair of G1 below E(GF

1 , s) define L := CG(Z◦(L1)e)

and λ := εLεL1 RL
L1
(λ1). Then (L1, λ1) 7→ (L, λ) defines a bijection 9G

G1
between

the set of e-cuspidal pairs of G1 below E(GF
1 , s) and the set of e-cuspidal pairs of

G below E(GF , s).

Proof. We had already seen in the proof of Proposition 2.4 that L is e-split and
Z◦(L1)e = Z◦(L)e. For the well-definedness of 9G

G1
it remains to show that λ is

e-cuspidal. For any e-split Levi subgroup X ≤ L the Mackey formula [Bonnafé
and Michel 2011, Theorem] gives

εLεL1
∗RL

X(λ)=
∗RL

X RL
L1
(λ1)=

∑
g

RX
X∩g L1

∗R
g L1
X∩g L1

(λ
g
1)
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where the sum runs over a suitable set of double coset representatives g ∈ LF . Here,
X ∩ g L1 is e-split in L1 since L1 ∩ Xg

= L1 ∩ CL(Z◦(Xg)e) = CL1(Z
◦(Xg)e).

The e-cuspidality of λ1 thus shows that the only nonzero terms in the above sum
are those for which L1 ∩ Xg

= L1, i.e., those with L1 ≤ Xg. But then Z◦(L)e =
Z◦(L1)e = Z◦(Xg)e, and as X is e-split in L we deduce that necessarily X = L if
∗RL

X(λ) 6= 0. So λ is indeed e-cuspidal, and 9G
G1

is well-defined.
Injectivity was shown in the proof of Proposition 2.4, where we had constructed

an inverse map with L∗1 := L∗ ∩ G∗1 and λ1 the unique constituent of ∗RL
L1
(λ) in

E(LF
1 , s). We claim that λ1 is e-cuspidal. Indeed, for any e-split Levi subgroup

X ≤ L1 let Y := CL(Z◦(X)e), an e-split Levi subgroup of L. Then ∗RL1
X (λ1) is a

constituent of
∗RL

X(λ)=
∗RY

X
∗RL

Y (λ)= 0

by e-cuspidality of λ, unless Y = L, whence X = Y ∩ L1 = L ∩ L1 = L1.
Thus we have obtained a well-defined map ∗9G

G1
from e-cuspidal pairs in G to

e-cuspidal pairs in G1, both below the series s. The rest of the proof is again as for
Proposition 2.4. �

Jordan decomposition, e-cuspidal pairs and `-blocks. We next remove two of the
three possible exceptions in Proposition 4.1 for characters in `′-series:

Lemma 4.2. The assertions of Proposition 4.1 remain true for GF having no factor
E8(2) whenever s ∈ G∗F is a semisimple `′-element, where e= e`(q). In particular,
9G

G1
exists.

Proof. Let s be a semisimple `′-element. Then by [Cabanes and Enguehard 1999,
Theorem 4.2] we may assume that ` ≤ 3, so in fact ` = 3. The character table
of G∗F

=
2E6(2).3 is known; there are 12 classes of nontrivial elements s ∈ G∗F

of order prime to 6. Their centralisers CG∗(s) only have factors of type A, and
are connected. Thus all characters in those series E(GF , s) are uniform, so the
Mackey-formula is known for them with respect to any Levi subgroup. Thus, the
argument in Proposition 4.1 is applicable to those series. For GF

= E7(2), the
conjugacy classes of semisimple elements can be found in [Lübeck]. From this one
verifies that again all nontrivial semisimple 3′-elements have centraliser either of
type A, or of type 2D4(q)A1(q)84, or 3D4(q)8183. In the latter two cases, proper
Levi subgroups are either direct factors, or again of type A, and so once more the
Mackey-formula is known to hold with respect to any Levi subgroup. �

Remark 4.3. The assertion of Lemma 4.2 can be extended to most `′-series of
GF
= E8(2). Indeed, again by [Cabanes and Enguehard 1999, Theorem 4.2] we

only need to consider ` ∈ {3, 5}. For ` = 3 there are just two types of Lusztig
series for 3′-elements which can not be treated by the arguments above, with
corresponding centraliser E6(2)83 respectively 2D6(2)84. For ` = 5, there are
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five types of Lusztig series, with centraliser 2E6(2)2A2(2), E7(2)82, 2D7(2)82,
E6(2)83 and 2D5(2)8286 respectively. Note that the first one is isolated, so the
assertion can be checked using [Kessar and Malle 2013].

Proposition 4.4. Assume that GF has no factor E8(2). Let s ∈G∗F be a semisimple
`′-element, and G1 ≤ G an F-stable Levi subgroup with G∗1 containing CG∗(s).
Assume that b is an `-block in E`(GF , s), and c is its Jordan correspondent in
E`(GF

1 , s). Let e = e`(q).

(a) Let (L1, λ1) be e-cuspidal in G1, where (L, λ) = 9G
G1
(L1, λ1). If all con-

stituents of RG1
L1
(λ1) lie in c, then all constituents of RG

L (λ) lie in b.

(b) Let (L, λ) be e-cuspidal in G, where (L1, λ1)=
∗9G

G1
(L, λ). If all constituents

of RG
L (λ) lie in b, then all constituents of RG1

L1
(λ1) lie in c.

The proof is identical to the one of Proposition 2.6, using Proposition 4.1 and
Lemma 4.2 in place of Proposition 2.4.
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Dedicated to the memory of Professor Robert Steinberg.

In this paper we construct free resolutions of a class of closed subvarieties of
affine spaces (the so-called “opposite big cells” of Grassmannians). Our class
covers the determinantal varieties, whose resolutions were first constructed
by A. Lascoux (Adv. in Math. 30:3 (1978), 202–237). Our approach uses
the geometry of Schubert varieties. An interesting aspect of our work is its
connection to the computation of the cohomology of homogeneous bundles
(that are not necessarily completely reducible) on partial flag varieties.

1. Introduction

A classical problem in commutative algebra and algebraic geometry is to describe
the syzygies of the defining ideals of interesting varieties. Let k ≤ n≤m be positive
integers. The space Dk of m × n matrices (over a field k) of rank at most k is a
closed subvariety of the mn-dimensional affine space of all m× n matrices. When
k = C, a minimal free resolution of the coordinate ring k[Dk] as a module over
the coordinate ring of the mn-dimensional affine space (i.e., the mn-dimensional
polynomial ring) was constructed by A. Lascoux [1978]; see also [Weyman 2003,
Chapter 6].

In this paper, we construct free resolutions for a larger class of singularities, viz.,
Schubert singularities, i.e., the intersection of a singular Schubert variety and the
“opposite big cell” inside a Grassmannian. The advantage of our method is that it is
algebraic group-theoretic, and is likely to work for Schubert singularities in more
general flag varieties. In this process, we have come up with a method to compute
the cohomology of certain homogeneous vector bundles (which are not completely
reducible) on flag varieties. We will work over k= C.

Let N =m+ n. Let GLN =GLN (C) be the group of N × N invertible matrices.
Let BN be the Borel subgroup of all upper-triangular matrices and B−N the opposite
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Borel subgroup of all lower-triangular matrices in GLN . Let P be the maximal
parabolic subgroup corresponding to omitting the simple root αn , i.e., the subgroup
of GLN comprising the matrices in which the (i, j)-th entry (i.e., in row i and
column j) is zero, if n+ 1≤ i ≤ N and 1≤ j ≤ n; in other words,

P =
{[

An×n Cn×m

0m×n Em×m

]
∈ GLN

}
.

We have a canonical identification of the Grassmannian of n-dimensional subspaces
of kN with GLN /P. Let W and WP be the Weyl groups of GLN and of P, respec-
tively; note that W = SN (the symmetric group) and WP = Sn×Sm . For w ∈W/WP ,
let XP(w)⊆ GLN /P be the Schubert variety corresponding to w (i.e., the closure
of the BN -orbit of the coset wP ∈ GLN /P, equipped with the canonical reduced
scheme structure). The B−N -orbit of the coset (id ·P) in GLN /P is denoted by
O−GLN /P , and is usually called the opposite big cell in GLN /P; it can be identified
with the mn-dimensional affine space. (See Section 2.2.)

Write W P for the set of minimal representatives (under the Bruhat order) in W
for the elements of W/WP . For 1≤ r ≤ n− 1, we consider certain subsets Wr of
W P (Definition 3.3); there is w ∈Wn−k such that Dk = XP(w)∩ O−GLN /P . Note
that for any w ∈ W P, XP(w) ∩ O−GLN /P is a closed subvariety of O−GLN /P . Our
main result is a description of the minimal free resolution of the coordinate ring
of XP(w) ∩ O−GLN /P as a module over the coordinate ring of O−GLN /P for every
w ∈Wr . This latter ring is a polynomial ring. We now outline our approach.

First we recall the Kempf–Lascoux–Weyman “geometric technique” of construct-
ing minimal free resolutions. Suppose that we have a commutative diagram of
varieties

(1-1)

Z �
� //

q ′

��

A× V

q
��

// V

Y �
� // A

where A is an affine space, Y a closed subvariety of A and V a projective variety
and q is the projection to the first factor. Suppose further that the (necessarily
proper) map q ′ is birational, and that the inclusion Z ↪→ A× V is a subbundle
(over V ) of the trivial bundle A× V. Let ξ be the dual of the quotient bundle on V
corresponding to Z . Then the derived direct image Rq ′

∗
OZ is quasi-isomorphic to a

minimal complex F• with

Fi =
⊕
j≥0

H j (V,
∧i+ j

ξ)⊗C R(−i − j).

Here R is the coordinate ring of A; it is a polynomial ring and R(k) refers to
twisting with respect to its natural grading. If q ′ is such that the natural map
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OY → Rq ′
∗
OZ is a quasi-isomorphism, (for example, if q ′ is a desingularization of

Y and Y has rational singularities), then F• is a minimal free resolution of C[Y ]
over the polynomial ring R.

The difficulty in applying this technique in any given situation is two-fold: one
must find a suitable morphism q ′ : Z → Y such that the map OY → Rq ′

∗
OZ is a

quasi-isomorphism and such that Z is a vector bundle over a projective variety V ;
and, one must be able to compute the necessary cohomology groups. We overcome
this for opposite cells in a certain class (which includes the determinantal varieties)
of Schubert varieties in a Grassmannian, in two steps.

As the first step, we need to establish the existence of a diagram as above. This
is done using the geometry of Schubert varieties. We take A = O−GLN /P and

Y = YP(w) := XP(w)∩ O−GLN /P .

Let P̃ be a parabolic subgroup with BN ⊆ P̃ ( P. The inverse image of O−GLN /P
under the natural map GLN /P̃→ GLN /P is O−GLN /P × P/P̃. Let w̃ be the repre-
sentative of the coset w P̃ in W P̃. Then XP̃(w̃)⊆ GLN /P̃ (the Schubert subvariety
of GLN /P̃ associated to w̃) maps properly and birationally onto XP(w). We may
choose P̃ to ensure that XP̃(w̃) is smooth. Let ZP̃(w̃) be the preimage of YP(w) in
XP̃(w̃). We take Z = ZP̃(w̃). Then V, which is the image of Z under the second
projection, is a smooth Schubert subvariety of P/P̃. The vector bundle ξ on V that
we obtain is the restriction of a homogeneous bundle on P/P̃. Thus we get:

(1-2)

ZP̃(w̃)

q ′

��

� � // O−GLN /P × V

q
��

// V

YP(w)
� � // O−

See Theorem 3.7 and Corollary 3.9. In this diagram, q ′ is a desingularization of
YP(w). Since it is known that Schubert varieties have rational singularities, we have
that the map OY → Rq ′

∗
OZ is a quasi-isomorphism, so F• is a minimal resolution.

As the second step, we need to determine the cohomology of the homogeneous
bundles

∧t
ξ over V. There are two ensuing issues: computing cohomology of

homogeneous vector bundles over Schubert subvarieties of flag varieties is dif-
ficult, and furthermore, these bundles are not usually completely reducible, so
one cannot apply the Borel–Weil–Bott theorem directly. We address the former
issue by restricting our class; if w ∈ Wr (for some r) then V will equal P/P̃.
Regarding the latter issue, we inductively replace P̃ by larger parabolic subgroups
(still inside P), such that at each stage, the computation reduces to that of the
cohomology of completely reducible bundles on Grassmannians; using various
spectral sequences, we are able to determine the cohomology groups that determine
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the minimal free resolution. See Proposition 5.5 for the key inductive step. In
contrast, in Lascoux’s construction of the resolution of determinantal ideals, one
comes across only completely reducible bundles; therefore, one may use the Borel–
Weil–Bott theorem to compute the cohomology of the bundles

∧t
ξ . The idea of

using P1-fibrations for the computation of cohomology on flag varieties and their
Schubert varieties goes back to M. Demazure [1968; 1974]; see also the related
“one-step construction” of Kempf [1976].

Computing cohomology of homogeneous bundles, in general, is difficult, and is
of independent interest; we hope that our approach would be useful in this regard.
The best results, as far as we know, are due to G. Ottaviani and E. Rubei [2006],
which deal with general homogeneous bundles on Hermitian symmetric spaces.
The only Hermitian symmetric spaces in Type A are the Grassmannians, so their
results do not apply to our situation.

Since the opposite big cell O−GLN /P intersects every BN -orbit of GLN /P, the
variety YP(w) captures all the singularities of XP(w) for every w ∈ W. In this
paper, we describe a construction of a minimal free resolution of C[YP(w)] over
C[O−GLN /P ]. We hope that our methods could shed some light on the problem of
construction of a locally free resolution of OXP (w) as an OGLN /P -module.

The paper is organized as follows. Section 2 contains notations and conven-
tions (Section 2.1) and the necessary background material on Schubert varieties
(Section 2.2) and homogeneous bundles (Section 2.3). In Section 3, we discuss prop-
erties of Schubert desingularization, including the construction of Diagram (1-2).
Section 4 is devoted to a review of the Kempf–Lascoux–Weyman technique and
its application to our problem. Section 5 explains how the cohomology of the
homogeneous bundles on certain partial flag varieties can be computed; Section 6
gives some examples. Finally, in Section 7, we describe Lascoux’s resolution in
terms of our approach and describe the multiplicity and Castelnuovo–Mumford
regularity of C[YP(w)].

2. Preliminaries

In this section, we collect various results about Schubert varieties, homogeneous
bundles, and the Kempf–Lascoux–Weyman geometric technique.

2.1. Notation and conventions. We collect the symbols used and the conventions
adopted in the rest of the paper here. For details on algebraic groups and Schubert
varieties, the reader may refer to [Borel 1991; Jantzen 2003; Billey and Lakshmibai
2000; Seshadri 2007].

Let m ≥ n be positive integers and N =m+n. We denote by GLN (respectively,
BN , B−N ) the group of all (respectively, upper-triangular, lower-triangular) invertible
N × N matrices over C. The Weyl group W of GLN is isomorphic to the group
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SN of permutations of N symbols and is generated by the simple reflections si ,
for 1 ≤ i ≤ N − 1, which correspond to the transpositions (i, i + 1). For w ∈ W,
its length is the smallest integer l such that w = si1 · · · sil as a product of simple
reflections. For every 1 ≤ i ≤ N − 1, there is a minimal parabolic subgroup Pi

containing si (thought of as an element of GLN ) and a maximal parabolic subgroup
Pı̂ not containing si . Any parabolic subgroup can be written as PÂ :=

⋂
i∈A Pı̂ for

some A ⊂ {1, . . . , N − 1}. On the other hand, for A ⊆ {1, . . . , N − 1} write PA for
the subgroup of GLN generated by Pi , i ∈ A. Then PA is a parabolic subgroup and
P{1,...,N−1}\A = PÂ.

The following is fixed for the rest of this paper:

(a) P is the maximal parabolic subgroup Pn̂ of GLN ;

(b) for 1≤ s ≤ n− 1, P̃s is the parabolic subgroup P{1,...,s−1,n+1,...,N−1} = ∩
n
i=s Pı̂

of GLN ;

(c) for 1≤ s ≤ n− 1, Qs is the parabolic subgroup P{1,...,s−1} = ∩
n−1
i=s Pı̂ of GLn .

We write the elements of W in one-line notation: (a1, . . . , aN ) is the permutation
i 7→ ai . For any A⊆ {1, . . . , N−1}, define WPA to be the subgroup of W generated
by {si : i ∈ A}. By W PA we mean the subset of W consisting of the minimal
representatives (under the Bruhat order) in W of the elements of W/WPA . For
1 ≤ i ≤ N , we represent the elements of W Pı̂ by sequences (a1, . . . , ai ) with
1≤ a1 < · · ·< ai ≤ N since under the action of the group WPı̂ , every element of
W can be represented minimally by such a sequence.

For w= (a1, a2, . . . , an)∈W P, let r(w) be the integer r such that ar ≤ n< ar+1.
We identify GLN = GL(V ) for some N -dimensional vector-space V. Let A :=
{i1 < i2 < · · ·< ir } ⊆ {1, . . . , N − 1}. Then GLN /PÂ is the set of all flags

0= V0 ( V1 ( V2 ( · · ·( Vr ( V

of subspaces Vj of dimension i j inside V. We call GLN /PÂ a flag variety. If
A = {1, . . . , N − 1} (i.e., PÂ = BN ), then we call the flag variety a full flag
variety; otherwise, a partial flag variety. The Grassmannian Gri,N of i-dimensional
subspaces of V is GLN /Pı̂ .

Let P̃ be any parabolic subgroup containing BN and τ ∈ W. The Schubert
variety X P̃(τ ) is the closure inside GLN /P̃ of BN · eτ where eτ is the coset τ P̃,
endowed with the canonical reduced scheme structure. Hereafter, when we write
XP̃(τ ), we mean that τ is the representative in W P̃ of its coset. The opposite
big cell O−GLN /P̃ in GLN /P̃ is the B−N -orbit of the coset (id ·P̃) in GLN /P̃. Let
YP̃(τ ) := XP̃(τ )∩ O−GLN /P̃ ; we refer to YP̃(τ ) as the opposite cell of XP̃(τ ).

We will write R+, R−, R+P̃ , R−P̃, to denote, respectively, positive and negative
roots for GLN and for P̃. We denote by εi the character that sends the invertible
diagonal matrix with t1, . . . , tn on the diagonal to ti .
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2.2. Précis on GLn and Schubert varieties. Let P̃ be a parabolic subgroup of
GLN with BN ⊆ P̃ ⊆ P. We will use the following proposition extensively in the
sequel.

Proposition 2.2.1. Write U−P̃ for the negative unipotent radical of P̃.

(a) O−GLN /P̃ can be naturally identified with U−P̃ P̃/P̃.

(b) For

z =
[

An×n Cn×m

Dm×n Em×m

]
∈ GLN ,

z P ∈ O−GLN /P if and only if A is invertible.

(c) For 1 ≤ s ≤ n − 1, the inverse image of O−GLN /P under the natural map
GLN /P̃s → GLN /P is isomorphic to O−GLN /P × P/P̃s as schemes. Every
element of O−GLN /P × P/P̃s is of the form[

An×n 0n×m

Dm×n Im

]
mod P̃s ∈ GLN /P̃s .

Moreover, two matrices[
An×n 0n×m

Dm×n Im

]
and

[
A′n×n 0n×m

D′m×n Im

]
in GLN represent the same element modulo P̃s if and only if there exists a matrix
q ∈ Qs such that A′ = Aq and D′ = Dq.

(d) For 1≤ s ≤ n−1, P/P̃s is isomorphic to GLn/Qs . In particular, the projection
map O−GLN /P × P/P̃→ P/P̃s is given by[

An×n 0n×m

Dm×n Im

]
mod P̃s 7−→ A mod Q̃ ∈ GLn/Q ' P/P̃s .

Proof. (a) Note that U−P̃ is the subgroup of GLN generated by the (one-dimensional)
root subgroups Uα, α ∈ R− \ R−P̃ and that U−

P̃
P̃/P̃ = B−N P̃/P̃. Hence under the

canonical projection GLN → GLN /P, g 7→ g P, the subgroup U−P is mapped onto
O−GLN /P̃ . It is easy to check that this is an isomorphism.

(b) Suppose that z P ∈ O−GLN /P . By (a), we see that there exist matrices A′n×n , C ′n×m ,
D′m×n , and E ′m×m such that

z1 :=

[
In 0n×m

D′m×n Im

]
∈U−P , z2 :=

[
A′n×n C ′n×m
0m×n E ′m×m

]
∈ P

and z =
[

An×n Cn×m

Dm×n Em×m

]
= z1z2.
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Hence A = A′ is invertible. Conversely, if A is invertible, then we may write
z = z1z2 where

z1 :=

[
In 0

D A−1 Im

]
∈U−P and z2 :=

[
A C
0 E − D A−1C

]
.

Since z ∈ GLN , z2 ∈ P.

(c) Let z ∈U−P P ⊆ GLN . Then we can write z = z1z2 uniquely with z1 ∈U−P and
z2 ∈ P. For, if[

In 0n×m

Dm×n Im

] [
An×n Cn×m

0m×n Em×m

]
=

[
In 0n×m

D′m×n Im

] [
A′n×n C ′n×m
0m×n E ′m×m

]
,

then A = A′, C = C ′, D A = D′A′, and DC + E = D′C ′+ E ′, which yields that
D′ = D (since A = A′ is invertible, by (b)) and E = E ′. Hence U−P ×C P =U−P P .
Therefore, for any parabolic subgroup P ′ ⊆ P, U−P ×C P/P ′ = U−P P/P ′. The
asserted isomorphism now follows by taking P ′ = P̃s .

For the next statement, let[
An×n Cn×m

Dm×n Em×m

]
∈ GLN

with A invertible (which we may assume by (b)). Then we have a decomposition
(in GLN ) [

A C
D E

]
=

[
A 0n×m

D Im

] [
In A−1C

0m×n E − D A−1C

]
.

Hence [
A C
D E

]
≡

[
A 0n×m

D Im

]
mod P̃s .

Finally, [
An×n 0n×m

Dm×n Im

]
≡

[
A′n×n 0n×m

D′m×n Im

]
mod P̃s

if and only if there exist matrices q ∈ Qs , q ′n×m , and q̃n×n in GLm such that[
A′ 0
D′ I

]
=

[
A 0
D I

] [
q q ′

0m×n q̃

]
,

which holds if and only if q ′ = 0, q̃ = Im , A′ = Aq , and D′ = Dq (since A and A′

are invertible).

(d) There is a surjective morphism of C-group schemes P→ GLn ,[
An×n Cn×m

0m×n Em×m

]
7−→ A.
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This induces the required isomorphism. Notice that the element[
An×n Cn×m

Dm×n Em×m

]
mod P̃s ∈ O−GLN /P × P/P̃s

decomposes (uniquely) as[
In 0

D A−1 Im

]([
A C
0 E

]
mod P̃s

)
Hence it is mapped to A mod Qs ∈ GLn/Qs . Now use (c). �

Discussion 2.2.2. Let P̃ = P ̂{i1,...,it } with 1 ≤ i1 < · · · < it ≤ N − 1. Then using
Proposition 2.2.1(a) and its proof, O−GLN /P̃ can be identified with the affine space of
lower-triangular matrices with possible nonzero entries xi j at row i and column j
where (i, j) is such that there exists l ∈ {i1, . . . , it } such that j ≤ l < i ≤ N . To see
this, note (from the proof of Proposition 2.2.1(a)) that we are interested in those
(i, j) such that the root εi −ε j belongs to R− \ R−P̃ . Since R−P̃ =

⋂t
k=1 R−Pîk

, we see
that we are looking for (i, j) such that εi − ε j ∈ R− \ R−Pl̂

for some l ∈ {i1, . . . , it }.
For the maximal parabolic group Pl̂ , we have R−\R−Pl̂

={εi−ε j | 1≤ j ≤ l< i ≤ N }.
Hence dim O−GLN /P̃ = |R

−
\ R−P̃ |.

Let α = εi − ε j ∈ R− \ R−P̃ and l ∈ {i1, . . . , it }. Then the Plücker coordinate
p(l)sα on the Grassmannian GLN /Pl̂ lifts to a regular function on GLN /P̃ , which we
denote by the same symbol. Its restriction to O−G/P̃ is the l × l-minor with column
indices {1, 2, . . . , l} and row indices {1, . . . , j − 1, j + 1, . . . , l, i}. In particular,

(2.2.3) xi j = p( j)
sα |O−G/P̃

for every α = εi − ε j ∈ R− \ R−P̃ .

Example 2.2.4. Figure 1 shows the shape of O−GLN /P̃s
for some 1≤ s ≤ n−1. The

rectangular region labelled with a circled D is O−GLN /P . The trapezoidal region
labelled with a circled A is O−P/P̃s

. In this case, the xi j appearing in (2.2.3) are
exactly those in the regions labelled A and B.

Remark 2.2.5. XP̃(w) is an irreducible (and reduced) variety of dimension equal
to the length of w. (Here we use that w is the representative in W P̃.) It can be
seen easily that under the natural projection GLN /BN → GLN /P̃, X BN (w) maps
birationally onto XP̃(w) for every w ∈ W P̃. It is known that Schubert varieties
are normal, Cohen–Macaulay and have rational singularities; see, e.g., [Brion and
Kumar 2005, Section 3.4].

2.3. Homogeneous bundles and representations. Let Q be a parabolic subgroup
of GLn . We collect here some results about homogeneous vector bundles on GLn/Q.
Most of these results are well known, but for some of them, we could not find a
reference, so we give a proof here for the sake of completeness. Online notes of
Ottaviani [1995] and of D. Snow [1994] discuss the details of many of these results.
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Figure 1. Shape of O−GLN /P̃s
.

Let L Q and UQ be respectively the Levi subgroup and the unipotent radical
of Q. Let E be a finite-dimensional vector-space on which Q acts on the right; the
vector-spaces that we will encounter have natural right action.

Definition 2.3.1. Define GLn ×
Q E := (GLn ×E)/∼, where ∼ is the equivalence

relation (g, e) ∼ (gq, eq) for every g ∈ GLn , q ∈ Q, and e ∈ E . Then πE :

GLn ×
Q E → GLn/Q, (g, e) 7→ gQ, is a vector bundle called the vector bundle

associated to E (and the principal Q-bundle GLn→GLn/Q). For g ∈GLn, e ∈ E ,
we write [g, e] ∈ GLn ×

Q E for the equivalence class of (g, e) ∈ GLn ×E under ∼.
We say that a vector bundle π : E→GLn/Q is homogeneous if E has a GLn-action
and π is GLn-equivariant, i.e., for every y ∈ E, π(g · y)= g ·π(y).

In this section, we abbreviate GLn ×
Q E as Ẽ . It is known that E is homogeneous

if and only if E ' Ẽ for some Q-module E . (If this is the case, then E is the fibre
of E over the coset Q.) A homogeneous bundle Ẽ is said to be irreducible (respec-
tively, indecomposable, completely reducible) if E is an irreducible (respectively
indecomposable, completely reducible) Q-module. It is known that E is completely
reducible if and only if UQ acts trivially and that E is irreducible if and only if
additionally it is irreducible as a representation of L Q . See [Snow 1994, Section 5]
or [Ottaviani 1995, Section 10] for the details.

Let σ : GLn/Q→ Ẽ be a section of πE . Let g ∈ GLn; write [h, f ] = σ(gQ).
There exists a unique q ∈ Q such that h = gq . Let e = f q−1. Then [g, e] = [h, f ].
If [h, f ′] = [h, f ], then f ′ = f , so the assignment g 7→ e defines a function
φ : GLn→ E . This is Q-equivariant in the following sense:

(2.3.2) φ(gq)= φ(g)q, for every q ∈ Q and g ∈ GLn .
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Conversely, any such map defines a section of πE . The set of sections H0(GLn/Q, Ẽ)
of πE is a finite-dimensional vector-space with (αφ)(g)= α(φ(g)) for every α ∈C,
φ a section of πE , and g ∈ GLn .

Note that GLn acts on GLn/Q by multiplication on the left; setting h · [g, e] =
[hg, e] for g, h ∈GLn and e ∈ E , we extend this to Ẽ . We can also define a natural
GLn-action on H0(GLn/Q, Ẽ) as follows. For any map φ : GLn→ E , set h ◦φ to
be the map g 7→ φ(h−1g). If φ satisfies (2.3.2), then for every q ∈ Q and g ∈ GLn ,
(h ◦ φ)(gq) = φ(h−1gq) = (φ(h−1g))q = ((h ◦ φ)(g))q, so h ◦ φ also satisfies
(2.3.2). The action of GLn on the sections is on the left:

(h2h1) ◦φ = [g 7→ φ(h−1
1 h−1

2 g)] = [g 7→ (h1 ◦φ)(h−1
2 g)] = h2 ◦ (h1 ◦φ).

In fact, Hi (GLn/Q, Ẽ) is a GLn-module for every i .
Suppose now that E is one-dimensional. Then Q acts on E by a character λ; we

denote the associated line bundle on GLn/Q by Lλ.

Discussion 2.3.3. Let Q = P̂i1,...,it
, with 1 ≤ i1 < · · · < it ≤ n − 1. A weight

λ is said to be Q-dominant if when we write λ =
∑n

i=1 aiωi in terms of the
fundamental weights ωi , we have, ai ≥ 0 for all i 6∈ {i1, . . . , it }, or equivalently,
the associated line bundle (defined above) Lλ on Q/Bn has global sections. If we
express λ as

∑n
i=1 λiεi , then λ is Q-dominant if and only if for every 0 ≤ j ≤ t ,

λi j+1 ≥ λi j+2 ≥ · · · ≥ λi j+1 where we set i0 = 0 and ir+1 = n. We will write
λ= (λ1, . . . , λn) to mean that λ=

∑n
i=1 λiεi . Every finite-dimensional irreducible

Q-module is of the form H0(Q/Bn, Lλ) for a Q-dominant weight λ. Hence the
irreducible homogeneous vector bundles on GLn/Q are in correspondence with
Q-dominant weights. We describe them now. If Q = Pn̂−i , then GLn/Q = Gri,n .
(Recall that, for us, the GLn-action on Cn is on the right.) On Gri,n , we have the
tautological sequence

(2.3.4) 0→Ri → Cn
⊗OGri,n →Qn−i → 0

of homogeneous vector bundles. The bundle Ri is called the tautological subbundle
(of the trivial bundle Cn) and Qn−i is called the tautological quotient bundle.
Every irreducible homogeneous bundle on Gri,n is of the form S(λ1,...,λn−i )Q∗n−i ⊗

S(λn−i+1,...,λn)R∗i for some Pn̂−i -dominant weight λ. Here Sµ denotes the Schur
functor associated to the partition µ. Now suppose that Q = P̂i1,...,it

with 1 ≤
i1 < · · ·< it ≤ n− 1. Since the action is on the right, GLn/Q projects to Grn−i,n

precisely when i = i j for some 1 ≤ j ≤ t . For each 1 ≤ j ≤ t , we can take the
pullback of the tautological bundles Rn−i j and Qi j to GLn/Q from GLn /Pı̂ j . The
irreducible homogeneous bundle corresponding to a Q-dominant weight λ is

S(λ1,...,λi1 )
Ui1 ⊗S(λi1+1,...,λi2 )

(Rn−i1/Rn−i2)
∗
⊗

· · ·⊗S(λit−1+1,...,λit )
(Rn−it−1/Rn−it )

∗
⊗S(λit+1,...,λin )

(Rn−it )
∗.
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See [Weyman 2003, Section 4.1]. Hereafter, we will write Ui = Q∗i . Moreover,
abusing notation, we will use Ri , Qi , Ui etc. for these vector bundles on any (partial)
flag variety on which they would make sense.

A Q-dominant weight is called (i1, . . . , ir )-dominant in [op. cit., p. 114]. Al-
though our definition looks like Weyman’s definition, we should keep in mind
that our action is on the right. We only have to be careful when we apply the
Borel–Weil–Bott theorem (more specifically, Bott’s algorithm). In this paper, our
computations are done only on Grassmannians. If µ and ν are partitions, then
(µ, ν) will be Q-dominant (for a suitable Q), and will give us the vector bundle
SµQ∗⊗Sν R∗ (this is where the right-action of Q becomes relevant) and to compute
its cohomology, we will have to apply Bott’s algorithm to the Q-dominant weight
(ν, µ). (In [op. cit.], one would get SµR∗⊗Sν Q∗ and would apply Bott’s algorithm
to (µ, ν).) See, for example, the proof of Proposition 5.4 or the examples that
follow it.

Proposition 2.3.5. Let Q1 ⊆ Q2 be parabolic subgroups and E a Q1-module. Let
f : GLn/Q1→ GLn/Q2 be the natural map. Then for every i ≥ 0,

Ri f∗(GLn ×
Q1 E)= GLn ×

Q2 Hi (Q2/Q1,GLn ×
Q1 E).

Proof. For Q2 (respectively, Q1), the category of homogeneous vector bundles on
GLn/Q2 (respectively, GLn/Q1) is equivalent to the category of finite-dimensional
Q2-modules (respectively, finite-dimensional Q1-modules). Now, the functor f ∗

from the category of homogeneous vector bundles over GLn/Q2 to that over
GLn/Q1 is equivalent to the restriction functor ResQ2

Q1
. Hence their correspond-

ing right-adjoint functors f∗ and the induction functor IndQ2
Q1

are equivalent; one
may refer to [Hartshorne 1977, II.5, p. 110] and [Jantzen 2003, I.3.4, “Frobenius
Reciprocity”] to see that these are indeed adjoint pairs. Hence, for homogeneous
bundles on GLn/Q1, Ri f∗ can be computed using Ri IndQ2

Q1
. On the other hand,

note that IndQ2
Q1
(−) is the functor H0(Q2/Q1,GLn ×

Q1−) on Q1-modules, which
follows from [op. cit., I.3.3, Equation (2)]. The proposition now follows. �

3. Properties of Schubert desingularization

This section is devoted to proving some results on smooth Schubert varieties in
partial flag varieties. In Theorem 3.5, we show that opposite cells of certain smooth
Schubert varieties in GLN /P̃ are linear subvarieties of the affine variety O−GLN /P̃ ,
where P̃ = P̃s for some 1≤ s ≤ n− 1. Using this, we show in Theorem 3.7 that if
XP(w) ∈ GLN /P is such that there exists a parabolic subgroup P̃ ( P such that
the birational model XP̃(w̃) ⊆ GLN /P̃ of XP(w) is smooth (we say that XP(w)

has a Schubert desingularization if this happens) then the inverse image of YP(w)
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inside XP̃(w̃) is a vector bundle over a Schubert variety in P/P̃. This will give us
a realisation of Diagram (1-2).

Recall the following result about the tangent space of a Schubert variety; see
[Billey and Lakshmibai 2000, Chapter 4] for details.

Proposition 3.1. Let τ ∈ W P̃. Then the dimension of the tangent space of XP̃(τ )

at eid is
#{sα | α ∈ R− \ R−P̃ and τ ≥ sα in W/WP̃}.

In particular, XP̃(τ ) is smooth if and only if

dim XP̃(τ )= #{sα | α ∈ R− \ R−P̃ and τ ≥ sα in W/WP̃}.

Notation 3.2. We adopt the following notation: Letw= (a1, a2, . . . , an)∈W P. Let
r = r(w), i.e., the index r such that ar ≤ n < ar+1. Let 1≤ s ≤ r . We write P̃ = P̃s .
Let w̃ be the minimal representative of w in W P̃. Let cr+1 > · · ·> cn be such that
{cr+1, . . . , cn}= {1, . . . , n}\{a1, . . . , ar }; let w′ := (a1, . . . , ar , cr+1, . . . , cn)∈ Sn ,
the Weyl group of GLn .

Our concrete descriptions of free resolutions will be for the following class of
Schubert varieties.

Definition 3.3. Let 1≤ r ≤ n− 1. Let

Wr = {(n− r +1, . . . , n, ar+1, . . . , an−1, N ) ∈W P
: n < ar+1 < · · ·< an−1 < N }.

The determinantal variety of (m×n)matrices of rank at most k can be realised as
YP(w), w = (k+ 1, . . . , n, N − k+ 1, . . . N ) ∈Wn−k [Seshadri 2007, Section 1.6].

Proposition 3.4. XP̃s (w̃) is smooth in the following situations:

(a) w ∈W P arbitrary and s = 1 [Kempf 1971].

(b) w ∈Wr for some 1≤ r ≤ n− 1 and s = r .

Proof. For both (a) and (b): Let wmax ∈ W (= SN ) be the maximal representative
of w̃. We claim that

wmax = (as, as−1, . . . , a1, as+1, as+2, . . . , an, bn+1, . . . , bN ) ∈W.

Assume the claim. Then wmax is a 4231- and 3412-avoiding element of W ; hence
XBN (wmax) is smooth; see [Lakshmibai and Sandhya 1990; Billey and Lakshmibai
2000, 8.1.1]. Since wmax is the maximal representative (in W ) of w̃ P̃s , we see that
XBN (wmax) is a fibration over XP̃s

(w̃) with smooth fibres P̃s/BN ; therefore XP̃s
(w̃)

is smooth.
To prove the claim, we need to show that XPı̂ (wmax)= XPı̂ (w̃) for every s≤ i ≤n

and that wmax is the maximal element of W with this property. This follows, since
for every τ := (c1, . . . , cN ) ∈W and for every 1≤ i ≤ N , XPı̂ (τ )= XPı̂ (τ

′) where
τ ′ ∈W Pı̂ is the element with c1, . . . , ci written in the increasing order. �
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Theorem 3.5. Identify O−G/P̃ with O−G/P×O−P/P̃ as in Figure 1, with O−G/P thought
of as Mm,n , the space of all m× n matrices. If w ∈W P is arbitrary and s = 1 (see
Proposition 3.4(a)) then we have an identification of YP̃(w̃) with Vw ×V ′w, where
Vw is the linear subspace of O−G/P given by

xi j = 0 if
{

1≤ j ≤ r(w), or
r(w)+ 1≤ j ≤ n− 1 and a j − n < i ≤ m.

and V ′w is the linear subspace of O−P/P̃ given by

xi j = 0 for every 1≤ j ≤ r(w) and for every i ≥max{a j + 1, s+ 1}.

On the other hand, ifw∈Wr for some 1≤r≤n−1 and s=r (see Proposition 3.4(b))
then we have an identification of YP̃(w̃) with Vw × O−P/P̃ , where Vw is the linear
subspace of O−G/P given by

xi j = 0 if
{

1≤ j ≤ r, or
r + 1≤ j ≤ n− 1 and a j − n < i ≤ m.

Proof. Consider the first case: w arbitrary and s = 1. Since a1 < · · · < an , we
see that for every j ≤ n and for every i ≥max{a j + 1, s+ 1}, the reflection (i, j)
equals (1, 2, . . . , j − 1, i) in W/WP̂ , while w̃ equals (a1, . . . , a j ). Hence (i, j) is
not smaller than w̃ in W/WP̂ , so the Plücker coordinate p( j)

(i, j) vanishes on XP̃(w̃).
Therefore for such (i, j), xi j ≡ 0 on YP̃(w̃), by (2.2.3).

On the other hand, note that the reflections (i, j) with j ≤ n and i ≥max{a j +1,
s + 1} are precisely the reflections sα with α ∈ R− \ R−P̃ and w̃ 6≥ sα in W/WP̃ .
Since XP̃(w̃) is smooth, this implies (see Proposition 3.1) that the codimension of
YP̃(w̃) in O−GLN /P̃ equals

#
{
(i, j) | j ≤ n and i ≥max{a j + 1, s+ 1}

}
so YP̃(w̃) is the linear subspace of O−GLN /P̃ defined by the vanishing of{

xi j | j ≤ n and i ≥max{a j + 1, s+ 1}
}
.

This gives the asserted identification of YP̃(w̃).
Now the second case: w ∈Wr for some 1 ≤ r ≤ n − 1 and s = r . Note that

XQs (w
′) = GLn /Bn , because of the choice of w and s. Therefore, an argument

similar to the one above, along with counting dimensions, shows that YP̃(w̃) is
defined inside O−G/P̃ by

xi j = 0 if
{

1≤ j ≤ r, or
r + 1≤ j ≤ n− 1 and a j − n < i ≤ m.

This gives the asserted identification of YP̃(w̃). �
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Let ZP̃(w̃) := YP(w)×XP (w) XP̃(w̃)= (O
−

GLN /P × P/P̃)∩ X P̃(w̃). Write p for
the composite map

ZP̃(w̃)→ O−GLN /P × P/P̃→ P/P̃,

where the first map is the inclusion (as a closed subvariety) and the second map is
projection. Using Proposition 2.2.1(c) and (d), we see that

p
([

An×n 0n×m

Dm×n Im

]
mod P̃

)
= A mod Qs .

(A is invertible by Proposition 2.2.1(b).) Using the injective map

Bn −→ BN , A 7→
[

A 0n×m

0m×n Im

]
,

Bn can be thought of as a subgroup of BN . With this identification, we have the
following Proposition:

Proposition 3.6. ZP̃(w̃) is Bn-stable (for the action on the left by multiplication).
Further, p is Bn-equivariant.

Proof. Let

z :=
[

An×n 0n×m

Dm×n Im

]
∈ GLN

be such that z P̃ ∈ ZP̃(w̃). Since X BN (w̃)→ XP̃(w̃) is surjective, we may assume
that z (mod BN ) ∈ X BN (w̃), i.e., z ∈ BN w̃BN . Then for every A′ ∈ Bn ,[

A′ 0n×m

0m×n Im

]
z =

[
A′A 0
D Im

]
=: z′.

Then z′∈ BN w̃BN , so z′ (mod P̃)∈ XP̃(w̃). By Proposition 2.2.1(b), we have that A
is invertible, and hence AA′ is invertible; this implies (again by Proposition 2.2.1(b))
that z′ (mod P̃)∈ ZP̃(w̃). Thus ZP̃(w̃) is Bn-stable. Also, p(A′z)= p(z′)= A′A=
A′ p(z). Hence p is Bn-equivariant. �

Theorem 3.7. With notation as above,

(a) The natural map XP̃(w̃)→ XP(w) is proper and birational. In particular, the
map ZP̃(w̃)→ YP(w) is proper and birational.

(b) XQs(w
′) is the fibre of the natural map ZP̃(w̃)→ YP(w) at eid ∈ YP(w) (with w′

as in Notation 3.2).

(c) Suppose that w and s satisfy the conditions of Proposition 3.4. Then XQs(w
′) is

the image of p. Further, p is a fibration with fibre isomorphic to Vw.
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(d) Suppose that w and s satisfy the conditions of Proposition 3.4. Then p identifies
ZP̃(w̃) as a subbundle of the trivial bundle O−GLN /P × XQs(w

′), which arises as
the restriction of the vector bundle on GLn/Qs associated to the Qs-module Vw
(which, in turn, is a Qs-submodule of O−GLN /P ).

We believe that all the assertions above hold without the hypothesis that XP̃(w̃)

is smooth.

Proof. (a) The map XP̃(w̃) ↪→ GLN /P̃ → GLN /P is proper and its (scheme-
theoretic) image is XP(w); hence XP̃(w̃)→ XP(w) is proper. Birationality fol-
lows from the fact that w̃ is the minimal representative of the coset w P̃ (see
Remark 2.2.5).

(b) The fibre at eid ∈ YP(w) of the map YP̃(w̃)→ YP(w) is {0}×V ′w (contained in
Vw × V ′w = YP̃(w̃)). Since ZP̃(w̃) is the closure of YP̃(w̃) inside O−GLN /P × P/P̃
and X Qs(w

′) is the closure of V ′w inside P/P̃ (note that, as a subvariety of O−P/P̃ ,
YQs(w

′) is identified with V ′w), we see that fibre of ZP̃(w̃)→ YP(w) at eid ∈ YP(w)

is XQs(w
′).

(c) From Theorem 3.5 it follows that

YP̃(w̃)=

{[
An×n 0n×m

Dm×n Im

]
mod P̃

∣∣∣ A ∈ V ′w and D ∈ Vw
}
.

Hence p(YP̃(w̃))=V ′w⊆ XQs(w
′). Since YP̃(w̃) is dense inside ZP̃(w̃) and XQs(w

′)

is closed in GLn/Qs , we see that p(Z P̃r(w̃)) ⊆ XQs(w
′). The other inclusion

XQs (w
′)⊆ p(Z P̃r(w̃)) follows from (b). Hence, p(Z P̃r(w̃)) equals XQs(w

′).
Next, to prove the second assertion in (c), we shall show that for every A ∈ GLn

with A mod Qs ∈ XQs(w
′),

(3.8) p−1(A mod Qs)=

{[
A 0n×m

D Im

]
mod P̃

∣∣∣ D ∈ Vw
}
.

Towards proving this, we first observe that p−1(eid) equals Vw (in view of
Theorem 3.5). Next, we observe that every Bn-orbit inside XQs(w

′) meets V ′w
(which equals YQs(w

′)); further, p is Bn-equivariant (see Proposition 3.6). The
assertion (3.8) now follows.

(d) First observe that for the action of right multiplication by GLn on O−G/P (being
identified with Mm,n , the space of m× n matrices), Vw is stable; we thus get the
homogeneous bundle GLn ×

QsVw → GLn/Qs (Definition 2.3.1). Now to prove
the assertion about Z P̃s(w̃)) being a vector bundle over XQs(w

′), we will show that
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there is a commutative diagram given as below, with ψ an isomorphism:

ZP̃s(w̃)

φ

,,
p

$$

ψ **
(GLn ×

QsVw)|XQs(w
′)

��

// GLn ×
QsVw

α

��
XQs(w

′)
β // GLn/Qs

The map α is the homogeneous bundle map and β is the inclusion. Define φ by

φ :

[
A 0n×m

D Im

]
mod P̃ 7−→ (A, D)/∼ .

Using Proposition 2.2.1(c) and (3.8), we conclude the following: φ is well defined
and injective; β · p = α ·φ; hence, by the universal property of products, the map
ψ exists; and, finally, the injective map ψ is in fact an isomorphism (by dimension
considerations). �

Corollary 3.9. If XP̃(w̃) is smooth, then we have the following realisation of the
diagram in (1-2):

ZP̃(w̃)

q ′

��

� � // O−GLN /P × XQs(w
′)

q
��

// XQs(w
′)

YP(w)
� � // O−GLN /P

.

Example 3.10. This example shows that even with r = s, XQs(w
′) need not be

smooth for arbitrary w ∈W P. Let n =m = 4 and w= (2, 4, 7, 8). Then r = 2; take
s = 2. Then we obtain wmax = (4, 2, 7, 8, 5, 6, 3, 1), which has a 4231 pattern.

4. Free resolutions

The Kempf–Lascoux–Weyman geometric technique. We now summarise the geo-
metric technique of computing free resolutions, following [Weyman 2003, Chap-
ter 5]. Consider (1-1). There is a natural map f : V → Grr,d (where r = rkV Z and
d = dim A) such that the inclusion Z ⊆ A× V is the pullback of the tautological
sequence (2.3.4); here rkV Z denotes the rank of Z as a vector bundle over V,
i.e., rkV Z = dim Z − dim V . Let ξ = ( f ∗Q)∗. Write R for the polynomial ring
C[A] and m for its homogeneous maximal ideal. (The grading on R arises as
follows. In (1-1), A is thought of as the fibre of a trivial vector bundle, so it has
a distinguished point, its origin. Now, being a subbundle, Z is defined by linear
equations in each fibre; i.e., for each v ∈ V, there exist s := (dim A− rkV Z) linearly
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independent linear polynomials `v,1, . . . , `v,s that vanish along Z and define it. Now
Y = {y ∈ A | there exists v ∈ V such that `v,1(y)= · · · = `v,s(y)= 0}. Hence Y is
defined by homogeneous polynomials. This explains why the resolution obtained
below is graded.) Let m be the homogeneous maximal ideal, i.e., the ideal defining
the origin in A.

Theorem 4.1 [Weyman 2003, basic theorem 5.1.2]. With notation as above, there
is a finite complex (F•, ∂•) of finitely generated graded free R-modules that is
quasi-isomorphic to Rq ′

∗
OZ , with

Fi =
⊕
j≥0

H j (V,
∧i+ j

ξ)⊗C R(−i − j),

and ∂i (Fi )⊆mFi−1. Furthermore, the following are equivalent:

(a) Y has rational singularities; i.e., Rq ′
∗
OZ is quasi-isomorphic to OY ;

(b) F• is a minimal R-free resolution of C[Y ], i.e., F0' R and F−i = 0 for all i > 0.

We give a sketch of the proof because one direction of the equivalence is only
implicit in the proof of [op. cit., 5.1.3].

Sketch of the proof. One constructs a suitable q∗-acyclic resolution I• of the Koszul
complex that resolves OZ as an OA×V -module so that the terms in q∗I• are finitely
generated free graded R-modules. One places the Koszul complex on the negative
horizontal axis and thinks of I• as a second-quadrant double complex, thus to
obtain a complex G• of finitely generated free R-modules whose homology at
the i-th position is R−i q∗OZ . Then, using standard homological considerations,
one constructs a subcomplex (F•, ∂•) of G• that is quasi-isomorphic to G• with
∂i (Fi )⊆mFi−1 (we say that F• is minimal if this happens), and since Hi (G•)= 0
for every |i | � 0, Fi = 0 for every |i | � 0. Now using the minimality of F•, we see
that Ri q∗OZ = 0 for every i ≥ 1 if and only if F−i = 0 for every i ≥ 1. When one of
these conditions holds, then F• becomes a minimal free resolution of q∗OZ which
is a finitely generated OY -module, and therefore q∗OZ = OY if and only if q∗OZ is
generated by one element as an OY -module if and only if q∗OZ is a generated by
one element as an R-module if and only if F0 is a free R-module of rank one if
and only if F0 = R(0) since H0(V,

∧0
ξ)⊗ R is a summand of F0. �

Our situation. We now apply Theorem 4.1 to our situation. We keep the notation
of Theorem 3.7. Theorem 4.1 and Corollary 3.9 yield the following result:

Theorem 4.2. Suppose that XP̃s(w̃) is smooth. Write Uw for the restriction to
XQs(w

′) of the vector bundle on GLn/Qs associated to the Qs-module (O−GLN/P/Vw)
∗.

(This is the dual of the quotient of O−GLN /P × XQs(w
′) by ZP̃s(w̃).) Then we have a
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minimal R-free resolution (F•, ∂•) of C[YP(w)] with

Fi =
⊕
j≥0

H j (XQs(w
′),
∧i+ jUw)⊗C R(−i − j).

In the first case, Qs = Bn , so p makes ZP̃1
(w̃) a vector bundle on a smooth

Schubert subvariety XB1
(w′) of GLn /Bn . In the second case, w′ is the maximal

word in Sn , so XQr
(w′)= GLn/Qr ; see Discussion 4.3 for further details.

Computing the cohomology groups required in Theorem 4.2 in the general
situation of Kempf’s desingularization (Proposition 3.4(a)) is a difficult problem,
even though the relevant Schubert variety XBn

(w′) is smooth. Hence we are forced
to restrict our attention to the subset of W P considered in Proposition 3.4(b).

The stipulation that, for w ∈Wr , w sends n to N is not very restrictive. This
can be seen in two (related) ways. Suppose that w does not send n to N . Then,
firstly, XP(w) can be thought of as a Schubert subvariety of a smaller Grass-
mannian. Or, secondly, Uw will contain the trivial bundle Un as a summand, so
H0(GLn/Qr , ξ) 6= 0, i.e., R(−1) is a summand of F1. In other words, the defining
ideal of YP(w) contains a linear form.

Discussion 4.3. We give some more details of the situation in Proposition 3.4(b)
that will be used in the next section. Let

w = (n− r + 1, n− r + 2, . . . , n, ar+1, . . . , an−1, N ) ∈Wr .

The space of (m× n) matrices is a GLn-module with a right action; the subspace
Vw is Qr -stable under this action. Thus Vw is a Qr -module, and gives an associated
vector bundle (GLn ×

QrVw) on GLn/Qr . The action on the right of GLn on the
space of (m × n) matrices breaks by rows; each row is a natural n-dimensional
representation of GLn . For each 1≤ j ≤m, there is a unique r ≤ i j ≤ n−1 such that
ai j < j + n ≤ ai j+1. (Note that ar = n and an = N .) In row j , Vw has rank n− i j ,
and is a subbundle of the natural representation. Hence the vector bundle associated
to the j -th row of Vw is the pullback of the tautological subbundle (of rank (n− i j ))
on Grn−i j,n . We denote this by Rn−i j . Therefore (GLn ×

QrVw) is the vector bundle
Rw :=

⊕m
j=1 Rn−i j . Let Qw :=

⊕m
j=1 Qi j where Qi j is the tautological quotient

bundle corresponding to Rn−i j . Then the vector bundle Uw on GLn/Qr that was
defined in Theorem 4.2 is Q∗w.

5. Cohomology of homogeneous vector bundles

It is, in general, difficult to compute the cohomology groups H j (GLn/Qr ,
∧tUw) in

Theorem 4.2 for arbitrary w ∈Wr . In this section, we will discuss some approaches.
We believe that this is a problem of independent interest. Our method involves
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replacing Qr inductively by increasingly bigger parabolic subgroups, so we give
the general setup below.

Setup 5.1. Let 1 ≤ r ≤ n − 1. Let mr , . . . ,mn−1 be nonnegative integers such
that mr + · · · + mn−1 = m. Let Q be a parabolic subgroup of GLn such that
Q ⊆ Pı̂ for every r ≤ i ≤ n− 1 such that mi > 0. We consider the homogeneous
vector bundle ξ =

⊕n−1
i=r Umi

i on GLn/Q, We want to compute the vector-spaces
H j (GLn/Qr ,

∧t
ξ).

Lemma 5.2. Let f : X ′→ X be a fibration with fibre some Schubert subvariety Y
of some (partial) flag variety. Then f∗OX ′ = OX and Ri f∗OX ′ = 0 for every i ≥ 1. In
particular, for every locally free coherent sheaf L on X , Hi (X ′, f ∗L)= Hi (X, L)
for every i ≥ 0.

Proof. The first assertion is a consequence of Grauert’s theorem [Hartshorne 1977,
III.12.9] and the fact (see, for example, [Seshadri 2007, Theorem 3.2.1]) that

Hi (Y,OY )=

{
C if i = 0,
0 otherwise.

The second assertion follows from the projection formula and the Leray spectral
sequence. �

Proposition 5.3. Let mi , r ≤ i ≤ n− 1 be as in Setup 5.1. Let

Q′ =
⋂

r≤i≤n−1
mi>0

Pı̂ .

Then H∗(GLn/Q,
∧t
ξ)= H∗(GLn/Q′,

∧t
ξ) for every t.

Proof. The assertion follows from Lemma 5.2, noting that
∧t
ξ on GLn/Q is the

pullback of
∧t
ξ on GLn/Q′, under the natural morphism GLn/Q→ GLn/Q′. �

Proposition 5.4. For all j, H j (GLn/Q, ξ)= 0.

Proof. We want to show that H j (GLn/Q,Ui )= 0 for every r ≤ i ≤ n− 1 and for
every j . By Lemma 5.2 (and keeping Discussion 2.3.3 in mind), it suffices to show
that H j (Grn−i,n,Ui )= 0 for every r ≤ i ≤ n− 1 and for every j . To this end, we
apply the Bott’s algorithm [Weyman 2003, (4.1.5)] to the weight

α := (0, . . . , 0︸ ︷︷ ︸
n−i

, 1, 0, . . . , 0︸ ︷︷ ︸
i−1

).

Note that there is a permutation σ such that σ ·α = α, yielding the proposition. �
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An inductive approach. We are looking for a way to compute H∗(GLn/Q,
∧t
ξ)

for a homogeneous bundle
ξ =

⊕
i∈A

U⊕mi
i

where A ⊆ {r, . . . , n− 1} and mi > 0 for every i ∈ A. Using Proposition 5.3, we
assume that Q = PÂ. (Using Proposition 5.8 below, we may further assume that
mi ≥ 2, but this is not necessary for the inductive argument to work.)

Let j be such that Q ⊆ P̂ and Q j (equivalently Uj ) be of least dimension; in
other words, j is the smallest element of A. If Q= P̂ (i.e., |A| = 1), then the

∧t
ξ is

completely reducible, and we may use the Borel–Weil–Bott theorem to compute the
cohomology groups. Hence suppose that Q 6= P̂ ; write Q = Q′ ∩ P̂ nontrivially,
with Q′ being a parabolic subgroup. Consider the diagram

GLn/Q
p2 //

p1

��

GLn/P̂

GLn/Q′

Note that
∧t
ξ decomposes as a direct sum of bundles of the form (p1)

∗η ⊗

(p2)
∗(
∧t1U⊕m j

j ) where η is a homogeneous bundle on GLn/Q′. We must compute

H∗
(
GLn/Q, (p1)

∗η⊗ (p2)
∗(
∧t1U⊕m j

j )
)
.

Using the Leray spectral sequence and the projection formula, we can compute this
from

H∗
(
GLn/Q′, η⊗ R∗(p1)∗(p2)

∗(
∧t1U⊕m j

j )
)
.

Now
∧t1U⊕m j

j , in turn, decomposes as a direct sum of Sµ Uj , so we must compute

H∗
(
GLn/Q′, η⊗ R∗(p1)∗(p2)

∗ Sµ Uj
)
.

The Leray spectral sequence and the projection formula respect the various direct-
sum decompositions mentioned above. It would follow from Proposition 5.5 below
that for each µ, at most one of the R p(p1)∗(p2)

∗ Sµ Uj is nonzero, so the abutment
of the spectral sequence is, in fact, an equality.

Proposition 5.5. With notation as above, let θ be a homogeneous bundle on
GLn/P̂ . Then Ri p1∗ p2

∗θ is the locally free sheaf associated to the vector bundle
GLn ×

Q′ Hi (Q′/Q, p2
∗θ |Q′/Q) over GLn/Q′.

Proof. This proposition follows from Proposition 2.3.5. �

We hence want to determine the cohomology of the restriction of Sµ Uj on Q′/Q.
It follows from the definition of j that Q′/Q is a Grassmannian whose tautological
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quotient bundle and its dual are, respectively, Q j |Q′/Q and Uj |Q′/Q . We can therefore
compute Hi (Q′/Q,Sµ Uj |Q′/Q) using the Borel–Weil–Bott theorem.

Example 5.6. Suppose that n = 6 and that Q = P̂{2,4}. Then we have the diagram

GL6 /Q
p2 //

p1

��

GL6 /P2̂

GL6 /P4̂

The fibre of p1 is isomorphic to P4̂/Q which is a Grassmannian of two-dimensional
subspaces of a four-dimensional vector-space. Let µ= (µ1, µ2) be a weight. Then
we can compute the cohomology groups H∗(P4̂/Q, Sµ U2|P4̂/Q) applying the Borel–
Weil–Bott theorem [Weyman 2003, (4.1.5)] to the sequence (0, 0, µ1, µ2). Note that
H∗(P4̂/Q, Sµ U2|P4̂/Q) is, if it is nonzero, SλW where W is a four-dimensional
vector-space that is the fibre of the dual of the tautological quotient bundle of
GL4 /P4̂ and λ is a partition with at most four parts. Hence, by Proposition 5.5, we
see that Ri (p1)∗(p2)

∗ Sµ U2 is, if it is nonzero, Sλ U4 on GL6 /P4̂ .

We summarise the above discussion as a theorem:

Theorem 5.7. For w ∈Wr the modules in the free resolution of C[YP(w)] given in
Theorem 4.2 can be computed.

We end this section with some observations.

Proposition 5.8. Suppose that there exists i such that r + 1≤ i ≤ n− 1 and such
that ξ contains exactly one copy of Ui as a direct summand. Let

ξ ′ = Ui−1⊕

m⊕
j=1
i j 6=i

Ui j .

Then H∗(GLn/Q,
∧t
ξ)= H∗(GLn/Q,

∧t
ξ ′) for every t.

Proof. Note that ξ ′ is a subbundle of ξ with quotient Ui/Ui−1. We claim that
Ui/Ui−1 ' Lωi−1−ωi , where for 1 ≤ j ≤ n, ω j is the j-th fundamental weight.
Assume the claim. Then we have an exact sequence

0−→
∧t
ξ ′ −→

∧t
ξ −→

∧t−1
ξ ′⊗ Lωi−1−ωi −→ 0

Let
Q′ =

⋂
r≤l≤n−1

l 6=i

Pl̂ ;

then Q = Q′ ∩ Pı̂ . Let p : GLn/Q→ GLn/Q′ be the natural projection; its fibres
are isomorphic to Q′/Q 'GL2 /BN 'P1. Note that

∧t−1
ξ ′⊗ Lωi−1 is the pullback

along p of some vector bundle on GLn/Q′; hence it is constant on the fibres of p.
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On the other hand, Lωi is the ample line bundle on GLn /Pı̂ that generates its
Picard group, so L−ωi restricted to any fibre of p is O(−1). Hence the bundle∧t−1

ξ ′ ⊗ Lωi−1−ωi on any fibre of p is a direct sum of copies of O(−1) and
hence it has no cohomology. By Grauert’s theorem [Hartshorne 1977, III.12.9],
Ri p∗(

∧t−1
ξ ′⊗ Lωi−1−ωi )= 0 for every i , so, using the Leray spectral sequence, we

conclude that H∗(GLn/Q,
∧t−1

ξ ′⊗ Lωi−1−ωi )= 0. This gives the proposition.
Now to prove the claim, note that Ui/Ui−1 ' (Rn−i+1/Rn−i )

∗. Let e1, . . . , en be
a basis for Cn such that the subspace spanned by ei , . . . , en is BN -stable for every
1≤ i ≤ n. (Recall that we take the right action of BN on Cn .) Hence Rn−i+1/Rn−i

is the invertible sheaf on which BN acts through the character ωi −ωi−1, which
implies the claim. �

Remark 5.9 (determinantal case). Recall (see the paragraph after Definition 3.3)
that YP(w)= Dk if w = (k+ 1, . . . , n, N − k+ 1, . . . N ) ∈Wn−k . In this case,

Uw = U⊕(m−k+1)
n−k ⊕

n−1⊕
i=n−k+1

Ui .

Therefore

H∗(GLn/Qn−k,
∧
∗
ξ)= H∗(GLn/Qn−k,

∧
∗U⊕m

n−k)= H∗(GLn /Pn̂−k ,
∧
∗U⊕m

n−k)

where the first equality comes from a repeated application of Proposition 5.8 and
the second one follows by Lemma 5.2, applied to the natural map f : GLn/Q→
GLn /Pn̂−k . Hence our approach recovers Lascoux’s resolution of the determinantal
ideal [Lascoux 1978]; see also [Weyman 2003, Chapter 6].

6. Examples

We illustrate our approach with two examples. Firstly, we compute the resolution
of a determinantal variety using the inductive method from the last section.

Example 6.1 (n×m matrices of rank ≤ k). If k = 1, then w = (2, . . . , n, n+m),
and, hence, ξ = U⊕m

n−1. Since this would not illustrate the inductive argument, let us
take k = 2.

Consider the ideal generated by the 3×3 minors of a 4×3 matrix of indeterminates.
It is generated by four cubics, which have a linear relation. Hence minimal free
resolution of the quotient ring looks like

(6.2) 0−→ R(−4)⊕3
−→ R(−3)⊕4

−→ R −→ 0.

Note that w = (3, 4, 6, 7) and ξ = U⊕2
2
⊕

U3. Write G = GL4 and Q = P ̂{2,3}.
Then j = 2, Q′ = P3̂ and Q′/Q ' GL3 /P2̂ ' P2. Now there is a decomposition∧t

ξ =
⊕
|µ|≤t

Sµ′ C2
⊗Sµ U2⊗

∧t−|µ|U3
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Hence we need to consider only µ= (µ1, µ2)≤ (2, 2). On Q′/Q ' GL3 /P2̂, we
would apply the Borel–Weil–Bott theorem [op. cit., (4.1.5)] to the weight (0, µ1, µ2)

to compute the cohomology of Sµ Uj . Thus we see that we need to consider only
µ= (0, 0), µ= (2, 0) and µ= (2, 1). From this, we conclude that

Ri (p1)∗(p2)
∗(Sµ′ C2

⊗Sµ U2)=


OG/P3̂

if i = 0 and µ= (0, 0),∧2U3 if i = 1 and µ= (2, 0),
(
∧3U3)

⊕2 if i = 1 and µ= (2, 1),
0 otherwise.

We have to compute the cohomology groups of (Ri (p1)∗(p2)
∗(Sµ′ C2

⊗ Sµ U2))⊗∧t−|µ|U3 on G/P3̂. Now, H∗(G/P3̂,
∧iU3)= 0 for every i > 0. Further∧2U3⊗U3 '

∧3U3⊕S2,1 U3 for µ= (2, 0) and t = 3,∧2U3⊗
∧2U3 ' S2,1,1 U3⊕S2,2 U3 for µ= (2, 0) and t = 4,∧2U3⊗
∧3U3 ' S2,2,1 U3 for (µ= (2, 0) or µ= (2, 1)) and t = 5,∧3U3⊗U3 ' S2,1,1 U3 for µ= (2, 1) and t = 4,∧3U3⊗
∧3U3 ' S2,2,2 U3 for µ= (2, 1) and t = 6.

Again, by applying the Borel–Weil–Bott theorem [loc. cit.] for G/P3̂, we see that
S2,2 U3, S2,2,1 U3 and S2,2,2 U3 have no cohomology. Therefore we conclude that

H j (G/Q,
∧t
ξ)=


∧0

C⊕4 if t = 0 and j = 0,∧3
C⊕4 if t = 3 and j = 2,

(
∧4

C⊕4)⊕3 if t = 4 and j = 2,
0 otherwise.

These ranks agree with the expected ranks from (6.2).

Example 6.3. Let n = 6, m = 6, k = 4 and w = (5, 6, 8, 9, 11, 12). For this,
Q = P ̂{2,...,5} and Uw = U⊕2

2 ⊕ U3 ⊕ U⊕2
4 ⊕ U5. After applying Propositions 5.3

and 5.8, we reduce to the situation Q = P̂{2,4} and ξ = U⊕3
2 ⊕ U⊕3

4 . Write ξ =
(C3
⊗C U2)⊕ (C

3
⊕U4). Now we project away from GL6 /P2̂.

GL6 /Q
p2 //

p1

��

GL6 /P2̂

GL6 /P4̂

The fibre of p1 is isomorphic to P4̂/Q which is a Grassmannian of two-dimensional
subspaces of a four-dimensional vector-space. We use the spectral sequence

(6.4) H j (G/P4̂ , Ri p1∗
∧t
ξ) H⇒ Hi+ j (G/Q,

∧t
ξ).
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Observe that
∧t
ξ =

⊕
t1

∧t1(C3
⊗C U2)⊗

∧t−t1(C3
⊗C U4); the above spectral

sequence respects this decomposition. Further, using the projection formula, we
see that we need to compute

H j(G/P4̂ , (R
i p1∗

∧t1(C3
⊗C U2))⊗

∧t−t1(C3
⊗C U4)

)
.

Now, Ri p1∗
∧t1(C3

⊗C U2) is the vector bundle associated to the P4̂ -module

Hi (P4̂/Q,
∧t1(C3

⊗C U2)|P4̂/Q)= Hi (P4̂/Q,
∧t1(C3

⊗C U2|P4̂/Q)).

Note that U2|P4̂/Q is the dual of the tautological quotient bundle of P4̂/Q'GL4 /P2̂;
we denote this also, by abuse of notation, by U2. Note, further, that

∧t1(C3
⊗CU2)=⊕

µ`t1 Sµ′ C3
⊗Sµ U2. We need only considerµ≤ (3, 3). From the Borel–Weil–Bott

theorem [Weyman 2003, (4.1.5)], it follows that

Hi (P4̂/Q, Sµ U2)=


∧0
(C⊕

4
) if i = 0 and µ= (0, 0),∧3

(C⊕
4
) if i = 2 and µ= (3, 0),∧4

(C⊕
4
) if i = 2 and µ= (3, 1),

0, otherwise.

Therefore we conclude that

Ri p1∗
∧t1(C3

⊗C U2)=


OGL4 /P2̂

if i = 0 and t1 = 0,∧3U4 if i = 2 and t1 = 3,
(
∧4U4)

⊕3 if i = 2 and t1 = 4,
0 otherwise.

Therefore for each pair (t, t1) at most one column of the summand of the spectral
sequence (6.4) is nonzero; hence the abutment in (6.4) is in fact an equality.

Fix a pair (t, t1) and an integer l. Then we have

Hl(G/Q,
∧t
ξ)= Hl(G/P4̂ ,

∧t
(C3
⊗U4))

⊕Hl−2(G/P4̂ ,
∧3U4⊗

∧t−3
(C3
⊗U4))

⊕Hl−2(G/P4̂ , (
∧4U4)

⊕3
⊗
∧t−4

(C3
⊗U4)).

Write hi (−)= dimC Hi (−). Note that
∧t
(C3
⊗U4)'

⊕
λ`t Sλ′ C3

⊗Sλ U4, by the
Cauchy formula. Write dµ′ = dimC Sµ′ C⊕3. Thus, from the above equation, we
see, that for every l and for every t ,

(6.5) hl(
∧t
ξ)=

∑
µ`t

dµ′hl(Sµ U4)

+

∑
µ`t−3

dµ′hl−2(
∧3U4⊗Sµ U4)+ 3

∑
µ`t−4

dµ′hl−2(
∧4U4⊗Sµ U4)
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(Here the cohomology is calculated over GL6 /Q on the left-hand-side and over
GL6 /P4̂ on the right-hand-side.) For any µ, if dµ′ 6= 0, then µ1 ≤ 3. Any µ that
contributes a nonzero integer to the right-hand-side of (6.5) has at most four parts
and m1 ≤ 3. Further, if Sλ U4 is an irreducible summand of a representation on the
right-hand-side of (6.5) with nonzero cohomology, then λ has at most four parts
and is such that λ1 ≤ 4. Therefore for λ≤ (4, 4, 4, 4), we compute the cohomology
using the Borel–Weil–Borel theorem:

Hi (G/P4̂ , Sλ U4)=



∧0
(C⊕6) if i = 0 and λ= 0,

S(λ1−2,1,1,λ2,λ3,λ4)(C
⊕6) if i = 2, λ1 ∈ {3, 4},

and (λ2, λ3, λ4)≤ (1, 1, 1),
S(2,2,2,2,λ3,λ4)(C

⊕6) if i = 4, λ1 = λ2 = 4,
and (λ3, λ4)≤ (2, 2),

0 otherwise.

We put these together to compute hl(
∧t
ξ); the result is listed in Table 1. From this

we get the following resolution:

0 // R(−12)26 // R(−11)108 //
R(−6)10

⊕

R(−10)153
//

R(−5)36

⊕

R(−7)36

⊕

R(−9)70

//
R(−3)45

⊕

R(−5)53
//
R(−2)20

⊕

R(−4)18
// R // 0.

Note, indeed, that dim YQ(w)= dim XQ(w)= 4+ 4+ 5+ 5+ 6+ 6= 30 and that
dim O−GLN /P = 6 · 6 = 36, so the codimension is 6. Since the variety is Cohen–
Macaulay, the length of a minimal free resolution is 6.

7. Further remarks

A realisation of Lascoux’s resolution for determinantal varieties. We already saw
in Remark 5.9 that when YP(w)= Dk , computing H∗(GLn/Qn−k,

∧
∗
ξ) is reduced,

by a repeated application of Proposition 5.8 to computing the cohomology groups
of (completely reducible) vector bundles on the Grassmannian GLn /Pn̂−k . We thus
realise Lascoux’s resolution of the determinantal variety using our approach.

In this section, we give yet another desingularization of Dk (for a suitable choice
of the parabolic subgroup) so that the variety V of (1-2) is in fact a Grassmannian.
Recall (the paragraph after Definition 3.3 or Remark 5.9) that YP(w) = Dk if
w = (k+ 1, . . . , n, N − k+ 1, . . . N ) ∈Wn−k . Let P̃ = P ̂{n−k,n} ⊆GLN . Let w̃ be
the representative of the coset w P̃ in W P̃.

Proposition 7.1. XP̃(w̃) is smooth and the natural map XP̃(w̃)→ XP(w) is proper
and birational, i.e., XP̃(w̃) is a desingularization of XP(w).
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t h0(
∧t
ξ) h1(

∧t
ξ) h2(

∧t
ξ) h3(

∧t
ξ) h4(

∧t
ξ) h5(

∧t
ξ) h6(

∧t
ξ)

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 20 0 0 0 0
4 0 0 45 0 0 0 0
5 0 0 36 0 18 0 0
6 0 0 10 0 53 0 0
7 0 0 0 0 36 0 0
8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 70
10 0 0 0 0 0 0 153
11 0 0 0 0 0 0 90
12 0 0 0 0 0 0 26

Table 1. Ranks of the relevant cohomology groups.

Proof. The proof is similar to that of Proposition 3.4. Let

wmax = (k+ 1, . . . , n, N − k+ 1, . . . N , N − k, . . . , n+ 1, k, . . . , 1) ∈W.

Then XBN (wmax) is the inverse image of XP̃(w̃) under the natural morphism
GLN /BN → GLN /P̃, and that wmax is a 4231 and 3412-avoiding element of
W = SN . �

We have P/P̃ ∼= GLn /Pn̂−k . As in Section 3, we have the following. Denoting
by Z the preimage inside XP̃(w̃) of YP(w) (under the restriction to XP̃(w̃) of
the natural projection G/P̃ → G/P), we have Z ⊂ O− × P/P̃, and the image
of Z under the second projection is V := P/P̃ (∼= GLn /Pn̂−k). The inclusion
Z ↪→ O− × V is a subbundle (over V ) of the trivial bundle O− × V . Denoting
by ξ the dual of the quotient bundle on V corresponding to Z , we have that the
homogeneous bundles

∧i+ j
ξ on GLn /Pn̂−k are completely reducible, and hence

may be computed using Bott’s algorithm.

Multiplicity. We describe how the free resolution obtained in Theorem 4.2 can
be used to get an expression for the multiplicity multid(w) of the local ring of the
Schubert variety XP(w)⊆ GLN /P at the point eid. Notice that YP(w) is an affine
neighbourhood of eid. We noticed in Section 4 that YP(w) is a closed subvariety of
O−GLN /P defined by homogeneous equations. In O−GLN /P , eid is the origin; hence
in YP(w) it is defined by the unique homogeneous maximal ideal of C[YP(w)].
Therefore C[YP(w)] is the associated graded ring of the local ring of C[YP(w)] at
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eid (which is also the local ring of XP(w) at eid). Hence multid(w) is the normalised
leading coefficient of the Hilbert series of C[YP(w)].

Observe that the Hilbert series of C[YP(w)] can be obtained as an alternating
sum of the Hilbert series of the modules Fi in Theorem 4.2. Write h j (−) =

dimC H j (X Qs (w
′),−) for coherent sheaves on XQs (w

′). Then the Hilbert series of
C[YP(w)] is

(7.2)
1

(1− t)mn

mn∑
i=0

dim XQs (w
′)∑

j=0

(−1)i h j (
∧i+ jUw)t i+ j.

We may harmlessly change the range of summation in (7.2) to −∞ < i, j <∞;
this is immediate for j , while for i , we note that the proof of Theorem 4.1 implies
that h j (

∧i+ jUw) = 0 for every i < 0 and for every j . Hence we may write the
summation in (7.2) as (with k = i + j)

(7.3)
∞∑

k=0

(−1)k tk
∞∑
j=0

(−1) j h j (
∧kUw) =

rkUw∑
k=0

(−1)kχ(
∧kUw)tk.

Since
∧kUw is also a Tn-module, where Tn is the subgroup of diagonal matrices

in GLn , one may decompose
∧kUw as a sum of rank-one Tn-modules and use the

Demazure character formula to compute the Euler characteristics above.
It follows from generalities on Hilbert series (see, e.g., [Bruns and Herzog 1993,

Section 4.1]) that the polynomial in (7.3) is divisible by (1− t)c where c is the
codimension of YP(w) in O−GLN /P , and that after we divide it and substitute t = 1
in the quotient, we get multid(w). This gives an expression for eid(w) apart from
those of [Lakshmibai and Weyman 1990; Kreiman and Lakshmibai 2004].

Castelnuovo–Mumford regularity. Since C[YP(w)] is a graded quotient ring of
C[O−GLN /P ], it defines a coherent sheaf over the corresponding projective space
Pmn−1.

Let F be a coherent sheaf on Pn. The Castelnuovo–Mumford regularity of F
(with respect to OPn (1)) is the smallest integer r such that Hi (Pn, F⊗OPn (r−i))=0
for every 1 ≤ i ≤ n; we denote it by reg F. Similarly, if R = k[x0, . . . , xn] is a
polynomial ring over a field k with deg xi = 1 for every i and M is a finitely
generated graded R-module, the Castelnuovo–Mumford regularity of M is the
smallest integer r such that (Hi

(x0,...,xn)
(M))r+1−i = 0 for every 0≤ i ≤ n+ 1; we

denote it by reg M . (Here Hi
(x0,...,xn)

(M) is the i-th local cohomology module of M ,
and is a graded R-module.) It is known that

reg F = reg
(⊕

i∈Z

H0(Pn, F ⊗OPn (i))
)
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for every coherent sheaf F and that if depth M ≥ 2, then reg M = reg M̃ . See
[Eisenbud 2005, Chapter 4] for details.

Proposition 7.4. In the notation of (1-1), reg C[Y ] =max{ j : H j (V,
∧
∗
ξ) 6= 0}.

Proof. Let R = C[A]. It is known that

reg M =max{ j : TorR
i (k,M)i+ j 6= 0 for some i};

see [loc. cit.] for a proof. The proposition now follows from noting that

TorR
i (C,C[Y ])i+ j ' H j (V,

∧i+ j
ξ)

by Theorem 4.2. �

Now let w = (n− r + 1, n− r + 2, . . . , n, ar+1, . . . , an−1, N ) ∈Wr . We would
like to determine reg C[YP(w)] = max{ j : H j (GLn/Qr ,

∧
∗Uw) 6= 0}. Let ar = n

and an = N . For r ≤ i ≤ n − 1, define mi = ai+1 − ai . Note that Ui appears in
Uw with multiplicity mi and that mi > 0. Based on the examples that we have
calculated, we have the following conjecture.

Conjecture 7.5. With notation as above,

reg C[YP(w)] =

n−1∑
i=r

(mi − 1)i.

(Note that since YP(w) is Cohen–Macaulay, reg C[YP(w)] = reg OYP (w).) Consider
the examples in Section 6. In Example 6.1, m2 = 2, m3 = 1, and reg C[YP(w)] =

(2−1)2+0= 2. In Example 6.3, m2=m4= 2 and m3=m5= 1, so reg C[YP(w)]=

(2− 1)2+ 0+ (2− 1)4+ 0= 6, which in deed is the case, as we see from Table 1.
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FREE RESOLUTIONS OF SOME SCHUBERT SINGULARITIES
IN THE LAGRANGIAN GRASSMANNIAN

VENKATRAMANI LAKSHMIBAI AND REUVEN HODGES

Dedicated to the memory of Professor Robert Steinberg

In this paper we construct free resolutions of a certain class of closed subva-
rieties of affine space of symmetric matrices (of a given size). Our class cov-
ers the symmetric determinantal varieties (i.e., determinantal varieties in
the space of symmetric matrices), whose resolutions were first constructed
by Józefiak, Pragacz and Weyman (1981). Our approach follows the tech-
niques developed by Kummini, Lakshmibai, Pramathanath and Seshadri
(2015), and uses the geometry of Schubert varieties.

1. Introduction

This paper is a sequel to [Kummini et al. 2015]. Lascoux [1978] constructed a min-
imal free resolution of the coordinate ring of the determinantal varieties (consisting
of m × n matrices (over C) of rank at most k, considered as a closed subvariety
of the mn-dimensional affine space of all m × n matrices), as a module over the
mn-dimensional polynomial ring (the coordinate ring of the mn-dimensional affine
space).

In [Kummini et al. 2015], the authors construct free resolutions for a larger
class of singularities, viz., Schubert singularities, i.e., the intersection of a singular
Schubert variety and the “opposite big cell” inside a Grassmannian.

Józefiak, Pragacz and Weyman [1981] constructed a minimal free resolution of the
coordinate ring of the determinantal varieties (in the space of symmetric matrices) as
a module over the coordinate ring of the space of symmetric matrices. In this paper
we construct free resolutions for a certain class of closed subvarieties of the affine
space of symmetric matrices, which includes the symmetric determinantal varieties.
The technique adopted in [Kummini et al. 2015] is algebraic group-theoretic, and
we follow this approach.

The authors thank the referee for some useful comments; they also thank Manoj Kummini for helpful
discussions. Lakshmibai was supported by NSA grant H98230-11-1-0197 and NSF grant 0652386.
MSC2010: primary 20G20; secondary 14F05.
Keywords: Schubert varieties, Lagrangian Grassmannian, free resolutions.
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We now describe the results of this paper. Let n be a positive integer. Let
V =C2n and let ( · , · ) be a nondegenerate skew-symmetric bilinear form on V . Let
H = SL(V ) and G = SP(V ) = {Z ∈ SL(V ) | Z leaves the form ( · , · ) invariant}.
We take the matrix of the form, with respect to the standard basis of V , to be

F =
[

0 J
−J 0

]
where J is the antidiagonal (1, . . . , 1), in this case of size n. To simplify our notation
we will normally omit specifying the size of J as it will be obvious from the context.
We may realize SP(V ) as the fixed point set of the involution σ : H → H given
by σ(Z)= F(Z T )−1 F−1 (cf. [Steinberg 1968]).

Denoting by TH and BH the maximal torus in H consisting of diagonal matrices
and the Borel subgroup in H consisting of upper triangular matrices, respectively,
we have that TH and BH are stable under σ and we set TG = T σ

H , BG = BσH . It is
easily checked that TG is a maximal torus in G and BG is a Borel subgroup in G.

Thus we obtain
WG ↪→WH

where WG,WH denote the Weyl groups of G, H respectively (with respect to
TG, TH respectively). Further, σ induces an involution on WH :

w = (a1, · · · , a2n) ∈WH , σ (w)= (c1, · · · , c2n), ci = 2n+ 1− a2n+1−i

and
WG =W σ

H .

Thus we obtain

WG = {(a1 · · · a2n) ∈ S2n | ai = 2n+ 1− a2n+1−i , 1≤ i ≤ 2n}.

(here, S2n is the symmetric group on 2n letters). Thus w = (a1 · · · a2n) ∈ WG is
known once (a1 · · · an) is known. We shall denote an element (a1 · · · a2n) in WG by
just (a1 · · · an). Further, for w ∈WG , denoting by XG(w) (resp. X H (w)), the asso-
ciated Schubert variety in G/BG (resp. H/BH ), we have that under the canonical
inclusion G/BG ↪→ H/BH , XG(w)= X H (w)∩G/BG , scheme-theoretically.

Let P = Pn̂ , the maximal parabolic subgroup of G corresponding to omitting the
simple root αn , the set of simple roots of G being indexed as in [Bourbaki 1968].
Let 1 ≤ k < r ≤ n be positive integers, and let w ∈Wk,r (cf. Notation 3.2). Our
main result (cf. Theorem 3.22) is a description of the minimal free resolution of
the coordinate ring of YP(w) := X P(w)∩ O−G/P , the opposite cell of X P(w), as a
module over the coordinate ring of O−G/P . For this, as in [Kummini et al. 2015], we
use the Kempf–Lascoux–Weyman “geometric technique” of constructing minimal
free resolutions; in fact we use the same notation and description of this technique
as in [Kummini et al. 2015].
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Suppose that we have a commutative diagram of varieties

(1.1)
Z �
�
//

q ′
��

A× V
q
��

// V

Y �
�

// A

where A is an affine space, Y a closed subvariety of A and V a projective variety. The
map q is first projection, q ′ is proper and birational, and the inclusion Z ↪→ A× V
is a subbundle (over V ) of the trivial bundle A × V . Let ξ be the dual of the
quotient bundle on V corresponding to Z . Then the derived direct image Rq ′

∗
OZ is

quasi-isomorphic to a minimal complex F• with

Fi =
⊕
j≥0

H j(V,∧i+ j
ξ
)
⊗C R(−i − j).

Here R is the coordinate ring of A; it is a polynomial ring and R(k) refers to
twisting with respect to its natural grading. If q ′ is such that the natural map
OY −→ Rq ′

∗
OZ is a quasi-isomorphism (for example, if q ′ is a desingularization

of Y and Y has rational singularities) then F• is a minimal free resolution of C[Y ]
over the polynomial ring R.

In applying this technique in any given situation, there are two main steps
involved: one must find a suitable Z and a suitable morphism q ′ : Z −→ Y such
that the map OY −→ Rq ′

∗
OZ is a quasi-isomorphism and such that Z is a vector

bundle over a projective variety V ; and, one must be able to compute the necessary
cohomology groups. We carry this out for opposite cells YP(w),w ∈Wk,r .

As the first step, we establish the existence of a diagram as above, using the
geometry of Schubert varieties. We now describe this briefly.

We take A = O−G/P and Y = YP(w). Let P̃ be the two-step parabolic subgroup
P̂r−k,n̂ of G, and let w̃ be the minimal representative ofw P̃ in W P̃ (that is, the set of
minimal coset representatives in W , under the Bruhat order, of W/W P̃ , where W P̃ is
the Weyl group of P̃). Letw′ := (k+1, . . . , r, n, . . . , r+1, k, . . . , 1)∈ Sn , the Weyl
group of GLn . Let Z P̃(w̃) := YP(w)×X P (w) X P̃(w) (= (O−G/P × P/P̃)∩ X P̃(w) ).
Then it turns out that Z P̃(w̃) is smooth (cf. Definition 3.20), and is a desingulariza-
tion of YP(w). Write p for the composite map Z P̃(w̃) ↪→ O−G/P × P/P̃→ P/P̃
where the first map is the inclusion and the second map is the projection. We have
(cf. Theorem 3.22) that p identifies Z P̃(w̃) as a subbundle of the trivial bundle
O−G/P × X P ′

r̂−k
(w′) over X P ′

r̂−k
(w′), which arises as the restriction (to X P ′

r̂−k
(w′)) of

a certain homogeneous vector bundle on GLn /P ′
r̂−k

. With V := X P ′
r̂−k
(w′), we get:

(1.2)

Z P̃(w̃)

q ′
��

� � // O−G/P × V

q
��

// V

YP(w)
� � // O−G/P
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In this diagram, q ′ is a desingularization of YP(w). Since it is known that
Schubert varieties have rational singularities, we have that the map OY −→ Rq ′

∗
OZ

is a quasi-isomorphism, so F• is a minimal resolution.
At the second step, we need to determine the cohomology of the bundles

∧t
ξ

over V . In the above situation, V = XP ′
r̂−k
(w′) ↪→GLn /P ′

r̂−k
. As can be easily seen,

XP ′
r̂−k
(w′) is a Grassmannian, namely, GLr /P ′′

r̂−k
; the bundles

∧t
ξ (on GLr /P ′′

r̂−k
)

are also homogeneous, but are not of Bott type: they are not completely reducible
(so one can not apply the Bott algorithm for computing the cohomology). This
can be resolved in two ways. In [Ottaviani and Rubei 2006] the authors determine
the cohomology of general homogeneous bundles on Hermitian symmetric spaces,
and thus their results can be used to determine H •(V,

∧t
ξ). Alternatively, using

a technique from [Weyman 2003], we may compute the resolution of a related
space (whose associated homogeneous vector bundle is of Bott type) from which
we retrieve the resolution of the coordinate ring of YP(w) as a subcomplex.

We hope to extend the results of this paper to Schubert varieties in the orthogonal
Grassmannian. Details will appear in a subsequent paper.

The paper is organized as follows. Section 2 contains notations and conventions
and the necessary background material on Schubert varieties in the flag variety
(Section 2.1) and Schubert varieties in the symplectic flag variety (Sections 2.2
and 2.3) and homogeneous bundles (Section 2.4). In Section 3, we discuss properties
of Schubert desingularization, including the construction of Diagram 1.2. Section 4
is devoted to a review of the Kempf–Lascoux–Weyman technique and completes
step one of the two part process of the geometric technique. Section 5 explains how
the cohomology groups of the homogeneous bundles constructed in step one may
be calculated.

2. Preliminaries

In this section we collect various results about Schubert varieties in the flag variety
and symplectic flag variety, homogeneous vector bundles, and the Bott algorithm.

2.1. Notation and conventions in type A. We collect the symbols used and the
conventions adopted in the rest of the paper here. For details on algebraic groups
and Schubert varieties, the reader may refer to [Borel 1991; Jantzen 2003; Billey
and Lakshmibai 2000; Seshadri 2007].

Let N be positive integer. We denote by GLN (respectively, BN , B−N ) the group
of all (respectively, upper triangular, lower triangular) invertible N × N matrices
over C. The Weyl group W of GLN is isomorphic to the group SN of permutations
of N symbols and is generated by the simple reflections si , which correspond to the
transpositions (i, i + 1), for 1 ≤ i ≤ N − 1. For w ∈ W , its length is the smallest
integer l such that w = si1 · · · sil as a product of simple reflections. For every
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1≤ i ≤ N−1, there is a minimal parabolic subgroup Pi containing si (thought of as
an element of GLN ) and a maximal parabolic subgroup Pî not containing si . Any
parabolic subgroup can be written as PÂ :=

⋂
i∈A Pî for some A ⊂ {1, . . . , N − 1}.

On the other hand, for A ⊆ {1, . . . , N − 1} write PA for the subgroup of GLN

generated by Pi for i ∈ A. Then PA is a parabolic subgroup and P{1,...,N−1}\A = PÂ.
We write the elements of W in one-line notation: (a1, . . . , aN ) is the permutation

i 7→ ai . For any A⊆ {1, . . . , N−1}, define WPA to be the subgroup of W generated
by {si : i ∈ A}. By W PA we mean the subset of W consisting of the minimal
representatives (under the Bruhat order) in W of the elements of W/WPA . For
1 ≤ i ≤ N , we represent the elements of W Pî by sequences (a1, . . . , ai ) with
1≤ a1 < · · ·< ai ≤ N since under the action of the group WPî

, every element of
W can be represented minimally by such a sequence.

We identify GLN = GL(V ) for some N -dimensional vector-space V . Let A :=
{i1 < i2 < · · · < ir } ⊆ {1, . . . , N − 1}. Then GLN /PÂ is the set of all flags
0= V0 ( V1 ( V2 ( · · ·( Vr ( V of subspaces V j of dimension i j inside V . We
call GLN /PÂ a flag variety. If A= {1, . . . , N−1} (i.e., PÂ = BN ), then we call the
flag variety a full flag variety; otherwise, a partial flag variety. The Grassmannian
Grassi,N of i-dimensional subspaces of V is GLN /Pî .

Let P̃ be any parabolic subgroup containing BN and τ ∈ W . The Schubert
variety X P̃(τ ) is the closure inside GLN /P̃ of BN · ew where ew is the coset τ P̃ ,
endowed with the canonical reduced scheme structure. Hereafter, when we write
X P̃(τ ), we mean that τ is the representative in W P̃ of its coset. The opposite
big cell O−

GLN /P̃
in GLN /P̃ is the B−N -orbit of the coset (id · P̃) in GLN /P̃ . Let

YP̃(τ ) := X P̃(τ )∩ O−
GLN /P̃

; we refer to YP̃(τ ) as the opposite cell of X P̃(τ ).
We will write R+, R−, R+

P̃
, R−

P̃
, to denote respectively, positive and negative

roots for GLN and for P̃ . We denote by εi the character that sends the invertible
diagonal matrix with t1, . . . , tn on the diagonal to ti .

2.2. Notation and conventions in type C. Below we review the properties of sym-
plectic Schubert varieties relevant to this paper. For a more in-depth introduction
the reader may refer to [Lakshmibai and Raghavan 2008, Chapter 6].

Let n be a positive integer. Let V = C2n and let ( · , · ) be a nondegener-
ate skew-symmetric bilinear form on V . Let H = SL(V ) and G = SP(V ) =
{Z ∈ SL(V ) | Z leaves the form ( · , · ) invariant}. We take the matrix of the form,
with respect to the standard basis of V , to be

F =
[

0 J
−J 0

]
where J is the antidiagonal (1, . . . , 1), in this case of size n. To simplify our notation
we will normally omit specifying the size of J as it will be obvious from the context.
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We may realize SP(V ) as the fixed point set of the involution σ : H → H given
by σ(Z)= F(Z T )−1 F−1 (cf. [Steinberg 1968]). That is,

G = {Z ∈ SL(V ) | Z T F Z = F}

= {Z ∈ SL(V ) | F−1(Z T )−1 F = Z}

= {Z ∈ SL(V ) | F(Z T )−1 F−1
= Z}

= Hσ .

Denote by TH and BH the maximal torus in H consisting of diagonal matrices
and the Borel subgroup in H consisting of upper triangular matrices, respectively.
It is easily seen that TH and BH are stable under σ and we set TG = T σ

H , BG = BσH .
It is easily checked that TG is a maximal torus in G and BG is a Borel subgroup
in G.

Thus we obtain
WG ↪→WH

where WG,WH denote the Weyl groups of G, H , respectively (with respect to
TG, TH , respectively). Further, σ induces an involution on WH :

w = (a1, · · · , a2n) ∈WH , σ (w)= (c1, · · · , c2n), ci = 2n+ 1− a2n+1−i

and
WG =W σ

H .

Thus we obtain

WG = {(a1 · · · a2n) ∈ S2n | ai = 2n+ 1− a2n+1−i , 1≤ i ≤ 2n}.

(here, S2n is the symmetric group on 2n letters). Thus w = (a1 · · · a2n) ∈ WG is
known once (a1 · · · an) is known. We shall denote an element (a1 · · · a2n) in WG

by just (a1 · · · an). For example, (4231) ∈ S4 represents (42) ∈WG,G = SP(4).
The involution σ induces an involution on X (TH ), the character group of TH :

χ ∈ X (TH ), σ (χ)(D)= χ(σ(D)), D ∈ TH .

Let εi , for 1 ≤ i ≤ 2n, be the character in X (TH ), εi (D) = di , the i-th entry in
D ∈ TH . We have

σ(εi )=−ε2n+1−i

Now it is easily seen that the under the canonical surjective map

ϕ : X (TH )→ X (TG)

we have
ϕ(εi )=−ϕ(ε2n+1−i ), 1≤ i ≤ 2n.
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Let RH := {εi − ε j , 1 ≤ i, j ≤ 2n} be the root system of H (relative to TH ), and
R+H := {εi − ε j , 1≤ i < j ≤ 2n} the set of positive roots (relative to BH ). We have
the following:

(a) σ leaves RH (resp. R+H ) stable.

(b) For α, β ∈ RH , ϕ(α)= ϕ(β)⇔ α = σ(β).

(c) ϕ is equivariant for the canonical action of WG on X (TH ), X (TG).

(d) RσH = {±(εi − ε2n+1−i ), 1≤ i ≤ n}.

Let RG (resp. R+G ) be the set of roots of G with respect to TG (resp. the set of
positive roots with respect to BG ). Using the above facts and the explicit nature of
the adjoint representation of G on Lie G, we deduce that

RG = ϕ(RH ), R+G = ϕ(R
+

H ).

In particular, RG (resp. R+G ) gets identified with the orbit space of RH (resp. R+H )
modulo the action of σ . Thus we obtain the following identification:

RG = {±(εi ± ε j ), 1≤ i < j ≤ n} ∪ {±2εi , i = 1, . . . , n},

R+G = {(εi ± ε j ), 1≤ i < j ≤ n} ∪ {2εi , i = 1, . . . , n}.

The set SG of simple roots in R+G is given by

SG := {αi = εi − εi+1, 1≤ i ≤ n− 1} ∪ {αn = 2εn}.

Let us denote the simple reflections in WG by {si , 1≤ i ≤ n}, namely, si = reflection
with respect to εi − εi+1 for 1≤ i ≤ n− 1, and sn = reflection with respect to 2εn.

Then we have

(2.2.1) si =

{
rir2n−i , if 1≤ i ≤ n− 1,
rn, if i = n,

where ri denotes the transposition (i, i + 1) in S2n for 1≤ i ≤ 2n− 1.
For w ∈WG , let us denote by l(w,WH ) (resp. l(w,WG)) the length of w as an

element of WH (resp. WG). For w = (a1, · · · , a2n) ∈WH , denote

(2.2.2) m(w) := #{i ≤ n | ai > n}.

Then for w = (a1, · · · , a2n) ∈WG , we have l(w,WG)=
1
2

(
l(w,WH )+m(w)

)
.

Proposition 2.2.3 [Lakshmibai and Raghavan 2008, Proposition 6.2.5.1]. Let
w ∈WG ; let XG(w) (resp. X H (w)) be the associated Schubert variety in G/BG

(resp. H/BH ). Under the canonical inclusion G/BG ↪→ H/BH , we have XG(w)=

X H (w)∩G/BG . Further, the intersection is scheme-theoretic.
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Notation 2.2.4. For the remainder of the paper we fix the following notation. Let
1≤ k < r ≤ n be positive integers. Let Q = Q n̂ to be the parabolic subgroup of H
corresponding to omitting the root αn and P = Pn̂ to be the parabolic subgroup of
G corresponding to omitting the root αn . Let P̃ be the two-step parabolic subgroup
P̂r−k,n̂ of G. Let Q̃ be the three step parabolic subgroup Qr̂−k,n̂, ̂2n−(r−k) in H .
Note that P = Qσ and P̃ = Q̃σ . Finally, we identify P/P̃ with GLn /P ′

r̂−k
where

P ′
r̂−k

is the parabolic subgroup of GLn corresponding to omitting the root αr−k .

Definition 2.2.5. A square m ×m matrix X is persymmetric if J X = X T J . Or,
equivalently, if J X is symmetric.

Remark 2.2.6. We denote by Matn the space of n × n matrices. Let K be the
subgroup of H consisting of matrices of the form[

Idn 0
Y Idn

]
, Y ∈Matn .

The canonical morphism H → H/Q induces a morphism ψH : K → H/Q. We
have that ψH is an open immersion, and ψH (K ) gets identified with the opposite
big cell O−H/Q in H/Q.

The cell O−H/Q is σ -stable and by [Lakshmibai and Raghavan 2008, Corollary
6.2.4.3], we can identify the opposite big cell O−G/P as

O−G/P = (O
−

H/Q)
σ
= {z ∈ K | JY T J = Y }.

So O−G/P is the subspace of K with Y persymmetric. Thus we can identify O−G/P

with the space of symmetric n×n matrices, Symn , under the map O−G/P −→ Symn
given by [

Idn 0
Y Idn

]
7→ JY.

2.3. Opposite cells in Schubert varieties in the symplectic flag variety. A matrix
z ∈ SL(V ) with n× n block form[

An×n Cn×n

Dn×n En×n

]
is an element of G if and only if zT Fz = F , i.e., if and only if the following
conditions hold on the n× n blocks:

AT J D = DT J A,(2.3.1)

CT J E = ET JC,(2.3.2)

J = (AT J E − DT JC)= (ET J A−CT J D).(2.3.3)

The following proposition will prove useful throughout the rest of the paper.
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Proposition 2.3.4. Write U−P for the negative unipotent radical of P.

(a) O−G/P can be naturally identified with U−P P/P

(b) For

z =
[

An×n Cn×n

Dn×n En×n

]
∈ G,

z P ∈ O−G/P if and only if A is invertible.

(c) The inverse image of O−G/P under the natural map G/P̃→G/P is isomorphic
to O−G/P × P/P̃ as schemes. Every element of O−G/P × P/P̃ is of the form[

An×n 0
Dn×n J (AT )−1 J

]
mod P̃ ∈ G/P̃.

Moreover, two matrices[
An×n 0n×n

Dn×n J (AT )−1 J

]
and

[
A′n×n 0n×n

D′n×n J (A′T )−1 J

]
in G represent the same element modulo P̃ if and only if there exists a matrix
q ∈ P ′

r̂−k
(as defined in Notation 2.2.4) such that A′ = Aq and D′ = Dq.

(d) P/P̃ is isomorphic to GLn /P ′
r̂−k

. In particular, the projection map O−G/P ×

P/P̃→ P/P̃ is given by[
An×n 0
Dn×n J (AT )−1 J

]
mod P̃ 7−→ A mod P ′

r̂−k
∈ GLn /P ′

r̂−k
∼= P/P̃.

Proof. (a): Note that U−P is the subgroup of G generated by the root subgroups
U−α for α ∈ R+\R+P . Under the canonical projection G→ G/P , g 7→ g P , U−P
is mapped isomorphically onto its image O−G/P (cf. [Billey and Lakshmibai 2000,
Section 4.4.4]). Thus we obtain the identification of O−G/P with U−P P/P .

(b): Suppose that z P ∈ O−G/P . By (a) this means that ∃ n×n matrices A′,C ′, D′, E ′

such that

z1 =

[
Idn 0
D′ Idn

]
∈U−P and z2 =

[
A′ C ′

0 E ′

]
∈ P with z =

[
A C
D E

]
= z1z2.

Hence A = A′, and A′ invertible implies A invertible.
Conversely, suppose A is invertible. Let

z =
[

A C
D E

]
∈ G.
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Then A,C, D, E satisfy properties (2.3.1)–(2.3.2). Since A is invertible we may
write

z = z1z2 where z1 =

[
Idn 0

D A−1 Idn

]
, z2 =

[
A C
0 E − D A−1C

]
We shall now show that z1, z2 ∈ G. First, we note that (2.3.1) implies that

(2.3.5) J (D A−1)= (D A−1)T J.

Then (2.3.5) shows that z1 ∈U−P , and hence z1 ∈ G.
Now z1 ∈ G implies z−1

1 ∈ G, and z ∈ G by assumption. Hence z2 = zz−1
1 ∈ G.

Further, since A is invertible, z2 ∈ P . Hence the coset z P = z1 P , which in view of
the fact that z1 ∈U−P , implies by part (a) that z P ∈ O−G/P .

(c): Let z ∈U−P P ⊂ G. Then we can write z = z1z2 uniquely with z1 ∈U−P , z2 ∈ P .
Suppose that[

Idn 0
Dn×n Idn

][
An×n Cn×n

0n×n En×n

]
=

[
Idn 0

D′n×n Idn

][
A′n×n C ′n×n
0n×n E ′n×n

]
then A = A′, C = C ′, D A = D′A′ and DC + E = D′C ′ + E ′, which yields that
D′ = D (since A = A′ is invertible), and then E = E ′. Hence U−P ×C P = U−P P .
Thus for any parabolic subgroup P ′ ⊆ P , U−P ×C P/P ′ =U−P P/P ′. The asserted
isomorphism follows by part (a) from taking P ′ = P̃ .

To see the second assertion consider

z =
[

An×n Cn×n

Dn×n En×n

]
∈ G

with z P ∈O−G/P . Note that the n×n block matrices satisfy properties (2.3.1)–(2.3.3)
and by (b), A is invertible.

We have by the first part of (c) that the coset z P is an element of O−G/P × P/P̃ ,
since z P ∈ O−G/P .

Claim. We have a decomposition of z in G,[
A C
D E

]
= y1 y2 where y1 =

[
A 0
D J (AT )−1 J

]
∈ G, y2 =

[
Idn A−1C
0 Idn

]
∈ P̃.

We first check that z = y1 y2. We need the following identity

(2.3.6) J AT J (E − D A−1C)= Idn,

which follows from
J AT J (E − D A−1C) = J (AT J E − AT J D A−1C)

= J (AT J E − DT J AA−1C) (2.3.1)
= J J (2.3.3)
= Idn .
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So that
D A−1C + J (AT )−1 J = D A−1C + J (AT )−1 J J AT J (E − D A−1C) (2.3.6)

= D A−1C + E − D A−1C
= E .

With this it is easily verified that z = y1 y2.
It is clear that y1∈G. To show y2∈G we need to check that J (A−1C)T J = A−1C .

(A−1C)T J = (A−1C)T J J AT J (E − D A−1C) (2.3.6)
= CT J (E − D A−1C)
= ET JC −CT J D A−1C (2.3.2)
= (E − D A−1C)T JC (2.3.5)
= (E − D A−1C)T J AJ J A−1C
= (J AT J (E − D A−1C))T J (A−1C)
= J (A−1C) (2.3.6)

Thus y2 ∈ G. It is clear additionally that y2 ∈ P̃ (in fact y2 ∈ BG).
Hence our claim follows and we have[

A C
D E

]
=

[
A 0
D J (AT )−1 J

]
mod P̃.

Finally, [
An×n 0n×n

Dn×n J (AT )−1 J

]
=

[
A′n×n 0n×n

D′n×n J (A′T )−1 J

]
mod P̃

if and only if there exist matrices q ∈ P ′
r̂−k

, and q ′ ∈Matn such that[
A′ 0n×n

D′ J (AT )−1 J

]
=

[
A 0n×n

D J (A′T )−1 J

] [
q q ′

0n×n J (qT )−1 J

]
,

which holds if and only if q ′ = 0, A′ = Aq and D′ = Dq (since A and A′ are
invertible).

(d): There is a surjective morphism of C-group schemes P→ GLn:[
A C
0 E

]
→ A.

This induces the required isomorphism. The element[
A C
D E

]
mod P̃ ∈ O−G/P × P/P̃

decomposes uniquely as[
Idn 0

D A−1 Idn

]([
A C
0 E − D A−1C

]
mod P̃

)
and hence it is mapped to A mod P ′

r̂−k
. �
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2.4. Homogeneous bundles and representations. Let Q be a parabolic subgroup
of GLn . We collect here some results about homogeneous vector bundles on GLn /Q.
Most of these results are well-known, but for some of them, we could not find a
reference, so we give a proof here for the sake of completeness. Online notes of
G. Ottaviani [1995] and of D. Snow [1994] discuss the details of many of these
results.

Let L Q and UQ be respectively the Levi subgroup and the unipotent radical of Q.
Let E be a finite-dimensional vector-space on which Q acts on the right.

Definition 2.4.1. Define GLn ×
Q E := (GLn ×E)/∼ where ∼ is the equivalence

relation (g, e) ∼ (gq, eq) for every g ∈ GLn , q ∈ Q and e ∈ E . Then πE :

GLn ×
Q E −→ GLn /Q, (g, e) 7→ gQ, is a vector bundle called the vector bundle

associated to E (and the principal Q-bundle GLn−→GLn /Q). For g∈GLn, e∈ E ,
we write [g, e] ∈ GLn ×

Q E for the equivalence class of (g, e) ∈ GLn ×E under ∼.
We say that a vector bundle π :E−→GLn /Q is homogeneous if E has a GLn-action
and π is GLn-equivariant, i.e, for every y ∈ E, π(g · y)= g ·π(y).

Remark 2.4.2. There is a similar construction in the case when E is a left Q-
module.

In this section, we abbreviate GLn ×
Q E as Ẽ . It is known that E is homogeneous

if and only if E' Ẽ for some Q-module E . (If this is the case, then E is the fiber
of E over the coset Q.) A homogeneous bundle Ẽ is said to be irreducible (respec-
tively indecomposable, completely reducible) if E is an irreducible (respectively
indecomposable, completely reducible) Q-module. It is known that E is completely
reducible if and only if UQ acts trivially and that E is irreducible if and only if
additionally it is irreducible as a representation of L Q . See [Snow 1994, Section 5]
or [Ottaviani 1995, Section 10] for the details.

Discussion 2.4.3. For the cohomology group computations in this paper, we will
primarily be interested in the case when GLn /Q is a Grassmannian. Thus let Q =
Pm̂ , with 1≤m≤ n−1. A weight λ is said to be Q-dominant if and only if when we
express λ as

∑n
i=1 λiεi (where εi , for 1≤ i ≤n, is the character that sends a diagonal

matrix in T to its i-th entry), then λ1≥ . . .≥ λm and λm+1≥ . . .≥ λn . We will write
λ= (λ1, . . . , λn) to mean that λ=

∑n
i=1 λiεi . Every finite-dimensional irreducible

Q-module is of the form H 0(Q/Bn, Lλ) for a Q-dominant weight λ. Hence the
irreducible homogeneous vector bundles on GLn /Q are in correspondence with
Q-dominant weights. We describe them now. If Q= P̂n−i , then GLn /Q=Grassi,n .
(Recall that, for us, the GLn-action on Cn is on the right.) On Grassi,n , we have the
tautological sequence

(2.4.4) 0−→Ri −→ Cn
⊗OGrassi,n −→Qn−i −→ 0
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of homogeneous vector bundles. The bundle Ri is called the tautological subbundle
(of the trivial bundle Cn) and Qn−i is called the tautological quotient bundle. Every
irreducible homogeneous bundle on Grassi,n is of the form S(λ1,··· ,λn−i )Q∗n−i ⊗

S(λn−i+1,··· ,λn)R∗i for some P̂n−i -dominant weight λ. Here Sµ denotes the Schur
functor associated to the partition µ (cf. [Fulton and Harris 1991, §6.1]).

A Q-dominant weight is called (m)-dominant in [Weyman 2003, p. 114]. Al-
though our definition looks like Weyman’s definition, we should keep in mind
that our action is on the right. We only have to be careful when we apply the
Borel–Weil–Bott theorem (more specifically, the Bott algorithm). In this paper,
our computations are done only on Grassmannians. If µ and ν are partitions,
then (µ, ν) will be Q-dominant (for a suitable Q), and will give us the vector
bundle SµQ∗⊗ SνR∗ (this is where the right-action of Q becomes relevant) and
to compute its cohomology, we will have to apply the Bott algorithm to the Q-
dominant weight (ν, µ). (In [Weyman 2003], one would get SµR∗ ⊗ SνQ∗ and
would apply the Bott algorithm to (µ, ν).) �

We now give a brief description of the Bott algorithm for computing the coho-
mology of irreducible homogeneous vector bundles on GLn /Q [Weyman 2003,
Remark 4.1.5].

Let α = (α1, . . . , αn) be a weight. As in [Weyman 2003, Remark 4.1.5] we
define an action of the permutation νi = (i, i + 1) on the set of weights in the
following way:

(2.4.5) νiα = (α1, . . . , αi−1, αi+1− 1, αi + 1, αi+2, . . . , αn).

The Bott algorithm may be applied to our case as follows. Let Q = Pm̂ , with
1 ≤ m ≤ n− 1 and let λ= (λ1, . . . , λn) be a Q-dominant weight with associated
homogeneous vector bundle V (λ) := S(λ1,...,λm)Q∗⊗ S(λm+1,...,λn)R∗. We will apply
the Bott algorithm to λ′ = (λm+1, . . . , λn, λ1, . . . , λm) in keeping with the last
paragraph of Discussion 2.4.3.

If λ′ is nonincreasing, then H 0(GLn/Q,V(λ))= Sλ′Cn and H i(GLn/Q,V(λ))=0
for i > 0. Otherwise we start to apply the exchanges of type (2.4.5) to λ′, trying to
move smaller numbers on the left to the right. Two possibilities can occur:

(1) We apply an exchange of type (2.4.5) and it leaves the sequence unchanged.
In this case H i (GLn /Q, V (λ))= 0 for i ≥ 0.

(2) After applying j exchanges, we transform λ′ into a nonincreasing sequence β.
Then we have H i (GLn/Q,V (λ))=0 for i 6= j and H j (GLn/Q,V (λ))= SβCn .

3. Properties of Schubert desingularization in type C

Recall the following result about the tangent space of a Schubert variety, see [Billey
and Lakshmibai 2000, Chapter 4] for details.
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Proposition 3.1. Let Q be a parabolic subgroup of SL2n . Let τ ∈ W Q . Then the
dimension of the tangent space of X Q(τ ) at eid is

#{sα | α ∈ R−\R−Q and τ ≥ sα in W/WQ}.

In particular, X Q(τ ) is smooth if and only if

dim X Q(τ )= #{sα | α ∈ R−\R−Q and τ ≥ sα in W/WQ}.

Notation 3.2. For an integer i with 1 ≤ i ≤ n we define i ′ = 2n + 1 − i . Let
1≤ k < r ≤ n. Then

Wk,r =

{
(k+ 1, . . . , r, n′, . . . , (r + 1)′, k ′, . . . , 1′) ∈W P , if r < n,
(k+ 1, . . . , r, k ′, . . . , 1′) ∈W P , if r = n.

Let 1≤k<r ≤n be integers. Letw∈Wk,r with w̃ its minimal representative in W P̃ .

Proposition 3.3. The Schubert variety X Q̃(w̃) in H/Q̃ is smooth.

Proof. Let wmax ∈WH (= S2n) be the maximal representative of w̃. Then

wmax =

{(
[r, k+ 1][1′, k ′][(r + 1)′, n′][n, (r + 1)][k, 1][(k+ 1)′, r ′]

)
, if r < n,(

[r, k+ 1][1′, k ′][k, 1][(k+ 1)′, r ′]
)
, if r = n.

To see this we need to show that X Pî
(wmax)= X Pî

(w̃) for i=r−k, n, 2n−(r−k) and
thatwmax is the maximal element of WH with this property. But this follows from the
fact that for τ = (c1, . . . , c2n) ∈WH and 1≤ i ≤ 2n we have that X Pî

(τ )= X Pî
(τ ′)

where τ ′ ∈W Pî is the element with c1, . . . , ci written in increasing order.
Thus X BH (wmax) is the inverse image of X Q̃(w̃) under the natural morphism

H/BH → H/Q̃. As wmax is a 4231 and 3142 avoiding element of WH we have
that X BH (wmax) is nonsingular (see [Billey and Lakshmibai 2000, 8.1.1]). Since the
morphism H/BH → H/Q̃ has nonsingular fibers (namely Q̃/BH ), X Q̃(w̃) must
be smooth. �

Proposition 3.4. The Schubert variety X P̃(w̃) in G/P̃ is smooth .

Proof. Let wmax be as in the proof of Proposition 3.3. Then clearly wmax is in
WG and X BG (wmax) is the inverse image of X P̃(w̃) under the natural morphism
G/BG→ G/P̃ .

Claim. X BG (wmax) is smooth.

Note that the claim implies the required result (since the canonical morphism
G/BG→G/P̃ is a fibration with nonsingular fibers (namely, P̃/BG)). To prove the
claim, as seen in the proof of Proposition 3.3, we have that X BH (wmax) is smooth.
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We conclude the smoothness of X BG (wmax) using the following two formulas
[Lakshmibai 1987, §3(VI), Remark 5.8]:

(1) lG(θ)=
1
2 [lH (θ)+m(θ)],

where we let θ ∈WG , say, θ = (a1, · · · an). With m(θ)= #{i, 1≤ i ≤ m | ai > m}
(cf. (2.2.2)), we have

(2) dim Tid(θ,G)= 1
2 [dim Tid(θ, H)+ c(θ)],

where c(θ) = #{1 ≤ i ≤ m | θ ≥ sε2i }, and Tid(θ,G) (resp Tid(θ, H)) denotes
the Zariski tangent space of X BG (θ) (resp X BH (θ)) at eid. Note that sε2i is just the
transposition (i, i ′) (cf. (2.2.1)). Now taking θ=wmax, we have, c(wmax)=m(wmax).
Hence we obtain from (1), (2) that dim Tid(wmax,G) = lG(wmax), proving that
X BG (wmax) is smooth at eid, and hence is nonsingular (note that for a Schubert
variety X , the singular locus of X , Sing(X), is B-stable implying eid ∈ Sing(X) if
Sing(X) 6=∅). Thus the claim (and hence the required result) follows. �

Remark 3.5. We have that X P̃(w̃) is the fixed point set under an automorphism of
order two of the Schubert variety X Q̃(w̃) and thus is smooth, provided char K 6= 2
([Edixhoven 1992, Proposition 3.4]).

Discussion 3.6. To give a characterization of YQ̃(w̃) we first need a review of the
structure of O−

H/Q̃
and its Plücker coordinates.

Recall that for the Plücker embedding of the Grassmannian Grassd,n , the Plücker
coordinate pi (U ), U ∈ Grassd,n and i = (i1, . . . , id) with 1 ≤ i1 < . . . < id < n,
is just the d × d minor of the matrix An×d with row indices (i1, . . . , id) (here the
matrix An×d represents the d-dimensional subspace U with respect to the standard
basis).

The cell O−
H/Q̃

can be identified with the affine space of lower-triangular matrices
with possible nonzero entries xi j at row i and column j where (i, j) is such that
there exists an l ∈ {r−k, n, 2n− (r−k)} such that j ≤ l < i ≤ N . To see this, note
that we are interested in those (i, j) such that the root εi − ε j belongs to R− \ R−

Q̃
.

Since R−
Q̃
= R−Qr̂−k

∩ RQn̂ ∩ RQ ̂2n−(r−k)
, we see that we are looking for (i, j) such

that εi − ε j ∈ R− \ R−Q l̂
, for some l ∈ {r − k, n, 2n − (r − k)}. For the maximal

parabolic subgroup Pl̂ , we have, R− \ R−Q l̂
= {εi − ε j | 1 ≤ j ≤ l < i ≤ N }. We

have dim O−
H/Q̃
= |R− \ R−

Q̃
|.

Thus we have the following identification

(3.7) O−
H/Q̃
=


Idr−k 0 0 0

A′ Idn−(r−k) 0 0
D1 D2 Idn−(r−k) 0
D3 D4 E ′ Idr−k
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where the block matrices have possible nonzero entries xi j given by

A′=


x(r−k)+1 1 . . . x(r−k)+1 r−k

...
...

xn 1 . . . xn r−k

, E ′=


x2n−(r−k)+1 n+1 . . . x2n−(r−k)+1 2n−(r−k)

...
...

x2n n+1 . . . x2n 2n−(r−k)

,

D1=


xn+1 1 . . . xn+1 r−k

...
...

x2n−(r−k) 1 . . . x2n−(r−k) r−k

, D2=


xn+1 (r−k)+1 . . . xn+1 n

...
...

x2n−(r−k) (r−k)+1 . . . x2n−(r−k) n

,

D3=


x2n−(r−k)+1 1 . . . x2n−(r−k)+1 r−k

...
...

x2n 1 . . . x2n r−k

, D4=


x2n−(r−k)+1 (r−k)+1 . . . x2n−(r−k)+1 n

...
...

x2n (r−k)+1 . . . x2n n

.
We may break the Plücker coordinates we want to understand into several cases.

Case 1: For i > r , j ≤ r − k the Plücker coordinate p(r−k)
(i, j) on the Grassmannian

H/Qr̂−k lifts to a regular function on H/Q̃. Its restriction to O−
H/Q̃

is the r −
k × r − k minor of (3.7) with column indices {1, 2, . . . , r − k} and row indices
{1, . . . , j−1, j+1, . . . , r−k, i}. This minor is the determinant of an r−k×r−k
matrix with the top (r − k)− 1 rows equal to Idr−k omitting the j-th row, and the
bottom row equal to the first r − k entries of the i-th row of (3.7). The determinant
of this matrix is thus (−1)(r−k)− j xi j . Thus for i > r , j ≤ r − k:

(3.8) p(r−k)
(i, j)

∣∣
O−

H/Q̃
= (−1)(r−k)− j xi j .

Case 2: For i > 2n−(r−k), n< j ≤ 2n−(r−k) the Plücker coordinate p(2n−(r−k))
(i, j)

on the Grassmannian H/Q ̂2n−(r−k) lifts to a regular function on H/Q̃. Its restriction
to O−

H/Q̃
is the 2n − (r − k)× 2n − (r − k) minor of (3.7) with column indices

{1, 2, . . . , 2n− (r − k)} and row indices {1, . . . , j − 1, j + 1, . . . , 2n− (r − k), i}.
This minor is the determinant of

(3.9)


Idr−k 0 0

A′ Idn−(r−k) 0
D̂1 D̂2 Î1

[xi 1 . . . xi r−k] [xi (r−k)+1 . . . xi n] [xi n+1 . . . xi 2n−(r−k)]


where D̂1, D̂2, and Î1 are equal to, respectively, D1,D2, and Idn−(r−k) with their
( j − n)-th rows omitted. The determinant of (3.9) is equal to the determinant of[

Î1

[xi n+1 . . . xi 2n−(r−k)]

]
.

As above this is just an identity matrix with a single row replaced and so its
determinant is just (−1)2n−(r−k)− j xi j . Thus for i >2n−(r−k), n< j ≤2n−(r−k):

(3.10) p(2n−(r−k))
(i, j)

∣∣
O−

H/Q̃
= (−1)2n−(r−k)− j xi j .
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Case 3: For i > 2n− (r − k), r − k < j ≤ n the Plücker coordinate p(2n−(r−k))
(i, j) on

the Grassmannian H/Q ̂2n−(r−k) lifts to a regular function on H/Q̃. Its restriction
to O−

H/Q̃
is the 2n − (r − k)× 2n − (r − k) minor of (3.7) with column indices

{1, 2, . . . , 2n− (r − k)} and row indices {1, . . . , j − 1, j + 1, . . . , 2n− (r − k), i}.
This minor is the determinant of

(3.11)


Idr−k 0 0

Â′ Î2 0
D1 D2 Idn−(r−k)

[xi 1 . . . xi r−k] [xi (r−k)+1 . . . xi n] [xi n+1 . . . xi 2n−(r−k)]


where Â′ and Î2 are equal to, respectively, A′ and Idn−(r−k) with their j−(r−k)-th
rows omitted. The determinant of (3.11) is equal to the determinant of

(3.12)

 Î2 0
D2 Idn−(r−k)

[xi (r−k)+1 . . . xi n] [xi n+1 . . . xi 2n−(r−k)]

 .
To calculate this, shift the bottom row so that it becomes the j − (r − k)-th row
of Î2. Let M = 2n− (r − k)− j . Then the determinant of (3.12) will be (−1)M

times the determinant of

(3.13)
[

I3 Z
D2 Idn−(r−k)

]
,

where I3 is Idn−(r−k) with the j−(r−k)-th row replaced by [xi (r−k)+1 . . . xi n] and
Z is the zero matrix with the j − (r − k)-th row replaced by [xi n+1 . . . xi 2n−(r−k)].
Since the lower right block matrix of (3.13) commutes with its lower left block
matrix we have that the determinant of (3.13) is equal to the determinant of I3−ZD2.
We have that ZD2 is equal to the zero matrix with its j− (r−k)-th row replaced by

[xi (r−k)+1 . . . xi n]D2.

And thus I3− ZD2 is equal to Idn−(r−k) with the j − (r − k)-th row replaced by

[xi (r−k)+1 . . . xi n] − [xi (r−k)+1 . . . xi n]D2.

And so the determinant of I3− ZD2 is merely equal to the j − (r − k)-th entry of
I3− ZD2 which is

xi j − [xi (r−k)+1 . . . xi n][xn+1 j . . . x2n−(r−k) j ]
T .

Combining all our steps, we finally have that for i > 2n− (r − k), r − k < j ≤ n:

(3.14) p(2n−(r−k))
(i, j)

∣∣
O−

H/Q̃
=(−1)M(xi j−[xi (r−k)+1...xi n][xn+1 j ...x2n−(r−k) j ]

T ). �
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Theorem 3.15. The opposite cell YQ̃(w̃) can be identified with the subspace of
O−

H/Q̃
given by matrices of the form

Idr−k 0 0 0
A′ Idn−(r−k) 0 0
0 D2 Idn−(r−k) 0
0 E ′D2 E ′ Idr−k


with D2 ∈Matn−(r−k), A′ ∈Matn−(r−k)×r−k with the bottom n − r rows of A′ all
zero, and E ′ ∈Matr−k×n−(r−k) with the left n− r columns of E ′ all zero.

Proof. For j ≤ r−k < i the reflection (i, j) equals (1, 2, . . . , j−1, j+1, . . . , r−
k, i) and w̃ equals (k + 1, . . . , r) in W/WQr̂−k

. Thus for i > r and j ≤ r − k,
the reflection (i, j) is not smaller than w̃ in W/WQr̂−k

so the Plücker coordinate
p(r−k)
(i, j) vanishes on X Q̃(w̃). We saw in (3.8) that for such (i, j) we have p(r−k)

(i, j) =

(−1)(r−k)− j xi j and thus xi j ≡ 0 on YQ̃(w̃).
For j ≤ n < i the reflection (i, j) equals (1, 2, . . . , j − 1, j + 1, . . . , n, i) and

w̃ is equal to (k + 1, . . . , r, n′, . . . , (r + 1)′, k ′, . . . , 1′) in W/WQn̂ . Thus there is
no choice of (i, j) such that (i, j) is not smaller than w̃ in W/WQn̂ .

For j≤2n−(r−k)< i the reflection (i, j) equals (1, 2, . . . , j−1, j+1, . . . , 2n−
(r − k), i) and w̃ equals (1, . . . , n, n′, . . . , (r + 1)′, k ′, . . . , 1′) in W/WQ ̂2n−(r−k)

.
Thus for i > 2n− (r − k), and j ≤ 2n− r the reflection (i, j) is not smaller than w̃
in W/WQ ̂2n−(r−k)

. We break these into two cases, ignoring those j ≤ r − k as we
have already shown above that for j ≤ r − k and i > 2n− (r − k) we have xi j ≡ 0
on YQ̃(w̃).

The first case is for (i, j) with i > 2n− (r − k), and n < j ≤ 2n− r . The fact
that (i, j) is not smaller than w̃ in W/WQ ̂2n−(r−k)

implies that the Plücker coordinate
p(2n−(r−k))
(i, j) vanishes on X Q̃(w̃). We saw in (3.10) that for such (i, j) we have

p(2n−(r−k))
(i, j) = (−1)2n−(r−k)− j xi j and thus xi j ≡ 0 on YQ̃(w̃).
The second case is for (i, j)with i >2n−(r−k) and r−k< j ≤n. The reflection

(i, j) is not smaller than w̃ in W/WQ ̂2n−(r−k)
implies that the Plücker coordinate

p(2n−(r−k))
(i, j) vanishes on X Q̃(w̃). We saw in (3.14) that for such (i, j) we have

p(2n−(r−k))
(i, j) = (−1)M

(
xi j−[xi (r−k)+1 . . . xi n][xn+1 j . . . x2n−(r−k) j ]

T
)
. Combining

these two facts we get xi j = [xi (r−k)+1 . . . xi n][xn+1 j . . . x2n−(r−k) j ]
T .

As [xi (r−k)+1 . . .xi n] is the (2n−(r−k)−i)-th row of E ′and [xn+1 j . . . x2n−(r−k) j]
T

is the (2n − (r − k) − j)-th column of D2 it is clear that on YQ̃(w̃) we have
xi j = (E ′X)(2n−(r−k)−i) (2n−(r−k)− j).

On the other hand note that the reflections (i, j) with i > r and j ≤ r − k,
and i > 2n − (r − k) and r − k < j ≤ 2n − r are precisely the reflections
sα with α ∈ R−\R−

Q̃
and w̃ � sα in W/WQ̃ . Since X Q̃(w̃) is smooth this im-

plies by Proposition 3.1 that the codimension of YQ̃(w̃) in O−
H/Q̃

is equal to
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#
{
(i, j) | i > r and j ≤ r − k, or i > 2n− (r − k) and r − k < j ≤ 2n− r

}
.Above

we have shown that for each such (i, j), xi j either vanishes, or is completely
dependent on the entries of E ′X . Thus YQ̃(w̃) is the subspace of O−

H/Q̃
defined by

the vanishing of {xi j | i > r and j ≤ r − k, or i > 2n− (r − k) and n < j ≤ 2n− r}
and xi j = (E ′X)(2n−(r−k)−i) (2n−(r−k)− j) for i > 2n− (r−k) and r−k < j ≤ n. �

Example 3.16. Let k = 2, r = 4, and n = 5. Then Q̃ = Q 2̂,5̂,8̂, w= (3, 4, 6, 9, 10),
and w̃ = (3, 4, 6, 9, 10, 1, 2, 5). Then

O−
H/Q̃
=



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

x31 x32 1 0 0 0 0 0 0 0
x41 x42 0 1 0 0 0 0 0 0
x51 x52 0 0 1 0 0 0 0 0
x61 x62 x63 x64 x65 1 0 0 0 0
x71 x72 x73 x74 x75 0 1 0 0 0
x81 x82 x83 x84 x85 0 0 1 0 0
x91 x92 x93 x94 x95 x96 x97 x98 1 0
x101 x102 x103 x104 x105 x106 x107 x108 0 1


.

And YP̃(w̃) will be the subspace of O−
H/Q̃

given by

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

x31 x32 1 0 0 0 0 0 0 0
x41 x42 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 x63 x64 x65 1 0 0 0 0
0 0 x73 x74 x75 0 1 0 0 0
0 0 x83 x84 x85 0 0 1 0 0
0 0 x97x73+ x98x83 x97x74+ x98x84 x97x75+ x98x85 0 x97 x98 1 0
0 0 x107x73+ x108x83 x107x74+ x108x84 x107x75+ x108 0 x107 x108 0 1



.

Corollary 3.17. The opposite cell YP̃(w̃) can be identified with the subspace of
O−

G/P̃
given by matrices of the form

Idr−k 0 0 0
A′ Idn−(r−k) 0 0
0 D2 Idn−(r−k) 0
0 −J (A′)T JD2 −J (A′)T J Idr−k


with JD2 ∈ Symn−(r−k) and A′ ∈Matn−(r−k)×r−k with the bottom n− r rows of A′

all zero.
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Proof. Let y ∈ YP̃(w̃)= (YQ̃(w̃))
σ
⊂ YQ̃(w̃). So y is just an element of YQ̃(w̃) that

is fixed under the involution σ . That is, an element which satisfies (2.3.1)–(2.3.3).
Theorem 3.15 gives us that y is of the form

Idr−k 0 0 0
A′ Idn−(r−k) 0 0
0 D2 Idn−(r−k) 0
0 E ′D2 E ′ Idr−k


with D2 ∈Matn−(r−k), A′ ∈Matn−(r−k)×r−k with the bottom n− r rows of A′ all
zero, and E ′ ∈Matr−k×n−(r−k) with the left n− r columns of E ′ all zero. We must
now check what restrictions on y are required for it to satisfy (2.3.1)–(2.3.3). For y
to satisfy (2.3.3) we know that[

Idr−k 0
A′ Idn−(r−k)

]T [
0 J
J 0

] [
Idr−k 0

E ′ Idn−(r−k)

](
=

[
(A′)T J + J E ′ J

J 0

])
must equal [

0 J
J 0

]
which implies that E ′ =−J (A′)T J .

Any y clearly satisfies (2.3.2). And finally for y to satisfy (2.3.1),[
0 D2

0 −J (A′)T JD2

]T [
0 J
J 0

] [
Idr−k 0

A′ Idn−(r−k)

](
=

[
0 0
0 DT

2 J

])
must equal[

Idr−k 0
A′ Idn−(r−k)

]T [
0 J
J 0

] [
0 D2

0 −J (A′)T JD2

](
=

[
0 0
0 JD2

])
which implies that JD2 = DT

2 J , or equivalently JD2 ∈ Symn−(r−k). �

Remark 3.18. We may identify O−
P/P̃

with O−GLn /P ′
r̂−k

under the map[
A 0
0 J (AT )−1 J

]
7→A.

Remark 3.19. Let Vw be the linear subspace of Symn given by xi j = 0 if j ≤ r−k
or i < n− (r−k). And let V ′w be the linear subspace of O−GLn /P ′

r̂−k
given by xi j = 0

if i > r and j ≤ r − k.
Consider the map δ : YP̃(w̃) ↪→ O−

G/P̃
= O−G/P × O−

P/P̃
∼= O−G/P × O−GLn /P ′

r̂−k
,

where the first map is inclusion, the second is simply the product decomposition,
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and the final map is from Remark 3.18. This map is given explicitly by
Idr−k 0 0 0

A′ Idn−(r−k) 0 0
0 D2 Idn−(r−k) 0
0 −J (A′)T JD2 −J (A′)T J Idr−k

 7→



Idr−k 0 0 0
0 Idn−(r−k) 0 0

−D2 A′ D2 Idn−(r−k) 0
J (A′)T JD2 A′ −J (A′)T JD2 0 Idr−k

 , [Idr−k 0
A′ Idn−(r−k)

] .
Consider the isomorphism γ :O−G/P×O−GLn/P ′

r̂−k
→Symn×O−GLn/P ′

r̂−k
(cf. Remark 2.2.6)

given by([
Idn 0
L Idn

]
,

[
Idr−k 0

N Idn−(r−k)

])
7→

(
(L N )T J N ,

[
Idr−k 0

N Idn−(r−k)

])
.

We have that under the map γ ◦δ, YP̃(w̃) gets identified with Vw×V ′w. This follows
by a simple computation and Corollary 3.17.

Definition 3.20. Now let Z P̃(w̃) :=YP(w)×X P (w)X P̃(w̃). Then Z P̃(w̃)= (O
−

G/P×

P/P̃)∩ X P̃(w̃). Hence Z P̃(w̃) is smooth, being open in the smooth X P̃(w̃) (cf.
Proposition 3.3).

Write p for the composite map Z P̃(w̃)→ O−G/P× P/P̃→ P/P̃ (∼=GLn /P ′
r̂−k
)

where the first map is the inclusion and the second map is the projection. Using
Proposition 2.3.4(c) and (d) we see that

p
([

A 0
D J (AT )−1 J

]
(mod P̃)

)
= A(mod P ′

r̂−k
).

Note that A is invertible by 2.3.4(b).
Using the injective map

A ∈ Bn 7−→

[
A 0n×n

0n×n J (AT )−1 J

]
∈ BG,

Bn can be thought of as a subgroup of BG . With this identification we have the
following proposition.

Proposition 3.21. Z P̃(w̃) is Bn-stable for the action on the left by multiplication.
Further p is Bn equivariant.

Proof. Let z ∈ SP2n such that z P̃ ∈ Z P̃(w̃). Then by Proposition 2.3.4(c) we may
write

z =
[

A 0
D J (AT )−1 J

]
mod P̃,
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such that z P̃ ∈ Z P̃(w̃). Since X BG (w̃)→ X P̃(w̃) is surjective, we may assume that
z (mod BG) ∈ X BG (w̃), i.e., z ∈ BGw̃BG . Then for every A′ ∈ Bn:[

A′ 0n×n

0n×n J (A′T )−1 J

]
z =

[
A′A 0

J (A′T )−1 J D J (A′T )−1(A′T )−1 J

]
=: z′.

Then z′ ∈ BGw̃BG , so z′ (mod P̃) ∈ X P̃(w̃). By Proposition 2.3.4(b), we have that
A is invertible, and hence AA′. This implies again by Proposition 2.3.4(b) that
z′ (mod P̃) ∈ Z P̃(w̃). Thus Z P̃(w̃) is Bn stable. Also p(A′z) = p(z′) = A′A =
A′ p(z). Hence p is Bn-equivariant. �

Theorem 3.22. With notation as above, letw′ := (k+1,. . ., r, n,. . ., r+1, k,. . ., 1)
be an element of Sn , the Weyl group of GLn . Then:

(a) The natural map X P̃(w̃)−→ X P(w) is proper and birational. In particular,
the map Z P̃(w̃)−→ YP(w) is proper and birational. And therefore, Z P̃(w̃) is
a desingularization of YP(w).

(b) X P ′
r̂−k
(w′) is the fiber of the natural map Z P̃(w̃)−→ YP(w) at eid ∈ YP(w).

(c) XP ′
r̂−k
(w′) is the image of p. Further, p is a fibration with fiber isomorphic to Vw.

(d) p identifies Z P̃(w̃) as a subbundle of the trivial bundle O−G/P × X P ′
r̂−k
(w′),

which arises as the restriction of the vector bundle on GLn /P ′
r̂−k

associated
to the P ′

r̂−k
-module Vw (which, in turn, is a P ′

r̂−k
-submodule of O−G/P ).

Proof. (a): The map X P̃(w̃) ↪→ G/P̃→ G/P is proper and its (scheme-theoretic)
image is X P(w), hence X P̃(w̃)→ X P(w) is proper. Birationality follows from the
fact that w̃ is the minimal representative of the coset w P̃ .

(b): The fiber at eid ∈ YP(w) of the map YP̃(w̃) −→ YP(w) is 0 × V ′w, inside
Vw × V ′w = YP̃(w̃). Since Z P̃(w̃) is the closure of YP̃(w̃) inside O−G/P × P/P̃
and X P ′

r̂−k
(w′) is the closure of V ′w inside P/P̃ (note that as a subvariety of O−

P/P̃
,

YP ′
r̂−k
(w′) is identified with V ′w), we see that the fiber at eid (belonging to YP(w))

of Z P̃(w̃)−→ YP(w) is X P ′
r̂−k
(w′).

(c): From Remark 3.19 we have p(YP̃(w̃)) = V ′w ⊆ X P ′
r̂−k
(w′). Since YP̃(w̃) is

dense inside Z P̃(w̃) and X P ′
r̂−k
(w′) is closed in GLn /P ′

r̂−k
we see that p(Z P̃(w̃))⊆

X P ′
r̂−k
(w′). The other inclusion X P ′

r̂−k
(w′) ⊆ p(Z P̃(w̃)) follows from (b). Hence,

p(Z P̃(w̃)) = X P ′
r̂−k
(w′). To prove the second assertion of (c) we shall show that

for every A ∈ GLn with A mod P ′
r̂−k
∈ X P ′

r̂−k
(w′), we have that p−1(A modP ′

r̂−k
)

is isomorphic to Vw.
To prove this we first observe that p−1(eid) is isomorphic to Vw in view of

Remark 3.19. Next observe that every Bn-orbit inside X P ′
r̂−k
(w′) meets V ′w (which

equals YP ′
r̂−k
(w′)); further p is Bn-equivariant by Proposition 3.21 and hence every

fiber is isomorphic to the fiber at eid, i.e., isomorphic to Vw.
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(d): Define a right action of GLn on O−G/P (identified with Symn as in Remark 2.2.6)
as g ◦ v = gT vg for g ∈ GLn, v ∈ Symn . This induces an action of P ′

r̂−k
on O−G/P

under which Vw is stable. Thus we get the homogeneous bundle

GLn ×
P ′

r̂−k Vw −→ GLn /P ′
r̂−k
.

Now to prove the assertion about Z P̃(w̃)) being a vector bundle over X P ′
r̂−k
(w′),

we will show that there is a commutative diagram given as below, with ψ an
isomorphism:

Z P̃(w̃)

φ

,,

p

##

ψ ))

(GLn ×
P ′

r̂−k Vw)|X P ′
r̂−k

(w′)

��

// GLn ×
P ′

r̂−k Vw

α

��

X P ′
r̂−k
(w′)

β
// GLn /P ′

r̂−k

The map α is the homogeneous bundle map and β is the inclusion map. Define φ by

φ :

[
A 0n×n

D J (AT )−1 J

]
mod P̃ 7−→ (A, DT J A)/∼ .

Using Proposition 2.3.4(c) and Remark 3.19 we conclude the following: φ is well-
defined and injective; β · p = α ·φ; hence, by the universal property of products,
the map ψ exists; and, finally, the injective map ψ is in fact an isomorphism (by
dimension considerations). �

As an immediate consequence of Theorem 3.22 we have

Corollary 3.23. We have the following realization of Diagram 1.2:

Z P̃(w̃)

q ′

��

� � // O−G/P × X P ′
r̂−k
(w′)

q

��

// X P ′
r̂−k
(w′)

YP(w)
� � // O−G/P

Proposition 3.24. (1) The Schubert variety X P ′
r̂−k
(w′) is isomorphic to the Grass-

mannian GLr /P ′′
r̂−k

, where P ′′
r̂−k

is the parabolic subgroup in GLr obtained
by omitting αr−k .

(2) (GLn ×
P ′

r̂−k Vw)|XP ′
r̂−k

(w′)
∼= (GLn ×

P ′
r̂−k Vw)|GLr /P ′′

r̂−k

∼=GLr ×
P ′′

r̂−k Vw as homo-
geneous vector bundles.

Proof. (1): This is clear.
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(2): Consider the embedding i : GLr ↪→ GLn given by

R 7→
[

R 0
0 Idn−r

]
.

Define the action of GLr on Symn as the action induced by this embedding. This
induces an action of P ′′

r̂−k
on Symn . As i(P ′′

r̂−k
)⊂ P ′

r̂−k
, the P ′

r̂−k
stability of Vw

implies the P ′′
r̂−k

stability of Vw. Hence our result follows. �

Corollary 3.25. We have the following realization of Diagram 1.2:

Z P̃(w̃)

q ′

��

� � // O−G/P ×GLr /P ′′
r̂−k

q

��

// GLr /P ′′
r̂−k

YP(w)
� � // O−G/P

4. Free resolutions

Kempf–Lascoux–Weyman geometric technique. We summarize the geometric tech-
nique of computing free resolutions, following [Weyman 2003, Chapter 5].

Consider Diagram 1.1. There is a natural map f : V −→ Grassr,d (where
r = rkV Z and d = dim A) such that the inclusion Z ⊆A×V is the pull-back of the
tautological sequence (2.4.4); here rkV Z denotes the rank of Z as a vector bundle
over V , i.e., rkV Z = dim Z −dim V . Let ξ = ( f ∗Q)∗. Write R for the polynomial
ring C[A] and m for its homogeneous maximal ideal. (The grading on R arises as
follows. In Diagram 1.1, A is thought of as the fiber of a trivial vector bundle, so it
has a distinguished point, its origin. Now, being a subbundle, Z is defined by linear
equations in each fiber; i.e., for each v ∈ V , there exist s := (dim A−rkV Z) linearly
independent linear polynomials `v,1, . . . , `v,s that vanish along Z and define it. Now
Y = {y ∈ A : there exists v ∈ V such that `v,1(y)= · · · = `v,s(y)= 0}. Hence Y is
defined by homogeneous polynomials. This explains why the resolution obtained
below is graded.) Let m be the homogeneous maximal ideal, i.e., the ideal defining
the origin in A. Then:

Theorem 4.1 [Weyman 2003, Basic Theorem 5.1.2]. With notation as above, there
is a finite complex (F•, ∂•) of finitely generated graded free R-modules that is
quasi-isomorphic to Rq ′

∗
OZ , with

Fi =
⊕
j≥0

H j(V,∧i+ j
ξ
)
⊗C R(−i − j),

and ∂i (Fi )⊆mFi−1. Furthermore, the following are equivalent:

(a) Y has rational singularities i.e., Rq ′
∗
OZ is quasi-isomorphic to OY ;

(b) F• is a minimal R-free resolution of C[Y ], i.e., F0 ' R and F−i = 0 for
every i > 0.
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A sketch of the proof is given in [Kummini et al. 2015, Section 4], and [Weyman
2003, 5.1.3] may be consulted for a more comprehensive account.

Our situation. We now apply Theorem 4.1 to our situation. We keep the notation
of Theorem 3.22. Theorem 4.1 and Corollary 3.25 yield the following result:

Theorem 4.2. Write ξ for the homogeneous vector bundle on GLr /P ′′
r̂−k

associ-
ated to the P ′′

r̂−k
-module (O -

G/P/Vw)∗ (this is the dual of the quotient of O -
G/P ×

GLr /P ′′
r̂−k

by Z P̃(w̃)). Then we have a minimal R-free resolution (F•, ∂•) of
C[YP(w)] with

Fi =
⊕
j≥0

H j (GLr /P ′′
r̂−k
,

i+ j∧
ξ)⊗C R(−i − j).

Computing the cohomology groups required in Theorem 4.2 in the general
situation is a difficult problem. Techniques for computing them in our specific case
are discussed in the following section.

5. Cohomology of homogeneous vector bundles

We have shown in Theorem 4.2 that the calculation of a minimal R-free resolu-
tion of C[YP(w)] comes down to the computation of the cohomology of certain
homogeneous bundles over GLr /P ′′

r̂−k
. In particular we need to calculate

(5.1) H •
(
GLr /P ′′

r̂−k
,
∧t
ξ
)

for arbitrary t .
The P ′′

r̂−k
-module (O -

G/P/Vw)∗ is not completely reducible (the unipotent radical
of P ′′

r̂−k
does not act trivially), and thus we can not use the Bott algorithm to

compute its cohomology. In [Ottaviani and Rubei 2006] the authors determine the
cohomology of general homogeneous bundles on Hermitian symmetric spaces. As
GLr /P ′′

r̂−k
is such a space their results could be used to determine (5.1). In practice,

proceeding along these lines is possible though extremely complicated.
Another approach to the calculation of these cohomologies comes from using

a technique employed in [Weyman 2003, Chapter 6.3]. There the minimal R-free
resolution of a related space is computed and the minimal R-free resolution of
C[YP(w)] can be seen as a subresolution. In [Weyman 2003] this method is used for
the case when n = r . That is, the case where YP(w) is the symmetric determinental
variety. In this case the authors assume that k = 2u (the odd case can be reduced to
this even case). They look at the subspace Tw of Symn given by symmetric matrices
of block form [

0n−u×n−u R
RT Su×u

]
.
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Let P ′
n̂−u

be the parabolic subgroup of GLn omitting the root αn−u , then Tw is
a P ′

n̂−u
-module under the same action. If Zw is the homogeneous vector bundle

associated with Tw we have the following diagram

Zw
� � //

q ′

��

Symn ×GLn /P ′
n̂−u

q

��

// GLn /P ′
n̂−u

Y �
�

// Symn

They show that the resolution of C[YP(w)] can be realized as a subresolution of
the resolution of C[Y ]. In this case, the P ′

n̂−u
-module (Symn /Tw)∗ (this is the

dual of the quotient of Symn ×GLn /P ′
n̂−u

by Zw) is completely reducible and thus
the cohomology of the corresponding homogeneous vector bundles

∧t
ξ may be

computed using the Bott algorithm, leading to this:

Theorem 5.2 [Weyman 2003, Theorem 6.3.1(c)]. The i-th term Gi of the minimal
free resolution of C[YP(w)] as an R module is given by the formula

Gi =
⊕

λ∈Qk−1(2t)
rank λ even

i=t−k 1
2 rank λ

Sλ ‹Cn
⊗C R.

Here Qk−1(2t) is the set of partitions λ of 2t which in hook notation can be
written as λ= (a1, . . . , as |b1, . . . , bs), where s is a positive integer, and for each j
we have a j = b j + (k− 1). And λ ‹ is the conjugate (or dual) partition of λ. And
finally, rank λ is defined as being equal to l, where the largest square fitting inside
λ is of size l × l.

Similar methods may be used to compute a closed form formula for the minimal
free resolution of C[YP(w)] as an R module in the case r 6= n.
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OF SIMPLE ALGEBRAIC GROUPS
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In memory of Robert Steinberg, whose elegant mathematics continues to inspire us.

For G a simple algebraic group over an algebraically closed field of charac-
teristic 0, we determine the irreducible representations ρ :G→ I (V ), where
I (V ) denotes one of the classical groups SL(V ), Sp(V ), SO(V ), such that ρ
sends some distinguished unipotent element of G to a distinguished element
of I (V ). We also settle a base case of the general problem of determining
when the restriction of ρ to a simple subgroup of G is multiplicity-free.

1. Introduction

Let G be a simple algebraic group of rank at least 2 defined over an algebraically
closed field of characteristic 0 and let ρ :G→ I(V ) be an irreducible representation,
where I(V ) denotes one of the classical groups SL(V ),Sp(V ), or SO(V ). In this
paper we consider two closely related problems. We determine those representations
for which some distinguished unipotent element of G is sent to a distinguished
element of I(V ). Also we settle a base case of the general problem of determining
when the restriction of ρ to a simple subgroup of G is multiplicity-free.

A unipotent element of a simple algebraic group is said to be distinguished if
it is not centralized by a nontrivial torus. Let u ∈ G be a unipotent element. If
ρ(u) is distinguished in I(V ) then u must be distinguished in G. The distinguished
unipotent elements of I(V ) can be decomposed into Jordan blocks of distinct sizes.
Indeed they are a single Jordan block, the sum of blocks of distinct even sizes, or
the sum of blocks of distinct odd sizes, according to whether I(V ) is SL(V ),Sp(V ),
or SO(V ), respectively; see [Liebeck and Seitz 2012, Proposition 3.5].

Now u can be embedded in a subgroup A of G of type A1 by the Jacobson–
Morozov theorem; given u, the subgroup A is unique up to conjugacy in G. If
ρ(u) is distinguished, then ρ(A) acts on V with irreducible summands of the
same dimensions as the Jordan blocks of u, and hence the restriction V ↓ ρ(A) is
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multiplicity-free — that is, each irreducible summand appears with multiplicity 1.
Indeed, V ↓ ρ(A) is either irreducible, or the sum of irreducibles of distinct even
dimensions or of distinct odd dimensions.

Our main result determines those situations where V ↓ ρ(A) is multiplicity-free.
In order to state it, we recall that a subgroup of G is said to be G-irreducible if
it is contained in no proper parabolic subgroup of G. It follows directly from the
definition that an A1 subgroup of G is G-irreducible if and only if its nonidentity
unipotent elements are distinguished in G. If these unipotent elements are regular
in G, we call the subgroup a regular A1 in G.

Theorem 1. Let G be a simple algebraic group of rank at least 2 over an alge-
braically closed field K of characteristic zero, let A ∼= A1 be a G-irreducible
subgroup of G, let u ∈ A be a nonidentity unipotent element, and let V be an
irreducible KG-module of highest weight λ. Then V ↓ A is multiplicity-free if and
only if λ and u are as in Tables 1 or 2, where λ is given up to graph automorphisms
of G. Table 1 lists the examples where u is regular in G, and Table 2 lists those
where u is nonregular.

Theorem 1 is the base case of a general project in progress, which aims to
determine all irreducible KG-modules V and G-irreducible subgroups X of G for
which V ↓ X is multiplicity-free.

The answer to the original question on distinguished unipotent elements is as
follows.

Corollary 2. Let G be as in the theorem, and let ρ : G→ I(V ) be an irreducible
representation with highest weight λ, where I(V ) is SL(V ), Sp(V ), or SO(V ). Let
u ∈ G be a nonidentity unipotent element, and suppose that ρ(u) is a distinguished
element of I(V ).

(i) If I (V )= SL(V ), then G = An , Bn , Cn , or G2, and λ= ω1 (or ωn if G = An);
moreover, u is regular in G.

(ii) If I(V ) = Sp(V ) or I(V ) = SO(V ), then λ and u are as in one of the cases
in Tables 1 or 2, for which V = VG(λ) is a self-dual module (equivalently,
λ = −w0(λ), where w0 is the longest element of the Weyl group of G). Con-
versely, for each such case in the tables, ρ(u) is distinguished in I(V ).

The layout of the paper is as follows. Section 2 consists of notation and prelim-
inary lemmas. This is followed by Sections 3, 4, 5, where we prove Theorem 1
in the special case where A is a regular A1 subgroup of G. Then in Section 6 we
consider the remaining cases where A is nonregular. There are far fewer examples
in that situation. Finally, Section 7 contains the proof of the corollary.
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G λ

An ω1, ω2, 2ω1, ω1+ωn,

ω3 (5≤ n ≤ 7),
3ω1 (n ≤ 5), 4ω1 (n ≤ 3), 5ω1 (n ≤ 3)

A3 110
A2 c1, c0

Bn ω1, ω2, 2ω1,

ωn (n ≤ 8)
B3 101, 002, 300
B2 b0, 0b (1≤ b ≤ 5), 11, 12, 21

Cn ω1, ω2, 2ω1,

ω3 (3≤ n ≤ 5),
ωn (n = 4, 5)

C3 300
C2 b0, 0b (1≤ b ≤ 5), 11, 12, 21

Dn (n ≥ 4) ω1, ω2 (n = 2k+ 1), 2ω1 (n = 2k),
ωn (n ≤ 9)

E6 ω1, ω2

E7 ω1, ω7

E8 ω8

F4 ω1, ω4

G2 10, 01, 11, 20, 02, 30

Table 1. V ↓ A multiplicity-free, u ∈ G regular in G.

G λ class of u in G

Bn, Cn, Dn ω1 any
Dn (5≤ n ≤ 7) ωn regular in Bn−2 B1

F4 ω4 F4(a1)

E6 ω1 E6(a1)

E7 ω7 E7(a1) or E7(a2)

E8 ω8 E8(a1)

Table 2. V ↓ A multiplicity-free, u ∈ G distinguished but not regular.

For many of the proofs we need to calculate dimensions of weight spaces in
various G-modules. When the rank of G is small, such dimensions can be computed
using Magma [Bosma et al. 1997], and we make occasional use of this facility.
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2. Preliminary lemmas

Continue to let G be a simple algebraic group over an algebraically closed field
K of characteristic zero. Let A ∼= A1 be a G-irreducible subgroup of G, let u be
a nonidentity unipotent element of A, and let T < A be a 1-dimensional torus
such that the conjugates of u under T form the nonidentity elements of a maximal
unipotent group of A.

We fix some notation that will be used throughout the paper. Let T ≤ TG , where
TG is a maximal torus of G and let5G ={α1, . . . , αn} denote a fundamental system
of roots. We label the nodes of the Dynkin diagram of G with these roots as in
[Bourbaki 1968, p. 250]. Write si for the reflection in αi , an element of the Weyl
group W (G). When G = Dn we assume that n≥ 4 (and regard D3 as the group A3).

The torus T determines a labelling of the Dynkin diagram by 0s and 2s (see
[Liebeck and Seitz 2012, Theorem 3.18 and Table 13.2]), which gives the weights
of T on fundamental roots. When u is regular in G these labels are all 2s.

Denote by ω1, . . . , ωn the fundamental dominant weights of G. For a dominant
weight λ=

∑
ciωi , let VG(λ) be the irreducible KG-module of highest weight λ.

For A ∼= A1 and a nonnegative integer r , we abbreviate the irreducible module
VA(r) by Vr or just r . More generally we frequently denote the module VG(λ) by
just the weight λ, or the string c1 · · · cl (where l is the rank).

Let V = VG(λ) and let λ afford weight r when restricted to T. Since all weights
of V can be obtained by subtracting roots from the highest weight, the restriction of
each weight to T has the form r − 2k for some nonnegative integer k. If V ↓ A is
multiplicity-free, then V ↓ A= Vr1+Vr2+Vr3+· · · , where r = r1 > r2 > r3 > · · · .
Then the T-weights on V are

(r1, r1− 2, . . . ,−r1), (r2, r2− 2, . . . ,−r2), (r3, r3− 2, . . . ,−r3), . . . .

Note that weight r , respectively r − 2, arises as the restriction of λ−αi for those i
having label 0, resp. 2, and with ci > 0. Therefore, if ci > 0 then αi has label 2,
and there can be at most two values of i with ci > 0.

We often use the following short hand notation. We simply write λ− i x j ykz
· · ·

rather than λ− xαi − yαj − zαk − · · · .

Lemma 2.1. If V ↓ A is multiplicity-free, then dim V ≤
( r

2 + 1
)2 or

( r+1
2

)( r+3
2

)
,

according as r is even or odd, respectively.

Proof. If V ↓ A is multiplicity-free, then V ↓ A is a direct summand of the module
r + (r − 2)+ (r − 4)+ · · · . The assertion follows by taking dimensions. �

Lemma 2.2. Assume V ↓ A is multiplicity-free.

(i) If c ≥ 1 then the T-weight r − 2c occurs with multiplicity at most one more
than the multiplicity of the T-weight r − 2(c− 1).
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(ii) For c ≥ 1, the T-weight r − 2c occurs with multiplicity at most c+ 1.

(iii) If the T-weight r − 2 occurs with multiplicity 1, e.g., if all labels are 2 and
λ=bωi , and if c≥1, then the T-weight r−2c occurs with multiplicity at most c.

Proof. Suppose i is maximal with r − 2c in the weight string ri , . . . ,−ri . Then
T-weight r−2c occurs with the same multiplicity as does T-weight ri . And weight ri

occurs with multiplicity at most one more than weight ri−1 as otherwise there would
be two direct summands of highest weight ri . Now (i) follows as does (ii). Part (iii)
also follows, since the assumption rules out a summand of highest weight r − 2. �

Lemma 2.3. Assume V ↓ A is multiplicity-free and that λ= bωi with b > 1.

(i) Then αi is an end-node of the Dynkin diagram.

(ii) If G has rank at least 3, then the node adjacent to αi has label 2.

Proof. (i) Suppose that αj 6= αk both adjoin αi in the Dynkin diagram. If both
these roots have label 0, then T-weight r − 2 is afforded by each of λ− i , λ− i j ,
λ− ik, λ− i jk, contradicting Lemma 2.2(ii). Next assume αj has label 2 and αk

has label 0. Here we consider r − 4 which is afforded by λ− i2, λ− i2k, λ− i2k2,
λ− i j , again contradicting Lemma 2.2(ii). If both labels are 2, then r−4 is afforded
by λ− i2, λ− i j , λ− ik. But here r−2 only occurs from λ−αi , so this contradicts
Lemma 2.2(iii).

(ii) Assume G has rank at least 3. By (i) αi is an end-node. Let αj be the
adjoining node. We must show αj has label 2. Suppose the label is 0 and let αk

be another node adjoining αj . If αk has label 0, then r − 2 is afforded by each of
λ− i, λ− i j, λ− i jk, a contradiction. Therefore αk has label 2. But then r − 4 is
afforded by each of λ− i2, λ− i2 j , λ− i2 j2, λ− i jk, a contradiction. �

The next lemma will be frequently used, often implicitly, in what follows.

Lemma 2.4. If c≥ d ≥ 0 are integers, then the tensor product c⊗d of A1-modules
decomposes as c⊗ d = (c+ d)⊕ (c+ d − 2)⊕ · · ·⊕ (c− d).

Proof. This follows from a consideration of weights in the tensor product. �

Lemma 2.5. Suppose that λ = ωi +ωj with j > i and that the subdiagram with
base {αi , . . . , αj } is of type A, or is of rank at most 3, or is of type F4. Then the
TG-weight λ− i(i + 1) · · · j occurs with multiplicity j − i + 1.

Proof. Since the weight space lies entirely within the corresponding irreducible for
the Levi factor with base {αi , . . . , αj }, we may assume that G is equal to this Levi
factor; that is, i = 1 and j = n. Then the hypothesis of the lemma implies that G is
An , B2, B3, C2, C3, G2 or F4. For all but the first case the conclusion follows by
computation using Magma.

Now suppose G = An . Then ω1 ⊗ ωn = λ⊕ 0. In the tensor product we see
precisely n+ 1 times the weight λ−α1− · · ·−αn by taking weights of the form
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(ω1− 1 · · · j)⊗ (ωn − ( j + 1) · · · n) for 1 ≤ j ≤ n− 1, together with the weights
ω1⊗ (ωn−1 · · · n) and (ω1−1 · · · n)⊗ωn . Each occurs with multiplicity 1, so the
conclusion follows, as λ−α1− · · ·−αn = 0. �

Lemma 2.6. Assume that there exist i < j with ci 6= 0 6= cj and that V ↓ A is
multiplicity-free.

(i) Then ck = 0 for k 6= i, j .

(ii) Nodes adjoining αi and αj have label 2.

(iii) Either ci = 1 or cj = 1. Moreover, ci = cj = 1 unless αi and αj are adjacent.

(iv) Either αi or αj is an end-node.

(v) If either ci > 1 or cj > 1, then G has rank 2.

(vi) If αi , αj are nonadjacent and if all nodes have label 2, then both αi and αj are
end-nodes.

Proof. (i) This is immediate, as otherwise λ− i , λ− j , λ− k all afford T-weight
r − 2, contradicting Lemma 2.2(ii).

(ii) Suppose (ii) is false. By symmetry we can assume αk adjoins αi and has label 0.
Then λ− i , λ− j , λ− ik all afford r − 2, a contradiction.

(iii) By (ii), nodes adjacent to αi and αj have label 2. Consider T-weight r − 4
which has multiplicity at most 3 by Lemma 2.2. Suppose ck > 1 for k= i or j . Then
λ− k2 and λ− i j both afford weight r − 4. Assume αi and αj are not adjacent. We
give the argument when the diagram has no triality node. The other cases require
only a slight change of notation. With this assumption we also get r − 4 from
λ− i(i + 1) and λ− ( j − 1) j , a contradiction. So ck > 1 implies that αi , αj are
adjacent. If both ci > 1 and cj > 1, then we again have a contradiction, since r − 4
is afforded by λ− i2, λ− j2, and λ− i j , and the latter appears with multiplicity 2
by [Testerman 1988, §1.35].

(iv) Suppose neither αi nor αj is an end-node. We give details assuming there is no
triality node. The remaining cases just require a slight change of notation. Consider
weight r − 4. This is afforded by λ− i j , λ− (i − 1)i , and λ− j ( j + 1). If ci > 1
then λ− i2 also affords r − 4. This forces ci = 1, and similarly cj = 1. If j = i + 1,
then λ− i j has multiplicity 2 by Lemma 2.5, again a contradiction. And if j > i+1,
then λ− i(i + 1) and λ− ( j − 1) j afford weight r − 4. In either case r − 4 appears
with multiplicity at least 4, contradicting Lemma 2.2.

(v) Suppose ck > 1 for k = i or j . By (iv) we can assume αi is an end-node. If
G has rank at least 3, let αl adjoin αj , where l 6= i . Then (ii) implies that r − 4 is
afforded by λ− i j , λ−k2, λ− jl. If αj is adjacent to αi then the first weight occurs
with multiplicity 2 by [loc. cit.]. Otherwise there is another node αm adjacent to αi

and λ− im affords r − 4. In either case we contradict Lemma 2.2.
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(vi) As above we treat the case where the Dynkin diagram has no triality node. By
(iv) and symmetry we can assume αi is an end-node. Suppose j < n. Then r − 4 is
afforded by each of λ− i(i + 1), λ− ( j − 1) j , λ− j ( j + 1), λ− i j , contradicting
Lemma 2.2. Therefore, j = n. �

Lemma 2.7. Suppose λ= ωi and the Dynkin diagram has a string αi−3, . . . , αi+3

for which each node has T-label 2. Then r −8 occurs with multiplicity at least 5. In
particular V ↓ A is not multiplicity-free.

Proof. The T-weight r − 8 arises from each of the following weights:

λ−i(i+1)(i+2)(i+3), λ−(i−1)i(i+1)(i+2), λ−(i−2)(i−1)i(i+1),

λ−(i−3)(i−2)(i−1)i, λ−(i−1)i2(i+1);

the last is a weight as it is equal to (λ− (i − 1)i(i + 1))si. This proves the first
assertion and the second assertion follows from Lemma 2.2(iii). �

The final lemma is an inductive tool. Let L be a Levi subgroup of G in our
fixed system of roots, and let µ be the corresponding highest weight of L ′, namely,
µ=

∑
cjω j , where the sum runs just over those fundamental weights corresponding

to simple roots in the subsystem determined by L .

Lemma 2.8. Fix c ≥ 1 and let s denote the sum of the dimensions of all weight
spaces of VL ′(µ) for all weights of form µ−

∑
djαj such that

∑
dj = c and each αj

such that dj 6= 0 has label 2.

(i) If s > c+ 1, then V ↓ A is not multiplicity-free.

(ii) If T-weight r−2 occurs with multiplicity 1 (e.g., if all labels are 2 and λ= bωi )
and s > c, then V ↓ A is not multiplicity-free.

Proof. This is immediate from Lemma 2.2, since T ≤ L and the weight µ−
∑

djαj

corresponds to a weight λ−
∑

djαj which affords T-weight r − 2c. �

3. The case where A is regular and λ 6= cωi

As in the hypothesis of Theorem 1, let G be a simple algebraic group of rank
at least 2, let A ∼= A1 be a G-irreducible subgroup, and let V = VG(λ), where
λ=

∑
ciλi . This section and the next two concern the case of Theorem 1 where A

is a regular A1 of G (recall that this means that unipotent elements of A are regular
in G). In this case all the T-labels of the Dynkin diagram of G are equal to 2. In
this section we handle situations where ci > 0 for at least two values of i .

If V ↓ A is multiplicity-free, λ 6= cωi , and G has rank at least 3, then Lemma 2.6
implies that λ = ωi + ωj , where either αi , αj are both end-nodes, or one is an
end-node and the other is adjacent to it.
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Proposition 3.1. Assume V ↓ A is multiplicity-free. Then there exist at least two
values of i for which ci > 0 if and only if G and λ are in the following table, up to
graph automorphisms.

G λ

A2 c1
A3 110
B2, C2 11, 12, 21
G2 11
B3 101
An 10 · · · 01

The proof will be in a series of lemmas.

Lemma 3.2. Suppose G = A2 and λ= c1 for c≥ 1. Then V ↓ A is multiplicity-free.

Proof. Assume G= A2. The weight c1−α1−α2= (c−1)0 occurs with multiplicity 2
in the module c1 and multiplicity 3 in c0⊗ 01. A dimension comparison shows
that c0⊗ 01= c1+ (c− 1)0.

Now c0= Sc(10), so weight considerations show that for c even, Sc(10) ↓ A =
2c⊕ (2c− 4)⊕ (2c− 8)⊕ · · · ⊕ 0 and Sc−1(10) = (2c− 2)⊕ (2c− 6)⊕ · · · ⊕ 2.
Therefore, Lemma 2.4 implies that

(c0⊗ 01) ↓ A = ((2c+ 2)+ 2c+ (2c− 2))+ ((2c− 2)+ (2c− 4)+ (2c− 6))

+ · · ·+ (6+ 4+ 2)+ 2,

and it follows from the first paragraph that V ↓ A is multiplicity free. A similar
argument applies for c odd. �

Lemma 3.3. (i) If G =C2 and V = VG(λ) with λ= c1 or 1c for c≥ 1, then V ↓ A
is multiplicity-free if and only if λ= 11, 21, or 12.

(ii) If G=G2 and V = VG(λ) with λ= c1 or 1c for c≥ 1, then V ↓ A is multiplicity-
free if and only if λ= 11.

Proof. (i) Let G = C2. We first settle the cases which are multiplicity-free. A
Magma computation shows that 10⊗ 01= 11+ 10, and hence 11 ↓ A = 7+ 5+ 1,
which is multiplicity-free. Next consider λ= 12. First note that 10⊗ 02= 12+ 11
and 02= S2(01)− 00. It follows that

12 ↓ A = 3⊗ (S2(4)− 0)− (7+ 5+ 1)= 3⊗ (8+ 4)− (7+ 5+ 1)

= (11+ 9+ 7+ 5)+ (7+ 5+ 3+ 1)− (7+ 5+ 1)= 11+ 9+ 7+ 5+ 3

and V ↓ A is multiplicity-free. Finally, consider λ = 21. In this case 20⊗ 01 =
21+ 20+ 01. Now 20 ↓ A= S2(3)= 6+ 2, so that (20⊗ 01) ↓ A= (6+ 2)⊗ 4=
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(10+ 8+ 6+ 4+ 2)+ (6+ 4+ 2). It follows that 21 ↓ A = 10+ 8+ 6+ 4+ 2 and
V ↓ A is multiplicity-free.

If λ = 1b for b ≥ 3, then r = 3+ 4b and dim V = 1
3(b + 1)(b + 3)(2b + 4).

Similarly, if λ= b1 for b≥ 3, then r = 3b+4 and dim V = 1
3(b+1)(b+3)(b+5),

Now Lemma 2.1 shows that V ↓ A cannot be multiplicity-free.
(ii) Let G = G2. First consider λ= 11. A Magma computation yields 10⊗01=

11 + 20 + 10. Also, 10 ↓ A = 6 and 01 ↓ A = 10 + 2. Using the fact that
S2(10) = 20 + 00, we find that V ↓ A = 16 + 14 + 10 + 8 + 6 + 4, which is
multiplicity-free.

If λ= c1 with c > 1, then dim V = 1
60(c+ 1)(c+ 3)(c+ 5)(c+ 7)(2c+ 8) and

r = 6c + 10. Similarly, if λ = 1c with c > 1, then r = 10c + 6 and dim V =
1
60(c+ 1)(c+ 3)(2c+ 4)(3c+ 5)(3c+ 7). In either case, Lemma 2.1 shows that
V ↓ A is not multiplicity-free. �

Lemma 3.4. Suppose G has rank at least 3 and λ = ωi + ωj , where αi , αj are
adjacent and one of them is an end-node. Then V ↓ A is multiplicity-free if and
only if G = A3.

Proof. First assume that G = An , Bn , Cn or Dn and λ= ω1+ω2. If n ≥ 4, then the
weights λ−123= (λ−12)s3, λ−234, λ−122= (λ−2)s1, λ−122

= (λ−1)s2 occur
with multiplicities 2, 1, 1, 1 and all afford T weight r−6. Hence this weight occurs
with multiplicity at least 5, and Lemma 2.2 shows that V ↓ A is not multiplicity-free.
If G= B3 or C3, then of the above weights only λ−234 does not occur; however the
weight λ−232

= (λ−2)s3 or λ−223= (λ−23)s2 occurs, respectively, affording T
weight r−6, which again gives the conclusion by Lemma 2.2. And if G = A3, then
100⊗010= 110+001, and restricting to A we have 3⊗(4+0)= (7+5+3+1)+3.
Therefore, 110 ↓ A = 7+ 5+ 3+ 1 which is multiplicity-free, as in the conclusion.

Next consider G = Bn or Cn with λ= ωn−1+ωn . For Bn , the weight r − 6 is
afforded by λ−(n−2)(n−1)n, λ−(n−1)n2

= (λ−(n−1)n)sn, and (λ−(n−1)2n)=
(λ− n)sn−1. Moreover the first two weights occur with multiplicity 2, and so r − 6
appears with multiplicity 5, so that V ↓ A is not multiplicity-free. A similar
argument applies for Cn .

For G = F4, the conclusion follows by using Lemma 2.8, applied to a Levi
subgroup B3 or C3. Likewise, for Dn (n ≥ 5) with λ= ωn +ωn−2 or ωn−1+ωn−2,
or for G = En , we use a Levi subgroup Ar with r ≥ 4. Finally, for D4 the result
follows from the first paragraph using a triality automorphism. �

Lemma 3.5. Assume n ≥ 3 and G = An , Bn , Cn , or Dn and λ = ωi +ωj , where
αi , αj are end-nodes. Then V ↓ A is multiplicity-free if and only if λ= ω1+ωn and
G = An or B3.

Proof. First consider G = An , Bn , Cn . By Lemma 2.6(vi) we have λ = ω1+ωn .
If G = Bn with n ≥ 4, then λ− 123, λ− (n− 2)(n− 1)n, λ− 1(n− 1)n, λ− 12n,
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and λ − (n − 1)n2
= (λ − (n − 1)n)sn all restrict to r − 6 on T , so V ↓ A is

not multiplicity-free by Lemma 2.2. We argue similarly for G = Cn with n ≥ 4,
replacing the last weight by λ− (n− 1)2n = (λ− (n− 1)n)sn−1. And if G = An ,
then V ↓ A is just (n⊗ n)− 0 and hence is multiplicity-free.

Now suppose n = 3 and λ= 101. If G = B3, then Magma gives 100⊗ 001=
101+ 001. Restricting to A, the left side is 6⊗ (6+ 0) and we find that 101 ↓ A =
12+ 10+ 8+ 6+ 4+ 2, which is multiplicity-free. For G = C3, Magma yields
100⊗001= 101+010,

∧2
(100)= 010+000, and

∧3
(100)= 001+100. Restricting

to A and considering weights we have 101 ↓ A = 14+ 12+ 10+ 8+ 62
+ 4+ 2,

which is not multiplicity-free.
Finally, consider G= Dn with n≥ 4. First consider λ=ω1+ωn−1. The T-weight

r − 2(n− 1) is afforded by λ− 1 · · · (n− 1), λ− 2 · · · n, λ− 1 · · · (n− 2)n, which,
using Lemma 2.5, occur with multiplicities n − 1, 1, 1 respectively, giving the
conclusion by Lemma 2.2. A similar argument applies if λ = ω1 + ωn . Finally
assume λ= ωn−1+ωn . Here, T-weight r − 6 is afforded by λ− (n− 2)(n− 1)n,
λ− (n− 3)(n− 2)(n− 1), λ− (n− 3)(n− 2)n, with multiplicities 3, 1, 1, so again
Lemma 2.2 applies. �

Lemma 3.6. Assume G = E6, E7, E8, or F4 and λ = ωi + ωj , where αi , αj are
end-nodes. Then V ↓ A is not multiplicity-free.

Proof. First assume G = F4. Then λ= 1001 and we consider T-weight r−8 which
is afforded by weights λ− 1234, λ− 1232

= (λ− 12)s3, λ− 2324 = (λ− 234)s3,
occurring with multiplicities 4, 1, 1, respectively, giving the result by Lemma 2.2.

So now assume G = En . If λ = ω1 + ωn then the weights λ − 134 · · · n,
λ− 1234 · · · (n− 1), λ−23 · · · n all afford T-weight r−2(n−1) and, by Lemma 2.5,
occur with multiplicities n− 1, 1, 1 respectively, and now we apply Lemma 2.2. If
λ= ω1+ω2, we argue similarly using weights λ− 1234, λ− 1345, λ− 2345. And
if λ= ω2+ωn , we use weights λ− 245 · · · n, λ− 345 · · · n, λ− 23 · · · (n− 1). �

This completes the proof of Proposition 3.1.

4. The case where A is regular and λ= bωi , b≥ 2

Continue to assume that G is a simple algebraic group, A is a regular A1 in G,
and V = VG(λ). In this section we prove Theorem 1 in the case where λ = bωi

for some i and some b ≥ 2. In this case, the T-weight r − 2 appears in V with
multiplicity 1 and Lemma 2.2(iii) applies. Also Lemma 2.3 implies that if V ↓ A is
multiplicity-free then αi is an end-node.

Proposition 4.1. Assume λ = bωi with b > 1. Then V ↓ A is multiplicity-free if
and only if G and λ are as in the following table, up to graph automorphisms of An

or D4.
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λ G

2ω1 An, Bn, Cn, Dn (n = 2k), G2

3ω1 An (n ≤ 5), Bn (n = 2, 3), Cn(n = 2, 3), G2

4ω1, 5ω1 An (n = 2, 3), B2, C2

bω1 (b ≥ 6) A2

bω1 (b ≤ 5) C2

2ω3 B3

2ω2 G2

The proof is carried out in a series of lemmas.

Lemma 4.2. Assume that λ= 2ω1. If G= An, Bn , or Cn , then V ↓ A is multiplicity-
free. If G = Dn , then V ↓ A is multiplicity-free if and only if n is even.

Proof. If G = An , then V ↓ A is just S2(n) and a consideration of weights shows
that this is 2n+ (2n− 4)+ (2n− 8)+ · · · , hence is multiplicity-free. If G = Bn or
Cn we can embed G in A2n or A2n−1, respectively. In each case A acts irreducibly
on the natural module with highest weight 2n or 2n − 1, respectively, and the
conclusion follows from the first sentence.

Now consider G = Dn . In this case A acts on the natural module ω1 for G, as
(2n− 2)+ 0. Now S2(ω1)= V + 0 and hence V ↓ A = S2(2n− 2)+ (2n− 2)=
((4n− 4)+ (4n− 8)+ · · · )+ (2n− 2). If n is odd, we find that 2n− 2 appears
with multiplicity 2, while if n is even, V ↓ A is multiplicity-free. �

Lemma 4.3. Assume that G = Bn (n ≥ 3), Cn (n ≥ 3), or Dn (n ≥ 4) and that
λ= bωi with b> 1 and i > 1. Then V ↓ A is multiplicity-free if and only if G = B3

and λ= 2ω3 or G = D4 and λ= 2ωi for i = 3 or 4.

Proof. By Lemma 2.3 we can assume that αi is an end-node, so we may take i = n.
First consider Cn . If b ≥ 3, then the weight r − 6 occurs with multiplicity at least 4
(from λ− (n − 2)(n − 1)n, λ− (n − 1)n2, λ− n3, λ− (n − 1)2n = (λ− n)sn−1)

and so V ↓ A is not multiplicity-free. For b = 2 first consider G = C3. We have
S2(001)= V + 200. As 001 ↓ A = 9+ 3, it follows that V ↓ A contains 62. Next
suppose that G = Cn with n ≥ 4 and b = 2. This case essentially follows from the
C3 result. We need only show that there are at least two more weights r − 12 than
weights r − 10. For n = 4 the only weights r − 10 that do not arise from the C3

Levi are λ− 12324, λ− 12342. Correspondingly, there are new r − 12 weights,
λ− 122324, λ− 123242. Similar reasoning applies for C5, where λ− 12345 is the
only weight r−10 not appearing for C4 and we conjugate by s4 to get a new weight
r − 12. And for n ≥ 6 there are no r − 10 weights that were not present in a C5

Levi factor.
Now let G = Bn . If b ≥ 3 we find that T weight r − 6 appears with multiplicity

at least 4. Indeed, for the B2 Levi the module 0b = Sb(01) and this yields weights
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λ−n3, λ−(n−1)n2, the latter with multiplicity 2. Also λ−(n−2)(n−1)n affords
T-weight r − 6, which yields the assertion.

Now assume b = 2. First consider G = B3, so that λ = 002. The module 001
for B3 is the spin module where A acts as 6+ 0. We have S2(001) = 002+ 000,
and it follows that V ↓ A = 12+ 8+ 6+ 4+ 0, which is multiplicity-free. Now
assume n > 3. Here we show that T-weight r − 8 occurs with multiplicity 5. The
above shows that r − 8 occurs with multiplicity 4 just working in the B3 Levi. As
λ− (n− 3)(n− 2)(n− 1)n affords r − 8 the assertion follows.

Finally, consider G = Dn . If b≥ 3 then T-weight r−6 occurs with multiplicity 4
(from λ− n3, λ− (n− 2)n2, λ− (n− 1)(n− 2)n, λ− (n− 3)(n− 2)(n)), and so
V ↓ A is not multiplicity-free by Lemma 2.2(iii). Now assume b = 2. Applying
a graph automorphism if necessary, we can assume n ≥ 5 (the conclusion allows
for D4 using Lemma 4.2). Then T-weight r − 8 occurs with multiplicity at least 5
(from λ− (n−4)(n−3)(n−2)n, λ− (n−3)(n−2)(n−1)n, λ− (n−3)(n−2)n2,
λ− (n−1)(n−2)n2, λ− (n−2)2n2). Therefore, V ↓ A is not multiplicity-free. �

Lemma 4.4. Assume that G = An , Bn (n ≥ 3), Cn (n ≥ 3) or Dn (n ≥ 4), and that
λ= bω1 with b≥ 3. Then V ↓ A is multiplicity-free only for the cases listed in rows
2 to 4 of the table in Proposition 4.1.

Proof. First let G = An , so V = VG(bω1)= Sb(ω1). First consider b = 3, so that
r = 3n. If n ≥ 6, then T-weight 3n − 12 occurs with multiplicity at least 7 and
V ↓ A cannot be multiplicity-free. Indeed, independent vectors of weight 3n− 12
occur as tensor symmetric powers of vectors of weights (i, j, k), where (i, j, k)
is one of (n, n, n − 12), (n, n − 2, n − 10), (n, n − 4, n − 8), (n, n − 6, n − 6),
(n− 2, n− 2, n− 8), (n− 2, n− 4, n− 6), or (n− 4, n− 4, n− 4). On the other
hand, for n ≤ 5 the restriction is multiplicity-free.

Next consider b= 4, so that r = 4n. If n≥ 4, then 4n−8 appears with multiplicity
at least 5 and hence V ↓ A is not multiplicity-free. Indeed, independent vectors arise
from symmetric powers of vectors of weights (n, n, n, n− 8), (n, n, n− 2, n− 6),
(n, n, n − 4, n − 4), (n, n − 2, n − 2, n − 4), (n − 2, n − 2, n − 2, n − 2). And
for n ≤ 3 a direct check shows that Sb(ω1) ↓ A is multiplicity-free. If b ≥ 5,
n ≥ 3, and (b, n) 6= (5, 3) then a similar argument shows that the weight bn− 12
occurs with multiplicity at least two more than does bn− 10; hence V ↓ A is not
multiplicity-free in these cases. And if (b, n) = (5, 3) one checks that V ↓ A =
S5(3)= 15+ 11+ 9+ 7+ 5+ 3, which is multiplicity-free.

The final case for G = An is when n = 2. We first note that the multiplicity of
weight 2 j in Sb(2) is precisely the multiplicity of weight 0 in Sb− j (2). Indeed, if
we write 2c0d(−2)e to denote a symmetric tensor of c vectors of weight 2, d vectors
of weight 0 and e vectors of weight−2, then a basis for the 2 j -weight space is given
by vectors 2 j 0b− j (−2)0, 2 j+10b− j−2(−2)1, 2 j+20b− j−4(−2)2, . . . and ignoring the
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first j terms in each tensor we obtain the assertion. The multiplicity of weight 0 in
Sb− j (2) is easily seen to be (b− j +1)/2 if b− j is odd and (b− j +2)/2 if b− j
is even. From this information we see that Sb(2)= 2b+ (2b− 4)+ (2b− 8)+ · · ·
and hence V ↓ A is multiplicity-free.

Now consider G = Bn,Cn , or Dn . The Cn case follows from the A2n−1 case
since V = Sb(ω1); see [Seitz 1987]. If G = Dn with n ≥ 4, then A ≤ Bn−1 < G. If
the corresponding module for this subgroup is not multiplicity-free, then the same
holds for G since it appears as a direct summand of V.

So assume G = Bn . If b ≥ 4, then T-weight r − 8 occurs with multiplicity at
least 5. Indeed, if n ≥ 4 this weight arises from λ− 1234, λ− 1223, λ− 1222,
λ− 132, λ− 14; whereas, if n = 3 replace the first of these weights by λ− 1232

=

(λ− 12)s3. Now consider b = 3. If n = 4, then S3(λ1) = 3000+ 1000 and one
checks that T-weight r − 12= 12 occurs with multiplicity 7, and so V ↓ A is not
multiplicity-free. And for n > 4 we apply Lemma 2.8 to get the same conclusion.
Finally, if n = 3 then S3(λ1) = V + 100, and a direct check of weights shows
that S3(λ1) ↓ A = 18+ 14+ 12+ 10+ 8+ 62

+ 2, which implies that V ↓ A is
multiplicity-free.

The only remaining case is when G = D4 and b = 3, since here the module
300 ↓ A for B3 is multiplicity-free. As a module for G we have S3(ω1)= 3ω1⊕ω1,
so that V ↓ A = S3(6+ 0)− (6+ 0), which one easily checks is not multiplicity-
free. �

Lemma 4.5. Assume that G= B2,C2, or G2 and λ= bωi (with b≥ 2). Then V ↓ A
is multiplicity-free if and only if one of the following holds:

(i) G = B2 or C2 and λ= b0, 0b (b ≤ 5).

(ii) G = G2 and λ= 20, 30, or 02.

Proof. (i) Let G = B2. Then 0b= Sb(01), which restricts to A as Sb(3). Therefore,
the assertion follows from the A3 result which has already been established.

Now assume λ= b0. Here dim(b0)= (b+ 1)(b+ 2)(2b+ 3)/6 and the highest
weight of V ↓ A is 4b. If the restriction were multiplicity-free, then weight 4b− 2
would only occur with multiplicity 1, and the restriction with largest possible
dimension would have composition factors 4b+ (4b− 4)+ (4b− 6)+ · · ·+ 2+ 0
which totals 4b2

+ 2. For b ≥ 7, this is less than the above dimension of b0 and
so the restriction cannot be multiplicity-free. And for b ≤ 3, V is a summand of
Sb(4) which we have already seen to be multiplicity-free. This leaves the cases
b = 4, 5, 6.
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A computation gives the following decompositions of symmetric powers of the
G-module 10:

S6(10)= 60+ 40+ 20+ 00,

S5(10)= 50+ 30+ 10,

S4(10)= 40+ 20+ 00,

S3(10)= 30+ 10,

S2(10)= 20+ 00.

It follows that 40↓ A=16+12+10+8+4 and 50↓ A=20+16+14+12+10+8+4,
so these are both multiplicity-free. Also S6(4)= 24+20+18+162

+14+123
+· · · .

This and the above imply that 60 ↓ A is not multiplicity-free. This completes the
proof of (i).

(ii) It follows from [Seitz 1987] that VB3(b00) is irreducible upon restriction to G2,
with highest weight b0, and also a regular A in B3 lies in a subgroup G2. So for
i = 1 the assertion follows from our results for B3. Now assume i = 2. Then

dim(0b)= 1
120

(b+ 1)(b+ 2)(2b+ 3)(3b+ 4)(3b+ 5),

and the highest T-weight is 10b. First let b = 2. Then V ↓ A is a direct summand
of S2(01) ↓ A= 20+16+122

+10+82
+42
+02. We have S2(01)= V ⊕20⊕00

and hence V ↓ A= 20+16+12+10+8+4+0, which is multiplicity-free. On the
other hand if b ≥ 3, then Lemma 2.1 implies that V ↓ A is not multiplicity-free. �

Lemma 4.6. If G = En and λ= bωi with b> 1, then V ↓ A is not multiplicity-free.

Proof. By Lemma 2.3, we can take αi to be an end-node. First assume i = 1. If b= 2
one checks that r − 6 is only afforded by λ− 134, λ− 123, while r − 8 is afforded
by λ−1234, λ−1345, λ−1234, λ−1232, so that V ↓ A is not multiplicity-free by
Lemma 2.2(ii). Similarly for b ≥ 3 as T-weight r − 6 appears with multiplicity 3
(from λ−134, λ−123, λ−13), but r −8 appears with multiplicity at least 5 (from
λ− 1345, λ− 1234, λ− 1234, λ− 1222, λ− 133).

If i = 2, we see that weight r − 8 appears with multiplicity at least 5, since it is
afforded by each of λ− 2345, λ− 1234, λ− 2456, λ− 2234, λ− 2245. So V ↓ A
is not multiplicity-free by Lemma 2.2(iii).

Finally, assume that i = n. For n = 6, V is just the dual of VG(λ1), so suppose
G = E7 or E8. If b ≥ 4 it is easy to list weights and verify that T-weight r − 8
appears with multiplicity at least 5, so Lemma 2.2(iii) shows that V ↓ A is not
multiplicity-free. And if b = 2 or 3, we see that T-weight r − 12 appears with
multiplicity at least 2 more than T-weight r − 10. �
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Lemma 4.7. If G = F4 and λ= bωi with b> 1, then V ↓ A is not multiplicity-free.

Proof. As usual we can take αi to be an end-node. First assume i = 1. If b = 2,
then T weight r − 6 occurs with multiplicity 2 (from λ− 123, λ− 122); whereas,
r − 8 occurs with multiplicity 4 (from λ− 1234, λ− 1232

= (λ− 12)s3, λ− 1223,
λ− 1222). If b ≥ 3, then the weight r − 6 appears with multiplicity 3 due to the
additional weight λ− 13. But we also get an additional weight r − 8 from λ− 132.
In either case, Lemma 2.2 implies that V ↓ A is not multiplicity-free.

Now assume i = 4. First assume b = 2. Then S2(0001) = V + 0001+ 0000.
Moreover, a consideration of weights shows that 0001 ↓ A = 16 + 8, and we
conclude that V ↓ A is not multiplicity-free as there is a summand 202.

Finally, assume b ≥ 3. The T-weight r − 6 occurs with multiplicity 3 (from
λ−234, λ−342, λ−43), whereas T-weight r−8 occurs with multiplicity at least 5
(from λ− 1234, λ− 2324= (l − 234)s3, λ− 2342, λ− 3242, λ− 343). �

This completes the proof of Proposition 4.1.

5. The case where A is regular and λ= ωi

Continue to assume that G is a simple algebraic group, A is a regular A1 in G, and
V = VG(λ). In this section we prove Theorem 1 in the case where λ=ωi for some i .

Proposition 5.1. Assume that λ= ωi for some i . Then V ↓ A is multiplicity-free if
and only if G and λ are as in the following table, up to graph automorphisms.

λ G

ω1, ω2 An, Bn, Cn, Dn (n = 2k+ 1), G2

ω3 An (n ≤ 7), Cn (n ≤ 5)
ωn C4, C5

ωn Bn (n ≤ 8), Dn (n ≤ 9)
ω1, ω2 E6

ω1, ω7 E7

ω8 E8

ω1, ω4 F4

The proof is carried out in a series of lemmas.

Lemma 5.2. Assume that λ= ωi .

(i) Then V ↓ A is not multiplicity-free if G = An , Bn , Cn or Dn and 4≤ i ≤ n−3.

(ii) If G = An , i = 3, and n ≥ 5, then V ↓ A is multiplicity-free if and only if n ≤ 7.

(iii) If G = An , Bn , Cn , Dn , or G2 and i = 1 or 2, then V ↓ A is multiplicity-free
except when G = Dn , i = 2, and n even.



372 MARTIN W. LIEBECK, GARY M. SEITZ AND DONNA M. TESTERMAN

Proof. (i) This follows from Lemma 2.7.

(ii) Assume G = An and i = 3 with n ≥ 5. Then V =
∧3
(ω1) and a computation

using Magma shows that V ↓ A is multiplicity-free for n = 5, 6, 7. If n ≥ 8
one checks that T-weight r − 12 occurs with multiplicity at least 7. Indeed, here
r = 3n− 6, and r − 12 = 3n− 18 is afforded by the wedge of tensors of weight
vectors for each of the following weights:

n(n−2)(n−16), n(n−4)(n−14),

n(n−6)(n−12), n(n−8)(n−10), (n−2)(n−4)(n−12),

(n−2)(n−6)(n−10), (n−4)(n−6)(n−8).

Hence V ↓ A is not multiplicity-free for n ≥ 8 by Lemma 2.2(iii).

(iii) If G = An then A is irreducible on the natural module (i.e., ω1) for G with
highest weight n. And if i = 2, then V ↓ A =

∧2
(n) is a direct summand of

n⊗ n = 2n+ (2n− 2)+ (2n− 4)+ · · ·+ 0, and hence V ↓ A is multiplicity-free.
Now consider G = Bn,Cn, Dn embedded in X = A2n, A2n−1, A2n−1. In the first
two cases A acts irreducibly on the natural module, VX (ω1), and in the third case
A acts as (2n − 2)+ 0. So V ↓ A is obviously multiplicity-free for i = 1. Now
consider i = 2. Then VX (ω2) ↓ G = V if G = Bn or Dn [Seitz 1987] and equals
V +0 if G=Cn (the fixed space corresponds to a fixed alternating form). Therefore,
V ↓ A =

∧2
(2n),

∧2
((2n− 2)+ 0), or

∧2
(2n− 1)− 0, respectively. So V ↓ A is

multiplicity-free if G = Bn or Cn . But if G = Dn , then

V ↓ A =
∧2
((2n− 2)+ 0)= (2n− 2)+ (4n− 6)+ (4n− 10)+ · · ·

and this is multiplicity-free only if n is odd. Finally consider G = G2 viewed as a
subgroup of A6. Then A is irreducible on the natural 7-dimensional module VG(ω1).
Also VG(ω2) is a direct summand of

∧2
(VG(ω1)). So V ↓ A is multiplicity-free in

both cases. �

Lemma 5.3. Suppose that G = Bn , Cn or Dn , that λ= ωi for i ≥ 3 and that V is
not a spin module for Bn or Dn . Then V ↓ A is multiplicity-free if and only if one
of the following holds:

(i) i = n and G = C4 or C5.

(ii) i = 3 and G = Cn for n = 3, 4, 5.

Proof. If G = Bn or Dn , then V =
∧i
(ω1) and the result follows from the A2n or

A2n−1 part of Lemma 5.2. Indeed, if G = Bn , then A is regular in A2n while if
G = Dn , A< Bn−1 < Dn . Therefore, we may assume that G =Cn . If 4≤ i ≤ n−3
then V ↓ A is not multiplicity-free by Lemma 5.2.
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Suppose i ≥ 4. By the previous paragraph we can assume that i > n − 3. If
i = n−2, then T-weight r−8 occurs with multiplicity at least 5 as it is afforded by

λ−(i−3)(i−2)(i−1)i, λ−(i−2)(i−1)i(i+1),

λ−(i−1)i(i+1)(i+2), λ−(i−1)i2(i+1),

λ−i(i+1)2(i+2)= (λ−i(i+1)(i+2))si+1,

so V ↓ A is not multiplicity-free by Lemma 2.2(iii).
Next assume i = n−1. First consider n = 5, where

∧4
(ω1)= ω4+ω2+0. Here

r = 24 and a computation shows that r − 12 = 12 occurs with multiplicity 9 in∧4
(ω1) but it only occurs twice in

∧2
(ω1)= ω2+ 0. Therefore, this weight occurs

with multiplicity 7 in V and hence V ↓ A is not multiplicity-free by Lemma 2.2(iii).
Now return to the general case with i = n−1. Then an application of Lemma 2.8(ii)
to a C5 Levi subgroup shows that T-weight r − 12 appears with multiplicity at
least 7, against Lemma 2.2.

A similar argument settles the case where n = i . If n = 4 or 5, then a Magma
computation shows that V ↓ A is multiplicity-free. If n = 6, weights 24= r − 12
and 26= r −10 occur with multiplicities 6 and 4 respectively, and so Lemma 2.2(i)
implies that V ↓ A is not multiplicity-free. For n > 6 we also compare weights
r − 10 and r − 12. These must already be weights of the C6 Levi subgroups, so
again this contradicts Lemma 2.2(i).

Now assume i = 3 with G = Cn . Then
∧3
(ω1)= V +ω1. Also A is irreducible

on the natural module for A2n−1. In the proof of Lemma 5.2(ii) we saw that for
n ≥ 5 the weight r − 12 = 6n− 21 occurs in

∧3
(ω1) with multiplicity at least 7.

If n ≥ 6, then all these weights occur within V, so V ↓ A is not multiplicity-free.
This leaves n = 3, 4, 5. In these cases, a simple check of weights shows that V ↓ A
is multiplicity-free. �

Lemma 5.4. Assume V is a spin module for Bn or Dn . Then V ↓ A is multiplicity-
free if and only if n ≤ 8 for Bn and n ≤ 9 for Dn .

Proof. If G= Dn , then A≤ Bn−1<G and Bn−1 is irreducible on V, so it will suffice
to settle the G = Bn case. In terms of roots, ωn =

∑
(iαi )/2, so that r = n(n+1)/2.

As dim V = 2n, Lemma 2.1 shows that V ↓ A is not multiplicity-free if n ≥ 10. If
n= 9 then dim V = 29

= 512, while the sum in Lemma 2.1 is 552. However, V ↓ A
does not contain a summand of highest weight r−2=43, so dim V≤552−44=508.
So here too, V ↓ A fails to be multiplicity-free. This leaves the case n ≤ 8.

Consider the restriction V ↓ L , where L = GLn is a Levi subgroup. One checks
(see [Liebeck and Seitz 2012, Lemma 11.15]) that the restriction to SLn consists of
the natural module and all its wedge powers together with two trivial modules. For
example, when n=8 the restriction to A of the weights λ, λ−8, λ−782

= (λ−8)s7s8,
λ− 67283

= (λ− 782)s6s7s8, . . . afford the modules 0, ω7, ω6, ω5, . . . for the A7
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factor. However, the T-weights are shifted in accordance with the number of
fundamental roots subtracted. In the above example, the T-weight of 0 is just that
of λ, namely 36 and the T-weights of ω7 are 34, 32, . . . , 20, etc.

Here we indicate some of the decompositions for V ↓ A for later use.

n decomposition

8 36+ 30+ 26+ 24+ 22+ 20+ 18+ 16+ 14+ 12+ 10+ 8+ 6+ 0
7 28+ 22+ 18+ 16+ 14+ 10+ 8+ 4
6 21+ 15+ 11+ 9+ 3
5 15+ 9+ 5
4 10+ 4
3 6+ 0

Carrying out the above we obtain the conclusion. �

Lemma 5.5. Assume that G = En or F4. Then V ↓ A is multiplicity-free if and
only if λ is as in the following table.

G λ

E6 ω1, ω2, ω6

E7 ω1, ω7

E8 ω8

F4 ω1, ω4

Proof. First assume G = F4 and λ = ω4. It is straightforward to list the first few
weights and see that V ↓ A = 16+ 8. [Liebeck and Seitz 1996, Propositions 2.4
and 2.5] show that V ↓ A is multiplicity-free for each of the remaining cases listed
in the table.

It remains to show that all other possibilities fail to be multiplicity-free. To do
this, we use Lemma 2.1 along with the dimensions of V = V (ωi ), which can be
found using Magma; the values of r can be calculated using the expressions for ωi

in terms of roots, given in [Bourbaki 1968, p. 250]. �

This completes the proof of Proposition 5.1

6. The case where A is nonregular

Assume that G is a simple algebraic group, and A∼= A1 is a G-irreducible subgroup
of G. Recall from the introduction that this means that a nonidentity unipotent
element u of A is distinguished in G. In this section we prove Theorem 1, classifying
G-modules V = VG(λ) such that V ↓ A is multiplicity-free, in the case where u is
distinguished, but not a regular element of G. Such elements exist for G of type
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Bn , (n ≥ 4), Cn , (n ≥ 3), Dn , (n ≥ 4), E6, E7, E8, F4 or G2. We shall see that
there are relatively few examples; they are listed in Table 2 of Theorem 1.

We begin with the analysis of the classical groups.

Proposition 6.1. Assume that G = Bn , Cn or Dn and u is distinguished but not
regular. Then up to graph automorphisms of Dn , VG(λ) ↓ A is multiplicity-free if
and only if one of the following holds:

(i) λ= ω1.

(ii) G = Dn with 5≤ n ≤ 7, λ= ωn , and A < Bn−2 B1, projecting to a regular A1

in each factor.

For the next four lemmas assume the hypotheses of Proposition 6.1. The nat-
ural G-module, when restricted to A, is a direct sum of irreducible modules of
distinct highest weights, and we first discuss the corresponding T-labelling of the
Dynkin diagram of G. A full description can be found in [Liebeck and Seitz 2012,
Theorem 3.18]. As an example, consider G = C15 with A acting as 15+ 9+ 3.
The T-weights are 15, 13, 11, 92, 72, 52, 33, 13 plus negatives. The corresponding
labelling of the Dynkin diagram is 222020202002002. So the labelling begins with
an initial string of 2s, then a number of terms 20, several of type 200, and so on.
For Cn , the end-node αn has label 2, and for Bn it has label 0. For Dn both of
αn−1, αn have the same label; it is 2 or 0, according to whether there are just two
summands for A or more than two, respectively.

As in previous sections, let V = VG(λ), of highest weight λ=
∑

ciωi affording
T-weight r .

Lemma 6.2. Assume V ↓ A is multiplicity-free. Then the following hold:

(i) ci = 0 if αi has label 0.

(ii) ci = 0 if αi has label 2 and αi is adjacent to two nodes having label 0.

(iii) λ= bωi for some i .

(iv) If λ= bωi with b > 1, then i = 1.

(v) λ 6= ωn if G = Bn or Cn .

Proof. (i) Assume αi has label 0 but ci 6= 0. Then λ− αi is a weight affording
T-weight r , which implies that r2 is a summand of V ↓ A, a contradiction.

(ii) Next suppose that αi has label 2 but nodes on either side have label 0. If we
label these nodes αi , αj , αk , then λ− i , λ− i j , λ− ik all afford T-weight r − 2,
contradicting Lemma 2.2.

(iii) Assume ci 6= 0 6= cj . Then λ− i and λ− j afford the only T-weights r−2. This
implies that neither αi nor αj can be adjacent to a node with 0 label, as otherwise
r − 2 would occur with multiplicity at least 3. Therefore, both occur in the initial
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string of 2s, and within this string we can argue exactly as in the regular case.
Indeed, the argument of parts (iv), (v), and (vi) of Lemma 2.6 implies that i = 1,
j = 2, and ci = cj = 1. Then the first paragraph of the proof of Lemma 3.4 implies
that the initial string of 2s has length 3. But then T-weight r − 4 is afforded by
λ− 12 (multiplicity 2), λ− 23, and λ− 234, contradicting Lemma 2.2.

(iv) Assume λ = bωi with b > 1. By Lemma 2.3(i), αi is an end-node. Suppose
i = n. Then G 6= Bn , as otherwise αn has label 0, against (i). If G =Cn , then λ−n,
λ−n(n−1), λ−n(n−1)2 = (λ−n(n−1))sn−1 all afford r−2. And for Dn , r−4
is afforded by λ− n2, λ− n2(n− 2), λ− n2(n− 2)2, λ− n(n− 2)(n− 1). This is a
contradiction. A similar argument applies if G = Dn and i = n− 1.

(v) Suppose λ= ωn . The last argument of the previous paragraph also shows that
V ↓ A is not multiplicity-free if G = Cn . And if G = Bn then αn has label 0,
contradicting (i). �

Lemma 6.3. Suppose G = Dn with n ≥ 5, and λ= ωn . Then V ↓ A is multiplicity-
free if and only if n ≤ 7 and A < Bn−2 B1, projecting to a regular A1 in each factor.

Proof. Assume G = Dn and λ=ωn . Then the labels of αn−1 and αn are both 2, and
A has two irreducible summands on the natural G-module. The label of αn−2 is 0.

Suppose that V ↓ A is multiplicity-free. If αn−3 also has label 0, then λ− n,
λ− (n− 2)n, λ− (n− 3)(n− 2)n all afford r − 2, a contradiction. Therefore, αn−3

has label 2. Next consider αn−4. If αn−4 has label 0, then n ≥ 6 and αn−5 must
have label 2. Hence r − 6 is afforded by each of

λ−(n−3)(n−2)(n−1)n, λ−(n−4)(n−3)(n−2)(n−1)n,

λ−(n−3)(n−2)2(n−1)n, λ−(n−4)(n−3)(n−2)2(n−1)n,

λ−(n−5)(n−4)(n−3)(n−2)n,

again a contradiction. Therefore, αn−4 has label 2. This forces the full labelling to
be 22 · · · 22022.

Hence A acts on the natural G-module as (2n− 4)+ 2 and so lies in a subgroup
Bn−2 B1, which acts on V as the tensor product of spin modules for the factors.
That is, V ↓ A = X ⊗ 1 where X is the restriction of the spin module of Bn−2

to a regular A1. As we are assuming V ↓ A to be multiplicity-free, this forces X
to be multiplicity-free. Applying Lemma 5.4 we see that this implies n− 2 ≤ 8.
Moreover, at the end of the proof of Lemma 5.4 we listed the decompositions of X
when this occurs. Tensoring these with 1 it is immediate from Lemma 2.4 that the
V is multiplicity-free if and only if n ≤ 7. �

Lemma 6.4. (i) Assume λ= bω1 with b > 1. Then V ↓ A is not multiplicity-free.

(ii) Assume λ= ω2. Then V ↓ A is not multiplicity-free.



DISTINGUISHED UNIPOTENT ELEMENTS AND MULTIPLICITY-FREE SUBGROUPS 377

Proof. (i) First suppose b=2. Note that S2(ω1)=V if G=Cn , while S2(ω1)=V+0
if G = Bn or Dn . Let A act on the natural module for G as c+ d + · · · , where
c > d > · · · . Note that if d = 0, then u is a regular element of Bn−1 and is hence
regular in G = Dn , which we are assuming is not the case. Hence d > 0.

Now S2(ω1) ↓ A contains direct summands S2(c) = 2c+ (2c− 4)+ · · · and
c⊗d = (c+d)+ (c+d−2)+· · · . If c−d = 4k, then 2c−4k = c+d is common
to both summands. And if c− d = 4k− 2, then 2c− 4k = c+ d − 2 is common to
both summands. In either case we see that V ↓ A is not multiplicity-free.

Now assume that b ≥ 3 and that V ↓ A is multiplicity-free. We first settle some
special cases. If the T- labelling is 202 . . . , then r−4 is afforded by λ−12, λ−122,
λ− 1222, λ− 123, a contradiction. Similarly, if the labelling is 2202 . . . , then r − 4
is afforded by λ−12, λ−123, λ−12, which contradicts Lemma 2.2(iii). And if the
labelling is 22202 . . . , then r − 8 is afforded by λ− 12345, λ− 1223, λ− 12234,
λ− 1222, λ− 132, again contradicting Lemma 2.2(iii).

Now suppose that the initial string of 2s has length at least 4. If b≥ 4, the weights
λ−1234, λ−1223, λ−1222, λ−132, λ−14 all afford r−8, against Lemma 2.2(iii).
So assume b= 3. Then S3(ω1)= V or V +ω1 according to whether or not G =Cn .
One checks S3(ω1) to see that r − 12 occurs with multiplicity at least 7 in V ↓ A,
and hence V ↓ A is not multiplicity-free.

(ii) The argument is similar to the b = 2 case in (i). Assume A acts on the natural
module as c+d+· · · , where c>d> · · · . Note that d>0, as otherwise u would be a
regular element of G = Dn . Then

∧2
(ω1)= V or V +0 according to whether or not

G is an orthogonal group. So
∧2
(ω1)↓ A contains

∧2
(c)= (2c−2)+(2c−6)+· · · ,

as well as c⊗d = (c+d)+(c+d−2)+· · · , as direct summands. If c−d = 4k+2,
then 2c− 2− 4k = c+ d and if c− d = 4k, then 2c− 2− 4k = c+ d− 2. In either
case V ↓ A is not multiplicity-free. �

Lemma 6.5. Assume λ=ωi for 3≤ i < n and V is not a spin module for Dn . Then
V ↓ A is not multiplicity-free.

Proof. Assume V ↓ A is multiplicity-free. By Lemma 6.2(ii) we know that αi is in
the initial string of 2s. Suppose the end of this string is at αj . First assume i ≥ 4. If
in addition, i ≤ j−3, then the result follows from Lemma 2.7. So we now consider
situations where i > j − 3 (still with i ≥ 4).

Suppose i = j . Then αi+1 has label 0. If n = i + 1, then G = Bn and each of
λ− i , λ− i(i + 1), λ− i(i + 1)2 = (λ− i(i + 1))si+1 afford r − 2, a contradiction.
Therefore n > i + 1. If αi+2 has label 0 we obtain the same contradiction from
λ− i , λ− i(i + 1), λ− i(i + 1)(i + 2). So suppose αi+2 has label 2. Then r − 4
is afforded by each of λ− (i − 1)i , λ− (i − 1)i(i + 1), λ− i(i + 1)(i + 2), which
is not yet a contradiction. If n = i + 2, then G = Cn and we also get r − 4 from
λ− i(i + 1)2(i + 2) = (λ− i(i + 1)(i + 2))si+2. And if n > i + 2, either αi+3 has
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label 0 or else G = Di+3. In either case we get an extra weight affording r − 4,
which does contradict Lemma 2.2.

Therefore i < j . Then r − 2 appears with multiplicity 1 and Lemma 2.2(iii)
applies. By assumption, α j+1 has label 0. Suppose i = j−1. Then r−4 is afforded
by each of λ− (i−1)i , λ− i j , λ− i j ( j+1) a contradiction. And if i = j−2, then
r − 8 is afforded by each of

λ−(i−3)(i−2)(i−1)i, λ−(i−2)(i−1)i(i+1),

λ−(i−1)i(i+1)(i+2), λ−(i−1)i(i+1)(i+2)(i+3),

λ−(i−1)i2(i+1),

contradicting Lemma 2.2(iii).
Now assume i = 3. Then

∧3
(ω1) equals V or V +ω1 depending on whether

or not G is an orthogonal group. Write ω1 ↓ A = a + b+ · · · with a > b > · · · .
We know that α3 is in the initial string of 2s, and this forces a − b ≥ 6 so that
r = 3a− 6. If G is an orthogonal group, then a, b, . . . are even and so a ≥ 8 (note
that b > 0 as A is not regular). Then V ↓ A contains

∧3
(a) as a direct summand

which is not multiplicity-free by Lemma 5.2(ii). Indeed, there is a direct summand
of highest weight r − 12= 3a− 18 appearing with multiplicity 2. Now consider
G=Cn . The same argument applies provided 3a−18> a. So it remains to consider
a≤ 9. The cases are (a, b)= (7, 1), (9, 3), (9, 1). Then

∧3
(ω1)↓ A contains

∧3
(a)

and
∧2
(a)⊗ b as direct summands. As

∧3
(a) = (3a− 6)+ (3a− 10)+ · · · and∧2

(a)⊗b= (2a−2+b)+ (2a−4+b)+· · · , it follows that in each case, 3a−10
occurs with multiplicity at least 2 and is not present in ω1. �

This completes the proof of Proposition 6.1.

It remains to consider the exceptional groups. Here we label the distinguished
nonregular classes as in [Liebeck and Seitz 2012]. For convenience we reproduce
the list in Table 3.

Proposition 6.6. Assume G is an exceptional group and u is distinguished but not
regular. Then up to graph automorphisms of E6, VG(λ) ↓ A is multiplicity-free if
and only if λ and u are as in the following table.

G u λ

F4 F4(a1) ω4

E6 E6(a1) ω1

E7 E7(a1) or E7(a2) ω7

E8 E8(a1) ω8



DISTINGUISHED UNIPOTENT ELEMENTS AND MULTIPLICITY-FREE SUBGROUPS 379

G classes labellings

G2 G2(a1) 02

F4 F4(a1), F4(a2), F4(a3) 2202, 0202, 0200

E6 E6(a1), E6(a3) 222022, 200202

E7 E7(a1), E7(a2), E7(a3), 2220222, 2220202, 2002022,
E7(a4), E7(a5) 2002002, 0002002

E8 E8(a1), E8(a2), E8(a3), 22202222, 22202022, 20020222,
E8(a4), E8(a5), E8(a6), 20020202, 20020020, 00020020,
E8(a7), E8(b4), E8(b5), 00002000, 20020022, 00020022,
E8(b6) 00020002

Table 3. Distinguished nonregular classes in exceptional groups.

Lemma 6.7. Proposition 6.6 holds if G = G2 or F4.

Proof. First consider G = F4. Suppose V ↓ A is multiplicity-free. If there exist
i 6= j with ci 6= 0 6= cj , then either αi or αj is adjacent to a node with label 0,
contradicting Lemma 2.6(ii). Therefore λ = bωi for some i . From the diagrams
in Table 3, and considering the multiplicity of r − 2 using Lemma 6.2(ii), we see
that u cannot be in the class F4(a3), and that if u = F4(a2) then i = 4. But then
λ− 234, λ− 1234, λ− 2324, λ− 12324 all afford r − 4, contradicting Lemma 2.2.

Now consider u in class F4(a1). If i = 2, then λ− 2, λ− 23, λ− 232 all afford
r − 2, a contradiction. If i = 1, then r − 2 appears with multiplicity 1, but λ− 12,
λ− 123, λ− 1232 all afford r − 4, contradicting Lemma 2.2(i). Therefore i = 4.
If b > 1, r − 4 appears with multiplicity 4, which is impossible. And if λ= ω4 it
follows from [Seitz 1991, Table A, p. 65] and the tables at the end of [Liebeck and
Seitz 1996] that A< B4, and ω4 ↓ B4= 1000+0001+0000. Using the information
at the end of the proof of Lemma 5.4, we find that V ↓ A = 8+ (10+ 4)+ 0 and
hence V ↓ A is multiplicity-free.

Finally consider G2 where the only labelling is 02. Hence λ= bω2. Then λ− 2,
λ− 12, λ− 132 all afford r − 2, a contradiction. �

Lemma 6.8. Proposition 6.6 holds if G = En .

Proof. Assume G = En and V ↓ A is multiplicity-free. First suppose that there
exist i > j with ci 6= 0 6= cj . Lemma 2.6 shows these are the only two such nodes,
that neither can adjoin a node with label 0, that at least one must be an end-node,
and that ci = cj = 1. Suppose j = 1. Then α3 must be labelled 2 and from the
list of possible labellings in Table 3 we see that α4 has label 0. This forces i ≥ 6.
But then r − 4 is afforded by λ− 13, λ− 134, λ− 1i , λ− (i − 1)i , a contradiction.
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Therefore, j 6= 1 and hence i = n. If j 6= n− 1, then we must have G = E8, j = 6,
and u = E8(a1). But here we see that r − 4 occurs with multiplicity at least 5, a
contradiction.

Suppose i = n, j = n−1. If αn−3 has label 2, then r−6 occurs with multiplicity
at least 5 from λ− (n− 2)(n− 1)n (multiplicity 2), λ− (n− 1)2n = (λ− n)sn−1,
λ−(n−1)n2

= (λ−(n−1))sn, λ−(n−3)(n−2)(n−1). We get the same contradiction
if αn−3 has label 0, by replacing the last weight with λ− (n− 3)(n− 2)(n− 1)n,
(it even appears with multiplicity 2).

Hence λ= bωi for some i . Suppose b > 1. Then Lemma 2.3 implies that αi is
an end-node with label 2 and that the adjacent node has label 2. Therefore i = 1 or
i = n. If i = 1, then r − 6 is afforded by λ− 1234, λ− 1345, λ− 123, λ− 1234,
contradicting Lemma 2.2(iii).

Next consider i = n where we can assume n = 7 or 8 since the E6 case follows
from the above via a graph automorphism. If αn−2 has label 0, then r−4 is afforded
by λ−(n−1)n, λ−(n−2)(n−1)n, λ−n2, contradicting Lemma 2.2(iii). Therefore,
αn−2 has label 2. The only possibilities satisfying these conditions are u = E7(a1),
E8(a1), E8(a3). If u = E8(a1), then r − 12 arises from

λ− 1345678,
λ− 2345678,
λ− 23425678,
λ− 3456782,

λ− 2456782,

λ− 567282,

λ− 627282,

a contradiction. A similar argument applies to E7(a1) and E8(a3), using the weight
r − 8.

At this point we have λ= ωi . As in the proof of Lemma 5.5, we use Lemma 2.1
to reduce to the cases (G; i)= (E6; 1, 2, 6), (E7; 1, 7), and (E8; 8). The action of
A on L(G) is given in [Seitz 1991, Table A, p. 65 and Table 1, p. 193]. This settles
all but the 27 dimensional modules ω1, ω6 for E6 and the 56 dimensional module
ω7 for E7.

Suppose G = E6. From p. 65 of that reference we see that u is a regular element
in C4 or A1 A5 according to whether u= E6(a1) or E6(a3). Then [Liebeck and Seitz
1996, Propositions 2.3 and 2.5] show that only the first case is multiplicity-free.

Finally assume that G = E7 and λ = ω7. [loc. cit., Proposition 2.5] shows
that V ↓ A is multiplicity-free if u = E7(a1). But if u = E7(a2), then A ≤ A1 F4

by [Seitz 1991, p. 65], and [Liebeck and Seitz 1996, Proposition 2.5] shows that
V ↓ A= (1⊗(16+8))+3, which is multiplicity-free. If u= E7(a4) or E7(a5), then
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both α5 and α6 have label 0 so that r −2 occurs with multiplicity 3, a contradiction.
This leaves u = E7(a3), in which case [Seitz 1991, p. 65] shows that A < A1 B5 <

A1 D6. Then [Liebeck and Seitz 1996, Proposition 2.3] shows that V ↓ A1 D6 =

1⊗ω1+0⊗ω5. Applying the decomposition at the end of the proof of Lemma 5.4,
we see that this is not multiplicity-free. �

This completes the proof of Theorem 1.

7. Proof of Corollary 2

Now we prove Corollary 2. Let G be a simple algebraic group of rank at least 2,
let u ∈ G be a distinguished unipotent element, and let A be an A1 subgroup of
G containing u. Let ρ : G→ I(V ) be an irreducible representation with highest
weight λ.

If I(V )= SL(V ), then ρ(u) is distinguished in I(V ) if and only if V ↓ ρ(A) is
irreducible, so the conclusion goes back to Dynkin [1957], but see also [Seitz 1987,
Theorem 7.1] where the result is given explicitly. Alternatively it is easy to check
in Tables 1 and 2 of Theorem 1, that except for ω1 for An , Bn , Cn , and 10 for G2,
the subgroup acts reducibly on VG(λ).

Now suppose I(V ) = Sp(V ) or SO(V ). If ρ(u) is distinguished in I(V ), then
V ↓ρ(A) is multiplicity-free, and so λ is as in Tables 1 or 2 of Theorem 1. Moreover
V is self-dual, so that λ=−w0(λ). Conversely, for all such λ in the tables, V ↓ρ(A)
is multiplicity-free, and so ρ(u) has Jordan blocks on V of distinct sizes, hence is
distinguished. This completes the proof.
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ACTION OF LONGEST ELEMENT ON A HECKE ALGEBRA
CELL MODULE

GEORGE LUSZTIG

Dedicated to the memory of Robert Steinberg

By a result of Mathas, the basis element Tw0 of the Hecke algebra of a finite
Coxeter group acts in the canonical basis of a cell module as a permutation
matrix times plus or minus a power of v. We generalize this result to the
unequal parameter case. We also show that the image of Tw0 in the corre-
sponding asymptotic Hecke algebra is given by a simple formula.

Introduction

0.1. The Hecke algebra H (over A = Z[v, v−1
], v an indeterminate) of a finite

Coxeter group W has two bases as an A-module: the standard basis {Tx ; x ∈W }
and the basis {Cx ; x ∈W } introduced in [Kazhdan and Lusztig 1979]. The second
basis determines a decomposition of W into two-sided cells and a partial order for
the set of two-sided cells, see [Kazhdan and Lusztig 1979]. Let l→N be the length
function, let w0 be the longest element of W and let c be a two-sided cell. Let a
(resp. a′) be the value of the a-function [Lusztig 2003, 13.4] on c (resp. on w0c).
The following result was proved by Mathas [1996].

(a) There exists a unique permutation u 7→ u∗ of c such that for any u ∈ c we
have Tw0(−1)l(u)Cu = (−1)l(w0)+a′v−a+a′(−1)l(u

∗)Cu∗ plus an A-linear com-
bination of elements Cu′ with u′ in a two-sided cell strictly smaller than c.
Moreover, for any u ∈ c we have (u∗)∗ = u.

A related (but weaker) result appears in [Lusztig 1984, (5.12.2)]. A result similar
to (a) which concerns canonical bases in representations of quantum groups appears
in [Lusztig 1990, Corollary 5.9]; now, in the case where W is of type A, (a) can be
deduced from [loc. cit.] using the fact that irreducible representations of the Hecke
algebra of type A (with their canonical bases) can be realized as 0-weight spaces of
certain irreducible representations of a quantum group with their canonical bases.
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As R. Bezrukavnikov pointed out to the author, (a) specialized for v = 1 (in the
group algebra of W instead of H) and assuming that W is crystallographic can
be deduced from [Bezrukavnikov et al. 2012, Proposition 4.1] (a statement about
Harish-Chandra modules), although it is not explicitly stated there.

In this paper we shall prove a generalization of (a) which applies to the Hecke
algebra associated to W and any weight function assumed to satisfy the properties
P1–P15 in [Lusztig 2003, §14], see Theorem 2.3; (a) corresponds to the special
case where the weight function is equal to the length function. As an application
we show that the image of Tw0 in the asymptotic Hecke algebra is given by a simple
formula (see Corollary 2.8).

0.2. Notation. W is a finite Coxeter group; the set of simple reflections is denoted
by S. We shall adopt many notations of [Lusztig 2003]. Let ≤ be the standard
partial order on W . Let l→ N be the length function of W and let L → N be a
weight function (see [Lusztig 2003, 3.1]), that is, a function such that L(ww′)=
L(w)+ L(w′) for any w,w′ in W such that l(ww′) = l(w)+ l(w′); we assume
that L(s) > 0 for any s ∈ S. Let w0,A be as in Section 0.1 and let H be the
Hecke algebra over A associated to W, L as in [Lusztig 2003, 3.2]; we shall
assume that properties P1–P15 in [Lusztig 2003, §14] are satisfied. (This holds
automatically if L = l by [Lusztig 2003, §15] using the results of [Elias and
Williamson 2014]. This also holds in the quasisplit case, see [Lusztig 2003, §16].)
We have A⊂A′ ⊂ K where A′ = C[v, v−1

], K = C(v). Let HK = K ⊗A H (a K -
algebra). Recall that H has an A-basis {Tx ; x ∈W }, see [Lusztig 2003, 3.2] and an
A-basis {cx ; x ∈W }, see [Lusztig 2003, 5.2]. For x ∈W we have cx =

∑
y∈W py,x Ty

and Tx =
∑

y∈W (−1)l(xy) pw0x,w0 ycy (see [Lusztig 2003, 11.4]) where px,x = 1 and
py,x ∈ v

−1Z[v−1
] for y 6= x . We define preorders ≤L,≤R,≤LR on W in terms

of {cx ; x ∈W } as in [Lusztig 2003, 8.1]. Let ∼L,∼R,∼LR be the corresponding
equivalence relations on W , see [Lusztig 2003, 8.1] (the equivalence classes are
called left cells, right cells, two-sided cells). Let ¯:A→A be the ring involution
such that vn = v−n for n ∈ Z. Let ¯ : H→ H be the ring involution such that
f Tx = f̄ T−1

x−1 for x ∈ W, f ∈ A. For x ∈ W we have cx = cx . Let h 7→ h† be the
algebra automorphism of H or of HK given by Tx 7→ (−1)l(x)T−1

x−1 for all x ∈ W ,
see [Lusztig 2003, 3.5]. Then the basis {c†

x ; x ∈ W } of H is defined. (In the case
where L = l, for any x we have c†

x = (−1)l(x)Cx where Cx is as in Section 0.1.) Let
h 7→ h[ be the algebra antiautomorphism of H given by Tx 7→ Tx−1 for all x ∈W ,
see [Lusztig 2003, 3.5]; for x ∈W we have c[x = cx−1 , see [Lusztig 2003, 5.8]. For
x, y ∈W we have cx cy =

∑
z∈W hx,y,zcz , c†

x c†
y =

∑
z∈W hx,y,zc†

z , where hx,y,z ∈A.
For any z ∈W there is a unique number a(z) ∈ N such that for any x, y in W we
have

hx,y,z = γx,y,z−1va(z)
+ strictly smaller powers of v,
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where gx,y,z−1 ∈ Z and gx,y,z−1 6= 0 for some x, y in W . We have also

hx,y,z = γx,y,z−1v−a(z)
+ strictly larger powers of v.

Moreover z 7→ a(z) is constant on any two-sided cell. The free abelian group J with
basis {tw;w ∈W } has an associative ring structure given by tx ty =

∑
z∈W γx,y,z−1 tz;

it has a unit element of the form
∑

d∈D nd td where D is a subset of W consisting
of certain elements with square 1 and nd = ±1. Moreover for d ∈ D we have
nd = γd,d,d .

For any x ∈ W there is a unique element dx ∈ D such that x ∼L dx . For a
commutative ring R with 1 we set JR = R⊗ J (an R-algebra).

There is a unique A-algebra homomorphism φ : H→ JA such that φ(c†
x) =∑

d∈D,z∈W ;dz=d hx,d,znd tz for any x ∈W . After applying C⊗A to φ (we regard C

as an A-algebra via v 7→ 1), φ becomes a C-algebra isomorphism φC :C[W ] −→∼ JC

(see [Lusztig 2003, 20.1(e)]). After applying K⊗A to φ, φ becomes a K -algebra
isomorphism φK :HK −→

∼ JK (see [Lusztig 2003, 20.1(d)]).
For any two-sided cell c let H≤c (resp. H<c) be the A-submodule of H spanned by
{c†

x , x ∈W, x ≤LR x ′ for some x ′ ∈ c} (resp. {c†
x , x ∈W, x<LR x ′ for some x ′ ∈ c}).

Note that H≤c,H<c are two-sided ideals in H. Hence Hc
:=H≤c/H<c is an (H,H)-

bimodule. It has an A-basis {c†
x , x ∈ c}. Let J c be the subgroup of J spanned by

{tx ; x ∈ c}. This is a two-sided ideal of J . Similarly, J c
C
:= C⊗ J c is a two-sided

ideal of JC and J c
K := K ⊗ J c is a two-sided ideal of JK .

We write E ∈ IrrW whenever E is a simple C[W ]-module. We can view E as a
(simple) JC-module E♠ via the isomorphism φ−1

C
. Then the (simple) JK -module

K ⊗C E♠ can be viewed as a (simple) HK -module Ev via the isomorphism φK . Let
E† be the simple C[W ]-module which coincides with E as a C-vector space but
with the w action on E† (for w ∈W ) being (−1)l(w) times the w-action on E . Let
aE ∈ N be as in [Lusztig 2003, 20.6(a)].

1. Preliminaries

1.1. Let σ : W → W be the automorphism given by w 7→ w0ww0; it satisfies
σ(S)= S and it extends to a C-algebra isomorphism σ :C[W ]→C[W ]. For s∈ S we
have l(w0)= l(w0s)+l(s)= l(σ (s))+l(σ (s)w0) hence L(w0)= L(w0s)+L(s)=
L(σ (s))+ L(σ (s)w0)= L(σ (s))+ L(w0s) so that L(σ (s))= L(s). It follows that
L(σ (w)) = L(w) for all w ∈ W and that we have an A-algebra automorphism
σ : H→ H where σ(Tw) = Tσ(w) for any w ∈ W . This extends to a K -algebra
isomorphism σ : HK → HK . We have σ(cw) = cσ(w) for any w ∈ W . For any
h ∈ H we have σ(h†) = (σ (h))†. Hence we have σ(c†

w) = c†
σ(w) for any w ∈ W .

We have hσ(x),σ (y),σ (z) = hx,y,z for all x, y, z ∈W . It follows that a(σ (w))= a(w)
for all w ∈W and γσ(x),σ (y),σ (z) = γx,y,z for all x, y, z ∈W so that we have a ring
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isomorphism σ : J → J where σ(tw)= tσ(w) for any w ∈ W . This extends to an
A-algebra isomorphism σ : JA→ JA, to a C-algebra isomorphism σ : JC→ JC

and to a K -algebra isomorphism σ : JK → JK . From the definitions we see that
φ :H→ JA (see Section 0.2) satisfies φσ = σφ. Hence φC satisfies φCσ = σφC

and φK satisfies φKσ = σφK . We show:

(a) For h ∈H we have σ(h)= Tw0hT−1
w0

.

It is enough to show this for h running through a set of algebra generators of H. Thus
we can assume that h = T−1

s with s ∈ S. We must show that T−1
σ(s)Tw0 = Tw0 T−1

s :
both sides are equal to Tσ(s)w0 = Tw0s .

Lemma 1.2. For any x ∈W we have σ(x)∼LR x.

From 1.1(a) we deduce that Tw0cx T−1
w0
= cσ(x). In particular, σ(x)≤LR x . Replacing

x by σ(x) we obtain x ≤LR σ(x). The lemma follows.

1.3. Let E ∈ IrrW . We define σE : E→ E by σE(e)=w0e for e∈ E . We have σ 2
E=1.

For e ∈ E, w ∈ W , we have σE(we) = σ(w)σE(e). We can view σE as a vector
space isomorphism E♠ −→∼ E♠. For e ∈ E♠, w ∈W we have σE(twe)= tσ(w)σE(e).
Now σE : E♠→ E♠ defines by extension of scalars a vector space isomorphism
Ev→ Ev denoted again by σE . It satisfies σ 2

E = 1. For e ∈ Ev, w ∈ W we have
σE(Twe)= Tσ(w)σE(e).

Lemma 1.4. Let E ∈ IrrW . There is a unique (up to multiplication by a scalar in
K −{0}) vector space isomorphism g : Ev→ Ev such that g(Twe)= Tσ(w)g(e) for
allw∈W, e∈ Ev . We can take for example g= Tw0 : Ev→ Ev or g=σE : Ev→ Ev .
Hence Tw0 = λEσE : Ev→ Ev where λE ∈ K −{0}.

The existence of g is clear from the second sentence of the lemma. If g′ is another
isomorphism g′ : Ev→ Ev such that g′(Twe)= Tσ(w)g′(e) for all w ∈W , e ∈ Ev,
then for any e ∈ Ev we have g−1g′(Twe)= g−1Tσ(w)g′(e)= Twg−1g′(e) and using
Schur’s lemma we see that g−1g′ is a scalar. This proves the first sentence of the
lemma hence the third sentence of the lemma.

1.5. Let E ∈ IrrW . We have

(a)
∑
x∈W

tr(Tx , Ev) tr(Tx−1, Ev)= fEv dim(E)

where fEv ∈A′ is of the form

(b) fEv = f0v
−2aE + strictly higher powers of v

and f0 ∈ C−{0}. (See [Lusztig 2003, 19.1(e), 20.1(c), 20.7].)
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From Lemma 1.4 we see that λ−1
E Tw0 acts on Ev as σE . Using [Lusztig 2005,

34.14(e)] with c = λ−1
E Tw0 (an invertible element of HK ) we see that

(c)
∑
x∈W

tr(TxσE , Ev) tr(σ−1
E Tx−1, Ev)= fEv dim(E).

Lemma 1.6. Let E ∈ IrrW . We have λE = v
nE for some nE ∈ Z.

For any x ∈W we have

tr(σE c†
x , Ev)=

∑
d∈D,z∈W ;d=dz

hx,d,znd tr(σE tz, E♠) ∈A′

since tr(σE tz, E♠)∈C. It follows that tr(σE h, Ev)∈A′ for any h ∈H. In particular,
both tr(σE Tw0, Ev) and tr(T−1

w0
σE , Ev) belong to A′. Thus λE dim E and λ−1

E dim E
belong to A′ so that λE = bvn for some b ∈C−{0} and n ∈ Z. From the definitions
we have λE |v=1 = 1 (for v = 1, Tw0 becomes w0) hence b = 1. The lemma is
proved.

Lemma 1.7. Let E ∈ IrrW . There exists εE ∈ {1,−1} such that for any x ∈W we
have

(a) tr(σE† Tx , (E†)v)= εE(−1)l(x) tr(σE T−1
x−1, Ev).

Let (Ev)† be the HK -module with underlying vector space Ev such that the
action of h ∈HK on (Ev)† is the same as the action of h† on Ev. From the proof
in [Lusztig 2003, 20.9] we see that there exists an isomorphism of HK -modules
b : (Ev)† −→∼ (E†)v . Let ι : (Ev)†→ (Ev)† be the vector space isomorphism which
corresponds under b to σE† : (E†)v → (E†)v. Then we have tr(σE† Tx , (E†)v) =

tr(ιTx , (Ev)†). It is enough to prove that ι=±σE as a K -linear map of the vector
space Ev = (Ev)† into itself. From the definition we have ι(Twe) = Tσ(w)ι(e)
for all w ∈ W, e ∈ (Ev)†. Hence (−1)l(w)ι(T−1

w−1e) = (−1)l(w)T−1
σ(w−1)

ι(e) for all
w ∈ W, e ∈ Ev. It follows that ι(he) = (−1)l(w)Tσ(h)ι(e) for all h ∈ H, e ∈ Ev.
Hence ι(Twe)= Tσ(w)ι(e) for all w ∈W, e ∈ Ev . By the uniqueness in Lemma 1.4
we see that ι= εEσE : Ev→ Ev where εE ∈ K −{0}. Since ι2 = 1, σ 2

E = 1, we see
that εE =±1. The lemma is proved.

Lemma 1.8. Let E ∈ IrrW . We have nE =−aE + aE† .

For x ∈W we have (using Lemmas 1.4 and 1.6)

(a) tr(Tw0x , Ev)= tr(Tw0 T−1
x−1, Ev)= vnE tr(σE T−1

x−1, Ev).
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Making a change of variable x 7→ w0x in 1.5(a) and using that Tx−1w0 = Tw0σ(x)−1

we obtain

fEv dim(E)=
∑
x∈W

tr(Tw0x , Ev) tr(Tw0σ(x)−1, Ev)

= v2nE
∑
x∈W

tr(σE T−1
x−1, Ev) tr(σE T−1

σ(x), Ev).

Using now Lemma 1.7 and the equality l(x)= l(σ (x−1)) we obtain

fEv dim(E)= v2nE
∑
x∈W

tr(σE† Tx , (E†)v) tr(σE† Tσ(x−1), (E
†)v)

= v2nE
∑
x∈W

tr(σE† Tx , (E†)v) tr(Tξ−1σE†, (E†)v)

= v2nE f(E†)v dim(E†).

(The last step uses 1.5(c) for E† instead of E .) Thus we have fEv = v
2nE f(E†)v .

The left-hand side is as in 1.5(b) and similarly the right-hand side of the form

f ′0v
2nE−2aE† + strictly higher powers of v

where f0, f ′0 ∈ C−{0}. It follows that −2aE = 2nE − 2aE† . The lemma is proved.

Lemma 1.9. Let E ∈ IrrW and let x ∈W . We have

tr(Tx , Ev)= (−1)l(x)v−aE tr(tx , E♠) mod v−aE+1C[v],(a)

tr(σE Tx , Ev)= (−1)l(x)v−aE tr(σE tx , E♠) mod v−aE+1C[v].(b)

For a proof of (a), see [Lusztig 2003, 20.6(b)]. We now give a proof of (b) along
the same lines as that of (a). There is a unique two sided cell c such that tz|E♠ = 0
for z ∈ W − c. Let a = a(z) for all z ∈ c. By [Lusztig 2003, 20.6(c)] we have
a = aE . From the definition of cx we see that Tx =

∑
y∈W fycy , where fx = 1

and fy ∈ v
−1Z[v−1

] for y 6= x . Applying † we obtain (−1)l(x)T−1
x−1 =

∑
y∈W

fyc†
y;

applying we obtain (−1)l(x)Tx =
∑

y∈W
f̄yc†

y . Thus we have

(−1)l(x) tr(σE Tx , Ev)=
∑
y∈W

f̄y tr(σE c†
y, Ev)=

∑
y,z∈W

d∈D; d=dz

f̄yh y,d,znd tr(σE tz, E♠).

In the last sum we can assume that z ∈ c and d ∈ c so that h y,d,z = γy,d,z−1v−a

mod v−a+1Z[v]. Since f̄x = 1 and f̄y ∈ vZ[v] for all y 6= x we see that

(−1)l(x) tr(σE Tx , Ev)=
∑
z∈c

d∈D∩c

γx,d,z−1ndv
−a tr(σE tz, E♠) mod v−a+1C[v].
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If x /∈ c then γx,d,z−1 = 0 for all d, z in the sum so that tr(σE Tx , Ev)= 0; we have
also tr(σE tx , E♠)= 0 and the desired formula follows. We now assume that x ∈ c.
Then for d, z as above we have γx,d,z−1 = 0 unless x = z and d = dx in which case
γx,d,z−1nd = 1. Thus (b) holds again. The lemma is proved.

Lemma 1.10. Let E ∈ IrrW . Let c be the unique two sided cell such that tz|E♠ = 0
for z ∈W−c. Let c′ be the unique two sided cell such that tz|(E†)♠ = 0 for z ∈W−c′.
We have c′ = w0c.

Using 1.8(a) and 1.7(a) we have

(a) tr(Tw0x , Ev)= vnE tr(σE T−1
x−1, Ev)= vnE εE(−1)l(x) tr(σE† Tx , (E†)v).

Using 1.9(a) for E and 1.9(b) for E† we obtain

tr(Tw0x , Ev)= (−1)l(w0x)v−aE tr(tw0x , E♠) mod v−aE+1C[v],

tr(σE† Tx , (E†)v)= (−1)l(x)v−aE† tr(σE† tx , E†
♠
) mod v−aE†+1C[v].

Combining with (a) we obtain

(−1)l(w0x)v−aE tr(tw0x , E♠)+ strictly higher powers of v

= vnE εEv
−aE† tr(σE† tx , E†

♠
)+ strictly higher powers of v.

Using the equality nE =−aE + aE† (see Lemma 1.8) we deduce

(−1)l(w0x) tr(tw0x , E♠)= εE tr(σE† tx , E†
♠
).

Now we can find x ∈W such that tr(tw0x , E♠) 6= 0 and the previous equality shows
that tx |(E†)♠ 6= 0. Moreover from the definition we have w0x ∈ c and x ∈ c′ so that
w0c∩ c′ 6=∅. Since w0c is a two-sided cell (see [Lusztig 2003, 11.7(d)]) it follows
that w0c= c′. The lemma is proved.

Lemma 1.11. Let c be a two-sided cell of W . Let c′ be the two-sided cellw0c= cw0

(see Lemma 1.2). Let a = a(x) for any x ∈ c; let a′ = a(x ′) for any x ′ ∈ c′. The
K -linear map J c

K → J c
K given by ξ 7→ φ(va−a′Tw0)ξ (left multiplication in JK ) is

obtained from a C-linear map J c
C
→ J c

C
(with square 1) by extension of scalars from

C to K .

We can find a direct sum decomposition J c
C
= ⊕

m
i=1 E i where E i are simple left

ideals of JC contained in J c
C

. We have J c
K =⊕

m
i=1K ⊗ E i . It is enough to show that

for any i , the K -linear map K ⊗ E i
→ K ⊗ E i given by the action of φ(va−a′Tw0)

in the left JK -module structure of K⊗E i is obtained from a C-linear map E i
→ E i

(with square 1) by extension of scalars from C to K . We can find E ∈ IrrW such
that E i is isomorphic to E♠ as a JC-module. It is then enough to show that the
action of va−a′Tw0 in the left HK -module structure of Ev is obtained from the map
σE : E→ E by extension of scalars from C to K . This follows from the equality
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va−a′Tw0 = σE : Ev → Ev (since σE is obtained by extension of scalars from a
C-linear map E → E with square 1) provided that we show that −nE = a − a′.
Since nE = −aE + aE† (see Lemma 1.8) it is enough to show that a = aE and
a′ = aE† . The equality a = aE follows from [Lusztig 2003, 20.6(c)]. The equality
a′ = aE† also follows from [Lusztig 2003, 20.6(c)] applied to E†, c′ = w0c instead
of E, c (see Lemma 1.10). The lemma is proved.

Lemma 1.12. In the setup of Lemma 1.11 we have

(a) φ(va−a′Tw0)tx =
∑
x ′∈c

mx ′,x tx ′

and

(b) φ(v2a−2a′T 2
w0
)tx = tx

for any x ∈ c, where mx ′,x ∈ Z.

Now (b) and the fact that (a) holds with mx ′,x ∈C is just a restatement of Lemma 1.11.
Since φ(va−a′Tw0) ∈ JA we have also mx ′,x ∈A. We now use that A∩C= Z and
the lemma follows.

Lemma 1.13. In the setup of Lemma 1.11 we have for any x ∈ c the equalities

(a) va−a′Tw0c†
x =

∑
x ′∈c

mx ′,x c†
x ′

and

(b) v2a−2a′T 2
w0

c†
x = c†

x

in Hc, where mx ′,x ∈ Z are the same as in Lemma 1.12. Moreover, if mx ′,x 6= 0 then
x ′ ∼L x.

The first sentence follows from Lemma 1.12 using [Lusztig 2003, 18.10(a)]. Clearly,
if mx ′,x 6= 0 then x ′ ≤L x , which together with x ′ ∼LR x implies x ′ ∼L x .

2. The main results

2.1. In this section we fix a two-sided cell c of W ; a, a′ are as in Lemma 1.11.
We define an A-linear map θ : H≤c

→ A by θ(c†
x) = 1 if x ∈ D ∩ c, θ(c†

x) = 0 if
x ≤LR x ′ for some x ′ ∈ c and x /∈ D∩ c. Note that θ is zero on H<c hence it can
be viewed as an A-linear map Hc

→A.

Lemma 2.2. Let x, x ′ ∈ c. We have

(a) θ(c†
x−1c†

x ′)= ndx δx,x ′v
a
+ strictly lower powers of v.
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The left-hand side of (a) is∑
d∈D∩c

hx−1,x ′,d =
∑

d∈D∩c

γx−1,x ′,dv
a
+ strictly lower powers of v

= ndx δx,x ′v
a
+ strictly lower powers of v.

The lemma is proved.
We now state one of the main results of this paper.

Theorem 2.3. There exists a unique permutation u 7→ u∗ of c (with square 1) such
that for any u ∈ c we have

(a) va−a′Tw0c†
u = εuc†

u∗ mod H<c

where εu = ±1. For any u ∈ c we have εu−1 = εu = εσ(u) = εu∗ and σ(u∗) =
(σ (u))∗ = ((u−1)∗)−1.

Let u ∈ c. We set Z = θ((va−a′Tw0c†
u)
[va−a′Tw0c†

u). We compute Z in two ways,
using Lemma 2.2 and Lemma 1.13. We have

Z = θ(c†
u−1v

2a−2a′T 2
w0

c†
u)= θ(c

†
u−1c†

u)= nduv
a
+ strictly lower powers of v,

Z = θ
((∑

y∈c
m y,uc†

y

)[∑
y′∈c

m y′,uc†
y′

)
=

∑
y,y′∈c

m y,um y′,uθ(c
†
y−1c†

y′)

=

∑
y,y′∈c

m y,um y′,undyδy,y′v
a
+ strictly lower powers of v

=

∑
y∈c

ndy m2
y,uv

a
+ strictly lower powers of v

=

∑
y∈c

ndu m2
y,uv

a
+ strictly lower powers of v

,

where m y,u ∈ Z is zero unless y ∼L u (see Lemma 1.13), in which case we have
dy = du . We deduce that

∑
y∈c m2

y,u = 1, so that we have m y,u =±1 for a unique
y ∈ c (denoted by u∗) and m y,u = 0 for all y ∈ c−{u∗}. Then 2.3(a) holds. Using
2.3(a) and Lemma 1.13(b) we see that u 7→ u∗ has square 1 and that εuεu∗ = 1.

The automorphism σ :H→H (see Section 1.1) satisfies the equality σ(c†
u)=c†

σ(u)
for any u ∈W ; note also that w ∈ c↔ σ(w) ∈ c (see Lemma 1.2). Applying σ to
2.3(a) we obtain

va−a′Tw0c†
σ(u) = εuc†

σ(u∗)

in Hc. By 2.3(a) we have also va−a′Tw0c†
σ(u) = εσ(u)c

†
(σ (u))∗ in Hc. It follows that

εuc†
σ(u∗) = εσ(u)c

†
(σ (u))∗ hence εu = εσ(u) and σ(u∗)= (σ (u))∗.

Applying h 7→ h[ to 2.3(a) we obtain

va−a′c†
u−1 Tw0 = εuc†

(u∗)−1
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in Hc. By 2.3(a) we have also

va−a′c†
u−1 Tw0 = v

a−a′Tw0c†
σ(u−1)

= εσ(u−1)c
†
(σ (u−1))∗

in Hc. It follows that εuc†
(u∗)−1 = εσ(u−1)c

†
(σ (u−1))∗

hence εu = εσ(u−1) and (u∗)−1
=

(σ (u−1))∗. Since εσ(u−1) = εu−1 , we see that εu = εu−1 . Replacing u by u−1 in
(u∗)−1

= (σ (u−1))∗ we obtain ((u−1)∗)−1
= (σ (u))∗ as required. The theorem is

proved.

2.4. For u ∈ c we have

u ∼L u∗,(a)

σ(u)∼R u∗.(b)

Indeed, (a) follows from Lemma 1.13. To prove (b) it is enough to show that
σ(u)−1

∼L (u∗)−1. Using (a) for σ(u)−1 instead of u we see that it is enough to
show that (σ (u−1))∗ = (u∗)−1; this follows from Theorem 2.3.

If we assume that

(c) any left cell in c intersects any right cell in c in exactly one element

then by (a), (b), for any u ∈ c,

(d) u∗ is the unique element of c in the intersection of the left cell of u with right
cell of σ(u).

Note that condition (c) is satisfied for any c if W is of type An or if W is of type
Bn (n ≥ 2) with L(s)= 2 for all but one s ∈ S and L(s)= 1 or 3 for the remaining
s ∈ S. (In this last case we are in the quasisplit case and we have σ = 1 hence
u∗ = u for all u.)

Theorem 2.5. For any x ∈W we set ϑ(x)= γw0d
w0x−1 ,x,(x∗)−1 .

(a) If d ∈ D and x, y ∈ c satisfy γw0d,x,y 6= 0 then y = (x∗)−1.

(b) If x ∈ c then there is a unique d ∈ D∩w0c such that γw0d,x,(x∗)−1 6= 0, namely
d = dw0x−1 . Moreover we have ϑ(x)=±1.

(c) For u ∈ c we have εu = (−1)l(w0d)ndϑ(u) where d = dw0u−1 .

Applying h 7→ h† to 2.3(a) we obtain for any u ∈ c:

(d) va−a′(−1)l(w0)Tw0cu =
∑
z∈c

δz,u∗εucz mod
∑

z′∈W−c

Acz′ .

We have Tw0 =
∑

y∈W (−1)l(w0 y) p1,w0 ycy hence Tw0 =
∑

y∈W (−1)l(w0 y) p1,w0 ycy .
Introducing this in (d) we obtain

va−a′
∑
y∈W

(−1)l(y) p1,w0 ycycu =
∑
z∈c

δz,u∗εucz mod
∑

z′∈W−c

Acz′,
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that is,

va−a′
∑

y,z∈W

(−1)l(y) p1,w0 yh y,u,zcz =
∑
z∈c

δz,u∗εucz mod
∑

z′∈W−c

Acz′ .

Thus, for z ∈ c we have

(e) va−a′
∑
y∈W

(−1)l(y) p1,w0 yh y,u,z = δz,u∗εu .

Here we have h y,u,z=γy,u,z−1v−a mod v−a+1Z[v] and we can assume than z≤R y
so that w0 y ≤R w0z and a(w0 y)≥ a(w0z)= a′.

For w ∈ W we set sw = nw if w ∈ D and sw = 0 if w /∈ D. By [Lusztig
2003, 14.1] we have p1,w = swv−a(w) mod v−a(w)−1Z[v−1

] hence p1,w = swva(w)

mod va(w)+1Z[v]. Hence for y in the sum above we have p1,w0 y = sw0 yv
a(w0 y)

mod va(w0 y)+1Z[v]. Thus (e) gives

va−a′
∑
y∈c
(−1)l(y)sw0 yγy,u,z−1va(w0 y)−a

− δz,u∗εu ∈ vZ[v]

and using a(w0 y)= a′ for y ∈ c we obtain∑
y∈c
(−1)l(y)sw0 yγy,u,z−1 = δz,u∗εu .

Using the definition of sw0 y we obtain

(f)
∑

d∈D∩w0c

(−1)l(w0d)ndγw0d,u,z−1 = δz,u∗εu .

Next we note that

(g) if d ∈ D and x, y ∈ c satisfy γw0d,x,y 6= 0 then d = dw0x−1 .

Indeed from [Lusztig 2003, §14, P8] we deduce w0d ∼L x−1. Using [Lusztig 2003,
11.7] we deduce d ∼L w0x−1 so that d = dw−1

0 x−1 . This proves (g).
Using (g) we can rewrite (f) as follows.

(h) (−1)l(w0)(−1)l(d)ndγw0d,u,z−1 = δz,u∗εu

where d = dw0u−1 .
We prove (a). Assume that d ∈ D and x, y ∈ c satisfy γw0d,x,y 6= 0, y 6= (x∗)−1.

Using (g) we have d=dw0x−1 . Using (h) with u= x, z= y−1 we see that γw0d,x,y=0,
a contradiction. This proves (a).

We prove (b). Using (h) with u = x, z = x∗ we see that

(i) (−1)l(w0d)ndγw0d,x,(x∗)−1 = εu
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where d = dw0x−1 . Hence the existence of d in (b) and the equality ϑ(x) = ±1
follow; the uniqueness of d follows from (g).

Now (c) follows from (i). This completes the proof of the theorem.

2.6. In the case where L = l, ϑ(u) (in 2.5(c)) is ≥ 0 and ±1 hence 1; moreover,
nd = 1, (−1)l(d) = (−1)a

′

for any d ∈ D∩w0c (by the definition of D). Hence we
have εu = (−1)l(w0)+a′ for any u ∈ c, a result of Mathas [1996].

Now Theorem 2.5 also gives a characterization of u∗ for u ∈ c; it is the unique
element u′ ∈ c such that γw0d,u,u′−1 6= 0 for some d ∈ D∩w0c.

We will show:

(a) The subsets X={d∗; d ∈ D∩ c} and X ′={w0d ′; d ′ ∈ D∩w0c} of c coincide.

Let d ∈ D ∩ c. By 2.5(b) we have γw0d ′,d,(d∗)−1 = ±1 for some d ′ ∈ D ∩w0c.
Hence γ(d∗)−1,w0d ′,d =±1. Using [Lusztig 2003, 14.2, P2] we deduce d∗ = w0d ′.
Thus X ⊂ X ′. Let Y (resp. Y ′) be the set of left cells contained in c (resp. w0c).
We have ](X) = ](Y ) and ](X ′) = ](Y ′). By [Lusztig 2003, 11.7(c)] we have
](Y )= ](Y ′). It follows that ](X)= ](X ′). Since X ⊂ X ′, we must have X = X ′.
This proves (a).

Theorem 2.7. We have

φ(va−a′Tw0)=
∑

d∈D∩c

ϑ(d)εd td∗ mod
∑

u∈W−c

Atu .

We set φ(va−a′Tw0)=
∑

u∈W pu tu where pu ∈A. Combining 1.12a, 1.13a, 2.3(a) we
see that for any x ∈ c we have

φ(va−a′Tw0)tx = εx tx∗,

hence
εx tx∗ =

∑
u∈c

pu tu tx =
∑

u,y∈c
puγu,x,y−1 ty .

It follows that for any x, y ∈ c we have∑
u∈c

puγu,x,y−1 = δy,x∗εx .

Taking x = w0d where d = dw0 y ∈ D∩w0c we obtain∑
u∈c

puγw0dw0 y ,y−1,u = δy,(w0dw0 y)∗εw0dw0 y

which, by Theorem 2.5, can be rewritten as

p((y−1)∗)−1ϑ(y−1)= δy,(w0dw0 y)∗εw0dw0 y .
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We see that for any y ∈ c we have

pσ(y∗) = δy,(w0dw0 y)∗ϑ(y
−1)εw0dw0 y .

In particular we have pσ(y∗) = 0 unless y = (w0dw0 y)
∗ in which case

pσ(y∗) = p(σ (y))∗) = ϑ(y−1)εy .

(We use that εy∗ = εy .) If y = (w0dw0 y)
∗ then y∗ ∈ X ′ hence by 2.6(a), y∗ = d∗

that is y = d for some d ∈ D. Conversely, if y ∈ D then w0 y∗ ∈ D (by 2.6(a)) and
w0 y∗ ∼L w0 y (since y∗ ∼L y) hence dw0 y = w0 y∗. We see that y = (w0dw0 y)

∗ if
and only if y ∈ D. We see that

φ(va−a′Tw0)=
∑

d∈D∩c

ϑ(d−1)εd t(σ (d))∗ +
∑

u∈W−c

pu tu .

Now d 7→ σ(d) is a permutation of D∩c and ϑ(d−1)=ϑ(d)=ϑ(σ(d)), εσ(d)= εd .
The theorem follows.

Corollary 2.8. φ(Tw0)=
∑
d∈D

ϑ(d)εdv
−a(d)+a(w0d)td∗ ∈ JA.

2.9. We set Tc =
∑

d∈D∩c ϑ(d)εd td∗ ∈ J c. We show:

(a) T2
c =

∑
d∈D∩c nd td .

(b) txTc = Tctσ(x) for any x ∈W .

By Theorem 2.7 we have φ(va−a′Tw0)=Tc+ξ where ξ ∈ J W−c
K :=

∑
u∈W−c K tu .

Since J c
K , J W−c

K are two-sided ideals of JK with intersection zero and φK :HK→ JK

is an algebra homomorphism, it follows that

φ(v2a−2a′T 2
w0
)= (φ(va−a′Tw0))

2
= (Tc+ ξ)

2
= T2

c+ ξ
′

where ξ ′ ∈ J W−c
K . Hence, for any x ∈ c we have φ(v2a−2a′T 2

w0
)tx = T2

ctx so that
(using 1.12b): tx = T2

ctx . We see that T2
c is the unit element of the ring J c

K . Thus
(a) holds.

We prove (b). For any y ∈W we have TyTw0 = Tw0 Tσ(y) hence, applying φK ,

φ(Ty)φ(v
a−a′Tw0)= φ(v

a−a′Tw0)φ(Tσ(y)),

that is, φ(Ty)(Tc+ξ)= (Tc+ξ)φ(Tσ(y)). Thus, φ(Ty)Tc=Tcφ(Tσ(y))+ξ1 where
ξ1 ∈ J W−c

K . Since φK is an isomorphism, it follows that for any x ∈ W we have
txTc = Tctσ(x) mod J W−c

K . Thus (b) holds.
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2.10. In this subsection we assume that L = l. In this case Corollary 2.8 becomes

φ(Tw0)=
∑
d∈D

(−1)l(w0)+a(w0d)v−a(d)+a(w0d)td∗ ∈ JA.

(We use that ϑ(d)= 1.)
For any left cell 0 contained in c let n0 be the number of fixed points of the

permutation u 7→ u∗ of 0. Now 0 carries a representation [0] of W and from
Theorem 2.3 we see that tr(w0, [0])=±n0. Thus n0 is the absolute value of the
integer tr(w0, [0]). From this the number n0 can be computed for any 0. In this
way we see for example that if W is of type E7 or E8 and c is not an exceptional
two-sided cell, then n0 > 0.
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GENERIC STABILISERS
FOR ACTIONS OF REDUCTIVE GROUPS

BENJAMIN MARTIN

In memory of Robert Steinberg

Let G be a reductive algebraic group over an algebraically closed field and
let V be a quasiprojective G-variety. We prove that the set of points v ∈ V
such that dim(Gv) is minimal and Gv is reductive is open. We also prove
some results on the existence of principal stabilisers in an appropriate sense.

1. Introduction

Let G be a reductive linear algebraic group over an algebraically closed field k and
let V be a quasiprojective G-variety. For convenience, we assume throughout the
paper that G permutes the irreducible components of V transitively (the extension
of our results to the general case is straightforward). An important question in
geometric invariant theory is the following: what can we say about generic stabilisers
for the G-action? For instance, given v ∈ V , what does the stabiliser Gv tell us
about the stabilisers Gw for w near v? Define V0 to be the set of points v ∈ V
such that the stabiliser Gv has minimal dimension. The basic theory tells us that
V0 is open (Lemma 2.1). Here is a deeper result [Bardsley and Richardson 1985,
Proposition 8.6]: if V is affine and there exists an étale slice through v for the
G-action then there exists an open neighbourhood U of v such that for all w ∈U ,
Gw is conjugate to a subgroup of Gv. In particular, if dim(Gv) is minimal in this
case then G0

w is conjugate to G0
v for all w ∈ U . The existence of an étale slice

requires, among other conditions, that V be affine and the orbit G · v be closed and
separable. If V is affine and k has characteristic 0 then every v ∈ V such that G · v
is closed admits an étale slice, but if k has positive characteristic then it can happen
that there are no étale slices at all, since, for example, orbits need not be separable.

In this paper we prove some results about properties of generic stabilisers.
Most previous work in this area has dealt with affine varieties and/or fields of
characteristic 0 only. Our results hold for quasiprojective varieties and in arbitrary
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characteristic, although in some cases we get stronger results in characteristic 0.
We need no assumptions on the existence of or properties of closed orbits, and we
allow G to be nonconnected.

Let Vred = {v ∈ V0 | Gv is reductive}. It is possible for Vred to be empty (see
Example 8.2). Our first main result implies that if Vred is nonempty then generic
stabilisers are reductive.

Theorem 1.1. Vred is an open subvariety of V .

A key ingredient in the proof is the Projective Extension Theorem (see Lemma 3.1).
We mention two related results. First, it follows from [Richardson 1972a, Corol-

lary 9.1.2] that if G is a complex linear algebraic group — not necessarily reductive —
and V is a smooth algebraic transformation space for G then Vred is open. Second,
V. Popov [1972] proved the following (cf. [Luna and Vust 1974]). Let G be
a connected linear algebraic group — not necessarily reductive, and in arbitrary
characteristic — such that G has no nontrivial characters, and let V be an irreducible
normal algebraic variety on which G acts such that the divisor class group Cl(V )
has no elements of infinite order. Then generic G-orbits on V are closed if generic
G-orbits on V are affine, and the converse also holds if V is affine.

Richardson [1977, Theorem A] proved that if G is reductive and V is an affine
G-variety then an orbit G · v is affine if and only if the stabiliser Gv is reductive.
Suppose V is affine and there exists a closed orbit G · v of maximum dimension;
then the union of the closed orbits of maximal dimension is open in V [Newstead
1978, Proposition 3.8]. It follows from Richardson’s result that there is an open
dense set of points v ∈ V such that Gv is reductive. Theorem 1.1 extends this to
the case when generic orbits are not closed, without the affineness assumption.

Richardson’s result also gives an immediate corollary to Theorem 1.1 (note that
Gv has minimal dimension if and only if the orbit G · v has maximum dimension).

Corollary 1.2. Suppose V is affine. Then the set v ∈ V such that dim(G · v) is
maximal and G · v is affine is open.

We give an application of Theorem 1.1. Nisnevič [1973] proved the following
result when char(k)= 0 and t = 1.1 He also proved that the subset A is nonempty
in this special case.

Theorem 1.3. Let M, H1, . . . , Ht be subgroups of a reductive group G such that
M is reductive. Let

A =
{
(g1, . . . , gt) ∈ G t

| M ∩ g1 H1g−1
1 ∩ · · · ∩ gt Ht g

−1
t

is reductive and has minimal dimension
}
.

Then A is open.

1In a private communication, Wallach has also given a proof in this case.
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We do not know in general whether A can be empty in positive characteristic,
not even when t = 1 and H1 = M .

If generic stabilisers are reductive, it is reasonable to try to pin down which
reductive subgroups of G actually appear as stabilisers. We say that a subgroup H
of G is a principal stabiliser for the G-variety V if there is a nonempty open subset
O of V such that Gv is conjugate to H for all v ∈ O . We then say that V has a
principal orbit type. Under our assumptions on G and V , a principal stabiliser is
unique up to conjugacy if it exists. Richardson proved that if char(k)= 0 and V is
smooth and affine then a principal stabiliser exists [1972b, Proposition 5.3].

It turns out that in positive characteristic, the condition of conjugacy of the
stabilisers is too strong: Example 8.3 below shows that even if generic stabilisers
are connected and reductive, a principal stabiliser need not exist. To obtain a
result, we need to weaken the notion of principal stabiliser. Let M ≤ G and let
P be a minimal R-parabolic subgroup of G containing M (see Section 2 for the
definition of R-parabolic subgroups), let L be an R-Levi subgroup of P and let
πL : P→ L be the canonical projection. It can be shown that up to G-conjugacy,
πL(M) does not depend on the choice of P and L (cf. [Bate et al. 2013, Proposition
5.14(i)]). We define D(M) to be the conjugacy class G ·πL(M), and we call this
the G-completely reducible degeneration of M (see Section 4 for the definition of
G-complete reducibility). Our second main result says that the D(Gv) are equal
for generic v.

Theorem 1.4. There exist a G-completely reducible subgroup H of G and a
nonempty open subset O of V such that D(Gv)= G · H for all v ∈ O.

If G is connected and every stabiliser is unipotent then D(Gv)= 1 for all v ∈ V ,
so we don’t learn much about the structure of the stabilisers. Under some extra
hypotheses, however, we can deduce the existence of a principal stabiliser.

Corollary 1.5. Suppose there is a nonempty open subset O of V such that Gv is
G-completely reducible for all v ∈ O. Then the subgroup H from Theorem 1.4 is a
principal stabiliser for V .

Corollary 1.6. Suppose char(k)= 0 and Vred is nonempty. Then the subgroup H
from Theorem 1.4 is a principal stabiliser for V .

If we restrict ourselves to the identity components of stabilisers then we get
slightly stronger results.

Theorem 1.7. Suppose Vred is nonempty. There exists a connected G-completely
reducible subgroup H of G such that D(G0

v)= G · H for all v ∈ Vred.

In fact, we prove a version of Theorem 1.7 which applies even when Vred is
empty (see Theorem 7.6).
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We briefly explain our approach to the proof of Theorems 1.4 and 1.7. We may
regard the subgroups Gv as a family of subgroups of G parametrised by V . There
is no obvious way to endow a set of subgroups of G with a geometric structure, so
instead we follow the approach of R.W. Richardson [1967; 1988] and consider the
set of tuples that generate these subgroups.

Definition 1.8. Let N ∈ N. Define

C = CN = {(v, g1, . . . , gN ) | v ∈ V, g1, . . . , gN ∈ Gv}.

We call C the stabiliser variety of V .

Our results follow from a study of the geometry of C , using the theory of
character varieties and the theory of G-complete reducibility. A major technical
problem is that C can be reducible even when G is connected and V is irreducible,
so the projection into V of a nonempty open subset of C need not be dense (see
Remarks 7.9 and 7.13, for example). The situation is better if we consider only
the identity components of stabilisers: we can work with a canonically defined
subvariety C̃ of C with nicer properties (see Lemma 7.1).

The paper is laid out as follows. Section 2 contains preliminary material. In
Section 3 we prove Theorems 1.1 and 1.3. Section 4 reviews G-complete reducibility
and Section 5 introduces a technical tool needed in Section 6, where we prove
Theorem 1.4 and Corollaries 1.5 and 1.6. We study the irreducible components of
C in Section 7 and prove Theorem 1.7. The final section contains some examples.

2. Preliminaries

Throughout the paper, N denotes a positive integer, G is a reductive linear algebraic
group — possibly nonconnected — over an algebraically closed field k and V is a
quasiprojective G-variety over k. The stabiliser variety CN depends on the choice of
N , but to ease notation we suppress the subscript and write just C . All subgroups of
G are assumed to be closed. If H is a linear algebraic group then we write κ(H) for
the number of connected components of H , Ru(H) for the unipotent radical of H
and αH for the canonical projection H → H/Ru(H). The irreducible components
of H N are the subsets of the form H1× · · · × HN , where each Hi is a connected
component of H . If X ′ is a subset of a variety X then we denote the closure of
X ′ in X by X ′. Below we will use the following results on fibres of morphisms
(cf. [Borel 1991, AG.10.1 Theorem]): if f : X → Y is a dominant morphism of
irreducible quasiprojective varieties then for all y ∈ Y , every irreducible component
of f −1(y) has dimension at least dim(X)− dim(Y ), and there is a nonempty open
subset U of Y such that if y ∈ U then equality holds. More generally, if Z is a
closed irreducible subset of Y and W is an irreducible component of f −1(Z) that
dominates Z then dim(W )≥ dim(Z)+ dim(X)− dim(Y ).
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The next result is Lemma 3.7 of [Newstead 1978].

Lemma 2.1. Let a linear algebraic group H act on a quasiprojective variety W .
For any t ∈ N∪ {0}, the set {w ∈W | dim(Hw)≥ t} is closed.

Our assumption that G permutes the irreducible components of V transitively
implies that these components all have the same dimension, which we denote by
n, and also that nonempty open G-stable subsets of V are dense. In particular, the
open subset V0 is dense; we denote the dimension of Gv for any v ∈ V0 by r .

The group G acts on G N by simultaneous conjugation: g · (g1, . . . , gN ) =

(gg1g−1, . . . , ggN g−1). We define φ : C→G N and η : C→ V to be the canonical
projections. We allow G to act on C in the obvious way, so that φ and η are
G-equivariant.

We recall an approach to parabolic subgroups and Levi subgroups using cochar-
acters [Springer 1998, Section 8.4; Bate et al. 2005, Lemma 2.4 and Section 6]. We
denote by Y (G) the set of cocharacters of G. The subgroup

Pλ :=
{
g ∈ G | lim

a→0
λ(a)gλ(a)−1 exists

}
is called an R-parabolic subgroup of G, and the subset Lλ := CG(λ(k∗)) is called
an R-Levi subgroup of Pλ. An R-parabolic subgroup P is parabolic in the sense that
G/P is complete, and P0 is a parabolic subgroup of G0. If G is connected then
an R-parabolic (resp. R-Levi) subgroup is a parabolic (resp. Levi) subgroup, and
every parabolic subgroup P and every Levi subgroup L of P arise in this way. The
normaliser NG(P) of a parabolic subgroup P of G0 is an R-parabolic subgroup.
The subset {g ∈ G | lima→0 λ(a)gλ(a)−1

= 1} is the unipotent radical Ru(Pλ), and
this coincides with Ru(P0

λ ). We denote the canonical projection from Pλ to Lλ
by cλ. There are only finitely many conjugacy classes of R-parabolic subgroups
[Martin 2003, Proposition 5.2(e)].

We finish with some results that are well known; we give proofs here as we
could not find any in the literature. These results are not needed in the proofs of
Theorems 1.1 and 1.3.

Lemma 2.2. Let ψ : X → Y be a morphism of quasiprojective varieties over k.
There exists d ∈ N such that any fibre of ψ has at most d irreducible components.

Proof. By noetherian induction on closed subsets of X and Y , we are free to pass
to open affine subvarieties of X and Y whenever this is convenient. So assume
that X and Y are affine and let R and S be the coordinate rings of X and Y ,
respectively. Suppose first that X and Y are irreducible and that ψ is finite and
dominant. By a simple induction argument, we can assume that R = S[ f ] for some
f ∈ R. Let m(t)= td

+ ad−1td−1
+ · · ·+ a0 be the minimal polynomial of f with

respect to the quotient field of S. Passing to open subvarieties, we can assume
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that the ai are defined on Y . Let y ∈ Y . If x ∈ X with ψ(x) = y then we have
f (x)d + ad−1(y) f (x)d−1

+ · · ·+ a0(y)= 0; it follows that there can be at most d
such values of x . Thus the fibres of ψ have cardinality at most d .

Now consider the general case. Passing to open subvarieties, we can assume
that X and Y are irreducible and affine and that ψ is dominant. We can write
R = S[ f1, . . . , ft ] for some t and some f1, . . . , ft ∈ R. After reordering the fi

if necessary, there exists s with 0 ≤ s ≤ t such that f1, . . . , fs are algebraically
independent over S and fs+1, . . . , ft are algebraic over S[ f1, . . . , fs]. The inclusion
S ⊆ S[ f1, . . . , fs] ⊆ R corresponds to a factorisation of ψ as

ψ = X
ψ ′

−→ Y ′
g
−→ Y,

where Y ′ is the affine variety with coordinate ring S[ f1, . . . , fs]. Then we have
dim(X) = dim(Y ′) and ψ ′ is dominant. By passing to open affine subvarieties,
we can assume that ψ ′ is finite and Y ′ is normal. By the special case above, the
cardinality of the fibres of ψ ′ is bounded by some d .

Suppose that for some y ∈ Y , the fibre F :=ψ−1(y) has d+1 distinct irreducible
components, say F1, . . . , Fd+1. The fibre F ′ := g−1(y) is clearly isomorphic to ks

and we have F = (ψ ′)−1(F ′). Since ψ ′ is finite and Y ′ is normal, every irreducible
component of F has dimension s and is mapped surjectively to F ′ [Humphreys
1975, 4.2 Proposition (b)]. But this means that for generic y′ ∈ F ′, (ψ ′)−1(y′) has
at least d+1 elements, a contradiction. We deduce that F has at most d irreducible
components, as required. �

Definition 2.3. Applying Lemma 2.2 to the map η : C → V , we see there is a
uniform bound on κ(Gv) as v ranges over the elements of V , since the number of
irreducible components of G N

v is κ(Gv)
N . We denote the least such bound by 2.

Lemma 2.4. Let�/k be a proper extension of algebraically closed fields. Let t ∈N

and let X be an �-defined constructible subset of �t . Let {X i | i ∈ I } be a family
of k-defined constructible subsets of �t such that X ⊆

⋃
i∈I X i . Then there exists

i ∈ I such that X ∩ X i has nonempty interior in X. Moreover, there exists a finite
subset F of I such that X ⊆

⋃
i∈F X i .

Proof. Clearly we can reduce to the case when X and each of the X i is irreducible
and locally closed in �t . The second assertion follows from the first by Noetherian
induction on closed subsets of X , so it is enough to prove the first assertion.
Let m = dim(X). It suffices to show that dim(X ∩ X i ) = m for some i ∈ I .
We use induction on m. The result is trivial if m = 0. Choose polynomials
f1, . . . , fm ∈ k[T1, . . . , Tt ] such that the restrictions of the fi to X form a subset
of the coordinate ring �[X ] that is algebraically independent over �. Define
f : �t

→�m by f (x)= ( f1(x), . . . , fm(x)); note that f is k-defined. Any proper
closed subset of X is a union of irreducible components of dimension less than m.
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By induction, we are therefore free to replace X with any nonempty open subset of
X , so we can assume that f |X gives a finite map from X onto an open subset of
�m . Then f (X)⊆

⋃
i∈I f (X i ) and each f (X i ) is k-constructible. It is enough to

prove that f (X)∩ f (X i ) has nonempty interior in f (X). Hence we can assume
without loss that t = m and X is an open subset of �m .

Let π : �m
→� be the projection onto the first coordinate. Since X is an open

and dense subset of �m , π(X) is a dense constructible subset of �, so � \π(X)
is finite. Hence there exists y ∈ π(X) such that y /∈ k. Let X̃ = X ∩ π−1(y).
Then X̃ is an �-defined locally closed subset of �m , X̃ is irreducible of dimension
m− 1 and X̃ ⊆

⋃
i∈I X i . By induction, there exists j ∈ I such that X̃ ∩ X j has an

irreducible component of dimension m− 1. Hence π−1(y)∩ X j has an irreducible
component of dimension at least m−1. Note that we retain our assumption that the
X i are irreducible. Now X j cannot be contained in π−1(y) because π−1(y) has no
k-points, so π−1(y)∩ X j is a proper closed subset of X j . Hence dim(X j )= m, as
required. �

Corollary 2.5. Let � be an uncountable algebraically closed field. Let t ∈N and
let X be an �-defined constructible subset of �t . Let {X i | i ∈ I } be a countable
family of �-constructible subsets of X such that X ⊆

⋃
i∈I X i . Then there exists

i ∈ I such that X i has nonempty interior in X. Moreover, there exists a finite subset
F of I such that X ⊆

⋃
i∈F X i .

Proof. Each of the X i is defined over a subfield of � that is finitely generated over
the algebraic closure of the prime field, so there exists a countable subfield k of �
such that each of the X i is defined over k. Since k is countable and � is not, �/k
is a proper field extension. Now apply Lemma 2.4. �

Corollary 2.6. If X is irreducible and the X i are closed in Corollary 2.5 then there
exists i ∈ I such that X ⊆ X i .

Proof. This is immediate from Corollary 2.5. �

3. Proof of Theorem 1.1

We now prove our first main result.

Lemma 3.1. Let X be a quasiprojective variety, let Y be a projective variety and
let Z be a closed subvariety of X × Y . Then the projection of Z onto X is a closed
variety.

Proof. Choose a covering of X by open affine subvarieties X1, . . . , Xm . A subset S
of X (resp. X × Y ) is closed if and only if its intersection with X i (resp. X i ∩ Y )
is closed for all i , so we can assume that X is affine. The result now follows
from the Projective Extension Theorem [Cox et al. 2015, Chapter 8, Section 5,
Theorem 6]. �
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Lemma 3.2. Let P be an R-parabolic subgroup of G and let W be a closed P-stable
subset of V . Then G ·W is closed in V .

Proof. Set D = {(v, g) ∈ V × G | g−1
· v ∈ W }, a closed subvariety of V × G.

We let P act on V ×G by h · (v, g)= (v, gh−1); then D is P-stable as W is. Let
πP : G → G/P be the canonical projection and define θ : V × G → V × G/P
by θ(v, g) = (v, πP(g)). Since πP is smooth, πP is flat, so (θ, V × G/P) is a
geometric quotient by [Bongartz 1998, Lemma 5.9(a)]. Then θ takes closed P-
stable subvarieties of V × G to closed subvarieties of V × G/P , so θ(D) is a
closed subvariety of V ×G/P . Note that the projection of θ(D) onto V is G ·W .
Lemma 3.1 implies that G ·W is closed in V , so we are done. �

Remark 3.3. We record one corollary (cf. [Sikora 2012, Proposition 27]). Recall
that G acts on G N by simultaneous conjugation. Let P be an R-parabolic subgroup
of G. Then G · P N is closed in G N . This follows immediately from Lemma 3.2,
taking V = G N and W = P N .

Proposition 3.4. Let P be an R-parabolic subgroup of G with unipotent radical U.
Define VP = {v ∈ V0 | dim(Pv) = r} = {v ∈ V0 | G0

v ≤ P} and, for each t ,
VP,t = {v ∈ VP | dim(Uv)≥ t}. Then G · VP,t is closed in V0 for each t.

Proof. This follows from Lemma 3.2 (applied to V0), as each VP,t is P-stable and
closed in V0 (Lemma 2.1). �

Proof of Theorem 1.1. We show that Gv is nonreductive if and only if v∈
⋃

P G·VP,1,
where the union is over a set of representatives of the conjugacy classes of R-
parabolic subgroups of G. Since there are only finitely many R-parabolic subgroups
up to conjugacy and each subset G · VP,1 is closed in V0 (Proposition 3.4), this
suffices to prove the theorem.

If v ∈G ·VP,1 — say, g ·v ∈ VP,1 — then G0
v ≤ g−1 Pg and G0

v contains a positive-
dimensional subgroup M of g−1Ug = Ru(g−1 Pg). Thus G0

v is not reductive,
as G0

v normalises the connected unipotent subgroup of g−1Ug generated by the
G0
v-conjugates of M . Hence Gv is not reductive, either. Conversely, if v ∈ V0 and

Gv has nontrivial unipotent radical H then we can pick a minimal R-parabolic
subgroup P of G containing Gv; then H ≤ Ru(P) (see the paragraph following
Lemma 4.1), so v ∈ G · VP,1. The result now follows. �

Remark 3.5. More generally, set V (t) = {v ∈ V0 | dim(Ru(Gv)) ≥ t}. A similar
argument to the one above shows that V (t)=

⋃
P G · VP,t , where the union is over

a set of representatives of the conjugacy classes of R-parabolic subgroups of G, so
V (t) is closed. In particular, define Vmin={v ∈ V0 | dim(Ru(Gv)) is minimal}; then
Vmin is a nonempty open subset of V0. Note that Vmin = Vred if Vred is nonempty.

We finish the section with the proof of Theorem 1.3. Each coset space G/Hi

is quasiprojective, and the reductive group M acts on G/Hi by left multiplication.
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Let V = G/H1× · · ·×G/Ht , with M acting on V by the product action. For any
(g1, . . . ,gt)∈G t , the stabiliser M(g1 H1,...,gt Ht ) equals M∩g1 H1g−1

1 ∩·· ·∩gt Ht g−1
t .

Hence the set A equals the preimage of Vred under the map from G t to V that sends
(g1, . . . , gt) to (g1 H1, . . . , gt Ht). But Vred is open by Theorem 1.1, so A is open.
This completes the proof.

Remark 3.6. In the setup in the proof of Theorem 1.3, we do not know whether the
subgroups M ∩ g1 H1g−1

1 ∩· · ·∩ gt Ht g−1
t are all conjugate for generic (g1, . . . , gt).

This is the case, however, if these subgroups are G-completely reducible for generic
(g1, . . . , gt) (cf. Example 8.4).

4. G-complete reducibility and orbits of tuples

Let H be a subgroup of G. We say that H is G-completely reducible (G-cr) if
whenever H is contained in an R-parabolic subgroup P of G, there is an R-Levi
subgroup L of P such that H is contained in L . This notion is due to Serre [2005];
see [Serre 1998; 1997] for more details. In particular, we say that H is G-irreducible
(G-ir) if H is not contained in any proper R-parabolic subgroup of G at all; then
H is G-cr. A G-cr subgroup of G is reductive (cf. [Bate et al. 2005, Section 2.5
and Theorem 3.1]), and the converse holds in characteristic 0. A linearly reductive
subgroup is G-cr, while a nontrivial unipotent subgroup of G0 is never G-cr. A
normal subgroup of a G-cr subgroup is G-cr [Bate et al. 2005, Theorem 3.10]. We
denote by C(G)cr the set of conjugacy classes of G-cr subgroups of G.

Lemma 4.1. C(G)cr is countable.

Proof. Let F be the algebraic closure of the prime field. Then G has an F-structure,
by [Martin 2003, Proposition 3.2]. By [Martin 2003, Theorem 10.3] and [Bate
et al. 2005, Theorem 3.1], any G-cr subgroup of G is G-conjugate to an F-defined
subgroup. But G(F) has only countably many G(F)-conjugacy classes of G(F)-cr
subgroups since F is countable. The result follows. �

Let H be a subgroup of G. Let P = Pλ be minimal amongst the R-parabolic
subgroups of G that contain H . Then cλ(H) is an Lλ-ir subgroup of Lλ (see the
proof of [Bate et al. 2013, Proposition 5.14(i)]), so cλ(H) is G-cr. As observed in
Section 1, cλ(H) does not depend on the choice of λ up to conjugacy, and we set
D(H)=G ·cλ(H). We have D(H)=G ·H if and only if cλ(H) is conjugate to H if
and only if H is G-cr [Bate et al. 2013, Proposition 5.14(i)]. For any µ∈Y (G) such
that H ≤ Pµ, if H is G-cr then cµ(H) is conjugate to H , and if cµ(H) is G-ir then
Lµ =G, so H = cµ(H) is G-ir. Since cλ(H) is reductive, Ru(H)≤ Ru(Pλ) and H
is reductive if and only if H ∩ Ru(Pλ) is finite if and only if dim(H)= dim(cλ(H)).
Moreover, dim(CG(H))≤ dim(CG(cλ(H))), with equality if and only if H is G-cr
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[Bate et al. 2013, Theorem 5.8(ii)], and dim(cλ(H))= dim(H)− dim(Ru(H)). If
M ≤ H and αH (M)= H/Ru(H) then D(M)= D(H).

If char(k) = 0 then H has a Levi subgroup M by [Hochschild 1981, VIII,
Theorem 4.3]; that is, H has a reductive subgroup M such that H ∼= M n Ru(H).
Then cλ(H)= cλ(M) is conjugate to M , since M is G-cr, so D(H)= G ·M .

The paper [Bate et al. 2005] laid out an approach to the theory of G-complete
reducibility using geometric invariant theory; we briefly review this now. As
described in Section 1, the idea is to study subgroups of G indirectly by looking
instead at generating tuples for subgroups. Given s ∈N and g = (g1, . . . , gs) ∈ Gs ,
we denote by G(g) or G(g1, . . . , gs) the closed subgroup generated by g1, . . . , gs .
If H is of the form G(g1, . . . , gs) for some g1, . . . , gs ∈ G then we say that H is
topologically finitely generated, and we call g a generating s-tuple or generating
tuple for H . The structure of the set of generating s-tuples is complicated; for
instance, if H = k∗ and k is solid (Definition 4.2) then both {h ∈ H s

| G(h)= H}
and {h ∈ H s

| G(h) 6= H} are dense in H s , even when s = 1.
Recall that G acts on G N by simultaneous conjugation. We call the quotient

space G N/G a character variety and we denote the canonical projection from
G N to G N/G by πG . If λ ∈ Y (G) then we abuse notation and denote the map
cλ × · · · × cλ : P N

λ → L N
λ by cλ. We have πG(g) = πG(cλ(g)) and G(cλ(g)) =

cλ(G(g)) for all g ∈ P N
λ . If g ∈ P N

λ and g′ ∈ P N
λ′ such that G ·cλ(g) and G ·cλ′(g′)

are closed then πG(g)= πG(g′) if and only if cλ(g) and cλ′(g′) are conjugate (see
[Newstead 1978, Corollary 3.5.2]). In particular, if G · g′ is closed then we can
take λ′ = 0, so πG(g)= πG(g′) if and only if cλ(g) is conjugate to g′.

We need a condition on the field to ensure that reductive groups are topologically
finitely generated.

Definition 4.2. An algebraically closed field is solid if either it has characteristic 0
or it has characteristic p > 0 and is transcendental over Fp.

The next result allows us to understand subgroups of G by studying generating
tuples; several of the results stated above for subgroups have equivalent formulations
given for tuples below.

Proposition 4.3 [Martin 2003, Lemma 9.2]. Suppose k is solid. Let H be a reduc-
tive algebraic group and suppose that N ≥ κ(H)+ 1. Then there exists h ∈ H N

such that G(h)= H.

Proposition 4.3 fails if k = Fp, for then any topologically finitely generated
subgroup of G is finite. This is the reason for some of the technical complexity in
what follows. We can, however, formulate the results of this section for arbitrary k,
for example by using the notion of a “generic tuple” [Bate et al. 2013, Definition
5.4]. Even when k is solid, nonreductive subgroups need not be topologically
finitely generated (for example, a topologically finitely generated subgroup of a
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unipotent group in positive characteristic is finite). This is why we need to work
with H/Ru(H) rather than just H in Definition 5.1.

The next result is [Bate et al. 2005, Corollary 3.7].

Theorem 4.4. Let g ∈G N. Then the orbit G ·g is closed if and only if G(g) is G-cr.

Let H be a reductive subgroup of G. The inclusion of H N in G N gives rise to
a morphism 9G

H : H N/H → G N/G, given by 9G
H (πH (h)) = πG(h) for h ∈ H N.

The next result is Theorem 1.1 of [Martin 2003].

Theorem 4.5. The morphism 9G
H is finite. In particular, 9G

H (H
N/H) is closed in

G N/G.

Remark 4.6. (i) The set (G N )ir := {g∈G N
|G(g) is G-ir} is open; this was proved

in [Martin 2003, Corollary 8.4] but it also follows from Remark 3.3.

(ii) Suppose V is irreducible, N ≥ 2 and there exists v ∈ V0 such that G0
v is

G-ir. Then φ−1((G N )ir) is a nonempty open G-stable subset of C by (i), and it
follows from arguments in Section 7 that η(φ−1((G N )ir)) is a dense subset of V
(cf. Remark 7.9). This means that generic stabilisers are “large” in the sense of not
being contained in any proper R-parabolic subgroup of G. On the other hand, we
can interpret Lemma 2.1 as saying that generic stabilisers are “small”. This special
case illustrates the tension between largeness and smallness, from which several of
our results spring.

5. The partial order �

In this section we introduce a technical tool which we need for the proof of
Theorem 1.4. For simplicity, we assume throughout the section that k is solid; see
Remark 5.14 for a discussion of arbitrary k.

Definition 5.1. Let H,M be subgroups of G. We define G ·H �G ·M if there exist
s ∈N, h ∈ H s and m ∈ M s such that αH (G(h))= H/Ru(H) and πG(m)= πG(h).
(It is clear that this does not depend on the choice of subgroup in the conjugacy
classes G ·H and G ·M .) We define G ·H ≺G ·M if G ·H �G ·M and G ·H 6=G ·M .

Lemma 5.2. Let H,M ≤ G. Then G · H � G ·M if and only if D(H)� D(M).

Proof. Pick λ,µ ∈ Y (G) such that H ≤ Pλ, cλ(H) is G-cr, M ≤ Pµ and cµ(M) is
G-cr. Since D(H)= G · cλ(H) and D(M)= G · cµ(M), it is enough to show that
G · H � G ·M if and only if G · cλ(H)� G · cµ(M).

So suppose G · H � G · M . There exist s ∈ N, m = (m1, . . . ,ms) ∈ M s and
h = (h1, . . . , hs) ∈ H s such that αH (G(h)) = H/Ru(H) and πG(m) = πG(h).
Then cµ(m) ∈ cµ(M)s and πG(cµ(m))= πG(cλ(h)). Now cλ(H) is reductive, so
cλ(Ru(H)) = 1. It follows that G(cλ(h)) = cλ(G(h)) = cλ(H). This shows that
G · cλ(H)� G · cµ(M).



408 BENJAMIN MARTIN

Conversely, suppose that G · cλ(H) � G · cµ(M). Then there exist s ∈ N and
y= (y1, . . . , ys) ∈ cµ(M)s and x = (x1, . . . , xs) ∈ cλ(H)s such that G(x)= cλ(H)
and πG( y) = πG(x). The maps cλ : H s

→ cλ(H)s and cµ : M s
→ cµ(M)s are

surjective, so there exist h = (h1, . . . , hs) ∈ H s and m = (m1, . . . ,ms) ∈ M s such
that cλ(h)= x and cµ(m)= y.

As cλ(H) is reductive, Ru(H)≤ Ru(Pλ). As (Ru(Pλ)∩H)0 is a connected normal
unipotent subgroup of H , we must have (Ru(Pλ)∩ H)0 ≤ Ru(H), and it follows
that (Ru(Pλ)∩ H)0 = Ru(H). Choose hs+1, . . . , hs+t ∈ Ru(Pλ)∩ H such that the
αH (hi ) for s+ 1≤ i ≤ s+ t generate the finite group (Ru(Pλ)∩ H)/Ru(H). Set

h′ = (h1, . . . , hs, hs+1, . . . , hs+t) ∈ H s+t ,

x′ = (x1, . . . , xs, 1, . . . , 1) ∈ cλ(H)s+t ,

m′ = (m1, . . . ,ms, 1, . . . , 1) ∈ M s+t ,

y′ = (y1, . . . , ys, 1, . . . , 1) ∈ cµ(M)s+t .

Then cλ(h′)= x′ and cµ(m′)= y′; moreover, αH (G(h′))= H/Ru(H) by construc-
tion.

To finish, it is enough to show that πG(x′) = πG( y′). As πG(x) = πG( y) and
G(x) = cλ(H) is G-cr, there exists ν ∈ Y (G) such that G( y) ≤ Pν and cν( y) is
conjugate to x. It is then immediate that G( y′)≤ Pν and cν( y′) is conjugate to x′.
Hence πG(x′)= πG( y′), as required. �

Lemma 5.3. Let H,M ≤ G. Suppose that H is G-cr. Then G · H � D(M) if and
only if G · H � G ·M if and only if there exist λ ∈ Y (G) and M1 ≤ Pλ ∩M such
that cλ(M1) is conjugate to H.

Proof. The first equivalence follows from Lemma 5.2. We prove the second
equivalence. As H is G-cr, H is reductive. Suppose G · H � G · M . There
exist s ∈ N, h ∈ H s and m ∈ M s such that G(h) = H and πG(m) = πG(h). Set
M1 = G(m). As H = G(h) is G-cr, there exist λ ∈ Y (G) and g ∈ G such that
M1 ≤ Pλ and cλ(m)= g · h. Then

cλ(M1)= cλ(G(m))= G(cλ(m))= G(g · h)= gG(h)g−1
= gHg−1,

as required.
Conversely, suppose there exist λ ∈ Y (G) and M1 ≤ Pλ ∩M such that cλ(M1)

is conjugate to H . Pick s ≥ κ(H)+ 1. By Proposition 4.3, there exists h ∈ H s

such that G(h)= H . We can pick m ∈ M s
1 such that cλ(m) is conjugate to h. Then

πG(m)= πG(cλ(m))= πG(h), so G · H � G ·M , and we are done. �

Lemma 5.4. Let H,M, K ≤ G. If G · H � G · M and G · M � G · K then
G · H � G · K .



GENERIC STABILISERS FOR ACTIONS OF REDUCTIVE GROUPS 409

Proof. Suppose G · H � G ·M and G ·M � G · K . By Lemma 5.2, we can assume
H , M and K are G-cr. By Lemma 5.3, there exist λ ∈ Y (G) and K1 ≤ Pλ ∩ K
such that cλ(K1) is conjugate to M . Replacing (K , λ) with a conjugate of (K , λ)
if necessary, we can assume that cλ(K1) = M . Pick s ∈ N, h ∈ H s and m ∈ M s

such that G(h)= H and πG(h)= πG(m). There exists k ∈ K s
1 such that cλ(k)=m.

Then πG(k)= πG(cλ(k))= πG(m)= πG(h), so G · H � G · K . �

If H and M are subgroups of G and H is conjugate to a subgroup of M then
G ·H �G ·M (and so D(H)�D(M) by Lemma 5.2); in particular, G ·H �G ·H .
For without loss we can assume that H ≤ M , and if we take s ≥ κ(H/Ru(H))+ 1
then by Proposition 4.3 we can choose m = h ∈ H s such that αH (h) generates the
reductive group H/Ru(H). The following example shows that the converse is false,
even when H and M are G-cr.

Example 5.5. Let char(k)= 2, let G = SL8(k) and let M be PGL3(k) embedded
in G via the adjoint representation on Lie(M) ∼= k8. Since Lie(M) is a simple
M-module, M is G-cr (in fact, G-ir). It follows from elementary representation-
theoretic arguments that M contains exactly two subgroups of type A1 up to M-
conjugacy: the derived group H1 of a Levi subgroup of a rank 1 parabolic subgroup
of M , and the image H2 of SL2(k) under the map SL2(k)→ SL3(k)→ M , where
the first arrow is the adjoint representation of SL2(k) and the second is the canonical
projection. It is easily checked that H1 is M-cr but H2 is not; in fact, there exists
λ ∈ Y (M) such that cλ(H2)= H1.

Now H1 is not G-cr because Lie(H1) is an H1-stable submodule of Lie(M) and
H1 does not act completely reducibly on Lie(H1). Choose µ ∈ Y (G) such that
H1 ≤ Pµ and H := cµ(H1) is G-cr. We have G · H1 � G · M as H1 ≤ M , so
G · H � G ·M by Lemma 5.2. We claim that H is not G-conjugate to a subgroup
of M . First, H is not G-conjugate to H1 because H is G-cr but H1 is not. If H is
G-conjugate to H2 then H2 is G-cr, so H1 = cλ(H2) is G-conjugate to H2; but then
H is G-conjugate to H1, a contradiction. This proves the claim.

We do, however, have the following result.

Lemma 5.6. Let H,M≤G. If G ·H �G ·M and G ·M�G ·H then D(H)=D(M).
In particular, if H and M are G-cr then G · H = G ·M.

Proof. By Lemma 5.2, we can assume H and M are G-cr; in particular, H and
M are reductive. By Lemma 5.3, there exist λ ∈ Y (G) and M1 ≤ Pλ ∩ M such
that cλ(M1) is conjugate to H . Replacing (M, λ) with a conjugate of (M, λ) if
necessary, we can assume that cλ(M1)= H . We have

dim(H)= dim(cλ(M1))≤ dim(M1)≤ dim(M).
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By symmetry, dim(M)≤ dim(H), so

dim(H)= dim(cλ(M1))= dim(M1)= dim(M).

It now follows that

κ(H)= κ(cλ(M1))≤ κ(M1)≤ κ(M).

By symmetry, κ(M)≤ κ(H), so

κ(H)= κ(cλ(M1))= κ(M1)= κ(M).

This implies that M1 = M since M1 ≤ M , so H = cλ(M). But M is G-cr, so M is
conjugate to H . This completes the proof. �

The next result follows immediately from Lemmas 5.4 and 5.6.

Corollary 5.7. The relation � is a partial order on C(G)cr.

Remark 5.8. The proof of Lemma 5.6 shows that if H and M are G-cr subgroups
of G and G ·H ≺ G ·M then either dim(H) < dim(M), or dim(H)= dim(M) and
κ(H) < κ(M). It follows that C(G)cr satisfies the descending chain condition with
respect to �.

Given a reductive subgroup H of G, set S(H)={g∈G N
|πG(g)∈9G

H (H
N/H)}.

Theorem 4.5 implies that S(H) is closed.

Lemma 5.9. Let g ∈ G N and let H ≤ G be reductive. Then g ∈ S(H) if and only
if G ·G(g)� G · H if and only if D(G(g))� D(H).

Proof. We prove the first equivalence. If g ∈ S(H) then there exists h ∈ H N such
that πG(h)=πG(g), so G ·G(g)�G ·H as g generates G(g). Conversely, suppose
G ·G(g) � G · H . Set M = G(g). Then D(M) � D(H) by Lemma 5.2. Choose
µ∈Y (G) such that H ≤ Pµ and cµ(H) is G-cr. Choose ν ∈Y (G) such that M ≤ Pν
and cν(M) is G-cr. Then D(H)=G ·cµ(H) and D(M)=G ·cν(M). By Lemma 5.3,
there exist K ≤ cµ(H) and λ ∈ Y (G) such that G ·cλ(K )=G ·cν(M). There exists
k ∈ K N such that G · cλ(k)= G · cν(g). There exists h ∈ H N such that cµ(h)= k.
We have πG(h) = πG(cµ(h)) = πG(k) = πG(cλ(k)) = πG(cν(g)) = πG(g), so
g ∈ S(H), as required.

The second equivalence follows from Lemma 5.2. �

To prove our results in Section 6, we need to investigate the behaviour of the
relation � under field extensions. We assume for the rest of the section that
N ≥2+ 1. Fix a G-cr subgroup H of G such that N ≥ κ(H)+ 1.

Definition 5.10. Define BH = {v ∈ V | D(Gv)= G · H}.
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Let v ∈ V . For all g ∈ G N
v , we have G(g) ≤ Gv, and so D(G(g)) � D(Gv).

Moreover, since N ≥2+1≥ κ(Gv)+1≥ κ(Gv/Ru(Gv))+1, there exists g′ ∈G N

such that αGv
(G(g′)) = Gv/Ru(Gv) by Proposition 4.3, so D(G(g′)) = D(Gv).

Lemma 5.4 now implies that D(Gv) � G · H if and only if D(G(g)) � D(H) for
all g ∈ G N

v if and only if πG(g) ∈ S(H) for all g ∈ G N
v , where the last equivalence

follows from Lemma 5.9. This is the case if and only if the following formula
holds:

(5.11) (∀g ∈ G N
v )(∃h ∈ H N ) πG(h)= πG(g).

Conversely, G · H � D(Gv) if and only if there exist M1 ≤ Gv and λ ∈ Y (G) such
that M1 ≤ Pλ and cλ(M1) is conjugate to H (Lemma 5.3). This is the case if and
only if the following formula holds:

(5.12) (∃g ∈ G N
v )(∃g ∈ G) πG(g)= g · h0,

where h0 is a fixed element of H N such that G(h0)= H . For, given g ∈ G N
v and

g ∈G such that πG(g)= g ·h0, we set M1 = G(g); conversely, given M1 ≤Gv and
λ ∈ Y (G) such that M1 ≤ Pλ and g ∈ G such that cλ(M1) = gHg−1, we choose
g ∈ M N

1 such that cλ(g)= g · h0.
We summarise the above argument as follows.

Lemma 5.13. Let H be a G-cr subgroup of G such that N ≥ κ(H)+ 1. Then
BH ⊆ V is the set of solutions to the formulas (5.11) and (5.12). In particular, BH

is constructible.

Remark 5.14. It can be shown that Lemma 5.13 holds for arbitrary k, where we
take h to be a generic tuple for H in the sense of [Bate et al. 2013, Definition 5.4].
To do this, one replaces generating tuples with generic tuples in the definition of �
and makes the obvious modifications to the arguments of this section.

6. Proof of Theorem 1.4

We assume throughout this section that N ≥2+ 1.

Proof of Theorem 1.4. We will show that there is a G-cr subgroup H of G such that
N ≥κ(H)+1 and BH has nonempty interior. By Lemma 5.13 and Remark 5.14, it is
enough to prove this after extending the ground field to an uncountable algebraically
closed field � (recall from the proof of Lemma 4.1 that any G(�)-cr subgroup
of G(�) is G(�)-conjugate to a k-defined G-cr subgroup). Thus we can assume
without loss that k is uncountable (and hence solid).

Let D1, . . . , Dt be the irreducible components of C such that η(G · D j )= V for
1 ≤ j ≤ t — it follows from Lemma 7.1(b) below that there is at least one such
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component — and let D′1, . . . , D′t ′ be the other irreducible components of C . Let

V ′ = V \
⋃ t ′

j=1 η(G · D
′

j ).

For 1≤ j ≤ t , set E j = {(v, g) ∈ D j | αGv
(G(g))= Gv/Ru(Gv)}; note that E j is

neither closed nor open in general, and if (v, g) ∈ E j then D(G(g))= D(Gv). For
any v ∈ V ′, N ≥2+ 1≥ κ(Gv)+ 1≥ κ(Gv/Ru(Gv))+ 1, so by Proposition 4.3
there exists g ∈ G N such that αGv

(G(g)) = Gv/Ru(Gv). Then (v, g) ∈ D j for
some 1 ≤ j ≤ t , so (v, g) ∈ E j . Hence

⋃
1≤ j≤t η(G · E j ) ⊇ V ′. As G permutes

the irreducible components of V transitively, η(G · Em) is dense in V for some
1≤ m ≤ t .

Choose G-cr subgroups Hi such that H := {Hi | i ∈ I } is a set of representatives
for the conjugacy classes in C(G)cr; Lemma 4.1 implies that I is countable. Let
3= {Hi | G ·Dm ⊆ φ

−1(S(Hi ))}. Then G ∈3, so 3 is nonempty. By Remark 5.8,
we can pick H ∈ 3 such that H is minimal with respect to �. We claim that
G · D j ⊆ φ

−1(S(H)) for all 1 ≤ j ≤ t . To prove this, let (v, g) ∈ D j such that
v ∈ η(Em). There exists g′ ∈G N

v such that (v, g′)∈ Em . Then (v, g′)∈φ−1(S(H)),
so g′ ∈ S(H). Now G(g) ≤ Gv, so D(G(g)) � D(Gv) = D(G(g′)) � G · H by
Lemma 5.9. Hence (v, g) ∈ φ−1(S(H)) by Lemma 5.9. As S(H) is G-stable, it
now follows that if (v, g) ∈ D j and v ∈ η(G · Em) then (v, g) ∈ φ−1(S(H)). But
η−1(η(G ·Em))∩D j is dense in D j as η(G ·Em) is dense in V , so D j ⊆φ

−1(S(H)).
As S(H) is G-stable, G ·D j ⊆ φ

−1(S(H)), as claimed. It follows from Lemma 5.9
that D(G(g))�G ·H for all 1≤ j ≤ t and all (v, g) ∈G ·D j . In particular, for any
v ∈ V ′, there exist j and g′ ∈G N such that (v, g′)∈ E j , so D(Gv)=D(g′)�G ·H .

To finish, we show that BH has nonempty interior in V . Suppose otherwise. As
BH is constructible (Lemma 5.13), BH is a proper closed subset of V , so V \ BH

is a G-stable subset with nonempty interior. Now η
(
φ−1(S(H))

)
is dense in V

as it contains η(G · Dm). Hence there is a nonempty open G-stable subset O of
η
(
φ−1(S(H))

)
∩V ′ such that BH ∩O is empty. Let v ∈ O and let g ∈G N such that

(v, g)∈ Dm . Then D(G(g))�D(Gv)�G ·H ; but v /∈ BH , so D(Gv) 6=G ·H , and
it follows from Corollary 5.7 that D(G(g))≺ G · H . Hence D(G(g))= G · Hi for
some i ∈ I such that G · Hi ≺ G · H . Lemma 5.9 now implies that η−1(O)∩ Dm ⊆⋃

i∈I ′ φ
−1(S(Hi )), where I ′ := {i ∈ I |G ·Hi ≺G ·H}. By Corollary 2.6, there exists

i ∈ I ′ such that η−1(O)∩ Dm ⊆ φ
−1(S(Hi )). Since η−1(O)∩ Dm is a nonempty

open subset of Dm and φ−1(S(Hi )) is closed and G-stable, G · Dm ⊆ φ
−1(S(Hi )).

But G · Hi ≺ G · H , which contradicts the minimality of H . We conclude that BH

has nonempty interior in V after all. Finally, since G · H =D(Gv) for some v ∈ V ,
we have κ(H)≤ κ(Gv)≤2, so N ≥ κ(H)+ 1. This completes the proof. �

Proof of Corollaries 1.5 and 1.6. We can assume O is G-stable. By Theorem 1.4,
there is a nonempty open G-stable subset O ′ of V and a G-cr subgroup H of G
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such that D(Gv)= G · H for all v ∈ O ′. Now O ∩O ′ is a nonempty open G-stable
subset of V , and for all v ∈O∩O ′, D(Gv)=G ·H . Since Gv is G-cr for v ∈O∩O ′,
Gv is conjugate to H . It follows that V has a principal stabiliser.

In particular, the hypotheses of Corollary 1.5 are satisfied if char(k) = 0 and
Vred is nonempty, since then Vred is open by Theorem 1.1 and for all v ∈ Vred, Gv —
being reductive — is G-cr. This proves Corollary 1.6. �

Remark 6.1. Here is a generalisation of Corollary 1.6. If char(k)= 0 and O is as
in Theorem 1.4 then G ·Mv =D(Gv)= G · H for all v ∈ O , where Mv is any Levi
subgroup of Gv.

7. Irreducible components of the stabiliser variety

In this section we study the irreducible components of the stabiliser variety C . We
use the information we obtain to prove results analogous to those in Section 6, but
for the subgroups G0

v rather than the subgroups Gv. We assume throughout the
section that N ≥ 3.

Lemma 7.1. (a) Let D be an irreducible component of C such that η(G · D) is
dense in V . Then dim(D)= n+ Nr and for all v ∈ V0, the fibre (η|D)−1(v) either
is empty or has dimension Nr and is isomorphic (via φ) to a union of irreducible
components of G N

v .

(b) There is a unique closed subset C̃ of C such that C̃ contains V × {1}, C̃ is a
union of irreducible components of C and G permutes these irreducible components
transitively. The variety C̃ is the closure of the set {(v, g) | v ∈ V0, g ∈ (G0

v)
N
}, and

each irreducible component of C̃ has dimension n+ Nr.

Proof. Clearly it is enough to prove the result when G is connected and V is
irreducible, so we assume this.

(a) Define f : V ×G N
→ V × V N by

f (v, g)= (v, g1 · v, . . . , gN · v).

Let Y be the closure of the image of f . Let 1 be the diagonal in V × V N ; then
C = f −1(1). The variety Y is irreducible because G and V are irreducible. Let
v ∈ V and let g ∈ G N . Then f −1(v, g1 ·v, . . . , gN ·v)= {v}× g1Gv× · · ·×gN Gv .
Hence irreducible components of generic fibres of f over Y have dimension Nr . It
follows that

dim(Y )= dim(V ×G N )− Nr = n+ Ndim(G)− Nr = n+ N (dim(G)− r).

As η(D) is dense in V , f (D) is dense in 1, so dim(D)≥ dim(1)+ Nr = n+ Nr .
If v ∈ η(D)∩V0 and Z is an irreducible component of (η|D)−1(v), then we have

dim(Z) ≥ dim(D)− dim(V ) ≥ n + Nr − n = Nr . But φ(η−1(v)) is a subset of
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G N
v and the irreducible components of G N

v all have dimension dim(G N
v ) = Nr .

This forces Z to be isomorphic (via φ) to an irreducible component of G N
v . Hence

irreducible components of generic fibres of η|D have dimension Nr , which implies
that dim(D)= n+ Nr . Part (a) now follows.

(b) Since V × {1} is irreducible, there is some irreducible component C̃ of C
such that C̃ contains V ×{1}. For any v ∈ V0, let Z be an irreducible component
of the fibre (η|C̃)

−1(v) such that (v, 1) ∈ Z . By part (a), dim(Z) = Nr , so Z is
isomorphic via φ to an irreducible component of G N

v . But the only component of
G N
v that contains 1 is (G0

v)
N , so {v}× (G0

v)
N
⊆ Z . Hence C̃ contains the closure

of {(v, g) | v ∈ V0, g ∈ (G0
v)

N
}— call this closure C ′.

Let A1, . . . , Am be the irreducible components of C ′ such that η(A j )= V (there
is at least one, since η(C ′)= V ). Let si = dim(Ai ) for 1≤ i ≤m and let ηi : Ai→ V
be the restriction of η. There is a nonempty open subset U of V such that for all
v ∈ U , η−1(v) ⊆ A1 ∪ · · · ∪ Am and every irreducible component of η−1

i (v) has
dimension si −n. Since {v}× (G0

v)
N
⊆C ′ for all v ∈ V0, if v ∈U ∩V0 then η−1

j (v)

must contain {v} × (G0
v)

N for some 1 ≤ j ≤ m, which forces s j ≥ n + Nr . But
dim(C̃) = n + Nr by part (a), so A j must be the whole of C̃ , so C ′ = C̃ . This
completes the proof. �

Remark 7.2. The dimension inequality in Lemma 7.1(a) can fail if η(G · D)
is not dense in V (Example 8.2). Moreover, C̃ need not contain the whole of
{(v, g) | v ∈ V, g ∈ (G0

v)
N
}: see Examples 8.1(a) and 8.2.

Remark 7.3. If G is connected and V is irreducible then C̃ is irreducible and
G-stable. More generally, any irreducible component of C is G-stable in this case.

Definition 7.4. We call C̃ the connected-stabiliser variety of V .

Corollary 7.5. If r = 0 then C̃ = V ×{1}.

Proof. The irreducible components of V × {1} are isomorphic via η to the irre-
ducible components of V , so they are permuted transitively by G and each has
dimension n. It follows from the dimension formula in Lemma 7.1(a) that these
irreducible components are irreducible components of C . The result now follows
from Lemma 7.1(b). �

We denote by φ̃ : C̃ → G N and η̃ : C̃ → V the restrictions to C̃ of φ and
η, respectively, and if v ∈ V then we denote φ̃

(
η̃−1(v)

)
by Fv. If v ∈ V0 then

(G0
v)

N
⊆ Fv; we do not know whether equality holds for all v ∈ V0, or even for

generic v ∈ V0.
We now give a counterpart to Theorem 1.4. In the connected case, we obtain

slightly more information: we can describe D(G0
v) for all v ∈ Vmin (recall the

definition of Vmin from Remark 3.5).
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Theorem 7.6. There exists a connected G-completely reducible subgroup H of G
such that:

(a) For all v ∈ Vmin, D(G0
v)= G · H.

(b) C̃ ⊆ φ̃−1(S(H)).

In particular, if Vred is nonempty then D(G0
v)= G · H for all v ∈ Vred.

Proof. By Theorem 1.4, there exist a G-cr subgroup H ′ of G and a G-stable
open subset O of V such that D(Gv) = G · H ′ for all v ∈ O . Set H = (H ′)0;
then H is G-cr as H E H ′. Let t be the minimal dimension of dim(Ru(Gv)) for
v ∈ V0. The G-stable open sets O and Vmin have nonempty intersection, so there
exists v ∈ Vmin ∩ O such that D(Gv)= G · H ′ and dim(Ru(Gv))= t . This yields
dim(H ′)= dim(Gv)− dim(Ru(Gv))= r − t .

By the proof of Theorem 1.4, C̃⊆ φ̃−1(S(H ′)). Let v∈Vmin and choose λ∈Y (G)
such that D(Gv)= cλ(Gv). Then cλ(Gv) is G-cr and cλ(G0

v)= cλ(Gv)
0 is a normal

subgroup of cλ(Gv), so cλ(G0
v) is G-cr. It follows that D(G0

v) = G · cλ(G0
v). We

want to prove that cλ(G0
v) is conjugate to H ; that is, we want to prove that

(∃m ∈ G)[(∀g ∈ G0
v) cλ(g) ∈ m Hm−1

∧ (∀h ∈ H)(∃g ∈ G0
v) cλ(g)= mhm−1

].

Since this is a first-order formula, this is a constructible condition. Hence it is
enough to prove that it holds after extending k to any larger algebraically closed
field. So without loss of generality we assume k is solid.

By Proposition 4.3, we can choose g′∈(G0
v)

N such that αG0
v
(G(g′))=G0

v/Ru(G0
v).

There exists h∈ (H ′)N such that πG(h)=πG(g′). Let K =G(h). Now cλ(G(g′))=
cλ(G0

v) is G-cr, so there exists µ ∈ Y (G) such that cµ(h) is conjugate to cλ(g′).
Then cλ(G(g′)) is conjugate to cµ(G(h)). But

(7.7) dim
(
cλ(G(g′))

)
= dim

(
cλ(G0

v)
)
= dim(H)

≥ dim(K )≥ dim
(
cµ(K )

)
= dim

(
cµ(G(h))

)
,

which forces dim(K ) to equal dim(H). Hence K ⊇ H . Now cµ(K ) is conjugate to
cλ(G0

v), which is connected, so cµ(K )= cµ(H). But cµ(H) is conjugate to H since
H is G-cr, so we deduce that cλ(G0

v) is conjugate to H . Hence D(G0
v)=G ·H . This

proves part (a). Moreover, if g ∈ (G0
v)

N then cλ(G(g)) = G(cλ(g)) is conjugate
to a subgroup of H , so there exists h ∈ H N such that cλ(g) is conjugate to h;
hence (v, g) ∈ φ̃−1(S(H)). As {(v, g) | v ∈ Vmin, g ∈ (G0

v)
N
} is dense in C̃ by

Lemma 7.1(b) and Remark 3.5, C̃ ⊆ φ̃−1(S(H)). This proves part (b). �

The next result is the counterpart to Corollaries 1.5 and 1.6. We omit the proof,
which is similar.

Corollary 7.8. Suppose there is a nonempty open subset O of V such that G0
v is

G-cr for all v ∈ O (in particular, this condition holds if char(k) = 0 and Vred is
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nonempty). Let H be the connected G-cr subgroup from Theorem 7.6. Then G0
v is

conjugate to H for all v ∈ Vred.

Remark 7.9. Suppose there exists v ∈ V0 such that G0
v is G-ir. Then Gv is G-cr, so

v ∈ Vred, so Vred is nonempty. We have D(G0
v)= G · H by Theorem 7.6(a). As G0

v

is G-cr, G ·G0
v = G · H . It follows that H is G-ir and G0

w is conjugate to H for all
w ∈ Vred; in particular, G0

w is G-ir for all w ∈ Vred. The analogous result for the full
stabiliser Gv is false (cf. Remarks 7.13 and 4.6(ii), and Examples 8.1(c) and 8.2).
However, if O is as in Theorem 1.4 and there exists v ∈ O such that Gv is G-ir
then an argument like the one above shows that V has a G-ir principal stabiliser.

Theorem 7.6 gives rise to the following counterpart to Remark 6.1 for G0
v; the

proof is similar.

Corollary 7.10. Suppose char(k)= 0. Then H is conjugate to a Levi subgroup of
G0
v for all v ∈ Vmin.

We give a criterion to ensure that the fibres of η̃ are irreducible. Define C̃min =

η̃−1(Vmin).

Proposition 7.11. Suppose char(k)= 0 and N ≥2+ 1. Then

C̃min =
{
(v, g) | v ∈ Vmin, g ∈ (G0

v)
N}.

Proof. Let H be as in Theorem 7.6. Let v ∈ Vmin, and suppose Fv properly
contains (G0

v)
N . Then Fv contains an irreducible component D 6= (G0

v)
N of G N

v

by Lemma 7.1(a). Set K = Gv, set M = K/Ru(K ) and let αK : K → M be the
canonical projection. Let K1 be the subgroup of K generated by K 0 together with
the components of each of the tuples in D; then K1 properly contains K 0. As
Ru(Gv) is connected, M1 := αK (K1) properly contains M0. In particular, M1 is
reductive. By [Martin 2003, Lemma 9.2], there exists g ∈ D such that αK (g)
generates M1. Hence G · K1 � G · G(g). Now g ∈ C̃ , so G · G(g) � G · H
(Theorem 7.6(b)). It follows from Lemma 5.4 that G · K1 � G · H .

We have G · H =D(K 0) by choice of v and Theorem 7.6, so G · H � G · K 0 by
Lemma 5.2. Now G · K 0

� G · K1 as K 0
≤ K1, so G · H � G · K1 by Lemma 5.4.

It follows from Lemmas 5.2 and 5.6 that G · H =D(K1). Now D(K1)= G ·M1 as
M1 is reductive and char(k)= 0, so G · H = G ·M1. But this is impossible as H is
connected and M1 is not. We conclude that Fv = (G0

v)
N after all. The result now

follows. �

We have seen that we obtain stronger results if we know that generic stabilisers
(or their identity components) are G-cr. Reductive subgroups are always G-cr in
characteristic 0, but things are more complicated in positive characteristic. Our
next result shows that if this G-complete reducibility condition fails for connected
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stabilisers then it fails badly: we prove that if there exists v ∈ V0 such that G0
v is

reductive but not G-cr then generic elements of V have the same property.

Proposition 7.12. Let H be as in Theorem 7.6. Let

B̃ ′H = {v ∈ Vmin | G0
v is not G-cr}.

If B̃ ′H is nonempty then B̃ ′H has nonempty interior.

Proof. Note that D(G0
v) = G · H for all v ∈ B̃ ′H , by Theorem 7.6. The argument

below shows that B̃ ′H = Vmin ∩ η̃(φ̃
−1(U )), where U is the open set defined below,

so B̃ ′H is constructible. It follows as in the proof of Theorem 7.6 that we can extend
the ground field k; hence we can assume k is solid.

Suppose B̃ ′H is nonempty. Let v ∈ B̃ ′H . By Proposition 4.3 we can choose
g ∈ (G0

v)
N such that αG0

v
(G(g)) = G0

v/Ru(G0
v) and such that 1 6= gN ∈ Ru(G0

v)

if G0
v is nonreductive. This ensures that G(g) is not G-cr. Since H is G-cr and

D(G0
v)= G · H , there exists λ ∈ Y (G) such that G0

v ≤ Pλ and cλ(G0
v) is conjugate

to H . Then cλ(G(g))= cλ(G0
v) is conjugate to H , so

dim(G g)= dim
(
CG(G(g))

)
< dim(CG(H)),

since G(g) is not conjugate to H (as G(g) is not G-cr). Consider G N regarded as
a G-variety. Let U be the set of all m ∈ G N such that dim(Gm) < dim(CG(H));
then U is an open neighbourhood of g, by Lemma 2.1.

Let E = {(w, g) ∈ C̃ ∩ φ̃−1(U )∩ η̃−1(Vmin) | g ∈ (G0
w)

N
}. By Lemma 7.1(b),

E is dense in C̃ , so η̃(E) is dense in V . To complete the proof, it is enough to
show that η̃(E)⊆ B̃ ′H , for then B̃ ′H , being constructible and dense, has nonempty
interior. So let w ∈ η̃(E). Pick m such that (w,m) ∈ E . Then m ∈ (G0

w)
N
∩U , so

dim(CG(m)) < dim(CG(H)), so dim(CG(G0
w)) < dim(CG(H)) also. It follows by

running the argument above for G0
v in reverse that G0

w is not G-cr. Hence w ∈ B̃ ′H ,
as required. �

Remark 7.13. A similar argument establishes the following. Let H be as in
Theorem 1.4. If there exists (v, g) ∈ C such that v ∈ V0, D(Gv)= G · H and Gv

is not G-cr then there is an open neighbourhood U of (v, g) ∈ C such that for all
(w, g′)∈U , Gw is not G-cr. But this does not yield an analogue of Proposition 7.12
for Gv (see Example 8.1(b)) — the problem is that η(U ) need not be dense in V .

8. Examples

In this section we present some examples that show the limits of our results and
illustrate some of the phenomena that can occur. We assume N ≥2+ 1.

Example 8.1. We consider a special case of the setup from the proof of Theorem 1.3.
Let G = PGL2(k), let M ≤ G and let V be the quasiprojective variety G/M with
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G acting by left multiplication. We assume that M ∩ gMg−1
= 1 for generic g ∈ G

(this will hold in all the cases we consider). Then Gw = 1 for generic w ∈ V , so the
subset H from Theorem 1.4 is 1, and C̃ = V ×{1} by Corollary 7.5. In particular,
Fw = {1} for all w ∈ V . Let v = M ∈ G/M ; then Gv = M .

(a) Let M be a maximal torus of G. Then Fv is properly contained in M N , so we
see that Fv need not contain all of (G0

v)
N when v /∈ V0 (cf. Remark 7.2). The subset

BH is dense but not closed in V , as D(Gv)= G ·M .

(b) Let M =〈x〉, where x ∈G is a nontrivial unipotent element. Then V =V0=Vred

and Gw is unipotent for all w ∈ V , so D(Gv)= {1} for all w ∈ V (where 1 denotes
the trivial subgroup). Now Gw = 1 is G-cr for generic w ∈ V but Gv is not G-cr.
Hence the set {w ∈ Vred |D(Gw)= G · H and Gv is not G-cr} is nonempty but not
dense in V (cf. Remark 7.13). The irreducible components of C apart from C̃ do
not dominate V .

(c) Let M = PGL2(q), where q is a power of the characteristic p. We have
V = V0 = Vred. Now M is G-ir, so the set {w ∈ Vred | Gw is G-ir} is nonempty but
not dense in V . Moreover, the set O from Theorem 1.4 does not contain the whole
of Vred.

Example 8.2. Suppose G is connected and not a torus. Let m ∈N and let V be the
variety of m-tuples of unipotent elements of G, with G acting on V by simultaneous
conjugation. We claim that {(1, . . . , 1)}×G N is an irreducible component of C . To
see this, let D be an irreducible component of C such that {(1, . . . , 1)}×G N

⊆ D.
Consider the element (1, . . . , 1, g) ∈ D, where the components of g ∈ G N are all
regular semisimple elements of G. There is an open neighbourhood O of g in G N

consisting of tuples of regular semisimple elements. If (v1, . . . , vm, g′) ∈ φ−1(O)
then each component of g′ is a regular semisimple element of g centralising the
unipotent elements v1, . . . , vm of G. But this forces v1, . . . , vm to be 1. It follows
that D= {(1, . . . , 1)}×G N , as claimed. Hence η(D)= {(1, . . . , 1)} and η(D)∩V0

is empty (note also that if m is large enough then the dimension inequality from
Lemma 7.1(a) is violated). We see that the set {w ∈ V | G0

w is G-ir} is nonempty
but not dense in V .

It is not hard to show that F(1,...,1) ⊆ {g · g | g ∈ U N
}, where U is a maximal

unipotent subgroup of G; in particular, we see as in Example 8.1(a) that Fv need not
contain all of (G0

v)
N when v 6∈ V0. Moreover, since the centraliser of a nontrivial

unipotent subgroup of a connected group can never be reductive, the only reductive
stabiliser is G(1,...,1), so Vred is empty.

Example 8.3. Let X be an affine variety and M a reductive linear algebraic group.
Suppose we have a morphism f : X×M→ X×G of the form f (x,m)= (x, fx(m)),
and suppose further that each fx : M→ G is a homomorphism of algebraic groups.
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Set Kx = im( fx). Define actions of G and M on X ×G by g · (x, g′) = (x, gg′)
and m · (x, g′)= (x, g′ fx(m)−1). These actions commute with each other, so we
get an action of G on the quotient space V := (X ×G)/M .

Now suppose moreover that dim(Kx) is independent of x . Then the M-orbits on
X×G all have the same dimension, so they are all closed. This means the canonical
projection ϕ from X×G to V is a geometric quotient, so its fibres are precisely the
M-orbits [Newstead 1978, Corollary 3.5.3]. A straightforward calculation shows
that for any (x, g) ∈ X ×G, the stabiliser Gϕ(x,g) is precisely gKx g−1. It follows
that if X is infinite and the subgroups Kx are pairwise nonconjugate as x runs over
the elements of a dense subset of X then V has no principal stabiliser.

Here is a simple example. Let G = SL2(k), let X = k and let

M = C p×C p = 〈γ1, γ2 | γ
p

1 = γ
p

2 = [γ1, γ2] = 1〉.

Define f : X ×M→ X ×G by f (x,m)= (x, fx(m)), where

fx(γ
m1
1 γ

m2
2 ) :=

( 1 m1x +m2x2

0 1

)
.

It is easily checked that f has the desired properties, so V := (X ×M)/G has no
principal stabiliser. Note also that generic stabilisers are nontrivial finite unipotent
groups, but the element v = ϕ(0, 1) has trivial stabiliser.

Here is an example where the stabilisers are connected. Daniel Lond [Lond 2013,
Section 6.5] produced a family, parametrised by X := k, of homomorphisms from
M := SL2(k) to G := B4 in characteristic 2 with pairwise nonconjugate images.
Using this one can construct a morphism f : X × M → X ×G with the desired
properties, giving rise to a G-variety V := (X×M)/G having no principal stabiliser
and with all stabilisers connected and reductive. Results of David Stewart [2010,
Section 5.4.3] give rise to a similar construction for G = F4 in characteristic 2.

Example 8.4. We now give an example where there is a point with trivial stabiliser
but generic stabilisers are finite and linearly reductive, using another special case
of the setup from the proof of Theorem 1.3. We describe a recipe for producing
such examples, given in [Burness et al. 2015, Corollary 3.10]. Take a simple
algebraic group G of rank s in characteristic not 2 and set M = CG(τ ), where τ
is an involution that inverts a maximal torus of G. Then the affine variety G/M ,
with M acting by left multiplication, has precisely one orbit that consists of points
with trivial stabiliser. Let V = G/M ×G/M with the product action of G. Then
generic stabilisers of points in V are 2-groups of order 2s , but V contains points
with trivial stabiliser. Thus V = V0 = Vred and C̃ = V × {1}. Since 2-groups are
linearly reductive — and hence G-cr — in characteristic not 2, the G-cr subgroup
H from Theorem 1.4 must be a 2-group of order 2s , and moreover, H is a principal
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stabiliser for V by Corollary 1.5. The set {v ∈ Vred | D(Gv) = G · H} does not
contain the whole of Vred (cf. Theorem 7.6).

We claim that there is at least one irreducible component D of C such that
η(D) = V but η(D) 6= V . Let D1, . . . , Dt be the irreducible components of V
apart from C . Then

⋃t
i=1 η(Di )= V , so η(D j ) is dense in V for some 1≤ j ≤ t .

There are only finitely many conjugacy classes of nontrivial elements of G of order
dividing 2s , and each such conjugacy class is closed because in characteristic not 2,
elements of order a power of 2 are semisimple. Hence there are regular functions
f1, . . . , fm : G→ k for some m such that for all g ∈ G, g is a nontrivial element of
order dividing 2s if and only if f1(g)= · · · = fm(g)= 0. For 1≤ l ≤ N , let Zl be
the closed subset {(v, g1, . . . , gN ) ∈ C | f1(gl) = · · · = fm(gl) = 0} of C and let
Z = Z1∪· · ·∪ Z N . If (v, g) ∈ D j \ (D j ∩ C̃) then g 6= 1, so some component of g
is a nontrivial element of G of order dividing 2s , so (v, g) ∈ Z . Hence the open
dense subset D j \ (D j ∩ C̃) of D j is contained in Z , and it follows that D j ⊆ Z .
This implies that if v ∈ V and Gv = 1 then v /∈ η(D j ).
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ON THE EQUATIONS DEFINING
AFFINE ALGEBRAIC GROUPS

VLADIMIR L. POPOV

In memory of Robert Steinberg

For the coordinate algebras of connected affine algebraic groups, we explore
the problem of finding a presentation by generators and relations canonically
determined by the group structure.

1. Introduction

Connected algebraic groups constitute a remarkable class of irreducible quasipro-
jective algebraic varieties. It contains the subclasses of abelian varieties and affine
algebraic groups. These subclasses are basic: by Chevalley’s theorem, every con-
nected algebraic groupG has a unique connected normal affine algebraic subgroupL
such that G=L is an abelian variety, whence the variety G is an L-torsor over the
abelian variety G=L. The varieties from these subclasses can be embedded in
many ways as closed subvarieties in, respectively, projective and affine spaces. A
natural question then arises as to whether there are distinguished embeddings and
equations of their images, which are canonically determined by the group structure.
For abelian varieties, this is the existence problem for canonically defined bases
in linear systems and that of presenting homogeneous coordinate rings of ample
invertible sheafs by generators and relations. These problems were explored and
solved by D. Mumford [1966]. For affine algebraic groups, it is the existence
problem of the canonically defined presentations of the coordinate algebras of such
groups by generators and relations. We explore this problem in the present paper.

We fix as the base field an algebraically closed field k of arbitrary characteristic.
In this paper, as in [Borel 1991], “variety” means “algebraic variety” in the sense
of Serre [1955, Subsection 34]; every variety is taken over k.

Let G be a connected affine algebraic group and let Ru.G/ be its unipotent
radical. In view of [Grothendieck 1958, Propositions 1, 2] and [Rosenlicht 1956,
Theorem 10], the underlying variety of G is isomorphic to the product of that of
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G=Ru.G/ and Ru.G/, and the latter is isomorphic to an affine space. Therefore,
the problem under consideration is reduced to the case of reductive groups. Given
this, henceforth G stands for a connected reductive algebraic group.

The simplest case of SL2 is the guiding example. Take the polynomial k-algebra
kŒx1; x2; x3; x4� in four variables xi . The usual presentation of kŒSL2� is given by
the surjective homomorphism

(1) �W kŒx1; x2; x3; x4�! kŒSL2�; �.xi /

��
a1 a2
a3 a4

��
D ai ;

whose kernel is the ideal .x1x4� x2x3� 1/. After rewriting, this presentation can
be interpreted in terms of the group structure of SL2 as follows.

We have kŒx1; x2; x3; x4� D kŒx1; x3� ˝k kŒx2; x4� and the restriction of �
to the subalgebra kŒx1; x3� (respectively, kŒx2; x4�) is an isomorphism with the
subalgebra SC (respectively, S�) of kŒSL2� consisting of all regular functions
invariant with respect to the subgroup UC (respectively, U�) of all unipotent upper
(respectively, lower) triangular matrices acting by right translations. Hence (1)
yields the following presentation of kŒSL2� by generators and relations:

(2)

kŒSL2�Š .SC˝k S�/=I;

SC D kŒ�.x1/; �.x3/�Š kŒx1; x3�;

S� D kŒ�.x2/; �.x4/�Š kŒx2; x4�;

I D
�
�.x1/˝�.x4/��.x2/˝�.x3/� 1

�
:

The subgroups UC, U� are opposite maximal unipotent subgroups of SL2. The
subalgebras SC, S� are stable with respect to SL2 acting by left translations, and
f WD�.x1/˝�.x4/��.x2/˝�.x3/�1 is the unique element of .SC˝k S�/SL2

determined by the conditions f .e; e/D 1, kŒf �D .SC˝k S�/SL2 .
We show that there is an analogue of (2) for every connected reductive algebraic

group G. Namely, we endow kŒG� with the G-module structure determined by left
translations and fix in G a pair of opposite Borel subgroups BC and B�. Let U˙

be the unipotent radical of B˙. Consider the G-stable subalgebras

(3)
SC WD ff 2 kŒG� j f .gu/D f .g/ for all g 2G; u 2 UCg;

S� WD ff 2 kŒG� j f .gu/D f .g/ for all g 2G; u 2 U�g

of kŒG� and the natural multiplication homomorphism of k-algebras

(4) �WSC˝k S�! kŒG�; f1˝f2 7! f1f2:

For k D C, the following were put forward in [Flath and Towber 1992]:

Conjectures (D. E. Flath and J. Towber [1992]).

(S) The homomorphism � is surjective.

(K) The ideal ker� in SC˝k S� is generated by .ker�/G .
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If these conjectures are true, then the problem under consideration is reduced to
the following:

(a) Find the canonically defined generators of the k-algebra .ker�/G .

(b) Find the canonically defined presentations of S˙ by generators and relations.

In [Flath and Towber 1992], Conjectures (S) and (K) were proved for k D C and
GDSLn, GLn, SOn, Spn by means of lengthy direct computations of some Laplace
decompositions, minors, and algebraic identities between them. In Theorems 3
and 9 below, we prove Conjectures (S) and (K) in full generality, with no restrictions
on k and G.

In Theorems 11 and 20 below, we describe ker� as a vector space over k. In
Theorem 21, we solve the above part (a) of the problem, finding the canonically
defined generators of the k-algebra .ker�/G . We call them SL2-type relations of
the sought-for canonical presentation of kŒG� because for G D SL2, the element
�.x1/˝�.x4/��.x2/˝�.x3/� 1 is just such a generator of I (see (2)). All of
them are inhomogeneous of degree 2. If G is semisimple, they are indexed by the
elements of the Hilbert basis H of the monoid of dominant weights of G. Note that
the cardinality jHj of H is at least rankG with equality for simply connected G,
but in the general case it may be much bigger. For instance, if G D PGLr , then
jHj > p.r/C '.r/ � 1, where p and ' are, respectively, the classical partition
function and the Euler function (see [Popov 2011, Example 3.15]). Note that the
problem of determining a full set of generators of the ideal ker� was formulated in
[Flath 1994, Section 4] and, for k D C, G D SLn, GLn, SOn, Spn, solved in [Flath
and Towber 1992] by lengthy direct computations.

For a semisimple group G whose monoid of dominant weights is freely gener-
ated (i.e., with jHj D rankG), a solution to the above part (b) of the problem in
characteristic 0 was obtained (but not published) by B. Kostant; his proof appeared
in [Lancaster and Towber 1979, Theorem 1.1]. In arbitrary characteristic, such a
solution is given by Theorems 1, 2, 22 below, which are heavily based on the main
results of [Ramanan and Ramanathan 1985] and [Kempf and Ramanathan 1987].
All relations in this case are homogeneous of degree 2. We call them Plücker-type
relations of the sought-for canonical presentation of kŒG� because the k-algebra S˙

for G D SLn is the coordinate algebra of the affine multicone over the flag variety,
and if char kD0, these relations are generated by the classical Plücker-type relations,
obtained by Hodge [1942; 1943], that determine this multicone (see Section 6).
The set of these relations is a union of finite-dimensional vector spaces canonically
determined by the group structure of G; these spaces are indexed by the elements
of H�H and different spaces have zero intersection (see Theorem 22). Thus in
this case, we obtain a canonical presentation of kŒG�, in which all relations are
quadratic and divided into two families: homogeneous relations of Plücker type and
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inhomogeneous relations of SL2-type. As a parallel, we recall that any abelian vari-
ety is canonically presented as an intersection of quadrics in a projective space given
by the Riemann equations; see [Kempf 1989] and [Lange and Birkenhake 1992].

For an arbitrary reductive group G, let � W yG ! G be the universal covering.
Then yG DZ �C , where Z is a torus, C is a simply connected semisimple group,
G D zG= ker � , and ker � is a finite central subgroup. The algebra S˙ for yG is then
the tensor product of kŒZ� and the algebra S˙ for C . Since the presentation of
kŒZ� is clear, and that of S˙ for C are given by Theorems 1, 2, and 22, the above
part (b) of the problem is reduced to finding a presentation for the invariant algebra
of the finite abelian group ker � .

As an illustration, in Section 6 we consider the example of G D SLn, char kD 0,
and describe explicitly how the ingredients of our construction and the canonical
presentation of kŒG� look in this case.

The preprints [Popov 1995; 2000] of these results in characteristic 0 have been
disseminated long ago. The validity of the results in arbitrary characteristic was
announced in [Popov 2000]. The author is happy to finally present the complete
proofs in the volume dedicated to the memory of Robert Steinberg who made a
great contribution to the theory of algebraic groups.

Notation and conventions. Below we use freely the standard notation and conven-
tions of [Borel 1991; Jantzen 1987; Popov and Vinberg 1994; Shafarevich 2013].
In particular, the algebra of functions regular on a variety X is denoted by kŒX�,
the field of rational functions on an irreducible X is denoted by k.X/, and the local
ring of X at a point x is denoted by Ox;X . For a morphism 'WX ! Y of varieties,
'�W kŒY �! kŒX� denotes its comorphism.

All topological terms refer to the Zariski topology; the closure of Z in X is
denoted by Z (each time it is clear from the context what is X ).

The fixed point set of an action of a group P on a set S is denoted by SP. Every
action ˛WH�X!X of an algebraic groupH on a varietyX is always assumed to be
regular (the latter means that ˛ is a morphism). For every h2H , x2X , we write g �x
in place of ˛.g; x/. TheH-orbit and theH-stabilizer of x are denoted respectively by
H �x andHx . Every homomorphism of algebraic groups is assumed to be algebraic.

The additively written group of characters (i.e., homomorphisms to the multi-
plicative group of k) of an algebraic group H is denoted by X.H/. The value of a
character �2X.H/ at an element h2H is denoted by h�. Given a kH -module M ,
its weight space with weight � 2X.H/ is denoted by M�.

We fix in G the maximal torus

T WD BC\B�

and identify X.B˙/ with X.T / by means of the restriction isomorphisms X.B˙/!
X.T /, � 7! �jT :
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By X.T /C we denote the monoid of dominant weights of T determined by BC.
Below the highest weight of every simple G-module is assumed to be the highest
weight with respect to T and BC.

We denote by w0 the longest element of the Weyl group of T and fix in the
normalizer of T a representative Pw0 of w0. We then have Pw0B˙ Pw�10 D B

� and
Pw0U

˙ Pw�10 D U
�. For every � 2 X.T /C, we put �� WD �w0.�/ 2 X.T /C.

The set of all nonnegative rational numbers is denoted by Q>0 and we put
N WD Z\Q>0.

If m 2 Z, m> 0, we put Œm� WD fa 2 Z j 16 a 6mg.
For d 2 N, we denote by Œm�d the set of all increasing sequences of d elements

of Œm� (if d … Œm�, then Œm�d D¿).

2. Proof of Conjecture (S)

For every � 2 X.T /, the spaces

(5)
SC.�/ WD ff 2 SC j f .gt/D t�f .g/ for all g 2G; t 2 T g;

S�.�/ WD ff 2 S� j f .gt/D tw0.�/f .g/ for all g 2G; t 2 T g

are the finite-dimensional (see, e.g., [Jantzen 1987, I.5.12.c)]) G-submodules of
the G-modules SC and S� respectively. Since S�.�/ is the right translation of
SC.�/ by Pw0, these G-submodules are isomorphic. In the notation of [Jantzen
1987, II.2.2], we have

(6) S�.�/DH 0.��/;

so by (6) and [Jantzen 1987, II.2.6, 2.2, 2.3], the following properties hold:

(7)
(i) S˙.�/¤ 0() � 2 X.T /C:

(ii) socG S˙.�/ is a simple G-module with the highest weight ��.

)
If char k D 0, then the G-module SC.�/ is semisimple and hence SC.�/ D

socG SC.�/ by (7)(ii). If char k > 0, then, in general, this equality does not hold.
From (3), (5), and (7)(i) we infer that

(8)

SC D
M

�2X.T /C

SC.�/; SC.�/SC.�/� SC.�C�/;

S� D
M

�2X.T /C

S�.�/; S�.�/S�.�/� S�.�C�/I

i.e., the decompositions (8) are the X.T /C-gradings of the algebras SC and S�.
They are obtained from each other by the right translation by Pw0.

Theorem 1. The linear span of S˙.�/S˙.�/ over k is S˙.�C�/.
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Proof. This statement is the main result of [Ramanan and Ramanathan 1985]. Note
that the difficulty lies in the case of positive characteristic: since S˙ is an integral
domain, if char k D 0, then the claim immediately follows from (7)(i) and the
inclusions in (8) because then S˙.�C�/ is a simple G-module. �

Theorem 2. (i) If G is a generating set of the semigroup X.T /C, then the k-algebra
S˙ is generated by the subspace

L
�2G S˙.�/.

(ii) The k-algebras SC and S� are finitely generated.

Proof. Part (i) follows from (8) and Theorem 1. Being the intersection of the lattice
X.T /with a convex cone in X.T /˝ZQ generated by finitely many vectors, the semi-
group X.T /C is finitely generated. This, (i), and the inequality dimk S˙.�/ <1
imply (ii). �

Now we are ready to turn to the proof of Conjecture (S).

Theorem 3. The homomorphism � is surjective.

Our proof of Theorem 3 is based on two general results. The first is the following
well-known surjectivity criterion:

Lemma 4. The following properties of a morphism 'WX ! Y of affine algebraic
varieties are equivalent:

(a) ' is a closed embedding.

(b) '�W kŒY �! kŒX� is surjective.

Proof. See, e.g., [Steinberg 1974, Section 1.5]. �

The second is the closedness criterion for orbits of connected solvable affine
algebraic groups that generalizes Rosenlicht’s classical theorem [1961, Theorem 2]
on the closedness of orbits of unipotent groups.

Theorem 5. Let a connected solvable affine algebraic group S act on an affine
algebraic variety Z. Let x be a point of Z. Consider the orbit morphism � W S!Z,
s 7! s � z. Then the following properties are equivalent:

(a) The orbit S � z is closed in Z.

(b) The semigroup f� 2 X.S/ j the function S ! k, s 7! s�, lies in ��.kŒZ�/g is
a group.

Proof. This is proved in [Popov 1989, Theorem 4] �

Remark 6. Since X.S/ in Theorem 5 is a finitely generated free abelian group, it
can be naturally regarded as a lattice in X.S/˝Z Q. Hence the following general
criterion is applicable for verifying condition (b).

Let M be a nonempty subset of a finite-dimensional vector space V over Q. Let
Q>0M , convM , and QM be, respectively, the convex cone generated by M , the
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convex hull of M , and the linear span of M in V . Then the following properties
are equivalent (see [Popov 1989, p. 386]):

(i) 0 is an interior point of convM .

(ii) Q>0M DQM .

If M is a subsemigroup of V , then (i) and (ii) are equivalent to

(iii) M is a group.

Proof of Theorem 3. 1. We consider the action of G on its underlying algebraic
variety by left translations. By Theorem 2, there is an irreducible affine algebraic
variety X endowed with an action of G and a G-equivariant dominant morphism

(9) ˛WG!X such that ˛� is an isomorphism kŒX� Š�!SC.

Let x WD ˛.e/. Since ˛ is G-equivariant, we have

(10) ˛.g/D g � x for every g 2G;

and since ˛ is dominant, the orbit G � x is open and dense in X . Consider the
canonical projection � WG ! G=UC. It is the geometric quotient for the action
of UC on G by right translations. Therefore, (3) yields the isomorphism

(11) ��W kŒG=UC� Š�!SC;

and, since ˛ is constant on the fibers � , there exists a G-equivariant morphism
�WG=UC!X such that

(12) ˛ D � ı�:

From (12) we infer that the image of � is G �x. Since the group UC is unipotent,
the algebraic variety G=UC is quasiaffine (see [Rosenlicht 1961, Theorem 3]).
Therefore, k.G=UC/ is the field of fractions of kŒG=UC�. On the other hand,
k.X/ is the field of fractions of kŒX� inasmuch as X is affine. Using that (12) and
isomorphisms (9), (11) yield the isomorphism ��W kŒX� Š�!kŒG=UC�, we conclude
that � is a birational isomorphism. Therefore, for a point z in general position
in G � x, the fiber ��1.z/ is a single point. Being G-equivariant, � is then injective.
Finally, since G is smooth, kŒG� is integrally closed; therefore, S˙ is integrally
closed as well in view of (3) (see, e.g., [Popov and Vinberg 1994, Theorem 3.16]).
Thus X is normal, and hence by Zariski’s Main Theorem, �WG=UC!G � x is an
isomorphism. Using that � is separable (see, e.g., [Borel 1991, II.6.5]), from this
we infer that the following properties hold:

(i1) Gx D UC.

(ii1) G!G � x, g 7! ˛.g/D g � x, is a separable morphism.
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2. Let y WD Pw0 � x. Consider the G-equivariant morphism

(13) ˇWG!X; g 7! g �y:

From (10), (13), .i1/, and .ii1/, we infer that the following properties hold:

(i2) Gy D U�.

(ii2) G!G �y, g 7! ˇ.g/D g �y, is a separable morphism.

(iii2) ˇ� is an isomorphism kŒX� Š�!S�.

3. Now consider the G-equivariant morphism

(14)  WD ˛�ˇWG!X �X; g 7! g � z; where z WD .x; y/.

From (14), .i1/, and .i2/, we obtain

(15) Gz DGx \Gy D U
C
\U� D feg;

and hence  is injective. We claim that  is a closed embedding, i.e.,

(a) G!G � z, g 7! g � z, is an isomorphism;

(b) G � z is closed in X �X .

If this claim is proved, then the proof of Theorem 3 is completed as follows.
Consider the isomorphism

(16) kŒX�˝k kŒX�! kŒX �X�; f ˝ h 7! f h:

Then (4), (9), .iii2/, (14), (16) imply that� is the composition of the homomorphisms

(17) SC˝k S�
Š

.˛�/�1˝.ˇ�/�1

���������! kŒX�˝k kŒX�
Š

(16)
��! kŒX �X�

�
�! kŒG�:

Hence the surjectivity of � is equivalent to the surjectivity of �. By Lemma 4, the
latter is equivalent to the property that  is a closed embedding, i.e., that properties
(a) and (b) hold.

Thus the proof of Theorem 3 is reduced to proving properties (a) and (b).

4. First, we shall prove property (a). Since  is injective, this is reduced to proving
the separability of  . In turn, in view of (14), the latter is reduced to proving
that ker de is contained in LieGz , i.e., that ker de D f0g because of (15) (see
[Borel 1991, II.6.7]). Using [loc. cit.], from (10), (13), .i1/, .ii1/, .i2/, .ii2/ we
infer that ker de˛ � LieUC, ker deˇ � LieU�. In view of (14), we then have
ker de D ker de˛\ ker deˇ � LieUC\LieU� D f0g. This proves property (a).

5. Now we shall prove property (b). Actually, we shall prove the stronger property
that the orbitBC�z is closed inX�X : since the algebraic varietyG=BC is complete,
this stronger property implies property (b) (see [Steinberg 1974, Section 2.13,
Lemma 2]). Using that BC is connected solvable, to this end we shall apply
Theorem 5.
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Namely, consider the morphism � WBC! X �X , b 7! b � z and the following
subsemigroup M in X.BC/:

M WD f� 2 X.BC/ j the function BC! k, b 7! b� lies in ��.kŒX �X�/g:

We identify X.BC/ with the lattice in L WD X.BC/˝Z Q. In view of Theorem 5
and Remark 6, the orbit BC � z is closed if and only if

(18) Q>0M DQM:

Given this, the problem is reduced to proving that property (18) holds. This is done
below.

6. Since � D  j
BC

, the algebra ��.kŒX �X�/ is the image of the homomorphism
�.kŒX�X�/!kŒBC�, f 7!f j

BC
. From (17) we see that �.kŒX�X�/ contains

SC and S�. Hence the restrictions of SC and S� to BC lie in ��.kŒX �X�/. We
shall exhibit some characters of BC lying in these restrictions.

First consider the restriction of SC.�/ to BC for � 2 X.T /C. Note that SC.�/
contains a function f such that f .e/¤ 0. Indeed, in view of (7)(i) and Borel’s fixed
point theorem, SC.�/ contains aB�-stable line `. The groupB� acts on ` by means
of a character �2X.B�/. Take a nonzero function f 2`. For every b2B�, u2UC,
we then have f .b�1u/D b�f .u/

(3)
Db�f .e/, whence f .e/¤ 0 because B�UC is

dense in G. This proves the existence of f . Multiplying f by 1=f .e/, we may
assume that f .e/D 1. Then for every b 2BC, we deduce from (3), (5) that f .b/D
b�f .e/Db�, i.e., f j

BC
is the characterBC!k, b 7!b�. This proves the inclusion

(19) X.BC/C �M:

Now consider the restriction of S�.�/ to BC for � 2 X.T /C. In view of (7)(ii),
there is aBC-stable line ` in S�.�/, on whichBC acts by the character ��2X.BC/.
Take a nonzero function f 2 `. We may assume that f .e/D 1: this is proved as
above with � D �, replacing B� by BC, and UC by U�. For every b 2 BC, we
then have f .b�1/D b�

�

, i.e., f j
BC

is the character BC! k, b 7! b��
�

D bw0.�/.
This proves the inclusion

(20) �X.BC/C �M:

Since Q
>0.X.B

C/
C
/�Q

>0.X.B
C/
C
/DL, the inclusions (19), (20) imply the

equality Q
>0M DL, whence a fortiori the equality (18) holds. This completes the

proof of Theorem 3. �

3. Proof of Conjecture (K)

We now intend to describe the ideal ker� in SC˝k S�. This is done in Sections 3
and 4 in several steps: first in Theorem 9 we prove that ker� is generated by
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.ker�/G , then in Theorem 11 we describe ker� as a vector space, and finally in
Theorem 21 we find a standard finite generating set of ker�.

The first step is based on the following general statement:

Theorem 7. Let Z be an affine algebraic variety endowed with an action of a
reductive algebraic group H . Let a 2Z be a point such that the orbit morphism

'WH !Z; h 7! h � a;

is a closed embedding. Then the ideal ker'� in kŒZ� is generated by .ker'�/H .

For the proof of Theorem 7, we need the following:

Lemma 8. Let  WY !Z be a morphism of irreducible affine algebraic varieties
and let z 2  .Y / be a smooth point of Z. Assume that for each point y 2  �1.z/,
the following hold:

(i) y is a smooth point of Y .

(ii) The differential dy is surjective.

Then the ideal ff 2 kŒY � j f j �1.z/ D 0g of kŒY � is generated by  �.m/, where
m WD fh 2 kŒZ� j h.z/D 0g.

Proof. Given a nonzero function f 2 kŒY �, below we denote by Yf the principal
open subset fy 2 Y j f .y/¤ 0g of Y ; it is affine and kŒYf �D kŒY �f .

1. Let s1; : : : ; sd be a system of generators of the ideal m of kŒZ�. Put ti WD �.si /.
Then we have

(21) fy 2 Y j t1.y/D � � � D td .y/D 0g D  
�1.z/:

We claim that, for every point a 2 Y , there is a function ha 2 kŒY � such that the
principal open subset U D Yha

is a neighborhood of a and

IU WD ff 2 kŒU � j f j �1.z/\U D 0g

is the ideal of kŒU � generated by t1jU ; : : : ; td jU .
Proving this, we consider two cases.
First, consider the case where a… �1.z/. Then any principal open neighborhood

of a not intersecting  �1.z/may be taken as U because in this case IU DkŒU � and,
in view of (21) and Hilbert’s Nullstellensatz, kŒU �D kŒU �t1jU C � � �C kŒU �td jU .

Second, consider the case where a2 �1.z/. Let nDdimY;mDdimZ. Since a
and z are the smooth points, the assumption (ii) yields the equality

(22) dim ker da D n�m:

The functions s1; : : : ; sd generate the maximal ideal of Oz;Z . Therefore, renum-
bering them if necessary, we may (and shall) assume that s1; : : : ; sm is a system
of local parameters of Z at z, i.e.,

Tm
iD1 ker dzsi D f0g. Since dati D da ı dzsi ,
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we then infer from (ii) that
Tm
iD1 ker dati D ker da . In view of (22), the lat-

ter equality implies the existence of functions f1; : : : ; fn�m 2 Oa;Y such that
t1; : : : ; tm; f1; : : : ; fn�m is a system of local parameters of Y at a. Let

(23) F WD fy 2 Y j t1.y/D � � � D tm.y/D 0g:

By [Shafarevich 2013, Chapter II, Section 3.2, Theorem 2.13], there is a prin-
cipal open neighborhood U of a such that F \ U is an irreducible smooth
.n�m/-dimensional closed subvariety of U whose ideal in kŒU � is generated
by t1jU ; : : : ; tmjU . On the other hand, (21) and (23) yield  �1.z/ � F and,
by the fiber dimension theorem, every irreducible component of  �1.z/ has
dimension > n�m. Hence U \F D  �1.z/\U . This and (21) prove the claim.

2. Using this claim, the proof of Lemma 8 is completed as follows. Since Y DS
a2Y Yha

and Y is quasicompact, there exists a finite set of points a1; : : : ; ar 2 Y
such that

(24) Y D

r[
iD1

Yhi
; where hi WD hai

.

Now, let f 2 kŒY � be a function such that f j �1.z/ D 0. Then, in view of the
definition of ha, for every i D 1; : : : ; r , we have

(25) f h
bi

i D ci;1t1C � � �C ci;d td for some ci;j 2 kŒY � and bi 2 N:

From (24) and Hilbert’s Nullstellensatz, we infer that there are functions q1; : : : ; qr 2
kŒY � such that

(26) 1D q1h
b1

1 C � � �C qsh
br
s :

From (25) and (26), we then deduce that

f D

� rX
iD1

qici;1

�
t1C � � �C

� rX
iD1

qici;d

�
td 2 kŒY �t1C � � �C kŒY �td : �

Proof of Theorem 7. There is a closed equivariant embedding of Z in an affine
space on which H operates linearly (see [Rosenlicht 1961, Lemma 2] and [Popov
and Vinberg 1994, Theorem 1.5]). Hence we may (and shall) assume that Z is an
irreducible smooth affine algebraic variety.

SinceG is reductive, kŒZ�G is a finitely generated k-algebra (see, e.g., [Mumford
and Fogarty 1982, Theorem A.1.0] and the references therein). Denote by Z==H
the affine algebraic variety Specm.kŒZ�G/ and by � WZ ! Z==H the morphism
corresponding to the inclusion homomorphism kŒZ�G ,! kŒZ�.

The condition on the point a implies that its H -stabilizer is trivial,

(27) Ha D feg:
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Hence H �a is a closed H -orbit of maximal dimension. Taking into account that in
every fiber of � there is a unique closed orbit lying in the closure of every orbit
contained in this fiber (see [Mumford and Fogarty 1982, Corollaries 1.2, A.1.0]),
from this we deduce the equality

(28) ��1.�.a//DH � a:

Since the group feg is linearly reductive, from (27) and the separability of ', we
infer by [Bardsley and Richardson 1985, Proposition 7.6] that there is a smooth
affine subvariety S of the H -variety Z, which is an étale slice at a 2 S . In view
of (27), this means the following:

(i) The morphisms

�jS WS !Z==H and  WH �S !Z; .h; s/ 7! h � s

are étale.

(ii) The diagram

H �S
 //

pr2

��

Z

�
��

S
�jS // Z==H

is a Cartesian square; i.e., it is commutative and the morphism

H �S ! S �Z==H Z

determined by  and pr2 is an isomorphism.

From (i) and (ii), we deduce that �.a/ is a smooth point of Z==H and the dif-
ferentials d.e;a/ , da.�jS / are isomorphisms. Since d.e;a/pr2 is clearly surjective,
(ii) then implies that da� is surjective, too.

Now, in view of (28) and transitivity of the action of H on H � a, we conclude
that dz� is surjective for every point z 2 ��1.�.a//. In view of Lemma 8, this
implies the claim of Theorem 7. �

Theorem 9. The ideal ker� in SC˝k S� is generated by .ker�/G .

Proof. In the proof of Theorem 3, we have shown that

— the homomorphism � is the composition of the homomorphisms (17);

— the morphism  is a closed embedding.

In view of these facts, Theorem 9 is equivalent to the claim that the ideal ker � in
kŒX �X� is generated by .ker �/G . This claim follows from Theorem 7. �
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4. Structure of .ker�/G

We shall use the following lemma for describing .ker�/G as a vector space.

Lemma 10.

dim.SC.�/˝k S�.�//G D
�
1 if � D ��;
0 if � ¤ ��

for every �; � 2 X.T /C;(29)

.SC˝k S�/G D
M

�2X.T /C

.SC.�/˝k S�.��//G :(30)

Proof. In view of (8), the equality (30) follows from (29). To prove (29), we note
that

.SC.�/˝k S�.�//G Š HomG.SC.�/�;S�.�//

and, in view of (6), the G-module SC.�/� is the universal highest weight module
of weight � (the Weyl module); in particular, for each G-module M , there is an
isomorphism

(31) HomG.SC.�/�;M/ Š�! .MUC/�;

where the right-hand side of (31) is the weight space of T (see [Jantzen 1987,
II.2.13, Lemma]). Since S�.�/UC is a line on which BC acts by means of �� (see
[Jantzen 1987, II.2.2, Proposition]), this proves (29). �

We identify kŒG�˝k kŒG� with kŒG �G� by the isomorphism

(32) kŒG�˝k kŒG�! kŒG �G�; f1˝f2 7! ..a; b/ 7! f1.a/f2.b//:

Thus SC˝k S� is regarded as a subalgebra of kŒG �G�, and (4), (32) yield the
equality

(33) f .a; a/D �.f /.a/ for every f 2 SC˝k S� and a 2G.

Theorem 11. (i) If f 2 .SC˝k S�/G , then f �f .e; e/ 2 .ker�/G .

(ii) Every h 2 .ker�/G can be uniquely written in the form

(34) hD
X

.h�� h�.e; e//; h� 2 .SC.�/˝k S�.��//G ;

where the sum is taken over a finite set of nonzero elements � 2 X.T /C.

Proof. (i) Since � is G-equivariant, its restriction to .SC˝k S�/G is a homomor-
phism to kŒG�G D k. Hence �.f / is a constant. In view of (33), this implies (i).

(ii) If (34) holds, then the decomposition (30) implies that h� is the natural projec-
tion of h to .SC.�/˝k S�.��//G determined by this decomposition, whence the
uniqueness of (34). To prove the existence, let h� be the aforementioned projection
of h to .SC.�/˝k S�.��//G . Then h D

P
�2F h� for a finite set F � X.T /C.
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Hence 0D�.h/D
P
�2F �.h�/. As above, �.h�/Dh�.e; e/; this implies equality

(34), where the sum is taken over all � 2 F . Since h0 is a constant, we may assume
that F does not contain 0. This proves (ii). �

In the next lemma, for brevity, we put (cf. [Jantzen 1987])

(35)
V.�/ WD S�.�/� Š SC.�/�; L.�/ WD V.�/= radG V.�/;

��WV.�/! L.�/ is the canonical projection.

The G-module V.�/ (hence L.�/ as well) is generated by a BC-stable line of
weight � (see [Jantzen 1987, II.2.13, Lemma]), whence V.�/ is also generated by
a B�-stable line of weight ���.

Also, for the G-modules P and Q, we denote by B.P �Q/ the G-module of
all bilinear maps P �Q! k; we then have the isomorphism of G-modules

(36) P �˝kQ
� Š
�!B.P �Q/; f ˝ h 7! f h:

Lemma 12. For all elements �; � 2 X.T /C, the following hold:

(a) dim B.V .�/�V.�//G D

�
1 if � D ��;
0 if � ¤ ��:

(b) dim B.L.�/�L.�//G D

�
1 if � D ��;
0 if � ¤ ��:

(c) Every nonzero element � 2 B.L.�/ �L.��//G is a nondegenerate pairing
L.�/�L.��/! k.

(d) If lC 2 L.�/, l� 2 L.��/ are the nonzero semi-invariants of , respectively,
BC and B�, then �.lC; l�/ ¤ 0 for � from (c). For every nonzero element
� 2 k, there exists a unique � such that �.lC; l�/D �.

(e) Every element # 2B.V .�/�V.��//G vanishes on ker�
�
�ker�

��
. If # ¤ 0,

then # is a nondegenerate pairing V.�/�V.��/! k.

(f) Let vC2V.�/ and v�2V.��/ be, respectively, the nonzeroBC- andB�-semi-
invariants of weights � and �� that generate the G-modules V.�/ and V.��/.
Then #.vC; v�/¤ 0 for every nonzero element # 2B.V .�/�V.��//G .

Proof. Part (a) follows from (29), (36), (35). Part (b) is proved similarly, using that
L.�/ is a simple G-module with highest weight � (see [Jantzen 1987, II.2.4]). The
simplicity of L.�/ implies (c) because the left and right kernels of � are G-stable.

Proving (d), take a basis fp1; : : : ; psg of L.�/ such that p1D lC and every pi is
a weight vector of T . Let fp�1 ; : : : ; p

�
s g be the basis of L.��/ dual to fp1; : : : ; psg

with respect to � . Let L.�/0 be the linear span over k of all pi with i > 1. Then
L.�/0 is B�-stable, and, for every element u 2 U�, we have u � p1 D p1 C p0,
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where p0 2L.�/0 (see, e.g., [Steinberg 1974, Section 3.3, Proposition 2 and p. 84]).
Then, for all elements ˛1; : : : ; ˛s 2 k, we have

.u �p�1 /

� sX
iD1

˛ipi

�
D p�1

� sX
iD1

˛i .u
�1
�pi /

�
D p�1 .˛1p1C an element of L.�/0/

D ˛1 D p
�
1

� sX
iD1

˛ipi

�
;

whence u � p�1 D p�1 . Therefore, l� D �p�1 for a nonzero � 2 k, and hence
�.lC; l�/D �¤ 0. This and (b) prove (d).

It follows from (35), (a), and (b) that the embedding

B.L.�/�L.��//G!B.V .�/�V.��//G ; � 7! � ı .�� ����/;

is an isomorphism. Part (e) follows from this and (c).
Part (f) follows from (d) and (e), because ��.vC/ and ���.v�/ are, in view of

(35), the nonzero semi-invariants of, respectively, BC and B�. �

Lemma 13. Let an algebraic group H act on an algebraic variety Z and let V be
a finite-dimensional submodule of the H -module kŒZ�. Then the morphism

(37) 'WZ! V �; '.a/.f /D f .a/ for every a 2Z; f 2 V;

has the following properties:

(i) ' is H -equivariant.

(ii) The restriction of '� to .V �/� is an isomorphism .V �/�! V .

(iii) '� exercises an isomorphism between kŒ'.Z/� and the subalgebra of kŒZ�
generated by V .

Proof. Part (i) is proved by direct verification.
Every function f 2 V determines an element lf 2 .V �/� by the formula

lf .s/ D s.f /, s 2 V �. It is immediate that V ! .V �/�, f 7! lf is a vector
space isomorphism and that (37) implies '�.lf /D f . This proves (ii).

Let �W .V �/� ! kŒ'.Z/� be the restriction homomorphism. The k-algebra
kŒ'.Z/� is generated by �..V �/�/. Part (iii) now follows from the fact that '�

exercises an embedding of kŒ'.Z/� in kŒZ� and, in view of (ii), the image of
�..V �/�/ under this embedding is V . �

Corollary 14. In the notation of Lemma 13, let V ¤ f0g and let the orbit H � a be
dense in Z. Then '.a/¤ 0.

We call the morphism (37) the covariant determined by the submodule V .
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Lemma 15. Let � be an element of X.T /C and let

'CWG! SC.�/�; '�WG! S�.��/�

be the covariants determined by the submodules SC.�/ and S�.��/ of theG-module
kŒG�. Then vC WD 'C.e/ and v� WD '�.e/ are, respectively, the nonzero BC- and
B�-semi-invariants of weights � and ��.

Proof. First, we have vC ¤ 0, v� ¤ 0 by Corollary 14. Next, for every f 2 SC.�/,
b 2 BC, we have

.b � vC/.f /D 'C.e/.b�1 �f /
(37)
DD .b�1 �f /.e/

D f .b/
(5)
D b�f .e/

(37)
DD .b�vC/.f /;

whence b � vC D b�vC; i.e., vC is a nonzero BC-semi-invariant of weight �, as
claimed. For v� the proof is similar. �

Theorem 16. The restriction of � to .SC.�/˝k S�.�//G for every � 2 X.T /C is
an isomorphism .SC.�/˝k S�.��//G

Š
�! kŒG�G D k.

Proof. In view of (33) and Lemma 10, the proof is reduced to showing that there is
a function f 2 .SC.�/˝k S�.��//G such that f .e; e/¤ 0.

Consider the covariants 'C and '� from Lemma 15 and the G-equivariant
morphism

' WD 'C �'�WG �G! SC.�/� �S�.��/�:

Lemma 12(a) and (35) imply that B.SC.�/� � S�.��/�/G contains a nonzero
element # . By Lemma 13, the function f WD # ı 'WG �G ! k is contained in
.SC.�/˝k S�.��//G . For this f , using Lemmas 15 and 12(f), we obtain

(38) f .e; e/D #.'.e; e//D #.'C.e/; '�.e//¤ 0:

This completes the proof. �
Corollary 17. For every element � 2 X.T /C, there exists a unique element

(39) s� 2 .SC.�/˝k S�.��//G � kŒG �G� such that s�.e; e/D 1.

If ff1; : : : ; fd g and fh1; : : : ; hd g are the bases of SC.�/ and S�.��/ dual with
respect to a nondegenerate G-invariant pairing SC.�/� S�.��/! k (the latter
exists by (36) and Lemma 12), then " WD

Pd
iD1 fi .e/hi .e/¤ 0 and

s� D "
�1

� dX
iD1

fi ˝ hi

�
:

Proof. First, note that ifP ,Q are the finite-dimensional kG-modules, � 2B.P;Q/G

is a nondegenerate pairing P �Q! k, and fp1; : : : ; pmg and fq1; : : : ; qmg are the
bases of P and Q dual with respect to � , then

Pm
iD1 pi ˝ qi is a nonzero element



ON THE EQUATIONS DEFINING AFFINE ALGEBRAIC GROUPS 439

of .P ˝kQ/G (not depending on the choice of these bases). Indeed, � determines
the isomorphism of G-modules

(40)
�WP ˝kQ! Hom.P; P /;

.�.p˝ q//.p0/D �.p0; q/p; where p; p0 2 P; q 2Q:

From (40), we then obtain�
�

� mX
iD1

pi ˝ qi

��
.pj /D

mX
iD1

�.pj ; qi /pi D

mX
iD1

ıijpi D pj I

therefore, �
�Pm

iD1 pi ˝ qi
�
D idP , whence the claim.

For P D SC.�/, QD S�.��/, it yields that
Pd
iD1 fi ˝hi is a nonzero element

of .SC.�/˝k S�.��//G . Theorem 16 and (33) then complete the proof. �
Remark 18. For char k D 0, there is another characterization of s�. Namely, let U

be the universal enveloping algebra of LieG. Every S˙.�/ is endowed with the
natural U-module structure. Let fx1; : : : ; xng and fx�1 ; : : : ; x

�
ng be the bases of

LieG dual with respect to the Killing form ˆ. Identify LieT with its dual space
by means of ˆ. Let � be the sum of all positive roots. For every � 2 X.T /C, put

(41) c� WDˆ.�C �; �/Cˆ.�
�
C �; ��/

and consider on the space SC.�/˝k S�.��/ the linear operator

(42) � WD

nX
iD1

.xi ˝ x
�
i C x

�
i ˝ xi /:

Proposition 19. The following properties of an element t 2 SC.�/˝k S�.��/ are
equivalent:

(i) t D s�.

(ii) �.t/D�c�t and t .e; e/D 1.

Proof. By [Bourbaki 1975, Chapitre VIII, §6.4, Corollaire], the Casimir element
� WD

Pn
iD1 xix

�
i 2U acts on any simple U-module with the highest weight  as

scalar multiplication by ˆ. C �; /. Since ˆ. C �; / > 0 if  ¤ 0, the kernel
of � in any finite-dimensional U-module V coincides with V G . We apply this to
V D SC.�/˝k S�.��/. For any elements f 2 SC.�/, h 2 S�.��/, we deduce
from (41), (42) the following:

�.f ˝h/D

nX
iD1

�
xix
�
i .f /˝hCx

�
i .f /˝xi .h/Cxi .f /˝x

�
i .h/Cf ˝xix

�
i .h/

�
D�.f /˝hCf ˝�.h/C�.f ˝h/D c�.f ˝h/C�.f ˝h/:

Now Corollary 17 and the aforesaid about ker� complete the proof. �
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Theorem 20. Let �1; : : : ; �m be a system of generators of the monoid X.T /C.
Then .ker�/G is the linear span over k of all monomials of the form

.s�1
� 1/d1 � � � .s�m

� 1/dm ; where di 2 N; d1C � � �C dm > 0;

where s�i
is defined in Corollary 17.

Proof. By Theorem 11(i), the linear span L referred to in Theorem 20 is contained
in .ker�/G . In view of Theorem 11, to prove the converse inclusion .ker�/G �L,
we have to show that, for every function

(43) f 2 .SC.�/˝k S�.��//G ;

we have f � f .e; e/ 2 L. Since �1; : : : ; �m is a system of generators of X.T /C,
there are integers d1; : : : ;dm 2 N such that �D

Pm
iD1 di�i . From (39) and (8) we

then infer that h WD
Qm
iD1 s

di

�i
2 .SC.�/˝k S�.��//G and h.e; e/D 1. This, (43),

and (29) imply that f D f .e; e/h. Therefore,

(44) f �f .e; e/D f .e; e/.h� 1/D f .e; e/

� mY
iD1

�
.s�i
� 1/C 1

�di
� 1

�
:

The right-hand side of (44) clearly lies in L. This completes the proof. �

Theorem 21. Let �1; : : : ; �m be a system of generators of the monoid X.T /C.
Then the ideal ker� in SC˝k S� is generated by s�1

� 1; : : : ; s�m
� 1, where s�i

is defined in Corollary 17.

Proof. This follows from Theorems 9 and 20. �

5. Presentation of S˙

If the group G is semisimple, then the semigroup X.T /C has no units other than 0.
Hence the set H of all indecomposable elements of X.T /C is finite,

(45) HD f�1; : : : ; �d g

generates X.T /C, and every generating set of X.T /C contains H (see, e.g., [Lorenz
2005, Lemma 3.4.3]). Note that H, called the Hilbert basis of X.T /C, in general
is not a free generating system of X.T /C (i.e., it is not true that every element
˛ 2 X.T /C may be uniquely expressed in the form ˛ D

Pd
iD1 ci�i , ci 2 N).

Namely, it is free if and only if G D G1 � � � � �Gs , where every Gi is either a
simply connected simple algebraic group or isomorphic to SOni

for an odd ni
(see [Steinberg 1975, §3], [Richardson 1979, Proposition 4.1], [Richardson 1982,
Proposition 13.3] and [Popov 2011, Remark 3.16]). In particular, if G is simply
connected, then H coincides with the set of all fundamental weights and generates
X.T /C freely. Note that ��i 2H for every i .
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To understand the presentation of S˙, denote respectively by SymS˙.�i / and
Symm S˙.�i / the symmetric algebra and the m-th symmetric power of S˙.�i /.
The naturally Nd -graded free commutative k-algebra

(46) F˙ WD SymS˙.�1/˝k � � � ˝k SymS˙.�d /

may be viewed as the algebra of regular functions kŒL˙� on the vector space

L˙ WD S˙.�1/�˚ � � �˚S˙.�d /�:

Let ei be the i-th unit vector of Nd and let F˙p;q be the homogeneous component
of F˙ of degree epC eq . We have the natural isomorphisms of G-modules

(47) '˙p;qWF
˙
p;q

Š
�!S˙p;q WD

�
S˙.�p/˝k S˙.�q/ if p ¤ q;
Sym2 S˙.�p/ if p D q:

By Theorems 1 and 2, the natural multiplication homomorphisms

(48) �˙WF˙! S˙ and  ˙p;qWS
˙
p;q! S˙.�pC�q/

are surjective. Since F˙ is a polynomial algebra, the surjectivity of �˙ reduces
finding a presentation of S˙ by generators and relations to describing ker�˙. If
d D dimT , the following explicit description of ker�˙ is available:

Theorem 22. Let G be a connected semisimple group such that the Hilbert basis
(45) freely generates the semigroup X.T /C. Then

(i) the ideal ker�˙ of the Nd -graded k-algebra F˙ is homogeneous;

(ii) this ideal is generated by the union of all its homogeneous components of the
total degree 2;

(iii) the set of these homogeneous components coincides with the set of all subspaces
.'˙p;q/

�1.ker ˙p;q/, 16 p 6 q 6 d .

Proof. This is the main result of [Kempf and Ramanathan 1987]. �

Remark 23. In characteristic 0, for the first time the proof of Theorem 22 was
obtained (but not published) by B. Kostant; his proof appeared in [Lancaster and
Towber 1979, Theorem 1.1]. In this case, (47) and the surjectivity of  ˙p;q yield
that  ˙p;q is the projection of S˙p;q to the Cartan component of S˙p;q , and ker ˙p;q is
the unique G-stable direct complement to this component. The subspace ker ˙p;q
admits the following description using the notation of Remark 18 [loc. cit.]. Let
fx1; : : : ; xng and fx�1 ; : : : ; x

�
ng be the dual bases of LieG with respect to ˆ. Then

ker Cp;q is the image of the linear transformation
�Pn

sD1.xs˝ x
�
s C x

�
s ˝ xs/

�
�

2ˆ.��p; �
�
q/id of the vector space S˙p;q .
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Summing up, ifG is a connected semisimple group such that the Hilbert basis (45)
freely generates the semigroup X.T /C, then the sought-for canonical presentation
of kŒG� is given by the surjective homomorphism

(49) � WD �C˝��WF WD FC˝k F�! kŒG�

of the polynomial k-algebra F and the following generating system R of the
ideal ker�. Identify FC and F� with subalgebras of F in the natural way. Then
RDR1 tR2, where

(50) R1 D

[
p;q

�
.'Cp;q/

�1.ker Cp;q/[ .'
�
p;q/
�1.ker �p;q/

�
(see the definition of '˙p;q ,  ˙p;q in (47), (48)) and

(51) R2 D fs�1
� 1; : : : ; s�d

� 1g

(see the definition of s�i
in Corollary 17). The elements of R1 (respectively, R2)

are the Plücker-type (respectively, the SL2-type) relations of the presentation.
The canonical presentation of kŒG� is redundant. To reduce the size of R1, we

may replace every space ker ˙p;q in (50) by a basis of this space. Finding such a
basis falls within the framework of Standard Monomial Theory.

6. An example

As an illustration, here we explicitly describe the canonical presentation of kŒG�
for G D SLn, n> 2, and char k D 0.

Let T be the maximal torus of diagonal matrices in G, and let BC (respectively,
B�) be the Borel subgroup of lower (respectively, upper) triangular matrices in G.
Then

HD f$1; : : : ;$n�1g; where

$d WT ! k; diag.a1; : : : ; an/ 7! an�dC1 � � � an:

Every pair i1; i2 2 Œn� determines the function

(52) xi1;i2 WG! k;

0@a1;1 : : : a1;n: : : : : : : : :

an;1 : : : an;n

1A 7! ai1;i2 :

The k-algebra generated by all functions (52) is kŒG�.
For every d 2 Œn� 1� and every sequence i1; : : : ; id of d elements of Œn�, put

f �i1;:::;id WD det

0@xi1;1 : : : xi1;d
: : : : : : : : : : :

xid ;1 : : : xid ;d

1A ; f Ci1;:::;id WD det

0@xi1;n�dC1 : : : xi1;n
: : : : : : : : : : : : : :

xid ;n�dC1 : : : xid ;n

1A :
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For every fixed d , all functions f �i1;:::;id (respectively, f Ci1;:::;id ) such that
i1 < � � �< id are linearly independent over k and their linear span over k is the
simple G-module S�.$d / (respectively, SC.$d /); see, e.g., [Flath and Towber
1992, Proposition 3.2]. Therefore, denoting by x˙i1;:::;id the element f ˙i1;:::;id of
the k-algebra F˙ defined by (46), we identify F˙ with the polynomial k-algebra
in variables x˙i1;:::;id , where d runs over Œn � 1� and i1; : : : ; id runs over Œn�d .
Correspondingly, the k-algebra F is identified with the polynomial k-algebra in
the variables x�i1;:::;id and xCi1;:::;id , the homomorphism (49) takes the form

�WF ! kŒG�; xCi1;:::;id 7! f Ci1;:::;id ; x�i1;:::;id 7! f �i1;:::;id ;

and �˙ D �jF˙ . Below the sets (50) and (51) are explicitly specified using this
notation.

First, we will specify the Plücker-type relations. It is convenient to introduce the
following elements of F˙. Let i1; : : : ; id be a sequence of d 2 Œn� 1� elements
of Œn�, and let j1; : : : ; jd be the nondecreasing sequence obtained from i1; : : : ; id
by permutation. Then we put

x˙i1;:::;id D

�
sgn.i1; : : : ; id /x˙j1;:::;jd

if ip ¤ iq for all p ¤ q;
0 otherwise:

The k-algebra S˙ is the coordinate algebra of the affine multicone over the flag
variety; see [Towber 1979]. By the well-known classical Hodge’s result [1942;
1943] (see also [Towber 1979, p. 434, Corollary 1]), the ideal ker�˙ is generated
by all elements of the form

(53)
qC1X
lD1

.�1/lx˙i1;:::;ip�1;jl
x˙j1;:::; Ojl ;:::;jqC1

;

where p and q run over Œn � 1�, p 6 q, and i1; : : : ; ip�1 and j1; : : : ; jqC1 run
over Œn�p�1 and Œn�qC1 respectively. Since every element (53) is homogeneous
of degree 2, this result together with Theorem 22 imply that, for every fixed
p; q2 Œn�1�, the set .'˙p;q/

�1.ker ˙p;q/ in (50) is the linear span of all elements (53),
where i1; : : : ; ip�1 and j1; : : : ; jqC1 run over Œn�p�1 and Œn�qC1 respectively. This
describes the Plücker-type relations (50).

Secondly, we will describe s$d
. If i 2 Œn�n�d is a sequence i1; : : : ; in�d , we put

x˙
i
WD x˙i1;:::;in�d

and denote by i � 2 Œn�d the unique sequence j1; : : : ; jd whose
intersection with i1; : : : ; in�d is empty. Let sgn.i ; i �/ be the sign of the permutation
.i1; : : : ; in�d ; j1; : : : ; jd /. Then by [Flath and Towber 1992, Theorem 3.1(b)],

s$d
D

X
i2Œn�n�d

sgn.i ; i �/x�i x
C

i�
:

This describes the SL2-type relations (51).
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A similar description of the presentation of kŒG� may be given for the classical
groups G of several other types: for them, the Plücker-type (respectively, the SL2-
type) relations are obtained using [Lancaster and Towber 1979; 1985] (respectively,
[Flath and Towber 1992]).
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SMOOTH REPRESENTATIONS AND HECKE MODULES
IN CHARACTERISTIC p

PETER SCHNEIDER

Dedicated to the memory of Robert Steinberg.

Let G be a p-adic Lie group and I ⊆ G be a compact open subgroup
which is a torsionfree pro- p-group. Working over a coefficient field k of
characteristic p we introduce a differential graded Hecke algebra for the
pair (G, I) and show that the derived category of smooth representations
of G in k-vector spaces is naturally equivalent to the derived category of
differential graded modules over this Hecke DGA.

1. Background and motivation

Let G be a d-dimensional p-adic Lie group, and let k be any field. We denote by
Modk(G) the category of smooth G-representations in k-vector spaces. It obviously
has arbitrary direct sums.

Fix a compact open subgroup I ⊆G. In Modk(G)we then have the representation

indG
I (1) := {k-valued functions with finite support on G/I }

with G acting by left translations. Being generated by a single element, which is the
characteristic function of the trivial coset, indG

I (1) is a compact object in Modk(G).
It generates the full subcategory ModI

k(G) of all representations V in Modk(G)
which are generated by their I -fixed vectors V I. In general, ModI

k(G) is not an
abelian category. The Hecke algebra of I by definition is the endomorphism ring

HI := EndModk(G)(indG
I (1))

op.

We let Mod(HI ) denote the category of left unital HI -modules. There is the pair
of adjoint functors

H 0
:Modk(G)−→Mod(HI )

V 7−→ V I
= HomModk(G)(indG

I (1), V ),
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and
T0 :Mod(HI )−→ModI

k(G)⊆Modk(G)

M 7−→ indG
I (1)⊗HI M.

If the characteristic of k does not divide the pro-order of I then the functor H 0

is exact. Then indG
I (1) is a projective compact object in Modk(G). Since it does

not generate the full category Modk(G), one cannot apply the Gabriel–Popescu
theorem (compare [Kashiwara and Schapira 2006, Theorem 8.5.8]) to the functor
H 0. Nevertheless, in this case, one might hope for a close relation between the
categories ModI

k(G) and Mod(HI ). This indeed happens, for example, for a con-
nected reductive group G and its Iwahori subgroup I and the field k = C; compare
[Bernstein 1984, Corollary 3.9(ii)]. In addition, in this situation the algebra HI

turns out to be a generalized affine Hecke algebra so that its structure is explicitly
known. Therefore, in characteristic zero, Hecke algebras have become one of the
most important tools in the investigation of smooth G-representations.

In this light, it is a pressing question to better understand the relation between
the two categories Modk(G) and Mod(HI ) in the opposite situation where k has
characteristic p. Since p always will divide the pro-order of I, the functor H 0

certainly is no longer exact. Both functors H 0 and T0 now have a very complicated
behavior and little is known [Koziol 2014; Ollivier 2009; Ollivier and Schneider
2015]. This suggests that one should work in a derived framework which takes into
account the higher cohomology of I.

This paper will demonstrate that by doing this — not in a naive way but in an
appropriate differential graded context — the situation does improve drastically. We
will show the somewhat surprising result that the object indG

I (1) becomes a compact
generator of the full derived category of G provided I is a torsionfree pro-p-group.

The main result of this paper was proved already in 2007 but remained unpub-
lished. At the time, we gave a somewhat ad hoc proof. Although the main arguments
remain unchanged we now, by appealing to a general theorem of Keller, have ar-
ranged them in a way which makes the reasoning more transparent. In the context of
the search for a p-adic local Langlands program, there is increasing interest in study-
ing derived situations; see [Harris 2015]. We also have now [Ollivier and Schnei-
der 2015] the first examples of explicit computations of the cohomology groups
H i (I, indG

I (1)). I hope that these are sufficient reasons to finally publish the paper.

2. The unbounded derived category of G

We assume from now on throughout the paper that the field k has characteristic p
and that I is a torsionfree pro-p-group. Let us first of all collect a few properties of
the abelian category Modk(G).
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Lemma 1. (i) Modk(G) is (AB5), i.e., it has arbitrary colimits and filtered
colimits are exact.

(ii) Modk(G) is (AB3*), i.e., it has arbitrary limits.

(iii) Modk(G) has enough injective objects.

(iv) Modk(G) is a Grothendieck category, i.e., it satisfies (AB5) and has a generator.

(v) V I
6= 0 for any nonzero V in Modk(G).

Proof. (i) This is obvious. (ii) Take the subspace of smooth vectors in the limit of
k-vector spaces. (iii) This is shown in [Vignéras 1996, §I.5.9]. Alternatively, it is
a consequence of (iv); compare [Kashiwara and Schapira 2006, Theorem 9.6.2].
(v) Since I is pro-p, where p is the characteristic of k, the only irreducible smooth
representation of I is the trivial one.

(iv) Because of (i) it remains to exhibit a generator of Modk(G). We define

Y :=
⊕

J

indG
J (1),

where J runs over all open subgroups in G. For any V in Modk(G), we have

HomModk(G)(Y, V )=
∏

J

V J.

Since V =
⋃

J V J, we easily deduce that Y is a generator of Modk(G). �

As usual, let D(G) := D(Modk(G)) be the derived category of unbounded
complexes in Modk(G).

Remark 2. D(G) has arbitrary direct sums, which can be computed as direct sums
of complexes.

Proof. See the first paragraph in [Kashiwara and Schapira 2006, §14.3]. �

According to [Lazard 1965, Théorème V.2.2.8; Serre 1965], the group I has
cohomological dimension d . This means that the higher derived functors of the left
exact functor

Modk(I )−→ Veck

E 7−→ E I

into the category Veck of k-vector spaces are zero in degrees > d. On the other
hand, the restriction functor

Modk(G)−→Modk(I )

V 7−→ V |I
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is exact and respects injective objects. The latter is a consequence of the fact that
compact induction

Modk(I )−→Modk(G)

E 7−→ indG
I (E)

is an exact left adjoint; compare [Vignéras 1996, §I.5.7]. Hence the higher derived
functors of the composed functor

H 0(I, · ) :Modk(G)−→ Veck

V 7−→ V I

are given by V 7−→ H i (I, V |I ) and vanish in degrees > d . It follows that the total
right derived functor

RH 0(I, · ) : D(G)−→ D(Veck)

between the corresponding (unbounded) derived categories exists [Hartshorne 1966,
Corollary I.5.3].

To compute RH 0(I, · ), we use the formalism of K-injective complexes as de-
veloped in [Spaltenstein 1988]. We let C(Modk(G)) and K (Modk(G)) denote the
category of unbounded complexes in Modk(G) with chain maps and homotopy
classes of chain maps, respectively, as morphisms. The K-injective complexes
form a full triangulated subcategory Kinj(Modk(G)) of K (Modk(G)). Exactly in
the same way as [op. cit., Proposition 3.11] one can show that any complex in
C(Modk(G)) has a right K-injective resolution (recall from Lemma 1(ii) that the
category Modk(G) has inverse limits). Alternatively, one may apply [Serpé 2003,
Theorem 3.13] or [Kashiwara and Schapira 2006, Theorem 14.3.1] based upon
Lemma 1(iv). The existence of K-injective resolutions means that the natural functor

Kinj(Modk(G))−→
' D(G)

is an equivalence of triangulated categories. We fix a quasi-inverse i of this functor.
Then the derived functor RH 0(I, · ) is naturally isomorphic to the composed functor

D(G) i
−→ Kinj(Modk(G))−→ K (Veck)−→ D(Veck)

with the middle arrow given by

V • 7→ Hom•Modk(G)(indG
I (1), V •).

Explanation. Let V • be a complex in C(Modk(G)). To compute RH 0(I, · ) ac-
cording to [Hartshorne 1966], one chooses a quasi-isomorphism V • −→' C • into a
complex consisting of objects which are acyclic for the functor H 0(I, · ). On the
other hand, let V • −→' A• be a quasi-isomorphism into a K-injective complex. By
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[Spaltenstein 1988, Proposition 1.5(c)] we then have, in K (Modk(G)), a unique
commutative diagram:

C •

��

V •

::

$$

A•

We claim that the induced map

(C •)I
−→
'

(A•)I

is a quasi-isomorphism. Choose quasi-isomorphisms

A• −→' C̃ • −→' Ã•

where C̃ • consists of H 0(I, · )-acyclic objects and Ã• is K-injective. By [Spaltenstein
1988, Proposition 1.5(b)], the composite is an isomorphism in K (Modk(G)) and
hence induces a quasi-isomorphism (A•)I

−→
'

( Ã•)I. But by [Hartshorne 1966,
Theorem I.5.1 and Corollary I.5.3(γ )], the composite C •−→' A•−→' C̃ • also induces
a quasi-isomorphism (C •)I

−→
'

(C̃ •)I.

Lemma 3. The (hyper)cohomology functor H `(I, · ), for any ` ∈ Z, commutes with
arbitrary direct sums in D(G).

Proof. First of all we observe that the cohomology functor H `(I, · ) commutes
with arbitrary direct sums in Modk(G) [Serre 1994, §I.2.2, Proposition 8]. This, in
particular, implies that arbitrary direct sums of H 0(I, · )-acyclic objects in Modk(G)
again are H 0(I, · )-acyclic. Now let (V •j ) j∈J be a family of objects in D(G), where
we view each V •j as an actual complex. Then, according to Remark 2, the direct
sum of the V •j in D(G) is represented by the direct sum complex

⊕
j V
•

j . Now we
choose quasi-isomorphisms V •j −→

' C •j in C(Modk(G)), where all representations
Cm

j are H 0(I, · )-acyclic. By the preliminary observation, the direct sum map⊕
j

V •j −→
' C • :=

⊕
j

C •j

again is a quasi-isomorphism where all terms of the target complex are H 0(I, · )-
acyclic. We therefore obtain

H `
(
I,
⊕

j

V •j
)
= h`((C •)I )=

⊕
j

h`((C •j )
I )=

⊕
j

H `(I, V •j ). �

As usual, we view Modk(G) as the full subcategory of those complexes in D(G)
which have zero terms outside of degree zero.

Lemma 4. indG
I (1) is a compact object in D(G).
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Proof. We have to show that the functor HomD(G)(indG
I (1), · ) commutes with

arbitrary direct sums in D(G). For any V • in D(G), we compute

(1) HomD(G)(indG
I (1), V •)= HomK (Modk(G))(indG

I (1), i(V •))

= h0(i(V •)I )= H 0(I, V •),

where the first identity uses [Spaltenstein 1988, Proposition 1.5(b)]. The claim
therefore follows from Lemma 3. �

Proposition 5. Let E • be in D(I ). Then E • = 0 if and only if H j (I, E •) = 0 for
any j ∈ Z.

Proof. The completed group ring � := lim
←−−N k[I/N ] of I over k, where N runs

over all open normal subgroups of I, is a pseudocompact local ring; compare
[Schneider 2011, §19]. If m⊆� denotes the maximal ideal, then �/m= k. Since
� is noetherian — [Lazard 1965, Proposition V.2.2.4] for k = Fp and [Schneider
2011, Theorem 33.4] together with [Bourbaki 2006, Chapitre IX, §2.3, Proposi-
tion 5] in general — its pseudocompact topology coincides with the m-adic topology
[Schneider 2011, Lemma 19.8]. This implies that:

– �/m j lies in Modk(I ) for any j ∈ N.

– For any E in Modk(I ), we have

E =
⋃
j∈N

Em j
=0 where Em j

=0
:= {v ∈ E :m jv = 0}.

Because of
Em j
=0
= HomModk(I )(�/m

j, E),

we need to consider the left exact functors HomModk(I )(�/m
j, · ) on Modk(I ). Their

right derived functors, of course, are ExtiModk(I )(�/m
j, · ). In particular,

ExtiModk(I )(�/m, · )= H i (I, · ).

For any j ∈ N, we have the short exact sequence

0−→m j/m j+1
−→�/m j+1

−→�/m j
−→ 0

in Modk(I ). Moreover, m j/m j+1 ∼= kn( j) for some n( j)≥ 0 since � is noetherian.
The associated long exact Ext-sequence therefore reads

· · · −→ ExtiModk(I )(�/m
j, · )−→ ExtiModk(I )(�/m

j+1, · )−→ H i(I, · )n( j)
−→ · · ·

By induction with respect to j, we deduce that:

– Each functor HomModk(I )(�/m
j, · ) has cohomological dimension ≤ d.
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– Each H 0(I, · )-acyclic object in Modk(I ) is HomModk(I )(�/m
j, · )-acyclic for

any j ≥ 1.

It follows that the total right derived functors RHomModk(I )(�/m
j, · ) on D(I ) exist.

More explicitly, let E • be any complex in D(I ) and choose a quasi-isomorphism
E • −→' C • into a complex consisting of H 0(I, · )-acyclic objects. It then follows
that we have the short exact sequence of complexes

0→ Hom•Modk(I )(�/m
j,C •)→ Hom•Modk(I )(�/m

j+1,C •)→ ((C •)I )n( j)
→ 0.

Suppose now that RH 0(I, E •) = 0. This means that the complex (C •)I is exact.
By induction with respect to j, we obtain the exactness of the complex

Hom•Modk(I )(�/m
j,C •)= (C •)m

j
=0

for any j ∈ N. Hence C • and E • are exact. �

Proposition 6. indG
I (1) is a generator of the triangulated category D(G) in the

sense that any strictly full triangulated subcategory of D(G), closed under all direct
sums, which contains indG

I (1), coincides with D(G).

Proof. By (1) we have

HomD(G)(indG
I (1)[ j], V •)= HomD(G)(indG

I (1), V •[− j])

= H 0(I, V •[− j])= H− j (I, V •)

for any V • in D(G). Hence, Proposition 5 implies that the family of shifts
{indG

I (1)[ j]} j∈Z is a generating set of D(G) in the sense of Neeman [2001, Defi-
nition 8.1.1]. On the other hand, by Lemma 4, each shift indG

I (1)[ j] is a compact
object. In Neeman’s language this means that {indG

I (1)[ j]} j∈Z is an ℵ0-perfect class
consisting of ℵ0-small objects [Neeman 2001, Remark 4.2.6 and Definition 4.2.7].
According to Neeman’s Lemma 4.2.1, the class {indG

I (1)[ j]} j∈Z then is β-perfect
for any infinite cardinal β. Hence Neeman’s Theorem 8.3.3 applies and shows
(see the explanations in §3.2.6–3.2.8 of that same reference) that any strictly full
triangulated subcategory of D(G) closed under all direct sums which contains
indG

I (1), and therefore the whole class {indG
I (1)[ j]} j∈Z, coincides with D(G). �

3. The Hecke DGA

In order to also “derive” the picture on the Hecke algebra side we fix an injective
resolution indG

I (1) −→
' I• in C(Modk(G)) and introduce the differential graded

algebra

H•I := End•Modk(G)(I
•)op
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over k. We recall that

Hn
I =

∏
q∈Z

HomModk(G)(I
q, Iq+n)

with differential
(da)q(x)= d(aq(x))− (−1)naq+1(dx)

for a = (aq) ∈Hn
I and multiplication

(ba)q := (−1)mnaq+m ◦ bq

for a = (aq) ∈Hn
I and b = (bq) ∈Hm

I . The cohomology of H•I is given by

h∗(H•I )= Ext∗Modk(G)(indG
I (1), indG

I (1));

compare [Hartshorne 1966, §I.6]. In particular,

h0(H•I )=HI .

Remark 7. h∗(H•I )= H∗(I, indG
I (1)) and, in particular, hi (H•I )= 0 for i > d .

Proof. We compute

h∗(H•I )= Ext∗Modk(G)(indG
I (1), indG

I (1))

= h∗(HomModk(G)(indG
I (1), I

•))

= h∗((I•)I )= H∗(I, indG
I (1)). �

Let D(H•I ) be the derived category of differential graded left H•I -modules. Note
that H•I is a compact generator of D(H•I ) [Keller 1998, §2.5]. It is well known
that H•I and D(H•I ) do not depend, up to quasi-isomorphism and equivalence,
respectively, on the choice of the injective resolution I•. For the convenience of the
reader, we briefly recall the argument. Let indG

I (1) −→
' J • be a second injective

resolution in C(Modk(G)), and let f :I•→J • be a homotopy equivalence inducing
the identity on indG

I (1) with homotopy inverse g. We form the differential graded
algebra

A• :=
{
(a, b) ∈ End•Modk(G)(J

•)op
×End•Modk(G)(I

•)op
: a ◦ f = f ◦ a

}
(with respect to componentwise multiplication) and consider the commutative
diagram

A•

pr1

��

pr2
// End•Modk(G)(I

•)op

b 7→ f ◦b

��
End•Modk(G)(J

•)op a 7→a◦ f
// Hom•Modk(G)(I

•, J •).
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Obviously, the maps pri are homomorphisms of differential graded algebras (and the
bottom horizontal and right perpendicular arrows are homotopy equivalences of com-
plexes). By direct inspection, one checks that the pri , in fact, are quasi-isomorphisms.
Hence the differential graded algebras End•Modk(G)(I

•)op and End•Modk(G)(J
•)op are

naturally quasi-isomorphic to each other. Moreover, by appealing to [Bernstein and
Lunts 1994, Theorem 10.12.5.1], we see that the functors

D(End•Modk(G)(I
•)op) −−→∼

(pr2)∗
D(A•) ←−−∼

(pr1)∗
D(End•Modk(G)(J

•)op)

are equivalences of triangulated categories.
There is the following pair of adjoint functors

H : D(G)−→ D(H•I ) and T : D(H•I )−→ D(G).

For any K-injective complex V • in Modk(G), the natural chain map

Hom•Modk(G)(I
•, V •)−→' Hom•Modk(G)(indG

I (1), V •)

is a quasi-isomorphism. But the left hand term is a differential graded left H•I -module
in a natural way. In fact, we have the functor

Kinj(Modk(G))−→ K (H•I )
V • 7−→ Hom•Modk(G)(I

•, V •)

into the homotopy category K (H•I ) of differential graded left H•I -modules, which
allows us to define the composed functor

H : D(G) i
−→ Kinj(Modk(G))−→ K (H•I )−→ D(H•I ).

The diagram

(2)

D(G)

RH 0(I, · ) %%

H
// D(H•I )

forget
��

D(Veck)

then is commutative up to natural isomorphism.
For the functor T in the opposite direction we first note that I• is naturally a

differential graded right H•I -module so that we can form the graded tensor product
I•⊗H•I M • with any differential graded left H•I -module M •. This tensor product is
naturally a complex in C(Modk(G)). We now define T to be the composite

T : D(H•I )
p
−→ Kpro,H•I

I•⊗H•I
−−−→ K (Modk(G))−→ D(G).
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Here Kpro,H•I denotes the full triangulated subcategory of K (H•I ) consisting of
K-projective modules and p is a quasi-inverse of the equivalence of triangu-
lated categories Kpro,H•I −→

' D(H•I ); compare [Bernstein and Lunts 1994, Corol-
lary 10.12.2.9].

The usual standard computation shows that T is left adjoint to H.

4. The main theorem

We need one more property of the derived category D(G).

Lemma 8. The triangulated category D(G) is algebraic.

Proof. The composite functor

D(G) i
−→ Kinj(Modk(G))

⊆
−→ K (Modk(G))

is a fully faithful exact functor between triangulated categories. Hence, the assertion
follows from [Krause 2007, Lemma 7.5]. �

In view of Lemmas 4 and 8 and Proposition 6, all assumptions of Keller’s theorem
[1994, Theorem 4.3; 1998, Theorem 3.3(a)] (compare also [Bondal and van den
Bergh 2003, Theorem 3.1.7]) are satisfied and we obtain our main result.

Theorem 9. The functor H is an equivalence between triangulated categories

D(G) '−→ D(H•I ).

Of course, it follows formally that the adjoint functor T is a left inverse of H.

Remark 10. The full subcategory D(G)c of all compact objects in D(G) is the
smallest strictly full triangulated subcategory closed under direct summands which
contains indG

I (1).

Proof. In view of Lemma 4 and Proposition 6 this follows from [Neeman 1992,
Lemma 2.2]. �

The subcategory D(G)c should be viewed as the analog of the subcategory of per-
fect complexes in the derived category of a ring; compare [Keller 1998, Lemma 1.4].

Another important subcategory of D(G) is the bounded derived category

Db(G) := Db(Modk(G)).

Correspondingly we have the full subcategory Db(H•I ) of all differential graded
modules M • in D(H•I ) such that h j (M •)= 0 for all but finitely many j ∈ Z. Since
I has finite cohomological dimension, the commutative diagram (2) shows that H
restricts to a fully faithful functor

Db(G)−→ Db(H•I ).
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On the other hand, the behavior of the functor T is controlled by an Eilenberg–Moore
spectral sequence

Er,s
2 = Torh∗(H•I )

−r (HI , h∗(M •))s H⇒ hr+s(T (M •))

[May, Theorem 4.1]. This suggests that, except in very special cases, the functor T
will not preserve the bounded subcategories.

5. Complements

5.1. The top cohomology. A first step in the investigation of the DGA H•I might
be the computation of its cohomology algebra h∗(H•I ). By Remark 7, the latter is
concentrated in degrees 0 to d . Of course the usual Hecke algebra HI = h0(H•I ) is
a subalgebra of h∗(H•I ). We determine here the top cohomology hd(H•I ) as a right
HI -module.

Using the I -equivariant linear map

πI : indG
I (1)−→ indG

I (1)
I
=HI

φ 7−→

[
h 7−→

∑
g∈I/I∩hI h−1

φ(gh)
]

we obtain the map

π∗I : h
∗(H•I )= H∗(I, indG

I (1))
H∗(I,πI )
−−−−→ H∗(I,HI )= H∗(I, Fp)⊗Fp HI .

The last equality in this chain comes from the universal coefficient theorem, which
is applicable since I as a Poincaré group [Lazard 1965, Théorème V.2.5.8] has finite
cohomology H∗(I, Fp). Of course, as a ring HI is a right module over itself. For
our purposes, we have to consider a modification of this module structure which is
specific to characteristic p.

As a k-vector space indG
I (1)

I
=HI has the basis {χI x I }x∈I\G/I consisting of the

characteristic functions of the double cosets I x I. If we denote the multiplication in
the algebra HI , as usual, by the symbol “∗” for convolution, then in this basis it is
given by the formula

χI x I ∗χI h I =
∑

y∈ I\G/I

cx,y;hχI y I ,

where the coefficients are

cx,y;h = (χI x I ∗χI h I )(y)=
∑

y∈G/I

χI x I (g)χI h I (g
−1 y)= |I x I ∩ y I h−1 I/I | · 1k,

with 1k denoting the unit element in the field k. Of course, for fixed x and h we
have cx,y;h = 0 for all but finitely many y ∈ I\G/I. But I x I ∩ y I h−1 I 6=∅ implies
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I x I ⊆ I y I h−1 I ; by compactness, the latter is a finite union of double cosets. Hence,
also for fixed y and h, we have cx,y;h 6= 0 for at most finitely many x ∈ I\G/I.
It follows that by combining the transpose of these coefficient matrices with the
antiautomorphism

HI −→HI

χ 7−→ χ∗(g) := χ(g−1),

we obtain through the formula

χI x I ∗τ χI h I :=
∑

y∈I\G/I

cy,x;h−1χI y I

a new right action of HI on itself. We denote this new module by Hτ
I .

Remark. We compute

|I y I/I | · cx,y;h = |I y I/I | · (χI x I ∗χI h I )(y)

=

∑
z∈G/I

χI y I (z)
(
χI x I ∗χ

∗

I h−1 I
)
(z)

=
(
χI y I ∗ (χI x I ∗χ

∗

I h−1 I )
∗
)
(1)

=
(
(χI y I ∗χI h−1 I ) ∗χ

∗

I x I
)
(1)

=

∑
z∈G/I

(χI y I ∗χI h−1 I )(z)χI x I (z)

= |I x I/I | · (χI y I ∗χI h−1 I )(x)

= |I x I/I | · cy,x;h−1 .

This, of course, is valid with integral coefficients (instead of k). Moreover, |I x I/I |
is always a power of p. It follows that over any field of characteristic different
from p one has Hτ

I
∼=HI . It also follows that cx,y;h = cy,x;h−1 whenever both are

nonzero.
It is straightforward to check that

πI (φ) ∗τ χI h I = πI (φ ∗χI h I )

holds true for any φ ∈ indG
I (1) and any h ∈ G. Hence,

πI : indG
I (1)−→Hτ

I and π∗I : h
∗(H•I )−→ H∗(I, Fp)⊗Fp H

τ
I

are maps of right HI -modules.

Proposition 11. The map πd
I is an isomorphism

hd(H•I )
∼=
−→ H d(I, Fp)⊗Fp H

τ
I
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of right HI -modules. By fixing a basis of the one dimensional Fp-vector space
H d(I, Fp), we therefore obtain hd(H•I )∼=Hτ

I as right HI -modules.

Proof. It remains to show that πd
I is bijective. We have the I-equivariant decompo-

sition
indG

I (1)=
⊕

x∈I\G/I

indI
I∩x I x−1(1).

The map πI restricts to

πI : indI
I∩x I x−1(1)−→ k ·χI x I ⊆HI

φ 7−→

( ∑
y∈I/I∩x I x−1

φ(y)
)
·χI x I .

Since H∗(I, · ) commutes with arbitrary direct sums it therefore suffices to show
that the map

H d
(

I, φ 7−→
∑

y∈I/I∩x I x−1

φ(y)
)
: H d(I, indI

I∩x I x−1(1Fp))−→ H d(I, Fp)

is bijective. Using Shapiro’s lemma this latter map identifies (compare [Serre 1994,
§I.2.5]) with the corestriction map

Cor : H d(I ∩ x I x−1, Fp)−→ H d(I, Fp),

which for Poincaré groups of dimension d is an isomorphism of one dimensional
vector spaces [op. cit., (4) on p. 37]. �

5.2. The easiest example. As an example, we will make explicit the case where
G = I = Zp is the additive group of p-adic integers, which we nevertheless write
multiplicatively with unit element e. In order to distinguish it from the unit element
1 ∈ k we will denote the multiplicative unit in Zp by γ. Let � denote the completed
group ring of Zp over k. We have:

(a) The category Modk(G) coincides with the category of torsion �-modules.

(b) Sending γ − 1 to t defines an isomorphism of k-algebras �∼= k[[t]] between �
and the formal power series ring in one variable t over k.

For any V in Modk(G) we have the smooth G-representation C∞(G, V ) of all
V-valued locally constant functions on G, where g ∈ G acts on f ∈ C∞(G, V ) by
g f (h) := g( f (g−1h)). One easily checks:

(c) C∞(G, V )=C∞(G, k)⊗k V with the diagonal G-action on the right hand side.

(d) The map HomModk(G)(W,C∞(G, V )) ∼=−→Homk(W, V ) sending F to [w 7→
F(w)(e)] is an isomorphism for any W in Modk(G). It follows that C∞(G, V )
is an injective object in Modk(G).
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(e) The short exact sequence

(3) 0−→ V −→ C∞(G, k)⊗k V
γ∗−1⊗id
−−−→C∞(G, k)⊗k V −→ 0,

where γ∗(φ)(h)= φ(hγ ) is an injective resolution of V in Modk(G).

(f) For any g∈G define the map Fg :C∞(G, k)→C∞(G, k) by Fg(φ)(h) :=φ(hg).
In particular, Fγ = γ∗. Sending g to Fg defines an isomorphism of k-algebras

�
∼=
−→EndModk(G)(C

∞(G, k)).

Obviously indG
I (1)= k is the trivial G-representation. By (3) we may take for I•

the injective resolution

C∞(G, k)
γ∗−1
−−→C∞(G, k)−→ 0−→ · · ·

Using (f) we deduce that H•I is

· · · −→H−1
I =�

d−1
−→H0

I =�×�
d0
−→H1

I =�−→ · · ·

with

d−1a = ((γ − 1)a, (γ − 1)a) and d0(a, b)= (γ − 1)(a− b)

and multiplication

(a−1, (a0, b0), a1) · (a′−1, (a
′

0, b′0), a′1)

= (a′0a−1+ a′
−1b0, (a′0a0− a′

−1a1, b′0b0− a′1a−1), a′1a0+ b′0a1).

Using (b) we then identify H•I with the upper row in the commutative diagram

k[[t]]
a 7→(ta,ta)

// k[[t]]× k[[t]]
(a,b) 7→t (a−b)

// k[[t]]

0

OO

// k

a 7→(a,a)

OO

0
// k

⊆

OO

We view the bottom row as the differential graded algebra of dual numbers k[ε]/(ε2)

in degrees 0 and 1 with the zero differential. It is easy to check that the vertical
arrows in the above diagram constitute a quasi-isomorphism of differential graded
algebras. In particular, this says that H•I is quasi-isomorphic to its cohomology
algebra with zero differential (ε corresponds to the projection map G=Zp→Fp⊆ k,
as a generator of H 1(G, k) = Homcont(Zp, k)). According to our Theorem 9,
we therefore obtain that H composed with the pullback along the above quasi-
isomorphism is an equivalence of triangulated categories

(4) D(Zp)
'
−→ D(k[ε]/(ε2)).
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We finish by determining this functor explicitly. Let V be an object in Modk(G).
Using the injective resolution (3) we can represent H(V ) by the complex

Hom•Modk(G)
(
[C∞(G, k)

γ∗−1
−−→C∞(G, k)], [C∞(G, k)⊗kV

γ∗−1⊗id
−−−→C∞(G, k)⊗kV ]

)
.

Furthermore, using the identifications in (c) and (d), this latter complex can be
computed to be the complex

Homk(C∞(G, k),V ) d−1
−−→Homk(C∞(G, k),V )×Homk(C∞(G, k), V )

d0
−−→Homk(C∞(G, k),V )

in degrees −1, 0, and 1 with the differentials

d−1 f = ( f ◦ (γ∗− 1), f ◦ (γ∗− 1)+ (γ − 1) ◦ f ◦ γ∗) and

d0( f0, f1)= (γ − 1) ◦ f0 ◦ γ∗+ ( f0− f1) ◦ (γ∗− 1).

Let δe ∈ Homk(C∞(G, k), k) denote the “Dirac distribution” δe(φ) := φ(e) in the
unit element. The diagram

0

��

// Homk(C∞(G, k), V )

d−1

��

V

γ−1
��

v 7→(δe( · )v,δe( · )γ (v))
// Homk(C∞(G, k), V )×Homk(C∞(G, k), V )

d0

��

V
v 7→δe( · )v

// Homk(C∞(G, k), V )

is commutative. We claim that the horizontal arrows form a quasi-isomorphism α•.
In order to define a map in the opposite direction we let φ1 ∈ C∞(G, k) denote the
constant function with value 1. Using that γ∗(φ1)= φ1, one checks that the diagram

Homk(C∞(G, k), V )

d−1

��

// 0

��

Homk(C∞(G, k), V )×Homk(C∞(G, k), V )

d0

��

( f0, f1) 7→ f0(φ1)
// V

γ−1
��

Homk(C∞(G, k), V )
f 7→ f (φ1)

// V

is commutative. Hence the horizontal arrows define a homomorphism of complexes
β• such that β• ◦ α• = id. Applying Homk( · , V ) to our injective resolution of k,
we obtain the short exact sequence

0−→ Homk(C∞(G, k), V )
f 7→ f ◦(γ∗−1)
−−−−−−−−→ Homk(C∞(G, k), V )

β1

−−→ V −→ 0.
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This implies that d−1 is injective and that im(d0)⊇ ker(β1). The former says that
the cohomology in degree −1 is zero. Because of

(5) Homk(C∞(G, k), V )= ker(β1)⊕ im(α1),

the latter shows the surjectivity of h1(α•). Hence h1(α•) is bijective. A pair ( f0, f1)

represents a class in ker(h0(β•)) if and only if d0( f0, f1)= 0 and β0( f0, f1)= 0.
The first condition implies that

f1 ◦ (γ∗− 1)= (γ − 1) ◦ f0 ◦ γ∗+ f0 ◦ (γ∗− 1).

By (5) the second condition says that we may write f0 = δe( · )v+ f ◦ (γ∗− 1) for
v := f0(φ1) ∈ V and some f ∈ Homk(C∞(G, k), V ). Inserting this into the above
equation we obtain

f1 ◦ (γ∗− 1)= δe( · )(γ (v)− v)+ (γ ◦ f ◦ γ∗− f ) ◦ (γ∗− 1).

It follows that
γ (v)= v and f1 = (γ ◦ f ◦ γ∗− f ).

Using this last identity one checks that ( f0, f1)= d−1 f + (δe( · )v, 0). But we have
0= d0(δe( · )v, 0)= δe(γ∗ · )(γ − 1)(v)+ δe((γ∗− 1) · )v = δe((γ∗− 1) · )v, which
implies that v = 0. We conclude that h0(β•) is injective and hence bijective and
that therefore h0(α•) is bijective.

A differential graded k[ε]/(ε2)-module is the same as a graded k-vector space
with two anticommuting differentials ε and d of degree 1. Given the smooth
G-representation V, we form the graded k[ε]/(ε2)-module k[ε]/(ε2)⊗k V (sitting
in degrees 0 and 1) and equip it with the differential dV (v0+ v1ε) := (γ − 1)(v0)ε.
The above computations together with the fact that ε corresponds to the identity in
H1

I = HomModk(G)(I0, I1)= EndModk(G)(C
∞(G, k)) proves the following:

Proposition 12. The equivalence (4) sends V in Modk(G) to the differential graded
module (k[ε]/(ε2)⊗k V, dV ).
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We show a connection between Lusztig induction operators in finite general
linear and unitary groups and parabolic induction in cyclotomic rational
double affine Hecke algebras. Two applications are given: an explanation of
a bijection result of Broué, Malle and Michel, and some results on modular
decomposition numbers of finite general linear groups.

1. Introduction

Let 0n be the complex reflection group G(e, 1, n), the wreath product of Sn

and Z/eZ, where e>1 is fixed for all n. Let H(0n) be the cyclotomic rational double
affine Hecke algebra, or CRDAHA, associated with the complex reflection group 0n .
The representation theory of the algebras H(0n) is related to the representation
theory of the groups 0n , and thus to the modular representation theory of finite
general linear groups GL(n, q) and unitary groups U (n, q). In this paper we study
this connection in the context of a recent paper of Shan and Vasserot [2012]. In
particular we show a connection between Lusztig induction operators in general
linear and unitary groups and certain operators in a Heisenberg algebra acting on a
Fock space. We give two applications of this result, where ` is a prime not dividing
q and e is the order of q mod `. The first is a connection via Fock spaces between an
induction functor in CRDAHA described in [Shan and Vasserot 2012] and Lusztig
induction, which gives an explanation for a bijection given by Broué, Malle and
Michel [1993] and Enguehard [1992] between characters in an `-block of a finite
general linear, unitary or classical group and characters of a corresponding complex
reflection group. The second is an application to the `-modular theory of GL(n, q),
describing some Brauer characters by Lusztig induction, for large `.

The paper is organized as follows. In Section 3 we state the results on CRDAHA
from [Shan and Vasserot 2012] that we need. We introduce the category O(0)=⊕

n≥0 O(0n) where O(0n) is the category O of H(0n).
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In Section 4 we describe the `-block theory of GL(n, q) and U (n, q). The
unipotent characters in a unipotent block are precisely the constituents of a Lusztig
induced character from an e-split Levi subgroup. Complex reflection groups arise
when considering the defect groups of the blocks.

In Section 5 we introduce the Fock space and the Heisenberg algebra, and
describe the connection between parabolic induction in CRDAHA and a Heisenberg
algebra action on a Fock space given in [Shan and Vasserot 2012]. We have a Fock
space F (s)

m,` where m, ` > 1 are positive integers and (s) is an `-tuple of integers. In
[Shan and Vasserot 2012] a functor a∗µ, where µ is a partition, is introduced on the
Grothendieck group [O(0)] and is identified with an operator Sµ of a Heisenberg
algebra on the above Fock space.

The case ` = 1 is considered in Section 6. We consider a Fock space with a
basis indexed by unipotent representations of general linear or unitary groups. We
define the action of a Heisenberg algebra on this by a Lusztig induction operator
Lµ and prove that it can be identified with an operator Sµ defined by Leclerc and
Thibon [1996]. This is one of the main results of the paper. It involves using a map
introduced by Farahat [1954] on the characters of symmetric groups, which appears
to be not widely known.

In Sections 7 and 8 we give applications of this result, using the results of
Section 5. The first application is that parabolic induction a∗µ in CRDAHA and
Lusztig induction Lµ on general linear or unitary groups can be regarded as operators
arising from equivalent representations of the Heisenberg algebra. This gives an
explanation for an observation of Broué, Malle and Michel on a bijection between
Lusztig induced characters in a block of GL(n, q) and U (n, q) and characters of a
complex reflection group arising from the defect group of the block.

The second application deals with `-decomposition numbers of the unipotent
characters of GL(n, q) for large `. Via the q-Schur algebra we can regard these
numbers as arising from the coefficients of a canonical basis G−(λ) of a Fock space,
where λ runs through all partitions, in terms of the standard basis. The G−(λ) then
express the Brauer characters of GL(n, q) in terms of unipotent characters. The
G−(λ) are also described in terms of the Sµ, and so we finally get that if λ=µ+eα
where µ′ is e-regular, the Brauer character parametrized by λ is in fact a Lusztig
induced generalized character.

2. Notation

We let P,Pn,P`,P`n denote the set of all partitions, the set of all partitions of n≥ 0,
the set of all `-tuples of partitions, and the set of all `-tuples of partitions of integers
n1, n2, . . . n` such that

∑
ni = n, respectively.

If C is an abelian category, we write [C] for the complexified Grothendieck group
of C.
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We write λ ` n if λ is a partition of n ≥ 0. The parts of λ are denoted by
{λ1, λ2, . . .}. If λ = {λi }, µ = {µi } are partitions, then λ+ µ = {λi + µi } and
eλ= {eλi } where e is a positive integer.

3. CRDAHA, complex reflection groups

The main reference for this section is [Shan and Vasserot 2012]. We use the notation
of Section 3.3 (page 967) of this paper.

Let 0n = µ` oSn , where µ` is the group of `-th roots of unity in C and Sn is the
symmetric group of degree n, so that 0n is a complex reflection group. The category
of finite-dimensional complex representations of 0n is denoted by Rep(C0n). The
irreducible modules in Rep(C0n) are known by a classical construction and denoted
by Lλ where λ ∈ P`n (see for instance [Shan and Vasserot 2012, Equation (3.4),
p. 968]). Let R(0)=

⊕
n≥0[Rep(C0n)].

Let H be the reflection representation of 0n and H∗ its dual. The cyclotomic
rational double affine Hecke algebra or CRDAHA associated with 0n is denoted by
H(0n), and is the quotient of the smash product of C0n and the tensor algebra of
H⊕H∗ by certain relations. The definition involves certain parameters (see [Shan
and Vasserot 2012, p. 967]) which play a role in the results we quote from [Shan
and Vasserot 2012], although we will not state them explicitly.

The category O of H(0n) is denoted by O(0n). This is the category of H(0n)-
modules whose objects are finitely generated as C[H]-modules and are H-locally
nilpotent. Here C[H] is the subalgebra of H(0n) generated by H∗. Then O(0n) is
a highest weight category (see for instance [Rouquier et al. 2013]) and its standard
modules are denoted by 1λ where λ ∈ P`n . Let O(0)=

⊕
n≥0 O(0n). This is one

of the main objects of our study.
We then have a C-linear isomorphism spe : [Rep(C0n)] → [O(0n)] given by
[Lλ] → [1λ]. We will from now on consider [O(0n)] instead of [Rep(C0n)].

Let r,m, n ≥ 0. For n, r we have a parabolic subgroup 0n,r ∼= 0n × Sr of
0n+r , and there is a canonical equivalence of categories O(0n,r )=O(0n)⊗O(Sr )

(for the tensor product of categories, see for instance [Deligne 1990, Section 5.1,
Proposition 5.13]). By the work of Bezrukavnikov and Etingof [2009] there are
induction and restriction functors

OIndn,r :O(0n)⊗O(Sr )→O(0n+r )

and
OResn,r :O(0n+r )→O(0n)⊗O(Sr ).

For µ` r , Shan and Vasserot [2012, Section 5.1] defined functors Aµ,!, A∗µ, Aµ,∗
on the bounded derived category Db(O(0)).
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Here we will be concerned with A∗µ, defined as follows.

(3-1)
A∗µ : D

b(O(0n))→ Db(O(0n+mr )),

M→OIndn,mr (M ⊗ Lmµ)

Then a∗µ is defined as the endomorphism of [O(0)] induced by A∗µ.

4. Finite general linear and unitary groups

In this section we describe a connection between the block theory of GL(n, q) or
U (n, q), and complex reflection groups. This was first observed by Broué, Malle
and Michel [1993] and Enguehard [1992] for arbitrary finite reductive groups.

Let Gn = GL(n, q) or U (n, q). The unipotent characters of Gn are indexed
by partitions of n. Using the description in [Broué et al. 1993, p. 45] we denote
the character corresponding to λ ` n of GL(n, q) or the character, up to sign,
corresponding to λ ` n of U (n, q) as in [Fong and Srinivasan 1982] by χλ.

Let ` be a prime not dividing q and e the order of q mod `. The `-modular rep-
resentations of Gn have been studied by various authors (see for instance [Cabanes
and Enguehard 2004]) since they were introduced in [Fong and Srinivasan 1982].
The partition of the unipotent characters of Gn into `-blocks is described in the
following theorem from [Fong and Srinivasan 1982]. This classification depends
only on e, so we can refer to an `-block as an e-block, e.g., in Section 7.

Theorem 4.1. The unipotent characters χλ and χµ of Gn are in the same e-block if
and only if the partitions λ and µ of n have the same e-core.

There are subgroups of Gn called e-split Levi subgroups ([Cabanes and Engue-
hard 2004, p. 190]). In the case of Gn = GL(n, q) an e-split Levi subgroup L is of
the form a product of smaller general linear groups over Fqe and Gk with k ≤ n.
In the case of Gn =U (n, q), L is of the form a product of smaller general linear
groups or of smaller unitary groups over Fqe and Gk with k≤ n. Then a pair (L , χλ)
is an e-cuspidal pair if L is e-split of the form a product of copies of tori, all of
order qe

− 1 in the case of GL(n, q), or all of orders qe
− 1, q2e

− 1 or qe/2
+ 1

in the case of U (n, q) and Gk , where Gk has an e-cuspidal unipotent character χλ
([Broué et al. 1993, p. 18, p. 27; Enguehard 1992, p. 42]). Here a character of L is
e-cuspidal if it is not a constituent of a character obtained by Lusztig induction RL

M
from a proper e-split Levi subgroup M of L .

The unipotent blocks, i.e., blocks containing unipotent characters, are classified
by e-cuspidal pairs up to Gn-conjugacy. Let B be a unipotent block corresponding
to (L , χλ). Then if µ` n, χµ ∈ B if and only if 〈RGn

L (χλ), χµ〉 6= 0. As above, RGn
L

is Lusztig induction.
The defect group of a unipotent block is contained in NGn (T ) for a maximal

torus T of Gn such that NGn (T )/T is isomorphic to a complex reflection group
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WGn (L , λ) = Ze o Sk for some k ≥ 1. Here Ze = Z/eZ. Thus the irreducible
characters of WGn (L , λ) are parametrized by Pe

k .
Let B be a unipotent block of Gn and WGn (L , λ) as above. We then have the

following theorem due to Broué, Malle and Michel [1993, Section 3.2] and to
Enguehard [1992, Theorem B].

Theorem 4.2 (Global to local bijection for Gn). Let M be an e-split Levi subgroup
containing L and let WM(L , λ) be defined as above for M. Let µ be a partition,
and let I M

L be the isometry mapping the character of WM(L , λ) parametrized by
the e-quotient of µ to the unipotent character χµ of M (up to sign) which is a
constituent of RGn

M (λ). Then we have RGn
M I M

L = I Gn
L IndWGn (L ,λ)

WM (L ,λ) .

The theorem is proved case by case for “generic groups”, and thus for finite
reductive groups. We have stated it only for Gn .

We state a refined version of the theorem involving CRDAHA and prove it in
Section 7.

5. Heisenberg algebra, Fock space

Throughout this section we use the notation of [Shan and Vasserot 2012, Sections
4.2, 4.5, 4.6].

The affine Kac–Moody algebra ŝ`` is generated by elements ep, f p for p =
0, . . . , `−1, satisfying Serre relations ([Shan and Vasserot 2012, Section 3.4]). We
have ŝ`` = s``⊗C[t, t−1

]⊕C1, where 1 is central.
The Heisenberg algebra is the Lie algebra H generated by 1, br , b′r for r ≥ 0, with

relations [b′r , b′s] = [br , bs] = 0, [b′r , bs] = r1δr,s for r, s ≥ 0 ([Shan and Vasserot
2012, Section 4.2]). In U (H) we then have elements br1, br2, . . . with

∑
i ri = r .

If λ ∈ P we then have the element bλ = bλ1bλ2 . . ., and then for any symmetric
function f the element b f equals

∑
λ∈P z−1

λ 〈Pλ, f 〉bλ. Here Pλ is a power sum
symmetric function and zλ =

∏
i imi mi ! where mi is the number of parts of λ equal

to i . The scalar product 〈 · , · 〉 is the one used in symmetric functions, where the
Schur functions form an orthonormal basis (see [Macdonald 1995]).

We now define Fock spaces Fm , F (d)
m,` and F (s)

m,`, where m > 1. Choose a basis
(ε1, . . . , εm) of Cm . If d ∈Z, let F (d)

m be the space of elements of the form ui1∧ui2 . . .

for i1 > i2 . . ., where ui− jm = εi ⊗ t j with ik = d − k + 1 for k � 0. If we set
|λ, d〉 = ui1 ∧ui2 . . . for ik = λk+d− k+1, the elements |λ, d〉 with λ ∈ P form a
basis of F (d)

m . The Fock space Fm is defined as the space of semi-infinite wedges
of the C-vector space Cm

⊗C[t, t−1
], and we have Fm =

⊕
d∈Z Fm

(d). Then ŝ`m

acts on Fm
(d). This setup has been studied by Leclerc and Thibon [1996; 2000].

Similarly choose a basis (ε1, . . . εm) of Cm and a basis (ε′1, . . . , ε
′
`) of C`.

The Fock space Fm,` of rank m and level ` is defined as the space of semi-infinite
wedges, i.e., elements of the form ui1 ∧ ui1 . . . with i1 > i2 > . . ., where the u j are
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vectors in a C-vector space Cm
⊗C`⊗C[z, z−1

] given by ui+( j−1)m−km`=εi⊗ε
′

j⊗zk ,
with i = 1, 2, . . .m, j = 1, 2, . . . `, k ∈ Z. Then ŝ``, ŝ`m and H act on the space
([Shan and Vasserot 2012, Section 4.6]), and these actions are pairwise commuting.

Let d ∈ Z. There is a space 3d+∞/2 defined by Uglov [2000, Section 4.1]. This
space has a basis which Uglov indexes by P or by pairs (λ, s) where λ ∈ Pm and
s = (sp) is an m-tuple of integers with

∑
p sp = d. There is a bijection between

the two index sets given by λ→ (λ∗, s) where λ∗ is the m-quotient of λ and s is a
particular labeling of the m-core of λ ([Uglov 2000, Sections 4.1, 4.2]).

We have a decomposition Fm,`=
⊕

d∈Z F (d)
m,` defined using semi-infinite wedges,

as in the case of Fm . Then F (d)
m,` can be identified with the space defined by Uglov.

There is a subspace F (s)
m,` of F (d)

m,`, the Fock space associated with (s), which is a
weight space for the ŝ`` action ([Shan and Vasserot 2012, p. 982]). We have
F (d)

m,` =
⊕

F (s)
m,`, the sum of weight spaces. Here we can define a basis {|λ, s〉} with

λ ∈ P` of Fm,`
(s). The spaces F (s)

m,` were also studied by Uglov.
The endomorphism of Cm

⊗ C[t, t−1
] induced by multiplication by tr gives

rise to a linear operator br and its adjoint b′r on Fm
(d), and thus to an action of H

on Fm
(d). We also have an action of H by operators br , b′r on Fm,`

(s), and this is
the main result that we need ([Shan and Vasserot 2012, p. 982]).

We now choose a fixed `-tuple s. With suitable parameters of H(0n) for each n,
the C-vector space [O(0)] is then canonically isomorphic to F (s)

m,`. We then have
the following C-linear isomorphisms ([Shan and Vasserot 2012, Equation (5.20),
p. 990]):

(5-1)
[O(0)] → R(0)→ F (s)

m,`,

1λ→ Lλ→ |λ, s〉.

Consider the Fock space F (s)
m,` with basis indexed by {|λ, s〉} where λ ∈ P`. The

element bsµ ∈ H, i.e., b f where f = sµ, a Schur function, acts by an operator Sµ
on the space. The functor a∗µ on [O(0)] (see Section 3) is now identified with Sµ
by [Shan and Vasserot 2012, Proposition 5.13, p. 990].

Remark. The bijection between m-core partitions and the m-tuples (s) as above
has been studied by combinatorialists (see for instance [Garvan et al. 1990]).

6. Fock space revisited

References for the combinatorial definitions in this section are [Leclerc and Thibon
1996; 2000]. Given a partition µ we introduce three operators on a Fock space:
an operator Sµ defined by Leclerc and Thibon [1996], an operator F∗µ defined by
Farahat [1954] on representations of the symmetric groups Sn , and the operators
Lµ of Lusztig induction on Gn . The algebra of symmetric functions in {x1, x2, . . .}

is denoted by 3.
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Integers `,m were introduced in Section 5. For the rest of the paper we set
`= m = e, where e is a positive integer which was used in the context of blocks
of Gn . Thus 0n = µe oSn .

First consider the space F (d)
e where d ∈ Z, with basis elements {|λ, d〉} where

λ ∈ P . Leclerc and Thibon [1996] introduced elements in U (H) which we write in
our previous notation as bhρ and bsµ , acting as operators Vρ and Sµ on F (d)

e where
ρ,µ ∈ P and hρ is a homogeneous symmetric function. These operators have a
combinatorial description as follows. Here we will write |λ〉 for |λ, d〉.

First they define commuting operators Vk for k ≥ 1 on F (d)
e defined by

Vk(|λ〉)=
∑
µ

(−1)−s(µ/λ)
|µ〉,

where the sum is over all µ such that µ/λ is a horizontal n-ribbon strip of weight k,
and s(µ/λ) is the “spin” of the strip.

Remark. The minus sign in the exponent in the formula is not necessary, but
appears because it is a special case of a quantized formula.

Here a ribbon is the same as a rim-hook, i.e., a skew partition which does not
contain a 2× 2 square. The spin is the leg length of the ribbon, i.e., the number of
rows −1.

Definition. (see [Lam 2005]) A horizontal n-ribbon strip of weight k is a tiling of
a skew partition by k n-ribbons such that the top rightmost square of every ribbon
touches the northern edge of the shape. The spin of the strip is the sum of the spins
of all the ribbons.

It can be shown that a tiling of a skew partition as above is unique. More
generally we can then define Vρ where ρ is a composition. If ρ = {ρ1, ρ2, . . .} then
Vρ = Vρ1 .Vρ2 . . .. Finally we define operators Sµ acting on F (d)

e which we connect
to Lusztig induction. They coincide with the operators mentioned at the end of the
last section.

Definition. We have Sµ =
∑

ρ κµρVρ where the κµρ are inverse Kostka numbers
([Leclerc and Thibon 1996, p. 204; Lam 2005, p. 8]).

Remark. Let pe( f ) denote the plethysm by the power function in 3, i.e.,

pe( f (x1, x2, . . .))= f (xe
1, xe

2, . . .).

(This is related to a Frobenius morphism; see [Leclerc and Thibon 2000, p. 171].)
In fact in [Leclerc and Thibon 1996] H is regarded as a C(v)-space where v is
an indeterminate. Then Vρ and Sµ are v-analogs of multiplication by pe(hρ) and
pe(sµ) in 3.
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Next, let An be the category of unipotent representations of Gn . Let A =⊕
n≥0[An]. We recall from Section 4 that the unipotent characters of Gn are

denoted by {χλ} where λ ` n. We now regard A as having a basis [χλ] where λ
runs through all partitions. Then A is isomorphic to F (d)

e as a C-vector space, since
A also has a basis indexed by partitions.

We now define Lusztig operators Lµ on A and then relate them to the Sµ.

Definition. Let µ ` k. The Lusztig map Lµ : A → A is as follows. Define
Lµ : [An]→ [An+ke] by [χλ]→ [R

Gn+ke
L (χλ×χµ)], where L = Gn×GL(k, qe) or

L = Gn ×U (k, qe), an e-split Levi subgroup of Gn+ke.

Finally, consider the characters of Sn . We denote the character corresponding to
λ ∈ Pn as φλ. We also use λ ∈ Pn to denote representatives of conjugacy classes
of Sn . Let Cn be the category of representations of Sn and C =

⊕
n≥0[Cn].

Given partitions ν ` (n + ke), λ ` n such that ν/λ is defined, Farahat [1954]
has defined a character φ̂ν/λ of Sk , as follows. Let the e-tuples (ν(i)), (λ(i)) be
the e-quotients of ν and λ. Then ε

∏
i φ(ν(i)/λ(i)), where ε =±1 is a character of a

Young subgroup of Sk , which induces up to the character φ̂ν/λ of Sk .
We will instead use an approach of Enguehard ([1992, p. 37]) which is more

conceptual and convenient for our purpose.

Definition. The Farahat map F : [Cek] → [Ck] is defined by (Fχ)(µ) = χ(eµ),
where µ ` k.

Let µ ` k. Taking adjoints and denoting F∗ by F∗µ we then have, for λ ` n:

Definition. Define F∗µ : [Cn] → [Cn+ek] by φλ→ IndSn+ek
Sek×Sn

(F∗(φµ)×φλ).

By the standard classification of maximal tori in Gn we can denote a set of
representatives of the Gn-conjugacy classes of the tori by {Tw}, where w runs
over a set of representatives for the conjugacy classes of Sn . We then have that
the unipotent character χλ = 1

|Sn |

∑
w∈Sn

λ(w)RGn
Tw (1) (see for instance [Fong and

Srinivasan 1982, Equation (1.13)]). Here, as before, RGn
Tw (1) is Lusztig induction.

We assume in the proposition below that when Gn =U (n, q) that e ≡ 0 mod 4.
This is the case that is analogous to the case of GL(n, q). The other cases for e re-
quire some straightforward modifications which we mention below. The proof of the
proposition has been sketched by Enguehard ([1992, p. 37]) when Gn = GL(n, q).

Let M be the e-split Levi subgroup of Gn isomorphic to GL(k, qe)×GL`. We
denote by ∗RGn

M the adjoint of the Lusztig map RGn
M . It is an analogue of the map F∗,

and this is made precise below.
If λ ` n, we have a bijection φλ↔ χλ between [Cn] and [An]. We then have an

obvious bijection ψ : φλ↔ χλ between C and A.
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Proposition. Let G = GL(ek, q) or U (ek, q). In the case of U (ek, q) we assume
e ≡ 0 mod 4. Let M ∼= GL(k, qe), a subgroup of G. Let ψ : φλ↔ χλ between C
and A be as above. Then:

(i) If λ ` ek, then ψ(F(φλ))= ∗RG
M(χλ).

(ii) If µ ` k, then ψ(F∗(φµ))= RG
M(χµ).

Proof. We have

ψ(F(φλ))=
1
|Sk |

∑
w∈Sk

(Fφλ)(w)RM
Tw(1)=

1
|Sk |

∑
w∈Sk

φλ(ew)RM
Tw(1).

Since the torus parametrized by w in M is parametrized by ew in G, we can write
this as 1

|Sk |

∑
w∈Sk

φλ(ew)RM
Tew
(1).

On the other hand, we have (see [Fong and Srinivasan 1982, Lemma 2B]),
using the parametrization of tori in M , ∗RG

M(χλ)=
1
|Sk |

∑
w∈Sk

φλ(w)RM
Tw(1). This

proves (i). Then (ii) follows by taking adjoints. �

The proposition clearly generalizes to the subgroup M ∼= GL(k, qe)×G` of Gn

where n= ek+`. In the case of U (n, q), if e is odd we replace e by e′ where e′= 2e
with M ∼=GL(k, qe′), and if e≡ 2 mod 4 by e′ where e′ = e/2 with M ∼=U (k, qe′),
the proof being similar.

Using the isomorphisms between the spaces A, C and F (d)
e , we now regard the

operators Lµ, F∗µ and Sµ as acting on F (d)
e .

We now prove one of the main results in this paper.

Theorem 6.1. The operators Lµ and Sµ on F (d)
e coincide.

Proof. We note that F∗µ = Lµ. This follows from the previous proposition, general-
ized to Gn , and the fact that parabolic induction in symmetric groups is compatible
with Lusztig induction in Gn , using the combinatorial description of both functors.
We will now show that F∗µ = Sµ.

More generally we consider the character φ̂ν/λ of Sk defined by Farahat, where
ν ` (n+ ke) and µ ` n, and describe it using F . The restriction of φν to Sn × Ske

can be written as a sum of φλ×φν/λ where φν/λ is a (reducible) character of Ske,
and characters not involving φλ. We then define φ̂ν/λ = F(φν/λ), a character
of Sk . We then note that φ̂ν/λ(u)= φν/λ(eu). Using the characteristic map we get
a corresponding skew symmetric function sν∗/λ∗ . This is precisely the function
which has been described in [Macdonald 1995, p. 91], since it is derived from
the usual symmetric function sν/λ by taking e-th roots of variables. Using the
plethysm function pe and its adjoint ψe ([Lascoux et al. 1997, p. 1048]) we get
sν∗/λ∗ = ψe(sν/λ).
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By the above facts we get

(φ̂ν/λ, φµ)= (sν∗/λ∗, sµ)= (ψe(sν/λ), sµ)

= (sν/λ, pe(sµ))= (pe(sµ).sλ, sν)

= (Sµ[χλ], [χν]).

The last equality can be seen as follows. There is a C-linear isomorphism between
the algebra3 and F (d)

e , since both have bases indexed by P . Under this isomorphism
multiplication by the symmetric function pe(sµ) on 3 corresponds to the operator
Sµ on a Fock space (see [Leclerc and Thibon 1996, p. 6]).

This proves that Lµ = Sµ. �

We recall that ŝle acts on F (d)
e and hence on A.

Corollary. The highest weight vectors Vρ∅ of the irreducible components of the
ŝle-module A ([Lascoux et al. 1997, p. 1054]) can be described by Lusztig induction.

Remark. In fact Leclerc and Thibon also have a parameter q in their definition
of Sµ, since they deal with a deformed Fock space. Thus Sµ can be regarded as a
quantized version of a Lusztig operator Lµ.

Remark. In the notation of [Leclerc and Thibon 2000, p. 173] we have

(sν∗/λ∗,sµ)=(sν0/λ0 sν1/λ1 ...sνe−1/λe−1 ,sµ)= cµν/λ.

In this equation, the cµν/λ are Littlewood–Richardson coefficients. We now have
(χν, RGn

M (χλ × χµ)) = εcµν/λ, where ε = ±1. In particular c(k)ν/λ is the number of
tableaux of shape ν such that ν/λ is a horizontal e-ribbon of weight k. Thus the
Lusztig operator Lk can be described in terms of e-ribbons of weight k, similar to
the case of k = 1 which classically is described by e-hooks.

7. CRDAHA and Lusztig induction

The main reference for parabolic induction in this section is [Shan and Vasserot
2012].

In this section we show a connection between the parabolic induction functor a∗µ
on [O(0)] and the Lusztig induction functor Lµ in A using Fock spaces. In particular
this gives an explanation of the global to local bijection for Gn given in Theorem 4.2.
This can be regarded as a local, block-theoretic version of Theorem 6.1.

As mentioned in Section 4, the unipotent characters χλ in an e-block of Gn are
constituents of the Lusztig character RGn

L (λ) where (L , λ) is an e-cuspidal pair. Up
to sign, they are in bijection with the characters of WGn (L , λ), and they all have
the same e-core.
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For our result we can assume d = 0, which we do from now on. We set `=m= e
as in Section 6. We have spaces F (0)

e and F (0)
e,e =

⊕
s F

(s)
e,e where s = (sp) is an

e-tuple of integers with
∑

p sp = 0. We now fix such an s.
By [Shan and Vasserot 2012, Sections 6.17, 6.22, p. 1010] we have an U (H)-

isomorphism between F (0)
e and F (0)

e,e . Let F (s)
e be the inverse image of F (s)

e,e under
this isomorphism. We then have C-isomorphisms from F (s)

e,e to [O(0)], and from
F (s)

e to A(s), where A(s) is the subspace of A spanned by [χλ] where the χλ are in
e-blocks parametrized by e-cores labeled by (s) (see Section 5).

The spaces F (s)
e , F (s)

e,e , [O(0)], A(s) have bases {|λ, s〉 : λ ∈ P}, {|λ, s〉 : λ ∈ Pe
},

{1λ : λ ∈ Pe
} and [χλ] where λ has e-core labeled by s, respectively.

We have maps Sµ : F (s)
e,e → F (s)

e,e for µ ∈ Pe, Sµ : F (s)
e → F (s)

e for µ ∈ P ,
Lµ :A(s)→A(s) and a∗µ : [O(0)] → [O(0)].

Here we note that Lusztig induction preserves e-cores, and thus Lµ fixes A(s).
The following theorem can be regarded as a refined version of the global to local

bijection of [Broué et al. 1993]. The case e= 1 is due to Enguehard ([1992, p. 37]),
where the proof is a direct verification of the theorem from the definition of the
Farahat map F in Sn (see Section 6) and Lusztig induction in Gn .

Theorem 7.1. Under the isomorphism A(s)∼= [O(0)] given by [χλ]→ [1λ∗] where
λ∗ is the e-quotient of λ, Lusztig induction Lµ on A(s) with µ ∈ P corresponds to
parabolic induction a∗µ on [O(0)] with µ ∈ Pe.

Proof. Consider the action of bsµ ∈U (H) on F (s)
e,e . The operator Sµ acting on F (s)

e,e can
be identified with a∗µ acting on [O(0)], with the basis element |λ, s〉 corresponding
to [1λ] ([Shan and Vasserot 2012, Equation (5.20)]).

On the other hand, bsµ ∈ U (H) acts as Sµ on the space F (s)
e and thus, by

Theorem 6.1 as Lµ on A(s) with the basis element |λ, s〉 corresponding to [χλ].
Now F (s)

e is isomorphic to A(s) and F (s)
e,e is isomorphic to [O(0)]. Thus we have

shown that a∗µ and Lµ correspond under two equivalent representations of U (H). �

Corollary. The BMM-bijection of Theorem 4.2 between the constituents of the
Lusztig map RGn

L (λ) where (L , λ) is an e-cuspidal pair and the characters of
WGn (L , λ) is described via equivalent representations of U (H) on Fock spaces.

This follows from the theorem, using the map spe (see Section 3).

8. Decomposition numbers

References for this section are [Dipper and James 1989; Leclerc and Thibon 1996;
2000]. In this section we assume Gn = GL(n, q), since we will be using the
connection with q-Schur algebras. We describe connections between weight spaces
of ŝ`e on Fock spaces, blocks of q-Schur algebras, and blocks of Gn . We show that
some Brauer characters of Gn can be described by Lusztig induction.
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The `-decomposition numbers of the groups Gn have been studied by Dipper
and James and by Geck, Gruber, Hiss and Malle. The latter have also studied the
classical groups, using modular Harish-Chandra induction. One of the key ideas in
these papers is to compare the decomposition matrices of the groups with those of
q-Schur algebras.

We have the Dipper–James theory over a field of characteristic 0 or `. Dipper and
James define ([1989, Section 2.9]) the q-Schur algebra Sq(n), endomorphism
algebra of a sum of permutation representations of the Hecke algebra Hn of
type An−1.The unipotent characters and the `-modular Brauer characters of Gn are
both indexed by partitions of n (see [Fong and Srinivasan 1982]). Similarly the
Weyl modules and the simple modules of Sq(n) are both indexed by partitions of n
(see [Dipper and James 1989]).

For Sq(n) over k of characteristic `, q ∈ k, one can define the decomposition
matrix of Sq(n), where q is an e-th root of unity, where as before e is the order of
q mod `. By the above, this is a square matrix whose entries are the multiplicities
of simple modules in Weyl modules. Dipper and James ([1989, Theorem 4.9])
showed that this matrix, up to reordering the rows and columns, is the same as the
unipotent part of the `-decomposition matrix of Gn , the transition matrix between
the ordinary (complex) characters and the `-modular Brauer characters. The rows
and columns of the matrices are indexed by partitions of n.

We consider the Fock space F = Fe
(d) for a fixed d, which as in Section 6 is

isomorphic to A, and has the standard basis {|λ〉 : λ ∈ P}. It also has two canonical
bases G+(λ) and G−(λ) for λ ∈ P ([Leclerc and Thibon 1996; 2000]). There is a
recursive algorithm to determine these two bases.

We fix an s as in Section 6. The algebra ŝ`e acts on F (s)
e,e and hence on F (s)

e .
The connection between ŝ`e-weight spaces and blocks of the q-Schur algebras and
hence blocks of GL(n, q) with n≥ 0 is known, and we describe it below. We denote
the Weyl module of Sq(n) parametrized by λ by W (λ).

We need to introduce a function res on P . If λ∈P , the e-residue of the (i, j)-node
of the Young diagram of λ is the nonnegative integer r given by r ≡ j − i mod e
for 0≤ r < e, denoted resi, j (λ). Then res(λ)=

⋃
(i, j)(resi, j (λ)).

Proposition. A weight space for ŝ`e on F (s)
e can be regarded as a union of blocks

of q-Schur algebras with q a primitive e-th root of unity.

Proof. The fact that res defines a weight space follows for instance from [Rouquier
et al. 2013, p. 60]. Two Weyl modules W (λ),W (µ) are in the same block if and
only if res(λ)= res(µ) (see for instance [Mathas 2004, Theorem 5.5, (i)⇔ (iv)]. �

Thus a weight space determines a set of partitions of a fixed n ≥ 0.

Corollary. A weight space for ŝ`e on F (s)
e can be regarded as a union of blocks of

groups GL(n, q), where the n are determined from the weight space.
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We now have the following theorem which connects the `-decomposition numbers
of Gn with n ≥ 0 with Fock spaces.

Theorem 8.1. Let φµ be the Brauer character of Gn indexed by µ∈Pn . Let λ∈Pn .
Then, for large `, (χµ, φλ)= (G−(λ), |µ〉).

Proof. The decomposition matrix of Sq(n) over a field of characteristic 0, with q a
root of unity, is known by Varagnolo–Vasserot [1999]. By their work the coefficients
in the expansion of the G+(λ) in terms of the standard basis give the decomposition
numbers for the algebras Sq(n) for n ≥ 0, with q specialized at an e-th root of unity.

By an asymptotic argument of Geck [2001] we can pass from the decomposition
matrices of q-Schur algebras in characteristic 0 to those in characteristic `, where
` is large. Then by the Dipper–James theorem we can pass to the decomposition
matrices of the groups Gn over a field of characteristic ` with q an e-th root of
unity in the field.

Let Dn be the unipotent part of the `-decomposition matrix of Gn and En its
inverse transpose. Thus Dn has columns G+(λ) and En has rows given by G−(λ)
(see [Leclerc and Thibon 1996, Section 4]). The rows of En also give the Brauer
characters of Gn , in terms of unipotent characters. These two descriptions of the
rows of En then give the result. �

The following analog of Steinberg’s tensor product theorem is proved for the
canonical basis G−(λ) in [Leclerc and Thibon 1996].

Theorem 8.2. Let λ be a partition such that λ′ is e-singular, so that λ = µ+ eα
where µ′ is e-regular. Then G−(λ)= SαG−(µ).

We now show that the rows indexed by partitions λ as in the above theorem can
be described by Lusztig induction. By replacing Sα by Lα and using Theorem 6.1
it follows that in these cases, Lusztig-induced characters coincide with Brauer
characters.

Theorem 8.3. Let λ= µ+ eα where µ′ is e-regular. Then, for sufficiently large `,
the Brauer character represented by G−(λ) is equal to the Lusztig generalized
character RGn

L (G−(µ)×χα), where L = Gm ×GL(k, qe), n = m+ ke, and α ` k.

By using the BMM bijection, Theorem 4.2, we have the following corollary.

Corollary. Let µ= φ, so that λ= eα. Then the Brauer character represented by
G−(λ) can be calculated from an induced character in a complex reflection group.

Some tables giving the basis vectors G−(λ) for e = 2 are given in [Leclerc and
Thibon 2000]. In our examples we use transpose partitions of the partitions in these
tables, and rows instead of columns.
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We first give an example of a weight space for ŝle, which is also a block for Gn ,
with n = 4, e= 4. This is an example of a decomposition matrix D for n = 4, e= 4.
This matrix occurs in a paper of Ariki [2011] as a decomposition matrix of a q-Schur
algebra. 

4|| 1 0 0 0
31|| 1 1 0 0
211|| 0 1 1 0
1111|| 0 0 1 1


The following example is to illustrate Theorem 8.3. It was calculated using a GAP
[2015] program for decomposition matrices of q-Schur algebras. It is an example
of the inverse of a decomposition matrix for n = 6, e = 2. Here ` is large, because
of the comparison with q-Schur algebras.

1 0 0 0 0 0 0 0 0 0
–1 1 0 0 0 0 0 0 0 0

1 –1 1 0 0 0 0 0 0 0
–1 0 –1 1 0 0 0 0 0 0
–1 1 –1 0 1 0 0 0 0 0

1 –1 1 –1 –1 1 0 0 0 0
1 0 1 –1 –1 0 1 0 0 0
0 0 –1 1 1 –1 –1 1 0 0
0 0 1 –1 0 0 1 –1 1 0
0 0 0 0 0 0 –1 1 –1 1


Here the rows are indexed as: 6, 51, 42, 412, 32, 313, 23, 2212, 214, 16. In the above
matrix:

(1) The rows indexed by 16, 2212, 32, 214, 412 have interpretations as Brauer
characters, in terms of RGn

L , with L an e-split Levi of the form GL(3, q2) for
λ = 16, 2212, 32, of the form GL(2, q)×GL(2, q2) for λ = 214, and of the
form GL(4, q)×GL(1, q2) for λ= 412.

(2) Put L = GL(3, q2). Then:

(a) the row indexed by 32 is RG
L (χ3)= χ32 −χ42+χ51−χ6,

(b) the row indexed by 2212 is RG
L (χ21) and

(c) the row indexed by 16 is RG
L (χ13).
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WEIL REPRESENTATIONS OF
FINITE GENERAL LINEAR GROUPS

AND FINITE SPECIAL LINEAR GROUPS

PHAM HUU TIEP

Dedicated to the memory of Professor R. Steinberg

Let q be a prime power and let Gn be the general linear group GLn.q/ or
the special linear group SLn.q/, with n � 4. We prove two characterization
theorems for the Weil representations of Gn in any characteristic coprime
to q, one in terms of the restriction to a standard subgroup Gn�1, and an-
other in terms of the restriction to a maximal parabolic subgroup of Gn.

1. Introduction

The so-called Weil representations were introduced by A. Weil [1964] for classical
groups over local fields. Weil mentioned that the finite field case may be considered
analogously. This was developed in detail by R. E. Howe [1973] and P. Gérardin
[1977] for characteristic zero representations. The same representations, still in
characteristic zero, were introduced independently by I. M. Isaacs [1973] and
H. N. Ward [1972] for symplectic groups Sp2n.q/ with q odd, and by G. M. Seitz
[1975] for unitary groups. (These representations for Sp2n.p/ were also constructed
in [Bolt et al. 1961].) Weil representations of finite symplectic groups Sp2n.q/

with 2 j q were constructed by R. M. Guralnick and the author in [Guralnick and Tiep
2004]. Weil representations attract much attention because of their many interesting
features; see, for instance, [Dummigan 1996; Dummigan and Tiep 1999; Gow 1989;
Gross 1990; Scharlau and Tiep 1997; 1999; Tiep 1997a; 1997b, Zalesski 1988].

The construction of the Weil representations may be found in [Howe 1973;
Gérardin 1977; Guralnick and Tiep 2004; Seitz 1975], etc. In particular, in the case
of general and special linear groups, they can be constructed as follows. Let W DFn

q

with n� 3, and let Q� 2 C, respectively � 2 Fq , be a fixed primitive .q�1/-th root of
unity. Then SL.W /D SLn.q/ has q� 1 complex Weil representations, which are
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Foundation Fellowship 305247.
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the nontrivial irreducible constituents of the permutation representation of SL.W /

on W nf0g. The characters of these representations are � i
n;q , where 0� i � q�2 and

(1-1) � i
n;q.g/D

1

q�1

q�2X
kD0

Q� ikqdim Ker.g��k �1
W
/
� 2ı0;i :

Similarly, GL.W / D GLn.q/ has .q � 1/2 complex Weil representations, which
are the q� 1 nontrivial irreducible constituents of the permutation representation
of GL.W / on W n f0g, tensored with one of the q� 1 representations of degree 1

of GLn.q/. If we fix a character ˛ of order q � 1 of GLn.q/, then the characters
of these representations are � i;j

n;q , where 0� i; j � q� 2 and

(1-2) � i;j
n;q.g/D

�
1

q�1

q�2X
kD0

Q� ij qdim Ker.g��k �1
W
/
� 2ı0;i

�
�˛j .g/:

Note that � i;j
n;q restricts to � i

n;q over SLn.q/.
From now on, let us fix a prime p, a power q of p, and an algebraically closed

field F of characteristic ` not equal to p. If G is a finite (general or special) linear
group, unitary group, or symplectic group, then by a Weil representation of G

over F, we mean any composition factor of degree > 1 of a reduction modulo ` of a
complex Weil representation of G. As it turns out, another important feature of the
Weil representations is that, with very few small exceptions, Weil representations are
precisely the irreducible FG-representations of the first few smallest degrees (larger
than 1); see [Brundan and Kleshchev 2000; Guralnick et al. 2002; 2006, Guralnick
and Tiep 1999, 2004, Hiss and Malle 2001; Tiep and Zalesski 1996]. Aside from
this characterization by degree, Weil representations can also be recognized by
various conditions imposed on their restrictions to standard subgroups, or parabolic
subgroups. This was done in the case where G is a symplectic group or a unitary
group, in [Tiep and Zalesski 1997] for complex representations and in [Guralnick
et al. 2002, 2006, Guralnick and Tiep 2004] for modular representations (in cross
characteristics). However, the case where G is a general or special linear group has
not been treated. Perhaps one of the reasons for the absence until now of such charac-
terizations (as regards the restriction to a parabolic subgroup) is that the obvious ana-
logue of [Guralnick et al. 2002, Corollary 12.4] fails in this case; see Example 4.1.

We now fix W D Fn
q with a basis .e1; : : : ; en/, and consider Gn DG D GL.W /

or SL.W /. By a standard subgroup Gm in Gn, where 1 � m � n� 1, we mean
(any G-conjugate of) the subgroup

Gm D StabGn

�
he1; : : : ; emiFq

; emC1; : : : ; en

�
:

Next, we fix a primitive p-th root of unity � 2 C. A maximal parabolic subgroup
of G is conjugate to

P D StabG

�
he1; : : : ; ekiFq

�
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for some 1� k � n� 1. The unipotent radical Q of P is�
ŒX � WD

�
Ik X

0 In�k

� ˇ̌̌̌
X 2Mk;n�k.Fq/

�
;

where Ma;b.Fq/ is the space of all a� b matrices over Fq . Any irreducible Brauer
character of Q can then be written in the form

ˇY W ŒX � 7! �
Tr

Fq=Fp
tr.X Y /

for a unique Y 2Mn�k;k.Fq/. We define the rank of ˇY to be the rank of the
matrix Y .

The main results of the paper are the following theorems, which characterize
the Weil representations of finite general and special linear groups in terms of their
restrictions to a standard or maximal parabolic subgroup.

Theorem A. Let q be a prime power, n � 5, and for any integer m � 4, let Gm

denote the general linear group GLm.q/ or the special linear group SLm.q/. Con-
sider the standard embedding of Gm in Gn when n>m. Let F be an algebraically
closed field of characteristic zero or characteristic coprime to q. Then for any
finite-dimensional irreducible FGn-representation ˆ, the following statements are
equivalent:

(i) Either degˆD 1, or ˆ is a Weil representation of Gn.

(ii) ˆ has property .W/; that is, if ‰ is any composition factor of the restriction
ˆjGn�1

, then either deg‰ D 1, or ‰ is a Weil representation of Gn�1.

(iii) For some m with 4 � m � n� 1, every composition factor of the restriction
ˆjGm

either is a Weil representation or has degree 1.

(iv) For every m with 4 �m � n� 1, every composition factor of the restriction
ˆjGm

either is a Weil representation or has degree 1.

Theorem B. Let q be a prime power, n � 4, and let G denote the general linear
group GLn.q/ or the special linear group SLn.q/. Let F be an algebraically closed
field of characteristic zero or characteristic coprime to q. Let W D Fn

q denote
the natural G-module, and let Pk be the stabilizer of a k-dimensional subspace
of W in G, where 2 � k � n � 2. Then for any finite-dimensional irreducible
FGn-representation ˆ, the following statements are equivalent:

(i) Either degˆD 1, or ˆ is a Weil representation of Gn.

(ii) ˆ has property .Pk/; that is, the restriction ˆjQ to the unipotent radical Q of
Pk contains only irreducible FQ-representations of rank � 1.

Note that the definitions of properties .W/ and .Pk/ do not depend on the choice
of the particular standard or parabolic subgroup. Our subsequent proofs also make
use of another local property .Z/, which is defined by the condition (2-1) in Section 2.
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Theorem B has already been used by A. E. Zalesski [� 2015] in his recent work.

Throughout the paper, we will say that an ordinary or Brauer character ' of
GLn.q/ or SLn.q/ has property .W/, or .Pk/, if a representation affording ' does
as well. The notation IBr.X / denotes the set of irreducible Brauer characters of a
finite group X in characteristic `. If Y is a subgroup of a finite group X , and ˆ is
an FX -representation and ‰ is an FY -representation, then ˆjY is the restriction of
ˆ to Y , and ‰Y is the FX -representation induced from ‰, with similar notation for
ordinary and Brauer characters, as well as for modules. If � is a complex character
of X , then �ı denotes the restriction of � to the set of `0-elements in X .

2. Local properties and Weil representations

A key ingredient of our inductive approach is the following statement:

Proposition 2.1. Let GDGnDGLn.q/with n�5 and letˆ be an FG-representation.
Let K DG4 be a standard subgroup of G. Then the following statements hold.

(i) If ˆ has property .Pk/ for some 2 � k � n� 2, then the FK-representation
ˆjK has property .P2/.

(ii) If ˆjK has property .P2/, then ˆ has property .Pk/ for all 2� k � n� 2.

Proof. Consider

P D StabG

�
he1; : : : ; ekiFq

�
;

K D StabG

�
he1; e2; ekC1; ekC2iFq

; e3; : : : ; ek ; ekC3; : : : ; en

�
:

Then P2 WD P \K plays the role of the second parabolic subgroup of K, the
stabilizer in K of the plane he1; e2iFq

, with unipotent radical Q2 WDQ\K. Let '
denote the Brauer character of ˆ.

(i) Suppose that ˆ has property .Pk/. Consider any irreducible constituent ˇD ˇY

of 'jQ. By the assumption, rank.Y /� 1. Writing

Y D

�
Y1 Y2

Y3 Y4

�
;

where Y1 is 2� 2, it is easy to see that the restriction ˇjQ2
is just the character ˇY1

of Q2. Certainly, rank.Y1/� rank.Y /. It follows that ˆjK has property .P2/.

(ii) Suppose that ˆ does not possess property .Pk/ for some 2� k � n� 2. Then
we can find an irreducible constituent ˇ D ˇY of 'jQ, where rank.Y / DW r � 2.
Note that the conjugation by the element diag.A;B/ in the Levi subgroup

LD GLk.q/�GLn�k.q/

of P sends ˇY to ˇB�1YA. Replacing ˇ by a suitable L-conjugate, we may assume
that the principal r�r submatrix of Y is the identity matrix Ir . Now, in the notation
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of (i), we have ˇjQ2
D ˇY1

, where Y1 D I2. But this violates property .P2/

for ˆjK . �
Corollary 2.2. Let GDGnDGLn.q/ with n�5 and letˆ be an FG-representation.
Let H D Gm be a standard subgroup of G for some 4 � m � n � 1. Then the
following statements hold.

(i) If ˆ has property .Pk/ for some 2 � k � n� 2, then the FH -representation
ˆjH has property .Pj / for all 2� j �m� 2.

(ii) If ˆH has property .Pj / for some 2 � j �m� 2, then ˆ has property .Pk/

for all 2� k � n� 2.

Proof. Consider a standard subgroup K DG4 of H .

(i) By applying Proposition 2.1(i) to ˆ, ˆjK has property .P2/. Hence, by applying
Proposition 2.1(ii) to ˆjH , ˆjH has property .Pj / for all 2� j �m� 2.

(ii) By applying Proposition 2.1(i) to ˆjH , ˆjK has property .P2/. Hence, by
applying Proposition 2.1(ii) to ˆ, ˆ has property .Pk/ for all 2� k � n� 2. �

We will also fix the following elements in GLn.q/:

x D

�
1 1

0 1

�
˚ In�2; y D

�
1 1

0 1

�
˚

�
1 1

0 1

�
˚ In�4; zD

0@1 1 0

0 1 1

0 0 1

1A˚ In�3:

If ' is a Brauer character of G, we define

'Œ1� WD '.1/� .qC 1/'.x/C q'.y/; 'Œ2� WD '.y/�'.z/:

We will furthermore say that ' (or any representation affording it) has property .Z/ if

(2-1) 'Œ1�D 'Œ2�D 0:

Corollary 2.3. Let G D GLn.q/ or SLn.q/ with n � 4 and let ˆ be a Weil repre-
sentation of G over F. Then ˆ has property .Pk/ for all 2 � k � n� 2. If n � 5,
then ˆ has property .W/.

Proof. It suffices to prove the statement in the case where FD C and furthermore
GDGLn.q/, as � i;j

n;q restricts to � i
n;q over SLn.q/.

(i) First we consider the case G D GL4.q/ and consider the parabolic subgroup
P D StabG.he1; e2iFq

/, with unipotent radical Q. It is easy to check that IBr.Q/
consists of three P -orbits: f1Qg, O1 of characters of rank 1, and O2 of characters
of rank 2; moreover,

jO1j D .q
2
� 1/.qC 1/; jO2j D .q

2
� 1/.q2

� q/:

If q� 3, then jO2j>�
i;j
4;q
.1/ for all i; j , whence .� i;j

4;q
/jQ can afford only characters

of rank � 1, and so we are done.
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Suppose that q D 2, in which case there is only one complex Weil character
�D �

1;1
4;2

of degree 14. We also consider the irreducible complex character � of
G D GL4.2/Š A8 of degree 7. As jO1j D 9, jO2j D 6, and Q 6� Ker.�/, we must
have that

�jQ D 1QC

X
�2O2

�:

For the aforementioned involutions x, y , we have that

�.x/D 6; �.y/D 2;

whence x belongs to class 2A and y belongs to class 2B in the notation of [Conway
et al. 1985]. It follows that

�.x/D�1; �.y/D 3;

and soX
�2O2

�.x/D�2;
X
�2O2

�.y/D 2;
X
�2O1

�.x/D 1;
X
�2O1

�.x/D�3:

Since
�jQ D a � 1QC b

X
�2O1

�C c
X
�2O2

�

for some nonnegative integers a; b; c, we conclude that .a; b; c/D .5; 1; 0/, i.e., �
has property .P2/, as desired.

(ii) Now we consider the general case of G D GLn.q/ with n � 5, and consider
a standard subgroup H D GL4.q/ and a standard subgroup LD GLn�1.q/ in G.
Let �n denote the permutation character of G on Fn

q , so that

�n D

q�2X
iD0

� i;0
n;qC 2 � 1G :

Note that .�n/jLD q�n�1, and so ˆ has property .W/. Similarly, .�n/jH D qn�4�4.
Furthermore, according to (i), �4 has property .P2/. It follows that .�n/jH also
has property .P2/, and so, by Corollary 2.2(ii), �n has property .Pk/. Consequently,
�

i;0
n;q and � i;j

n;q also possess property .Pk/. �

Lemma 2.4. Let G D GLn.q/ or SLn.q/, where n � 4, and let ˆ be a Weil
representation of G over F. Then ˆ has property .Z/.

Proof. Let ' be the Brauer character of ˆ. It is well known, see [Guralnick and
Tiep 1999] for instance, that ' is a linear combination of the reduction modulo `
of some �D � i;j

n;q or � i
n;q (note that such reductions need not be irreducible) and a
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linear character of G. As any linear character has property .Z/, it suffices to show
that � has property .Z/. According to (1-2), we have

�.1/D
qn� 1

q� 1
�ı0;i ; �.x/D

qn�1� 1

q� 1
�ı0;i ; �.y/D�.z/D

qn�2� 1

q� 1
�ı0;i ;

which implies property .Z/ for �. �
Proposition 2.5. Let G D GLn.q/ and S D SLn.q/ � G with n � 4. Let ˆ be an
FG-representation and let ‰ be an FS -representation. Also, let P D .Pk/ for some
2� k � n� 2, or P D .W/.

(i) ˆ has property P if and only if ˆjS has property P .

(ii) ‰ has property P if and only if ‰G has property P .

Proof. (a) First we consider the case P D .Pk/ and let P be the stabilizer in G

of a k-space in the natural module W D Fn
q , with unipotent radical Q. Note that

Q< P \S . Furthermore, if O1 denotes the set of all Brauer irreducible characters
of Q of rank 1, then O1 forms a single P -orbit and also a single P \S -orbit.

It is clear that ˆ has property .Pk/ if and only if ˆjS has property .Pk/, since
Q< S . It is also clear that ‰ has property .Pk/ whenever ‰G has property .Pk/,
since ‰jQ is a subquotient of .‰G/jQ. Assume now that ‰ has property .Pk/

and affords the Brauer character  . Then, by the aforementioned discussion,
 jQ D a � 1QC b for some integers a; b � 0 and  WD

P
�2O1

�. Note that we
can find a cyclic subgroup C Š Cq�1 of P such that G D S ÌC , and again by the
aforementioned discussion, C preserves  . As

. G/jQ D
X
c2C

. c/jQ;

we conclude that . G/jQ D .q� 1/.a � 1QC b /, and so ‰G has property .Pk/.
(b) Next we consider the case P D .W/ and let H Š GLn�1.q/ be a standard
subgroup of G, so that H \ S Š SLn�1.q/ is also a standard subgroup of S .
We already mentioned that Weil representations of H restrict irreducibly to Weil
representations of H \S . In particular, if ˆ has property .W/ then so does ˆjS .
Similarly, as the composition factors of ‰ are among the composition factors
of .‰G/jS , if ‰G has property .W/ then so does ‰.

Conversely, observe that

.� i
m;q/

G
D

q�2X
jD0

� i;j
m;q:

Hence, if ‚ is a Weil representation of SLm.q/ and m� 3, then every composition
factor of‚GLm.q/ is a Weil representation of GLm.q/ or a representation of degree 1.
Moreover, we can find a cyclic subgroup C ŠCq�1 of H such that G D S ÌC and
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H D .H \S/ÌC . It follows that if ‰ has property .W/ then so does ‰G . Finally,
as the composition factors of ˆ are among the composition factors of .ˆjS /G ,
if ˆjS has property .W/ then so do .ˆjS /G and ˆ. �

Corollary 2.6. Let G D GLn.q/ or SLn.q/ and let ˆ be an FG-representation.

(i) If ˆ possesses property .W/ and n� 5, then ˆ has property .Z/.

(ii) If ˆ has property .Pk/ for some 2 � k � n� 2 and n � 4, then the Brauer
character ' of ˆ satisfies 'Œ1�D 0.

(iii) Suppose that either the assumption of (i) or of (ii) holds. If P1 is the stabilizer
in G of a 1-space of the natural module W D Fn

q of G and V is an FG-module
affording ˆ, then CV .Q1/¤ 0 for Q1 WDOp.P1/.

Proof. (i) Suppose that n� 5 and ˆ has property .W/. Then we can choose x;y ; z

from a standard subgroup H DGLn�1.q/ or SLn�1.q/ of G. By Lemma 2.4, ˆjH
has property .Z/, and so does ˆ.

(ii) Suppose now that n� 4 and ˆ has property .Pk/. Then we can choose x;y ; z

from a standard subgroup H DGL4.q/ or SL4.q/ of G. First we consider the case
nD4, so that kD2, and let � WD �0;0

4;q
2 Irr.H /; in particular, �.1/D .q4�q/=.q�1/.

By Lemma 2.4, � has property .Z/. On the other hand, in the notation of the proof
of Corollary 2.3, it follows from the arguments in that proof that

�jQ D
X
�2O1

�C .2qC 1/ � 1Q:

Hence, choosing x;y 2Q, we see that

(2-2) ˛Œ1�D  Œ1�D 0

for ˛ WD 1Q and  WD
P
�2O1

�. Also note that P always acts transitively on O1,
no matter if H D GL4.q/ or SL4.q/. It follows that 'jQ D a˛ C b for some
integers a; b � 0, and so (2-2) implies that 'Œ1�D 0.

Now we consider the case n� 5. If GDGLn.q/, then by Proposition 2.1(i),ˆjH
has property .P2/ and so 'Œ1�D 0 by the case nD 4. Suppose now that GD SLn.q/

and set M DGLn.q/�G. We can choose a standard subgroup LŠGL4.q/ in M

such that L\G DH Š SL4.q/. By Proposition 2.5(ii) applied to .M;G/, ˆM

has property .Pk/, and so .ˆM /jL has property .P2/ by Proposition 2.1(i). But
then .ˆM /jH has property .P2/ by Proposition 2.5(i). As we can find a cyclic
subgroup C Š Cq�1 of L such that L D H Ì C and M D G Ì C , we see that
.ˆM /jH D ..ˆjH /

L/jH . We can now conclude that ˆH has property .P2/ and so
'Œ1�D 0 again by the case nD 4.

(iii) By the results of (i) and (ii), we may assume that 'Œ1� D 0 for the Brauer
character ' of ˆ. Assume the contrary that CV .Q1/ D 0. Note that P1 acts
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transitively on IBr.Q1/ n f1Q1
g. It follows that we can write

(2-3) 'Q1
D c

X
1Q1
¤�2IBr.Q1/

�

for some integer c > 0. In particular, taking x 2Q1 we get

'.1/D c.qn�1
� 1/; '.x/D�c;

and so the relation 'Œ1�D 0 implies that

(2-4) '.y/D�c.qn�2
C 1/:

On the other hand, as n� 4, we can choose an SLn.q/-conjugate y1 2P1 of y that
projects onto a transvection in GLn�1.q/ under the embedding

P1=Q1 ,! GL1.q/�GLn�1.q/:

Such an element y1 acts on IBr.Q1/ n f1Q1
g with exactly qn�2 � 1 fixed points.

Coupled with (2-3), this implies that

j'.y/j D j'.y1/j � .q
n�2
� 1/c;

contradicting (2-4). �

3. The general linear groups

For GDGLn.q/ and V an irreducible FG-module, we will use James’ parametriza-
tion [1986]
(3-1) V D

�
D.s1; �1/ ıD.s2; �2/ ı � � � ıD.st ; �t /

�
"G

for V as given in [Guralnick and Tiep 1999, Proposition 2.4]. Here, si 2 F� has
degree di over Fq and is `-regular, �i ` ki , and nD

Pt
iD1 kidi . Moreover, for any

i¤j , si and sj do not have the same minimal polynomial over Fq . Each D.si ; �i/ is
an irreducible module for GLki di

.q/, and if t > 1 then V is Harish-Chandra-induced
from the Levi subgroup

LD GLk1d1
.q/�GLk2d2

.q/� � � � �GLkt st
.q/

of a certain parabolic subgroup P DQL of G. Namely, consider

D.s1; �1/˝D.s2; �2/˝ � � �˝D.st ; �t /

as an irreducible L-module, inflate it to an irreducible FP -module U , and then
induce to G to get V : V D U G . Note that the Harish-Chandra induction is
commutative (with respect to the factors D.si ; �i/) and transitive. Also, note that the
Weil modules of G are precisely D.a; .n�1; 1// and

�
D.a; .n�1//ıD.b; .1//

�
"G,

with a; b 2 F�q being `-regular and a¤ b. For the irreducible complex G-modules,
we will instead use the notation�

S.s1; �1/ ıS.s2; �2/ ı � � � ıS.st ; �t /
�
"G:
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Proposition 3.1. Theorem B holds for G D GL4.q/.

Proof. The implication “(i) ) (ii)” follows from Corollary 2.3. For the other
implication, let ˆ be an irreducible FG-representation possessing property .P2/

and let ' denote its Brauer character. By Corollary 2.6(ii)–(iii), we have 'Œ1�D 0

and CV .Q1/¤ 0, if V is an FG-module affording ˆ.

(i) First we consider the case `D 0, or more generally, ' lifts to a complex character
of G. Using the character table of G given, e.g., in [Geck et al. 1996], one can
check that the relation 'Œ1�D 0 implies that ' is a Weil character. (Note that the
character table of G was first determined in [Steinberg 1951].)

(ii) From now on we may assume that p ¤ `
ˇ̌
jGj and that ' does not lift to a

complex character. We use the label for V given in (3-1). Since any irreducible
FX -module of X 2 fGL1.q/;GL2.q/g lifts to a complex module, we see that
D.si ; �i/ lifts to a complex GLki di

.q/-module if kidi � 2. The same also happens
if �i D .ki/; see [Guralnick and Tiep 1999, Corollary 2.6]. Hence, the condition
that V does not lift to a complex module implies that one of the following cases
must occur for V as labeled in (3-1):

(a) t D 1, V DD.s; �/.

(b) t D 2, V D
�
D.a; �/ıD.b; .1//

�
"G, deg.a/D deg.b/D 1, �` 3, and a¤ b.

Let e be the smallest positive integer such that ` j .1C qC q2C � � �C qe�1/.

(iii) Suppose we are in case (a). Then, by [Kleshchev and Tiep 2010, Theorem 5.4],
CV .Q1/ D 0 whenever deg.s/ > 1. Hence we must have that deg.s/ D 1. By
[Guralnick and Tiep 1999, Lemma 2.9] without loss we may assume that s D 1,
i.e., ˆ is a unipotent representation. Note that ˆ has degree 1 if �D .4/ and is a
Weil representation if �D .3; 1/. Now we let �j , 1 � j � 5, denote the complex
unipotent character of G labeled by .4/, .3; 1/, .2; 2/, .2; 12/, and .14/, respectively.
Similarly, we let 'j , 1� j � 5, denote the Brauer unipotent character of G labeled
by .4/, .3; 1/, .2; 2/, .2; 12/, and .14/, respectively. Then

(3-2) �1Œ1�D�2Œ1�D'1Œ1�D'2Œ1�D0; �3Œ1�Dq4; �4Œ1�Dq5; �5Œ1�Dq6:

Recall that we use the notation �ı to denote the restriction of a complex character �
to the set of `0-elements of G, and that 'Œ1�D 0.

By the results of [James 1990], there are integers x1;x2 such that

�ı3 D '3Cx1'1Cx2'2:

It follows by (3-2) that '3Œ1�D �3Œ1�D q4; in particular, �¤ .2; 2/.
Next, by [Guralnick and Tiep 1999, Proposition 3.1], there are nonnegative

integers y1;y2;y3 such that y3 � 1 and

�ı4 D '4Cy1'1Cy2'2Cy3'3:
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It follows by (3-2) that

'4Œ1�D �4Œ1��y3'3Œ1�D q4.q�y3/ > 0I

in particular, �¤ .2; 12/.
Finally, let �D .14/, i.e., ' D '5. Then � is 2-divisible and 4-divisible in the

sense of [Kleshchev and Tiep 2010, Definition 4.3]. Since CV .Q1/¤ 0, it follows
by [loc. cit., Theorem 5.4] that e ¤ 2; 4. If e D 3, then by [James 1990], we have

�ı5 D 'C'3;

and so �5Œ1�D '3Œ1�D q4, contrary to (3-2). Thus we must have e � 5 > n, and
so '5 D �ı

5
by [James 1990, Theorem 6.4], whence �5Œ1� D 'Œ1� D 0, again a

contradiction.

(iv) Suppose we are in case (b). By [Guralnick and Tiep 1999, Lemma 2.9], we
may assume that aD 1. Let �1, �2, and �3 denote the (ordinary) characters of the
irreducible CG-modules

�
S.1; �/ ıS.b; .1//

�
"G, with �D .3/, .2; 1/, and .13/,

respectively. Similarly, let  1,  2, and  3 denote the Brauer characters of the
irreducible FG-modules

�
D.1; �/ ıD.b; .1//

�
"G, with �D .3/, .2; 1/, and .13/,

respectively. Using [Geck et al. 1996], we can compute

(3-3) �1Œ1�D 0; �2Œ1�D q4.qC 1/; �3Œ1�D q5.qC 1/:

Note that  1 is a Weil character, and so  1Œ1� D 0. Using the decomposition
matrix for GL3.q/ [James 1990], we get a nonnegative integer x such that

�ı2 D  2Cx 1:

It follows by (3-3) that  2Œ1�D �2Œ1�D q4.qC 1/. Furthermore, there are integers
0� y; z � 1 such that

�ı3 D  3Cy 1C z 2:

It follows by (3-3) that

 3Œ1�D �3Œ1�� z 2Œ1�� q4.q2
� 1/:

We have therefore shown that ' D  1, a Weil character. �
Proposition 3.2. Let GDGLn.q/ with n�5 and let V be an irreducible FG-module.
Suppose that V has property .W/. Then in the label (3-1) for V , deg.si/D 1 for
all i . Furthermore, either V is a Weil module, or t D 1.

Proof. (i) First we consider the case t D 1. By Corollary 2.6, CV .Q1/¤ 0, whence
deg.s1/D 1 by [Kleshchev and Tiep 2010, Theorem 5.4].

(ii) From now on we may assume that t � 2, so that V is Harish-Chandra-
induced. Next we show that deg.si/ D 1 for all i . Assume for instance that
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d1 D deg.s1/ > 1. Then we consider a standard subgroup H D GLm.q/ of G

with 2�m WD n� ktdt � n� 1. Property .W/ implies that all composition factors
of V jH are Weil modules or of dimension 1. We can find a parabolic subgroup
P DQL with Levi subgroup LDH�GLkt dt

.q/. Then note that V can be obtained
by inflating the irreducible FL-module A˝D.st ; �t / to P , where

A WD
�
D.s1; �1/ ıD.s2; �2/ ı � � � ıD.st�1; �t�1/

�
"H;

and then induce to G. In particular, A is a simple submodule of V jH , and clearly A

is not a Weil module as deg.s1/ > 1. Suppose that dim.A/D 1. Since deg.s1/ > 1,
we must have that .m; q/ D .2; 2/, deg.s1/ D 2, �1 D .1/, and t D 2. Applying
property .W/ to a standard subgroup GL3.2/ containing H D GL2.2/ (as its
standard subgroup) and then restricting further down to H , we see, however, that
AD deg.s1; .1// cannot occur in V jH , a contradiction.

(iii) Here we show that one of the following holds:

(a) t D 3, �i D .ki/ for all i , and fk1; k2; k3g D fn� 2; 1; 1g.

(b) t D 2 and �i 2 f.ki/; .ki � 1; 1/g for all i .

The arguments in (ii) show that A is a simple submodule of V jH . Again by
property .W/, A is either a Weil module or of dimension 1. First we consider the
case t �3. Then note that dim.A/ is at least the index of a proper parabolic subgroup
of H and so can never be equal to 1. Thus A is a Weil module. The identification
of Weil modules among the ones labeled in (3-1) now implies that in fact t D 3,
�i D .ki/ for all i D 1; 2, and 1 2 fk1; k2g. Interchanging k3 with k1 or k2 in the
above construction and noting that n� 5, we then get k3 D 1 and �3 D .1/ as well.

Suppose now that t D 2. The claim is obvious if ki � 2, so we consider the
case where k1 � 3, say. Then ADD.s1; �1/ is a Weil module of GLk1

.q/ or of
dimension 1. It follows that �1 2 f.k1/; .k1� 1; 1/g, as stated.

(iv) Abusing the notation, now we use H to denote the standard subgroup

H D StabG

�
he1; e2; : : : ; en�1iFq

; en

�
Š GLn�1.q/;

and P DQÌL to denote the parabolic subgroup

P D StabG

�
he1; : : : ; ekiFq

�
;

where k WD k1 and

LD StabG

�
he1; : : : ; ekiFq

; hekC1; : : : ; eniFq

�
:

Then we can obtain V by inflating the irreducible FL-module B, where

B WDD.s1; �1/˝
�
D.s2; �2/ ı � � � ıD.st ; �t /

�
" GLn�k.q/;
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to an irreducible FP -module U and then induce to G. Note that PH DQH ÌLH

is also a parabolic subgroup of H , where

PH WD P \H; QH WDQ\H; LH WDL\H:

Mackey’s formula implies that V jH contains a subquotient V 0 WD .U 0/H , where
U 0 WD U jPH

. But note that QH �Q acts trivially on U , so in fact V 0 is Harish-
Chandra-induced from the FLH -module B0, where B0 WD BjLH

.

(v) Now we can complete the case t D 3. As shown in (iii), in this case we have that
�i D .ki/ for all i and we may furthermore assume that .k1; k2; k3/D .1; 1; n�2/.
Repeating the argument in (iv) and using the notation therein, we see that B0

contains a simple subquotient isomorphic to

D.s1; .1//˝
�
D.s2; .1// ıD.s3; .n� 3//

�
" GLn�2.q/:

It follows that V jH contains a subquotient isomorphic to�
D.s1; .1// ıD.s2; .1// ıD.s3; .n� 3//

�
"H;

which is irreducible, but not a Weil module nor of dimension 1. This contradiction
shows that the case t D 3 is impossible.

(vi) Finally, we consider the case t D 2. As shown in (iii), �i 2 f.ki/; .ki � 1; 1/g;
also, recall that n D k1C k2 � 5. Suppose first that k2 � k1 � 2. Then, in the
notation of (iv), we see that BDD.s1; �1/˝D.s2; �2/ and so B0 contains a simple
subquotient isomorphic to D.s1; �1/˝D.s2; �/ with � 2 f.k2� 1/; .k2� 2; 1/g.
It follows that V jH contains a subquotient isomorphic to�

D.s1; �1/ ıD.s2; �/
�
"H;

which is irreducible, but not a Weil module nor of dimension 1, a contradiction.
Hence we may assume that .k1; k2/D .1; n� 1/. If �2 D .n� 1/, then V is a

Weil module. Assume that �2D .n�2; 1/. Then, in the notation of (iv), we see that
B DD.s1; �1/˝D.s2; .n�2; 1// and so B0 contains a simple subquotient isomor-
phic to D.s1; �1/˝D.s2; .n� 3; 1//. It follows that V jH contains a subquotient
isomorphic to �

D.s1; .1// ıD.s2; .n� 3; 1//
�
"H;

which is irreducible, but not a Weil module nor of dimension 1, again contradicting
property .W/. �
Proposition 3.3. Let GDGLn.q/ with n�5 and let V be an irreducible FG-module.
Suppose that V has property .W/. Then either V is a Weil module, or dim V D 1.

Proof. (i) Consider the label (3-1) for V . By Proposition 3.2 and [Guralnick and Tiep
1999, Lemma 2.9], we may assume that V DD.1; �/, a unipotent representation;
furthermore, CV .Q1/ ¤ 0 by Corollary 2.6. Now V is a subquotient of the
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reduction modulo ` of the unipotent CG-module S.1; �/. We can find a standard
subgroup H D GLn�1.q/ of G as a direct factor of the Levi subgroup L1 D

H �GL1.q/ of P1 DQ1L1. By the Howlett–Lehrer comparison theorem [1983,
Theorem 5.9], the Harish-Chandra restriction �RG

L1
of unipotent characters of G

can be computed inside the Weyl group Sn of G, and it is similar for the Harish-
Chandra induction RG

L1
. For brevity, we denote the character of S.1; �/ by �� and

the Brauer character of D.1; �/ by '�, with similar notation for other partitions.
In this notation, �RG

L1
.��/ is the sum of unipotent characters �� of L1 labeled

by � ` .n� 1/, where the Young diagram Y .�/ of � is obtained from the Young
diagram Y .�/ of � by removing one removable node. For instance,

(3-4)

�RG
L1
.�.n//D �.n�1/;

�RG
L1
.�.n�1;1//D �.n�1/

C�.n�2;1/;

�RG
L1
.�.n�2;2//D �.n�3;2/

C�.n�2;1/;

�RG
L1
.�.n�2;12//D �.n�3;12/

C�.n�2;1/:

It is similar for the Harish-Chandra induction; in particular,

(3-5)
RG

L1
.�.n�1//D �.n/C�.n�1;1/;

RG
L1
.�.n�2;1//D �.n�1;1/

C�.n�2;2/
C�.n�2;12/:

Let  be the Brauer character of a simple submodule of the L1-module CV .Q1/.
Then  is an irreducible constituent of �RG

L1
.'�/, the Brauer L1-character of

CV .Q1/. The above arguments show that  is an irreducible constituent of .��/ı

for some � ` .n� 1/, whence  D '� for some � ` .n� 1/. On the other hand,
property .W/ implies that  is a Weil character (while restricted to H ), or has
degree 1. As n � 5, it follows that � D .n � 1/ or .n � 2; 1/. By Frobenius’
reciprocity, '� is an irreducible constituent of RG

L1
.'�/, and so of .RG

L1
.��//ı

as well. Restricting (3-5) to `0-elements, we see by [Guralnick and Tiep 1999,
Proposition 3.1] that � is .n/, .n�1; 1/, .n�2; 2/, or .n�2; 12/. The first possibility
leads to the principal character, and the second one yields a Weil character.

(ii) Here we consider the case �D.n�2; 2/. Then applying [loc. cit., Proposition 3.1]
to G, we can write

.��/ı D '�Cx1.�
.n//ıCx2.�

.n�1;1//ı

for some integers x1, x2. It follows by (3-4) that
�RG

L1
.'�/D

�
�.n�3;2/

C .1�x2/�
.n�2;1/

� .x1Cx2/�
.n�1/

�ı
:

Applying [loc. cit., Proposition 3.1] to H , we then get
�RG

L1
.'�/D '.n�3;2/

Cx01'
.n�1/

Cx02'
.n�2;1/
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for some integers x0
1
, x0

2
. By the linear independence of irreducible Brauer charac-

ters, '.n�3;2/ is an irreducible constituent of .'�/jH , contradicting .W/.

(iii) Finally, assume that �D .n� 2; 12/. Then applying [loc. cit., Proposition 3.1]
to G, we have

.��/ı D '�Cy1.�
.n//ıCy2.�

.n�1;1//ıCy3.�
.n�2;2//ı

for some integers y1, y2, y3. It follows by (3-4) that

�RG
L1
.'�/D

�
�.n�3;12/

�y3�
.n�3;2/

C.1�y2�y3/�
.n�2;1/

�.y1Cy2/�
.n�1/

�ı
:

Applying [loc. cit., Proposition 3.1] to H , we then get

�RG
L1
.'�/D '.n�3;12/

Cy01'
.n�1/

Cy02'
.n�2;1/

Cy03'
.n�2;2/

for some integers y0
1
, y0

2
, y0

3
. By linear independence of irreducible Brauer charac-

ters, '.n�3;12/ is an irreducible constituent of .'�/jH , again contradicting .W/. �

We note (without giving proof, since we do not need it subsequently) that prop-
erty .Z/ can also be used to characterize Weil representations of GLn.q/ with n� 5.

Proposition 3.4. Theorem A holds for G D GLn.q/ with n� 5.

Proof. The implication “(i)) (ii)” follows from Corollary 2.3. In fact, by applying
Corollary 2.3 successively, we see that (i) also implies (iii) and (iv). Also, note that
(iv) obviously implies (iii), and (ii) implies (i) by Proposition 3.3.

It remains to show that (iii) implies (i). We proceed by induction on n� 5, with
the induction base nD 5 (so that mD 4) already established in Proposition 3.3. For
the induction step n� 6, consider a chain of standard subgroups

H D GLm.q/�LD GLn�1.q/ <G D GLn.q/:

Let ‰ be any composition factor of ˆjL. According to (iii), every composition
factor of ‰jH is either a Weil representation or has dimension 1. Hence, by the
induction hypothesis applied to L, we see that either ‰ is a Weil representation or
deg‰ D 1. Thus ˆ has property .W/, and so we are done by Proposition 3.3. �

Proposition 3.5. Theorem B holds for G D GLn.q/ with n� 4.

Proof. The implication “(i)) (ii)” follows from Corollary 2.3. For the other impli-
cation, let G D GLn.q/ with n� 4 and let ˆ be an irreducible FG-representation
with property .Pk/ for some 2� k � n�2. By Proposition 3.1, we may assume that
n � 5 and consider a standard subgroup H Š GL4.q/ of G. By Corollary 2.2(i),
every composition factor ‰ of ˆjH has property .P2/. By Proposition 3.1, either ‰
is a Weil representation or deg‰ D 1. Thus ˆ fulfills condition (iii) of Theorem A
for G and with mD 4. Hence ˆ is either a Weil representation or has degree 1 by
Proposition 3.4. �
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4. The special linear groups

Proof of Theorems A and B. By Propositions 3.4 and 3.5, it suffices to prove the
theorems for SDSLn.q/. Also, by Corollary 2.3, it suffices to prove the implication
“(ii)) (i)” (as the implication “(iii)) (i)” of Theorem A can then be proved using
the same arguments as in the proof of Proposition 3.4). Let P 2 f.Pk/; .W/g and
let U be an irreducible FS -module with property P . We consider S as the derived
subgroup of GDGLn.q/. By Proposition 2.5(ii), a simple submodule V of U G has
property P . Applying Proposition 3.5 if P D .Pk/, respectively Proposition 3.4 if
PD .W/, to V , we see that V is a Weil module or dim V D1. As U is an irreducible
constituent of V jS , we conclude that U is a Weil module or has dimension 1. �

We note that one could try to prove the complex case of Theorem A for GLn.q/

using the results of [Zelevinsky 1981] or [Thoma 1971]. We conclude by the follow-
ing example showing that Weil representations of GLn.q/ and SLn.q/ do not admit a
“middle-free” characterization in the spirit of [Guralnick et al. 2002, Corollary 12.4].

Example 4.1. Let GDGLn.q/ or SLn.q/ with n� 3. Consider the natural module
W D he1; : : : ; eniFq

and let

P D StabG

�
he1iFq

; he1; : : : ; en�1iFq

�
:

Note that P DNG.Z/ for a long-root subgroup Z of G. Also, we may assume
that (a G-conjugate of) the long-root element x defined in Section 2 is contained
in Z. Suppose that an irreducible FG-module V has no middle with respect to
QDOp.P / as in [Guralnick et al. 2002, Corollary 12.4], i.e.,

CV .Z/DCV .Q/:

It follows that
V DCV .Q/˚ ŒV;Z�:

Let ' denote the Brauer character of V . Then we have

'.x/D a� qn�2b;

where dim CV .Q/Da and dimŒV;Z�D qn�2.q�1/b. But note that QnZ contains
a G-conjugate x0 of x, and

'.x0/D a:

It follows that b D 0, V DCV .Q/, Q acts trivially on V , and so dim V D 1.
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A REDUCTIVE p-ADIC GROUP, V (PARABOLIC INDUCTION)
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I dedicate this work to the memory of Robert Steinberg, having in mind both a nice encounter in
Los Angeles and the representations named after him, which play such a fundamental role in the

representation theory of reductive p-adic groups.

We give basic properties of the parabolic induction and coinduction functors
associated to R-algebras modelled on the pro- p Iwahori Hecke R-algebras
HR(G) and HR(M) of a reductive p-adic group G and of a Levi subgroup M
when R is a commutative ring. We show that the parabolic induction and
coinduction functors are faithful, have left and right adjoints that we de-
termine, respect finitely generated R-modules, and that the induction is a
twisted coinduction.
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1. Introduction

We give basic properties of the parabolic induction and coinduction functors as-
sociated to R-algebras modelled on the pro-p Iwahori Hecke R-algebras HR(G)
and HR(M) of a reductive p-adic group G and of a Levi subgroup M when R is a
commutative ring. We show that the parabolic induction and coinduction functors
are faithful, have left and right adjoints that we determine, respect finitely generated
R-modules, and that the induction is a twisted coinduction.

When R is an algebraically closed field of characteristic p, Abe [2014, §4] proved
that the induction is a twisted coinduction when he classified the simple HR(G)-
modules in terms of supersingular simple HR(M)-modules. In two forthcoming
articles [Ollivier and Vignéras ≥ 2015; Abe et al. ≥ 2015], we will use this paper
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to compute the images of an irreducible admissible R-representation of G by the
basic functors: invariants by a pro-p-Iwahori subgroup, left or right adjoint of the
parabolic induction.

Let R be a commutative ring and let H be a pro-p Iwahori Hecke R-algebra,
associated to a pro-p Iwahori Weyl group W (1) and parameter maps S

q
−→ R,

S(1) c
−→ R[Zk] [Vignéras 2013a, §4.3; 2015b].

For the reader unfamiliar with these definitions, we recall them briefly. The pro-p
Iwahori Weyl group W (1) is an extension of an Iwahori–Weyl group W by a finite
commutative group Zk , and X (1) denotes the inverse image in W (1) of a subset X
of W . The Iwahori–Weyl group contains a normal affine Weyl subgroup W aff; S is
the set of all affine reflections of W aff, and q is a W -equivariant map S→ R, with W
acting by conjugation on S and trivially on R; c is a (W (1)× Zk)-equivariant map
S(1)→ R[Zk], with W (1) acting by conjugation and Zk by multiplication on
both sides.

The Iwahori–Weyl group is a semidirect product W =3o W0, where 3 is the
(commutative finitely generated) subgroup of translations and W0 is the finite Weyl
subgroup of W aff.

Let Saff be a set of generators of W aff such that (W aff, Saff) is an affine Coxeter
system and (W0, S := Saff

∩W0) is a finite Coxeter system. The Iwahori–Weyl
group is also a semidirect product W =W aff o�, where � denotes the normalizer
of Saff in W. Let ` denote the length of (W aff, Saff) extended to W and then inflated
to W (1) such that �⊂W and �(1)⊂W (1) are the subsets of length-0 elements.

Let w̃ ∈W (1) denote a fixed but arbitrary lift of w ∈W .
The subset S⊂W aff of all affine reflections is the union of the W aff-conjugates

of Saff and the map q is determined by its values on Saff; the map c is determined
by its values on any set S̃aff

⊂ Saff(1) of lifts of Saff in W (1).

Definition 1.1. The R-algebra H associated to (W (1), q, c) and Saff is the free
R-module of basis (Tw̃)w̃∈W (1) and relations generated by the braid and quadratic
relations

Tw̃Tw̃′ = Tw̃w̃′, T 2
s̃ = q(s)(s̃)2+ c(s̃)Ts̃

for all w̃, w̃′ ∈W (1) with `(w)+ `(w′)= `(ww′) and all s̃ ∈ Saff(1).

By the braid relations, the map R[�(1)] →H sending ũ ∈�(1) to Tũ identifies
R[�(1)] with a subring of H containing R[Zk]. This identification is used in the
quadratic relations. The isomorphism class of H is independent of the choice of Saff.

Let SM be a subset of S. We recall the definitions of the pro-p Iwahori Weyl
group WM(1), the parameter maps SM

qM
−→ R, SM(1)

cM
−→ R[Zk] and Saff

M given in
[Vignéras 2015b].

The set SM generates a finite Weyl subgroup WM,0 of W0, WM := 3o WM,0

is a subgroup of W , WM(1) is the inverse image of WM in W (1), SM(1) =
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S(1)∩WM(1), qM is the restriction of q to SM , and cM is the restriction of c

to SM(1). The subgroup W aff
M := W aff

∩WM ⊂ WM is an affine Weyl group and
Saff

M denotes the set of generators of W aff
M containing SM such that (W aff

M , Saff
M ) is an

affine Coxeter system.

Definition 1.2. For SM ⊂ S, the R-algebra HM associated to (WM(1), qM , cM) and
Saff

M is called a Levi algebra of H.

Let (T M
w̃
)
w̃∈WM (1)

denote the basis of HM associated to (WM(1), qM , cM) and
Saff

M and `M the length of WM(1) associated to Saff
M .

Remark 1.3. When SM = S, we have HM = H, and when SM = ∅, we have
HM = R[3(1)].

In general when SM 6= S, Saff
M is not WM ∩ Saff, and HM is not a subalgebra of H;

it embeds in H only when the parameters q(s) ∈ R for s ∈ Saff are invertible.

As in the theory of Hecke algebras associated to types, one introduces the
subalgebra H+M ⊂HM of basis (T M

w̃
)
w̃∈WM+ (1)

associated to the positive monoid

WM+ := {w ∈WM | w(6
+
−6+M)⊂6

aff,+
},

where 6M ⊂ 6 are the reduced root systems defining W aff
M ⊂ W aff, the upper

index indicates the positive roots with respect to Saff, Saff
M , and 6aff is the set of

affine roots of 6. One chooses an element µ̃M central in WM(1), in particular of
length `M(µ̃M) = 0, lifting a strictly positive element µM in 3M+ := 3∩WM+ .
The element T M

µ̃M
of HM is invertible of inverse T M

µ̃−1
M

, but in general Tµ̃M is not
invertible in H.

Theorem 1.4. (i) The R-submodule HM+ of basis (T M
w̃
)
w̃∈WM+ (1)

is a subring
of HM , called the positive subalgebra of HM .

(ii) The R-algebra HM =HM+[(T M
µ̃M
)−1
] is a localization of HM+ at T M

µ̃M
.

(iii) The injective linear map HM
θ
−→H sending T M

w̃
to T

w̃
for w̃∈WM(1) restricted

to HM+ is a ring homomorphism.

(iv) As a θ(HM+)-module, H is the almost localization of a left free θ(HM+)-module
VM+ at Tµ̃M .

The theorem was known in special cases. Part (iv) means that H is the union
over r ∈ N of

rVM+ := {x ∈H | T r
µ̃M

x ∈ VM+}, VM+ =⊕d∈MW0θ(HM+)Td̃ .

Here MW0 is the set of elements of minimal lengths in the cosets WM,0\W0 and
d̃ ∈W (1) is an arbitrary lift of d . The theorem admits a variant for the subalgebra
HM− ⊂HM associated to the negative submonoid WM− , inverse of WM+ , for the



502 MARIE-FRANCE VIGNÉRAS

linear map HM
θ∗
−→H sending (T M

w̃
)∗ to T ∗

w̃
for w̃∈WM(1) [Vignéras 2013a, Propo-

sition 4.14], and with left replaced by right in (iv): HM =HM−[T M
µ̃M
], θ∗ restricted

to HM− is a ring homomorphism, and the right θ∗(HM−)-module H is the almost
localisation at T ∗µ̃−1

M
of a right free θ∗(HM−)-module V∗M− of rank |WM,0|

−1
|W0|,

meaning that H is the union over r ∈ N of

rV∗M− := {x ∈H | x(T
∗

µ̃−1
M
)r ∈ V∗M−}, V∗M− :=

∑
d∈W M

0

T ∗
d̃
θ∗(HM−).

Here W M
0 is the inverse of MW0.

For a ring A, let ModA denote the category of right A-modules and A Mod the
category of left A-modules. Given two rings A ⊂ B, the induction −⊗A B and the
coinduction HomA(B,−) from ModA to ModB are the left and the right adjoint of
the restriction ResB

A . The ring B is considered as a left A-module for the induction,
and as a right A-module for the coinduction.

Property (iv) and its variant describe H as a left θ(HM+)-module and as a right
θ∗(HM−)-module. The linear maps θ and θ∗ identify the subalgebras HM+,HM−

of HM with the subalgebras θ(HM+), θ
∗(HM−) of H.

Definition 1.5. The parabolic induction and coinduction from ModHM to ModH
are the functors IHHM

=−⊗HM+ ,θ
H and IHHM

= HomHM− ,θ
∗(H,−).

We show the following:

Theorem 1.6. The parabolic induction IHHM
is faithful, transitive, respects finitely

generated R-modules, and admits a right adjoint HomHM+
(HM ,−).

If R is a field, the right adjoint functor respects finite dimension.

The transitivity of the parabolic induction means that for SM ⊂ SM ′ ⊂ S,

IHHM
= IHHM ′

◦ IHM ′
HM
:ModHM →ModHM ′

→ModH .

Let w0 denote the longest element of W0, Sw0(M) the subset w0SMw0 of S, and
wM

0 := w0wM,0, where wM,0 is the longest element of WM,0. A lift w̃M
0 ∈ W0(1)

of wM
0 defines an R-algebra isomorphism

(1) HM →Hw0(M), T M
w̃ 7→ Tw0(M)

w̃M
0 w̃(w̃

M
0 )
−1 for w̃ ∈WM(1),

inducing an equivalence of categories

ModHM

w̃M
0

−−→ModHw0(M)

of inverse w̃w0(M)
0 defined by the lift (w̃M

0 )
−1
∈W0(1) of ww0(M)

0 = (wM
0 )
−1.

Definition 1.7. The w0-twisted parabolic induction and coinduction from ModHM

to ModH are the functors IHHw0(M)
◦ w̃M

0 and IHHw0(M)
◦ w̃M

0 .
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Up to modulo equivalence, these functors do not depend on the choice of the lift
of wM

0 used for their construction.

Theorem 1.8. The parabolic induction (resp. coinduction) is equivalent to the
w0-twisted parabolic coinduction (resp. induction):

IHHM
' IHHw0(M)

◦ w̃M
0 , IHHM

' IHHw0(M)
◦ w̃M

0 .

Using that the coinduction admits a left adjoint and that the induction is a twisted
coinduction, one proves the following:

Theorem 1.9. The parabolic induction IHHM
admits a left adjoint equivalent to

w̃w0(M)
0 ◦ (−⊗Hw0(M)

− ,θ∗ Hw0(M)) :ModH→ModHw0(M)
→ModHM .

When R is a field, the left adjoint functor respects finite dimension.

The coinduction satisfies the same properties as the induction:

Corollary 1.10. The coinduction IHHM
is faithful, transitive, respects finitely gener-

ated R-modules, and admits a left and a right adjoint. When R is a field, the left
and right adjoint functors respect finite dimension.

Note that the induction and the coinduction are exact functors, as they admit a
left and a right adjoint.

We prove Theorem 1.4 in Section 2, and Theorems 1.6, 1.8 and 1.9 in Section 4.

Remark 1.11. One cannot replace (H,HM ,H
+

M) by (H,HM ,H
−

M) to define the
induction IHHM

.
When no nonzero element of the ring R is infinitely p-divisible, is the parabolic

induction functor

ModHM

IHHM−−→ModH

fully faithful? The answer is yes for the parabolic induction functor

Mod∞R (M)
IndG

P
−−→Mod∞R (G)

when M is a Levi subgroup of a parabolic subgroup P of a reductive p-adic
group G and Mod∞R (G) the category of smooth R-representations of G [Vignéras
2014, Theorem 5.3].

2. Levi algebra

We prove Theorem 1.4 and its variant on the subalgebra HεM ⊂ HM , its image in H,
on HM as a localisation of HεM and on H as an almost left localisation of θ(H+M),
and almost left localisation of θ∗(H−M).
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2A. Monoid WMε . Let SM ⊂ S and ε ∈ {+,−}. To Saff is associated a submonoid
WMε ⊂WM defined as follows.

Let 6 denote the reduced root system of affine Weyl group W aff, V the real
vector space of dual generated by 6, 6aff

=6+Z the set of affine roots of 6 and
H= {KerV (γ ) | γ ∈6

aff
} the set of kernels of the affine roots in V . We fix a W0-

invariant scalar product on V . The affine Weyl group W aff identifies with the group
generated by the orthogonal reflections with respect to the affine hyperplanes of H.

Let A denote the alcove of vertex 0 of (V,H) such that Saff is the set of orthogonal
reflections with respect to the walls of A and S is the subset associated to the walls
containing 0. An affine root which is positive on A is called positive. Let 6aff,+

denote the set of positive affine roots, 6+ := 6 ∩6+aff, 6
aff,−
:= −6aff,−, and

6− := −6+.
Let 1M denote the set of positive roots α ∈6+ such that Kerα is a wall of A

and the orthogonal reflection sα of V with respect to Kerα belongs to SM , 6M ⊂6

the reduced root system generated by 1M , and 6εM :=6M ∩6
ε
aff.

Definition 2.1. The positive monoid WM+ ⊂WM is

{w ∈WM | w(6
+
−6+M)⊂6

aff,+
}.

The negative monoid WM− := {w ∈WM | w
−1
∈WM+} is the inverse monoid.

It is well known that the finite Weyl group WM,0 is the W0-stabilizer of 6ε−6εM .
This implies

WMε =3Mε o WM,0, where 3Mε :=3∩WMε .

Let 3 ν
−→ V denote the homomorphism such that λ ∈3 acts on V by translation

by ν(λ).

Lemma 2.2. 3Mε = {λ ∈3 | −(γ ◦ ν)(λ)≥ 0 for all γ ∈6ε −6εM}.

Proof. Let λ ∈ 3. By definition, λ ∈ 3M+ if and only if λ(γ ) is positive for all
γ ∈6+−6+M . We have λ(γ )= γ − ν(λ). The minimum of the values of γ on A

is 0 [Vignéras 2013a, (35)]. So γ (v− ν(λ)) ≥ 0 for γ ∈ 6+−6+M and v ∈ A is
equivalent to −(γ ◦ ν)(λ)≥ 0 for all γ ∈6+−6+M . �

When SM ⊂ SM ′ ⊂ S, we have the inclusion 6εM ⊂ 6
ε
M ′ , the inverse inclusion

6ε −6εM ⊂6
ε
−6εM ′ , and the inclusions WM ⊂WM ′ and WMε ⊂W ε

M ′ .

Remark 2.3. Set Dε
:= {v ∈ V | γ (v) ≥ 0 for γ ∈ 6ε} and 3ε := (−ν)−1(Dε).

The antidominant Weyl chamber of V is D− and the dominant Weyl chamber is D+.
Careful: [Vignéras 2015a, §1.2(v)] uses a different notation: 3ε = (ν)−1(Dε).

The Bruhat order ≤ of the affine Coxeter system (W aff, Saff) extends to W : for
w1, w2 ∈W aff, u1, u2 ∈�, we have w1u1≤w2u2 if u1= u2 and w1≤w2 [Vignéras
2006, Appendice]. We write w <w′ if w ≤w′ and w 6=w′ for w,w′ ∈W . Careful:
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the Bruhat order ≤M on WM associated to (W aff
M , Saff

M ) is not the restriction of ≤
when Saff

M is not contained in Saff [Vignéras 2015b].

Remark 2.4. The basic properties of (W aff, Saff) extend to W :

(i) If x ≤ y for x, y ∈W and s ∈ Saff,

sx ≤ (y or sy), xs ≤ (y or ys), (x or sx)≤ sy, (x or xs)≤ ys

[Vignéras 2015a, Lemma 3.1, Remark 3.2].

(ii) W =
⊔
λ∈3ε W0λW0 [Henniart and Vignéras 2015, §6.3, Lemma].

(iii) For λ ∈3+, W0λW0 admits a unique element of maximal length wλ = w0λ,
where w0 is the unique element of maximal length in W0, and `(wλ)= `(w0)+

`(λ) [Vignéras 2015a, Lemma 3.5].

(iv) For λ ∈ 3+, {w ∈ W |w ≤ wλ} ⊃
⊔
µ∈3+,µ≤λ W0µW0 [Vignéras 2015a,

Lemma 3.5].

Remark 2.5. The set {w ∈ W |w ≤ wλ} is a union of (W0,W0)-classes only if
λ,µ ∈3+, µ≤ w0λ implies µ≤ λ. I see no reason for this to be true.

Lemma 2.6. The monoid WMε is a lower subset of WM for the Bruhat order ≤M :
for w ∈WMε , any element v ∈WM such that v ≤M w belongs to WMε .

Proof. See [Abe 2014, Lemma 4.1]. �

An element w ∈W admits a reduced decomposition in (W, Saff), w = s1 · · · sr u
with si ∈ Saff, u ∈�. As in [Vignéras 2013a], we set for w,w′ ∈W ,

(2) qw := q(s1) · · · q(sr ), qw,w′ := (qwqw′q
−1
ww′)

1/2.

This is independent of the choice of the reduced decomposition. For w,w′ ∈WM

and si ∈ Saff
M , u ∈�M , let qM,w, qM,w,w′ denote the similar elements. They may be

different from qw, qw,w′ .

Lemma 2.7. We have Saff
M ∩WMε ⊂ Saff and qw,w′ = qM,w,w′ if w,w′ ∈WMε .

In particular, `M(w)+`M(w
′)−`M(ww

′)=`(w)+`(w′)−`(ww′) if w,w′∈WMε.

Proof. See [Abe 2014, Lemma 4.4, proof of Lemma 4.5]. �

An element λ ∈ 3Mε such that all the inequalities in Lemma 2.2 are strict is
called strictly positive if ε =+, and strictly negative if ε =+. We choose

a central element µ̃M of WM(1) lifting a strictly positive element µM of 3.

We set µ̃M+ := µ̃M and µ̃M− := µ̃
−1
M . The center of the pro-p Iwahori Weyl

group WM(1) is the set of elements in the center of 3(1) fixed by the finite Weyl
group WM,0 [Vignéras 2014]. Hence µ̃Mε is an element of the center of 3(1) fixed
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by WM,0 and −γ ◦ ν(µMε ) > 0 for all γ ∈6ε −6εM . We have γ ◦ ν(µMε )= 0 for
γ ∈6M . The length of µMε is 0 in WM , and is positive in W when SM 6= S.

Let HMε denote the R-submodule of the Iwahori–Hecke R-algebra HM of M
of basis (T M

w̃
)
w̃∈WMε (1)

, and HM
θ
−→ H the linear map sending T M

w̃
to T

w̃
for

w̃ ∈WM(1).

The proofs of the properties (i), (ii), (iii) of Theorem 1.4 and its variant are as
follows:

(i) HMε is a subring of HM , because T M
w̃

T M
w̃′

is a linear combination of elements
Tṽ such that v ≤M ww′ [Vignéras 2013a].

(iii) We have θ(T M
w̃1

T M
w̃2
)=Tw̃1 Tw̃2 and θ∗((T M

w̃1
)∗(T M

w̃2
)∗)=T ∗

w̃1
T ∗
w̃2

forw1,w2∈WMε .
This follows from the braid relations if `M(w1)+ `M(w2) = `M(w1w2) because
`(w1)+ `(w2)= `(w1w2) (Lemma 2.7). If w2 = s ∈ Saff

M with `M(w1) − 1 =
`M(w1s), this follows from the quadratic relations

Tw̃1 Ts̃ = Tw̃1 s̃−1
(
q(s)(s̃)2+ Ts̃c(s̃)

)
= q(s)Tw̃1 s̃ + Tw̃1c(s̃),

T ∗w̃1
T ∗s̃ = q(s)T ∗w̃1 s̃ − T ∗w̃1

c(s̃),

s ∈ Saff, `(w1)−1= `(w1s) (Lemma 2.7) and q(s)= qM(s), c(s̃)= cM(s̃) [Vignéras
2015b]. In general the formula is proved by induction on `M(w2) [Abe 2014, §4.1].
The proof of [Abe 2014, Lemma 4.5] applies.

(ii) HM = HMε [(T M
µ̃Mε

)−1
], because for w ∈ WM , there exists r ∈ N such that

µεrMw ∈WMε .

Remark 2.8. If the parameters q(s) are invertible in R, then HM+
θ
−→H extends

uniquely to an algebra homomorphism HM ↪→H, sending T M
µ̃−εrM w̃

to T−r
µ̃Mε

Tw̃ for
w̃ ∈WM+(1), r ∈ N.

Remark 2.9. The trivial character χ1 :H→ R of H is defined by

χ1(Tw̃)= qw (w̃ ∈W (1)).

When H is the Hecke algebra of the pro-p-Iwahori subgroup of a reductive p-adic
group G, we know that H acts on the trivial representation of G by χ1. Note that
the restriction of the trivial character of HM to θ(HM+) is not equal to χ1 ◦ θ when
`M(µM)= 0, `(µM) 6= 0.

2B. An anti-involution ζ . The R-linear bijective map

(3) H ζ
−→H such that ζ(Tw̃)= Tw̃−1 for w̃ ∈W (1)

is an anti-involution when ζ(h1h2)= ζ(h2)ζ(h1) for h1, h2 ∈H because ζ ◦ ζ = id.
For SM ⊂ S, let H ζM

−→HM denote the linear map such that ζ(T M
w̃
) = T M

w̃−1 for
w̃ ∈WM(1).
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Lemma 2.10. 1. The following properties are equivalent:
(i) ζ is an anti-involution.

(ii) ζ(c(s̃))= c(s̃)−1 for s̃ ∈ Saff(1).
(iii) ζ ◦ c= c ◦ (−)−1, where S(1) c

−→ R[Zk] is the parameter map.

2. If ζ is an anti-involution then ζM is an anti-involution.

Proof. Let w̃ = s̃1 · · · s̃`(w)ũ be a reduced decomposition, s̃i ∈ Saff(1), ũ ∈ W (1),
`(ũ)= 0 and let s̃ ∈ Saff(1). Then,

ζ(Tw̃)= T(w̃)−1 = T(ũ)−1 Ts̃−1
`(w)
· · · Ts̃−1

1
= ζ(Tũ)ζ(Ts̃`(w)) · · · ζ(Ts̃1),

(ζ(Ts̃))
2
= T 2

s̃−1 = q(s)s̃−2
+ c(s̃−1)Ts̃−1 .

The map ζ is an antiautomorphism if and only if ζ(c(s̃))= c(s̃−1) for s̃ ∈ Saff(1).
This is equivalent to ζ◦c=c◦(−)−1 becauseS(1) is the union of the W(1)-conjugates
of Saff(1), c is W (1)-equivariant and ζ commutes with the conjugation by W (1).

If c satisfies (iii), its restriction cM to SM(1) satisfies (iii). �

Lemma 2.11. When H=H(G) is the pro-p Iwahori Hecke R-algebra of a reductive
p-adic group G, we have that ζ is an anti-involution.

Proof. Let s ∈S, s̃ be an admissible lift and t ∈ Zk . Then c(s̃) is invariant by ζ
[Vignéras 2013a, Proposition 4.4]. If u ∈U∗γ for γ = α+ r ∈8aff

red, then u−1
∈U∗γ

and mα(u)−1
= mα(u−1). Hence the set of admissible lifts of s is stable by the

inverse map. As the group Zk is commutative, we have

(ζ ◦ c)(t s̃)= ζ(tc(s))= t−1c(s)= c(s)t−1
= c(t s̃)−1. �

From now on, we suppose that ζ is an anti-involution. We recall the involutive
automorphism [Vignéras 2013a, Proposition 4.24]

H ι
−→H such that ι(Tw̃)= (−1)`(w)T ∗w̃ for w̃ ∈W (1),

and [Vignéras 2013a, Proposition 4.13 2)]:

(4) T ∗s̃ := Ts̃ − c(s̃) for s̃ ∈ Saff(1), T ∗w̃ := T ∗s̃1
· · · T ∗s̃r

Tũ for w̃ ∈W (1)

of reduced decomposition w̃ = s̃1 · · · s̃`(w)ũ.

Remark 2.12. We have ζ(T ∗
w̃
)=T ∗

(w̃)−1 for w̃∈W (1), ζ and ι commute, ζM(HMε )=

H−εM and θ ◦ ζM = ζ ◦ θ , θ∗ ◦ ζM = ζ ◦ θ
∗.

2C. ε-alcove walk basis. We define a basis of H associated to ε ∈ {+,−} and an
orientation o of (V,H), which we call an ε-alcove walk basis associated to o.

For s ∈ Saff, let αs denote the positive affine root such that s is the orthogonal
reflection with respect to Kerαs . For an orientation o of (V,H), let Do denote the
corresponding (open) Weyl chamber in (V,H), Ao the (open) alcove of vertex 0
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contained in Do, and o.w the orientation of Weyl chamber w−1(Do) for w ∈ W .
We recall [Vignéras 2013a]:

Definition 2.13. The following properties determine uniquely elements Eo(w̃)∈H
for any orientation o of (V,H) and w̃ ∈W (1). For w̃ ∈W (1), s̃ ∈ Saff(1), ũ ∈�(1),

Eo(s̃)=
{

Ts̃ if αs is negative on Ao,

T ∗s̃ = Ts̃ − c(s̃) if αs is positive on Ao,
(5)

Eo(ũ)= Tũ,(6)

Eo(s̃)Eo.s(w̃)= qs,wEo(s̃w̃).(7)

They imply, for w′ ∈W, λ ∈3,

(8) Eo(w̃
′)Eo.w′(w̃)= qw′,wEo(w̃

′w̃), Eo(λ̃)Eo(w̃)= qλ,wEo(λ̃w̃).

We recall that λ acts on V by translation by ν(λ). The Weyl chamber Do of the
orientation o is characterized by

(9) Eo(λ̃)= T
λ̃

when ν(λ) belongs to the closure of Do.

The alcove walk basis of H associated to o is (Eo(w̃))w̃∈W (1) [Vignéras 2013a]. The
Bernstein basis (E(w̃))w̃∈W (1) is the alcove walk basis associated to the antidominant
orientation (of Weyl chamber D−). By Remark 2.3 and [Vignéras 2013a],

E(w̃)= Tw̃ for w ∈3+ ∪W0, E(w̃)= T ∗w̃ for w ∈3−.

Definition 2.14. The ε-alcove walk basis (Eεo(w̃))w̃∈W (1) of H associated to o is

(10) Eεo(w̃) :=
{

Eo(w̃) if ε =+,
ζ(Eo(w̃

−1)) if ε =−.

Lemma 2.15. The elements E−o (w̃) for any orientation o of (V,H) and w̃ ∈W (1)
are determined by the following properties. For w̃ ∈W (1), s̃ ∈ Saff(1), ũ ∈�(1),

E−o (s̃)= Eo(s̃), E−o (ũ)= Eo(ũ),(11)

E−o.s(w̃)E
−

o (s̃)= qw,s E−o (w̃s̃).(12)

They imply, for w′ ∈W, λ ∈3,

(13) E−
o.w′−1(w̃)E

−

o (w̃
′)= qw,w′E−o (w̃w̃

′), E−o (w̃)E
−

o (λ̃)= qw,λE−o (w̃λ̃).

Proof.

E−o (s̃)= ζ(Eo((s̃)
−1))= Eo(s̃),

E−o (w̃ũ)= ζ(Eo((w̃ũ)−1))= ζ(Eo((ũ)
−1(w̃)−1))= ζ(T(ũ)−1 Eo((w̃)

−1))

= ζ(Eo((w̃)
−1))Tũ = E−o (w̃)Tũ,
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E−o.s(w̃)E
−

o (s̃)= ζ(Eo.s((w̃)
−1))ζ(Eo((s̃)

−1))= ζ(Eo((s̃)
−1)Eo.s((w̃)

−1))

= qs,w−1ζ(Eo((s̃)−1(w̃)−1))= qw,sζ(Eo((w̃s̃)−1))= qw,s E−o (w̃s̃).

We used that qw = qw−1 implies

q
w−1

1 ,w−1
2
= (q

w−1
1

q
w−1

2
q−1
w−1

1 w−1
2
)1/2 = (qw1

qw2
q−1
w2w1

)1/2 = qw2,w1

for w1, w2 ∈W . �

The ε-alcove walk bases satisfy the triangular decomposition

(14) Eεo(w̃)− Tw̃ ∈
∑

w̃′∈W (1),w̃′<w̃

RTw̃′ .

Remark 2.16. The basis E−(w̃) introduced in [Abe 2014] is the − alcove walk
basis associated to the dominant Weyl chamber, satisfying E−(w̃)= T ∗

w̃
if w ∈W0

and E−(λ̃)= Tλ̃ if λ ∈3−.

Let VM be the real vector space of dual generated by 6M with a WM,0-invariant
scalar product and the corresponding set HM of affine hyperplanes.

Lemma 2.17. If ε, ε′ ∈ {+,−} and oM is any orientation of (VM ,HM), then
(Eε

′

oM
(w̃))

w̃∈WMε (1)
is a basis of HMε .

When q(s)= 0, see [Abe 2014, Lemma 4.2].

Proof. A basis of HMε is (T M
w̃
)
w̃∈WMε (1)

. Asw<M w
′ andw′∈WMε impliesw∈WMε

(Lemma 2.6), the triangular decomposition (14) implies that (Eε
′

oM
(w̃))

w̃∈WMε (1)
is

a basis of HMε . �

Lemma 2.18. The ε-Bernstein basis satisfies Eε(w̃)= Tw̃ if w ∈3ε ∪W0.

Proof. The inverse of 3+ ∪W0 is 3− ∪W0; hence

E−(w̃)= ζ(E((w̃)−1))= ζ(T(w̃)−1)= Tw̃. �

The ε-Bernstein elements on WMε (1) are compatible with θ and θ∗:

Proposition 2.19 [Ollivier 2010, Proposition 4.7; 2014, Lemma 3.8; Abe 2014,
Lemma 4.5].

θ(EεM(w̃))= θ
∗(EεM(w̃))= Eε(w̃) for w̃ ∈WMε (1).

Proof. It suffices to prove the proposition when the q(s) are invertible. Let w̃∈W (1).
We write w̃ = λ̃ũ = λ̃1(λ̃2)

−1ũ with u ∈W0, and λ1, λ2 in 3ε . We have

E(λ̃1)E((λ̃2)
−1)= qλ1,λ

−1
2

E(λ̃), E(λ̃2)E((λ̃2)
−1)= qλ2,λ

−1
2
= qλ2

,

E(λ̃1)E((λ̃2)
−1)E(ũ)= qλ1,λ

−1
2

qλ,u E(w̃).
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We suppose the q(s) are invertible. Then,

(15) E(w̃)= qλ2(qλ1,λ
−1
2

qλ,u)−1 E(λ̃1)E(λ̃2)
−1 E(ũ),

= qλ2(qλ1,λ
−1
2

qλ,u)−1

{
T
λ̃1

T−1
λ̃2

Tũ if ε =+,

T ∗
λ̃1
(T ∗
λ̃2
)−1Tũ if ε =−.

We suppose now w ∈ WMε , that is, λ ∈ 3Mε , u ∈ WM,0. Note 3ε ⊂ 3Mε and
qM,λ,u = qλ,u (Lemma 2.7). If ε =+, we have

EM(w̃)= qM,λ2(qM,λ1,λ
−1
2

qλ,u)−1T M
λ̃1
(T M
λ̃2
)−1T M

ũ ,

and
θ(EM(w̃))= qM,λ2(qM,λ1,λ

−1
2

qλ,u)−1T
λ̃1

T−1
λ̃2

Tũ

= qM,λ2
(qM,λ1,λ

−1
2

qλ,u)−1q−1
λ2

qλ1,λ
−1
2

qλ,u E(w̃)

= qM,λ2(qM,λ1,λ
−1
2

qλ2)
−1qλ1,λ

−1
2

E(w̃).

The triangular decomposition of EM(w̃) and E(w̃) implies

qM,λ2(qM,λ1,λ
−1
2

qλ2)
−1qλ1,λ

−1
2
= 1

and θ(EM(w̃))= E(w̃) for w ∈WM+ . If ε =−, the same argument applied to θ∗

gives θ∗(EM(w̃))= E(w̃) for w ∈WM− .
By Remark 2.12, ζ ◦ θ = θ ◦ ζM , ζ ◦ θ

∗
= θ ◦ ζ ∗M , WM−ε is the inverse of WMε

and E−(w̃)= ζ(E((w̃)−1)). Hence for w ∈WM− ,

E−(w̃)= (ζ ◦ θ)(EM((w̃)
−1))= (θ ◦ ζM)(EM((w̃)

−1))= θ(E−M(w̃)).

Similarly, for w ∈WM+ , we have E−(w̃)= θ∗(E−M(w̃)). �

2D. w0-twist. Let SM ⊂ S, w0 denote the longest element of W0 and Sw0(M) =

w0SMw0 ⊂w0Sw0 = S. The longest element wM,0 of WM,0 satisfies wM,0(6
ε
M)=

6−εM , and wM,0(6
ε
−6εM)=6

ε
−6εM . The longest element ww0(M),0 of Ww0(M),0

is w0wM,0w0.
LetwM

0 :=w0wM,0. Its inverse Mw0 :=wM,0w0 isww0(M)
0 andwM

0 (6
ε
M)=6

ε
w0(M).

This implies thatwM
0 (6

aff,ε
M )=6

aff,ε
w0(M). Indeed the image bywM

0 of the simple roots
of6M is the set of simple roots of6w0(M), and this remains true for the simple affine
roots which are not roots. Note that the irreducible components 6M,i of 6M have a
unique highest root aM,i , and that the −aM,i + 1 are the simple affine roots of 6
which are not roots. We havewM

0 (−aM,i+1)=w0wM,0(−aM,i+1)=w0(aM,i )+1.
The irreducible components of 6w0(M) are the w0(6M,i ) and −w0(aM,i ) is the
highest root of w0(6M,i ).



THE PRO- p IWAHORI HECKE ALGEBRA OF A REDUCTIVE p-ADIC GROUP V 511

We deduce

wM
0 Saff

M (w
M
0 )
−1
= Saff

w0(M),

wM
0 W aff

M,0(w
M
0 )
−1
=W aff

w0(M,)0, wM
0 WM,0(w

M
0 )
−1
=Ww0(M,)0.

We have 3 = wM
0 3(w

M
0 )
−1 and wM

0 3
ε
M(w

M
0 )
−1
= 3−εw0(M). Recalling WM =

3oWM,0, WMε =3Mε oWM,0 and the group �M of elements which stabilize AM ,
we deduce

(16)
wM

0 WM(w
M
0 )
−1
=Ww0(M),

wM
0 �M(w

M
0 )
−1
=�w0(M), wM

0 WMε (wM
0 )
−1
=W−εw0(M).

Let νM denote the action of WM on VM and AM the dominant alcove of (VM ,HM).
The linear isomorphism

VM
wM

0
−→ Vw0(M), 〈α, x〉 = 〈wM

0 (α), w
M
0 (x)〉 for α ∈6M ,

satisfies

wM
0 ◦ νM(w)= νw0(M)(w

M
0 w(w

M
0 )
−1) ◦wM

0 for w ∈WM .

It induces a bijection HM → Hw0(M) sending AM to Aw0(M), a bijection DM 7→

wM
0 (DM) between the Weyl chambers, and a bijection oM 7→ wM

0 (oM) between
the orientations such that DwM

0 (oM )
= wM

0 (DoM ).

Proposition 2.20. Let w̃M
0 ∈W0(1) be a lift of wM

0 . The R-linear map

HM
j
−→Hw0(M), T M

w̃ 7→ Tw0(M)
w̃M

0 w̃(w̃
M
0 )
−1 for w̃ ∈WM(1),

is an R-algebra isomorphism sending HMε onto Hw0(M)−ε and respecting the
ε′-alcove walk basis

j (Eε
′

oM
(w̃))= Eε

′

wM
0 (oM )

(w̃M
0 w̃(w̃

M
0 )
−1) for w̃ ∈WM(1)

for any orientation oM of (VM ,HM) and ε, ε′ ∈ {+,−}.

Proof. The proof is formal using the properties given above the proposition and the
characterization of the elements in the ε′-alcove walks bases given by (5), (6), (7)
if ε′ =+ and (11), (12) if ε′ =−. �

We study now the transitivity of the w0-twist. Let SM ⊂ SM ′ ⊂ S. We have
the subset wM ′,0SMwM ′,0 = SwM ′,0(M) of S and we associate to the conjugation
by a lift w̃M ′,0 of wM ′,0 in W (1) an isomorphism HM

j ′
−→HwM ′,0(M) similar to

HM
j
−→Hw0(M) in Proposition 2.20. We will show that j factorizes by j ′.



512 MARIE-FRANCE VIGNÉRAS

We have wM
0 = w

M ′
0 wM

M ′ , where wM
M ′ := wM ′,0wM,0 (equal to wM

0 if S = SM ′),

WwM ′,0(M) = w
M
M ′WM(w

M
M ′)
−1,

Ww0(M) = w
M ′
0 WwM ′,0(M)

(wM ′
0 )−1

= wM
0 WM(w

M
0 )
−1.

For SM1⊂ SM ′ , let WMε,M ′
1
⊂WM1 denote the submonoid associated to Saff

M ′ as in
Definition 2.1 and replace the pair (6+ −6+M1

, 6aff,+) by (6+M ′ −6
+

M1
, 6

aff,+
M ′ ).

We note that

WwM ′,0(M)−ε,M
′ = wM

M ′WMε (w
M
M ′)
−1,

Ww0(M)−ε = w
M ′
0 WwM ′,0(M)−ε,M

′ (wM ′
0 )−1

= wM
0 WMε (w

M
0 )
−1.

Let w̃M
0 , w̃

M ′
0 , w̃M

M ′ be in W0(1) lifting wM
0 , w

M ′
0 , wM

M ′ and satisfying w̃M
0 =

w̃M ′
0 w̃M

M ′ . The algebra isomorphisms

HM
j ′
−→HwM ′,0(M), HM ′

j ′′
−→Hw0(M ′), HM

j
−→Hw0(M)

defined by w̃M
M ′, w̃

M ′
0 , w̃M

0 respectively, as in Proposition 2.20, send the ε-subalgebra
to the −ε-subalgebra and are compatible with the ε′-Bernstein bases. We cannot
compose j ′ with the map j ′′ defined by w̃M ′

0 , but we can compose j ′ with the
bijective R-linear map defined by the conjugation by w̃M ′

0 in W (1)

HwM ′,0(M)
k′′
−→Hw0(M), T

wM ′,0(M)
w̃

7→ Tw0(M)
w̃M ′

0 w̃(w̃M ′
0 )−1 for w̃ ∈WwM ′,0(M)(1).

Proposition 2.21. We have j = k ′′ ◦ j ′ and k ′′ is an R-algebra isomorphism re-
specting the ε-subalgebras and the ε-Bernstein bases: k ′′(HwM ′,0(M)ε ) =Hw0(M)ε

and k ′′(EεwM ′,0(M)
(w̃))= Eεw0(M)(w̃

M ′
0 w̃(w̃M ′

0 )−1) for ε ∈ {+,−}, w ∈WwM ′,0(M).

Proof. The relations between the groups W∗ and W∗ε imply obviously that j = k ′′◦ j ′

and that k ′′ respects the ε-subalgebras.
Now, k ′′ is an algebra isomorphism respecting the ε′-Bernstein bases because j, j ′

are algebra isomorphisms respecting the ε′-Bernstein bases and k ′′ = j ◦ ( j ′)−1. �

2E. Distinguished representatives of W0 modulo WM,0. The classical set M W0

of representatives on WM,0\W0 is equal to M D1 = M D2, where

M D1 := {d ∈W0 | d−1(6+M) ∈6
+
},(17)

M D2 := {d ∈W0 | `(wd)= `(w)+ `(d) for all w ∈WM,0}(18)

[Carter 1985, §2.3.3]. The properties of M W0 used in this article that we are going
to prove are probably well known. Note that the classical set of representatives of
W0\W is studied in [Vignéras 2015a], that + can be replaced by ε ∈ {+,−} in the
definition of M D1, that Mw0 = wM,0w0 ∈

M W0 and that M W0 ∩ S = S− SM .
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Taking inverses, we get the classical set W M
0 of representatives on W0/WM,0

equal to DM,1 = DM,2, where

DM,1 := {d ∈W0 | d(6+M)⊂6
+
},(19)

DM,2 := {d ∈W0 | `(dw)= `(d)+ `(w) for all w ∈WM,0}.(20)

The length of an element of W is equal to the length of its inverse, and [Vignéras
2013a, Corollary 5.10] gives that for λ ∈3,w ∈W0,

(21) `(λw)=
∑

β∈6+∩w(6+)

|β ◦ ν(λ)| +
∑
β∈8w

| −β ◦ ν(λ)+ 1|,

where 8w := 6+ ∩ w(6−). If w = s1 · · · s`(w) is a reduced decomposition in
(W0, S), 8w = {αs1}∪s1(8s1w) and `(w) is the order of 8w. If w ∈WM,0, we have
8w ⊂6

+

M . Let `β(λw) denote the contribution of β ∈6+ to the right side of (21).
We show now that WM,0 can be replaced by WM+ in (18) and by WM− in (20)

(taking the inverses). It is also a variant of the equivalence `(λw) < `(λ)+`(w)⇔
β ◦ ν(λ) > 0 for some β ∈8w for λ,w as in (21).

Lemma 2.22.

(i)
`(wd)= `(w)+ `(d) for w ∈WM+ and d ∈ M W0,

`(dw)= `(d)+ `(w) for w ∈WM− and d ∈W M
0 .

(ii) If λ ∈3,w ∈WM,0, d ∈ M W0, then `(λwd) < `(λw)+ `(d) is equivalent to

w(β) ◦ ν(λ) > 0 and d−1(β) ∈6− for some β ∈6+−6+M .

Proof. [Ollivier 2010, Lemma 2.3; Abe 2014, Lemma 4.8]. Let λ ∈ 3,w ∈
WM,0, d ∈ M W0 and β ∈6+.

Suppose β ∈6+M . Then `β(d)= 0,8d =∅ because d−1(6εM)⊂6
ε by (17), and

`β(λwd)= `β(λw) because w−1(β) ∈ 6ε ⇔ w−1(β) ∈ 6εM ⇒ d−1w−1(β) ∈ 6ε

by (17).
Suppose β ∈6+−6+M . Then w−1(β) ∈6+−6+M and `β(λw)= |β ◦ ν(λ)|.
The number `(d) of β ∈6+−6+M such that d−1(β)∈6− is equal to the number

of β ∈6+−6+M such that (wd)−1(β) ∈6−.
When λ ∈ 3M+ and (wd)−1(β) ∈ 6−, we have β ◦ ν(λ) ≤ 0 and `β(λwd) =
|β ◦ ν(λ)| + 1. Therefore `(λwd)= `(λw)+ `(d), which gives (i).

When λ 6∈ 3 − 3M+ , `(λwd) < `(λw) + `(d) if and only if there exists
β ∈6+−6+M such that β ◦ν(λ)> 0 and d−1w−1(β)∈6−. This gives (ii) because
β 7→ w−1(β) is a permutation map of 6+−6+M . �

Lemma 2.23. (i) For λ ∈3,w ∈W0, we have qλ = qwλw−1, qw = qw0ww0 , and

`(w0)= `(w)+ `(w
−1w0)= `(w0w

−1)+ `(w).

(ii) For w ∈WM,0, we have qw = qwM
0 w(w

M
0 )
−1 .
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Proof. (i) See [Vignéras 2013a, Proposition 5.13]. The length on W0 is invariant by
inverse and by conjugation by w0 because w0Sw0 = S and by [Bourbaki 1968, VI,
§1, Corollaire 3].

(ii) We have qw = qwM,0ww
−1
M,0
= qwM

0 w(w
M
0 )
−1 for w ∈WM,0. �

Lemma 2.24. W M
0 =Ww0(M)

0 wM
0 = w0W M

0 wM,0.

Proof. By (19),

d ∈W M
0 ⇐⇒ d(6+M)⊂6

+
⇐⇒ d(wM

0 )
−1(6+w0(M))⊂6

+
⇐⇒ d(wM

0 )
−1
∈Ww0(M)

0 .

This proves the equality W M
0 = Ww0(M)

0 wM
0 . The equality W M

0 = w0W M
0 wM,0,

follows from

d(wM
0 )
−1(6+w0(M))⊂6

+
⇐⇒ w0dwM,0w0(6

+

w0(M))⊂6
−

⇐⇒ w0dwM,0(6
−

M)⊂6
−
⇐⇒ w0dwM,0 ∈W M

0 . �

Remark 2.25. WM =3o WM,0 but qλw = qwM
0 λw(w

M
0 )
−1 could be false for λ ∈3,

w ∈WM,0 such that `(λw) < `(λ)+ `(w).

Lemma 2.26. We have `(wM
0 )= `(w

M
0 d−1)+ `(d) for any d ∈W M

0 .

Proof. For d ∈W M
0 , we have `(dwM,0)= `(d)+`(wM,0) by (20) and w=wM

0 d−1

satisfiesw0=wdwM,0 and `(w0)=`(w)+`(dwM,0). We havewM
0 =w0wM,0=wd

and `(wM
0 )= `(w0)− `(wM,0)= `(w)+ `(d). �

The Bruhat order x ≤ x ′ in W0 is defined by the following equivalent two
conditions:

(i) There exists a reduced decomposition of x ′ such that by omitting some terms
one obtains a reduced decomposition of x .

(ii) For any reduced decomposition of x ′, by omitting some terms one obtains a
reduced decomposition of x .

A reduced decomposition of w ∈W0 followed by a reduced decomposition of
w′ ∈W0 is a reduced decomposition of ww′ if and only `(ww′)= `(w)+`(w′). A
reduced decomposition of d ∈W M

0 cannot end by a nontrivial element w ∈WM,0.

Lemma 2.27. For w,w′ ∈ WM,0, d, d ′ ∈ W M
0 , we have dw ≤ d ′w′ if and only if

there exists a factorisation w = w1w2 such that `(w)= `(w1)+ `(w2), dw1 ≤ d ′

and w2 ≤ w
′.

Proof. We prove the direction “only if” (the direction “if” is obvious). If dw≤ d ′w′,
a reduced decomposition of dw is obtained by omitting some terms of the product
of a reduced decomposition of d ′ and of a reduced decomposition of w′. We have
dw = d1w2 with d1 ≤ d ′, w2 ≤ w

′ and `(d1w2) = `(d1)+ `(w2). We have d1 =
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dw1, w1 :=ww
−1
2 . As w,w2 ∈wM,0 and d ∈W M

0 , we have `(dw1)= `(d)+`(w1)

and `(dw)= `(d)+ `(w). Hence `(w1)+ `(w2)= `(w). �

Lemma 2.28. Let d ′ ∈ w0(M)W0, d ∈W M
0 .

(i) If there exists u ∈WM,0, u′ ∈W M
0 such that v=wM

0 u≤w= du′, then d =wM
0 .

(ii) We have d ′d ∈ wM
0 WM,0 if and only if d ′d = wM

0 .

Proof. (i) As `(w)= `(d)+ `(u′), we have u = u1u2 with wM
0 u1 ≤ d, u2 ≤ u′ and

u1, u2 ∈WM,0 (Lemma 2.27). We have

`(wM
0 u1)= `(w

M
0 )+ `(u1)= `(w

M
0 d−1)+ `(d)+ `(u1)

(Lemma 2.26). Hence d = wM
0 , u1 = 1.

(ii) If there exists u ∈WM,0 such that d = d ′−1wM
0 u, we have d = d ′−1wM

0 because
d ′−1wM

0 ∈W M
0 (Lemma 2.24). �

2F. H as a left θ(HM+)-module and as a right θ∗(HM−)-module. We prove
Theorem 1.4(iv) on the structure of the left θ(HM+)-module H and its variant
for the right θ∗(HM−)-module H. We suppose SM 6= S.

Recalling the properties (i), (ii), (iii) of Theorem 1.4, HM =HM+[(T M
µ̃M
)−1
] is the

localisation of the subalgebra HM+ at the central element T M
µ̃M

. The algebra HM+

embeds in H by θ . Recalling (17), (18) we choose a lift d̃ ∈W (1) for any element d
in the classical set of representatives M W0 of WM,0\W0. We define

(22) VM+ =
∑

d∈M W0

θ(HM+)Td̃ .

Proposition 2.29. (i) VM+ is a free left θ(HM+)-module of basis (Td̃)d∈M W0 .

(ii) For any h ∈H, there exists r ∈ N such that T r
µ̃M

h ∈ VM+ .

(iii) If q= 0, Tµ̃M is a left and right zero divisor in H.

For GL(n, F), (ii) is proved in [Ollivier 2010, Proposition 4.7] for (q(s))= (0).
When the q(s) are invertible, Tw̃ is invertible in H for w̃ ∈W (1).

Proof. (i) As M W0 is a set of representatives of WM+\W , a set of representatives
of WM+(1)\W (1) is the set {d̃ | d ∈ M W0} of lifts of M W0 in W (1). The canonical
bases of HM+ and of H are respectively (Tw̃)(w̃)∈WM+ (1) and (Tw̃d̃)(w̃,d)∈WM+ (1)×M W0 ,
and Tw̃d̃ = Tw̃Td̃ by the additivity of lengths (Lemma 2.22).

(ii) We can suppose that h runs over in a basis of H. We cannot take the Iwahori–
Matsumoto basis (Tw̃)w̃∈W (1) and we explain why. For w̃ = w̃M d̃ with w̃M ∈

WM+(1), d ∈ M W0, we choose r ∈ N such that µ̃r
Mw̃M ∈ WM+(1). By the length

additivity (Lemma 2.22) Tµ̃r
M w̃
= Tµ̃r

M w̃M Td̃ lies in θ(HM+)Td̃ , but we cannot deduce
that Tµ̃r

M
Tw̃ lies in θ(HM+)Td̃ .
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We take the Bernstein basis satisfying Lemma 2.18 and we suppose that q(s)= qs

is indeterminate (but not invertible) with the same arguments as in [Ollivier 2010,
Proposition 4.8]. Then E(d̃) = Td̃ for d ∈ M W0. If we prove that E(µ̃r

Mw̃) lies
in θ(HM+)Td̃ then E(µ̃M)

r Eo(w̃)= qµr
M ,w

E(µ̃r
Mw̃) lies also in θ(HM+)Td̃ . This

implies T r
µ̃M

Eo(w̃) ∈ θ(HM+)Td̃ .
Now we prove E(µ̃r

Mw̃)∈ θ(HM+)Td̃ . We write w̃M = λ̃w̃M,0, λ̃∈3(1), w̃M,0 ∈

WM,0(1). Recalling E(∗) = T∗ for ∗ ∈ W0(1) and the additivity of the length
(Lemma 2.22),

qµr
Mλ,wM,0d E(µ̃r

Mw̃)= E(µ̃r
M λ̃)E(w̃M,0d̃)= E(µ̃r

M λ̃)Tw̃M,0d̃ = E(µ̃r
M λ̃)Tw̃M,0 Td̃

= qµr
Mλ,wM,0 E(µ̃r

Mw̃M)Td̃ .

The monoid WMε is a lower subset of (WM ,≤M) (Lemma 2.6). The triangular
decomposition (14) implies EM(µ̃

r
Mw̃M)∈HM+ . By Proposition 2.19, E(µ̃r

Mw̃M)∈

θ(HM+) and by the additivity of the length (Lemma 2.22),

qwM,0d = qwM,0 qd , qµr
MλwM,0d = qµr

MλwM,0 qd ,

implying
qµr

Mλ
qwM,0d q−1

µr
MλwM,0d = qµr

Mλ
qwM,0

q−1
µr

MλwM,0
;

hence qµr
Mλ,wM,0d = qµr

Mλ,wM,0 .

(iii) We have `(µM) 6= 0 and equivalently, ν(µM) 6= 0 in V . We choose w ∈ W0

with w(ν(µM)) 6= ν(µM). Then ν(wµMw
−1)= w(ν(µM)) and ν(µM) belong to

different Weyl chambers. The alcove walk basis (Eo(w̃))w̃∈W (1) of H associated to
an orientation o of V of Weyl chamber containing ν(µM) satisfies

(23)
Eo(µ̃M)= Tµ̃M ,

Eo(µ̃M)Eo(w̃µ̃Mw̃
−1)= Eo(w̃µ̃Mw̃

−1)Eo(µ̃M)= 0. �

The properties of the left θ(HM+)-module H transfer to properties of the right
θ∗(HM−)-module H, with the involutive antiautomorphism ζ ◦ι of H (Remark 2.12)
exchanging Tw̃ and (−1)`(w)T ∗

(w̃)−1 for w̃ ∈W (1), θ(HM+) and θ∗(HM−), VM+ and

(24) V∗M− :=
∑

d∈W M
0

T ∗
d̃
θ∗(HM−),

where W M
0 = {d

′−1
| d ′ ∈ M W0} is the set of classical representatives of W0/WM,0

(19), and d̃ = (d̃ ′)−1 if d = d ′−1.

Corollary 2.30. (i) V∗M− is a free right θ∗(HM−)-module of basis (T ∗
d̃
)

d∈W M
0

.

(ii) For any h ∈H, there exists r ∈ N such that h(T ∗
(µ̃M )−1)

r
∈ V∗M− .

(iii) If q= 0, T ∗
µ̃−1

M
is a left and right zero divisor in H.
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3. Induction and coinduction

3A. Almost localisation of a free module. In this chapter, all rings have unit ele-
ments.

Definition 3.1. Let A be a ring and a∈ A a central nonzero divisor. We say that a left
A-module B is an almost a-localisation of a left A-module BD⊂ B of basis D when:

(i) D is a finite subset of B, and the map⊕d∈D A→ B, (xd)→
∑

xdd , is injective,

(ii) for any b ∈ B, there exists r ∈ N such that ar b lies in BD :=
∑

d∈D Ad.

Example 3.2. Our basic example is (A, a, B, D) = (HM+, TµM ,H, (Td̃)d∈M W0)

(Proposition 2.29).

As a is central and not a zero divisor in A, the a-localisation of A is a A= Aa =

∪n∈N Aa−n . The left multiplication by a in A is an injective A-linear endomorphism
A→ A, x 7→ ax , and the left multiplication by a in B is an A-linear endomorphism
aB : x 7→ ax of B which may be not injective; hence B may be not a flat A-module.
The ring B is the union for r ∈ N of the A-submodules

r BD := {b ∈ B | ar b ∈ BD},

and looks like a localisation of BD at a.

Definition 3.3. Let A be a ring and a ∈ A a central nonzero divisor. We say that a
right A-module B is an almost a-localisation of a right A-module D B of basis D if:

(i) D is a finite subset of B, and the map ⊕d∈D A → B, (xd) →
∑

d xd , is
injective,

(ii) for any b ∈ B, there exists r ∈ N such that bar
∈ D B :=

∑
d∈D d A.

The ring B is the union for r ∈ N of the A-submodules

D Br = {b ∈ B | bar
∈ D B}.

Example 3.4. Our basic example is (A, a, B, D) = (HM− , Tµ−1
M

, H, (Td̃)d∈W M
0
)

(Corollary 2.30).

We note that (Aa, B)= (HM ,H) in Example 3.2 and in Example 3.4.

3B. Induction and coinduction.

3B1. For a ring A, let ModA denote the category of right A-modules, and A Mod
the category of left A-modules. The A-duality X 7→ X∗ :=HomA(X, A) exchanges
left and right A-modules.

A functor from ModA to a category admits a left adjoint if and only if it is left
exact and commutes with small direct products (small projective limits); it admits a
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right adjoint if and only if it is right exact and commutes with small direct sums
(small injective limits) [Vignéras 2013b, Proposition 2.10].

For two rings A ⊂ B, we define two functors

the induction I B
A := −⊗A B,

the coinduction IB
A := HomA(B,−) :ModA→ModB,

where B is seen as an (A, B)-module for the induction, and as a (B, A)-module for
the coinduction. For M ∈ModA, we have (m⊗ x)b = m⊗ xb, ( f b)(x)= f (bx)
if x, b ∈ B and m ∈M, f ∈ HomA(B,M).

The restriction ResB
A : ModB → ModA is equal to HomB(B,−) = − ⊗B B,

where B is seen first as an (A, B)-module and then as a (B, A)-module. The
induction and the coinduction are the left and right adjoints of the restriction
[Benson 1998, §2.8.2].

For two rings A and B and an (A, B)-module J , the functor

−⊗A J :ModA→ModB is left adjoint to HomB(J ,−) :ModB→ModA.

Let M∈ModA, N ∈ModB . The adjunction is given by the functorial isomorphism

HomB(M⊗A J ,N ) α
−→HomA(M,HomB(J ,N )), f (m⊗ x)= α( f )(m)(x),

for f ∈ HomB(M⊗A J ,N ),m ∈M, x ∈ J [Benson 1998, Lemma 2.8.2].
For three rings A ⊂ B, A ⊂ C , the isomorphism α applied to M = C,J = B

gives an isomorphism

HomB(C ⊗A B,−)' HomA(C,−) :ModB→ModC .

3B2. Let A⊂ B be two rings and a ∈ A a central nonzero divisor. Let Aa = A[a−1
]

denote the localisation of A at a. There is a natural inclusion A⊂ Aa . The restriction
ModAa → ModA identifies ModAa with the A-modules where the action of a is
invertible. For M,M′ in ModAa , we have

(25) HomAa (M,M′)= HomA(M,M′), M⊗Aa M
′
=M⊗A M′.

For f ∈ HomA(M,M′),m ∈M,m′ ∈M′, we have f (aa−1m) = a f (a−1m)⇒
a−1 f (m)= f (a−1m), and m⊗a−1m′=ma−1a⊗a−1m′=ma−1

⊗m′ in M⊗AM′.
We view ModAa as a full subcategory of ModA.

The restriction followed by the induction, respectively the coinduction, ModA→

ModB defines an induction, respectively coinduction,

I B
Aa
= I B

A ◦ResAa
A =−⊗A B, IB

Aa
= IB

A ◦ResAa
A =HomA(B,−) :ModAa→ModB,

even when Aa is not contained in B. The induction I B
Aa

admits a right adjoint

I
Aa
A ◦ResB

A = HomA(Aa,−) :ModB→ModAa
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because the restriction ResAa
A and the induction I B

A admit a right adjoint: the
coinduction I

Aa
A and the restriction ResB

A . The coinduction IB
Aa

admits a left adjoint

I Aa
A ◦ResB

A =−⊗A Aa :ModB→ModAa

because the restriction ResAa
A and the induction I B

A admit a left adjoint: the induction
I Aa

A and the corestriction ResB
A.

When a is invertible in B, we have Aa ⊂ B and they coincide with the induction
and coinduction from Aa to B.

The induction and the coinduction of Aa seen as a right Aa-module, are the
(Aa, B)-modules

(26) I B
Aa
(Aa)= Aa ⊗A B, IB

Aa
(Aa)= HomA(B, Aa).

Lemma 3.5. Let M ∈ModAa . Then I B
Aa
(M)=M⊗Aa I B

Aa
(Aa) in ModB .

Proof. M⊗A B = (M⊗Aa Aa)⊗A B =M⊗Aa (Aa ⊗A B). �

3B3. Let (A, a, B, D) satisfy Definition 3.1. Let M ∈ModAa . As R-modules,

(27) I B
Aa
(M)=M⊗A BD

because the action of a on M is invertible; hence M⊗A r BD =M⊗A BD for
r ∈ N. In particular, we have the following:

Lemma 3.6. The left Aa-module I B
Aa
(Aa) is free of basis (1⊗ d)d∈D .

Remark 3.7. The A-dual (BD)
∗ of the left A-module BD is the right A-module

⊕d∈Dd∗A of basis the dual basis D∗ = {d∗ | d ∈ D} of D. Let M ∈ModAa . We
have canonical isomorphisms of R-modules

⊕d∈DM '
−→M⊗A BD

'
−→HomA((BD)

∗,M),

(xd) 7→
∑
d∈D

xd ⊗ d 7→ (d∗ 7→ xd)d∈D.

The tensor product over A by a free A-module is exact and faithful; hence the
induction is exact and faithful.

Let R ⊂ A be a subring central in B. The ring R is automatically commutative
and a central subring of the localisation Aa of A. The modules over Aa or B are
naturally R-modules.

Let M∈ModAa be a finitely generated R-module. The R-module M⊗Aa I B
Aa
(Aa)

is finitely generated.
Let N ∈ModB be a finitely generated R-module. The R-module HomA(Aa,N )

is finitely generated if R is a field by the Fitting lemma applied to the action
of a on N . There exists a positive integer n such that N is a direct sum N =
Na ⊕N ′a , where an acts on Na as an automorphism and an is 0 on N ′a . Then,
HomA(Aa,N )'Na is finite-dimensional.
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We obtain the following:

Proposition 3.8. Let (A, a, B, D) satisfy Definition 3.1. The induction functor

I B
Aa
=−⊗A B :ModAa →ModB

is exact, faithful and admits a right adjoint RB
Aa
:= HomA(Aa,−).

Let R ⊂ A be a subring central in B. Then I B
Aa

respects finitely generated
R-modules. If R is a field, RB

Aa
respects finite dimension over R.

3B4. Let (A, a, B, D) satisfy Definition 3.3.
For M ∈ ModA, the set Md of f ∈ HomA(D B,M) vanishing on D − {d} is

isomorphic to M by the value at d . The A-dual (D B)∗ of D B is a free left A-module
of basis D∗. We have

(28) HomA(D B,M)=⊕d∈DMd '⊕d∗∈D∗M⊗ d∗ =M⊗A (D B)∗.

The A-modules Md and M⊗ d∗ are isomorphic by f 7→ f (d)⊗ d∗.
For M ∈ModAa , we have linear isomorphisms

IB
Aa
(M)=HomA(B,M)'HomA(D B,M), M⊗A(D B)∗=M⊗A Aa⊗A(D B)∗.

For d ∈ D, let fd ∈ HomA(B, Aa) equal to 1 on d and 0 on D−{d}. We deduce
from these arguments:

Lemma 3.9. Let (A, a, B, D) satisfy Definition 3.3. The left Aa-module IB
Aa
(Aa)

is free of basis ( fd)d∈D and IB
Aa
(M)'M⊗Aa IB

A(Aa).

Let R ⊂ A be a subring central in B. Let M ∈ModAa be a finitely generated
R-module. The R-module M⊗Aa IB

Aa
(Aa) is finitely generated. If R is a field, and

the dimension of N ∈ModB is finite over R, then N ⊗A Aa =Na⊗A Aa 'Na has
finite dimension over R by the Fitting lemma, as in the proof of Proposition 3.8.
We obtain the following:

Proposition 3.10. Let (A, a, B, D) satisfy Definition 3.3. The coinduction

IB
Aa
= HomA(B,−) :ModAa →ModB

is exact, faithful, and admits a left adjoint L B
Aa
=−⊗A Aa .

Let R ⊂ A be a subring central in B. Then IB
Aa

respects finitely generated
R-modules. If R is a field, L B

Aa
respects finite dimension over R.

4. Parabolic induction and coinduction from HM to H

We prove Theorems 1.6, 1.8 and 1.9 giving the properties of the parabolic induction
from HM to H.



THE PRO- p IWAHORI HECKE ALGEBRA OF A REDUCTIVE p-ADIC GROUP V 521

4A. Basic properties of the parabolic induction and coinduction. Example 3.2
satisfies Definition 3.1 and Example 3.4 satisfies Definition 3.3. In these two
examples, (Aa, B)= (HM ,H). The first one,

(A, a, D)=
(
θ(HM+), Tµ̃M , (Td̃)d∈M W0

)
,

where we identify HM+ with θ(HM+), defines the parabolic induction IHHM
=

−⊗HM+ ,θ
H :ModHM →ModH. The second one,

(A, a, D)=
(
θ∗(HM−), T ∗

(µ̃M )−1, (T ∗d̃ )d∈W M
0

)
,

where we identify HM− with θ∗(HM−), defines the parabolic coinduction IHHM
=

HomHM−,θ∗
(H,−) :ModHM →ModH. Propositions 3.8 and 3.10 imply:

Proposition 4.1. The parabolic induction IHHM
and the coinduction IHHM

are exact,
faithful and respect finitely generated R-modules. The parabolic induction admits a
right adjoint

RH
HM
= HomHM+ ,θ

(HM ,−) :ModH→ModHM .

The parabolic coinduction admits a left adjoint

LH
HM
:= −⊗HM− ,θ

∗ HM :ModH→ModHM .

If R is a field, the adjoint functors RH
HM

and LH
HM

respect finite dimension over R.

4B. Transitivity. Let SM ⊂ SM ′ ⊂ S. Let WMε,M ′ =3Mε,M ′ oWM,0 denote the sub-
monoid of WM associated to Saff

M ′ as in Definition 2.1 (see before Proposition 2.21),
and

3Mε,M ′ =3∩WMε,M ′ = {λ ∈3 | −(γ ◦ ν)(λ)≥ 0 for all γ ∈6εM ′ −6
ε
M}.

By the properties (i), (ii), (iii) of Theorem 1.4, the R-submodule HMε,M ′ of HM of
basis (T M

w̃
)
w̃∈W

Mε,M ′
(1), is a subring of HM , the restriction to HMε,M ′ of the injective

linear map
HM

θ ′
−→HM ′, T M

w̃ 7→ T M ′
w̃ for w̃ ∈WM(1),

respects the product, and HM =HMε,M ′ [(T M
µ̃Mε

)−1
]. Obviously, the map HM

θ
−→H

satisfies θ = θM ′ ◦ θ
′ for the linear map

HM ′
θM ′
−→H, T M ′

w̃ 7→ Tw̃, for w̃ ∈WM ′(1).

Lemma 4.2. We have:

(i) WM ⊂WM ′ , WMε =WMε,M ′ ∩WM ′ε , θ ′(HMε )= θ ′(HMε,M ′ )∩HM ′ε ,

(ii) µ̃Mε µ̃M ′ε is central in WM(1), satisfies −(γ ◦ ν)(µMεµM ′ε ) > 0 for all γ ∈
6ε −6εM , and the additivity of the lengths `(µMεµM ′ε )= `(µMε )+ `(µM ′ε ),

(iii) M W0 =
M WM ′,0

M ′W0.
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Proof. (i) We have WM,0 ⊂WM ′,0 and 3Mε =3′Mε ∩3M ′ε . Therefore

WM =3o WM,0 ⊂3o WM ′,0 =WM ′,

and
WMε,M ′ ∩W ε

M ′ = (3
′

Mε o WM,0)∩ (3
′

M ′ε o WM ′,0)

= (3′Mε ∩3M ′ε )o WM,0

=3Mε o WM,0 =WMε .

(ii) Now µ̃M ′ε is central in WM ′(1), which contains WM(1), and µ̃Mε is central in
WM(1); hence µ̃Mε µ̃M ′ε is central in WM(1). We have

−(γ ◦ ν)(µM ′ε ) > 0 for all γ ∈6ε −6εM ′,

−(γ ◦ ν)(µM ′ε )= 0 for all γ ∈6M ′,

−(γ ◦ ν)(µMε ) > 0 for all γ ∈6ε −6εM ,

−(γ ◦ ν)(µMε )= 0 for all γ ∈6M .

Hence −(γ ◦ ν)(µ′MεµM ′ε ) > 0 for all γ ∈6ε −6εM and

`(µMεµM ′ε )= `(µMε )+ `(µM ′ε ).

(iii) Let u ∈ M WM ′,0, v ∈
M ′W0 and let w ∈WM,0. We have

`(wuv)= `(wu)+ `(v)= `(w)+ `(u)+ `(v)= `(w)+ `(uv);

hence uv ∈ M W0. The injective map (u, v) 7→ uv : M WM ′,0 ×
M ′W0 →

M W0 is
bijective because

|
M W0| = |WM,0\W0| = |WM,0\WM ′,0||WM ′,0\W0| = |

M WM ′,0||
M ′W0|,

where |X | denotes the number of elements of a finite set X . �

Proposition 4.3. The induction is transitive:

IHHM
= IHHM ′

◦ IHM ′
HM
:ModHM →ModHM ′

→ModH .

The coinduction is also transitive. This is proved at the end of this paper.

Proof. By Lemma 3.5, the proposition is equivalent to

HM ⊗HM+
H'HM ⊗H

M+,M ′
HM ′ ⊗HM ′+

H

in ModH. As HM ′ =HM ′+[(T
M ′
µ̃M ′+

)−1
] is the localisation of the ring HM ′+ at the

central element T M ′
µ̃M ′+
∈HM ′+ , the right H-module HM ′ ⊗HM ′+

H is the inductive
limit of (T M ′

µ̃M ′+
)−r
⊗H for r ∈ N with the transition maps

(T M ′
µ̃M ′+

)−r
⊗ x 7→ (T M ′

µ̃M ′+
)−r−1

⊗ Tµ̃M ′+
x for x ∈H.
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As HM = HM+,M ′ [(T
M
µ̃M+

)−1
] is the localisation of the ring HM+,M ′ at the central

element T M
µ̃M+
∈ HM+,M ′ , the right H-module HM ⊗H

M+,M ′
HM ′ ⊗HM ′+

H is the
inductive limit of (T M

µ̃M+
)−s
⊗HM ′ ⊗HM ′+

H for s ∈ N with the transition maps

(T M
µ̃M+

)−s
⊗ y 7→ (T M

µ̃M+
)−s−1

⊗ T M ′
µ̃M+

y for y ∈HM ′ ⊗HM ′+
H.

Using that T M ′
µ̃M ′+

is central in HM ′ and T M ′
µ̃M+
∈HM ′+ , we have, for y= (T M ′

µ̃M ′+
)−r
⊗x ,

T M ′
µ̃M+

y = T M ′
µ̃M+

(T M ′
µ̃M ′+

)−r
⊗ x = (T M ′

µ̃M ′+
)−r T M ′

µ̃M+
⊗ x = (T M ′

µ̃M ′+
)−r
⊗ Tµ̃M+

x .

Altogether, the right H-module HM ⊗H
M+,M ′

HM ′⊗HM ′+
H is the inductive limit of

(T M
µ̃M+

)−s
⊗ (T M ′

µ̃M ′+
)−r
⊗H for r, s ∈ N with the transition maps

(T M
µ̃M+

)−s
⊗ (T M ′

µ̃M ′+
)−r
⊗ x 7→ (T M

µ̃M+
)−s−1

⊗ (T M ′
µ̃M ′+

)−r
⊗ Tµ̃M+

x,

(T M
µ̃M+

)−s
⊗ (T M ′

µ̃M ′+
)−r
⊗ x 7→ (T M

µ̃M+
)−s
⊗ (T M ′

µ̃M ′+
)−r−1

⊗ Tµ̃M ′+
x .

The right H-module HM ⊗H
M+,M ′

HM ′ ⊗HM ′+
H is also the inductive limit of the

modules (T M
µ̃M+

)−r
⊗ (T M ′

µ̃M ′+
)−r
⊗H for r ∈ N with the transition maps

(T M
µ̃M+

)−r
⊗ (T M ′

µ̃M ′+
)−r
⊗ x 7→ (T M

µ̃M+
)−r−1

⊗ (T M ′
µ̃M ′+

)−r−1
⊗ Tµ̃M+

Tµ̃M ′+
x .

By Lemma 4.2(ii), Tµ̃M+
Tµ̃M ′+

= Tµ̃M+ µ̃M ′+
. Hence, in ModH we have

HM ⊗H
M+,M ′

HM ′ ⊗HM ′+
H' lim

−−→
x 7→Tµ̃M+ µ̃M ′+

x
H.

On the other hand, HM = HM+[(T M
µ̃M+

µ̃M ′+)
−1
] is the localisation of HM+ at

T M
µ̃M+ µ̃M ′+

(Lemma 4.2); hence HM⊗HM+
H is the inductive limit of (T M

µ̃M+ µ̃M ′+
)−r
⊗H

for r ∈ N with the transition maps

(T M
µ̃M+ µ̃M ′+

)−r
⊗ x 7→ (T M

µ̃M+ µ̃M ′+
)−r−1

⊗ Tµ̃M+ µ̃M ′+
x .

We deduce that
HM ⊗HM+

H' lim
−−→

x 7→Tµ̃M+ µ̃M ′+
x
H

is isomorphic to HM ⊗H
M+,M ′

HM ′ ⊗HM ′+
H in ModH. �

4C. w0-twisted induction is equal to coinduction. We prove Theorem 1.8. When
H=HR(G) is the pro-p Iwahori Hecke algebra of a reductive p-adic group G over
an algebraically closed field R of characteristic p, Theorem 1.8 is proved by Abe
[2014, Proposition 4.14]. We will extend his arguments to the general algebra H.

Let w̃M
0 ∈ W0(1) lifting wM

0 . The algebra isomorphism HM 'Hw0(M) defined
by w̃M

0 (Proposition 2.20) induces an equivalence of categories

(29) ModHM

w̃M
0
−→ModHw0(M)
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called a w0-twist. Let M be a right HM -module. The underlying R-module of
w̃M

0 (M) and of M is the same; the right action of T M
w̃

on M is equal to the right
action of Tw0(M)

w̃M
0 w̃(w̃

M
0 )
−1 on w̃M

0 (M) for w̃ ∈WM(1). The inverse of w̃M
0 is the algebra

isomorphism induced by (w̃M
0 )
−1 lifting

Mw0 := (w
M
0 )
−1
= wM,0w0 = w0w0wM,0w0 = w

w0(M)
0 .

Remark 4.4. The lifts of wM
0 are tw̃M

0 = w̃M
0 t ′ with t, t ′ ∈ Zk , the elements

T M
t ′ ∈HM , Tw0(M)

t ∈Hw0(M) are invertible, and the conjugation by Tt in HM , by
Tw0(M)

t in Hw0(M) induce equivalences of categories

ModHM
t′
−→ModHM , ModHw0(M)

t
−→ModHw0(M)

such that tw̃M
0 = t ◦ w̃M

0 = w̃M
0 ◦ t

′
= w̃M

0 t′.

Remark 4.5. The trivial characters of HM and Hw0(M) correspond by w̃M
0 .

We will prove that, for all SM ⊂ S, the coinduction

ModHM

IHHM−−→ModH

is equivalent to the w0-twist induction

ModHM

w̃M
0
−→ModHw0(M)

IHHw0(M)−−−−→ModH .

This proves Theorem 1.8 because

(30) IHHM
' IHHw0(M)

◦ w̃M
0 ⇐⇒ IHHM

' IHHw0(M)
◦ w̃M

0 .

Indeed, if the left-hand side is true for all SM ⊂ S, permuting M and w0(M) we
have IHw0(M)

' IHHM
◦ w̃w0(M)

0 , and composing with (w̃w0(M)
0 )−1, we get

IHHM
' IHHw0(M)

◦ (w̃w0(M)
0 )−1

' IHHw0(M)
◦ w̃M

0

as ww0(M)
0 = (wM

0 )
−1. The arguments can be reversed to get the equivalence.

Let M∈ModHM . We will construct an explicit functorial isomorphism in ModH:

(31) (IHHw0(M)
◦ w̃M

0 )(M) b
−→ IHHM

(M).

From Lemmas 3.5, 3.6, 3.9 and Examples 3.2, 3.4, we get

(i) IHHw0(M)
(Hw0(M))=Hw0(M)⊗Hw0(M)

+ ,θ H is a left free Hw0(M)-module of basis
1⊗ Td̃ ′ for d ′ ∈ w0(M)W0, and

(IHHw0(M)
◦ w̃M

0 )(M)= w̃M
0 (M)⊗Hw0(M)

IHHw0(M)
(Hw0(M)).

(ii) IHHM
(HM)=HomHM− ,θ

∗(H,HM), where H is seen as a right θ∗(HM−)-module,
is a left free HM -module of basis ( f ∗

d̃
)d∈W M

0
, where f ∗

d̃
(T ∗

d̃
)=1 and f ∗

d̃
(T ∗x̃ )=0

for x ∈W M
0 −{d}, and

IHHM
(M)=M⊗HM IHHM

(HM).
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It is an exercise to prove that the left HM -module IHHM
(HM) admits also the basis

( fd̃)d∈W M
0

, where fd̃(Td̃) = 1 and fd̃(Tx̃) = 0 for x ∈ W M
0 − {d}. We will prove

that the linear map

(32) m⊗ Td̃ ′ 7→ m⊗ fw̃M
0

Td̃ ′ : ⊕d ′∈w0(M)W0
w̃M

0 (M)⊗ Td̃ ′
b
−→⊕d∈W M

0
M⊗ fd̃

is a functorial isomorphism in ModH. The bijectivity follows from the bijectivity
of the map d ′ 7→ d ′−1wM

0 :
w0(M)W0→W M

0 (Lemma 2.24) and the following:

Lemma 4.6. The map fw̃M
0

Td̃ ′ − f(d ′−1wM
0 )̃

lies in ⊕x∈W M
0 ,x<d ′−1wM

0
M⊗ f x̃ .

Proof. For d ∈W M
0 , we have

( fw̃M
0

Td̃ ′)(Td̃)= fw̃M
0
(Td̃ ′Td̃)= fw̃M

0
(Td̃ ′d̃)+ x,

where x ∈
∑

R fw̃M
0
(Tw̃) and the sum is over the w̃ ∈W0(1) with w < d ′d and w ∈

wM
0 WM,0. If d ′d 6∈wM

0 WM,0, there is no w ∈wM
0 WM,0 with w< d ′d (Lemma 2.26).

We have d ′d ∈ wM
0 WM,0 if and only if d = d ′−1wM

0 (part (ii) of Lemma 2.28). �

The restriction
ResHHw0(M)

+ ,θ :ModH→ModHw0(M)
+

is left adjoint to −⊗Hw0(M)
+ ,θ H, and the Hw0(M)+-equivariance of the linear map

(33) m 7→ m⊗ fw̃M
0
: w̃M

0 (M)→ IHHM
(M)

implies the H-equivariance of (31), i.e., of (32). Let HM
j
−→Hw0(M) denote the

isomorphism induced by w̃M
0 (Proposition 2.20), and θM the linear map HM

θ
−→H.

The Hw0(M)+-invariance of the map m 7→ m⊗ fw̃M
0

is equivalent to

(34) fw̃M
0
θw0(M)(h)= j−1(h) fw̃M

0
for h ∈Hw0(M)+ .

We can suppose that h lies in the Bernstein basis of Hw0(M)+ . Let w̃ ∈Ww0(M)+(1)
and h= Ew0(M)(w̃). As θw0(M)(Ew0(M)(w̃))= E(w̃), and j−1(Ew0(M)(w̃)) is equal
to EM((w̃

M
0 )
−1w̃w̃M

0 ), (34) is equivalent to the following:

Proposition 4.7. For w ∈Ww0(M)+ , we have fw̃M
0

E(w̃)= EM((w̃
M
0 )
−1w̃w̃M

0 ) fw̃M
0

.

Proof. By the usual reduction arguments, we suppose that the q(s) are invertible in R.
Using Ww0(M)+ =3w0(M)+ o Ww0(M),0, the product formula (8) and Lemma 2.23,
we reduce to w ∈3w0(M)+ ∪Ww0(M),0. By induction on the length in Ww0(M),0 with
respect to Sw0(M), we reduce to w ∈3w0(M)+ ∪ Sw0(M).

Let d ∈W M
0 . We have ( fw̃M

0
E(w̃))(Td̃)= fw̃M

0
(E(w̃)Td̃) in HM . We must prove

(35) fw̃M
0
(E(w̃)Td̃)=

{
0 if d 6= wM

0 ,

EM((w̃
M
0 )
−1w̃w̃M

0 ) if d̃ = w̃M
0

for w ∈3w0(M)+ ∪ Sw0(M).
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(i) Suppose w = λ ∈ 3w0(M)+ . Let A denote the subalgebra of H of basis
(E(x̃))x̃∈3(1) [Vignéras 2013a, Corollary 2.8]. By the Bernstein relations [Vignéras
2013a, Theorem 2.9], we have

E(λ̃)Td̃ = Td̃ E((d̃)−1λ̃d̃)+
∑

Tw̃aw̃,

where aw̃∈A and the sum is over w̃∈W0(1), w<d . If d 6=wM
0 , the image by fw̃M

0
of

the right-hand side vanishes because w ∈ wM
0 WM,0, w ≤ d implies w = d = wM

0 ;
hence fw̃M

0
(E(λ̃)Td̃)= 0 as we want. For d̃ = w̃M

0 , using (wM
0 )
−1λw̃M

0 ∈Ww0(M)− ,
we have

fw̃M
0
(E(λ̃)Tw̃M

0
)= fw̃M

0
(Tw̃M

0
E((w̃M

0 )
−1λ̃w̃M

0 )

= θ∗(E((w̃M
0 )
−1λ̃w̃M

0 ))

= EM((w̃
M
0 )
−1λ̃w̃M

0 ).

(ii) Suppose w = s ∈ Sw0(M). We have w0sw0 ∈ SM , w0sw0wM,0 <wM,0 and

swM
0 = sw0wM,0 = w0w0sw0wM,0 >w0wM,0 = w

M
0 .

Assume sd < d . We deduce d 6= wM
0 . Assume d̃ = s̃ ˜(sd). Then

E(s̃)Td̃ = Ts̃ Td̃ = T 2
s̃ T ˜(sd) = (q(s)(s̃)

2
+ c(s̃)Ts̃)T ˜(sd) = q(s)(s̃)2T ˜(sd)+ c(s̃)Td̃ .

We deduce that fw̃M
0
(E(s̃)Td̃)= 0.

Assume sd > d. We write s̃ d̃ = d̃1ũ with d1 ∈ W M
0 , u ∈ WM,0. Then Ts̃ Td̃ =

Ts̃d̃ = Td̃1ũ . Therefore fw̃M
0
(E(s̃)Td̃) = fw̃M

0
(Td̃1ũ) = 0 if d1 6= w

M
0 . We suppose

now d1 = w
M
0 . We have d ≤ wM

0 ≤ sd; hence wM
0 = d or wM

0 = sd. In the latter
case, a reduced decomposition of wM

0 starts by s. But this is incompatible with
s ∈ Sw0(M) because wM

0 =
w0(M)w0. We deduce that d =wM

0 . For d̃ = w̃M
0 , we have

fw̃M
0
(E(s̃)Tw̃M

0
)= fw̃M

0
(Ts̃ w̃M

0
)= fw̃M

0
(Tw̃M

0
T(wM

0 )
−1 s̃w̃M

0
)

= fw̃M
0
(Tw̃M

0
E(wM

0 )
−1 s̃w̃M

0
)= θ∗(E(wM

0 )
−1 s̃w̃M

0
))

= EM((w̃
M
0 )
−1s̃w̃M

0 ).

This ends the proof of Proposition 4.7, and hence of Theorem 1.8. �

Corollary 4.8. The right H-modules HM⊗HM+ ,θ
H and HomHw0(M)

− ,θ∗(H,Hw0(M))

are isomorphic.

4D. Transitivity of the coinduction. Let SM ⊂ SM ′ ⊂ S. By Proposition 2.21, the
algebra isomorphisms

HM
j
−→Hw0(M), HM

j ′
−→HwM ′,0(M)

k′′
−→Hw0(M)
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corresponding to w̃M
0 , w̃

M
M ′, w̃

M ′
0 , w̃M

0 = w̃
M ′
0 w̃M

M ′ , satisfy j = k ′′◦ j ′. The associated
equivalences of categories, denoted by

MHM

w̃M
0
−→MHw0(M)

, MHM

w̃M
M ′
−−→MHwM ′,0(M)

w̃M ′
0,k
−−→MHw0(M)

,(36)

satisfy w̃M
0 = w̃M ′

0,k ◦ w̃
M
M ′ . We refer to this as the transitivity of the w0-twisting.

Lemma 4.9. The functors w̃M ′
0 ◦ IHM ′

HwM ′,0(M)
and I

Hw0(M
′)

Hw0(M)
◦ w̃M ′

0,k from ModHwM ′,0(M)

to ModHw0(M
′)

are isomorphic.

The proof gives an explicit isomorphism.

Proof. Let M∈ModHwM ′,0(M)
. The R-module M⊗HwM ′,0(M)

+ ,θHM ′ with the right
action of Hw0(M ′) defined by

(x ⊗ T M ′
ũ )Tw0(M ′)

w̃M ′
o ṽ(w̃M ′

o )−1 = x ⊗ T M ′
ũ T M ′

ṽ

for x ∈M, u, v ∈WM ′ , is w̃M ′
0 ◦ IHM ′

HwM ′,0(M)
(M).

As k ′′(HwM ′,0(M)+)=Hw0(M)+ (Proposition 2.21), the R-linear map

M⊗R HM ′→ w̃M ′
0,k(M)⊗Hw0(M)

+ ,θ Hw0(M ′)

defined by x ⊗ T M ′
ũ → x ⊗ Tw0(M ′)

w̃M ′
0 ũ(w̃M ′

0 )−1 is the composite of the quotient map

M⊗R HM ′→ w̃M ′
0 ◦M⊗HwM ′,0(M)

+
HM ′,

and of the bijective linear map

w̃M ′
0 ◦ IHM ′

HwM ′,0(M)
(M)→ w̃M ′

0,k(M)⊗Hw0(M)
+ ,θ Hw0(M ′).

The above map is clearly Hw0(M ′)-equivariant. �

Proposition 4.10. The coinduction is transitive.

Proof. By the transitivity of the w0-twisting (36), Lemma 4.9, and the transitivity
of the induction (Proposition 4.3), we have

IHHM ′
◦ I

HM ′
HM
= IHHw0(M

′)
◦ w̃M ′

0 ◦ I
Hw0(M

′)M ′

Hw0(M)
◦ w̃M

M ′

= IHHw0(M
′)
◦ I

Hw0(M
′)

Hw0(M)
◦ w̃M ′

0,k ◦ w̃
M
M ′

= IHHw0(M
′)
◦ I

Hw0(M
′)

Hw0(M)
◦ w̃M

0

= IHHw0(M)
◦ w̃M

0 = IHHM
. �

Proof of Theorem 1.9. The induction IHHM
is equivalent to IHHw0(M)

◦ w̃M
0 . The

coinduction IHHM
is the composite of the restriction ModHM → ModHM−

and
of HomHM− ,θ

∗(H,−) : ModHM−
→ ModH. These functors admit left adjoints,
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the restriction ModH → ModHM−
for HomHM− ,θ

∗(H,−), and the induction
−⊗HM−

HM :ModHM−
→ModHM for the restriction ModHM →ModHM−

; hence
−⊗HM− ,θ

∗ HM :ModH→ModHM for IHHM
, and

(w̃M
0 )
−1
◦ (−⊗Hw0(M)

− ,θ∗ Hw0(M))' w̃w0(M)
0 ◦ (−⊗Hw0(M)

− ,θ∗ Hw0(M))

for IHHw0(M)
◦ w̃M

0 . �
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