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COARSE GEOMETRY OF HECKE PAIRS
AND THE BAUM–CONNES CONJECTURE

CLÉMENT DELL’AIERA

We study Hecke pairs using the coarse geometry of their coset space and their
Schlichting completion. We prove new stability results for the Baum–Connes
and the Novikov conjectures in the case where the pair is co-Haagerup. This
allows to generalize previous results, while providing new examples of groups
satisfying the Baum–Connes conjecture with coefficients. For instance, we
show that for some S-arithmetic subgroups of Sp(5, 1) and Sp(3, 1) the
conjecture with coefficients holds.

1. Overview and statement of the results

The Baum–Connes conjecture for a locally compact second countable group G
predicts that the K-theory groups of the reduced C∗-algebra of a locally compact
group, which is the norm closure of the complex algebra generated by the left regular
representation of L1(G) on L2(G), are isomorphic to the equivariant K-homology
of the group’s classifying space for proper actions. One of its most spectacular
applications is the descent principle, that allows to derive the Novikov conjecture
from a certain form of injectivity of the Baum–Connes assembly map. See Section 4
for a reminder with references for both statements.

The conjectures are known to hold in many cases, and the Baum–Connes con-
jecture has various stability properties. For instance, groups with the Haagerup
property satisfy the Baum–Connes conjecture with coefficients, and the conjecture
is stable by extensions. Moreover, if a group acts by isometries on a tree with
stabilizers that satisfy the Baum–Connes conjecture, then so does the group. Recall
that the Haagerup property can be defined as the existence of a metrically proper
action on a real affine Hilbert space by isometries.

This leads to the following question: if a group acts on a real affine Hilbert space
by isometries, suppose that one orbit is a proper subspace, but possibly with infinite
isotropy subgroups. Can we deduce the Baum–Connes conjecture for the group if
the stabilizer satisfies it?
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In this setting, the typical stabilizer of the proper orbit is co-Haagerup in the
ambient group, and this forces the subgroup to be almost normal, in the sense
that it is commensurable to any of its conjugates. We answer our question in the
affirmative.

Theorem 1.1. Let3<0 be a co-Haagerup subgroup of a discrete countable group.
Then, if all subgroups of 0 containing 3 as a subgroup of finite index satisfy the
Baum–Connes conjecture with coefficients, so does 0.

Being almost normal is weaker than co-Haagerup. It is actually equivalent to
0/3 being of bounded geometry, if we equip 0/3 with the metric induced from
a left proper metric on 0. With this in mind, we deduce the following from the
theorem.

Corollary 1.2. Let3<0 be a Hecke pair. If3 and 0/3 admit a coarse embedding
into a Hilbert space, then 0 satisfies the Novikov conjecture.

The paper is organized as follows. The second section gives a geometric char-
acterization of Hecke pairs: a subgroup is almost normal if and only if the coset
space with the quotient metric is of bounded geometry. In the third section, we
review the construction of the Schlichting completion of a Hecke pair, a totally
disconnected locally compact group that acts as a replacement of the quotient group
when the subgroup is only almost normal, and prove that a subgroup is co-Haagerup
if and only if the corresponding Schlichting completion has Haagerup’s property.
Here, we use implicitly that co-Haagerup subgroups are almost normal. The fourth
section is devoted to the proof of the main theorem, and the fifth section to the
proof of the corollary. In the last section, we apply these results to establish that the
Baum–Connes conjecture with coefficients holds for some countable discrete groups.
The first examples recover previous known results with a different proof, the second
examples are, to the author’s knowledge, new. For instance, we have the following.

Corollary 1.3. Let G be an absolutely simple algebraic group over Q such that
groups containing G(Z) as a subgroup of finite index satisfy the Baum–Connes
conjecture with coefficients. Let p be a prime number, and suppose that the Qp-rank
of G is 1, then G(Z[1/p]) satisfies the Baum–Connes conjecture with coefficients.

This can be applied when G(Z) is a uniform lattice in Sp(3, 1) and Sp(5, 1)
(or SO(n, 1) for n = 5, 7, 9) since these are Gromov hyperbolic groups, and thus
satisfies the Baum–Connes conjecture with coefficients.

2. Coarse geometry and Hecke pairs

Let 0 be a discrete group. A subgroup 3 < 0 is almost normal if one of the
following equivalent conditions is satisfied:
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• For every γ ∈ 0, 3 and 3γ = γ3γ−1 are commensurable (i.e., they contain
a common subgroup of finite index).

• The index [3 :3∩3γ ] is finite for every γ ∈ 0.

• The left action of 3 on 0/3 has finite orbits.

• Every double coset 3s3 is a finite union of cosets γ3.

In this case, we call (0,3) a Hecke pair. The equivalence is easily seen since the
cardinal of the orbit 3g3 is the index [3 :3∩g3g−1

]. Let us fix a left 0-invariant
metric on 0, given by a proper length | · |. We endow X = 0/3 with the left
0-invariant metric

d(s3, t3)= inf
λ,λ′∈3

|λs−1tλ′
|.

Recall that a metric space (X, d) is of bounded geometry if for every r > 0,
supx∈X |B(x, r)| is finite.

Proposition 2.1. The coset space X = 0/3 is of bounded geometry if and only if
(0,3) is a Hecke pair.

Proof. The metric being left invariant and the action transitive, it is enough to show
that any ball of finite radius is finite. But d(g3,3)≤ r if and only if

g ∈
⋃

|γ |≤r
3γ3.

0 is of bounded geometry, so that the latter is a finite union of double cosets 3γ3,
themselves being a finite union of left 3-cosets by almost normality.

Now, if X is of bounded geometry, 0 acts by isometries, by left invariance of the
metric. As 3 stabilizes the base point, it stabilizes all spheres, and thus its orbits
are contained in those, which are finite. □

This gives a large class of examples of Hecke pairs. Let 0 be a discrete group
acting by isometries on a locally finite metric space, then any stabilizer is almost
normal. For instances, groups acting by isometries on locally finite trees, such as
HNN extensions and amalgamated free products, have almost normal subgroups.

• If BS(m, n) = ⟨a, b | a−1bma = bn
⟩ is the Baumslag–Solitar group, then

Z ∼= ⟨b⟩ is an almost normal subgroup.

• SL(2,Z) is almost normal in SL(2,Z[1/p]), by considering its restricted action
on the Bass–Serre tree of SL(2,Qp).

Other examples do not readily come from isometric actions. The previous
proposition gives a geometric interpretation to these pairs.

(1) If 0 is a discrete group acting on a set X , and Y ⊂ X a commensurate subset, i.e.,
the symmetric difference |Y1γY |<∞ for every γ ∈ 0, and F a finite group, then⊕

Y F is almost normal in the (generalized) wreath product F ≀X 0 =
(⊕

X F
)
⋊0.
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If one specifies 0 = Z and Y = N ⊂ X = Z, we get an almost normal subgroup of
the Lamplighter group.

(2) SL(n,Z) is almost normal in SL(n,Q). More generally, arithmetic lattices
in global fields have commensurate subgroups: if F is a global field, and O its
ring of integers, let G be an absolutely simple, simply connected algebraic group
over F . Let S and S′ be sets of inequivalent valuations on F , containing all
archimedean ones, and such that S′

⊂ S. We denote by OS the ring of S-integers
in F . A S-arithmetic group is a subgroup commensurable with G(OS). Then if 0
is a S-arithmetic group, any S′-arithmetic group 3 is almost normal in 0.

3. The Schlichting completion and coarse embeddings

Let (0,3) be a Hecke pair and X = 0/3. There exists a locally compact totally
discontinuous Hecke pair (G, K ) where K is a compact open subgroup of G, and
a homomorphism σ : 0 → G with dense image satisfying σ−1(K ) = 3, hence
inducing isomorphisms 0/3 ∼= G/K and 3\0/3 ∼= K\G/K . This construction
was introduced by Schlichting in [22] and used extensively by Tzanev in [27].

Let us recall the construction: we endow the group of permutations S(X)with the
topology induced from pointwise convergence in the space of maps from X to X . It
is a standard fact that this makes S(X) a Polish group. We denote by σ :0→S(X)
the representation by permutation, and by G (respectively K ) the closure of the
image of 0 (respectively 3) by σ . These are totally discontinuous groups.

From this follows that K is compact open if (0,3) is a Hecke pair, thus G is
locally compact. Indeed, K is a closed subgroup of the group∏

[g]∈3\X
S(3g3/3),

which is compact as a product of finite groups (the topology of pointwise con-
vergence coincides with the product topology). It is also the stabilizer of a point,
K = stabG(3), hence it is open since the finite intersections of stabilizers form a
basis for the topology of pointwise convergence. The group G thus has a compact
open neighborhood of the identity.

The following points are important.

• If 3 is normal, the pair (G, K ) is (0/3, 1).
• If 3 is finite, then N =

⋂
γ3

γ is a finite normal subgroup of 0 contained in 3,
and (G, K )∼= (0/N ,3/N ).
• The definition of a Hecke pairs makes sense if 0 is locally compact and 3 is
open (and closed) in 0. Then the previous remarks remain true, if finite is replaced
by compact. In general, Hecke pairs in totally disconnected locally compact groups
are useful, with almost normal subgroups given by compact open subgroups.
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We see that the biggest normal subgroup contained in 3 is N =
⋂
γ3

γ . We will
call N the core of 3. The Hecke pair is a substitute for the quotient group in the
absence of normality. It is thus natural to focus on reduced Hecke pairs, i.e., N is
trivial. If a pair (0,3) is not reduced, its reduced pair will be (0/N ,3/N ). A
useful result to identify the Schlichting completion of a Hecke pair is the following.

Lemma 3.1 [23, Lemma 3.5]. Let (0,3) a Hecke pair. Suppose there exist a
locally compact group G, a compact open subgroup K < G, and a homomorphism
ψ : 0 → G such that ψ(0) is dense in G and ψ−1(K )=3. Then the Schlichting
completion of (0,3) and (G, K ) coincide. In particular, that of 0 is isomorphic
to G/N , where N is the largest normal subgroup contained in K .

Here are some examples of computation of Schlichting completions.

• If 3=
⊕

Y F in 0 = F ≀X G, as in (1) with F finite and Y commensurate in X ,
let us define G = P ⋊0 where

P =

(∏
X

F
)

⊕
(⊕

0\X F
)
⊂

∏
0

F.

Then 0 ↪→ G satisfies the hypothesis of the lemma, with K =
∏

X F . The core
of K is easily seen to be N =

∏⋂
γ γ ·X F , and G/N is the Schlichting completion

in that case. Notice that in the case where the intersection of all translates of X is
trivial, N also is, so that G is the Schlichting completion of 0.

• By using SL(n,Z[1/p]) ↪→ SL(n,Qp) for p prime, the Schlichting completion
of (SL(n,Z[1/p]),SL(n,Z)) is PSL(n,Qp). With the help of the diagonal em-
bedding SL(n,Q) ↪→ SL(n,A), we also get that the Schlichting completion of
(SL(n,Q),SL(n,Z)) is PSL(n,A).

This last example is a particular case of a general statement. With the notation of
the second example at the end of the previous section, recall that G(OS) is almost
normal in G(OS′). Let A be the ring of adèles F , and G(AS) be the subgroup
of G(A) obtained as a restricted product over places in S. If G(OS) denotes the
closure of the image of G(OS) under the diagonal embedding G(F) ↪→ G(AS), then
the corresponding Schlichting completion is obtained as that of (G(OS′),G(OS)).
If G is F-isotropic, the diagonal embedding has dense image, yielding that, if S0

is the set of finite places in S, then the Schlichting completion of (G(OS),G(O))
coincides with G(AS0) quotiented by its center (see [23], Section 3).

Recall that a group is a-T-menable, also called Haagerup’s property, if there
exists a real valued continuous function on G that is proper and conditionally of
negative-type (see [7], Chapter 1). We also recall that a metric space with bounded
geometry:
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• Admits a coarse embedding into Hilbert space if there exists a symmetric
normalized kernel on X that is conditionally of negative-type and effectively
proper (see [8], Definition 5.6).

• Has Yu’s property (A) if for every positive numbers ε and r , there exists a
symmetric normalized kernel on X of positive-type with finite propagation
and (r, ε)-propagation (see [28], Theorem 1.2.4).

Furthermore, a subgroup3<0 is co-Følner if and only if 0/3 carries a 0-invariant
mean. Exactness of a locally compact group is defined as exactness of the reduced
crossed-product. It is known to be equivalent to amenability at infinity, that is,
G admits an amenable action on some compact Hausdorff space (see [3]).

From these definitions (which are actually theorems), we see that a discrete
group is a-T-menable if and only if it admits a 0-equivariant coarse embedding
into Hilbert space, and that it is amenable if and only if it satisfies property (A)’s
condition with the kernel being 0-equivariant.

Proposition 3.2. With the notation above:
• X admits a 0-equivariant coarse embedding into a 0-Hilbert space if and only

if G has Haagerup’s property.

• X admits a coarse embedding into a Hilbert space if and only if the action
of G on βX is a-T-menable.

• 3 is co-Følner in 0 if and only if G is amenable.

• X has Yu’s property (A) if and only if G is exact.

Proof. The key fact is the correspondence between kernels on X and G. Indeed,
the map quotient map G → X induces a map that takes kernels on X to kernels
on G, respects properness and, if the original kernel is 0-invariant, its image will be
G-invariant. Thus, if we have a conditionally negative-type 0-equivariant metrically
proper kernel on X , we get a continuous conditionally negative-type proper function
on G.

For the converse, if we have a continuous conditionally negative-type proper
function φ : G → R, then

ϕ(sK , t K )=

∫
K

∫
K
φ(k1s−1tk2) dk1 dk2

defines a conditionally negative-type 0-equivariant metrically proper kernel on X .
Remark that these two correspondences respects the support in the sense that

suppϕ ⊂ {(x, y) ∈ X × X : d(x, y) ≤ r} if and only if suppφ ⊂
⋃

|s|≤r Kσ(s)K .
Thus kernels supported in an entourage1 of X correspond to compactly supported
kernels on G. This gives the two last points. □

1In the sense of coarse geometry: for a metric space (X, d), a subset E ⊂ X × X is an entourage if
sup(x,y)∈E d(x, y) <+∞.
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Let H be a subgroup of 0. Recall that H is co-Haagerup in 0 if there exists a
proper 0-invariant kernel of conditionally negative-type on 0/H , and is co-Følner
if 0/H carries a 0-invariant mean. In general, co-Følner subgroups are not co-
Haagerup (see Example 6.1 of [8]), but in the case of Hecke pairs, it follows
from the previous proposition that this implication holds. Moreover, if 3 < 0

is co-Haagerup, it is a Hecke pair (see Example 6.1 and Proposition B.2 of [8])
and the converse obviously does not hold. We easily see that Hecke pairs which
admits a 0-equivariant coarse embedding into a Hilbert space are thus exactly the
co-Haagerup subgroups.

This relation between the large scale property of0/3 and the dynamical properties
of G yields a series of questions. The action of 0 on βX extends to a continuous
action of G. In the case of a normal subgroup, the coarse groupoid G(X) of X
(see [24]) is isomorphic to βQ ⋊ Q with Q being the quotient group.

It is an interesting question to describe the coarse groupoid in general. A natural
candidate would be βX ⋊G, but G does not always act by bounded propagation
on X .

Motivated by the case of a normal subgroup, we could also ask how are geometric
property (T) of X (see [29]) and dynamical property (T) for the action of G on βX
(see [9]) related; or, in the same spirit, the asymptotic dimension of X and the
dynamical asymptotic dimension of G acting on βX (see [12]).

4. Stability of Baum–Connes conjecture for Hecke pairs

The goal of this section is to prove the next theorem.

Theorem 4.1. Let (0,3) be a Hecke pair and A a 0-algebra. If every subgroup
of 0 that is commensurable with 3 satisfy the Baum–Connes conjecture with
coefficients, and 0/3 admits a 0-equivariant coarse embedding into Hilbert space,
then 0 satisfies the Baum–Connes conjecture with coefficients.

This generalizes previous results:

• If 3 is normal, the theorem reduces to a particular case of Oyono-Oyono’s
stability result of Baum–Connes by extensions (see [19]), namely the case
where the quotient is a-T-menable.

• If 0/3 embeds into a locally finite tree, the theorem reduces to Oyono-Oyono’s
stability result of Baum–Connes for groups acting on trees (see [20]).

The theorem relies on the Higson–Kasparov result that a-T-menable groups
satisfy the Baum–Connes conjecture with coefficients [14]. It implies that if a
group admits an action by isometries on a real Hilbert space with an orbit that is
proper as a metric space, and the commensurate class of the stabilizer satisfies the
Baum–Connes conjecture with coefficients, then the group also does.
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If 3 and 0 are discrete groups, let us say that 0 is a co-Haagerup extension if 3
is isomorphic to an almost normal subgroup of 0 such that the resulting quotient
equivariantly coarsely embeds into a Hilbert space. We define C to be the smallest
class of groups containing a-T-menable groups and Gromov hyperbolic groups, that
is closed under co-Haagerup extensions. The theorem implies the following.

Corollary 4.2. All groups of class C satisfies the Baum–Connes conjecture with
coefficients.

See Section 6 for a discussion on the class C.

Preliminaries. We first establish general conventions and notations, then give an
overview of the proof.

Let G be a locally compact group, and A a G-algebra, by which we mean a
C∗-algebra endowed with an action α : G → Aut(A) of G by ∗-automorphisms.
We suppose as usual that g 7→ αg(a) is continuous for every a ∈ A. We will often
leave α implicit. We will denote the reduced-crossed product by A⋊r G.

We say that G satisfies the Baum–Connes conjecture with coefficients in A if
the Baum–Connes assembly map

µG,A : K top
•
(G, A)→ K•(A⋊r G)

is an isomorphism (see [1] for a definition). For convenience, we will write
BC(G, A) for this statement. If the coefficients are not specified, they are meant
to be the complex numbers with trivial G-action. The conjecture with coefficients
means that BC(G, A) holds for all G-algebras A.

The Baum–Connes conjecture with coefficients is known to hold for:

• a-T-menable groups (Higson and Kasparov [14]).

• Gromov hyperbolic groups (Lafforgue [18]).

• Groups acting on trees with a-T-menable stabilizers (Oyono-Oyono [20]).

Counterexamples with nontrivial coefficients are known (see [15]). With complex
coefficients, the Baum–Connes conjecture is still open, and it also holds for discrete
cocompact subgroups of rank one real Lie groups or SL(3, F) for a local field F
(Lafforgue [17]).

In the case of a product group G = G1 ×G2, A⋊r G1 is a G2-algebra, A⋊r G ∼=

(A⋊r G1)⋊r G2, and the assembly map can be factored by a partial assembly map.
Indeed, let

µ
(G2)
G1,A : K top

•
(G1 × G2, A)→ K top

•
(G2, A⋊r G1)
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be the partial assembly map, first defined in [4] (see Definition 3.9, or Section 2
of [6]). Then the following diagram commutes:

K top
• (G, A) K top

• (G2, A⋊r G1)

K•(A⋊r G)

µ
(G2)
G1,A

µG,A
µG2,A⋊r G1

We will use BC(G2)(G1, A) to refer to the statement thatµ(G2)
G1,A is an isomorphism.

The second ingredient in the proof is the use of Morita invariance of the Baum–
Connes assembly map. In our case, we can restrict to Shapiro’s lemma, proved in [5].

Recall that if H is a closed subgroup of a locally compact group G, and A a
H -algebra with H -action α, the induced algebra indG

H (A) is defined as the sub-
C∗-algebra of the bounded continuous functions f : G → A satisfying f (gh) =

αh( f (g)) for every g ∈ G, h ∈ H , and such that the function gH 7→ ∥ f (gH)∥
belongs to C0(G/H). It is a G-C∗-algebra with the G-action αg( f )(s)= f (g−1s)
for f ∈ indG

H (A) and g, s ∈ G.

Proposition 4.3 [5, Corollary 0.6]. Let H be a closed subgroup of a locally compact
group G and A a H-algebra. Then BC(G, indG

H (A)) holds if and only if BC(H, A)
does.

Our strategy to prove Theorem 4.1 is the following.

(1) We realize 0 as a closed subgroup of 0 × G, where G is the Schlichting
completion of the Hecke pair (0,3).

(2) We define a transitive continuous action of 0 × G on G, with stabilizers
isomorphic to 0. Shapiro’s lemma ensures that BC(0, A) is equivalent to

BC(0× G,C0(G, A)).

(3) If 0/3 admits a 0-equivariant coarse embedding into a Hilbert space, then
G is a-T-menable and thus satisfies the Baum–Connes conjecture with coeffi-
cients. Factorization by the partial assembly map ensures that it is enough to prove
BC(G2)(0,C0(G, A)) in order to show BC(0× G,C0(G, A)).

(4) We show that the Baum–Connes conjecture for all subgroups L < 0 contain-
ing 3 as a subgroup of finite index implies BC(G2)(0,C0(G, A)).

Proof. Let A be a 0-algebra. Define the action of 0× G on C0(G, A) by

((γ, g) · f )(x)= γ · ( f (γ xg−1)).

Proposition 4.4. In the above setting, if µ(G)0,C0(G,A) and µG,C0(G,A)⋊r0 are isomor-
phisms, then 0 satisfies the Baum–Connes conjecture with coefficients in A.
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Proof. Let 0× G act on G by

(γ, g) · x = σγ xg−1.

The action is transitive, and the stabilizer of eG is isomorphic to 0:

stab(eG)= {(γ, σγ )}γ∈0
∼= 0.

Since G is Hausdorff, the stabilizer is closed, and by Corollary 0.6 of [5], for every
0× G algebra (A, α),

BC(0× G,C0(G, A))⇔ BC(0̃, A|0̃).

We denoted the stabilizer stab(eG) by 0̃ to differentiate it from its isomorphic
image 0 by the first projection. Here, A0̃ is the algebra A endowed with the action
γ · a = αγ,σγ (a). In particular, if G acts trivially on A, and any 0-algebra can be
seen like this, we get that

BC(0× G,C0(G, A))⇔ BC(0, A),

where the action of 0× G on C0(G, A) is given by

((γ, g) · f )(x)= γ · ( f (γ xg−1)).

The factorization of the assembly map via the partial assembly gives

BC(G)(0,C0(G, A)) and BC(0,C0(G, A)⋊r 0)=⇒ BC(0× G,C0(G, A))

for A a 0-algebra, seen as a 0× G-algebra via the trivial action of G. □

Theorem 4.5. Let (3, 0) be a Hecke pair, and (G, K ) its Schlichting completion,
and A a 0-algebra. If

• G satisfies the Baum–Connes conjecture with coefficients in C0(G, A)⋊r 0,

• every subgroup L < 0 containing a conjugate of 3 as a subgroup of finite
index satisfies the Baum–Connes conjecture with coefficients in A,

then 0 satisfies the Baum–Connes conjecture with coefficients in A.

Proof. Since G satisfies the Baum–Connes conjecture with coefficients in

C0(G, A)⋊r 0,

Proposition 4.4 ensures that it is enough to show that the partial assembly map

µ
(G)
0,C0(G,A) : RK0×G

•
(E0× EG,C0(G, A))→ RK G

•
(EG,C0(G, A)⋊r 0)

is an isomorphism.
The space EG can be covered by open subset of the type G×L U , for L a compact

subgroup of G and U a L-space. Moreover, G being totally disconnected, we can
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restrict to compact open subgroups L . By a standard Mayer–Vietoris argument,
it is enough to show that

µ
(G)
0,C0(G,A) : RK0×G

•
(E0×(G×L U ),C0(G, A))→ RK G

•
(G×L U,C0(G, A)⋊r0)

is an isomorphism.
By restriction principle, this is equivalent to show that

µ
(L)
0 : RK0×L

•
(E0× U,C0(G, A)|0×L)→ RK L

•

(
U, (C0(G, A)⋊r 0)|L

)
is an isomorphism, i.e., BC

(
0× L , (C0(G, A)⋊r 0)|F

)
.

Now, up to replacing L by L ∩ K , we can suppose L < K . As a 0× L-space,
G is isomorphic to G/L × L , where the L factor acts only on the right. Since L
and K are compact open, the quotient is finite. Thus there are only finitely many
0 × L-orbits: [K : L] many. The typical stabilizer of an orbit is isomorphic to
H = σ−1(L), so contains 3 as a subgroup of finite index.

Green’s isomorphism thus entails that BC(0× L ,C0(G, A)0×L) holds since we
supposed BC(H, A) for every such subgroup H .

We thus proved that

∀H ∈ S3, BC(H, A)=⇒ BC(G)(0,C0(G, A))

and the proof is done. (We denoted by S3 the family of subgroups of 0 containing3
as a subgroup of finite index.) □

The proof of Theorem 4.1 follows: by Proposition 3.2, if X admits a0-equivariant
coarse embedding into a Hilbert space, G is a-T-menable, and hence satisfies the
Baum–Connes conjecture with coefficients [14].

5. Application to the Novikov conjecture

In order to prove the Novikov conjecture, we use Roe’s descent principle (see
Chapter 8 of [21]): to show that the Novikov conjecture for a discrete group 0
holds, it is enough to construct a compact second-countable 0-space X such that

• 0 satisfies the Baum–Connes conjecture for every coefficients C(X, A), for
every 0-algebra A,

• X is F-contractible, for every finite subgroup F < 0.

This method was extensively used, originally by Higson [13] and later by Chabert,
Echterhoff and Oyono-Oyono [6, Theorem 1.9], and by Skandalis, Tu and Yu [24,
Theorem 6.1]. They proved that the Novikov conjecture is satisfied if the discrete
group admits a coarse embedding into a Hilbert space. We will proceed accordingly
in the case of Hecke pairs where the subgroup and the coset space admits coarse
embeddings into Hilbert spaces.
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Let us denote by S3 the family of subgroups of 0 containing 3 as a subgroup
of finite index. Recall that Deng [10, Section 4.1] proved the following result.

Theorem 5.1. Let 0 be a group and 3 a subgroup. Suppose 3 is coarsely embed-
dable into a Hilbert space, then there exists a compact metrizable 0-space X such
that, for every L ∈ SN , the restricted action of L on X is a-T-menable, and X is
F-contractible, for every finite subgroup F < 0.

We will need the following lemma.

Lemma 5.2. Let (G, K ) be the Schlichting completion of a Hecke pair (0,3).
Suppose G is a-T-menable, then there exists a second countable compact G-space Y
such that the action of G is a-T-menable and Y , and Y is L-contractible for every
compact open subgroup L < G.

Proof. The action of 0 on βX extends to an action of G, and since G is a-T-menable,
so is the groupoid βX ⋊G. As in [13] and [24], up to quotienting βX , there exists
a compact Hausdorff and second-countable G-space Y such that Y ⋊ G is a-T-
menable. Let Y be the space prob(Y ) of Borel probability measures, endowed with
the weak-∗ topology: it is compact Hausdorff and second-countable. Lemma 6.7
of [24] shows that Y ⋊ G is a-T-menable. The remaining assertion follows from
the fact that G acts on Y by affine isometries. □

Tu [26] proved that if X is a second-countable compact G-space with an a-T-
menable action of G, then BC(G,C(X, A)) holds for every G-algebra A. Combin-
ing this with Deng’s result and the lemma above, if (0,3) is a Hecke pair with 3
and 0/3 are coarsely embeddable into a Hilbert space, we know there exist:

• A second-countable compact metrizable 0-space X such that

BC(L ,C(X, A)|L) ∀L ∈ SN ,∀0-algebra A

and X is F-contractible for every finite subgroup F < 0.

• By a-T-menability of G, a second-countable compact metrizable G-space Y
such that BC(G,C(Y, A)) for all G-algebra A and Y is L-contractible for
every compact subgroup L < G.

We are now able to prove the main result of this section. It generalizes a result
of Deng [10, Theorem 1.1] to the case where the subgroup is not normal.

Theorem 5.3. Let (0,3) be a Hecke pair such that 3 and 0/3 are coarsely
embeddable into a Hilbert space, then Novikov’s conjecture holds for 0.

Proof. It is enough to show that there exists a compact metrizable 0-space � such
that µ0,C(�,A) is an isomorphism for every 0-C∗-algebra A.
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Let X and Y be second-countable compact spaces as above, and let �= X × Y
with action of 0×G given by (γ, g) ·(x, y)= (γ ·x, g · y). There is a G-equivariant
isomorphism of C∗-algebras

C0(G,C(�, A))⋊r 0 ∼= C(Y )⊗ (C0(G × X, A)⋊r 0),

which ensures that µG,C0(G,C(�,A))⋊r0 is an isomorphism.
It is thus enough to show that the partial assembly map µ(0×G)

0,C0(G,C(�,A)) is an
isomorphism, which reduces to show that µ(0×L)

0,C0(G,C(�,A)) is an isomorphism, for
every compact open subgroup L < G, by standard restriction principle. With
the same argument as before, the restricted action of 0 × L is a finite union of
transitive actions with typical stabilizer H = σ−1(L) ∈ S3. By Green’s principle,
µ
(0×L)
0,C0(G,C(�,A)) is equivalent to µH,C(X,A). The latter being an isomorphism, this

concludes the proof. □

6. Rational and S-integers points of algebraic groups over algebraic
number fields

We present two applications of Theorem 4.1. The first one recover known results,
the second one is, to the author’s knowledge, new.

SL2 of an algebraic number field and of S-integers. The first application of
Theorem 4.1 is to the groups SL(2,Z[1/N ]) and SL(2,Q). Both have the a-T-
menable group SL(2,Z) as almost normal subgroup, and their respective Schlichting
completion can be obtained by Lemma 3.1 with the homomorphisms

SL(2,Z[1/N ])→
∏
p|N

PGL(2,Qp) and SL(2,Q)→ PGL(2,A),

where A is the ring of adèles. As both Schlichting completions are a-T-menable, the
Hecke pairs are co-Haagerup. This generalizes easily to the following setting: let F
be a finite extension of Q, S a set of inequivalent valuations and O (respectively OS)
the ring of integers (respectively S-integers) of F . Denote by AF the ring of adèles
of F .

Corollary 6.1. Let S be a set of primes and ZS the ring of S-integers in Q. Then
SL(2,ZS) and SL(2,Q) satisfy the Baum–Connes conjecture with coefficients.
More generally, SL(2,OS) and SL(2,AF ) satisfy the Baum–Connes conjecture
with coefficients.

Let G be an absolutely simple, simply connected algebraic group over F .

Corollary 6.2. Let 0 be either G(OS) or G(F), then 0 satisfies the Novikov con-
jecture.



34 CLÉMENT DELL’AIERA

Proof. Let A be a 0-algebra. Denote AF be the ring of adèles of F and R its
compact open ring of integers. Observe the almost normal subgroup 3= G(O): its
Schlichting completion G will be that of (G(AF ),G(R)) if 0 = G(F), or that of( ∏

ν∈S
G(Fν),

∏
ν∈S

G(Oν)
)

if 0 = G(OS).
Every group L < 0 containing 3 as a subgroup of finite index is exact, so that

µL ,B is injective for every coefficients B.
By Theorem 5.2 of [16], the map µG,A is injective. The diagram

K top
• (0× G,C0(G, A)) K•(C0(G, A)⋊r (0× G))

K top
• (0, A) K•(A⋊r 0)

µ0×G,C0(G,A)

µ0,A

∼= ∼=

commutes, and by factorization via partial assembly maps, we have

µ0×G,C0(G,A) = µG,C0(G,A)⋊r0 ◦µ
(G)
0,A,

hence the map µ0,A is injective. We conclude by descent principle. □

These two corollaries also follow from [11], where it is proven that, if K is a
field, every countable subgroup of GL(n, K ) is coarsely embeddable into Hilbert
space, and if n = 2, actually a-T-menable. A different proof can also be found in [2,
Theorem 1.5].

Lattices in mixed product groups. Theorem 4.1 and Corollary 4.2 allow to prove the
Baum–Connes conjecture for groups in class C, some of which are non-a-T-menable.
For instance, the group Z2⋊SL(2,Z[1/p]) is not Haagerup since Z2<Z2⋊SL(2,Z)

has relative property (T). Moreover, Z2 ⋊ SL(2,Z) satisfies the Baum–Connes
conjecture with coefficients, and is almost normal in Z2 ⋊ SL(2,Z[1/p]). The
Schlichting completion of the pair is PSL(2,Qp), which is a-T-menable so that we
are in the conditions of the theorem.

This result could have actually been proved by Oyono-Oyono’s stability result of
the Baum–Connes conjecture by extensions since it is a-T-menable by a-T-menable,
or by Oyono-Oyono’s result on group acting on trees, since it acts on the Bass–Serre
tree of SL(2,Qp) with stabilizers that are finite by a-T-menable.

In order to show that the class C is interesting, we want to build examples of
discrete groups in C that are not a-T-menable, or more generally, not an extension of
a-T-menable by a-T-menable, nor hyperbolic, nor acting on trees with a-T-menable
stabilizers.
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Proposition 6.3. Let 0 < G be an irreducible lattice in a product G = G1 × G2 of
locally compact groups such that G1 is not compact and has property (T), and G2

is totally disconnected and a-T-menable. Then 0 is not a-T-menable and, for every
compact open subgroup K < G2, 3 = ϕ−1(K ) is co-Haagerup in 0 (and thus
almost normal).

Proof. Let us show that 0 is not a-T-menable. Since 0 is of finite covolume in G,
L∞(G/0) admits a G-invariant state: it is co-Følner. By Proposition 6.1.5 of [7],
if 0 was a-T-menable, so would G be. Since (G,G1) has relative property (T)
and G1 is notcompact, this is impossible.

Consider the morphism ϕ : 0 → G2 given by the second projection: by irre-
ducibility, we are in the situation of Lemma 3.1. This ensures that 3 is almost
normal in 0, and that the Schlichting completion of (0,3) is the quotient of G2

by the largest normal subgroup contained in K , hence it is a-T-menable. Thus
0/3 admits an equivariant coarse embedding into Hilbert space (equivalently 3 is
co-Haagerup in 0). □

Let G be an absolutely simple algebraic group over Q, and (0,3) be the Hecke
pair (G(Z[1/p]),G(Z)). Since the Schlichting completion identifies with that of
(G(Qp),G(Zp)), it is enough to know that rkQp G(Qp)= 1 to know that the pair
is co-Haagerup. We thus have the following.

Corollary 6.4. If all subgroups L < 0 containing 3 with finite index satisfy the
Baum–Connes conjecture with coefficients, and rkQp G(Qp)= 1, then 0 satisfy the
Baum–Connes conjecture with coefficients.

In general, the classification of rank 1 groups over nonarchimedean local fields
has been completed and accounts can be found; see, for instance, [25]. If one looks
at groups with Tits index C2

2,1 and C2
3,1, choose a Q-form G such that G(R) is

isomorphic to Sp(n, 1), with n = 3 or 5. Let G(O) be an arithmetic cocompact
lattice: it is Gromov hyperbolic, thus any groups which contains it with finite
index satisfies the Baum–Connes conjecture with coefficients by [18]. Moreover,
any S-arithmetic group G(OS) will contain 3 as a co-Haagerup almost normal
subgroup, thus 0 satisfies the Baum–Connes conjecture with coefficients. This
gives example of countable subgroups of GL(n, K ) for n ≤ 3, that satisfy the
Baum–Connes conjecture with coefficients.

In both these examples, 0 is non-a-T-menable, since it is an irreducible lattice
in G(R)× G(Qp), and by the S-arithmetic version of Margulis almost normal
subgroup theorem, every normal subgroup of 0 is either finite or commensurable
to 0, so that proving the Baum–Connes conjecture by expressing it as an extension
will fail. Also, 0 does not admit an isometric action on a tree with stabilizers
satisfying the conjecture, nor is it hyperbolic.



36 CLÉMENT DELL’AIERA

Acknowledgments

The author would like to thank Erik Guentner for helpful discussions on this topic
and for suggesting the question in the first place. He is also indebted to Hervé
Oyono-Oyono and Kang Li for comments on the first draft.

References

[1] P. Baum, A. Connes, and N. Higson, “Classifying space for proper actions and K -theory of group
C∗-algebras”, pp. 240–291 in C∗-algebras: 1943–1993 (San Antonio, TX, 1993), Contemp.
Math. 167, Amer. Math. Soc., Providence, RI, 1994. MR Zbl

[2] P. Baum, S. Millington, and R. Plymen, “Local-global principle for the Baum–Connes conjecture
with coefficients”, K -Theory 28:1 (2003), 1–18. MR Zbl

[3] J. Brodzki, C. Cave, and K. Li, “Exactness of locally compact groups”, Adv. Math. 312 (2017),
209–233. MR Zbl

[4] J. Chabert, “Baum–Connes conjecture for some semi-direct products”, J. Reine Angew. Math.
521 (2000), 161–184. MR Zbl

[5] J. Chabert, S. Echterhoff, and H. Oyono-Oyono, “Shapiro’s lemma for topological K -theory of
groups”, Comment. Math. Helv. 78:1 (2003), 203–225. MR Zbl

[6] J. Chabert, S. Echterhoff, and H. Oyono-Oyono, “Going-down functors, the Künneth formula,
and the Baum–Connes conjecture”, Geom. Funct. Anal. 14:3 (2004), 491–528. MR Zbl

[7] P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, and A. Valette, Groups with the Haagerup
property: Gromov’s a-T-menability, Progress in Mathematics 197, Birkhäuser, Basel, 2001. MR
Zbl

[8] Y. Cornulier, Y. Stalder, and A. Valette, “Proper actions of wreath products and generalizations”,
Trans. Amer. Math. Soc. 364:6 (2012), 3159–3184. MR Zbl

[9] C. Dell’Aiera and R. Willett, “Topological property (T) for groupoids”, Ann. Inst. Fourier
(Grenoble) 72:3 (2022), 1097–1148. MR Zbl

[10] J. Deng, The Novikov conjecture and extensions of coarsely embeddable groups, Ph.D. thesis,
Texas A&M University, 2020, available at https://www.proquest.com/docview/2668181197.
MR Zbl

[11] E. Guentner, N. Higson, and S. Weinberger, “The Novikov conjecture for linear groups”, Publ.
Math. Inst. Hautes Études Sci. 101:1 (2005), 243–268. MR Zbl

[12] E. Guentner, R. Willett, and G. Yu, “Dynamic asymptotic dimension: relation to dynamics,
topology, coarse geometry, and C∗-algebras”, Math. Ann. 367:1-2 (2017), 785–829. MR Zbl

[13] N. Higson, “Bivariant K -theory and the Novikov conjecture”, Geom. Funct. Anal. 10:3 (2000),
563–581. MR Zbl

[14] N. Higson and G. Kasparov, “E-theory and K K -theory for groups which act properly and
isometrically on Hilbert space”, Invent. Math. 144:1 (2001), 23–74. MR Zbl

[15] N. Higson, V. Lafforgue, and G. Skandalis, “Counterexamples to the Baum–Connes conjecture”,
Geom. Funct. Anal. 12:2 (2002), 330–354. MR

[16] G. Kasparov and G. Skandalis, “Groups acting properly on “bolic” spaces and the Novikov
conjecture”, Ann. of Math. (2) 158:1 (2003), 165–206. MR

[17] V. Lafforgue, “K -théorie bivariante pour les algèbres de Banach et conjecture de Baum–Connes”,
Invent. Math. 149:1 (2002), 1–95. MR Zbl

http://dx.doi.org/10.1090/conm/167/1292018
http://dx.doi.org/10.1090/conm/167/1292018
http://msp.org/idx/mr/1292018
http://msp.org/idx/zbl/0830.46061
http://dx.doi.org/10.1023/A:1024197623173
http://dx.doi.org/10.1023/A:1024197623173
http://msp.org/idx/mr/1988816
http://msp.org/idx/zbl/1034.46073
http://dx.doi.org/10.1016/j.aim.2017.03.020
http://msp.org/idx/mr/3635811
http://msp.org/idx/zbl/1387.22009
http://dx.doi.org/10.1515/crll.2000.026
http://msp.org/idx/mr/1752299
http://msp.org/idx/zbl/0959.46049
http://dx.doi.org/10.1007/s000140300009
http://dx.doi.org/10.1007/s000140300009
http://msp.org/idx/mr/1966758
http://msp.org/idx/zbl/1030.19001
http://dx.doi.org/10.1007/s00039-004-0467-6
http://dx.doi.org/10.1007/s00039-004-0467-6
http://msp.org/idx/mr/2100669
http://msp.org/idx/zbl/1063.46056
http://dx.doi.org/10.1007/978-3-0348-8237-8
http://dx.doi.org/10.1007/978-3-0348-8237-8
http://msp.org/idx/mr/1852148
http://msp.org/idx/zbl/1030.43002
http://dx.doi.org/10.1090/S0002-9947-2012-05475-4
http://msp.org/idx/mr/2888241
http://msp.org/idx/zbl/1283.20049
http://dx.doi.org/10.5802/aif.3513
http://msp.org/idx/mr/4485821
http://msp.org/idx/zbl/07589411
https://www.proquest.com/docview/2668181197
http://msp.org/idx/mr/4435695
http://msp.org/idx/zbl/1498.19005
http://dx.doi.org/10.1007/s10240-005-0030-5
http://msp.org/idx/mr/2217050
http://msp.org/idx/zbl/1073.19003
http://dx.doi.org/10.1007/s00208-016-1395-0
http://dx.doi.org/10.1007/s00208-016-1395-0
http://msp.org/idx/mr/3606454
http://msp.org/idx/zbl/1380.37018
http://dx.doi.org/10.1007/PL00001630
http://msp.org/idx/mr/1779613
http://msp.org/idx/zbl/0962.46052
http://dx.doi.org/10.1007/s002220000118
http://dx.doi.org/10.1007/s002220000118
http://msp.org/idx/mr/1821144
http://msp.org/idx/zbl/0988.19003
http://dx.doi.org/10.1007/s00039-002-8249-5
http://msp.org/idx/mr/1911663
http://dx.doi.org/10.4007/annals.2003.158.165
http://dx.doi.org/10.4007/annals.2003.158.165
http://msp.org/idx/mr/1998480
http://dx.doi.org/10.1007/s002220200213
http://msp.org/idx/mr/1914617
http://msp.org/idx/zbl/1084.19003


COARSE GEOMETRY OF HECKE PAIRS AND THE BAUM–CONNES CONJECTURE 37

[18] V. Lafforgue, “La conjecture de Baum–Connes à coefficients pour les groupes hyperboliques”, J.
Noncommut. Geom. 6:1 (2012), 1–197. MR Zbl

[19] H. Oyono-Oyono, “Baum–Connes conjecture and extensions”, J. Reine Angew. Math. 532
(2001), 133–149. MR Zbl

[20] H. Oyono-Oyono, “Baum–Connes conjecture and group actions on trees”, K -Theory 24:2
(2001), 115–134. MR Zbl

[21] J. Roe, Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference
Series in Mathematics 90, American Mathematical Society, Providence, RI, 1996. MR Zbl

[22] G. Schlichting, “Operationen mit periodischen Stabilisatoren”, Arch. Math. 34:2 (1980), 97–99.
MR Zbl

[23] Y. Shalom and G. A. Willis, “Commensurated subgroups of arithmetic groups, totally discon-
nected groups and adelic rigidity”, Geom. Funct. Anal. 23:5 (2013), 1631–1683. MR Zbl

[24] G. Skandalis, J. L. Tu, and G. Yu, “The coarse Baum–Connes conjecture and groupoids”,
Topology 41:4 (2002), 807–834. MR

[25] J. Tits, “Reductive groups over local fields”, pp. 29–69 in Automorphic forms, representations
and L-functions (Corvallis, Ore., 1977), Proc. Sympos. Pure Math. 33, Amer. Math. Soc.,
Providence, R.I., 1979. MR Zbl

[26] J.-L. Tu, “La conjecture de Baum–Connes pour les feuilletages moyennables”, K -Theory 17:3
(1999), 215–264. MR Zbl

[27] K. Tzanev, “Hecke C∗-algebras and amenability”, J. Operator Theory 50:1 (2003), 169–178.
MR Zbl

[28] R. Willett, “Some notes on property A”, pp. 191–281 in Limits of graphs in group theory and
computer science, EPFL Press, Lausanne, 2009. MR Zbl

[29] R. Willett and G. Yu, “Geometric property (T)”, Chinese Ann. Math. Ser. B 35:5 (2014), 761–800.
MR Zbl

Received June 27, 2022. Revised January 3, 2023.

CLÉMENT DELL’AIERA

DEPARTMENT OF MATHEMATICS

UNITÉ DE MATHÉMATIQUES PURES ET APPLIQUÉES (UMPA)
ENS DE LYON

LYON

FRANCE

clement.dellaiera@ens-lyon.fr

http://dx.doi.org/10.4171/JNCG/89
http://msp.org/idx/mr/2874956
http://msp.org/idx/zbl/1328.19010
http://dx.doi.org/10.1515/crll.2001.020
http://msp.org/idx/mr/1817505
http://msp.org/idx/zbl/0973.46064
http://dx.doi.org/10.1023/A:1012786413219
http://msp.org/idx/mr/1869625
http://msp.org/idx/zbl/1008.19001
http://dx.doi.org/10.1090/cbms/090
http://msp.org/idx/mr/1399087
http://msp.org/idx/zbl/0853.58003
http://dx.doi.org/10.1007/BF01224936
http://msp.org/idx/mr/583752
http://msp.org/idx/zbl/0449.20004
http://dx.doi.org/10.1007/s00039-013-0236-5
http://dx.doi.org/10.1007/s00039-013-0236-5
http://msp.org/idx/mr/3102914
http://msp.org/idx/zbl/1295.22017
http://dx.doi.org/10.1016/S0040-9383(01)00004-0
http://msp.org/idx/mr/1905840
http://msp.org/idx/mr/546588
http://msp.org/idx/zbl/0415.20035
http://dx.doi.org/10.1023/A:1007744304422
http://msp.org/idx/mr/1703305
http://msp.org/idx/zbl/0939.19001
http://msp.org/idx/mr/2015025
http://msp.org/idx/zbl/1036.46054
http://msp.org/idx/mr/2562146
http://msp.org/idx/zbl/1201.19002
http://dx.doi.org/10.1007/s11401-014-0852-x
http://msp.org/idx/mr/3246936
http://msp.org/idx/zbl/1362.46073
mailto:clement.dellaiera@ens-lyon.fr




PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Fakultät für Mathematik

Universität Wien
Vienna, Austria

matthias.aschenbrenner@univie.ac.at

Robert Lipshitz
Department of Mathematics

University of Oregon
Eugene, OR 97403

lipshitz@uoregon.edu

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2023 is US $605/year for the electronic version, and $820/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias.aschenbrenner@univie.ac.at
mailto:lipshitz@uoregon.edu
mailto:balmer@math.ucla.edu
mailto:liu@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:popa@math.ucla.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 322 No. 1 January 2023

1Rips construction without unique product
GOULNARA ARZHANTSEVA and MARKUS STEENBOCK

11No periodic geodesics in jet space
ALEJANDRO BRAVO-DODDOLI

21Coarse geometry of Hecke pairs and the Baum–Connes conjecture
CLÉMENT DELL’AIERA

39On homology theories of cubical digraphs
ALEXANDER GRIGOR’YAN and YURI MURANOV

59The geometry and topology of stationary multiaxisymmetric vacuum
black holes in higher dimensions

VISHNU KAKKAT, MARCUS KHURI, JORDAN RAINONE and
GILBERT WEINSTEIN

99Quasilinear Schrödinger equations: ground state and infinitely many
normalized solutions

HOUWANG LI and WENMING ZOU

139Thomae’s function on a Lie group
MARK REEDER

171On the potential function of the colored Jones polynomial with
arbitrary colors

SHUN SAWABE

195Pushforward and smooth vector pseudo-bundles
ENXIN WU

Pacific
JournalofM

athem
atics

2023
Vol.322,N

o.1


	1. Overview and statement of the results
	2. Coarse geometry and Hecke pairs
	3. The Schlichting completion and coarse embeddings
	4. Stability of Baum–Connes conjecture for Hecke pairs
	Preliminaries
	Proof

	5. Application to the Novikov conjecture
	6. Rational and S-integers points of algebraic groups over algebraic number fields
	SL2 of an algebraic number field and of S-integers
	Lattices in mixed product groups

	Acknowledgments
	References
	
	

