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REGULARITY FOR FREE MULTIPLICATIVE CONVOLUTION
ON THE UNIT CIRCLE

SERBAN T. BELINSCHI, HARI BERCOVICI AND CHING-WEI HO

Suppose that µ1 and µ2 are Borel probability measures on the unit circle,
both different from unit point masses, and let µ denote their free multiplica-
tive convolution. We show that µ has no continuous singular part (relative to
arclength measure) and that its density can only be locally unbounded at a
finite number of points, entirely determined by the point masses of µ1 and µ2.
Analogous results were proved earlier for the free additive convolution on R

and for the free multiplicative convolution of Borel probability measures on
the positive half-line.

1. Introduction

It has been known for some time that free convolutions have a strong regularizing
effect. The earliest instances of this phenomenon were observed in [Voiculescu 1993;
Bercovici and Voiculescu 1998; Biane 1997]. For the additive case (see [Voiculescu
1986; Bercovici and Voiculescu 1993; Voiculescu et al. 1992] for definitions), it
was shown in [Belinschi 2008; 2014] that, given Borel probability measures µ1, µ2

on R, neither of which is a point mass, the free convolution µ= µ1 ⊞µ2 has no
singular continuous part relative to the Lebesgue measure, and its density is analytic
wherever positive and finite. In addition, this density is locally bounded unless
µ1({α1})+ µ2({α2}) ≥ 1 for some α1, α2 ∈ R. The atomic part of µ has finite
support and was determined earlier [Bercovici and Voiculescu 1998]. Analogous
results have been obtained in [Ji 2021] for the free multiplicative convolution of
Borel probability measures on [0,+∞). Despite a strong similarity between these
operations, the corresponding result for free multiplicative convolutions of Borel
probability measures on the unit circle T in the complex plane is still missing.
Recent results on Denjoy–Wolff points [Belinschi et al. 2022, Corollary 3.3] allow
us to rectify this omission in Theorem 3.2.

The necessary background on subordination is given in Section 2, and the main
result is proved in Section 3. An application in Section 4 yields a strengthening of
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the results of [Bercovici and Wang 2008] concerning indecomposable measures
relative to free convolution.

We wish to thank the referee for a thorough review of the paper.

2. Analytic subordination for free multiplicative convolution

We begin by recalling the analytical apparatus for the calculation of free multi-
plicative convolutions on the unit circle T = {z ∈ C : |z| = 1}. An arbitrary Borel
probability measure µ on T is uniquely determined by its moments

mn(µ)=

∫
T

tn dµ(t), n ∈ N,

and these moments are encoded in the moment generating function

ψµ(z)=

∫
T

t z
1−t z

dµ(t)=

∞∑
n=1

mn(µ)zn.

The formal seriesψµ actually converges for z in the unit disk D={z ∈C : |z|<1}, and

ψµ(D)⊂
{
z ∈ C : ℜz >−

1
2

}
.

Observe that

(2-1) 2ℜψµ(z)+ 1 =

∫
T

ℜ

(
ζ + z

ζ − z

)
dµ(ζ )=

∫
T

ℜ

(
ζ + z
ζ − z

)
dµ(ζ ), z ∈ D,

and the last term above is precisely a Poisson integral. It follows that µ can be
recovered from ψµ by taking radial limits

2πdµ(e−iθ )= lim
r↑1

(
2ℜψµ(eiθ )+ 1

)
dθ.

(See, for instance, [Akhiezer 1965, Chapter 5], [Belinschi and Bercovici 2005,
Section 3], and [Garnett 1981, Chapter 1] for details.) In particular, if µs denotes
the singular part of the measure µ, (2-1) shows that

(2-2) lim
r↑1

ℜψµ(rζ )= +∞ for µs-almost all ζ ∈ T.

We note for further use the following consequence of (2-1):

Lemma 2.1. If ψµ is a bounded function on D, then µ is absolutely continuous
relative to arclength measure and its density is bounded.

Consider now two Borel probability measures µ1, µ2 on T = {z ∈ C : |z| = 1},
and denote by µ = µ1 ⊠µ2 their free multiplicative convolution. This was first
defined in [Voiculescu 1987] using the multiplication of ∗-free unitary operators,
and its calculation — in case the two measures have a nonzero first moment — relied
on the analytic inverses of the functions ψµ1 and ψµ2 in the complex plane (see
[Voiculescu et al. 1992] for the technical details). Subsequently, Biane [1998]
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discovered that ψµ is subordinate to ψµ j , with j = 1, 2, in the sense of Littlewood.
This result implies that — at least when µ1 and µ2 have nonzero first moments —
one can describe the function ψµ as the unique solution of a system of implicit
equations. This method for the calculation of ψµ does in fact extend to arbitrary µ1

and µ2, as seen in [Belinschi and Bercovici 2007]. We state the result below because
it is instrumental in the proof of Theorem 3.2. We need the additional notation

ηµ(z)=
ψµ(z)

1 +ψµ(z)
and hµ(z)=

ηµ(z)
z

.

It is easily seen that ηµ(D) ⊂ D, ηµ(0) = 0, η′
µ(0) = m1(µ), and hµ extends to

an analytic function from D to D. If the function hµ takes values in T, then it
is constant and this happens precisely when µ is a point mass. The following
statement combines [Belinschi and Bercovici 2007, Theorem 3.2] and [Belinschi
et al. 2022, Corollary 3.3]:

Theorem 2.2. Consider Borel probability measures µ1, µ2 on T and their free
multiplicative convolution µ= µ1 ⊠µ2. There exist unique continuous functions
ω1, ω2 : D ∪ T → D ∪ T that are analytic on D and, in addition:

(1) ω1(0)= ω2(0)= 0.

(2) zηµ(z)= zηµ1(ω1(z))= zηµ2(ω2(z))= ω1(z)ω2(z), ω1(z)= zh2(ω2(z)), and
ω2(z)= zh1(ω1(z)) for every z ∈ D∪T. In particular, ηµ extends continuously
to T. When either ω1(z) or ω2(z) belongs to T, the values ηµ j (ω j (z)) are
understood as radial limits, that is,

ηµ j (ω j (z))= lim
r↑1

ηµ j (rω j (z)).

(3) If m1(µ1)= m1(µ2)= 0, the functions ηµ, ψµ, ω1, and ω2 are identically zero.

3. Boundedness and the lack of a singular continuous part

We are ready now to identify the singular behavior of a free multiplicative convolu-
tion on T. Of course, part (1) was proved in [Belinschi 2003].

Lemma 3.1. Suppose that µ1 and µ2 are Borel probability measures on T, neither
of which is a unit point mass, set µ= µ1 ⊠µ2, and let α ∈ T.

(1) If µ({α}) > 0, then there exist α1, α2 ∈ T such that α1α2 = α and

µ1({α1})+µ2({α2})= 1 +µ({α}).

(2) Ifψµ is unbounded near 1/α, then there exist α1, α2 ∈T such that α1α2 =α and

µ1({α1})+µ2({α2})≥ 1.

Proof. We only prove (2). As already mentioned, if m1(µ1)= m1(µ2)= 0, then µ
is the Haar measure on T, which has no singular part and a density identically equal
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to 1/2π . Indeed, by Theorem 2.2 (3), ψµ is identically zero; in particular, bounded.
For the remainder of the proof, we assume that at least one of m1(µ1),m1(µ2)

is nonzero, and thus the functions ψµ, ω1, ω2 of Theorem 2.2 are not constant.
Suppose now that β = 1/α is such that ηµ(β)= 1 or, equivalently,

ψµ(β)= lim
r↑1

ψµ(rβ)= ∞.

Setting α1 = ω1(β) and α2 = ω2(β),Theorem 2.2 (2) yields the equality α1α2 = β.
Since |α j | ≤ 1, it follows that, in fact, α j ∈ T for j = 1, 2. The subordination in
Theorem 2.2 (2) also yields

lim
z→β

ηµ j (ω j (z))= ηµ(β)= 1, j = 1, 2,

and then
lim
r↑1

ηµ j (rα j )= 1, j = 1, 2,

by Lindelöf’s Theorem (see [Collingwood and Lohwater 1966, Theorem 2.3]).
An application of the dominated convergence theorem shows that

lim
r↑1
(1 − r)ψµ j (rα j )= µ

({ 1
α j

})
∈ [0, 1), j = 1, 2.

In terms of the functions ηµ j , this amounts to

lim
r↑1

ηµ j (rα j )− 1
r − 1

=
1

µ j ({1/α j })
, j = 1, 2,

where the right-hand side is understood as ∞ if µ j ({1/α j }) = 0. Using Julia–
Carathéodory derivatives (see, for instance, [Garnett 1981, Chapter I, Exercise 7])
this relation can be rewritten as η′

µ(ω1(α)) = 1/(µ j ({1/α j })). Properties of this
derivative imply now that

1
µ1({1/α1})

− 1 = lim inf
w→α1

|ηµ1(w)| − 1
|w| − 1

− 1

= lim inf
w→α1

|ηµ1(w)| − |w|

|w| − 1

≤ lim inf
z→β

|ηµ1(ω1(z))| − |ω1(z)|
|ω1(z)| − 1

(substituting w = ω1(z))

= lim inf
z→β

|ω1(z)|
|z|

|ω2(z)| − |z|
|ω1(z)| − 1

(using Theorem 2.2)

= lim inf
z→β

|ω2(z)| − |z|
|ω1(z)| − 1

≤ lim inf
z→β

1 − |ω2(z)|
1 − |ω1(z)|

.
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Switching the roles of µ1 and µ2, we obtain

1
µ2({1/α2})

− 1 ≤ lim inf
z→β

1 − |ω1(z)|
1 − |ω2(z)|

=

[
lim sup

z→β

1 − |ω2(z)|
1 − |ω1(z)|

]−1

≤

[
lim inf

z→β

1 − |ω2(z)|
1 − |ω1(z)|

]−1

≤

[
1

µ1({1/α1})
− 1

]−1

.

A simple calculation shows now that the inequality(
1

µ2({1/α2})
− 1

)(
1

µ1({1/α1})
− 1

)
≤ 1

is equivalent to µ1({1/α1})+µ2({1/α2})≥ 1, thus concluding the proof. □

We are now ready to state and prove the main result of this paper.

Theorem 3.2. Consider the Borel probability measures µ1, µ2 on T and their free
multiplicative convolution µ= µ1 ⊠µ2. Suppose that neither µ1 nor µ2 is a point
mass. Then:

(1) The singular continuous part of µ relative to the arclength measure is zero.

(2) If we have

(3-1) max
{
µ1({α1})+µ2({α2}) : α1, α2 ∈ T

}
≤ 1,

then µ is absolutely continuous relative to the arclength measure.

(3) If (3-1) is strict, then the density of µ relative to the arclength measure is
bounded.

Remark 3.3. It is remarkable that, for all free convolutions (see [Belinschi 2014;
Ji 2021]), only the atomic parts of µ1, µ2 have an impact on the local boundedness
of the density of their convolution.

Proof. The set {(α1, α2) ∈ T2
: µ1({α1})+µ2({α2}) ≥ 1} is obviously finite. By

Lemma 3.1 (2), the set S = {α ∈ T : ηµ({1/α}) = 1} is finite as well. Since (2-2)
implies that the support of the singular summand of µ is contained in S, it follows
that this summand is a finite sum of point masses. This proves (1). Suppose now that
(3-1) holds. Then Lemma 3.1 (1) shows that µ is absolutely continuous. Finally, sup-
pose that (3-1) is strict. Then Lemma 3.1 (2) implies that ηµ does not take the value
1 at any point on T. Since ηµ is continuous on D, it must be bounded away from 1.
Thusψµ=ηµ/(1−ηµ) is a bounded function. Then (3) follows from Lemma 2.1. □
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Remark 3.4. Suppose that µ1({α1})+µ2({α2})= 1 for some α1, α2 ∈ T. It was
shown in [Belinschi 2003] that, setting β j =1/α j and β=β1β2, we haveω j (β)=β j

for j = 1, 2, but, of course, µ({1/β})= 0. (This can also be proved using the results
of [Belinschi et al. 2022] and the “chain rule” for Julia–Carathéodory derivatives.)
In all computable examples, the density of µ is unbounded near 1/β. We suspect
that this is true in full generality.

4. An application

The following statement extends the main result of [Bercovici and Wang 2008] for
probability measures on the circle. Nearly identical proofs yield the corresponding
extensions for free additive convolutions and for free multiplicative convolutions
on the positive half-line. For these two convolutions, it is not necessary to assume
that one of the convolved measures has more than two points in its support. The
condition ηµ(α)= 1 in the statement amounts to the requirement that either γ is an
atom of µ, or the density of µ is unbounded near γ (or both).

Theorem 4.1. Consider Borel probability measures µ1, µ2 on T, different from
point masses, and set µ = µ1 ⊠µ2. Suppose that J ⊂ T is an open arc such that
each endpoint α of J satisfies ηµ(α) = 1. If either µ1 or µ2 has more than two
points in its support, then µ(J ) > 0.

Proof. Let α and β be the two endpoints of J , and let ω j denote the subordination
function of ηµ relative to ηµ j . By Lemma 3.1, the points α j =ω j (α) and β j =ω j (β)

satisfy
µ1({α1})+µ2({α2})≥ 1 and µ1({β1})+µ2({β2})≥ 1.

The hypothesis implies that either α1 = β1 or α2 = β2. Indeed, otherwise, it would
follow that the support of µ j is {α j , β j }, for j = 1, 2. Switching, if necessary, the
roles of µ1 and µ2, we may assume that α1 = β1, so ω1(α)= ω1(β).

Suppose now that µ(J ) = 0. Then |ηµ(ζ )| = 1 for every ζ ∈ J . The equation
ηµ(ζ )= ηµ1(ω1(ζ )) and the Schwarz lemma (which applies because ηµ(0)= 0),
imply that

|ηµ(z)| ≤ |ω1(z)|

for every z ∈ D. Letting z approach a point ζ ∈ J , we see that |ω1(ζ )| = 1. Now, ω1

is not constant, and therefore ω1(ζ ) moves counterclockwise as ζ ∈ J does so. By
the Schwarz reflection principle, ω1 is analytic and, thanks to the Julia–Carathéodory
Theorem, it is locally injective on J . The equation ω1(α) = ω1(β) allows us to
conclude that ω1(J ) ⊇ T \ {ω1(α)}. Moreover, the fact that |ηµ1(ω1(ζ ))| = 1 for
ζ ∈ J shows that the support of µ1 is contained in T\ω1(J )⊆ {ω1(α)}, contrary to
the hypothesis. This contradiction yields the desired conclusion that µ(J ) ̸= 0. □
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