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ON THE POTENTIAL FUNCTION OF THE
COLORED JONES POLYNOMIAL WITH ARBITRARY COLORS

SHUN SAWABE

We consider the potential function of the colored Jones polynomial for a link
with arbitrary colors and obtain the cone-manifold structure for the link
complement. In addition, we establish a relationship between a saddle point
equation and hyperbolicity of the link complement. This provides evidence
for the Chen–Yang conjecture on the link complement.

1. Introduction

The volume conjecture is one of the most important problems in low-dimensional
topology. Kashaev [1997] discovered that a certain limit of the Kashaev invariant
of specific hyperbolic knots such as the figure-eight knot is equal to the hyperbolic
volume of their complements. Murakami and Murakami [2001] proved that the
Kashaev invariant is a specialization of the colored Jones polynomial and conjectured
that a similar limit of the colored Jones polynomial for an arbitrary knot is equal
to the simplicial volume of its complement. In addition, Chen and Yang [2018]
considered the volume conjectures for 3-manifold invariants such as the Reshetikhin–
Turaev invariant and the Turaev–Viro invariant, and provided numerical evidence
for them for specific 3-manifolds. Detcherry, Kalfagianni, and Yang [Detcherry
et al. 2018] showed the relationship between the colored Jones polynomial for a
link and the Turaev–Viro invariant of its complement. By using this relation, they
mathematically verified the Chen–Yang conjecture for complements of the figure-
eight knot and Borromean rings. In addition, Belletti, Detcherry, Kalfagianni, and
Yang verified the Chen–Yang conjecture for fundamental shadow links in [Belletti
et al. 2022].

Meanwhile, theoretical evidence of the original volume conjecture has been
considered. Kashaev and Tirkkonen [2000] proved the volume conjecture for torus
knots. On the other hand, Yokota [2000] found a correspondence between quantum
factorials in the Kashaev invariant and an ideal triangulation of a hyperbolic knot
complement. He showed that a saddle point equation for the potential function (see
Section 3 for the definition) of the invariant is equivalent to a hyperbolicity equation.
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Also, the potential function of the colored Jones polynomial JN (K ; e2π
√

−1/N ) for a
hyperbolic knot K is considered in [Cho 2016a; 2016b; Cho and Murakami 2013].

In this study, we consider the potential function of the colored Jones polyno-
mial for a link L with arbitrary colors. We establish a relationship between a
saddle point equation and a hyperbolicity equation of the link complement. More
precisely, for a fixed diagram D of the link L , we introduce a potential function
8D(a1, . . . , an, w1, . . . , wν) of the colored Jones polynomial Ja(N )(L; e2π

√
−1/N )

with new parameters corresponding to the colors a(N ) of link components. When
we fix the new parameters a = (a1, . . . , an), the saddle point (σ1(a), . . . , σν(a)) of
8D(a, −) gives a noncomplete hyperbolic structure to the link complement. In fact,
the manifold Ma1,...,an with the hyperbolic structure is a cone-manifold. Specifically,
we prove the following statement:

Theorem 4.1. The hyperbolic volume of the cone-manifold Ma1,...,an is equal to the
imaginary part of

8̃D = 8D −

ν∑
j=1

w j
∂8D

∂w j
log w j

evaluated at w j = σ j (a) for j = 1, . . . , ν.

Here, the function 8D(a, σ1(a), . . . , σν(a)) determines the Neumann–Zagier
potential function [Neumann and Zagier 1985]. Furthermore, we prove that the
derivatives of the potential function with respect to the new parameters correspond
to the completeness of the hyperbolic structure of the link complement. Note that
similar arguments for the Kashaev invariant of the 52 knot are indicated in [Yokota
2003]. As an application, we prove the following theorem:

Theorem 5.3. Let D be a diagram of a hyperbolic link with n components, and
let 1 be (1, . . . , 1) ∈ Zn . The point (1, σ1(1), . . . , σν(1)) is a saddle point of the
function 8D(a1, . . . , an, w1, . . . , wν) and gives a complete hyperbolic structure to
the link complement.

The paper is organized as follows: In Section 2, we recall the facts on the colored
Jones polynomial and the Turaev–Viro invariant. In Section 3, we give the potential
function of the colored Jones polynomial. In Section 4, we consider the case where
the new parameters are fixed and prove Theorem 4.1. In Section 5, we regard
the new parameters as variables and prove Theorem 5.3. In Section 6, we briefly
mention the Witten–Reshetikhin–Turaev invariant.

2. Preliminaries

In this section, we review some facts on the invariants for a link and a 3-manifold.
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The colored Jones polynomial and the Turaev–Viro invariant. Let L be an oriented
n-component link, let i be a multiinteger, and let t be an indeterminate. The colored
Jones polynomial Ji (L; t) is defined skein-theoretically by using the Kauffman
bracket, which is a map ⟨ · ⟩ from the set of all unoriented diagrams of links to
the ring of Laurent polynomials Z[A, A−1

] in an indeterminate A given by the
following axioms:

(1) For the trivial diagram ⃝,
⟨⃝⟩ = 1.

(2) For an unoriented diagram D with the trivial component added,

⟨D ⊔ ⃝⟩ = (−A2
− A−2)⟨D⟩.

(3) For each crossing,
〈 〉 = A〈 〉+ A−1〈 〉

Let D0 be an unoriented diagram of the link L . The colored Jones polynomial
Ji (L; t) for the link L is a certain normalization of the Kauffman bracket of the
parallelized diagram of D0 in which the Jones–Wenzl idempotent is inserted, where
t = A−4 [Detcherry et al. 2018].

Remark 2.1. In this paper, we normalize the colored Jones polynomial so that the
one for the trivial knot is equal to 1.

From the perspective of skein theory, we can define the 3-manifold invariants
such as the Reshetikhin–Turaev invariant or the Turaev–Viro invariant. Detcherry,
Kalfagianni, and Yang [Detcherry et al. 2018] presented the relationship between the
Turaev–Viro invariant for the link complement and the colored Jones polynomial.

Theorem 2.2 [Detcherry et al. 2018]. Let L ⊂ S3 be a link with n components
and t̄ = q2. Namely, t̄ = q2

= A4.

(1) For an integer r ≥ 3 and a primitive 4r-th root of unity A,

TVr (S3
\ L , q) = η2

r

∑
1≤i≤r−1

|J ′

i (L; t̄)|2.

(2) For an odd integer r = 2m + 1 ≥ 3 and a primitive 2r-th root of unity A,

TVr (S3
\ L , q) = 2n−1(η′

r )
2

∑
1≤i≤m

|J ′

i (L; t̄)|2.

Here, ηr and η′
r are

ηr =
A2

− A−2
√

−2r
and η′

r =
A2

− A−2
√

−r
.

In addition, for a multiinteger i = (i1, . . . , in), we let 1 ≤ i ≤ m denote that
1 ≤ ik ≤ m for all integers k = 1, . . . , n.
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Remark 2.3. In [Detcherry et al. 2018], the normalization of the colored Jones
polynomial and conventions on parameters are slightly different from the ones in
this paper. Therefore, we use the notation J ′

i (L; t̄) in Theorem 2.2.

These invariants are conjectured to relate to the geometry of the 3-manifold.
Murakami and Murakami [2001] conjectured that a certain limit of the colored
Jones polynomial for a knot is equal to the volume of the complement of the knot.

Conjecture 2.4 (volume conjecture [Murakami and Murakami 2001]). For any
knot K ,

2π lim
N→∞

log |JN (K ; t = e2π
√

−1/N )|

N
= v3∥K∥,

where v3 is the volume of the ideal regular tetrahedron in the three-dimensional
hyperbolic space and ∥ · ∥ is the simplicial volume for the complement of K .

This conjecture was generalized to the one for 3-manifold invariants.

Conjecture 2.5 (Chen–Yang conjecture [2018]). For any 3-manifold M with a
complete hyperbolic structure of the finite volume,

2π lim
r→∞

log TVr (M, q = e2π
√

−1/r )

r
= Vol(M),

where r runs over all odd integers, TV (M) is a Turaev–Viro invariant of M and
Vol(M) is a hyperbolic volume of M.

Moreover, Detcherry, Kalfagianni, and Yang proved the following theorem by
using Theorem 2.2:

Theorem 2.6 [Detcherry et al. 2018]. Let L be either the figure-eight knot or the
Borromean rings, and let M be the complement of L in S3. Then,

2π lim
r→∞

log TVr (M, q = e2π
√

−1/r )

r

= 4π lim
m→∞

log
∣∣J ′

m(L; t̄ = e4π
√

−1/(2m+1))
∣∣

2m + 1
= Vol(M),

where r = 2m + 1 runs over all odd integers.

Remark 2.7. If t is a root of unity, t̄ is the complex conjugate of t . Therefore,

lim
m→∞

log
∣∣J ′

m(L; t̄ = e4π
√

−1/(2m+1))
∣∣

2m + 1
= lim

m→∞

log
∣∣Jm(L; t = e4π

√
−1/(2m+1))

∣∣
2m + 1

.

Meanwhile, the evidence of the volume conjecture was established in [Yokota
2000]. What is important is that a saddle point equation of a potential function
of the colored Jones polynomial for a knot coincides with a gluing condition of
the ideal triangulation of the knot complement. This and Theorem 2.2 indicate
that if we can establish a similar relationship between a hyperbolicity equation
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and a potential function of the colored Jones polynomial with arbitrary colors, the
relationship is evidence of the Chen–Yang conjecture for a link complement.

The R-matrix of the colored Jones polynomial. In this subsection, we give the
R-matrix of the colored Jones polynomial by following [Kirby and Melvin 1991].
For an integer r > 1, let Ar be the algebra generated by X , Y , K , and K with the
following relations:

K = K −1, K X = s X K , K Y = s−1Y K ,

XY − Y X =
K 2

−K 2

s−s−1 , X r
= Y r

= 0, K 4r
= 1,

where s = eπ
√

−1/r . Namely, Ar is Uq(sl2) with the last 3 relations. The universal
R-matrix R ∈ Ar ⊗Ar is given by

R =
1
4r

∑
0≤k<r

0≤a,b<4r

(s − s−1)k

[k]s !
s−(ab+(b−a)k+k)/2 X k K a

⊗ Y k K b.

Here, we put

[k]s =
sk

−s−k

s−s−1 , [k]s ! = [k]s · · · [1]s, [0]s ! = 1.

Let N be a positive integer and m be the half-integer satisfying N = 2m + 1. We
define the action of Ar on an N -dimensional complex vector space V with a basis
{e−m, e−m+1, . . . , em} by

Xei = [m − i + 1]sei−1, Y ei = [m + i + 1]sei+1, K ei = s−i ei .

Here, ei in this paper corresponds to e−i in [Kirby and Melvin 1991]. Let V ′ be
an (N ′

= 2m′
+ 1)-dimensional complex vector space with basis {e′

−m′, . . . , e′

m′}.
Then, the quantum R-matrix RV V ′ : V ⊗ V ′

→ V ′
⊗ V is given by

RV V ′(ei ⊗ e′

j )

=

min{m+i,m′
− j}∑

k=0

{m − i + k}s ! {m′
+ j + k}s !

{k}s ! {m − i}s ! {m′ + j}s !
s2i j+k(i− j)−k(k+1)/2e′

j+k ⊗ ei−k,

where {k}s = sk
− s−k , {k}s ! = {k}s · · · {1}s , and {0}s ! = 1.

Also, its inverse is

R−1
V V ′(e′

i ⊗e j )

=

min{m−i,m′
+ j}∑

k=0

(−1)k {m− j +k}s ! {m′
+i +k}s !

{k}s ! {m− j}s ! {m′+i}s !
s−2i j+k(i− j)/2+k(k+1)/2e j−k ⊗e′

i+k .



176 SHUN SAWABE

L+ L− L0

Figure 2.1. The links that are identical except for these regions.

These matrices and the isomorphism µ : V → V , where

µ(ei ) = s−2i ei , i = −m, . . . , m,

defines a link invariant J̃ . If V = V ′ and dim V = 2, then

RV V =


s1/2 0 0 0

0 0 s−1/2 0
0 s−1/2 s1/2

−s−3/2 0
0 0 0 s1/2


and satisfies

s1/2 RV V − s−1/2 R−1
V V = (s − s−1)I4,

where I4 is the 4 × 4 identity matrix. Considering the writhes, this implies

(2.1) s2 J̃ (L+) − s−2 J̃ (L−) = (s − s−1) J̃ (L0),

where L+, L−, and L0 are the links in Figure 2.1.
Under the substitution s = −t−1/2, the relation (2.1) coincides with the skein

relation of the Jones polynomial. Therefore, under this substitution the R-matrix
of the colored Jones polynomial Ji (L; t) for L with colors i = (i1, . . . , in) ∈ Zn

>0,
where i j , with j = 1, . . . , n, is the dimension of the assigned representation, is

(2.2) RV V ′(ei ⊗ e′

j ) =

min{m+i,m′
− j}∑

k=0

(−1)k+k(m+m′)+2i j {m − i + k}! {m′
+ j + k}!

{k}! {m − i}! {m′ + j}!

× t−i j−k(i− j)/2+k(k+1)/4e′

j+k ⊗ ei−k,

and its inverse is

R−1
V V ′(e′

i ⊗ e j ) =

min{m−i,m′
+ j}∑

k=0

(−1)−k(m+m′)−2i j {m − j + k}! {m′
+ i + k}!

{k}! {m − j}! {m′ + i}!

× t i j−k(i− j)/2−k(k+1)/4ej−k ⊗ e′

i+k,

where
{k} = tk/2

− t−k/2, {k}! = {k}{k − 1} · · · {1}, {0}! = 1.
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3. Potential function

Let L = L1 ∪ · · · ∪ Ln be an oriented n-component link. We deform L so that L
is a closure of a braid. Let D be its oriented diagram, and ξN = e2π

√
−1/N be the

primitive N -th root of unity. For each link component L i , with i = 1, . . . , n, we
assign its color ai (N ) ∈ Z>0. We put a(N ) = (a1(N ), . . . , an(N )). In this section,
we determine a potential function of the colored Jones polynomial Ja(N )(L; ξ

p
N )

for L , where p is a nonzero integer. See [Cho 2016b] for details.

Definition 3.1. Suppose that the asymptotic behavior of a certain quantity QN for
a sufficiently large N is

QN ∼

∫
· · ·

∫
�

PN eN/(2π
√

−1)8(z1,...,zν) dz1 · · · dzν,

where PN grows at most polynomially and � is a region in Cν . We call this function
8(z1, . . . , zν) a potential function of QN .

We can easily verify that

(3.1) {k}! = (−1)k t−k(k+1)/4(t)k,

where (t)k = (1− t)(1− t2) · · · (1− tk). Thus, we approximate (ξ
p
N )k by continuous

functions.

Proposition 3.2. For a sufficiently large integer N ,

log(ξ
p
N )k =

N
2pπ

√
−1

(
− Li2(ξ

pk
N ) +

π2

6
+ o(1)

)
,

where Li2 is a dilogarithm function

Li2(z) = −

∫ z

0

log(1 − x)

x
dx .

Remark 3.3. The dilogarithm function satisfies

Li2(z) =

∞∑
k=1

z2

k2 , for |z| < 1, and Li2(1) =

∞∑
k=1

1
k2 =

π2

6
.

Proof. By the direct calculation, we have

log(ξ
p
N )k =

k∑
j=1

log(1−e2pπ j
√

−1/N ) = N
( ∫ k/N

0
log

(
1−e2pπ

√
−1θ

)
dθ+o(1)

)

=
N

2pπ
√

−1

( ∫ ξ
pk
N

1

log(1−x)

x
dx+o(1)

)
=

N
2pπ

√
−1

(
− Li2(ξ

pk
N )+

π2

6
+o(1)

)
. □
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First, we consider the case where the strings at a crossing are in the different
components. Let {a(N )}N=1,2,... and {b(N )}N=1,2,... be sequences of natural num-
bers. We can approximate the R-matrix by Proposition 3.2. For a positive crossing
of the link diagram, the R-matrix RV V ′ of (2.2) is labeled. For convenience, we
recall the summand of the R-matrix:

(−1)k+k(m N +m′

N )+2i j t−i j−k(i− j)/2+k(k+1)/4 {m N − i + k}! {m′

N + j + k}!

{k}! {m N − i}! {m′

N + j}!
.

Here, m N and m′

N are the half-integers satisfying a(N ) = 2m N + 1 and b(N ) =

2m′

N + 1. If we assume that a(N ) and b(N ) are odd numbers, indices i and j are
integers. Moreover, by adding 2 to a(N ) or b(N ) if necessary, we can assume that
m N + m′

N is an even integer without changing the values of the limit a(N )/N and
b(N )/N . Therefore, under these assumptions the summand is

(−1)k t−i j−k(i− j)/2+k(k+1)/4 {m N − i + k}! {m′

N + j + k}!

{k}! {m N − i}! {m′

N + j}!
.

From (3.1), we have

t−i j−((m N +m′

N )/2)k (t)m N −i+k(t)m′

N + j+k

(t)k(t)m N −i (t)m′

N + j
.

Under substitution x = ξ i
N , y = ξ

j
N , and z = ξ k

N , the potential function for a positive
crossing is

1
p

{
−π

√
−1p a+b

2
log(z p) − log(x p) log(y p) −

π2

6

− Li2
(
ep

a
z p

x p

)
− Li2(e

p
b y pz p) + Li2

( ep
a

x p

)
+ Li2(e

p
b y p) + Li2(z p)

}
,

where a(N )/N → a, b(N )/b → b, and ea = eπ
√

−1a . Note that the indices of the
summand are labeled to the edges of the link diagram. We change these indices to
the ones corresponding to regions of the link diagram as shown in Figure 3.1.

Ei ↔ ji

kl ↔ Rl Rr ↔ kr

ji = kl − kr

Figure 3.1. Indices corresponding to an edge Ei and regions Rl and Rr .
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kj1

kj4

kj3

kj2 kj2

kj3kj1

kj4

X
k

k

k

k

k

k

k

Figure 3.2. Indices corresponding to regions around a crossing.

If k j1, . . . , k j4 are indices around a crossing as shown in Figure 3.2, we have

i = k j2 − k j1, j = k j3 − k j2, j + k = k j4 − k j1, i − k = k j3 − k j4 .

From the above equations, we have k = k j2 + k j4 − k j1 − k j3 . Therefore, by putting
wji = ξ

k ji
N and substituting

x =
wj2

wj1
, y =

wj3

wj2
, z =

wj2wj4

wj1wj3
,

the potential function for a positive crossing c is

8+

c,p =
1
p

{
π

√
−1p2 a+b

2
log

wj1wj3

wj2wj4
− p2 log

wj2

wj1
log

wj3

wj2

− Li2

(
ep

a

w
p
j4

w
p
j3

)
− Li2

(
ep

b

w
p
j4

w
p
j1

)
+ Li2

(
w

p
j2w

p
j4

w
p
j1w

p
j3

)

+ Li2

(
ep

a

w
p
j1

w
p
j2

)
+ Li2

(
ep

b

w
p
j3

w
p
j2

)
−

π2

6

}
.

If the strings at a crossing are in the same component, we have to consider the mod-
ification on the Reidemeister move I. The Reidemeister move I on the component
with a color a(N ) leads to the multiplication by s2m2

N +2m N = (−1)2m2
N +2m N t−m2

N −m N .
Therefore, we have to multiply (−1)−2m2

N −2m N tm2
N +m N to cancel it. Under the

assumption that a(N ) is an odd integer, this corresponds to the addition of the
function (π

√
−1pa)2/p. Therefore, the potential function is

8+

c,p =
1
p

{
(π

√
−1pa)2

+π
√

−1p2a log
wj1wj3

wj2wj4
−p2 log

wj2

wj1
log

wj3

wj2
−

π2

6

−Li2

(
ep

a

w
p
j4

w
p
j3

)
−Li2

(
ep

a

w
p
j4

w
p
j1

)
+Li2

(
w

p
j2w

p
j4

w
p
j1w

p
j3

)
+Li2

(
ep

a

w
p
j1

w
p
j2

)
+Li2

(
ep

a

w
p
j3

w
p
j2

)}
.
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Similarly, we obtain

8−

c,p =
1
p

{
−π

√
−1p2 a+b

2
log

wj1wj3

wj2wj4
+ p2 log

wj3

wj4
log

wj4

wj1

− Li2

(
ep

a

w
p
j1

w
p
j4

)
− Li2

(
ep

b

w
p
j3

w
p
j4

)
− Li2

(
w

p
j2w

p
j4

w
p
j1w

p
j3

)
+ Li2

(
ep

a

w
p
j2

w
p
j3

)
+ Li2

(
ep

b

w
p
j2

w
p
j1

)
+

π2

6

}
for a negative crossing c between different components, and

8−

c,p =
1
p

{
−(π

√
−1pa)2

−π
√

−1p2a log
wj1wj3

wj2wj4
+p2 log

wj3

wj4
log

wj4

wj1
+

π2

6

−Li2

(
ep

a

w
p
j1

w
p
j4

)
−Li2

(
ep

a

w
p
j3

w
p
j4

)
−Li2

(
w

p
j2w

p
j4

w
p
j1w

p
j3

)
+Li2

(
ep

a

w
p
j2

w
p
j3

)
+Li2

(
ep

a

w
p
j2

w
p
j1

)}
for a negative crossing c between the same component. The potential function 8D,p

of Ja(N )(L , ξ
p
N ) is a summation of these potential functions with respect to all

crossings of D. That is,

8D,p(a, w1, . . . , wν) =

∑
c is a crossing

8sgn(c)
c,p ,

where

a = (a1, . . . , an), ai = lim
N→∞

ai (N )

N

and sgn(c) is a signature of a crossing c. This potential function essentially coincides
with Yoon’s generalized potential function [Yoon 2021]. We can easily verify the
following property by the definition of 8D,p:

Proposition 3.4. 8D,p(a, w1, . . . , wν) satisfies

8D,p(a, w1, . . . , wν) =
1
p
8D,1(pa, w

p
1 , . . . , w p

ν ).

Therefore, We mainly consider the case where p = 1 and write 8D = 8D,1.

4. A noncomplete hyperbolic structure

In this section, we provide geometric meanings of the potential function. In the
rest of this paper, we assume that L is a hyperbolic link with n components. In
this section, we also assume that ai ∈ [1 − ε, 1] for all i = 1, . . . , n, where ε is a
sufficiently small positive real number. First, we consider derivatives of the potential
functions with respect to the parameters corresponding to the regions of the link
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diagram [Cho and Murakami 2013]. For a positive crossing c between different
components, we have:

(4.1)

wj1
∂8+

c

∂wj1
= π

√
−1 a−b

2
+log

(
1−ea

wj1

wj2

)−1(
1−e−1

b
wj1

wj4

)−1(
1−

wj1wj3

wj2wj4

)
,

wj2
∂8+

c

∂wj2
= π

√
−1 a+b

2
+log

(
1−e−1

a
wj2

wj1

)(
1−e−1

b
wj2

wj3

)(
1−

wj2wj4

wj1wj3

)−1

,

wj3
∂8+

c

∂wj3
= π

√
−1 −a+b

2
+log

(
1−e−1

a
wj3

wj4

)−1(
1−eb

wj3

wj2

)−1(
1−

wj1wj3

wj2wj4

)
,

wj4
∂8+

c

∂wj4
= −π

√
−1 a+b

2
+log

(
1−ea

wj4

wj3

)(
1−eb

wj4

wj1

)(
1−

wj2wj4

wj1wj3

)−1

.

Similarly, for a negative crossing c between different components, we have

(4.2)

wj1
∂8−

c

∂wj1
= π

√
−1

−a+b
2

+log
(

1−ea
wj1

wj4

)(
1−e−1

b
wj1

wj2

)(
1−

wj1wj3

wj2wj4

)−1

,

wj2
∂8−

c

∂wj2
= π

√
−1

a+b
2

+log
(

1−ea
wj2

wj3

)−1(
1−eb

wj2

wj1

)−1(
1−

wj2wj4

wj1wj3

)
,

wj3
∂8−

c

∂wj3
= π

√
−1

a−b
2

+log
(

1−e−1
a

wj3

wj2

)(
1−eb

wj3

wj4

)(
1−

wj1wj3

wj2wj4

)−1

,

wj4
∂8−

c

∂wj4
= −π

√
−1

a+b
2

+log
(

1−e−1
a

wj4

wj1

)−1(
1−e−1

b
wj4

wj3

)−1(
1−

wj2wj4

wj1wj3

)
.

If a crossing is between the same component, the derivatives are (4.1) and (4.2) with
a = b. These correspond to Thurston’s triangulation [1999] of the link complement
(see Figure 4.1).

Here, we put

u1 = ea
wj1

wj2
, u2 = e−1

a
wj3

wj4
, u3 =

wj2wj4

wj1wj3
, u4 = e−1

b
wj1

wj4
, u5 = eb

wj3

wj2
,

v1 = e−1
a

wj4

wj1
, v2 = ea

wj2

wj3
, v3 =

wj1wj3

wj2wj4
, v4 = eb

wj2

wj1
, v5 = e−1

b
wj4

wj3

in Figure 4.1. Furthermore, for a complex number z, denote

z′
=

1
1−z

and z′′
= 1 −

1
z
.

Note that if there exists a nonalternating part, the ideal tetrahedron abuts the one
with the inverse complex number labeled. Thus we can ignore the contribution of
such a part. Let Gi be a product of the parameters of ideal tetrahedra around the
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u′
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v

v
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Figure 4.1. Ideal tetrahedra on a positive crossing (left), and ideal
tetrahedra on a negative crossing (right).

region Ri corresponding to the parameter wi . Then, we have

wi
∂8D

∂wi
=

π
√

−1
2

r(a1, . . . , an) + log Gi ,

where π
√

−1r(a1, . . . , an)/2 is the summation of first terms of wi∂8±
c /∂wi with c

running over all crossings around Ri . However, this is equal to 0 because the
contribution of each parameter a to r(a1, . . . , an) is canceled as in Figure 4.2.

Therefore, the equations

(4.3) exp
(
wi

∂8D

∂wi

)
= 1, i = 1, 2, . . . , ν,

coincide with the gluing condition of the ideal tetrahedra. Hence, we can ob-
tain a hyperbolic structure from a saddle point (σ1(a), . . . , σν(a)) of 8D(a, −),

ba ab

－

＋

－ － －

＋ ＋ ＋

＋ －
a

Figure 4.2. Signatures of parameters corresponding to edges (left).
Note that the pattern of signatures is independent of the signature of
a crossing. Contributions of each parameter (right). White circles
represent either positive or negative crossings.
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a 

e−1
a

wi

wj

ea
wi

wj

wi wj
meridian

Figure 4.3. The dilation component of the meridian of the link
component with the parameter a.

where a = (a1, . . . , an). In addition, this hyperbolic structure is not complete in
general because the dilation component of the meridian of the link component with
the color a is equal to e−2

a (see Figure 4.3).
Note that a = (1, . . . , 1) is the case of the original volume conjecture. So we

suppose that (σ1(a), . . . , σν(a)) gives S3
\ L the hyperbolic structure with the

finite volume Vol(S3
\ L) when a = (1, . . . , 1) [Cho 2016a]. Let Ma1,...,an be

a manifold with the hyperbolic structure given by (σ1(a), . . . , σν(a)). We will
determine the detail of this noncomplete hyperbolic manifold Ma1,...,an . Let a be a
real number slightly less than 1. Note that the action derived from each meridian
does not change a length because |e−2

a | = 1. Therefore, the action derived from
each longitude changes a length, since otherwise, both meridians and longitudes do
not change a length and this results in the complete hyperbolic structure [Benedetti
and Petronio 1992]. Therefore, the developing image in the upper half-space H3

of the link complement around the edge corresponding to parameter a should be
as shown in Figure 4.4. If we glue faces by the action of meridians in Figure 4.4,
each face is glued with the face rotated 2π(1−a) around the singular set. Therefore,
Ma1,...,an is a cone-manifold of L with cone-angle 2π(1−ai ) around the component
corresponding to ai . Specifically, we can prove the following proposition:

Theorem 4.1. The hyperbolic volume of the cone-manifold Ma1,...,an is equal to the
imaginary part of the value1 of a function

8̃D = 8D −

ν∑
j=1

w j
∂8D

∂w j
log w j

evaluated at w j = σ j (a), with j = 1, . . . , ν.

1In [Murakami 2000], this value is called the optimistic limit.
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the singular set

Figure 4.4. The developing image of the link complement with
the noncomplete hyperbolic structure.

Proof. The hyperbolic volume V (z) of the ideal tetrahedron with modulus z is given
by the Bloch–Wigner function [Zagier 2007]

(4.4) V (z) = Im Li2(z) + log |z| arg(1 − z).

We only consider the case where a crossing is between different components. Let
V ±

c (a, b) be the sum of hyperbolic volumes of five ideal tetrahedra at a positive or
negative crossing c, respectively. By using (4.4), we can show that

Im 8+

c − V +

c (a, b) = A+

j1 log |wj1 | + A+

j2 log |wj2 | + A+

j3 log |wj3 | + A+

j4 log |wj4 |,

where A+

ji , with i = 1, 2, 3, 4, are:

A+

j1 =
π

2
(a − b) + arg

(
1 − ea

wj1

wj2

)−1(
1 − e−1

b
wj1

wj4

)−1(
1 −

wj1wj3

wj2wj4

)
,

A+

j2 =
π

2
(a + b) + arg

(
1 − e−1

a
wj2

wj1

)(
1 − e−1

b
wj2

wj3

)(
1 −

wj2wj4

wj1wj3

)−1

,

A+

j3 =
π

2
(−a + b) + arg

(
1 − e−1

a
wj3

wj4

)−1(
1 − eb

wj3

wj2

)−1(
1 −

wj1wj3

wj2wj4

)
,

A+

j4 = −
π

2
(a + b) + arg

(
1 − ea

wj4

wj3

)(
1 − eb

wj4

wj1

)(
1 −

wj2wj4

wj1wj3

)−1

.

Similarly, we can show that

Im 8−

c − V −

c (a, b) = A−

j1 log |wj1 | + A−

j2 log |wj2 | + A−

j3 log |wj3 | + A−

j4 log |wj4 |,
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where A−

ji , with i = 1, 2, 3, 4, are:

A−

j1 =
π

2
(−a + b) + arg

(
1 − ea

wj1

wj4

)(
1 − e−1

b
wj1

wj2

)(
1 −

wj1wj3

wj2wj4

)−1

,

A−

j2 =
π

2
(a + b) + arg

(
1 − ea

wj2

wj3

)−1(
1 − eb

wj2

wj1

)−1(
1 −

wj2wj4

wj1wj3

)
,

A−

j3 =
π

2
(a − b) + arg

(
1 − e−1

a
wj3

wj2

)(
1 − eb

wj3

wj4

)(
1 −

wj1wj3

wj2wj4

)−1

,

A−

j4 = −
π

2
(a + b) + arg

(
1 − e−1

a
wj4

wj1

)−1(
1 − e−1

b
wj4

wj3

)−1(
1 −

wj2wj4

wj1wj3

)
.

By summing up over all crossings, we verify the proposition. □

Example 4.2 (figure-eight knot). Let θ be a real number in
[
0, π

3

]
. The volume

V (θ) of the cone-manifold of the figure-eight knot with a cone-angle θ is given by
the formula [Mednykh 2003; Mednykh and Rasskazov 2006]

V (θ) =

∫ 2π/3

θ

arccosh(1 + cos θ − cos 2θ) dθ.

In this case, the cone-manifold admits a hyperbolic structure. On the other hand,
the colored Jones polynomial for the figure-eight knot is given by Habiro and Le’s
formula [Habiro 2000]

JN (41; t) =
1

{N }

N−1∑
p=0

{N + p}!

{N − p − 1}!
.

We assume that a is in
( 5

6 , 1
)

so that 0 < 2π(1 − a) < π
3 . The potential function of

Ja(N )(41, ξN ) is

8(a, x) = −2π
√

−1a log x − Li2(e2
ax) + Li2(e2

ax−1),

and the derivative of this function with respect to x is

∂8

∂x
=

1
x

log(−x + e2
a + e−2

a − x−1).

As a solution of the equation ∂8/∂x = 0, we obtain

x0(a) =
(
cos 2πa −

1
2

)
−

√(
cos 2πa −

3
2

)(
cos 2πa +

1
2

)
.

Since 5
6 <a <1, the absolute value of x0(a) is equal to 1. So we put x0(a)=e

√
−1ϕ(a),

where ϕ(a) ∈ (−π, π]. Then, the imaginary part of 8(a, x0(a)) is

Im 8(a, x0(a)) = −23

(
πa +

ϕ(a)

2

)
+ 23

(
πa −

ϕ(a)

2

)
.
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We will show that Im 8(a, x0(a)) = V (2π(1 − a)) as a function on the closed
interval

[ 2
3 , 1

]
. If a =

2
3 , they are both 0. The derivative with respect to a is

d8(a, x0(a))

da
=

∂8

∂a
(a, x0(a)) +

∂8

∂x
(a, x0(a))

dx0(a)

da

= 2π
√

−1 log
1 − e2

ax0(a)

x0(a) − e2
a

= −2π2
+ 2π

√
−1 log

(
e2

ax0(a) − 1

e−2
a x0(a) − 1

e−2
a

)
.

Since e
√

−1θ
− 1 = 2 sin(θ/2)e

√
−1(π+θ)/2, we obtain

d8(a, x0(a))

da
= −2π2

+ 2π
√

−1 log
sin

(
(ϕ(a) + 2πa)/2

)
sin

(
(ϕ(a) − 2πa)/2

) .

Let f (a) be the function inside the log, then

cosh log f (a) =
sin2((ϕ(a) + 2πa)/2

)
+ sin2((ϕ(a) − 2πa)/2

)
2 sin

(
(ϕ(a) + 2πa)/2

)
sin

(
(ϕ(a) − 2πa)/2

) .

Note that the denominator of the right-hand side is cos(2πa)−cos ϕ(a) =
1
2 . Then,

cosh log f (a) = 2
(

sin2 ϕ(a) + 2πa
2

+ sin2 ϕ(a) − 2πa
2

)
= 2 − cos(ϕ(a) + 2πa) − cos(ϕ(a) − 2πa)

= 2 − 2 cos ϕ(a) cos 2πa

= 1 + cos 2πa − cos 4πa.

Therefore, we obtain

d8(a, x0(a))

da
= −2π2

+ 2π
√

−1 arccosh(1 + cos 2πa − cos 4πa).

Clearly, the imaginary part of this function is 2π arccosh(1 + cos 2πa − cos 4πa)

which is equal to dV(2π(1−a))/da. This shows that V (2π(1−a))= Im 8(a, x0(a)).

Remark 4.3. We can show the following statement by the same procedure that
appeared in [Murakami 2004]2: Let a ∈

( 5
12 , 1

2

)
be the limit of a(N )/N , where

N → ∞. Then, the limit

4π lim
N→∞

log |Ja(N )(41; ξ 2
N )|

N
is equal to the volume of the cone-manifold of the figure-eight knot with a cone-angle
2π − 4πa, where N runs over all odd integers.

2In [Murakami 2004], the value substituted for t is slightly changed from the N -th root of unity.
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Example 4.4 (Borromean rings). Let K B be the Borromean rings, K B(α, β, γ ) be
the cone manifold of K B with cone-angles α,β,γ , and 1(α,θ)=3(α+θ)−3(α−θ),
where 3(x) is the Lobachevsky function. If 0 < α,β,γ < π , then K B(α, β, γ )

admits a hyperbolic structure, and its volume is given by

Vol K B(α, β, γ ) = 2
(
1

(
α

2
, θ

)
+1

(
β

2
, θ

)
+1

(
γ

2
, θ

)
−21

(
π

2
, θ

)
−1(0, θ)

)
,

where θ ∈
(
0, π

2

)
is defined by the following conditions [Mednykh 2003]:

T = tan θ, L = tan α

2
, M = tan

β

2
, N = tan

γ

2
,

T 4
− (L2

+ M2
+ N 2

+ 1)T 2
− L2 M2 N 2

= 0.

We define the function 1̃(x, y, z, θ) by

1̃(x, y, z, θ) = 2
(
1(x, θ)+ 1(y, θ)+ 1(z, θ)− 21

(
π

2
, θ

)
− 1(0, θ)

)
for convenience. On the other hand, the colored Jones polynomial for K B is given
by [Habiro 2000]

J(l,m,n)(K B; t) =

min(l,m,n)−1∑
i=1

{l + i}! {m + i}! {n + i}! ({i}!)2

{1}{l − i − 1}! {m − i − 1}! {n − i − 1}! ({2i + 1}!)2 .

Let a, b, and c be the limit of l/N , m/N , and n/N , respectively. The potential
function 8K B (x) of J(l,m,n)(K B; ξN ) is

8K B (a, b, c, x) = −2π
√

−1(a + b + c) log x +
3
2
(log x)2

− Li2(e2
ax) − Li2(e2

bx) − Li2(e2
c x) − 2 Li2(x)

+ Li2

(
e2

a

x

)
+ Li2

(
e2

b

x

)
+ Li2

(
e2

c

x

)
+ 2 Li2(x2).

The derivative of 8K B (x) with respect to x is

x
∂8K B

∂x
= log

(
e−2

a e−2
b e−2

c F(a, x)F(b, x)F(c, x)
x3(1 − x)2

(1 − x2)4

)
,

where F(a, x)= (1−e2
ax)(1−e2

a/x). Under the substitution x = e2π
√

−1ζ , we obtain

1
2π

√
−1

∂8K B

∂ζ

= log
sin π(ζ+a) sin π(ζ−a) sin π(ζ+b) sin π(ζ−b) sin π(ζ+c) sin π(ζ−c)

sin2 πζ cos4 πζ

= log
tan2 πζ−A2

1+A2

tan2 πζ−B2

1+B2

tan2 πζ−C2

1+C2
1

tan2 πζ
,
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where A = tan π(1 − a), B = tan π(1 − b), and C = tan π(1 − c). Therefore, if
± tan πζ are solutions of the equation

t2
− A2

1+ A2
t2

−B2

1+B2
t2

−C2

1+C2
1
t2 = 1,

which is equivalent to the equation

(t2
+ 1)(t4

− (A2
+ B2

+ C2
+ 1)t2

− A2 B2C2) = 0,

then x = e2π
√

−1ζ is a saddle point of 8K B (a, b, c, x). By using the properties of
the Lobachevsky function, such as

Li2(e2
√

−1θ ) =
π2

6
− θ(π − θ) + 2

√
−13(θ),

3(2θ) = 23(θ) + 23
(
θ +

π

2

)
,

we obtain

Im 8K B (a, b, c, e2π
√

−1ζ ) = 1̃
(
π(1 − a), π(1 − b), π(1 − c), π(1 − ζ )

)
= Vol K B

(
2π(1 − a), 2π(1 − b), 2π(1 − c)

)
.

5. The completeness condition

In the previous section, we fixed a1, . . . , an . In this section, we regard them as
variables and find a geometric meaning. First, we consider the case where a crossing
is between different components. The derivatives of the potential function with
respect to the parameters corresponding to the colors are:

∂8+
c

∂a
=

π
√

−1
2

log
(

1 − ea
wj4

wj3

)(
1 − ea

wj1

wj2

)−1(
1 − e−1

a
wj3

wj4

)(
1 − e−1

a
wj2

wj1

)−1

,

∂8+
c

∂b
=

π
√

−1
2

log
(

1 − eb
wj4

wj1

)(
1 − eb

wj3

wj2

)−1(
1 − e−1

b
wj1

wj4

)(
1 − e−1

b
wj2

wj3

)−1

,

∂8−
c

∂a
=

π
√

−1
2

log
(

1 − ea
wj1

wj4

)(
1 − ea

wj2

wj3

)−1(
1 − e−1

a
wj4

wj1

)(
1 − e−1

a
wj3

wj2

)−1

,

∂8−
c

∂b
=

π
√

−1
2

log
(

1 − eb
wj3

wj4

)(
1 − eb

wj2

wj1

)−1(
1 − e−1

b
wj4

wj3

)(
1 − e−1

b
wj1

wj2

)−1

.

We can observe the correspondence between these derivatives and dilation com-
ponents by cusp diagrams (Figure 5.1). In Figure 5.1, ∂8+

c /∂a corresponds to the
upper side of a positive crossing (top left), ∂8+

c /∂b to the lower side of a positive
crossing (top right), ∂8−

c /∂a to the upper side of a negative crossing (bottom left),
and ∂8−

c /∂b to the upper side of a negative crossing (bottom right). A similar
correspondence holds in the case where a crossing is between the same component.
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Figure 5.1. Cusp diagrams: upper side of a positive crossing (top
left), lower side of a positive crossing (top right), upper side of
a negative crossing (bottom left), and lower side of a negative
crossing (bottom right).

Let li be the longitude that is parallel to the component L i , and let l̃i be the longitude
of the component L i with lk( l̃i , L i ) = 0. For a curve γ on the cusp diagram, we
define δ(γ ) as the dilation component of γ . Then, by the above observation

exp
(

1
π

√
−1

∂8′

D

∂ai

)
= exp

(
1
2

log δ(li )
2
)

= δ(li ),

where 8′

D is a potential function of the colored Jones polynomial without the
modification for the Reidemeister move I. Next, we consider the contribution of
the modification. For a positive crossing between the same component with a
parameter a, the modification corresponds to the addition of (π

√
−1a)2, and its

derivative is
1

π
√

−1
d

da
(π

√
−1a)2

= 2π
√

−1a = log e2
a.

Here, e2
a is equal to the dilation component of the meridian with the inverse orienta-

tion. Similarly, for a negative crossing, the derivative of −(π
√

−1a)2 corresponds
to the dilation component of the meridian. Therefore,

(5.1) exp
(

1
π

√
−1

∂8D

∂ai

)
= δ( l̃i ).
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Figure 5.2. Cusp diagrams of a knot complement: upper side of a
positive crossing (top left), lower side of a positive crossing (top
right), upper side of a negative crossing (bottom left), lower side
of a negative crossing (bottom right).

Remark 5.1. If K is a knot, we have a more simple correspondence. The derivatives
of 8±

c with respect to a are:

(5.2) 1
π

√
−1

∂8+
c

∂a

= log e2
a+log

(
1−e−1

a
wj3

wj4

)(
1−ea

wj4

wj1

)(
1−e−1

a
wj2

wj1

)−1(
1−ea

wj3

wj2

)−1

,

(5.3) 1
π

√
−1

∂8−
c

∂a

= log e−2
a +log

(
1−e−1

a
wj4

wj1

)(
1−ea

wj3

wj4

)(
1−e−1

a
wj3

wj2

)−1(
1−ea

wj2

wj1

)−1

.

The second term of (5.2) corresponds to the upper side and the lower side of a
positive crossing (Figure 5.2, top left and right), and the second term of (5.3)
corresponds to the upper side and the lower side of a negative crossing (Figure 5.2,
bottom left and right)

Remark 5.2. Changing the variable ai to ui = 2π
√

−1ai , we have

2
∂8D

∂ui
=

1
π

√
−1

∂8D

∂ai
.
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Then,

9(u) = 4
(
8D

(
u, σ1(u), . . . , σν(u)

)
− 8D

(
0, σ1(0), . . . , σν(0)

))
,

where u = (u1, . . . , un) and 0 = (0, . . . , 0) satisfy the conditions of the Neumann–
Zagier potential function [1985]. Namely, 9 satisfies 9(0) = 0 and

1
2

∂9

∂ui
= log δ( l̃i ).

If ai = 1, with i = 1, . . . , n, all the dilation components of meridians are 1.
Furthermore, the contributions of parts, as shown in Figure 4.3, to the dilation
component of the longitude is 1, hence δ( l̃i ) = 1, (1, . . . , n). Therefore, the point
(1, σ1(1), . . . , σν(1)) gives a complete hyperbolic structure to the link complement
[Benedetti and Petronio 1992], where 1 = (1, . . . , 1). Moreover, by (4.3) and (5.1)
the point is a solution of the following system of equations:

exp
(
wi

∂8D

∂wi

)
= 1, i = 1, . . . , ν,

exp
(

1
π

√
−1

∂8D

∂a j

)
= 1, j = 1, . . . , n.

Hence, we obtain the following theorem:

Theorem 5.3. Let D be a diagram of a hyperbolic link with n components, and
let 1 be (1, . . . , 1) ∈ Zn . The point (1, σ1(1), . . . , σν(1)) is a saddle point of the
function 8D(a1, . . . , an, w1, . . . , wν) and gives a complete hyperbolic structure to
the link complement.

6. The Witten–Reshetikhin–Turaev invariant

In [Kirby and Melvin 1991], the Witten–Reshetikhin–Turaev invariant for the mani-
fold obtained by Dehn surgery on a link is stated. Furthermore, Murakami [2000]
calculated the optimistic limit of the Witten–Reshetikhin–Turaev invariant for the
manifold obtained by integer surgery on the figure-eight knot. By a similar argument
as in Section 4, we would be able to explain the correspondence of the Witten–
Reshetikhin–Turaev invariant and the geometry of the manifold obtained by Dehn
surgery on a link. The procedure might be as follows: The Witten–Reshetikhin–
Turaev invariant for the manifold M f1,..., fn obtained by Dehn surgery on a link
L = L1 ∪ · · ·∪ Ln with a framing fi on L i , where i = 1, . . . , n, can be written as a
summation of the colored Jones polynomial Jk(L; ξN ) multiplied by t−(1/4)

∑
f j k2

j ,
where k = (k1, . . . , kn) are colors of L . See [Kirby and Melvin 1991] for details,
but note that t in [Kirby and Melvin 1991] and t in this paper are different. We
suppose that M f1,..., fn admits a hyperbolic structure. Let αi be eπ

√
−1ai and regard
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the singular set

longitude

meridian

the inverse of the meridian

Figure 6.1. The schematic diagram of the developing image in the
case of fi = 6.

it as a complex parameter that is not necessarily in the unit circle. Then, we have

1
π

√
−1

∂8

∂ai
= αi

∂8

∂αi
.

Multiplying t−(1/4)
∑

f j k2
j leads to the addition of −

∑
f j (log α j )

2 to the potential
function. The derivative of it with respect to αi is

αi
∂

∂αi

(
−

n∑
j=1

f j (log α j )
2
)

= −2 fi log αi = log α
−2 fi
i .

Then, the saddle point equation is equivalent to the system of equations consisting
of the gluing condition and

δ( l̃i ) = α
2 fi
i , i = 1, . . . , n.

Recall that the dilation component of the meridian mi of L i is α−2
i , which implies

that δ(mi )
− fi = δ( l̃i ). If we suppose that |αi | is less than 1 and fi is a positive

integer, the developing image would be as shown in Figure 6.1. By filling in the
singular set, the developing image becomes complete.
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