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NO PERIODIC GEODESICS IN JET SPACE

ALEJANDRO BRAVO-DODDOLI

The J k space of k-jets of a real function of one real variable x admits
the structure of a sub-Riemannian manifold, which then has an associated
Hamiltonian geodesic flow, and it is integrable. As in any Hamiltonian flow, a
natural question is the existence of periodic solutions. Does J k have periodic
geodesics? This study will find the action-angle coordinates in T∗ J k for the
geodesic flow and demonstrate that geodesics in J k are never periodic.

1. Introduction

This paper is the first attempt to prove that Carnot groups do not have periodic
sub-Riemannian geodesics; Enrico Le Donne made this conjecture. Here, we will
establish the first case we found, which also has a simple and elegant proof.

This work is the continuation of that done in [4; 5]. In [4], J k was presented
as a sub-Riemannian manifold, the sub-Riemannian geodesic flow was defined,
and its integrability was verified. In [5], the sub-Riemannian geodesics in J k were
classified, and some of their minimizing properties were studied. The main goal of
this paper is to prove:

Theorem A. J k does not have periodic geodesics.

Following the classification of geodesics from [5, p. 5], the only candidates to be
periodic are the ones called x-periodic (the other geodesics are not periodic on the
x-coordinate); so we are focusing on the x-periodic geodesics.

An essential tool during this work is the bijection made by Monroy-Perez and
Anzaldo-Meneses [2; 8; 9], also described in [5, p. 4], between geodesics on J k and
the pair (F, I ) (module translation F(x)→ F(x −x0)), where F(x) is a polynomial
of degree bounded by k and I is a closed interval, called the hill interval. Let us
formalize its definition.

Definition 1. A closed interval I is called a hill interval of F(x), if for each x
inside I , then F2(x) < 1 and F2(x) = 1 if x is in the boundary of I .
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By definition, the hill interval I of a constant polynomial F2(x) = c2 < 1 is R,
while the hill interval I of the constant polynomial F(x) = ±1 is a single point.
Also, I is compact if and only if F(x) is not a constant polynomial; in this case,
if I is of the form [x0, x1], then F2(x1) = F2(x0) = 1. This terminology comes
from celestial mechanics, and I is the region where the dynamics governed by the
fundamental equation (3-5) take place.

Geodesics corresponding to constant polynomials are called horizontal lines since
their projection to (x, θ0)-planes are lines. In particular, geodesics corresponding to
F(x) = ±1 are abnormal geodesics (see [6], [10], or [11]). Then this work will be
restricted to geodesics associated with nonconstant polynomials. Further, x-periodic
geodesics correspond to the pair (F, [x0, x1]), where x0 and x1 are regular points
of F(x), which implies they are simple roots of 1 − F2(x).

Outline of the paper. In Section 2, Proposition 2 is introduced and Theorem A is
proved. The main purpose of Section 3 is to prove Proposition 2. In Section 3.1, the
sub-Riemannian structure and the sub-Riemannian Hamiltonian geodesic function
are introduced. In Section 3.2, a generating function is presented and a canonical
transformation from traditional coordinates in T ∗J k to action-angle coordinates
(µ, φ) for the Hamiltonian systems is shown. In Section 3.3, Proposition 2 is proved.

2. Proof of Theorem A

Throughout this work, the alternate coordinates (x, θ0, . . . , θk) will be used, the
meaning of which is introduced in Section 3 and described in more detail in [2], [9],
or [5]. Further, x-periodic geodesics have the property that the change undergone
by the coordinates θi after one x-period is finite and does not depend on the initial
point. We summarize the above discussion with the following proposition:

Proposition 2. Let γ (t) = (x(t), θ0(t), . . . , θk(t)) in J k be an x-periodic geodesic
corresponding to the pair (F, I ). Then the x-period is

(2-1) L(F, I ) = 2
∫

I

dx√
1−F2(x)

.

Moreover, it is twice the time it takes for the x-curve to cross its hill interval exactly
once. After one period, the changes 1θi := θi (t0 + L) − θi (t0) for i = 0, 1, . . . , k
undergone by θi are given by

(2-2) 1θi (F, I ) =
2
i !

∫
I

x i F(x)dx√
1 − F2(x)

.

In [5], a sub-Riemannian manifold R3
F , called magnetic space, was introduced,

and a similar statement like Proposition 2 was proved, see [5, Proposition 4.1], with
an argument of classical mechanics, see [7, (11.5)].
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Proposition 2 implies that a x-periodic geodesic γ (t) corresponding to the pair
(F, I ) is periodic if and only if 1θi (F, I ) = 0 for all i .

Because that period L from (2-1) is finite, we can define an inner product in the
space of polynomials of degree bounded by k in the following way:

(2-3) ⟨P1(x), P2(x)⟩F :=

∫
I

P1(x)P2(x)dx√
1 − F2(x)

.

This inner product is nondegenerate and will be the key to the proof of Theorem A.

2.1. Proof of Theorem A.

Proof. We will proceed by contradiction. Let us assume γ (t) is a periodic geo-
desic on J k corresponding to the pair (F, I ), where F(x) is not constant, then
1θi (F, I ) = 0 for all i in 0, . . . , k.

In the context of the space of polynomials of degree bounded by k with inner
product ⟨ , ⟩F , the condition 1θi (F, I ) = 0 is equivalent to F(x) being perpendic-
ular to x i

(
0 = 1θi (F, I ) = ⟨x i , F(x)⟩F

)
, so F(x) being perpendicular to x i for

all i in 0, 1, . . . , k. However, the set {x i
}, with 0 ≤ i ≤ k, is a base for the space of

polynomials with degree bounded by k. Then F(x) is perpendicular to any vector,
so F(x) is zero since the inner product is nondegenerate. However, F(x) equals 0
contradicts the assumption that F(x) is not a constant polynomial. □

Coming work: The proof of the conjecture in the meta-abelian group G, that is,
G is such that 0 = [[G, G], [G, G]].

3. Proof of Proposition 2

3.1. J k as a sub-Riemannian manifold. The sub-Riemannian structure on J k will
be described here briefly. For more details, see [4; 5]. We see J k as Rk+2, using
(x, θ0, . . . , θk) as global coordinates, then J k is endowed with a natural rank 2
distribution D ⊂ T J k characterized by the k Pfaffian equations

(3-1) 0 = dθi −
1
i !

x i dθ0, i = 1, . . . , k.

D is globally framed by two vector fields

(3-2) X1 =
∂

∂x
and X2 =

k∑
i=0

x i

i !
∂

∂θi
.

A sub-Riemannian structure on J k is defined by declaring these two vector fields
to be orthonormal. In these coordinates, the sub-Riemannian metric is given by
restricting ds2

= dx2
+ dθ2

0 to D.
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3.1.1. Sub-Riemannian geodesic flow. Here it is emphasized that the projections
of the solution curves for the Hamiltonian geodesic flow are geodesics, that is, if
(p(t), γ (t)) is a solution for the Hamiltonian geodesic flow, then γ (t) is a geodesic
on J k .

Let (px , pθ0, . . . , pθk , x, θ0, . . . , θk) be the traditional coordinates on T ∗J k , or
(p, q) for short. Let P1, P2 : T ∗J k

→ R be the momentum functions of the vector
fields X1 and X2, see [10, p. 8] or [1], in terms of the coordinates (p, q) given by

(3-3) P1(p, q) := px and P2(p, q) :=

k∑
i=0

pθi
x i

i !
.

Then the Hamiltonian governing the geodesic on J k is

(3-4) Hs R(p, q) :=
1
2
(P2

1 + P2
2 ) =

1
2

p2
x +

1
2

( k∑
i=0

pθi
x i

i !

)2

.

It is noteworthy that h =
1
2 implies that the geodesic is parameterized by arc-length.

It can be noticed that if H does not depend on θi for all i , then the pθ define k + 1
constants of motion.

Lemma 3. The sub-Riemannian geodesic flow in J k is integrable. If (p(t), γ (t)) is
a solution, then

γ̇ (t) = P1(t)X1 + P2(t)X2 and (P1(t), P2(t)) = (px(t), F(x(t))),

where pθi = i ! ai and F(x) =
∑k

i=0 ai x i .

Proof. H does not depend on t and θi for all i , so h := Hs R and pθi are constants
of motion, thus the Hamiltonian system is integrable. A consequence of the first
equation from Lemma 3 is that P1 and P2 are linear in px and pθ . We denote by
(a0, . . . , ak) the level set i ! ai = pθi , then the result follows by the definitions of
P1 and P2 given by (3-3). □

3.1.2. Fundamental equation. The level set (a0, . . . , ak) defines a fundamental
equation

(3-5) HF (px , x) :=
1
2 p2

x +
1
2 F2(x) = H |(a0,...,ak)(p, q) =

1
2 .

Here, HF (px , x) is a Hamiltonian function in the phase plane (px , x), where
the dynamic of x(s) takes place in the hill region I = [x0, x1] and its solution
(px(t), x(t)) with energy h =

1
2 lies in an algebraic curve or loop given by

(3-6) α(F,I ) :=
{
(px , x) :

1
2 =

1
2 p2

x +
1
2 F2(x) and x0 ≤ x ≤ x1

}
,

and α(F,I ) is closed and simple.
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Lemma 4. α(F, I ) is smooth if and only if x0 and x1 are regular points of F(x),
in other words, α(F, I ) is smooth if and only if the corresponding geodesic γ (t) is
x-periodic.

Proof. A point α = (px , x) in α(F, I ) is smooth if and only if

0 ̸= ∇ HF (px , x)|α(F,I ) =
(

px , F(x)F ′(x)
)
.

Then α is smooth for all px ̸= 0, and the points α(F, I ) such that px = 0 correspond
to endpoints of the hill interval I , since the condition px = 0 implies F2(x) = 1.
The point α = (0, x0) is smooth if F ′(x0) ̸= 0, and the point α = (0, x1) is smooth
if F ′(x1) ̸= 0. Then α(F, I ) is smooth if and only if x0 and x1 are regular points
of F(x). Also, α(F, I ) is smooth is equivalent to HF (px , x)|α(F,I ) is never zero,
which is equivalent to the Hamiltonian vector field is never zero on α(F, I ). □

3.1.3. Arnold–Liouville manifold. The Arnold–Liouville manifold M |F is given by

MF :=
{
(p, q) ∈ T ∗ J k

:
1
2 = HF (px , x), pθi = i ! ai

}
.

In the case γ (t) is x-periodic, MF is diffeomorphic to S1
× Rk+1, where S1 is the

simple, closed, and smooth curve α(F, I ).
The curve α(F, I ) has two natural charts using x as coordinates and is given by

solving the equation HF =
1
2 with respect to px , namely (px , x)=

(
±

√
1−F2(x), x

)
.

With this in mind:

Lemma 5. Let dφt be the closed one-form on MF ⊂ T ∗J k given by

(3-7) dφh :=
px

5(F, I )
|MF dx =

√
1 − F2(x)

5(F, I )
dx,

where 5(F, I ) is the area enclosed by α(F, I ). Then,∫
α(F,I )

dφh = 1 and ∂

∂h
5(F, I ) = L(F, I ),

and as a consequence the inverse function h(5) exists.

Proof. Let �(F, I ) be the closed region by α(F, I ), then dφh can be extended
to �(F, I ) and Stokes’ theorem implies

(3-8) 5(F, I ) :=

∫
α(F,I )

px dx =

∫
�(F,I )

dpx ∧dx = 2
∫

I

√
2h − F2(x)

∣∣
h=1/2 dx .

This shows that
∫
α(F,I ) dφh = 1, thus dφh is not exact.

Since 5(F, I ) is a function of h,

(3-9)
∂

∂h
5(F, I ) =

∂

∂h

∫
I

dφh =

∫
I

2 dx√
1−F2(x)

. □
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We note that 5(F, I ) is also called an adiabatic invariant, see [3, p. 297]. We
will use 5 when we use it as a variable, and we will use 5(F, I ) for the adiabatic
invariant.

3.2. Action-angle variables in T∗J k. We consider the action µ = (5, a0, . . . , ak)

and find its angle coordinates φ = (φh, φ0, . . . , φk), such that the set (µ, φ) of
coordinates are action-angle coordinates in T ∗J k .

Lemma 6. There exist a canonical transformation 8(p, q) = (µ, φ), where φh is
the local function defined by the close form dφh from Lemma 5 and

φi = −

∫ x x̃ i F(x̃) dx̃√
1 − F2(x̃)

+ i ! θi , x ∈ I and i = 0, . . . , k.

To construct the canonical transformation 8(p, q), we will look for its generating
function S(µ, q) of the second type that satisfies the three following conditions:

(3-10) p =
∂S
∂q

, φ =
∂S
∂µ

, H
(
∂S
∂q

, q
)

= h(5) =
1
2
,

where h(5) is the function defined in Lemma 5. For more details on the definition
of S(µ, q), see [3, Section 50] or [7].

To find S(µ, q), we will solve the sub-Riemannian Hamilton–Jacobi equation
associated with the sub-Riemannian geodesic flow. For more details about the
definition of this equation in sub-Riemannian geometry and its relation to the
Eikonal equation, see [10, p. 8] or [5].

Proof. The sub-Riemannian Hamilton–Jacobi equation is given by

(3-11) h|1/2 =
1
2

(
∂S
∂x

)2

+
1
2

( k∑
i=0

x i

i !
∂S
∂θi

)2

.

Take the ansatz

S(µ, q) := f (x) +

k∑
i=0

i ! aiθi

as a solution. The equation (3-11) becomes (3-5), and then the generating function
is given by

(3-12) S(µ, q) =

∫ x

x0

√
2h(5) − F2(x̃) dx̃ +

n∑
i=0

i ! aiθi .

Here, h(5) =
1
2 and S(µ, q) is a local function, since x must lay in the hill region I ,

that is, S(µ, q) is defined in the subset µ × I × Rk+1.
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We can see that conditions 1 and 3 of (3-10) are satisfied: p(µ, q) = ∂S/∂q and
H(p(µ, q), q) = h. To find the new coordinates φ, we use condition 2:

∂S
∂h

=

∫ x dx̃√
1−F2(x̃)

= φh,

∂S
∂ai

= −

∫ x x̃ i F(x̃) dx̃√
1 − F2(x̃)

+ i ! θi = φi . □

Note that in [5] a projection πF : J k
→ R3

F was built, and the solution to the
sub-Riemannian Hamilton–Jacobi equation on the magnetic space R3

F was found.
The solution given by (3-12) is the pull-back by πF of the solution previously found
in RF , where πF is, in fact, a sub-Riemannian submersion.

Corollary 7. The coordinates (µ, φ) are action-angle coordinates.

Proof. Using the Hamilton equations for the new coordinates (µ, φ), we have φt = t
and φi = const. □

Note that h and φt are action-angles coordinates for the Hamiltonian HF .

3.2.1. Horizontal derivative. A horizontal derivative ∇hor of a function S : J k
→ R

is the unique horizontal vector field that satisfies; for every q in J k ,

(3-13) ⟨∇hor S, v⟩q = d S(v), for v ∈ Dq ,

where ⟨ , ⟩q is the sub-Riemannian metric in Dq . For further details, see [10,
pp. 14–15] or [1].

Lemma 8. Let γ (t) be a geodesic parameterized by arc length corresponding to
the pair (F, I ) and SF be the solution given by (3-12), then

d SF (γ̇ )(t) = 1.

Proof. Let us prove that γ̇ (t) = (∇hor SF )γ (t), which is just a consequence of SF

being a solution to the Hamilton–Jacobi equation, that is,

X1(SF )|γ (t) =
∂S
∂x

∣∣
γ (t)= px(t).

However, Lemma 3 implies that P1(t) = px(t), so P1(t) = X1(SF )|γ (t). As well,

X2(SF )|γ (t) =

k∑
i=0

x i (t)
i !

∂S
∂θi

∣∣
γ (t)=

k∑
i=0

ai x i (t) = F(x(t)).

Also, Lemma 3 implies that P2(t) = F(x(t)), so P2(t) = X2(SF )|γ (t). As a conse-
quence,

∇hor S|γ (t) := X1(SF )|γ (t)X1 + X2(SF )|γ (t)X2 = P1(t)X1 + P2(t)X2.
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Lemma 3 implies P1(t)X1 + P2(t)X2 = γ̇ (t). Thus, ∇hor S = γ̇ (t) and d SF (v)|q =

⟨∇hor SF , v⟩ for all Dq . In particular,

d SF (γ̇ ) = ⟨γ̇ (t), γ̇ (t)⟩ = 1,

since t is the arc length parameter. □

3.3. Proof of Proposition 2.

Proof. It is well known that the fundamental system HF with energy 1
2 has period

L(F, I ) given by (2-1) and the relation between 5(F, I ) and L(F, I ) is given by
Lemma 5, see [3, p. 281]. Let γ (t) be an x-periodic corresponding to (F, I ), we
are interested in seeing the change suffered by the coordinates θi after one L(I, F).
For that, we consider the change in S(µ, q) after γ (t) travel from t to t + L(F, I ),
in other words,

(3-14) L(F, I ) =

∫ t+L(F,I )

t
d S(γ̇ (t)) dt = 5(F, I ) +

n∑
i=0

i ! ai1θi (F, I ).

The left side of the equation is a consequence of Lemma 8, and the right side is the
integration term by term. Taking the derivative of (3-14) with respect to ai to find
−(∂/∂ai )5(F, I ) = i ! 1θi , which is equivalent to (2-2).

We differentiate 1θi := θi (t + L)− θi (t), with respect to t , to see that 1θi (F, I )
is independent of the initial point. The derivative is

x i (t + L)F(x(t + L))√
1 − F2(x(t + L))

−
x i (t)F(x(t))√
1 − F2(x(t))

,

but x(t + L) = x(t). □
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