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ON HOMOLOGY THEORIES OF CUBICAL DIGRAPHS

ALEXANDER GRIGOR’YAN AND YURI MURANOV

We prove the equivalence of the singular cubical homology and the path
homology on the category of cubical digraphs. As a corollary we obtain a new
relation between the singular cubical homology of digraphs and simplicial
homology.

1. Introduction

The path homology theory and the singular cubical homology theory for the category
of digraphs were introduced in [1; 2; 3; 4; 5]. In this category, there is a natural
mapping of the cubical homology theory to the path homology theory, that induces
an isomorphism of homology groups in dimensions 0 and 1. However, in [5] an
example of a digraph was constructed, for which the path homology is trivial in
dimension 2 while the singular cubical homology is nontrivial in this dimension.
Hence, in general, these two theories give different homologies in dimensions ≥ 2.
A natural question arises whether these two theories are equivalent on some subclass
of digraphs.

In this paper we present a class of cubical digraphs and prove the equivalence of
the singular cubical homology and the path homology theories on this class. As
the main technical tool for that, we prove that the image of every map of a digraph
cube to a cubical digraph is contractible.

The paper is organized as follows. In Section 2, we recall the basic definitions
from graph theory and describe some properties of singular cubical homology H c

∗

and the path homology H∗ on the category of digraphs using [1; 2; 3; 5]. In Section 3,
we recall the definition of cubical digraph from [2] and prove the contractibility of
the image of a digraph cube in a cubical digraph for any digraph map. In Section 4,
we prove the main result of the paper:

Theorem 1.1. On the category of cubical digraphs, the singular cubical homology
theory is equivalent to the path homology theory.
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In Corollary 4.6 we obtain a consequence about the relation between the singular
cubical homology theory of digraphs and simplicial homology.

2. Singular cubical and path homology theories

In this section we give necessary preliminary material about digraphs and homology
theories on the category of finite digraphs.

Definition 2.1. A digraph G is a pair (VG, EG) of a set V = VG of vertices and a
subset EG ⊂ {VG × VG \ diagonal} of ordered pairs (v,w) of vertices which are
called arrows and are denoted v→ w. The vertex v = orig(v→ w) is called the
origin of the arrow and the vertex w = end(v→ w) is called the end of the arrow.

For two vertices v,w ∈ VG , we write v−→= w if either v = w or v→ w.

A subgraph H of a digraph G is a digraph whose set of vertices is a subset of
that of G and the set edges of H is a subset of the set of edges of G. In this case
we write G ⊂ H .

A subgraph H of G is called induced if the edges of H are all those edges of G
whose adjacent vertices belong to H . In this case we write G ⊏ H .

A directed path p = (a1, α1, a2, α2, . . . , αn, an+1) in a digraph G is a sequence
of vertices ai and arrows αi such that αi = (ai → ai+1). The number n of arrows
in path is called length of the path and is denoted by |p|. The vertex a1 is called
the origin of the path and the vertex an+1 is called the end of the path.

Definition 2.2. A digraph map (or simply map) from a digraph G to a digraph H
is a map f : VG→ VH such that v−→= w in G implies f (v) −→= f (w) in H .

A digraph map f is nondegenerate if v→ w in G implies f (v)→ f (w) in H .

The set of all digraphs with digraph maps form the category of digraphs that
will be denoted by D.

Definition 2.3. For two digraphs G and H , the box product 5= G□H is defined
as a digraph with a set of vertices V5 = VG × VH and a set of arrows E5 given by
the rule

(x, y)→ (x ′, y′) if x = x ′ and y→ y′, or x→ x ′ and y = y′,

where x, x ′ ∈ VG and y, y′ ∈ VH .

Fix n ≥ 0. Denote by In any digraph with the set of vertices V = {0, 1, . . . , n}
such that, for i = 0, 1, . . . n− 1, there is exactly one arrow i→ i + 1 or i + 1→ i
and there are no other arrows. Such a digraph is called a line digraph. It is called a
direct line digraph if, additionally, all arrows have the form i→ i + 1. We denote
the digraph 0→ 1 by I .

For any n ≥ 0, define a standard n-cube digraph I n as follows. For n = 0 we
put I 0

= {0} which is an one-vertex digraph. For n ≥ 1, the set of vertices of I n
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consists of all 2n binary sequences a = (a1, . . . , an), and there is an arrow a→ b
between two such vertices if and only if the sequence b = (b1, . . . , bn) is obtained
from a = (a1, . . . , an) by replacing a digit 0 by 1 at exactly one position. It is easy
to see that

I n
= I□I□I□ . . .□I︸ ︷︷ ︸

n times

.

For example, the digraph 0→ 1 is an 1-cube. Any digraph that is isomorphic to I 2

will be referred to as a square. Any digraph that is isomorphic to In and isomorphic
to the standard n-cube will be referred to as an n-cube digraph.

Let us recall the notion of homotopy in the category of digraphs that was intro-
duced in [1].

Definition 2.4. Two digraph maps f, g : G → H are called homotopic if there
exists a line digraph In with n ≥ 1 and a digraph map

F : G□In→ H
such that

F |G□{0} = f and F |G□{n} = g,

where we identify G□{0} and G□{n} with G in a natural way. In this case we shall
write f ≃ g. The map F is called a homotopy between f and g.

In the case n = 1 we refer to the map F as an one-step homotopy.

Definition 2.5. Digraphs G and H are called homotopy equivalent if there exist
digraph maps

f : G→ H, g : H → G
such that

f ◦ g ≃ idH , g ◦ f ≃ idG .

In this case we shall write H ≃ G and the maps f and g are called homotopy
inverses of each other.

A digraph G is called contractible if G ≃ {∗} where {∗} is an one-vertex digraph.

Definition 2.6 [1, Definition 3.4]. Let G be a digraph and H be its subgraph.

(i) A retraction of G onto H is a map r : G→ H such that r |H = idH .

(ii) A retraction r : G→ H is called a deformation retraction if i ◦r ≃ idG , where
i : H → G is the natural inclusion.

Proposition 2.7 [1, Corollary 3.7]. Let r : G→ H be a retraction of a digraph G
onto a subdigraph H and

(2-1) x −→= r(x) for all x ∈ VG or r(x)−→= x for all x ∈ VG.

Then r is a deformation retraction, the digraphs G and H are homotopy equivalent,
and i , r are the homotopy inverses of each other.
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Now we recall the definitions of path homology groups from [2] with the group
of coefficients Z. An elementary p-path on a finite set V is any (ordered) sequence
i0, . . . , i p of p+ 1 vertices of V that will be denoted by ei0...i p . By 3p =3p(V )
we denote the free abelian group generated by all elementary p-paths ei0...i p . The
elements of 3p are called p-paths. Thus, each p-path v ∈3p has the form

v =
∑

i0,...,i p∈V
vi0 i1 ...i p ei0 i1...i p ,

where vi0 i1 ...i p ∈ Z are the coefficients of v.
For p ≥ 0, define the boundary operator ∂ :3p+1→3p on basic elements by

(2-2) ∂ei0...i p+1 =

p+1∑
q=0
(−1)q ei0...îq ...i p+1

,

where k̂ means omission of the corresponding index, and extend ∂ to 3p+1 by
linearity. Set also 3−1 = {0} and define ∂ :30→3−1 by ∂v = 0 for all v ∈30. It
follows from this definition that ∂2v = 0 for any p-path v.

An elementary p-path ei0...i p for p ≥ 1 is called regular if ik ̸= ik+1 for all k. For
p≥ 1, let Ip be the subgroup of3p that is spanned by all irregular ei0...i p and we set
I0 = I−1 = 0. Then ∂Ip+1 ⊂ Ip for p ≥−1. Consider the chain complex R∗ with

Rp =Rp(V )=3p/Ip

and with the chain map that is induced by ∂ .
Now we define allowed paths on a digraph G = (V, E). A regular elementary

path ei0...i p in V is called allowed if ik−1→ ik for any k= 1, . . . , p, and nonallowed
otherwise. For p ≥ 1, denote by Ap =Ap(G) the subgroup of Rp spanned by the
allowed elementary p-paths, that is,

Ap = span{ei0...i p : i0 . . . i p is allowed}

and set A−1 = 0. The elements of Ap are called allowed p-paths.
Consider the following subgroup of Ap for p ≥ 0:

(2-3) �p =�p(G)= {v ∈Ap : ∂v ∈Ap−1}.

The elements of�p are called ∂-invariant p-paths. It is easy to see that ∂�p+1⊂�p

so that we obtain a chain complex

(2-4) 0←−�0
∂
←−�1

∂
←− . . .

∂
←−�p−1

∂
←−�p

∂
←− . . . .

The path homology groups H∗(G) of the digraph G are defined as the homology
groups of the chain complex (2-4), that is,

Hp(G) := ker ∂|�p/ Im ∂|�p+1 .
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In what follows we will also need a natural augmentation ε :�0→ Z defined by

ε
(∑

ki ei

)
=

∑
ki , ki ∈ Z.

Clearly, ε is an epimorphism and ε ◦ ∂ = 0.
Now we recall from [5] the construction of the cubical singular homology theory

of digraphs.

Definition 2.8. A singular n-cube in a digraph G is a digraph map φ : I n
→ G.

Fix n≥ 1. For any 1≤ j ≤ n and ϵ= 0, 1, define the inclusion Fn−1
jϵ : I

n−1
→ I n

of digraphs as follows: if n ≥ 2, then

(2-5) Fn−1
jϵ (c1, . . . , cn−1)=


(ϵ, c1, . . . , cn−1) for j = 1,
(c1, . . . , c j−1, ϵ, cj , . . . , cn−1) for 1< j < n,
(c1, . . . , cn−1, ϵ) for j = n

and if n = 1, then Fn−1
1ϵ (0)= (ϵ). We shall write shortly F jϵ instead of Fn−1

jϵ if the
dimension n− 1 is clear from the context. Denote by I n−1

jϵ the image of Fn−1
jϵ . We

shall write I jϵ instead I n−1
jϵ if the dimension is clear from the context.

Let Q−1 = 0. For n ≥ 0, denote Qn = Qn(G) the free abelian group generated
by all singular n-cubes in G, and denote by φ□ the singular n-cube φ as the element
of the group Qn . For n ≥ 1 and 1≤ p ≤ n, denote

(2-6) φ□pϵ = (φ ◦ Fpϵ)
□
∈ Qn−1.

For any n ≥ 1, define a homomorphism ∂c
: Qn→ Qn−1 on the basis elements φ□

by the rule

(2-7) ∂cφ□ =
n∑

p=1
(−1)p(φ□p0−φ

□
p1),

and ∂c
= 0 for n = 0. Then (∂c)2 = 0 and the groups Qn(G) form a chain complex

that we denote Q∗ = Q∗(G).
For n ≥ 1 and 1≤ p ≤ n, consider the natural projection T p

: I n
→ I n−1 on the

p-face I n−1 defined as follows. For n = 1, T 1 is the unique digraph map I 1
→ I 0.

For n ≥ 2, we have on the set of vertices

T p(i1, . . . , in)= (i1, . . . , i p−1, i p+1, . . . , in).

The singular n-cube φ : I n
→ G is degenerate if there is 1 ≤ p ≤ n such that

φ =ψ ◦T p where ψ : I n−1
→ G is a singular (n−1)-cube. Then an abelian group

Bn = Bn(G) that is generated by all degenerated n-cubes is a subgroup Qn for
n ≥ 1. We put also B0 = 0, B−1 = 0. Then the quotient group

(2-8) �c
p(G)= Q p(G)/Bp(G)
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is defined for p ≥ 0. We have ∂(Bn)⊂ Bn−1, and hence B∗(G)⊂ Q∗(G). Hence
the quotient complex �c

∗
(G)= Q∗(G)/B∗(G) is defined. We continue to denote

the boundary operator in this complex ∂c. The homology group Hk(�
c
∗
(G)) is

called the singular cubical homology group of digraph G in dimension k and is
denoted H c

k (G).
We have a natural augmentation homomorphism ε :�c

0(G)→ Z, defined by

ε
(∑

kiφi

)
=

∑
ki , ki ∈ Z.

Then ε is an epimorphism and ε ◦ ∂c
= 0.

Here are some basic properties of the path and the singular cubical homology
groups from [2] and [5].

• The groups H c
∗
(X) and H∗(X) are functors from the category D to the category

of abelian groups.

• Let f ≃ g : X → Y be two homotopic digraph maps. Then the induced homo-
morphisms f∗, g∗ of homology groups are equal for k ≥ 0 for the both theories.

3. Maps from cube to cubical digraph

In this section we slightly reformulate the definition of a cubical digraph from [2]
and prove Theorem 3.6 saying that an image of a cube in a cubical digraph is
contractible.

Recall that any vertex of a a cube I n is given by a sequence of binary numbers
(a1, . . . , an). For any arrow a→ b in a digraph cube I n we have also the arrow

(3-1) γi = (0, . . . , 0)→ (b1− a1, . . . , bn − an)

in I n where the right sequence represents a vertex in I n that has only one nontrivial
element 1 at some position i . We say that two arrows α= (a→ b) and β = (c→ d)
of I n are parallel and write α ∥ β if

(b1− a1, . . . , bn − an)= (d1− c1, . . . , dn − cn).

In the opposite case we say that the arrows α and β are orthogonal.
An arrow α ∈ E I n defines two (n − 1)-faces of I n: the face I0 = I α0 which

contains the origin vertices of the arrows that are parallel to α and the face I1 = I α1
which contains the end vertices of the arrows that are parallel to α. Note that any
arrow that is orthogonal to α lies in I0 or in I1.

For the digraph cube I n , there is a natural partial order on the set of its vertices VI n

that is defined as follows: we write a≤ b if there exists a path along the arrows with
the origin vertex a and the end vertex b. Now we introduce the distance 1(a, b)
for a pair of vertex a, b ∈ I n that is defined only for comparable pair of vertices.
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Figure 1. The map f : I 3
→ G with noncontractible image.

Let a, b be two vertices of I n such that a ≤ b. As it follows from the definition
of I n , the length of the path p from a to b does not depend on the choice of the
path, and we set

1(a, b)=1(b, a) := |p|.

We shall refer to the vertex a = (0, . . . , 0) of a cube as the origin vertex and to the
vertex d = (1, . . . , 1) as the end vertex.

It follows immediately from the definition of I n that, for any vertex x , the
distances 1(a, x) and 1(x, d) are well defined. For an arrow α = (x → y) we
define 1(α, d) :=1(y, d).

Let a ≤ b be a pair of comparable vertices of I n . Denote by Ia,b the induced
subgraph of I n with the set of vertices {c ∈ VI n | a ≤ c ≤ b}. Clearly, Ia,b is
isomorphic to a digraph cube I k , where k = |p| =1(a, b).

Definition 3.1. A subgraph G of I n is called cubical if, for any two vertices
a, b ∈ VG ⊂ VI n with a ≤ b, we have Ia,b ⊏ G.

Note that the set of all paths from a to b in Ia,b coincides with the set of all paths
from a to b in G. It is easy to see that cubical digraphs with digraph maps form
a category. Now we prove that the image of a cube I n in any cubical digraph is
contractible. Note that this statement is not true for general digraphs.

Example 3.2. Consider a digraph map f (see Figure 1) that maps the cube I 3 onto
the cycle digraph G and that is defined by f (1)= f (8)= x , f (2)= f (3)= f (5)= y,
f (4)= f (6)= f (7)= z. Then the images of this map G is noncontractible.

Now consider a digraph map f : I n
→G where G is a cubical digraph. The image

f (I n) is connected as the image of a connected digraph. Let s = (0, . . . , 0) ∈ VI n

be the origin vertex and z = (1, . . . , 1) ∈ VI n be the end vertex of I n . Then
f (s)∈ VG , f (z)∈ VG and f (I n)⊂ I f (s), f (z)⊂G where I f (s), f (z) is isomorphic to
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an m-dimensional cube which we denote J = J m ∼= I m where m =1( f (s), f (z)).
Hence, without loss of generality, we can assume that G = I f (s), f (z) = J , that is,

f (s)= (0, . . . , 0) ∈ VJ , f (z)= d = (1, . . . , 1) ∈ VJ .

For m = 0, 1, 2 the image f (I n)⊂ G is contractible since all connected subgraphs
of the digraphs J 0, J 1, and J 2 are contractible.

Consider the case J = J m where m ≥ 3 and d = (1, . . . , 1)∈ VJ is the end vertex
of the cube J . Since d = f (z) ∈ Image( f ), there exists a nonempty set of arrows
0 ⊂ E J defined by

[τ ∈ 0] ⇔ [end(τ )= d and τ = f (α), α ∈ E I n ].

The set 0 consists of arrows in E J with the end vertex d that are lying in the image
of the map f . Let γ = (c→ d) ∈ 0 be an arrow satisfying

(3-2)
{

f (α)= f (x→ y)= (c→ d)= γ,
1(α, z)=1(y, z)= k ≥ 0 is minimal.

Note that α is not uniquely defined.

Lemma 3.3. For every vertex v ∈ VI n with 1(v, z)≤ k we have f (v)= d. Hence
the cube Iy,z ⊏ I n is mapped by f into the vertex d.

Proof. It follows immediately from the definition of k in (3-2). □

The arrow γ defines two (m−1)-dimensional faces J0 and J1 of the cube J with
c ∈ VJ0 , d ∈ VJ1 and we have the natural projection π : J → J0 along the arrow γ .
Let H be a subgraph of I n . We define subgraphs K0, K1, K ⊂ J that depend on
the map f : I n

→ J and H ⊂ I n such that

(3-3) K := f (H)⊂ J, K0 := f (H)∩ J0 ⊂ J0, and K1 := f (H)∩ J1 ⊂ J1.

It is easy to see that for an arrow (v→ w) ∈ E J we have

(3-4) [(v→ w) ∥ γ ] ⇔ [(v ∈ J0) and (w ∈ J1)].

For technical reasons we introduce the following definition.

Definition 3.4. Let H be a subgraph of I n and f : I n
→ J be a digraph map. Let

the digraphs K0, K1, K ⊂ J be defined as above using (3-2) and (3-3). We say that
the subgraph H satisfies the 5-condition if the following conditions are satisfied:

(1) For all w ∈ VK1 there is a vertex v ∈ VK0 such that (v→ w) ∈ EK .

(2) For all (w→ w′) ∈ EK1 we have π(w→ w′) ∈ EK0 .

The next statement is our key technical result.

Proposition 3.5. Consider the map f : I n
→ J = J m with m ≥ 3. Let k and γ are

defined in (3-2). Then the cube I n satisfies the 5-condition.
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Proof. Using induction on k ≥ 0.
The base of induction, k = 0. Hence y = z = (1, . . . , 1) ∈ VI n is the end vertex

of I n and n ≥ m ≥ 3. The arrow α = (x→ z) ∈ E I n with

(3-5) f (α)= f (x→ z)= γ = (c→ d)

defines (n − 1)-face I0 = Is,x and opposite (n − 1)-face I1 of the cube I n . Let
a = (0, . . . , 0) be the origin vertex of J (and hence the origin vertex of J0) and b
the origin vertex of J1. Then a→ b is parallel to γ = (c→ d). We have

(3-6) f (I0)= f (Is,x)⊂ I f (s), f (x) = Ia,c = J0

and hence, by (3-3) for H = I n , we have f (I0)⊂ K0. Let t be a vertex of I1 such
that w = f (t) /∈ VK0 , that is, w ∈ VK1 ⊂ VJ1 . There exists an unique vertex r ∈ VI0

such that (r → t) ∈ E I n is parallel to α and f (r) = v ∈ K0 ⊂ J0 by (3-6). Thus
f (r→ t)= v→ w with v ∈ VK0 and condition (1) of Definition 3.4 is satisfied.

Now let τ = (w→ w′) ∈ EK1 be an arrow such that f (t→ t ′)= τ , that is,

f (t)= w, f (t ′)= w′, t, t ′ ∈ VI1 .

The same line of arguments as above gives the vertices r, r ′ ∈ VI0 such that (r→ t)
and r ′→ t ′ are parallel to α and hence, π(τ)= f (r→ r ′) since f (r), f (r ′) ∈ VK0 .
This proves condition (2) of Definition 3.4. Thus 5-condition is satisfied for the
cube I n and k = 0.

We now consider the induction step. By inductive assumption we have that any
map f : I n

→ J satisfies the 5-condition if 1(y, z)≤ k−1≥ 0. Consider the case
1(y, z)= k ≥ 1 and hence

1(x, z)=1(y, z)+ 1= k+ 1≥ 2

where
z = (1, . . . , 1︸ ︷︷ ︸

n

) ∈ VI n .

Thus, without loss of generality, we can suppose that

(3-7) x = (1, . . . , 1︸ ︷︷ ︸
n−k−1

, 0, 0, . . . , 0︸ ︷︷ ︸
k+1

), y = (1, . . . , 1︸ ︷︷ ︸
n−k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
k

).

From now we put y0 = y ∈ VI n and let the vertex yi is obtained from y by replacing
the last coordinate 1 in y by 0, and i-th coordinate 0 of y by 1 for 1≤ i ≤ k. For
example,

y2 = (1, . . . , 1︸ ︷︷ ︸
n−k−1

, 0, 0, 1, 0 . . . , 0︸ ︷︷ ︸
k

), yk = (1, . . . , 1︸ ︷︷ ︸
n−k−1

, 0, 0, 0, . . . , 0, 1︸ ︷︷ ︸
k

).
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We also define
αi = (x→ yi ) ∈ E I n for 0≤ i ≤ k.

By Lemma 3.3 we have

f (αi )= f (x→ yi )= (c→ d)= γ for 0≤ i ≤ k.

Let I0 = Is,x be (n− k− 1)-dimensional subcube of I n . Then, as before, we have

f (I0)⊂ K0 ⊂ J0.

Consider a vertex t ∈ VI n and t /∈ VI0 that has the form

t = (a1, . . . , an−k−1, b0, . . . , bk) /∈ I0, ai , bj ∈ {0, 1},

where at least one coordinate bj is 1. If at least one coordinate bj is 0 we obtain
that t ∈ Is,z j ⊏ I n where

z j = (1, . . . , 1︸ ︷︷ ︸
n−k−1

, 1, . . . ,
j

0̂, . . . , 1︸ ︷︷ ︸
k+1

).

The (n−1)-dimensional subcube Is,z j ⊂ I n contains the vertices x and t . Moreover,
1(x, z j )= k and there is an arrow

αi = (x→ yi ) ∈ E Is,zj

with
f (αi )= γ and 1(αi , z j )= k− 1.

Hence, by the inductive assumption, the map

f |Is,zj
: Is,z j → J

satisfies the 5-condition. Hence the conditions (1) and (2) of Definition 3.4 are
satisfied for every (n− 1)-dimensional subcube Is,z j ⊂ I n .

Now consider a vertex t for which all (k+ 1)-coordinates bj are equal to 1 such
that t /∈ Ix,z . This means that at least one of the first (n− k− 1)-coordinates ai is 0.
Recall that (k+ 1)≥ 2. Thus, consider the vertices

(3-8) t = (a1, . . . , an−k−1, 1, . . . , 1︸ ︷︷ ︸
k+1

) /∈ I0, r = (a1, . . . , an−k−1, 0, . . . , 0︸ ︷︷ ︸
k+1

) ∈ I0,

where ai ∈ {0, 1}. Consider a directed path p in the digraph I0 from the vertex
r ∈ VI0 to the vertex x ∈ VI0 of the length l = |p| ≥ 1 (since t /∈ Ix,z). Write this
path in the form

p = (r→ x1→ x2→ · · · → xl−1→ xl = x)⊂ Ir,x ⊂ I0.
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Consider a directed path q from the vertex r ∈ VI0 to the vertex t of the length

k+ 1= |q| ≥ 2.

Note that q lies in the digraph Ir,t of dimension k+ 1. Write this path in the form

q = (r→ r1
→ r2

→ · · · → r k
→ r k+1

= t)⊂ Ir,t .

Any such two paths p and q define a unique subgraph of the digraph I n that has
the form

(3-9)

t = r k+1 r k+1
1 r k+1

2 . . . r k+1
l = z

r k r k
1 r k

2 . . . r k
l

. . . . . . . . . . . . . . .

r1 r1
1 r1

2 . . . r1
l

r x1 x2 . . . xl = x

Now using induction in the length l = |p| ≥ 1 we prove the following statement.

Statement A. For every path q and every path p, as above, there is a path

p′ = (r→ x ′1→ x ′2→ · · · → x ′l−1→ x ′l = x)⊂ Ir,x ⊂ I0

(that may be equal to p) such that q and p′ defines the subgraph (similarly as above)

(3-10)

t = r k+1 r k+1
1
′

r k+1
2
′

. . . r k+1
l
′
= z

r k r k
1
′ r k

2
′

. . . r k
l
′

. . . . . . . . . . . . . . .

r1 r1
1
′ r1

2
′

. . . r1
l
′

r x ′1 x ′2 . . . x ′l = x
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and at least one of the following conditions is satisfied:

(3-11) (i) f (t)= f (r k), (ii) f (t)= f (r k
1 ), (iii) f (t)= f (r k

1
′
).

The base of induction for Statement A, the case l = 1. Consider the unique path
p = (r→ x)⊂ I0 of the length l = 1 and a path q as above. We have the following
subgraph of the digraph I n:

(3-12)

t = r k+1 r k+1
1 = z

r k r k
1

...
...

r1 r1
1

r x1 = x

where
r, x ∈ VI0 and f (r), f (x) ∈ VK0,

and
f (r i

1)= d for 1≤ i ≤ k+ 1

since k ≥ 1. Hence,
f (r k

1 )= f (r k+1
1 )= d

and thus at least one of the conditions (i) or (ii) in (3-11) is satisfied because there
are no triangles in the digraph J . We put in this case p′ = p, and hence the base of
induction l = 1 is proved.

Inductive step of induction for Statement A. Consider vertices t, r ∈ VJ given
in (3-8) where

1(t, r)= k+ 1≥ 2 and 1(r, x)≥ 2.

Let p be a path from r to x and q be a path from r to t as the above. Recall that

|q| = k+ 1≥ 2 and |p| = l ≥ 2.

These paths define the subgraph of I n given in (3-9). By the inductive assumption,
for the vertex r k+1

1 at least one of the conditions

(3-13) (i) f (r k+1
1 )= f (r k

1 ), (ii) f (r k+1
1 )= f (r k

2 ), (iii) f (r k+1
1 )= f (r k

2
′′
),
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that is similar to (3-11) is realized. In (3-13) we have a path

r k
→ r k

1 → r k
2
′′
→ · · · → r k

l ,

that is, from (3-9), similar to the path

r k
→ r k

1 → r k
2 → · · · → r k

l .

If condition (i) is realized, that is, f (r k+1
1 ) = f (r k

1 ), then for f (t) at least one
of the conditions (i) or (ii) in (3-11) is satisfied since there are no triangles in the
digraph J (similar to the case l = 1).

If condition (ii) is realized and condition (i) is not realized, that is,

f (r k+1
1 )= f (r k

2 ) and f (r k
1 ) ̸= f (r k

2 ),

we can consider the subcube of I n given in Figure 2 that is defined by the subgraph
of (3-9) given by

(3-14)

t = r k+1 r k+1
1 r k+1

2

r k r k
1 r k

2

We have
f (r k+1

1 )= f (r k
2 ) and f (r k

1 ) ̸= f (r k
2 ),

that is,
f (r k

1 → r k+1
1 )= f (r k

1 → r k
2 ) ∈ E J

is an arrow. If f (r k)= f (r k
1 ), then the same line of above gives that

f (t)= f (r k
1 ) or f (t)= f (r k

2 )

-�
�
�
��

r k
1
′

r k r k
1

6

�
�
�
��

�
�
�
��

-
6

6
-�

�
�
��

r k
2

r k+1
2

r k+1
1r k+1

= t

r k+1
1
′

6

-

Figure 2. The subcube of I n that is defined by the digraph in (3-13).
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and the step of induction is proved. Let f (rk) ̸= f (r k
1 ), then

f (Ir k,r k
2
)⊂ f (I f (r k), f (r k

2 )
) and f (Ir k,r k+1

1
)⊂ f (I f (r k), f (r k

2 )
),

where I f (r k), f (r k
2 )

is the digraph square. Hence at least one of conditions

f (r k+1)= f (r k
1 ) or f (r k+1)= f (r k

1
′
)

is satisfied and the inductive assumption is proved.
Consider the case when condition (iii) is realized and conditions (i) and (ii) are

not realized. This case is the same as the case (ii). We must to start the consideration
from the path

r k
→ r k

1 → r k
2
′′
→ · · · → r k

l

on the place of the path

r k
→ r k

1 → r k
2 → · · · → r k

l

from (3-9). This finishes the proof of the inductive step as well as Statement A.
Since each of the vertices r k , r k

1 , r k
1
′ lies in the image of a subcube Ir,z j it follows

from Statement A that image w = f (t) lies in the image of a subcube Ir,z j with

1(x, z j )=1(r, z j )= k,

which satisfies 5-condition by the inductive assumption in k. Hence condition (1)
of Definition 3.4 is satisfied for every subcube Ir,t ⊂ I n . By a similar way, it follows
from Statement A that the image of every arrow with end or origin t lies in the
image of a subcube Ir,z j which satisfies 5-condition by the inductive assumption
in k. Hence condition (2) of Definition 3.4 is satisfied for every subcube Ir,t ⊂ I n .
Hence every cube Ir,t satisfies the 5-condition, and hence the cube I n satisfies the
5-condition. This completes the proof of Proposition 3.5. □

Theorem 3.6. Let f : I n
→ G be a digraph map to a cubical digraph. Then the

image f (I n)⊂ G is contractible.

Proof. The image f (I n) lies in the digraph J = J m . Now we use the induction in m.
For m = 0, 1, 2 the image f (I n) is contractible since all connected subgraphs of J
are contractible. For m ≥ 3 the digraph I n satisfies the 5-condition, then (2-7) and
conditions (1) and (2) of Definition 3.4 imply that restriction π |K of the projection
π : J m

→ J m−1
0 to the image K of the map f is well defined deformation retraction

to K0. But K0 is contractible by the inductive assumption in m. □

4. Equivalence to homology theories on cubical digraphs

In this section we prove our main result, Theorem 1.1, stated below as Theorem 4.5.
For that we use the acyclic carrier theorem from homology theory (see, for example,
[6, Section 3.4] and [7, Section 1.2.1]). Recall that a chain complex C∗ is called
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nonnegative if Cp = 0 for p < 0 and is called free if Cp are finitely generated
free abelian groups for all p. We say that C∗ is a geometric chain complex if it is
nonnegative, free, and if a basis Bp is chosen in the group Cp for any p ≥ 0. For
example, any finite simplicial complex gives rise to a geometric chain complex,
where Bp consists of all p-simplexes.

Let C∗ be a geometric chain complex with fixed bases Bp. For b ∈ Bp−1 and
b′ ∈ Bp, we write b ≺ b′ if b enters with a nonzero coefficient into the expansion
of ∂b′ in the basis Bp−1. The augmentation homomorphism ε : C0→ Z is defined
by

ε
(∑

i
ki bi

)
=

∑
i

ki , ki ∈ Z, bi ∈ B0,

and by C̃∗ we denote the augmented complex

0←− Z
ε
←− C0

∂
←− C1

∂
←− . . . .

A geometric chain complex C∗ is called acyclic if all homology groups of the
augmented complex C̃∗ are trivial.

Let C∗ and D∗ be two geometric complexes with augmentation homomorphism
ε and ε′, respectively. A chain map φ∗ :C∗→ D∗ is called augmentation preserving
if ε′φ0(c)= ε(c) for any c ∈ C0.

Definition 4.1. Let C∗ and D∗ be two geometric chain complexes.
(i) An algebraic carrier function from C∗ to D∗ is a mapping E that assigns to

any basis element b in C∗ a subcomplex E∗(b) := E(b) of D∗, such that b ≺ b′

implies E∗(b)⊂ E∗(b′).
(ii) An algebraic carrier function E is called acyclic if each complex E∗(b) is

nonempty and acyclic.
(iii) A chain map f∗ : C∗→ D∗ is carried by E if fn(b) ∈ E∗(b) for any basis

element b in Cn .

We state the acyclic carrier theorem in the following form.

Theorem 4.2 [6, Section 3.4; 7, Section 1.2.1]. Let C∗ and D∗ be two geometric
chain complexes and E be an acyclic carrier function from C∗ to D∗. If f∗, g∗ :
C∗→ D∗ are augmentation preserving chain maps that are carried by E , then f∗
and g∗ are chain homotopic.

Before the proof of Theorem 1.1, we state and prove some technical results. We
use the notations of [2; 5]. Let G be a cubical digraph. The free abelian groups
�c

p =�
c
p(G) and �p =�p(G) defined in (2-3) and (2-8) are finitely generated.

Let I 0
= {∗} be the one-vertex digraph. Any 0-dimensional singular cube

φ : I 0
= {∗} → G is given by the vertex φ(∗) ∈ VG and thus we obtain the map

τ0 :�
c
0(G)→�0(G) which preserve augmentation.
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For any digraph cube I n (n ≥ 1) we denote by P the set of all directed paths of
the length n going from the origin vertex

(0, . . . , 0︸ ︷︷ ︸
n

)

of the cube to the end vertex
(1, . . . , 1︸ ︷︷ ︸

n

).

Every path p ∈ P has the form

(4-1) p = (a0→ a1→ a2→ · · · → an), ai ∈ VIn .

In (4-1) for 1 ≤ i ≤ n the vertex ai differs from ai−1 only by one coordinate
1 ≤ π(i) ≤ n that equals 0 for ai−1 and 1 for ai . Let σ(p) be a sign of the
permutation

π(p)=
(

1 2 . . . n
π(1) π(2) . . . π(n)

)
.

Consider the path wn ∈�n(I n) given by

(4-2) wn =
∑
p∈P

(−1)σ(p) p,

which is the generator of the group �n(I n) (see [5] and [2]). For any singular
n-dimensional cube φ : I n

→ G, which gives a basic element φ□ ∈ �c
n(G), we

have a morphism of chain complexes defined in [5]

(4-3) τ∗ :�
c
∗
(G)→�∗(G), τn(φ

□) := φ∗(wn),

where φ∗ :�∗(I n)→�∗(G) is the induced of φ morphism of chain complexes.
For n ≥ 0 consider the set Kn of all subcubes G of dimension n that have the

form Is,t with s, t ∈ VG . By [2; 5], for every cube Is,t ∈ Kn there is an isomorphism
χs,t : I n

→ Is,t such that the set of elements

{(χs,t)∗(wn) : Is,t ∈ Kn}

gives the basis of �n(G). For n ≥ 1, define homomorphisms θn :�n(G)→�c
n(G)

on basic elements by

(4-4) θn((χs,t)∗(wn))= χ
□
s,t ,

and then extend it by linearity. It is clear that θ0 preserves the augmentation.

Proposition 4.3. The homomorphisms θn define a morphism of chain complexes

(4-5) θ∗ :�∗(G)→�c
∗
(G),
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which is a right inverse morphism to τ∗, that is,

τ∗θ∗ = Id :�∗(G)→�∗(G).

Proof. Let us first prove that τn θn = Id. For n = 0, 1 this is trivial. Let n ≥ 2 and
(χs,t)∗(wn) ∈�n(G) be a basic element. By (4-4) and (4-3) we have

(4-6) τn θn((χs,t)∗(wn))= τn(χ
□
s,t)= χs,t∗(wn).

Consider the diagram

(4-7)

�n(G) �c
n(G) �n(G)

�n−1(G) �c
n−1(G) �n−1(G)

θn

∂

τn

∂c ∂

θn−1 τn−1

where the horizontal compositions are identity homomorphisms by (4-6), the right
square is commutative and the large square is evidently commutative. Now we
prove that the left square is commutative. It follows from [2, Lemma 4] that, for

(φs,t)∗(wn) ∈�n(G),

we have

(4-8) θn−1
(
∂((φs,t)∗(wn))

)
= θn−1

( ∑
Is′,t ′⊂Is,t

(−1)σ(I,I
′)(φs′,t ′)∗(wn−1)

)
=

∑
(−1)σ(I,I

′)φ□s′,t ′,

where the sum is taken over all (n−1)-cubes I ′= Is′,t ′ ⊂ Is,t = I . By (2-7) and (4-4)
for

(φs,t)∗(wn) ∈�n(G),

we have

(4-9) ∂c(θ((φs,t)∗(wn))
)
= ∂c(φ□s,t)=

n∑
p=1
(−1)p((φ□s,t)p,0− (φ

□
s,t)p,1

)
,

where the sum consists of all singular (n− 1)-subcubes of the cube I n with coeffi-
cients. Since bottom row in (4-7) is the identity homomorphism we conclude from
(4-3), (4-8) and (4-9) that the left square in (4-7) is commutative, which finishes
the proof. □

Proposition 4.4. There is a chain homotopy between θ∗τ∗ :�c
∗
(G)→�c

∗
(G) and

the identity map Id :�c
∗
(G)→�c

∗
(G).

Proof. The chain complex �c
∗
(G) is geometric and the chain maps θ∗τ∗ and Id

evidently preserve augmentation. For a singular cube φ : I n
→ G consider the
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subgraph Gφ ⊂ G, that is, image of φ. This is a contractible cubical digraph by
Theorem 3.6. Thus we assign to every basic element φ□ ∈�c

∗
(G) the subcomplex

(4-10) E∗(φ□)
def
= �c

∗
(Gφ)⊂�

c
∗
(G),

which is acyclic since Gφ is contractible.
Now we check that E is an algebraic carrier function, that is, condition (i) of (4-1)

is satisfied. Let φ□ ∈�c
∗
(G) be a basic element given by a singular cube φ : I n

→G
with n ≥ 0. By (2-6) and (2-7), the element ∂(φ□) is given by the sum of the basic
elements (φ ◦ Vpϵ)

□ with coefficients (±1) where the maps Vpϵ : I n−1
→ I n are

the inclusions. Hence the digraph Gφ◦Vpϵ is a subgraph of Gφ , and hence the chain
complex

E∗
(
(φ ◦ Vpϵ)

□)
=�c

∗
(Gφ◦Vpϵ )

is a subcomplex of E∗(φ□). Thus for the basic singular cube b ∈ �c
n−1(G) and

b ≺ φ□ we obtain that b = (φ ◦ Vpϵ)
□ and

E∗(b)= E∗
(
(φ ◦ Vpϵ)

□)
≺ E∗(φ□).

Hence we have the algebraic acyclic carrier function E from �c
∗
(G) to itself.

Now we prove that the chain maps θ∗τ∗ and Id from �c
∗
(G) to itself are carried

by the function E . Consider a basic element φ□ ∈�c
n(G). Then

(4-11) Id(φ□)= φ□ ∈�c
∗
(Gφ)= E∗(φ□)

since image of φ is the digraph Gφ . Hence the chain map

Id :�c
n(G)→�c

n(G)

is carried by the algebraic carrier function E .
By (4-3) and (4-4), we have

(4-12) θnτn(φ
□)= θn(φ∗(wn)), φ : I n

→ G.

We have only two different possibilities for the φ∗(wn). In the first case, φ is an
isomorphism on its image Gφ = Is,t ∼= I n with

s = φ(0, . . . , 0), t = φ(1, . . . , 1),

where (0, . . . , 0) ∈ VI n is the origin vertex and (1, . . . , 1) ∈ VI n is the end vertex of
the cube I n . Note that for any isomorphism ψ : I n

→ I n we have ψ∗(wn)=±wn .
Hence in this case subgraph Gφ ⊂ G coincides with the subgraph cube Gχs,t ⊂ G
and by (4-4) we have

(4-13) θnτn(φ
□)= θn(φ∗(wn))= θn(±(χs,t)∗(wn))=±χ

□
s,t ,

where
χs,t : I n

→ Ds,t = Gφ.



ON HOMOLOGY THEORIES OF CUBICAL DIGRAPHS 57

That is,
θnτn(φ

□) ∈�c
n(Gχs,t )=�

c
n(Gφ)= En(φ

□).

In the second case, the image of φ does not contain any cube of dimension n, and
hence φ∗(wn)= 0. Consequently, we have

θnφ∗(wn)= 0 ∈ E∗(φ□).

Then the claim follows from the acyclic carriers Theorem 4.2. □

Theorem 4.5. For any finite cubical digraph G, the chain maps τ∗ and θ∗ are
homotopy inverses, and hence induce isomorphisms of homology groups

H c
∗
(G)∼= H∗(G).

Proof. Indeed, it follows from Propositions 4.3 and 4.4 that the chain maps τ∗
and θ∗ are homotopy inverses. □

Corollary 4.6. Let 1 be a finite simplicial complex. Consider a digraph G1

(see [2]) with the set of vertices given by the set of all simplexes from 1, and

s→ t (t, s ∈1) if and only if s ⊃ t and dim s = dim t + 1.

Then the graph G1 is a cubical digraph and

H c
∗
(G1)∼= H∗(1),

where H∗(1) are the simplicial homology groups of 1.

Proof. Indeed, it is proved in [2] that path homology groups H∗(G1) are isomorphic
to simplicial homology groups H∗(1). □
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