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QUASILINEAR SCHRÖDINGER EQUATIONS: GROUND STATE
AND INFINITELY MANY NORMALIZED SOLUTIONS

HOUWANG LI AND WENMING ZOU

We study the normalized solutions for the following quasilinear Schrödinger
equations:

−1u − u1u2
+ λu = |u|

p−2 u in RN,

with prescribed mass ∫
RN

u2
= a2.

We first consider the mass-supercritical case p > 4 +
4
N , which has not been

studied before. By using a perturbation method, we succeed to prove the
existence of ground state normalized solutions, and by applying the index
theory, we obtain the existence of infinitely many normalized solutions. We
also obtain new existence results for the mass-critical case p = 4 +

4
N and

remark on a concentration behavior for ground state solutions.

1. Introduction

We consider the equation

(1-1)
{

i∂tφ = −1φ− σ |φ|
p−2φ− κφ1(|φ|

2) in R+
× RN ,

φ(0, x)= φ0(x) in RN ,

where N ≥ 1 is the space dimension, 2< p < 2N/(N − 2)+ and σ, κ are constants.
Equation (1-1) arises in the study of superfluid helium films (see [28; 46]),

which describes the thickness and superfluid velocity of the helium films. More
precisely, consider a superfluid helium film adsorbed on a substrate. Let ψ(t, x)
denote the condensate wave function, which is chosen proportionally so that the
film thickness d and the superfluid velocity v can be defined by

(1-2) n0 · d(t, x)= a + |ψ(t, x)|2, v(t, x)= Re
[

h̄
M

ψ∗
∇ψ

|ψ(t, x)|2

]
,
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where n0 is the density number, M is the mass of helium atoms and a is the density
of solid layer. Then the energy density of this quantum state consists of

kinetic term =
1
2 i h̄(ψ∗ψ̇ − ψ̇∗ψ),

the potential terms:

bending energy term =
h̄2

2M
|∇ψ |

2, chemical potential term = −µ|ψ |
2,

the van der Waals force term [2; 3]

van der Waals term ∝
1
d2

−
1

d2
min

∝
1

(a+|ψ |2)2
−

1
a2
,

and finally the surface energy term [46]

surface term ∝ |∇d|
2
∝

∣∣∇|ψ |
2∣∣2
.

The Lagrangian density is the sum of these terms (we omit the constant −1/a2,
since it is irrelevant for our discussion):

L =
1
2

i h̄(ψ∗ψ̇ − ψ̇∗ψ)−
h̄2

2M
|∇ψ |

2
+µ|ψ |

2
−

A
2(a+|ψ |2)2

−
B
2

∣∣∇|ψ |
2∣∣2
.

From the variational principle

δ
∫

dt
∫

dx L = 0,

we write the equation of motion of the condensate wavefunction, which is a
Schrödinger equation describing the nonlinear dynamics of the superfluid condensate

(1-3) i h̄∂tφ = −
h̄2

2M
1φ−µφ−

Aφ
(1+|φ|2)3

− Bφ1(|φ|
2).

Equation (1-3) was already obtained in [28; 46]. To solve (1-3), expanding the van
der Waals term in |ψ |

2 to the lowest order, and simplifying as in [28], we obtain
the following special case of (1-1):

(1-4) i∂tφ = −1φ− σ |φ|
2φ− κφ1(|φ|

2),

where σ, κ are constants.
Except superfluid helium films, equation (1-4) also appears in plasmas, see

[30; 52] for more physical information. If κ = 0, equation (1-4) reduces essentially
to the ordinary nonlinear Schrödinger equation, which arises in the study of standing
wave solutions of the nonlinear Gross–Pitaevskii equations proposed by Gross [22]
and Pitaevskii [44], and its soliton solutions have been studied widely in physics
and mathematics. But when κ ̸= 0, the term κ(1|φ|

2)φ brings new difficulties
to the theoretical analysis of soliton solution of (1-4). In [28; 46], the numerical
simulations of soliton solutions to (1-4) and (1-3) was given, but the theoretical
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research is far from clear due to the appearance of the term κ(1|φ|
2)φ. So in this

paper, we focus on the theoretical research. In the following, we will analyze the
reason why the term κ(1|φ|

2)φ is hard to handle, and we will use some techniques
to overcome these difficulties to study soliton solutions.

We set σ = 1 and κ = 1. By considering soliton wave solutions, substituting
φ(t, x)= eiλt u(x) into (1-1), we obtain

(1-5) −1u − u1u2
+ λu = |u|

p−2 u in RN ,

which is usually called the modified nonlinear Schrödinger equation. Usually, to
study (1-5) one always considers this equation for a given parameter λ. But now
we introduce a second approach.

From (1-2), we know that |φ(t, x)|2 represents the superfluid film thickness and
the total quasiparticle number

M ∝

∫
RN

|φ(t, x)|2 dx .

Multiplying (1-1) with φ∗, subtracting the complex conjugate, and integrating over
space, we find

∂t M = 0,

which means that the total quasiparticle number remains the same constant as t
changes, i.e., the law of conservation of mass. So it is natural to assume

(1-6)
∫

RN
|φ(t, x)|2 dx = constant,

when considering soliton wave solutions. Combining (1-5) and (1-6), we obtain

(1-7)

{
−1u − u1u2

+ λu = |u|
p−2 u in RN ,∫

RN
|u|

2 dx = a,

and the aim is to find u ∈ H with a λ ∈ R such that (u, λ) satisfies (1-7) for a given
a > 0. Here

H =

{
u ∈ W 1,2(RN ) :

∫
RN

|u|
2
|∇u|

2 <+∞

}
.

Solutions of (1-7) are often referred to as normalized solutions, and the search
for such solutions has became a hot direction in recent years. We have to admit
that although the physical motivation of searching for such solutions is described
as above, we don’t know much about its physical meaning and application. We
point out that the barrier exponent 4 +

4
N is also the threshold of the stability and

instability of soliton solutions. Roughly speaking, it was shown in [17] that the
standing wave of (1-1) is stable for p < 4 +

4
N , while it is unstable for p ≥ 4 +

4
N .

Later in [15] the results about stability was extended to equations with u1u2

replaced by general quasilinear terms uα−11uα. Now we give the mathematical
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motivation of normalized solutions. Formally, to obtain the normalized solutions
of (1-5), one needs to consider the corresponding energy functional

(1-8) I (u) :=
1
2

∫
RN

|∇u|
2
+

∫
RN

|u|
2
|∇u|

2
−

1
p

∫
RN

|u|
p

on a L2 sphere

(1-9) S̃(a) :=

{
u ∈ H :

∫
RN

|u|
2
= a

}
,

which has particular difficulties. To derive the Palais–Smale sequence, one needs
new variational methods. The derived Palais–Smale sequence may not be bounded;
even if the Palais–Smale sequence is bounded, the weak limit may not be contained
in the L2 sphere (even in the radial case). Such difficulties make the study of
normalized solutions of (1-7) much more complicated than the study of (1-5) with
prescribed λ ∈ R. So the search for normalized solutions is a challenging and
interesting problem, and needs new variational methods.

We introduce some results about the existence of normalized solutions to the
semilinear Schrödinger equation

(1-10) −1u + λu = g(u) in RN .

L. Jeanjean [24] obtained a normalized solution of (1-10) using an auxiliary
functional and a minimax theorem from [19]. The existence of infinitely many
normalized solutions of (1-10) was later proved by T. Bartsch and S. de Valeriola [4]
using a new linking geometry for the auxiliary functional. After that, N. Ikoma
and K. Tanaka [23] constructed a deformation theorem suitable for the auxiliary
functional, and then obtained infinitely many normalized solutions of (1-10) through
Krasnoselskii index under a weaker condition on g(u). Soon later, L. Jeanjean and
S. S. Lu [25] obtained infinitely many normalized solutions of (1-10) under a totally
different assumption on g(u) which permits g(u) to be just continuous. As for
the least energy normalized solutions, N. Soave [48; 49] obtained the existence of
ground state normalized solutions with g(u)= |u|

p−2 u +µ|u|
q−2 u by restraining

the energy functional on a smaller manifold. For more results on normalized
solutions for scalar equations and systems, we refer to [5; 6; 7; 8; 9; 20; 21; 31].

Now back to the modified nonlinear Schrödinger equation (1-5), we analyze the
difficulties induced by the term κ(1|φ|

2)φ. When considering (1-5) with λ ∈ R

fixed, one would always study the functional

(1-11) Eλ(u) :=
1
2

∫
RN
(|∇u|

2
+ λ|u|

2)+
∫

RN
|u|

2
|∇u|

2
−

1
p

∫
RN

|u|
p

on the space H. It is easy to check that u is a weak solution of (1-5) if and only if

E ′

λ(u)φ = lim
t→0+

Eλ(u+tφ)−Eλ(u)
t

= 0
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for every φ ∈ C∞

0 (R
N ). We recall, see [37] for example, that the value 22∗ with

2∗
:=

{ 2N
N−2 , N ≥ 3,
+∞, N ≤ 2

corresponds to a critical exponent. Compared to (1-10), the search for solutions
of (1-5) presents a major difficulty: the functional associated with the term u1u2

V (u)=

∫
RN

|u|
2
|∇u|

2

is nondifferentiable in H when N ≥ 2. To overcome this difficulty, various ar-
guments have been developed, such as the minimization methods [35] where the
nondifferentiability of Eλ does not come into play, the methods of a Nehari manifold
approach [38; 39], the methods of changing variables [16; 37] which transform
problem (1-5) into a semilinear one (1-10), and a perturbation method in a series of
papers [36; 40; 41] which recovers the differentiability by considering a perturbed
functional on a smaller function space.

However, when considering the normalized solution problem (1-7), one would
find that the methods of Nehari manifold approach and changing variables are no
longer applicable, since the parameter λ is unknown and the L2-norm ∥u∥2 must be
equal to a given number. So there are very few results on problem (1-7). Formally,
a normalized solution of (1-7) can be obtained as a critical point of I (u) defined
by (1-8) on the set S̃(a). That is, a normalized solution of (1-7) is a u ∈ S̃(a) such
that there exists a λ ∈ R satisfying

(1-12)
∫

RN
∇u ·∇φ+2

∫
RN
(uφ|∇u|

2
+|u|

2
∇u ·∇φ)+λ

∫
RN

uφ−

∫
RN

|u|
p−2 uφ=0

for any φ ∈ C∞

0 (R
N ). To proceed our paper, we introduce a sharp Gagliardo–

Nirenberg inequality [1]:

(1-13)
∫

RN
|u|

p
2 ≤

C(p, N )

∥Q p∥
(p−2)/(N+2)
1

(∫
RN

|u|

)4N−(N−2)p
2(N+2)

(∫
RN

|∇u|
2
)N (p−2)

2(N+2)

for all u ∈ E1 where 2< p < 22∗,

C(p, N )=
p(N +2)

[4N −(N −2)p]
4−N (p−2)

2(N+2) [2N (p−2)]
N (p−2)
2(N+2)

,

and the space Eq for q ≥ 1 is defined by

Eq
:= {u ∈ Lq(RN ) : ∇u ∈ L2(RN )},

with norm ∥u∥Eq := ∥∇u∥2 +∥u∥q . For embedding theorems and related properties
of Eq , we refer to [29]. Moreover, Q p optimizes (1-13) and the unique nonnegative
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radially symmetric solution of the following equation [47]:

(1-14) −1u + 1 = u
p
2 −1 in RN .

Strictly speaking, it has been proved in [47, Theorem 1.3] that Q p has a compact
support in RN and it exactly satisfies a Dirichlet–Neumann free boundary problem.
Namely, there exists an R > 0 such that Q p is the unique positive solution of

(1-15)
{
−1u + 1 = u

p
2 −1 in BR,

u =
∂u
∂n = 0 on ∂BR.

In what follows, if we say that u is a nonnegative solution of (1-14), then we mean
that u is a solution of (1-15). By replacing u with u2 in (1-13), one immediately
obtains the following Gagliardo–Nirenberg-type inequality:

(1-16)
∫

RN
|u|

p
≤

C(p, N )
∥Q p∥

(p−2)/(N+2)
1

(∫
RN

|u|
2
)4N−p(N−2)

2(N+2)
(

4
∫

RN
|u|

2
|∇u|

2
)N (p−2)

2(N+2)
.

Now we collect some known results about normalized solutions of (1-7). First, to
avoid the nondifferentiability of V (u), M. Colin, L. Jeanjean and M. Squassina [17]
(see also [15] for general quasilinear terms) and L. Jeanjean and T. J. Luo [26]
considered the minimization problem

m̃(a)= inf
u∈S̃(a)

I (u),

with 2< p ≤ 4 +
4
N . Using inequality (1-16), one can find that m̃(a) >−∞ when

2< p < 4 +
4
N and m̃(a)= −∞ when p > 4 +

4
N , since

N (p−2)
2(N +2)

< 1 if and only if p < 4 +
4
N
.

These considerations show that the exponent 4+
4
N for (1-7) plays the role of 2+

4
N

in (1-10). After that, X. Y. Zeng and Y. M. Zhang [53] studied the existence and
asymptotic behavior of the minimizers to

inf
u∈S̃(a)

I (u)+
∫

RN
a(x)|u|

2,

where a(x) is an infinite potential well. In addition to these minimization approaches,
L. Jeanjean, T. J. Luo and Z. Q. Wang [27] obtained another mountain-pass-type
normalized solution of (1-7) through the perturbation method. We remark that
all of these results on normalized solution of (1-7) have considered either the
mass-subcritical or mass-critical case, i.e., 2< p ≤ 4 +

4
N .

In this paper, we consider the mass-critical and mass-supercritical cases, i.e.,
p ≥ 4 +

4
N . To the best of our knowledge, the case of mass-supercritical has not

been considered before. Actually, we obtain:
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Theorem 1.1. Assume that one of the following conditions holds:

(H1) N = 1, 2, p > 4 +
4
N , a > 0.

(H2) N = 3, 4 +
4
N < p < 2∗, a > 0.

Then there exists a radially symmetric positive ground state normalized solution
u ∈ W 1,2(RN )∩ L∞(RN ) of (1-7) in the sense that

I (u)= inf{I (v) : v ∈ S̃(a), I |′S̃(a)(v)= 0, v ̸= 0}.

Theorem 1.2. Assume that one of the following conditions holds:

(H1′) N = 2, p > 4 +
4
N , a > 0.

(H2) N = 3, 4 +
4
N < p < 2∗, a > 0.

Then there exists a sequence of normalized solutions u j
∈ W 1,2(RN )∩ L∞(RN )

of (1-7) with increasing energy I (u j )→ +∞.

Remark 1.3. (1) We state that the dimension is limited due to a lemma limitation
used to control the Lagrange multipliers, see Lemma 2.2 and Remark 4.2.

(2) The difference between Theorems 1.1 and 1.2 is that we cannot prove the
existence of infinitely many solutions when N = 1, because the failure of the
compact embedding W 1,2(R) ↪→ Lq(R) for 2 < q < 2∗. When considering the
ground state, however, we are able to recover the compactness of bounded sequences
using the symmetric decreasing arrangement, due to the advantage of the associated
minimization mµ(a) defined in (3-8).

Now we turn to the mass-critical case, i.e., p = 4 +
4
N . Let a∗ = ∥Q4+

4
N
∥1.

Theorem 1.4. Assume that one of the following conditions holds:

(H3) N ≤ 3, p = 4 +
4
N , a > a∗;

(H4) N ≥ 4, p = 4 +
4
N , a∗ < a <

( N−2
N−2−(4/N )

)N
2 a∗,

Then there exists a radially symmetric positive ground state normalized solution
u ∈ W 1,2(RN )∩ L∞(RN ) of (1-7) in the sense that

I (u)= inf{I (v) : v ∈ S̃(a), I |′S̃(a)(v)= 0, v ̸= 0}.

Remark 1.5. Recently H. Y. Ye and Y. Y. Yu [51] obtained the existence of ground
state normalized solution of (1-7) under assumption (H3). As one can see, although
Theorem 1.4 contains their existence result, the method we used in the current
paper is totally different from theirs, while as they said in [51, Remark 1.3], they
are unable to handle the case N ≥ 4. Moreover, they also consider an asymptotic
behavior, but our Theorem 1.8 is more accurate, since we give a description of un

when a → a∗.
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We observe that when p = 4 +
4
N , the value a∗ is a threshold of the existence of

normalized solution of (1-7). Actually, we have:

Proposition 1.6. Let p = 4 +
4
N and N ≥ 1. Then:

(1) m̃(a)=

{
0, 0< a ≤ a∗,

−∞, a > a∗.

(2) Equation (1-7) has no solutions for any 0< a ≤ a∗.

(3) Equation (1-7) has at least one radially symmetric positive solution for a > a∗

and a is close to a∗.

Remark 1.7. We state that (1) is a direct conclusion of [17, Theorem 1.9] and (3) is
a direct conclusion of Theorem 1.4 above. Now we prove (2). Since u is a solution
of (1-7), there holds (see Lemma 2.1)∫

RN
|∇u|

2
+ (2 + N )

∫
RN

|u|
2
|∇u|

2
−

N (2+N )
4(N +1)

∫
RN

|u|
4+

4
N = 0.

Combining with (1-16), we obtain∫
RN

|∇u|
2
+ (2 + N )

∫
RN

|u|
2
|∇u|

2
≤ (2 + N )

(
a
a∗

) 2
N
∫

RN
|u|

2
|∇u|

2,

from which we get u = 0 for any 0< a ≤ a∗, a contradiction since ∥u∥2 = a.

Inspired by Proposition 1.6, we enlighten a concentration behavior of the radially
symmetric positive solution of (1-7) when p = 4 +

4
N and a → a∗.

Theorem 1.8. Let p = 4 +
4
N , N ≥ 1, and let un be a radially symmetric positive

solution of (1-7) for a = an with an > a∗ and an → a∗. Then there exists a sequence
yn ∈ RN such that up to a subsequence, we have

(1-17)
[(

Na∗

N

) 1
2+N
εn

]N
u2

n

((
Na∗

N

) 1
2+N
εnx + εn yn

)
→ Q4+

4
N

in Lq(RN )

for 1 ≤ q < 2∗, where

εn =

(∫
RN

u2
n|∇un|

2
)−(2+N )

→ 0.

Remark 1.9. Theorem 1.8 gives a description of radially symmetric positive so-
lution of (1-7) as the mass an approaches to a∗ from above. Roughly speaking, it
shows that for n large enough, we have

un(x)=

[(
Na∗

N

) 1
2+N
εn

]−
N
2

Q4+
4
N

((
Na∗

N

)−
1

2+N
ε−1

n (x − ε−1
n yn)

)
.

The paper is organized as follows. In Section 2, we give perturbation settings
and an important lemma. In Section 3A, we give some properties of the associated
Pohozaev manifold. In Sections 3B and 3C, we prove the existence of ground
state and infinitely many critical points for perturbed functional. In Section 4, we
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study the convergence of the critical points for the perturbed functional as µ→ 0+.
And Theorem 1.1 for N = 1 is proved in Section 3B; Theorem 1.1 for N ≥ 2
and Theorem 1.2 are proved in Section 4. Finally, in Section 5, we study the
mass-critical case, and prove Theorems 1.4 and 1.8. In the Appendix, we prove
some valuable results.

Throughout the paper, we use standard notations. For simplicity, we write
∫

RN f
to mean the Lebesgue integral of f (x) over RN and ∥·∥p denotes the standard
norm of L p(RN ). We use → and ⇀, respectively, to denote the strong and weak
convergences in the related function spaces. By C,C1,C2, . . . we denote positive
constants unless specified otherwise.

2. Preliminary

2A. Perturbation setting. Let I (u) be defined by (1-8). Observe that when N = 1,
I (u) is of class C1 in W 1,2(R), so there is no need to perturb I (u), and in this
case the proof will be stated separately in the last of part Section 3B. Thus we
assume N ≥ 2. To avoid the nondifferentiability, we take the perturbation method,
which has been applied firstly to unconstrained situation in [40; 41] and then to
constrained situation in [27]. For µ ∈ (0, 1], we define

(2-1) Iµ(u) :=
µ

θ

∫
RN

|∇u|
θ
+ I (u)

on the space X := W 1,θ (RN )∩ W 1,2(RN ) for some fixed θ satisfying

4N
N +2

<θ <min
{

4N +4
N +2

, N
}
, when N ≥3 and 2<θ <3, when N =2.

Then X is a reflexive Banach space. And Lemma A.1 implies Iµ ∈ C1(X ). We will
consider Iµ on the constraint

(2-2) S(a) :=

{
u ∈ X :

∫
RN

|u|
2
= a

}
.

Recalling the L2-norm preserved transform [24]

(2-3) u ∈ S(a) 7→ s ⋆ u(x)= e
N
2 s u(es x) ∈ S(a),

we define

Qµ(u) :=
d
ds

∣∣∣
s=0

Iµ(s ⋆u)

= (1+γθ )µ
∫

RN
|∇u|

θ
+

∫
RN

|∇u|
2
+ (2+ N )

∫
RN

|u|
2
|∇u|

2
−γp

∫
RN

|u|
p,

where γp = N (p − 2)/2p. And again Lemma A.1 implies Qµ ∈ C1(X ). Then we
define the manifold

(2-4) Qµ(a) := {u ∈ S(a) : Qµ(u)= 0}.
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We observe that:

Lemma 2.1. Any critical point u of Iµ|S(a) is contained in Qµ(a).

Proof. By [11, Lemma 3], there exists a λ ∈ R such that

(2-5) I ′

µ(u)+ λu = 0 in X ∗.

On one hand, testing (2-5) with x · ∇u (see [10, Proposition 1] for details), we
obtain

(2-6) 0 =
θ−N
θ
µ

∫
RN

|∇u|
θ
+

2−N
2

∫
RN

|∇u|
2

+ (2 − N )
∫

RN
|u|

2
|∇u|

2
+

N
p

∫
RN

|u|
p
−

N
2
λ
∫

RN
|u|

2.

On the other hand, testing (2-5) with u, we obtain

(2-7) 0 = µ
∫

RN
|∇u|

θ
+

∫
RN

|∇u|
2
+ 4

∫
RN

|u|
2
|∇u|

2
−

∫
RN

|u|
p
+ λ

∫
RN

|u|
2.

Combining (2-6) and (2-7), we have Qµ(u)= 0. Then u ∈ Qµ(a). □

2B. An important lemma. We need the following result, which is crucially used
to control the possible values of the Lagrange parameters.

Lemma 2.2. Suppose u ̸= 0 is a critical point of Iµ|S(a) with 0 ≤ µ ≤ 1, that is,
there exists a λ ∈ R such that

I ′

µ(u)+ λu = 0 in X ∗.

And assume that one of the following conditions holds:

(a) 1 ≤ N ≤ 2, p ≥ 4 +
4
N , a > 0.

(b) N = 3, 4 +
4
N ≤ p ≤ 2∗, a > 0.

(c) N ≥ 4, p = 4 +
4
N , 0< a <

( N−2
N−2−(4/N )

)N
2 a∗.

Then λ > 0.

Proof. By combining Qµ(u)= 0 and (2-7), we obtain

λN (p−2)
2p

a =

(
1 +

N (p−θ)

pθ

)
µ

∫
RN

|∇u|
θ

+
2N −(N −2)p

2p

∫
RN

|∇u|
2
+

4N −(N −2)p
2p

∫
RN

u2
|∇u|

2.
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So if condition (a) holds, we immediately get λ > 0. Now suppose condition (b)
holds. Again from Qµ(u)= 0 and (2-7), and using inequality (1-16), we obtain

λa =
N (θ−2)

2θ
µ

∫
RN

|∇u|
θ
+ (N − 2)

∫
RN

u2
|∇u|

2
−

N 2
−2N −4

4(N +1)

∫
RN

|u|
4+

4
N

≥

[
(N − 2)−

(
N − 2 −

4
N

)(
a
a∗

) 2
N
]∫

RN
u2

|∇u|
2 > 0,

which gives λ > 0. □

3. The critical points of perturbed functional

Throughout this section we assume p > 4 +
4
N .

3A. Properties of Qµ(a).

Lemma 3.1. Let 0 < µ ≤ 1, then Qµ(a) is a C1-submanifold of codimension 1
in S(a), and hence a C1-submanifold of codimension 2 in X .

Proof. As a subset of X , the set Qµ(a) is defined by the two equations G(u)= 0
and Qµ(u)= 0, where

G(u)= a −

∫
RN

|u|
2,

and clearly G ∈ C1(X ). We have to check that

(3-1) d(Qµ,G) : X → R2 is surjective.

If this is not true, dQµ(u) and dG(u) are linearly dependent, i.e., there exists ν ∈ R

such that

(3-2) θ(1 + γθ )µ
∫

RN
|∇u|

θ−2
∇u · ∇φ+ 2

∫
RN

∇u · ∇φ

+ (2 + N )2
∫

RN
(|u|

2
∇u · ∇φ+ uφ|∇u|

2)− pγp

∫
RN

|u|
p−2 uφ = 2ν

∫
RN

uφ

for any φ ∈ X . Similar to Lemma 2.1, taking φ = x · ∇u and φ = u, we obtain

(3-3) θ(1 + γθ )
2µ

∫
RN

|∇u|
θ

+ 2
∫

RN
|∇u|

2
+ (2 + N )2

∫
RN

|u|
2
|∇u|

2
− pγ 2

p

∫
RN

|u|
p
= 0.

Since Qµ(u)= 0, we get

(3-4) (pγp − θ − θγθ )(1 + γθ )µ
∫

RN
|∇u|

θ
+ (pγp − 2)

∫
RN

|∇u|
2

+ (pγp − 2 − N )(2 + N )
∫

RN
|u|

2
|∇u|

2
= 0,

which means u = 0 since pγp > θ + θγθ and pγp > 2 + N . That contradicts with
u ∈ S(a). □
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Lemma 3.2. For any 0<µ≤ 1 and any u ∈ X \ {0}, the following statements hold.

(1) There exists a unique number sµ(u) ∈ R such that Qµ(sµ(u) ⋆ u)= 0.

(2) Iµ(s ⋆ u) is strictly increasing in s ∈ (−∞, sµ(u)) and is strictly decreasing in
s ∈ (sµ(u),+∞), then

lim
s→−∞

Iµ(s ⋆ u)= 0+, lim
s→+∞

Iµ(s ⋆ u)= −∞, Iµ(sµ(u) ⋆ u) > 0.

(3) sµ(u) < 0 if and only if Qµ(u) < 0.

(4) The map u ∈ X \ {0} 7→ sµ(u) ∈ R is of class C1.

(5) sµ(u) is an even function with respect to u ∈ X \ {0}.

Proof. (1) By direct computation, one can check that

(3-5) Qµ(s⋆u) := d
ds

Iµ(s⋆u)

=(1+γθ )µeθ(1+γθ )s
∫

RN
|∇u|

θ
+e2s

∫
RN

|∇u|
2

+(2+N ) e(2+N )s
∫

RN
|u|

2
|∇u|

2
−γp epγp s

∫
RN

|u|
p

=epγp s
[
(1+γθ )µe−(pγp−θ−θγθ )s

∫
RN

|∇u|
θ
+e−(pγp−2)s

∫
RN

|∇u|
2

+(2+N ) e−(pγp−2−N )s
∫

RN
|u|

2
|∇u|

2
−γp

∫
RN

|u|
p
]
.

Since pγp > θ + θγθ and pγp > 2 + N when p > 4 +
4
N , Qµ(s ⋆ u)= 0 has only

one solution sµ(u) ∈ R.

(2) From (1), Qµ(s ⋆ u) > 0 when s < sµ(u) and Qµ(s ⋆ u) < 0 when s > sµ(u).
So Iµ(s ⋆ u) is strictly increasing in s ∈ (−∞, sµ(u)) and is strictly decreasing in
s ∈ (sµ(u),+∞). Obviously,

lim
s→−∞

Iµ(s ⋆ u)= 0+, lim
s→+∞

Iµ(s ⋆ u)= −∞,

which implies that
Iµ(sµ(u) ⋆ u)= max

s∈R
Iµ(s ⋆ u) > 0.

(3) It can be obtained directly from (2).

(4) Let 8µ(s, u)= Qµ(s ⋆ u). Then 8µ(sµ(u), u)= 0. Moreover,

(3-6) ∂

∂s
8µ(s, u)= θ(1 + γθ )

2µeθ(1+γθ )s
∫

RN
|∇u|

θ
+ 2e2s

∫
RN

|∇u|
2

+ (2 + N )2e(2+N )s
∫

RN
|u|

2
|∇u|

2
− pγ 2

p epγp s
∫

RN
|u|

p.
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Combining with Qµ(sµ(u) ⋆ u)= 0, we obtain

(3-7) ∂

∂s
8µ(sµ(u), u)

= −(pγp − θ − θγθ )(1 + γθ )µ
∫

RN
|∇u|

θ
− (pγp − 2)

∫
RN

|∇u|
2

− (pγp − 2 − N )(2 + N )
∫

RN
|u|

2
|∇u|

2

< 0.
Then the implicit function theorem [14] implies that the map u 7→ sµ(u) is of
class C1.

(5) Since

Qµ(sµ(u) ⋆ (−u))= Qµ(−sµ(u) ⋆ u)= Qµ(sµ(u) ⋆ u)= 0,

by the uniqueness, there is sµ(−u)= sµ(u). □

3B. Ground state critical point of Iµ|S(a). In this subsection, we consider a mini-
mization problem

(3-8) mµ(a) := inf
u∈Qµ(a)

Iµ(u).

From Lemma 2.1, we know that if mµ(a) is achieved, then the minimizer is a
ground state critical point of Iµ|S(a). We have:

Lemma 3.3. (1) D(a) := inf0<µ≤1,u∈Qµ(a)
∫

RN |u|
2
|∇u|

2 > 0 is independent of µ.

(2) If supn≥1 Iµ(un) <+∞ for un ∈ Qµ(a), then

sup
n≥1

max
{
µ

∫
RN

|∇un|
θ ,

∫
RN

|un|
2
|∇un|

2,
∫

RN
|∇un|

2
}
<+∞.

Proof. (1) For any u ∈ Qµ(a), by the inequality (1-16), there holds

(3-9) (2 + N )
∫

RN
|u|

2
|∇u|

2

≤ γp

∫
RN

|u|
p
≤ K (p, N )γp a

4N−p(N−2)
2(N+2)

(∫
RN

|u|
2
|∇u|

2
)N (p−2)

2(N+2)
.

Since N (p−2)
2(N+2) > 1, we obtain D(a) > 0.

(2) For any u ∈ Qµ(a), there is

(3-10) Iµ(u)= Iµ(u)−
1

pγp
Qµ(u)

=
pγp −θ−θγθ

θpγp
µ

∫
RN

|∇u|
θ
+

pγp −2
2pγp

∫
RN

|∇u|
2

+
pγp −2−N

pγp

∫
RN

|u|
2
|∇u|

2.

So the conclusion holds. □
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Remark 3.4. Form (3-10), we see that

mµ(a)≥ D0(a) :=
pγp −2−N

pγp
D(a) > 0 for all µ ∈ (0, 1].

Then we have:

Lemma 3.5. There exists a small ρ>0 independent ofµ such that for any 0<µ≤1,
we have that

0< sup
u∈Bµ(ρ,a)

Iµ(u) <D0(a) and Iµ(u), Qµ(u) > 0 for all u ∈ Bµ(ρ, a),

where

Bµ(ρ, a)=

{
u ∈ S(a) : µ

∫
RN

|∇u|
θ
+

∫
RN

|∇u|
2
+

∫
RN

|u|
2
|∇u|

2
≤ ρ

}
.

Proof. From the definition of Iµ, we have

(3-11) sup
u∈Bµ(ρ,a)

Iµ(u)≤ max
{

1
θ
,

1
2
, 1

}
ρ < D0(a),

where ρ>0 is small and is independent ofµ. On the other hand, by inequality (1-16),
for any u ∈ ∂Bµ(r, a) with 0< r < ρ for a smaller ρ > 0, we have

inf
∂Bµ(r,a)

Iµ(u)≥
µ

θ

∫
RN

|∇u|
θ
+

1
2

∫
RN

|∇u|
2
+

∫
RN

|u|
2
|∇u|

2

−
K (p, N )

p
a

4N−p(N−2)
2(N+2)

(∫
RN

|u|
2
|∇u|

2
)N (p−2)

2(N+2)

≥
µ

θ

∫
RN

|∇u|
θ
+

1
2

∫
RN

|∇u|
2
+ C

∫
RN

|u|
2
|∇u|

2

≥ C1(a, θ, p, N )r > 0,

inf
∂Bµ(r,a)

Qµ(u)≥ C2(a, θ, p, N )r > 0. □

To find a Palais–Smale sequence, we consider an auxiliary functional as the one
in [24]:

(3-12) Jµ(s, u) := Iµ(s ⋆ u) : R ×X → R.

We study Jµ on the radial space R ×Sr (a) with

Sr (a) := S(a)∩Xr , Xr = W 1,θ
rad (R

N )∩ W 1,2
rad (R

N ).

Notice that Jµ is of class C1. By the symmetric critical point principle [43], a Palais–
Smale sequence for Jµ|R×Sr (a) is also a Palais–Smale sequence for Jµ|R×S(a).
Denoting the closed sublevel set by

(3-13) I c
µ = {u ∈ S(a) : Iµ(u)≤ c},
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we introduce the minimax class

0µ :=
{
γ = (α, β)∈ C([0, 1],R×Sr (a)) : γ (0)∈ {0}× Bµ(ρ, a), γ (1)∈ {0}× I 0

µ

}
,

with the associated minimax level

(3-14) σµ(a) := inf
γ∈0µ

sup
t∈[0,1]

Jµ(γ (t)).

Lemma 3.6. For any 0< µ≤ 1, we have mµ(a)= σµ(a).

Proof. For any γ = (α, β) ∈ 0µ, let us consider the function

fγ (t) := Qµ(α(t) ⋆ β(t)).

We have fγ (0)= Qµ(β(0))>0 by Lemma 3.5. We claim that fγ (1)= Qµ(β(1))<0:
indeed, since Iµ(β(1)) < 0, we have that sµ(β(1)) < 0, which by Lemma 3.2 means
that Qµ(β(1)) < 0. Moreover, fγ is continuous, and hence we deduce that there
exists tγ ∈ (0, 1) such that fγ (tγ )= 0, namely α(tγ ) ⋆ β(tγ ) ∈ Qµ(a). So

max
t∈[0,1]

Jµ(γ (t))≥ Iµ(α(tγ ) ⋆ β(tγ ))≥ mµ(a)

and consequently σµ(a)≥ mµ(a).
On the other hand, if u ∈ Qµ(a)∩Xr , then

γu(t) :=
(
0, ((1 − t)s0 + ts1) ⋆ u

)
∈ 0µ,

where s0 ≪ −1 and s1 ≫ 1. Since

Iµ(u)≥ max
t∈[0,1]

Iµ
(
((1 − t)s0 + ts1) ⋆ u

)
≥ σµ(a),

there holds
mr
µ(a) := inf

u∈Qµ(a)∩Xr
Iµ(u)≥ σµ(a).

Finally the inequality mµ(a)≥mr
µ(a) can be obtained easily by using the symmetric

decreasing rearrangement, see [33]. □

Remark 3.7. For any 0<µ1 <µ2 ≤ 1, since Iµ2(u)≥ Iµ1(u) and 0µ2 ⊂0µ1 , there
holds

σµ2(a)= inf
γ∈0µ2

sup
t∈[0,1]

Jµ2(γ (t))≥ inf
γ∈0µ2

sup
t∈[0,1]

Jµ1(γ (t))

≥ inf
γ∈0µ1

sup
t∈[0,1]

Jµ1(γ (t))= σµ1(a),

i.e., σµ(a) is nondecreasing with respect to µ ∈ (0, 1].

Definition A [19, Definition 3.1]. Let B be a closed subset of X . We say that a
class F of compact subsets of X is a homotopy stable family with boundary B
provided:
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(a) Every set in F contains B.

(b) For any set A in F and any η ∈ C([0, 1] × X, X) satisfying η(t, x)= x for all
(t, x) in ({0} × X)∪ ([0, 1] × B) we have that η(1, A)⊂ F .

We remark that the case B = ∅ is admissible.

Theorem B [19, Theorem 5.2]. Let φ be a C1-functional on a complete connected
C1-Finsler manifold X and consider a homotopy stable family F with an extended
closed boundary B. Set c = c(φ,F) and let F be a closed subset of X satisfying

(3-15) A ∩ F \ B ̸= ∅ for all A ∈ F

and

(3-16) supφ(B)≤ c ≤ infφ(F).

Then for any sequence of sets An ⊂ F such that limn→∞ supAn
φ = c, there exists a

sequence xn ⊂ X \ B such that

(1) limn→∞ φ(xn)= c,

(2) limn→∞∥dφ(xn)∥ = 0,

(3) limn→∞ dist(xn, F)= 0,

(4) limn→∞ dist(xn, An)= 0.

Now we establish a technical result showing the existence of a Palais–Smale
sequence of σµ(a) with an additional property.

Lemma 3.8. For any fixed µ ∈ (0, 1], there exists a sequence un ∈ Sr (a) such that

Iµ(un)→ σµ(a), Iµ|
′

S(a)(un)→ 0, Qµ(un)→ 0 and u−

n → 0 a.e. in RN .

Proof. Using Definition A, it is easy to check that F = {A = γ ([0, 1]) : γ ∈ 0µ}

is a homotopy stable family of compact subsets of X = R × Sr
µ with boundary

B = ({0} × Bµ(ρ, a))∪ ({0} × I 0
µ). Set F = {Jµ ≥ σµ(a)}, then the assumptions

(3-15) and (3-16) with φ = Jµ and c = σµ(a) are satisfied. Therefore, taking a
minimizing sequence {γn = (0, βn)} ⊂ 0µ with βn ≥ 0 a.e. in RN , there exists a
Palais–Smale sequence {(sn, wn)} ⊂ R×Sr (a) for Jµ|R×Sr (a) at level σµ(a), that is,

(3-17) ∂s Jµ(sn, wn)→ 0 and ∂u Jµ(sn, wn)→ 0 as n → ∞,

with the additional property that

(3-18) |sn| + distX (wn, βn([0, 1]))→ 0 as n → ∞.
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Let un = sn ⋆wn . The first condition in (3-17) reads Qµ(un)→ 0, while the second
condition gives

(3-19) ∥dIµ|S(a)(un)∥ = sup
ψ∈TunS(a),∥ψ∥X≤1

|dIµ(un)[ψ]|

= sup
ψ∈TunS(a),∥ψ∥X≤1

|dIµ(sn ⋆wn)[sn ⋆ (−sn) ⋆ψ]|

= sup
ψ∈TunS(a),∥ψ∥X≤1

|∂u Jµ(sn, wn)[(−sn) ⋆ψ]|

≤ ∥∂u Jµ(sn, wn)∥ sup
ψ∈TunS(a),∥ψ∥X≤1

|(−sn) ⋆ψ |

≤ C∥∂u Jµ(sn, wn)∥ → 0 as n → ∞.

Finally, (3-18) implies that u−
n → 0 a.e. in RN . □

Now we show the compactness of the Palais–Smale sequence obtained in
Lemma 3.8.

Lemma 3.9. For any fixed µ ∈ (0, 1], let un be a sequence obtained in Lemma 3.8.
Then there exists a uµ ∈ X \ {0} and a λµ ∈ R such that up to a subsequence,

un ⇀ uµ ≥ 0 in X ,(3-20)

Iµ(uµ)= σµ(a) and I ′

µ(uµ)+ λµuµ = 0.(3-21)

Moreover, if λµ ̸= 0, we have that

un → uµ in X .

Proof. From Lemma 3.3 and Remark 3.7, we know that un is bounded in Xr . Thus
by [13, Propositon 1.7.1], we conclude that up to a subsequence, there exists a
uµ ∈ Xr such that

un ⇀ uµ in X and in L2(RN ),

un → uµ in Lq(RN ) for all q ∈ (2, 2∗),

un → uµ ≥ 0 a.e. in R.

By interpolation and inequality (1-16), we have that

un → uµ in Lq(RN ) for all q ∈ (2, 22∗).

We claim that uµ ̸= 0. Assume uµ = 0. Then as n → ∞, we write

(1 + γθ )µ
∫

RN
|∇un|

θ
+

∫
RN

|∇un|
2
+ (2 + N )

∫
RN

|un|
2
|∇un|

2

= Qµ(un)+ γp

∫
RN

|un|
p
→ 0,
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which implies that Iµ(un)→ 0, in contradiction with Remark 3.4. So uµ ̸= 0. By
[11, Lemma 3], it follows from Iµ|

′

S(a)(un)→ 0 that there exists a sequence λn ∈ R

such that

(3-22) I ′

µ(un)+ λnun → 0 in X ∗.

Hence λn =
1
a I ′
µ(un)[un] + on(1) is bounded in R, and we assume, up to a sub-

sequence, λn → λµ. Since un is bounded, we have I ′
µ(un)+ λµun → 0. From

Lemma A.2, we see that

(3-23) I ′

µ(uµ)+ λµuµ = 0.

Then testing (3-23) with x · ∇u and u, we obtain Qµ(uµ)= 0. It follows that

Qµ(un)+ γp

∫
RN

|un|
p
→ Qµ(uµ)+ γp

∫
RN

|uµ|
p.

Then using the weak lower semicontinuous property (see [17, Lemma 4.3]) there
must be

µ
∫

RN
|∇un|

θ
→ µ

∫
RN

|∇uµ|
θ ,(3-24) ∫

RN
|∇un|

2
→

∫
RN

|∇uµ|
2,(3-25) ∫

RN
|un|

2
|∇un|

2
→

∫
RN

|uµ|
2
|∇uµ|

2.(3-26)

That gives Iµ(uµ)= limn→∞ Iµ(un)= σµ(a). Moreover, from (3-24)–(3-26):

(3-27) I ′

µ(un)[un] → I ′

µ(uµ)[uµ].

Thus combining (3-27) with (3-22) and (3-23), there holds λµ∥un∥
2
2 → λµ∥uµ∥

2
2.

So λµ ̸= 0 implies that un → uµ in X . □

Based on the above preliminary works, we conclude that:

Theorem 3.10. For any fixed µ ∈ (0, 1], there exists a uµ ∈ Xr \ {0} and a λµ ∈ R

such that

I ′

µ(uµ)+ λµuµ = 0,

Iµ(uµ)= mµ(a), Qµ(uµ)= 0, 0< ∥uµ∥
2
2 ≤ a, uµ ≥ 0.

Moreover, if λµ ̸= 0, we have that ∥uµ∥
2
2 = a, i.e., mµ(a) is achieved, and uµ is a

ground state critical point of Iµ|S(a).

Proof of Theorem 1.1 for N =1. When N =1, there is W 1,2(R) ↪→C0,α(R), so V (u)
and hence I (u) is of class C1(W 1,2(R)). Then one can follow the process in this
subsection to prove Theorem 1.1 by takingµ=0, but we claim that there needs some
modifications, since the compact embedding W 1,2

rad (R
N ) ↪→ Lq(RN ) for 2< q < 2∗

does not hold when N = 1. However, the compactness still holds for bounded



QUASILINEAR SCHRÖDINGER EQUATIONS 117

sequences of radially decreasing functions (see, e.g., [13, Propositon 1.7.1]). So we
need to confirm that the Palais–Smale sequence obtained in Lemma 3.8 consists of
radially decreasing functions. Then it is natural to replace the minimizing sequence
γn = (0, βn) chosen in Lemma 3.8 with γ̄n := (0, β̄n), where β̄n(t) = |βn(t)|∗ is
the symmetric decreasing rearrangement of βn(t) at every t ∈ [0, 1]. This is a
natural candidate to be minimizing sequence, with β̄n(t)≥ 0, radially symmetric
and decreasing for every t ∈ [0, 1]. In order to check that γ̄n ∈ 00, we have to
check that each β̄n is continuous on [0, 1], which has been proved in [18] (for more
argument we refer to [48, Remark 5.2]). As a result, Theorem 3.10 with µ = 0
holds, and combining with Lemma 2.2, we obtain Theorem 1.1 immediately. □

3C. Infinitely many critical points of Iµ|S(a). This subsection concerns the exis-
tence of infinitely many radial critical points of Iµ|S(a). Denote τ(u)= −u and let
Y ⊂X . A set A ⊂Y is called τ -invariant if τ(A)= A. A homotopy η : [0, 1]×Y →Y
is τ -equivariant if η(t, τ (u))= τ(η(t, u)) for all (t, u) ∈ [0, 1] × Y .

Definition C [19, Definition 7.1]. Let B be a closed τ -invariant subset of Y . A
class G of compact subsets of Y is said to be a τ -homotopy stable family with
boundary B provided:

(a) Every set in G is τ -invariant.

(b) Every set in G contains B.

(c) For any set A∈G and any τ -equivariant homotopy η∈C([0, 1]×Y, Y ) satisfying
η(t, x)= x for all (t, x) in ({0}× Y )∪ ([0, 1]× B) we have that η(1, A)⊂ G.

Following [25, Section 5], we consider the functional Kµ :X \{0}→ R defined by

(3-28) Kµ(u) := Iµ(sµ(u)⋆u)= µ
θ

eθ(1+γθ )sµ(u)
∫

RN
|∇u|

θ
+

1
2 e2sµ(u)

∫
RN

|∇u|
2

+e(2+N )sµ(u)
∫

RN
|u|

2
|∇u|

2
−

1
p epγp sµ(u)

∫
RN

|u|
p,

where sµ(u) is given by Lemma 3.2. Then we see that Kµ(u) is τ -invariant.
Moreover, inspired by [50, Proposition 2.9], there holds:

Lemma 3.11. The functional Kµ is of class C1 and

K ′

µ(u)[φ] = µeθ(1+γθ )sµ(u)
∫

RN
|∇u|

θ−2
∇u · ∇φ+ e2sµ(u)

∫
RN

∇u · ∇φ

+ 2e(2+N )sµ(u)
∫

RN
(uφ|∇u|

2
+ |u|

2
∇u · ∇φ)− epγp sµ(u)

∫
RN

|u|
p−2 uφ

= I ′

µ(sµ(u) ⋆ u)[sµ(u) ⋆ φ]

for any u ∈ X \ {0} and φ ∈ X .
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Proof. Let u ∈ X \ {0} and φ ∈ X . We estimate the term

Kµ(ut)− Kµ(u)= Iµ(st ⋆ ut)− Iµ(s0 ⋆ u),

where ut = u + tφ and st = sµ(ut) with |t | small enough. By the mean value
theorem, we have

Iµ(st ⋆ ut)− Iµ(s0 ⋆ u)

≤ Iµ(st ⋆ ut)− Iµ(st ⋆ u)

=µeθ(1+γθ )st
∫

RN
|∇uηt |

θ−2(∇u ·∇φ+ηt |∇φ|
2)t +e2st

∫
RN

(
∇u ·∇φ+

t
2
|∇φ|

2
)

t

+ 2e(2+N )st
∫

RN

(
uηtφ|∇uηt |

2
+ |uηt |

2(∇u · ∇φ+ ηt |∇φ|
2)

)
t

− epγp st
∫

RN
|uηt |

p−2
(

uφ+
ηt

2
φ2

)
t,

where |ηt | ∈ (0, |t |). Similarly,

Iµ(st ⋆ ut)− Iµ(s0 ⋆ u)

≥ Iµ(s0 ⋆ ut)− Iµ(s0 ⋆ u)

=µeθ(1+γθ )s0
∫

RN
|∇uξt |

θ−2(∇u ·∇φ+ξt |∇φ|
2) t +e2s0

∫
RN

(
∇u ·∇φ+

t
2
|∇φ|

2
)

t

+ 2e(2+N )s0
∫

RN

(
uξtφ|∇uξt |

2
+ |uξt |

2(∇u · ∇φ+ ξt |∇φ|
2)

)
t

− epγp s0
∫

RN
|uξt |

p−2
(

uφ+
ξt

2
φ2

)
t,

where |ξt | ∈ (0, |t |). Since st → s0 as t → 0, it follows from the last two inequalities
that

lim
t→0

Kµ(ut )−Kµ(u)
t

= µeθ(1+γθ )sµ(u)
∫

RN
|∇u|

θ−2
∇u · ∇φ+ e2sµ(u)

∫
RN

∇u · ∇φ

+ 2e(2+N )sµ(u)
∫

RN
(uφ|∇u|

2
+ |u|

2
∇u · ∇φ)− epγp sµ(u)

∫
RN

|u|
p−2 uφ.

Then similarly as Lemma A.1, we see that the Gâteaux derivative of Kµ is bounded
linear and continuous. Therefore Kµ is of class C1, see [14]. In particular, by
changing variables in the integrals, we have

K ′

µ(u)[φ] = I ′

µ(sµ(u) ⋆ u)[sµ(u) ⋆ φ]. □

To get the particular Palais–Smale sequence of Iµ|S(a) as in Lemma 3.8, we need:

Lemma 3.12. Let G be a τ -homotopy stable family of compact subsets of Y =Sr (a)
with boundary B = ∅, and set

d := inf
A∈G

max
u∈A

Kµ(u).
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If d > 0, then there exists a sequence un ∈ Sr (a) such that

Iµ(un)→ d, Iµ|
′

S(a)(un)→ 0, Qµ(un)= 0.

Proof. Let An ∈ G be a minimizing sequence of d . We define the mapping

η : [0, 1] ×S(a)→ S(a), η(t, u)= (tsµ(u)) ⋆ u,

which is continuous and satisfies η(t, u)= u for all (t, u) ∈ {0}×S(a). Thus, by
the definition of G, one has

Dn := η(1, An)= {sµ(u) ⋆ u : u ∈ An} ∈ G.

In particular, Dn ⊂Qµ(a) for any n ∈ N+. For any u ∈ S(a) and s ∈ R, we see that

Qµ

(
(sµ(u)− s) ⋆ (s ⋆ u)

)
= Qµ

(
(sµ(u) ⋆ u)

)
= 0,

that is, sµ(s ⋆ u) = sµ(u)− s, which gives Kµ(s ⋆ u) = Kµ(u). Then it is clear
that maxDn Kµ = maxAn Kµ → d and thus Dn is another minimizing sequence of d .
Now, using the minimax principle [19, Theorem 7.2], we obtain a Palais–Smale
sequence vn ∈ S(a) for Kµ at the level d such that

distX (vn, Dn)→ 0.

Finally, a similar argument as the one in Lemma 3.8 gives un = sn ⋆vn satisfying that

Iµ(un)→ d, Iµ|
′

S(a)(un)→ 0, Qµ(un)= 0. □

To construct a sequence of τ -homotopy stable families of compact subsets
of Sr (a) with boundary B = ∅, we proceed as in [11, Section 8]. Since X is
separable, there exists a nested sequence of finite dimensional subspaces of X ,
W1 ⊂ W2 ⊂ · · · ⊂ Wi ⊂ Wi+1 ⊂ · · · ⊂ X such that dim(Wi )= i and the closure of⋃

i∈N+ Wi in X is equal to X . Note that since X is dense in W 1,2(RN ), the closure
in W 1,2(RN ) is also equal to W 1,2(RN ). Since W 1,2(RN ) is a Hilbert space, we
denote by Pi the orthogonal projection from W 1,2(RN ) onto Wi . We also recall the
definition of the genus of τ -invariant sets due to M. A. Krasnoselskii and refer the
reader to [45, Section 7].

Definition D (Krasnoselskii genus). For any nonempty closed τ -invariant set A ⊂X ,
the genus of A is defined by

Ind(A) := min
{
k ∈ N+

: ∃φ : A → Rk
\ {0}, φ is odd and continuous

}
.

We set Ind(A)= +∞ if such φ does not exist, and set Ind(A)= 0 if A = ∅.

Let A(a) be the family of compact τ -invariant subsets of Sr (a). For each j ∈ N+:

A j (a) := {A ∈ A(a) : Ind(A)≥ j} and c j
µ(a) := inf

A∈A j (a)
max
u∈A

Kµ(u).
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Concerning A j (a) and c j
µ(a), we have:

Lemma 3.13. (1) A j (a) ̸= ∅ for any j ∈ N+, and A j (a) is a τ -homotopy stable
family of compact subsets of Sr (a) with boundary B = ∅.

(2) c j+1
µ (a)≥ c j

µ(a)≥ D0(a) > 0 for any µ ∈ (0, 1] and j ∈ N+.

(3) c j
µ(a) is nondecreasing with respect to µ ∈ (0, 1] for any j ∈ N+.

(4) b j (a) := inf0<µ≤1 c j
µ(a)→ +∞ as j → +∞.

Proof. (1) For any j ∈ N+, Sr (a) ∩ W j ∈ A(a). By the basic properties of the
genus, one has

Ind(Sr (a)∩ W j )= j

and thus A j (a) ̸= ∅. The rest is clear by the properties of the genus.

(2) For any A ∈A j (a), using the fact that sµ(u)⋆u ∈Qµ(a) for all u ∈ A, we have

max
u∈A

Kµ(u)= max
u∈A

Iµ(sµ(u) ⋆ u)≥ mµ(a)≥ D0(a)

and thus c j
µ(a)≥D0(a)>0. Since A j+1(a)⊂A j (a), it is clear that c j+1

µ (a)≥c j
µ(a).

(3) For any 0< µ1 < µ2 ≤ 1 and u ∈ A ∈ A j (a), there holds

Kµ2(u)= Iµ2(sµ2(u) ⋆ u)≥ Iµ2(sµ1(u) ⋆ u) > Iµ1(sµ1(u) ⋆ u)= Kµ1(u),

which means c j
µ2(a)≥ c j

µ1(a), i.e., c j
µ(a) is nondecreasing with respect to µ∈ (0, 1].

(4) The proof is inspired by that of [11, Theorem 9]. First, we claim that:

Claim. For any M > 0, there exists a small δ0 = δ0(a,M) > 0, a small r0 =

r0(a,M) > 0 and a large k0 = k0(a,M) ∈ N+ such that for any 0 < µ < δ0 and
any k ≥ k0, one has

Iµ(u)≥ M if ∥Pku∥X ≤ r0 and u ∈ Qr
µ(a).

Now we check it. By contradiction, we assume that there exists M0 > 0 such
that for any 0< δ ≤ 1, any r > 0 and any k ∈ N+ one can always find µ ∈ (0, δ],
l ≥ k and u ∈ Qr

µ(a) such that

∥Pku∥X ≤ r but Iµ(u) < M0.

As a result, one can obtain the sequences µn → 0+ , kn → +∞ and un ∈ Qr
µn
(a)

such that
∥Pkn un∥X ≤

1
n and Iµn (un) < M0

for any n ∈ N+. From Lemma 3.3, we know that un is bounded in W 1,2(RN ). Since
Pkn un is also bounded in X , we assume that up to a subsequence

un ⇀ u in W 1,2(RN ) and Pkn un ⇀v in X .
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We show that u = v. Indeed, one also has Pkn un ⇀v in W 1,2(RN ) and

∥u − v∥2
W 1,2(RN )

= lim
n→∞

⟨un − Pkn un, u − v⟩W 1,2(RN )

= lim
n→∞

⟨un, u − v⟩W 1,2(RN ) − lim
n→∞

⟨Pkn un, u − v⟩W 1,2(RN )

= ⟨u, u − v⟩W 1,2(RN ) − lim
n→∞

⟨un, Pkn u − Pknv⟩W 1,2(RN )

= ⟨u, u − v⟩W 1,2(RN ) − ⟨u, u − v⟩W 1,2(RN ) = 0,

where we use the fact that Pkn u → u and Pknv→ v in W 1,2(RN ). Therefore u = v

and u ∈ X . Since ∥Pkn un∥X → 0, there must be u = 0. Then combining the
interpolation inequality and the fact that supn∈N+

∫
RN |un|

2
|∇un|

2 <+∞, we obtain
∥un∥p → 0. Further, un ∈ Qµn (a) gives that

µn

∫
RN

|∇un|
θ
→ 0,

∫
RN

|∇un|
2
→ 0,

∫
RN

|un|
2
|∇un|

2
→ 0,

which is in contradiction with Lemma 3.3. So we prove the claim.
Then we can prove the conclusion (4). By contradiction, we assume that

lim inf
j→∞

b j < M for some M > 0.

Then there exist µ ∈ (0, δ0) for k > k0 such that ck
µ(a) < M . By the definition

of ck
µ(a), one can find A ∈ Ak(a) such that

max
u∈A

Iµ(sµ(u) ⋆ u)= max
u∈A

Kµ(u) < M.

As Lemma 3.2 implies that the mapping ϕ : A →Qr
µ(a) defined by ϕ(u)= sµ(u)⋆u

is odd and continuous, we have A := ϕ(A)⊂ Qr
µ(a), maxu∈A Iµ(u) < M and

(3-29) Ind(A)≥ Ind(A)≥ k > k0.

On the other hand, it follows from the claim that infu∈A ∥Pk0un∥X ≥ r0 > 0. Setting

ψ(u)=
Pk0u

∥Pk0un∥X
for any u ∈ A,

we obtain an odd continuous mapping ψ : A → ψ(A)⊂ Wk0 \ {0} and thus

Ind(A)≤ Ind(ψ(A))≤ k0,

which contradicts (3-29). Therefore we have b j (a)→ +∞ as j → +∞. □

For any fixed µ ∈ (0, 1] and any j ∈ N+, by Lemmas 3.12 and 3.13, one can
find a sequence un ∈ Sr (a) such that

Iµ(un)→ c j
µ(a), Iµ|

′

S(a)(un)→ 0, Qµ(un)= 0.

Then similar to Lemma 3.9, we have:
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Lemma 3.14. There exists a u j
µ ∈ X \ {0} and a λ j

µ ∈ R such that up to a subse-
quence,

u j
n ⇀ u j

µ in X ,

Iµ(u j
µ)= c j

µ(a) and I ′

µ(u
j
µ)+ λ

j
µu j

µ = 0.

Moreover, if λ j
µ ̸= 0, we have that

u j
n → u j

µ in X .

Based on the above preliminary works, we conclude that:

Theorem 3.15. For any fixed µ∈ (0, 1] and any j ∈ N+, there exists a u j
µ ∈Xr \{0}

and a λ j
µ ∈ R such that

I ′

µ(u
j
µ)+ λ

j
µu j

µ = 0, Iµ(u j
µ)= c j

µ(a), Qµ(u j
µ)= 0, 0< ∥u j

µ∥
2
2 ≤ a.

Moreover, if λ j
µ ̸= 0, we have that ∥u j

µ∥
2
2 = a, i.e., {u j

µ : j ∈ N+
} are infinitely many

critical points of Iµ|S(a) with increasing energy.

4. Convergence issues as µ → 0+

In this section, letting µ → 0+, we show that the sequences of critical points
of Iµ|S(a) obtained in Section 3 converge to critical points of I |S̃(a).

Theorem 4.1. Let N ≥ 2. Suppose that µn → 0+, I ′
µn
(uµn)+ λµnuµn = 0 with

λµn ≥ 0 and Iµn(uµn)→ c ∈ (0,+∞) for uµn ∈ Sr (an) with 0< an ≤ a. Then there
exists a subsequence uµn ⇀ u in W 1,2(RN ) with u ̸= 0, u ∈ W 1,2

rad (R
N )∩ L∞(RN )

and there exists a λ ∈ R such that

I ′(u)+ λu = 0, I (u)= c and 0< ∥u∥
2
2 ≤ a.

Moreover:

(1) If uµn ≥ 0 for each n ∈ N+, then u ≥ 0,

(2) If λ ̸= 0, we have that ∥u∥
2
2 = limn→∞ an .

Remark 4.2. We note that the condition λµn ≥ 0 is only used in the following Step 1
to realize the Morse iteration. If one can prove the conclusion in Step 1 without
this condition, then the conclusion in Theorem 1.1 can be extended to N = 3, 4
with 4 +

4
N < p < 22∗.

Proof of Theorem 4.1. The proof is inspired by [27; 32]. First, by Lemma 2.1,
I ′
µn
(uµn)+ λµnuµn = 0 implies that

Qµn(uµn)= 0 for each n ∈ N+.
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Then from Lemma 3.3, we see that

(4-1) sup
n≥1

max
{
µn

∫
RN

|∇un|
θ ,

∫
RN

|un|
2
|∇un|

2,
∫

RN
|∇un|

2
}
<+∞,

and hence uµn is bounded in W 1,2(RN ). We claim that lim infn→∞ an > 0 and hence
λµn =

1
an

I ′
µn
(uµn)[uµn] is also bounded in R. Indeed, if an → 0, then ∥uµn∥p → 0,

and it follows from Qµn(un)= 0 that Iµn(uµn)→ 0 which contradicts c > 0. Thus,
up to a subsequence, λµn → λ in R, uµn ⇀ u in W 1,2

rad (R
N ), uµn → u in Lq(RN ) for

2< q < 22∗, and uµn → u a.e. on RN . So if uµn ≥ 0 for each n ∈ N+, we have that
u ≥ 0. Moreover, a similar argument as in Lemma A.2 tells that un∇un → u∇u in
(L2

loc(R
N ))N and ∇uµn → ∇u a.e. on RN . Now we prove the conclusion in several

steps.

Step 1: We prove that ∥uµn∥∞ ≤ C and ∥u∥∞ ≤ C for some positive constant C .
We just prove the case N ≥ 3; the case N = 2 can be obtained similarly. Set

T > 2, r > 0 and

vn =


T, un ≥ T,
un, |un| ≤ T,

−T, un ≤ −T .

Let φ = uµn|vn|
2r , then φ ∈X . From I ′

µn
(uµn)+λµnuµn = 0 and λµn ≥ 0,we obtain

∫
RN

|uµn|
p−2 uµnφ = µµn

∫
RN

|∇uµn|
θ−2

∇uµn ·∇φ+

∫
RN

∇uµn ·∇φ

+2
∫

RN
(uµnφ|∇uµn|

2
+|uµn|

2
∇uµn ·∇φ)+λµn

∫
RN

uµnφ

≥ 2
∫

RN
|uµn|

2
∇uµn ·∇φ

= 2
∫

RN
|uµn|

2
|∇uµn|

2
|vn|

2r
+|uµn|

22r |vn|
2r−2uµnvn∇uµn ·∇vn

=
1
2

∫
RN

|vn|
r
|∇u2

µn
|
2
+

4
r

∫
RN

∣∣u2
µn

∇|vn|
r
∣∣2

≥
1

r +4

∫
RN

∣∣∇(u2
µn

|vn|
2)

∣∣2
≥

C
(r +2)2

(∫
RN

∣∣u2
µn

|vn|
2∣∣2∗

) 2
2∗

.

On the other hand, by the interpolation inequality, we have

(4-2)
∫

RN
|uµn|

p−2 uµnφ =

∫
RN

|uµn|
p
|vn|

2r

≤

(∫
RN

|uµn|
22∗

)p−4
22∗

(∫
RN
(|vn|

r
|uµn|

2)
42∗

22∗−p+4

)22∗
−p+4

22∗

≤ C
(∫

RN
(|vn|

r
|uµn|

2)
42∗

22∗−p+4

)22∗
−p+4

22∗

.
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Combining these inequalities, one has

(4-3)
(∫

RN
|u2
µn

|vn|
2
|
2∗

) 2
2∗

≤ C(r + 2)2
(∫

RN
(|vn|

r
|uµn|

2)
42∗

22∗−p+4

)22∗
−p+4

22∗

.

Let r0 : (r0 +2)q = 22∗ and d =
2∗

q > 1 where q =
42∗

22∗−p+4 . Taking r = r0 in (4-3),
and letting T → +∞, we obtain

(4-4) ∥uµn∥(2+r0)qd ≤ (C(r0 + 2))
1

r0+2 ∥uµn∥(2+r0)q .

Set 2 + ri+1 = (2 + ri ) d for i ∈ N. Then inductively, we have

(4-5) ∥uµn∥(2+r0)qd i+1 ≤

i∏
k=0
(C(rk + 2))

1
rk+2 ∥uµn∥(2+r0)q ≤ C∞∥uµn∥(2+r0)q ,

where C∞ is a positive constant. Taking i → ∞ in (4-5), we get

∥uµn∥∞ ≤ C and ∥u∥∞ ≤ C.

Step 2: We prove that I ′(u)+ λu = 0.
Take φ = ψe−uµn with ψ ∈ C∞

0 (R
N ), ψ ≥ 0. We have

0 = (I ′

µn
(uµn)+ λµnuµn)[φ]

= µn

∫
RN

|∇uµn|
θ−2

∇uµn(∇ψe−uµn −ψe−uµn ∇uµn)

+

∫
RN

∇uµn(∇ψe−uµn −ψe−uµn ∇uµn)

+ 2
∫

RN
|uµn|

2
∇uµn(∇ψe−uµn −ψe−uµn ∇uµn)+ 2

∫
RN

uµnψe−uµn |∇uµn|
2

+ λµn

∫
RN

uµnψe−uµn −

∫
RN

|uµn|
p−2 uµnψe−uµn

≤ µn

∫
RN

|∇uµn|
θ−2

∇uµn∇ψe−uµn +

∫
RN
(1 + 2u2

µn
)∇uµn∇ψe−uµn

−

∫
RN
(1 + 2u2

µn
− 2uµn)ψe−uµn |∇uµn|

2

+ λµn

∫
RN

uµnψe−uµn −

∫
RN

|uµn|
p−2 uµnψe−uµn .

Since µn → 0+ and ∥uµn∥∞ ≤ C , equation (4-1) implies

µn

∫
RN

|∇uµn|
θ−2

∇uµn∇ψe−uµn → 0.

By the weak convergence of uµn, the Hölder inequality and by the Lebesgue’s
dominated convergence theorem we know that∫

RN
(1 + 2u2

µn
)∇uµn∇ψe−uµn →

∫
RN
(1 + 2u2)∇u∇ψe−u,

λµn

∫
RN

uµnψe−uµn → λ
∫

RN
uψe−u,



QUASILINEAR SCHRÖDINGER EQUATIONS 125

and ∫
RN

|uµn|
p−2 uµnψe−uµn →

∫
RN

|u|
p−2 uψe−u .

Moreover, by Fatou’s lemma, there holds

lim inf
n→∞

∫
RN
(1 + 2u2

µn
− 2uµn)ψe−uµn |∇uµn|

2
≥

∫
RN
(1 + 2u2

− 2u)ψe−u
|∇u|

2.

Consequently, one has

(4-6) 0 ≤

∫
RN

∇u(∇ψe−u
−ψe−u

∇u)+ 2
∫

RN
|u|

2
∇u(∇ψe−u

−ψe−u
∇u)

+ 2
∫

RN
uψe−u

|∇u|
2
+ λµn

∫
RN

uψe−u
−

∫
RN

|u|
p−2 uψe−u .

For any ϕ ∈ C∞

0 (R
N ) with ϕ ≥ 0, choose a sequence of nonnegative functions

ψn ∈ C∞

0 (R
N ) such that ψn → ϕeu in W 1,2(RN ), ψn → ϕeu a.e. in RN , and that

ψn is uniformly bounded in L∞(RN ). Then we obtain from (4-6) that

(4-7) 0 ≤

∫
RN

∇u ·∇ϕ+2
∫

RN
(|u|

2
∇u ·∇ϕ+uϕ|∇u|

2)+λ
∫

RN
uϕ−

∫
RN

|u|
p−2 uϕ.

Similarly by choosing φ=ψeuµn , we get an opposite inequality. Notice ϕ=ϕ+
−ϕ−

for any ϕ ∈ C∞

0 (R
N ), we get I ′(u)+ λu = 0.

Step 3: Here we complete the proof.
Similar to Lemma 2.1, we get from I ′(u)+ λu = 0 that

Q(u) := Q0(u)= 0.

It follows that

Qµn (uµn)+ γp

∫
RN

|uµn|
p
→ Q(u)+ γp

∫
RN

|u|
p.

Then using the weak lower semicontinuous property, there must be

(4-8)
µn

∫
RN

|∇uµn|
θ
→ 0,

∫
RN

|∇uµn|
2
→

∫
RN

|∇u|
2,∫

RN
|uµn|

2
|∇uµn|

2
→

∫
RN

|u|
2
|∇u|

2.

That gives I (u)= limn→∞ Iµ(uµn)= c. Moreover, from (4-8), we obtain

(4-9) I ′

µn
(uµn)[uµn] → I ′(u)[u].

Thus there holds λ∥uµn∥
2
2 → λ∥u∥

2
2. So if λ ̸= 0, we have ∥u∥

2
2 = limn→∞ an . □

Now we are able to complete the proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1 for N ≥ 2. From Remarks 3.4 and 3.7, we see that

d∗(a) := lim
µ→0+

mµ(a) ∈ (0,+∞).
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By Theorem 3.10, we can take

µn → 0+, I ′

µn
(uµn)+ λµnuµn = 0, Iµn(uµn)→ d∗(a)

for uµn ∈Sr (an) with 0< an ≤ a and uµn ≥ 0. Then Lemma 2.2 implies that λµn > 0.
Now Theorem 4.1 gives that there exist v ̸= 0, v ≥ 0, v ∈ W 1,2

rad (R
N )∩ L∞(RN )

and λ0 ∈ R such that

I ′(v)+ λ0v = 0, I (v)= d∗(a) and 0< ∥v∥2
2 ≤ a.

Thus by Lemma 2.2, there is λ0 > 0. Since λµn → λ0, we may say that λµn ̸= 0 for
n large. Then an = a and ∥v∥2

2 = a. That is, v is a nontrivial nonnegative solution
of (1-7). To consider the ground state normalized solution, we define

d(a) := inf{I (v) : v ∈ S̃(a), I |′S̃(a)(v)= 0, v ̸= 0}.

Then d(a) ≤ I (v) = d∗(a). Further, a similar approach to Lemma 3.3 tells that
d(a) > 0. We take a sequence vn ∈ S̃(a), I |′

S̃(a)
(vn)= 0, vn ̸= 0 and vn ≥ 0 such

that I (vn)→ d(a). We can show that (the proof is similar to that of Theorem 4.1, so
we omit it), up to a subsequence, there exist u ̸= 0, u ≥ 0, u ∈ W 1,2

rad (R
N )∩L∞(RN )

and λ ∈ R such that

I ′(u)+ λu = 0 and I (u)= d(a).

Again by Lemma 2.2, there is λ ̸= 0, and hence ∥u∥
2
2 = a. That is, u is a minimizer

of d(a). Finally, by [41, Lemma 2.6], u is classical and strictly positive since
u ∈ L∞(RN ). □

Proof of Theorem 1.2. From Lemma 3.13, we see that

b j (a)= lim
µ→0+

c j
µ(a) ∈ (0,+∞) and b j (a)→ +∞.

By Theorem 3.15, for each j ∈ N+ we can take

µ j
n → 0+, I ′

µ
j
n
(u j
µ

j
n
)+ λ j

µ
j
n

u j
µ

j
n
= 0, Iµ j

n (u
j
µ

j
n
)→ b j (a)

for uµ j
n ∈ Sr (a

j
n ) with 0 < a j

n ≤ a. And Lemma 2.2 implies that λ j
µ

j
n
> 0. Now

Theorem 4.1 gives that there exist

u j
̸= 0, u j

∈ W 1,2
rad (R

N )∩ L∞(RN ) and λ j
∈ R

such that

I ′(u j )+ λ j u j
= 0, I (u j )= b j (a) and 0< ∥u j

∥
2
2 ≤ a.

Thus by Lemma 2.2, there is λ j > 0. Going back since λ j
µ

j
n
→ λ j , we may say

that λ j
µ

j
n
̸= 0 for n large. Then a j

n = a and ∥u j
∥

2
2 = a. That is, {u j

: j ∈ N+
} is a

sequence of normalized solutions of (1-7). Moreover, I (u j )= b j → +∞. □
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5. The mass critical case p = 4 +
4
N

In this section we denote p∗ = 4+
4
N and assume that p = p∗. We still consider Iµ,

but on an open subset of X . Let

(5-1) O :=

{
u ∈ X :

∫
RN

u2
|∇u|

2 <
N

4(N +1)

∫
RN

|u|
p∗

}
and for simplicity, we still denote

S(a) :=

{
u ∈ O :

∫
RN

u2
= a

}
, Qµ(a) := {u ∈ S(a) : Qµ(u)= 0},

Sr (a) := S(a)∩Xr , Qr
µ(a) := Qµ(a)∩Xr .

Lemma 5.1. S(a) is nonempty when a > a∗.

Proof. Let u = Q
1
2
p∗

, then from (1-13), we have

(5-2)
∫

RN
|u|

p∗ =
4(N +1)

N

∫
RN

u2
|∇u|

2.

Let wa =
( a

a∗

)1
2 u, then ∥wa∥

2
2 = a and (5-2) implies that

(5-3)
∫

RN
w2

a|∇wa|
2
=

N
4(N +1)

(
a
a∗

)−
2
N
∫

RN
|wa|

p∗ <
N

4(N +1)

∫
RN

|wa|
p∗,

that is, wa ∈ S(a). □

So from now on, we assume a > a∗. Then noting that when p = p∗, there is
p∗γp∗

> θ + θγθ and p∗γp∗
= 2 + N , we still have:

Lemma 5.2. Let 0 < µ ≤ 1, then Qµ(a) is a C1-submanifold of codimension 1
in S(a), and hence a C1-submanifold of codimension 2 in X .

Lemma 5.3. For any 0< µ≤ 1 and u ∈ O \ {0}, the following statements hold.

(1) There exists a unique number sµ(u) ∈ R such that Qµ(sµ(u) ⋆ u)= 0.

(2) Iµ(s ⋆ u) is strictly increasing in s ∈ (−∞, sµ(u)) and is strictly decreasing in
s ∈ (sµ(u),+∞), and

lim
s→−∞

Iµ(s ⋆ u)= 0+, lim
s→+∞

Iµ(s ⋆ u)= −∞, Iµ(sµ(u) ⋆ u) > 0.

(3) sµ(u) < 0 if and only if Qµ(u) < 0.

(4) The map u ∈ X \ {0} 7→ sµ(u) ∈ R is of class C1.

(5) sµ(u) is an even function with respect to u ∈ X \ {0}.

Similar to Lemma 3.3, there also holds:

Lemma 5.4. (1) D(a) := inf0<µ≤1,u∈Qµ(a)
∫

RN |u|
2
|∇u|

2 > 0 is independent of µ.
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(2) If supn≥1 Iµ(un) <+∞ for un ∈ Qµ(a), then

sup
n≥1

max
{
µ

∫
RN

|∇un|
θ ,

∫
RN

|un|
2
|∇un|

2,
∫

RN
|∇un|

2
}
<+∞.

Proof. The proof is different from the one of Lemma 3.3.

(1) For any u ∈ Qµ(a), using the equality Qµ(u)= 0 and (1-16) we obtain

(5-4)
∫

RN
|∇u|

2
≤ (N + 2)

[(
a
a∗

) 2
N

− 1
]∫

RN
u2

|∇u|
2.

On the one hand, when N ≤ 3, there holds p∗ < 2∗. Therefore, the classical
Gagliardo–Nirenberg inequality [42] tells that

(5-5)
∫

RN
|∇u|

2
≤ γp∗

∫
RN

|u|
p∗ ≤ C(N ) a1+

2
N −

N
2

(∫
RN

|∇u|
2
)N+2

2
,

following which there is ∫
RN

|∇u|
2
≥

C(N )

a
4

N2 +
2
N −1

.

Combining with (5-4), one obtains

inf
0<µ≤1,u∈Qµ(a)

∫
RN

|u|
2
|∇u|

2 > 0.

On the other hand, when N ≥ 4, there is p∗ > 2∗. But using interpolation inequality
and Young’s inequality we have

(5-6) (N + 2)
∫

RN
u2

|∇u|
2
+

∫
RN

|∇u|
2

≤ γp∗

∫
RN

|u|
p∗ ≤

(∫
RN

|u|
2∗

)22∗
−p∗

2∗
(∫

RN
|u|

22∗
)p∗−2∗

2∗

≤ C(N )
(∫

RN
|∇u|

2
)22∗

−p∗

2
(∫

RN
u2

|∇u|
2
)p∗−2∗

2

≤ (N + 2)
∫

RN
u2

|∇u|
2
+ C(N )

(∫
RN

|∇u|
2
) 22∗

−p∗

2∗+2−p∗

,

which gives that
∫

RN |∇u|
2
≥ C(N ) and again

inf
0<µ≤1,u∈Qµ(a)

∫
RN

|u|
2
|∇u|

2 > 0.

(2) Since p∗γp∗
= 2 + N , we see from (3-10) that

sup
n≥1

max
{
µ

∫
RN

|∇un|
θ ,

∫
RN

|∇un|
2
}
<+∞.

On the one hand, when N ≤ 3, we obtain from (5-5) that

sup
n≥1

∫
RN

|un|
p∗ ≤ C sup

n≥1

(∫
RN

|∇un|
2
)N+2

2
<+∞,
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which in turn combining with Qµ(un) = 0 implies supn≥1
∫

RN u2
n|∇un|

2 < +∞.
On the other hand, when N ≥ 4, for any n ≥ 1 we obtain from (5-6) that

(N + 2)
∫

RN
u2

n|∇un|
2
≤

∫
RN

|un|
p∗ ≤ C

(∫
RN

u2
n|∇un|

2
)p∗−2∗

2
,

which gives supn≥1
∫

RN u2
n|∇un|

2 <+∞ since 0< p∗ − 2∗ < 2 for N ≥ 4. □

First, we will consider a minimization problem:

(5-7) mµ(a) := inf
u∈Qµ(a)

Iµ(u).

Remark 5.5. It is easy to see from Lemma 5.4 and (3-10) that

(5-8) inf
0≤µ≤1

mµ(a)≥
N

2(2+N )
inf

0≤µ≤1,u∈Qµ(a)

∫
RN

|∇u|
2 > 0.

On the other hand, to use the convergence Theorem 4.1, we need to give an uniform
upper bound of mµ(a). Indeed for any fixed a > a∗, recalling the function

wa =

(
a
a∗

)1
2

Q
1
2
p∗

∈ S(a)

in Lemma 5.1, and letting sµ := sµ(wa), from Qµ(sµ ⋆wa)= 0 we obtain

(5-9) (1 + γθ )µe−(2+N−θ−θγθ )sµ
(

a
a∗

)θ
2
∫

RN
|∇Q

1
2
p∗

|
θ
+ e−Nsµ

(
a
a∗

)∫
RN

|∇Q
1
2
p∗

|
2

= (1 + γθ )µe−(2+N−θ−θγθ )sµ
∫

RN
|∇wa|

θ
+ e−Nsµ

∫
RN

|∇wa|
2

= γp∗

∫
RN

|wa|
p∗ − (2 + N )

∫
RN

|wa|
2
|∇wa|

2

=
N (2+N )
4(N +1)

(
1 −

(
a
a∗

)−
2
N
)(

a
a∗

)2+
2
N
∥Q

1
2
p∗

∥1 > 0,

it follows that sup0≤µ≤1 sµ <+∞. Therefore,

(5-10) sup
0≤µ≤1

mµ(a)≤ sup
0≤µ≤1

Iµ(sµ ⋆wa)= sup
0≤µ≤1

Iµ(sµ ⋆wa)− Qµ(sµ ⋆wa)

= sup
0≤µ≤1

2+N −θ−θγθ

θ(2+N )
µeθ(1+γθ )sµ

∫
RN

|∇Q
1
2
p∗

|
θ

+
N

2(2+N )
e2sµ

∫
RN

|∇Q
1
2
p∗

|
2

<+∞.

Now we construct a special Palais–Smale sequence of Iµ|S(a) at level mµ(a).
But different from the one in Section 3B, in mass-critical case there is no result
as Lemma 3.5, and hence there is no mountain-pass-type result as Lemma 3.6. So
we will not consider Iµ directly. Instead, we study the auxiliary functional Kµ(u)
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defined by (3-28) and we point out that our approach is inspired by [6] (see also [12]).
Similar to [6, Lemma 3.7], we have:

Lemma 5.6. Let a sequence un ∈ S(a) with un → u in X as n → ∞. Then if
u ∈ ∂O, we have Kµ(un)→ ∞ as n → ∞.

Proof. If un → u in X , then there are∫
RN

|∇un|
θ
→

∫
RN

|∇u|
θ > 0,

∫
RN

|∇un|
2
→

∫
RN

|∇u|
2 > 0,∫

RN
|un|

2
|∇un|

2
→

∫
RN

|u|
2
|∇u|

2 > 0,
∫

RN
|un|

p∗ →

∫
RN

|u|
p∗ > 0.

Let sn = sµ(un). Since Qµ(sn ⋆ un)= 0, we obtain

(5-11) (1 + γθ )µe−(2+N−θ−θγθ )sn
∫

RN
|∇un|

θ
+ e−Nsn

∫
RN

|∇un|
2

= γp∗

∫
RN

|un|
p∗ − (2 + N )

∫
RN

|un|
2
|∇un|

2

→ γp∗

∫
RN

|u|
p∗ − (2 + N )

∫
RN

|u|
2
|∇u|

2
= 0,

where the last equality comes from u ∈ ∂O. It follows that sn → +∞. So

Kµ(un)= Iµ(sn ⋆ un)= Iµ(sn ⋆ un)− Qµ(sn ⋆ un)

=
2+N −θ−θγθ

θ(2+N )
µeθ(1+γθ )sn

∫
RN

|∇un|
θ
+

N
2(2+N )

e2sn
∫

RN
|∇un|

2

→ +∞. □

Recalling Definition A, we give directly the following results without a proof,
since the proof is very similar to the one of [6, Proposition 3.9] (see also [12]).

Lemma 5.7. Let G be a homotopy stable family of compact subsets of Y = Sr (a)
with boundary B = ∅, and set

(5-12) d := inf
A∈G

max
u∈A

Kµ(u).

If d > 0, then there exists a sequence un ∈ Sr (a) such that as n → ∞,

Iµ(un)→ d, Iµ|
′

S(a)(un)→ 0, Qµ(un)= 0.

Moreover, if one can find a minimizing sequence An for d with the property that
u ≥ 0 a.e. for any u ∈ An , then one can find the sequence un satisfying the additional
condition

u−

n → 0, a.e. in RN .

Remark 5.8. As pointed out in [6], the set O is neither complete nor connected,
and hence in principle the assumptions of the minimax theorem (such as [19,
Theorem 3.2]) are not satisfied. However, the connectedness assumption can
be avoided considering the restriction of Kµ on the connected component of O
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(if B ̸= ∅, we need to assume that B is contained in a connected component
of Qµ(a)). Regarding the completeness, what is really used in the deformation
lemma [19, Lemma 3.7] is that the sublevel sets K c

µ := {u ∈ S(a) : Kµ(u)≤ c} are
complete for every c ∈ R. This follows by Lemma 5.6. Hence the minimax theorem
[19, Theorem 3.2] can be used to obtain the Palais–Smale sequence. The rest of
the process is similar to Lemma 3.12.

Lemma 5.9. For any fixed µ ∈ (0, 1], there exists a sequence un ∈ Sr (a) such that

Iµ(un)→ mµ(a), Iµ|
′

S(a)(un)→ 0, Qµ(un)= 0 and u−

n → 0 a.e. in RN .

Proof. We use Lemma 5.7 by taking the set G of all singletons belonging to Sr (a).
It is clearly a homotopy stable family of compact subsets of Sr (a) with boundary
B = ∅. Observe that

αµ(a)= inf
A∈G

max
u∈A

Kµ(u)= inf
u∈Sr (a)

max
s∈R

Iµ(s ⋆ u).

We claim that
αµ(a)= mµ(a).

Indeed, on one hand, for any u ∈ Sr (a) there exists a sµ(u) such that

sµ(u) ⋆ u ∈ Qµ(a) and Iµ(sµ(u) ⋆ u)= max
s∈R

Iµ(s ⋆ u).

This implies that

αµ(a)= inf
u∈Sr (a)

max
s∈R

Iµ(s ⋆ u)≥ inf
u∈Qµ(a)

Iµ(u)= mµ(a).

On the other hand, for any u ∈ Qr
µ(a), Iµ(u)= maxs∈R Iµ(s ⋆ u), so

mr
µ(a) := inf

u∈Qr
µ(a)

Iµ(u)≥ inf
u∈Sr (a)

max
s∈R

Iµ(s ⋆ u)= αµ(a).

Finally, the inequality mµ(a) ≥ mr
µ(a) can be obtained easily by the symmetric

decreasing rearrangement. So, the conclusion follows directly from Lemma 5.7. □

Then as in Section 3B, we have:

Theorem 5.10. Let p = p∗. For any fixed µ ∈ (0, 1], there exists a uµ ∈ Xr \ {0}

and a λµ ∈ R such that

I ′

µ(uµ)+ λµuµ = 0,

Iµ(uµ)= mµ(a), Qµ(uµ)= 0, 0< ∥uµ∥
2
2 ≤ a, uµ ≥ 0.

Moreover, if λµ ̸= 0, we have that ∥uµ∥
2
2 = a, i.e., mµ(a) is achieved, and uµ is a

ground state critical point of Iµ|S(a).

Proof of Theorem 1.4. The proof is exactly the same as the one of Theorem 1.1, so
we omit the details. □
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Remark 5.11. We are not able to obtain multiple solutions as in Section 3C. Indeed,
if we consider an open subset O and follow the strategy in Section 3C, we need to
prove a result like Lemma 3.13. However, for any finite dimensional subspace W j

of X , using the equivalence of norms in finite dimensional spaces, we can only
obtain that for any j > 0, there exists a a( j) > 0 large enough such that

{u ∈ W j : ∥u∥
2
2 = a} ⊂ O when a > a( j),

which is necessary to prove the nonemptiness of the sets of type A j . And another
difficulty is that as µ→ 0+, we are unable to distinguish the energy

b j (a) := lim
µ→0+

c j
µ(a) and bk(a) := lim

µ→0+

ck
µ(a)

for j ̸= k. As a result, we cannot distinguish the solutions related to b j (a) and bk(a).

Recalling Proposition 1.6, we prove the concentration theorem.

Proof of Theorem 1.8. Let un be a radially symmetric positive solution of (1-7) for
a = an with an > a∗ and an → a∗. From Lemma 5.4, we see that∫

RN
u2

n|∇un|
2
≥

C(
an
a∗

)2/N
−1

→ +∞,(5-13)

∫
RN |∇un|

2∫
RN u2

n|∇un|
2 ≤ C

((
an

a∗

)2/N
− 1

)
→ 0.(5-14)

Since Qµ(un)= 0, we know that

(5-15)

∫
RN |un|

p∗∫
RN u2

n|∇un|
2 →

4(N +1)
N

.

Let vn(x) := ε
N/2
n un(εnx) with

εn =

(∫
RN

u2
n|∇un|

2
)−

1
2+N

→ 0+.

Direct calculations show that

∥vn∥
2
2 =an →a∗,

∫
RN
v2

n|∇vn|
2
=1, ∥vn∥

p∗

p∗
→

4(N +1)
N

and εN
n ∥∇vn∥

2
2 →0.

Then v2
n is bounded in E p∗ . Moreover, using [34, Lemma I.1], we deduce that there

exist δ > 0 and a sequence yn ∈ RN such that for some R > 0,∫
BR(yn)

v2
n ≥ δ.

Observing that Eq is a reflexive Banach space when 1< q <∞, we know that there
exists a nonnegative radially symmetric function v ̸= 0 with v2

∈ E p∗ ∩ L2(RN )
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such that
v2

n(· + yn) ⇀ v2 in E p∗,

vn(· + yn) ⇀ v in L2(RN ),

v2
n(· + yn)→ v2 in Lq(RN ) for 1< q < 2∗,

vn(· + yn)→ v a.e. in RN .

Since un solves
−1un − un1u2

n + λnun = u p∗−1
n ,

where the Lagrange multiplier is given by

λn =
1
an

(∫
RN

|un|
p∗ −

∫
RN

|∇un|
2
−

∫
RN

u2
n|∇un|

2
)
,

vn satisfies

−εN
n 1vn − vn1v

2
n + ε2+N

n λnvn = v p∗−1
n .

Combining (5-14) and (5-15), we deduce that ε2+N
n λn →

4
Na∗ . Then a similar

approach as Lemma A.2 tells that

(5-16) −v1v2
+ ε2+N

n λnv = v p∗−1.

Now setting

wn(x) :=

(
Na∗

4

) N
2+N
v2

n

((
Na∗

4

) 1
2+N

x + yn

)
(5-17)

=

[(
Na∗

4

) 1
2+N
εn

]N
u2

n

((
Na∗

4

) 1
2+N
εnx + εn yn

)
,

w(x) :=

(
Na∗

4

) N
2+N
v2

((
Na∗

4

) 1
2+N

x
)
,(5-18)

it is easily seen that wn ⇀ w in E p∗ and ∥wn∥1 = ∥vn∥
2
2 = an . Moreover, it

follows from (5-16) that w is a solution of (1-14). Thus w = Q p∗
, and hence

∥w∥1 = ∥v∥2
2 = a∗. So we have vn → v in L2(RN ), which finishes the proof. □

Appendix

Lemma A.1. In the setting of Section 2A, V (u) ∈ C1(X ).

Proof. The proof is elementary. When N = 2, since W 1,θ (R2) ↪→ C0,α(R2), it is
easy to check that V (u) ∈ C1(X ). Now we set N ≥ 3. For any u, φ ∈ X ,

(A-1) V (u+tφ)−V (u)
t

= At + Bt2
+ Ct3

+ 2
∫

RN
uφ|∇u|

2
+ u2

∇u · ∇φ,
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where
A =

∫
RN

u2
|∇φ|

2
+φ2

|∇u|
2
+ 4uφ∇u · ∇φ,

B =

∫
RN
φ2

∇u · ∇φ+ uφ|∇φ|
2 and C =

∫
RN
φ2

|∇φ|
2.

We need to prove that A, B,C are finite numbers. Indeed, since 4N
N+2 <θ <

4N+4
N+2 <4,

there is θ < 2θ
θ−2 <

θN
N−θ

and hence

(A-2)
∫

RN
u2

|∇φ|
2
≤

(∫
RN

|u|
2θ/(θ−2)

)(θ−2)/θ(∫
RN

|∇φ|
θ
)2/θ

≤ C∥u∥
2/θ
W 1,θ (RN )

∥φ∥
2/θ
W 1,θ (RN )

<∞.

We can handle other terms in a similar way, so A, B,C are finite numbers. Now by
letting t → 0 in (A-1), we immediately get the Frèchet derivative as

DV (u)[φ] = 2
∫

RN
uφ|∇u|

2
+ u2

∇u · ∇φ.

Then in a similarly way to (A-2), one can prove that DV (u) is continuous for u ∈X ,
so V (u) ∈ C1(X ) and V ′(u)= DV (u). □

Lemma A.2. Assume that I ′
µ(un)+λun → 0 for some λ ∈ R with un ∈ X , and that

un ⇀ u in X . Then up to a subsequence,

(1) un → u in Xloc := W 1,θ
loc (R

N )∩ W 1,2
loc (R

N ),

(2) un∇un → u∇u in (L2
loc(R

N ))N ,

(3) I ′
µ(u)+ λu = 0.

Proof. The proof is inspired by [29, Lemma 14.3]. Since uµn ⇀ u in X , we have
∥un∥X ≤ C0 for any n ≥ 1. For any R > 1, we set φ ∈ C∞

0 (R
N ) satisfying

0 ≤ φ ≤ 1, φ(x)=

{
1, |x | ≤ R,
0, |x | ≥ 2R,

and |∇φ| ≤ 2.

Then for any n,m ∈ N,

(A-3) o(1)n+o(1)m = (I ′

µ(un)+λun)[(un−um)φ]−(I ′

µ(um)+λum)[(un−um)φ]

= µ
∫

RN
(|∇un|

θ−2
∇un−|∇um |

θ−2
∇um)·∇((un−um)φ)

+

∫
RN
(∇un−∇um)·∇((un−um)φ)

+2
∫

RN
(un|∇un|

2
−um |∇um |

2)(un−um)φ

+2
∫

RN
(u2

n∇un−u2
m∇um)·∇((un−um)φ)

−

∫
RN
(|un|

p−2 un−|um |
p−2 um)(un−um)φ

=: K1+K2+K3+K4+K5.



QUASILINEAR SCHRÖDINGER EQUATIONS 135

Next we estimate Ki for i = 1, 2, 3, 4, 5:

K1 = µ
∫

BR

(|∇un|
θ−2

∇un − |∇um |
θ−2

∇um) · ∇(un − um)

+µ
∫

B2R\BR

(|∇un|
θ−2

∇un − |∇um |
θ−2

∇um) · ∇(un − um)φ

+µ
∫

B2R\BR

(|∇un|
θ−2

∇un − |∇um |
θ−2

∇um) · ∇φ(un − um)

≥ Cµ
∫

BR

|∇un − ∇um |
θ
+ Cµ

∫
B2R\BR

|∇un − ∇um |
θφ

− C(∥un∥
θ−1
θ + ∥um∥

θ−1
θ )∥un − um∥Lθ (B2R)

≥ Cµ∥∇un − ∇um∥
θ
Lθ (BR)

− C∥un − um∥Lθ (B2R),

and similarly

K2 ≥C∥∇un−∇um∥
2
L2(BR)

−C∥un−um∥L2(B2R), K3 ≥−C∥un−um∥Lθ (B2R),

K4 ≥2∥un∇un−um∇um∥
2
L2(BR)

−C∥un−um∥Lθ (B2R), K5 ≥−C∥un−um∥L p(B2R).

Substituting these estimates into (A-3), we obtain

µ∥∇un − ∇um∥
θ
Lθ (BR)

+ ∥∇un − ∇um∥
2
L2(BR)

+ ∥un∇un − um∇um∥
2
L2(BR)

≤ C∥un −um∥Lθ (B2R)+C∥un −um∥L2(B2R)+C∥un −um∥Lθ (B2R)+o(1)n +o(1)m

→ 0, as n → ∞, m → ∞,

where in the last estimate we use the compact embedding theorem in bounded
domains. Thus for any R > 1, un is a Cauchy sequence in W 1,θ (BR)∩ W 1,2(BR),
and un∇un is also a Cauchy sequence in (L2(BR))

N . So up to a subsequence
un → u in Xloc and un∇un → u∇u in (L2

loc(R
N ))N . Finally, we need to prove that

for any ϕ ∈ X , there holds (I ′
µ(u)+ λu)[ϕ] = 0. Since un∇un → u∇u a.e. in RN

and un is bounded in X , we obtain that

|∇un|
θ−2

∇un ⇀ |∇u|
θ−2

∇u in L
θ
θ−1 (RN ),

un|∇un|
2 ⇀ u|∇u|

2 in L
4
3 (RN ),

u2
n∇un ⇀ u2

∇u in (L
4
3 (RN ))N ,

it follows that

(I ′

µ(u)+ λu)[ϕ] = lim
n→∞

(I ′

µ(un)+ λun)[ϕ] = 0. □
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