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C∗-IRREDUCIBILITY OF COMMENSURATED SUBGROUPS

KANG LI AND EDUARDO SCARPARO

Given a commensurated subgroup 3 of a group 0, we completely character-
ize when the inclusion 3 ≤ 0 is C∗-irreducible and provide new examples
of such inclusions. In particular, we obtain that PSL(n, Z) ≤ PGL(n, Q) is
C∗-irreducible for any n ∈ N, and that the inclusion of a C∗-simple group
into its abstract commensurator is C∗-irreducible.

The main ingredient that we use is the fact that the action of a commensu-
rated subgroup 3 ≤ 0 on its Furstenberg boundary ∂F3 can be extended
in a unique way to an action of 0 on ∂F3. Finally, we also investigate the
counterpart of this extension result for the universal minimal proximal space
of a group.

1. Introduction

A group 0 is said to be C∗-simple if its reduced C∗-algebra C∗
r (0) is simple. After

the breakthrough characterizations of C∗-simplicity in [Kalantar and Kennedy 2017;
Breuillard et al. 2017], several directions of research applying the new methods in
different settings arose.

One of the recent interesting directions is investigating when inclusions of groups
3 ≤ 0 are C∗-irreducible, in the sense that every intermediate C∗-algebra B in
C∗

r (3) ⊂ B ⊂ C∗
r (0) is simple. Rørdam [2021] started a systematic study of

this property and provided a dynamical criterion for an inclusion of groups to be
C∗-irreducible. Together with results in [Amrutam 2021; Ursu 2022; Bédos and
Omland 2023], this has provided a complete characterization of C∗-irreducibility
of an inclusion in the case that 3 is a normal subgroup of 0.

Recall that a subgroup 3 of a group 0 is said to be commensurated if, for any
g ∈ 0, 3 ∩ g3g−1 has finite index in 3. This is a much more flexible general-
ization of normal subgroups and finite-index subgroups. For example, for every
n ≥ 2, PSL(n,Z) is an infinite-index commensurated subgroup of the simple group
PSL(n,Q).
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In this work, we generalize the above characterization of C∗-irreducibility to com-
mensurated subgroups (see Theorem 3.5). The main ingredient in our proof is the
fact that the action of 3 on its Furstenberg boundary ∂F3 can be uniquely extended
to an action of 0 on ∂F3 if3 is a commensurated subgroup in 0 (see Theorem 3.1).

As one of the applications, we show that if 0 is a C∗-simple group, then the
inclusion of 0 in its abstract commensurator Comm(0) is C∗-irreducible (see
Corollary 3.14). To our best knowledge, this is also the first observation of the fact
that if 0 is a C∗-simple group, then Comm(0) is C∗-simple as well.

Given a subgroup3 of a group 0, Ursu [2022] introduced a universal3-strongly
proximal 0-boundary B(0,3) and showed that if 3⊴0, then B(0,3)= ∂F3. In
Section 4, we generalize this fact to commensurated subgroups and also observe
that, in general, B(0,3) is not extremally disconnected.

Finally, we also show that, given a commensurated subgroup 3 of a group 0,
the action of 3 on its universal minimal proximal space ∂p3 can also be extended
in a unique way to an action of 0 on ∂p3 (see Theorem 5.1). We use this fact
for concluding that, for a certain locally finite commensurated subgroup G of
Thompson’s group V , the resulting action of V on ∂pG is free (see Example 5.4).

2. Preliminaries

Given a compact Hausdorff space X , we denote by Prob(X) the space of regular
probability measures on X . An action of a group 0 on X by homeomorphisms is
said to be minimal if X does not contain any nontrivial closed invariant subset, and
to be topologically free if, for any g ∈ 0 \ {e}, the set {x ∈ X : gx = x} has empty
interior (if 0 is countable, then 0↷X is topologically free if and only if the set of
points in X which are not fixed by any nontrivial element of 0 is dense in X ). The
action is said to be proximal if, given x,y ∈ X , there is a net (gi ) ⊂ 0 such that
the nets (gi x) and (gi y) converge and lim gi x = lim gi y. We say that the action
is strongly proximal if the induced action 0↷Prob(X) is proximal. The action is
called a boundary action (or X is a 0-boundary) if it is both minimal and strongly
proximal. We denote by ∂F0 the Furstenberg boundary of 0, i.e., the universal
0-boundary (see [Glasner 1976, Section III.1]). The group 0 is C∗-simple if and
only if 0↷∂F0 is free [Breuillard et al. 2017, Theorem 3.1].

Given 0-boundaries X and Y , if there exists ϕ : X → Y a homeomorphism
which is 0-equivariant (0-isomorphism), then it follows from [Glasner 1976,
Lemma II.4.1] that ϕ is the unique 0-isomorphism between X and Y .

Let 3 ≤ 0 be a finite-index subgroup. Then any strongly proximal 0-action
is also 3-strongly proximal [Glasner 1976, Lemma II.3.1] and any 0-boundary
is also a 3-boundary [Glasner 1976, Lemma II.3.2]. Furthermore, by [Glasner
1976, Theorem II.4.4], which is stated for the universal minimal proximal space
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but whose proof also works for the Furstenberg boundary, the action 3↷∂F3

can be extended to 0↷∂F3 and ∂F3 is 0-isomorphic to ∂F0. In particular, ∂F3

and ∂F0 are also 3-isomorphic.
Given a group isomorphism ψ : 01 → 02, by universality there is a unique

homeomorphism ψ̃ : ∂F01 → ∂F02 such that ψ̃(gx)= ψ(g)ψ̃(x) for any g ∈ 01

and x ∈ ∂F01.
Given a group 0, let Sub(0) be the space of subgroups of 0 endowed with the

pointwise convergence topology and with the 0-action given by conjugation. Given
a subgroup 3≤ 0, a 3-uniformly recurrent subgroup (URS) is a nonempty closed
3-invariant minimal set U ⊂ Sub(0). Moreover, we say that U is amenable if one
(equivalently all) of its elements is amenable. By [Kennedy 2020, Theorem 4.1],
a group 0 is C∗-simple if and only if it does not admit any nontrivial amenable
0-uniformly recurrent subgroup.

An inclusion of groups 3≤ 0 is said to be C∗-irreducible if every intermediate
C∗-algebra of C∗

r (3)⊂ C∗
r (0) is simple.

Given3≤0 and g ∈0, let g3 := {hgh−1
: h ∈3}. We say that 0 is icc relatively

to 3 if, for any g ∈ 0 \ {e}, |g3| < ∞. The group 0 is said to be icc if it is icc
relatively to itself.

3. C*-irreducibility of commensurated subgroups

Let 0 be a group. Two subgroups 31,32 ≤ 0 are said to be commensurable if
[31 :31 ∩32]<∞ and [32 :31 ∩32]<∞. Notice that this is an equivalence
relation.

A subgroup 3≤ 0 is said to be commensurated if, for any g ∈ 0, 3 is commen-
surable with g3g−1. Equivalently, for any g ∈ 0, [3 :3∩ g3g−1

]<∞. In this
case, we write 3 ≤c 0. In the literature, this notion is also referred to by saying
that 3 is an almost normal subgroup of 0 or that (0,3) is a Hecke pair.

The following result generalizes [Glasner 1976, Theorem II.4.4] and [Ozawa
2014, Lemma 20]:

Theorem 3.1. Let 3 ≤c 0. Then 3↷∂F3 extends in a unique way to an action
of 0 on ∂F3.

Proof. Given g ∈ 0, let ϕg : ∂F3 → ∂F (3 ∩ g3g−1) be the (3 ∩ g3g−1)-
isomorphism. Also, let ψg : ∂F (3 ∩ g−13g) → ∂F (3 ∩ g3g−1) be the home-
omorphism such that for all h ∈ 3 ∩ g−13g and x ∈ ∂F (3 ∩ g−13g) we have
ψg(hx) = ghg−1ψg(x). Let Tg := (ϕg)

−1ψgϕg−1 : ∂F3 → ∂F3. We claim that
g 7→ Tg is a 0-action which extends 3↷∂F3.

Given h ∈ 3 ∩ g−13g and x ∈ ∂F3, one can readily check that Tg(hx) =

ghg−1Tg(x).
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Given g, h ∈ 0, we have that [3 : 3∩ h−13h ∩ (gh)−13(gh)] <∞. Further-
more, given k ∈ 3 ∩ h−13h ∩ (gh)−13(gh) and x ∈ ∂F3, we have Tgh(kx) =

(gh)k(gh)−1Tgh(x). On the other hand, TgTh(kx) = (gh)k(gh)−1TgTh(x). In
particular, (TgTh)

−1Tgh is a (3∩ h−13h ∩ (gh)−13(gh))-automorphism, hence
Tgh = TgTh .

Finally, given g ∈3, we have that x 7→g−1Tg(x) is a (3∩g−13g)-automorphism,
so that g−1Tg = Id∂F3. □

Remark 3.2. The existence part of Theorem 3.1 was shown by Dai and Glas-
ner [2019, Theorem 6.1] using a different method and assuming that 0 is countable.

Given a subset S of a group 0, let C0(S) be the centralizer of S in 0. In the
next result, we follow the argument of [Breuillard et al. 2017, Lemma 5.3].

Lemma 3.3. Let3≤c 0 and consider 0↷∂F3. Given s ∈0, if s ∈ C0(3∩s−13s),
then Fix(s) = ∂F3. Conversely, if 3↷ ∂F3 is free and Fix(s) ̸= ∅, then s ∈

C0(3∩ s−13s).

Proof. If s ∈ C0(3∩ s−13s), then, given h ∈ 3∩ s−13s and x ∈ ∂F3, we have
s(hx) = hs(x). Since [3 : 3 ∩ s−13s] < ∞, we conclude that s acts trivially
on ∂F3.

Suppose now that 3↷∂F3 is free and Fix(s) ̸= ∅. Given t ∈ A, with

A := {t ∈3∩ s−13s : t Fix(s)∩ Fix(s) ̸= ∅},

the actions of sts−1 and t coincide on Fix(s) ∩ t−1 Fix(s). Since sts−1, t ∈ 3

and 3↷∂F3 is free, we obtain that t = sts−1. Since, by [Breuillard et al. 2017,
Lemma 5.1], A generates 3∩ s−13s, we conclude that s ∈ C0(3∩ s−13s). □

The proof of the following result is an adaptation of the argument in [Kennedy
2020, Remark 4.2] and its hypothesis is the same as in [Rørdam 2021, Theo-
rem 5.3 (ii)]:

Proposition 3.4. Let 3≤ 0. Suppose that there exists a 0-boundary X such that,
for any µ ∈ Prob(X), there exists a net (gi )⊂3 such that giµ converges to δx , for
some x ∈ X , on which 0 acts freely. Then 0 does not admit any nontrivial amenable
3-URS.

Proof. Suppose U is a nontrivial amenable 3-URS, and take K ∈ U . Since K is
amenable, there exists µ ∈ Prob(X) fixed by K . Let (gi ) ⊂ 3 be a net such that
giµ→ δx , for some x ∈ X , on which 0 acts freely. By taking a subnet, we may
assume that gi K g−1

i → L ∈ Sub(0). Take g ∈ L \ {e} and (ki ) ⊂ K such that
gi ki g−1

i = g for i sufficiently big. Then

δx = lim giµ= lim gi kiµ= lim gi ki g−1
i giµ= gδx ,

contradicting the fact that 0 acts freely on x . □
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The following result generalizes [Ursu 2022, Theorems 1.3 and 1.9] and [Bédos
and Omland 2023, Theorem 6.4], as well as the claim about finite-index subgroups
in [Rørdam 2021, Theorem 5.3]:

Theorem 3.5. Let 3≤c 0. The following conditions are equivalent:

(1) 3≤ 0 is C∗-irreducible;

(2) 3 is C∗-simple and 0 is icc relatively to 3;

(3) 3 is C∗-simple and, for any s ∈ 0 \ {e}, we have that s /∈ C0(3∩ s−13s);

(4) 0↷∂F3 is free;

(5) There is no nontrivial amenable 3-URS of 0;

(6) 3 is C∗-simple and 0↷∂F3 is faithful.

Proof. (1)=⇒ (2): Follows from [Rørdam 2021, Remark 3.8 and Proposition 5.1].

(2)=⇒ (3): Suppose that there is s ∈ 0 \ {e} such that s ∈ C0(3∩ s−13s). Take
g1, . . . , gn ∈3 left coset representatives for 3/(3∩ s−13s). Then

s3 = {gi ksk−1g−1
i : 1 ≤ i ≤ n, k ∈3∩ s−13s} = {gi sg−1

i : 1 ≤ i ≤ n}

is finite.

(3)=⇒ (4): Follows from Lemma 3.3.

(4)=⇒ (1): Follows from [Rørdam 2021, Theorem 5.3].

(5)=⇒ (2): If3 is not C∗-simple, then it contains a nontrivial amenable3-uniformly
recurrent subgroup. If 0 is not icc relatively to 3, there exists s ∈ 0 \ {e} such that
s3 is finite. Hence, the 3-orbit of ⟨s⟩ is a finite nontrivial amenable 3-uniformly
recurrent subgroup.

(4)=⇒ (5): Follows from Proposition 3.4.

(3)⇐⇒ (6): Follows from Lemma 3.3. □

Remark 3.6. Rørdam [2021, Theorem 5.3] showed that an inclusion 3≤ 0 satis-
fying the hypothesis of Proposition 3.4 is C∗-irreducible, and asked whether the
converse holds. We do not know whether the converse of Proposition 3.4 holds and
whether the absence of nontrivial amenable 3-URS of 0 is equivalent to 3 ≤ 0

being C∗-irreducible in general.

Corollary 3.7. Given n ∈ N, the inclusion

PSL(n,Z)≤ PGL(n,Q)

is C∗-irreducible.
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Proof. It was shown in [Bekka et al. 1994] that PSL(n,Z) is C∗-simple.
Let U (n,Z) be the group of units of the ring Mn(Z). By [Krieg 1990, Corol-

lary V.5.3], U (n,Z) ≤c GL(n,Q). Since [U (n,Z) : SL(n,Z)] = 2, we conclude
that SL(n,Z) ≤c GL(n,Q) as well. Since taking quotients preserves being com-
mensurated, it follows that PSL(n,Z)≤c PGL(n,Q).

Let (ei j )1≤i, j≤n ∈ Mn(Z) be the matrix units and fix [a] ∈ PGL(n,Q) \ {[Id]}.
By taking conjugates of [a] by elements of the form [Id + m · ei j ] ∈ PSL(n,Z),
m ∈ Z, 1 ≤ i ̸= j ≤ n, it is easy to see that [a]

PSL(n,Z) is infinite, so that PGL(n,Q)

is icc relatively to PSL(n,Z).
The conclusion then follows from Theorem 3.5. □

Remark 3.8. Let us sketch a different proof of Corollary 3.7 which gives the
stronger statement that PSL(n,Z)≤PGL(n,R) is C∗-irreducible, where PGL(n,R)

is seen as a discrete group.
Clearly, it suffices to show that, for any countable group 0 such that PSL(n,Z)≤

0 ≤ PGL(n,R), the inclusion PSL(n,Z)≤ 0 is C∗-irreducible. By the argument
in [Bryder 2017, Example 3.4.3], the action of PGL(n,R) on the projective space
Pn−1(R) is topologically free. Since PSL(n,Z)↷Pn−1(R) is a boundary action,
the result follows from [Rørdam 2021, Theorem 5.3].

Corollary 3.9. Let 3 be a finite-index subgroup of a group 0. If 0 is C∗-simple,
then 3 ≤ 0 is C∗-irreducible. Conversely, if 3 is C∗-simple, then 0 is icc if and
only if 3≤ 0 is C∗-irreducible.

Proof. If 0 is C∗-simple, then 0↷∂F0 is free. Since ∂F0 is 0-isomorphic to ∂F3,
it follows that 3≤ 0 is C∗-irreducible.

If 0 is icc, then, since [0 :3]<∞, it is also icc relatively to 3, hence 3≤ 0 is
C∗-irreducible by Theorem 3.5. The last implication is immediate. □

Example 3.10. The inclusion given by the Sanov subgroup F2 ≤ PSL(2,Z) is
finite-index, hence it is C∗-irreducible by Corollary 3.9.

Free groups. Fix m, n ∈ N such that 2 ≤ m < n and consider the free groups
Fm = ⟨a1, . . . , am⟩ ≤ ⟨a1, . . . , an⟩ = Fn . Rørdam [2021, Example 5.4] observed
that Fm ≤ Fn is C∗-irreducible. Notice that Fm is far from being commensurated
in Fn . In fact, given g ∈ Fn \ Fm , we have that Fm ∩ gFm g−1

= {e} (i.e., Fm is
malnormal in Fn). In particular, this example is not covered by Theorems 3.1
and 3.5. Nonetheless, there does exist an extension to Fn of the action Fm↷∂F Fm ,
but it is far from being unique, since the generators am+1, . . . , an can be mapped
into any homeomorphisms on ∂F Fm .

Furthermore, we claim that Fm ≤ Fn satisfies condition (5) in Theorem 3.5. We
will prove this by using Proposition 3.4.
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Let

∂Fn :=
{
(xi ) ∈

∏
N

{a1, a−1
1 , . . . , an, a−1

n } : ∀i ∈ N, xi+1 ̸= x−1
i

}
be the Gromov boundary of Fn , and consider the action of Fn on ∂Fn by left
multiplication. Fix µ∈ Prob(∂Fn), and we will show that there is w ∈ ∂Fn on which
Fn acts freely and such that δw ∈ Fmµ.

Let z+ := (a1)i∈N ∈ ∂Fn , and let z− := (a−1
1 )i∈N ∈ ∂Fn . Notice that, for all

y ∈ ∂Fn \ {z−}, we have that, as k → +∞, ak
1 y → z+. Furthermore, a1 fixes z−.

It follows from the dominated convergence theorem that

ak
1µ→ µ({z−})δz−

+ (1 −µ({z−}))δz+
,

as k → +∞. In particular, ν := µ({z−})δz−
+ (1 −µ({z−}))δz+

∈ Fnµ.
Let w := a1a1

2a1a2
2a1a3

2 · · · a1al
2a1al+1

2 · · · ∈ ∂Fn . Since w is not eventually
periodic, we have that Fn acts freely on w. Given k ∈ N, let gk :=w1 · · ·wka2 ∈ Fm .
We have that gkz± =w1 · · ·wka2z± →w, as k →+∞. Therefore, δw ∈ Fmν⊂ Fmµ,
thus showing the claim.

Abstract commensurator. Let 0 be a group and � be the set of isomorphisms
between finite-index subgroups of 0. Given α, β ∈�, we say that α ∼ β if there
exists a finite-index subgroup H ≤ dom(α)∩ dom(β) such that α|H = β|H . Recall
that the abstract commensurator of 0, denoted by Comm(0), is the group whose
underlying set is�/∼, with product given by composition (defined up to finite-index
subgroup).

Let 3 be a commensurated subgroup of 0. Given g ∈ 0, let

βg : 3∩ g−13g →3∩ g3g−1, h 7→ ghg−1,

and j03 : 0 → Comm(3) be the homomorphism given by j03(g) := [βg]. In order
to ease the notation, we will sometimes denote j03 simply by j , and it will always
be clear from the context what the involved groups are. Let us now collect a few
elementary facts about j .

Lemma 3.11. Let 0 be a group. Then j00 (0)≤c Comm(0).

Proof. Fix [α] ∈ Comm(0). Given g ∈ dom(α), we have that [α] j (g)[α]
−1

=

j (α(g)). In particular, j (0)∩ [α] j (0)[α]
−1

⊃ j (Im(α)). Since [0 : Im(α)]<∞,
we conclude that

[
j (0) : j (0)∩ [α] j (0)[α]

−1
]
<∞. □

Lemma 3.12. Let 3≤c 0. Then ker j03 = {g ∈ 0 : |g3|<∞}.

Proof. Given g ∈ ker j , there exists a finite-index subgroup H ≤ 3 ∩ g−13g
such that, for all h ∈ H , ghg−1

= h, which implies that |g3| < ∞. Conversely,
if |g3| < ∞, then H := {k ∈ 3 : kg = gk} is a finite-index subgroup of 3 and
g ∈ ker j . □



376 KANG LI AND EDUARDO SCARPARO

As a consequence of Lemma 3.12, if 0 is an icc group, then j : 0 → Comm(0)
is injective [Kida 2011, Lemma 3.8 (i)]. The next result is known [Kida 2011,
Lemma 3.8 (iii)]. For the convenience of the reader, we provide the proof here.

Lemma 3.13. If 0 is an icc group, then Comm(0) is icc relatively to 0.

Proof. Given [α] ∈ Comm(0) and g ∈ dom(α), we have

j (g)[α] j (g−1)= j (gα(g−1))[α].

If [α] ̸= e, then H := {g ∈ dom(α) : g = α(g)} has infinite-index in dom(α). Given
g1, g2 ∈ dom(α) such that g1 H ̸= g2 H , one can readily check that g1α(g1)

−1
̸=

g2α(g2)
−1. From this, it follows immediately that [α]

0 is infinite. □

Bédos and Omland [2023, Corollary 6.6] showed that if 0 is a C∗-simple group,
then 0 ≤ Aut(0) is C∗-irreducible. The same conclusion holds when we consider
the abstract commensurator:

Corollary 3.14. Given a C∗-simple group 0, we have that 0 ≤ Comm(0) is C∗-
irreducible.

Proof. Recall that any C∗-simple group is icc (this follows, e.g., from Theorem 3.5).
The result is then a consequence of Theorem 3.5 and Lemma 3.13. □

Remark 3.15. Corollary 3.14 generalizes the fact proven in [Le Boudec and
Matte Bon 2018, Corollary 4.4] that, if Thompson’s group F is C∗-simple, then
Comm(F) is C∗-simple.

Remark 3.16. Let Fn be a nonabelian free group of finite rank. Then Corollary 3.14
implies that Comm(Fn) is C∗-simple. In particular, it does not admit any nontrivial
amenable normal subgroup. It is an open problem whether Comm(Fn) is a simple
group [Caprace and Monod 2018, Problem 7.2].

4. Relative boundaries

Given groups3≤0, Ursu [2022, Proposition 4.1] introduced a3-strongly proximal
0-boundary B(0,3) which is universal with these properties.

Consider 0 :=PSL(2,Z) and the boundary action 0↷R∪{∞}. The stabilizer 0∞

of ∞ is isomorphic to Z and consists of the translations gn(x) := x + n, n ∈ Z,
x ∈ R.

Proposition 4.1. The action of 0 = PSL(2,Z) on B(0, 0∞) is topologically free
but nonfree. In particular, B(0, 0∞) is not extremally disconnected.

Proof. For any x ∈ R ∪ {∞}, we have gn(x)→ ∞ as n → +∞. As a consequence
of the dominated convergence theorem, it follows easily that 0∞↷R ∪ {∞} is
strongly proximal. Hence, there is a 0-equivariant map B(0, 0∞) → R ∪ {∞}.
Since 0∞↷B(0, 0∞) is strongly proximal, it follows from amenability of 0∞ that



C∗-IRREDUCIBILITY OF COMMENSURATED SUBGROUPS 377

0∞ fixes some point in B(0, 0∞). In particular, 0↷B(0, 0∞) is not free. On the
other hand, since 0↷R ∪ {∞} is topologically free, it follows from [Breuillard
et al. 2017, Lemma 3.2] that 0↷B(0, 0∞) is topologically free. As a consequence
of [Frolík 1971, Theorem 3.1], B(0, 0∞) is not extremally disconnected. □

Remark 4.2. Let 0 be a group. One of the key properties in the applications of ∂F0

to C∗-simplicity of 0 is the fact that C(∂F0) is injective, shown in [Kalantar and
Kennedy 2017, Theorem 3.12]. Proposition 4.1 implies that C(B(0,3)) is not
injective, in general. We believe that this is evidence that B(0,3) is not likely to
play the same role as the Furstenberg boundary in C∗-algebraic applications.

Our next aim is to show that, given 3≤c 0, it holds that B(0,3)= ∂F3. We
start with a result which we believe has its own interest.

Theorem 4.3. Let3≤c 0 and 0↷X be a minimal action on a compact space such
that 3↷X is proximal. Then 3↷X is minimal as well.

Proof. Let M ⊂ X be a closed nonempty 3-invariant set. For any g ∈ 0, we have
that gM is g3g−1-invariant.

Fix g1, . . . , gn ∈ 0. We have that H :=3∩ g13g−1
1 ∩ · · · ∩ gn3g−1

n has finite
index in 3. In particular, H↷X is proximal and admits a unique minimal compo-
nent K . Since each gi M is gi3g−1

i -invariant, we conclude that K ⊂
⋂n

i=1 gi M .
By compactness of X , we obtain that L :=

⋂
g∈0 gM ̸=∅. Since L is 0-invariant,

we have X = L ⊂ M . □

The following is an immediate consequence of the previous theorem:

Corollary 4.4. Let3≤c 0. If X is a 0-boundary which is also3-strongly proximal,
then X is a 3-boundary.

By arguing as in [Ursu 2022, Corollary 4.3], we conclude the following:

Corollary 4.5. If 3≤c 0, then B(0,3)= ∂F3.

5. Commensurated subgroups and proximal actions

Given a group 0, there exists a universal minimal proximal 0-space ∂p0 [Glasner
1976, Theorem II.4.2]. It was shown in [Frisch et al. 2019, Proposition 2.12] and
[Glasner et al. 2021, Theorem 1.5] that a countable group 0 is icc if and only if
0↷∂p0 is faithful if and only if 0↷∂p0 is free.

One can easily check that the statements of Theorem 3.1 and Lemma 3.3 hold
with ∂p3 instead of ∂F3, with the exact same proofs (in particular, [Breuillard
et al. 2017, Lemma 5.1], which is needed in the proof of Lemma 3.3, uses only
proximality). Thus, we obtain:
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Theorem 5.1. Let 3 ≤c 0. Then 3↷∂p3 extends in a unique way to an action
of 0 on ∂p3. Furthermore, given s ∈ 0, if s ∈ C0(3∩ s−13s), then Fix(s)= ∂p3.
Conversely, if 3↷∂p3 is free and Fix(s) ̸= ∅, then s ∈ C0(3∩ s−13s).

As a consequence, we obtain the following:

Theorem 5.2. Let 3 ≤c 0 and suppose that 3↷ ∂p3 is free. The following
conditions are equivalent:

(1) 0 is icc relatively with 3;

(2) for any s ∈ 0 \ {e}, we have that s /∈ C0(3∩ s−13s);

(3) 0↷∂p3 is free;

(4) 0↷∂p3 is faithful.

Proof. The implications (1)=⇒ (2)=⇒ (3)=⇒ (4) are proven as in Theorem 3.5.

(4)=⇒ (1): Suppose that there is g ∈ 0 \ {e} such that |g3|<∞. Then it follows
that H := {h ∈ 3 : gh = hg} is a finite-index subgroup of 3, hence H ↷ ∂p3

is also minimal and proximal. Since the homeomorphism on ∂p3 given by g is
H -equivariant, we conclude that g acts trivially on ∂p3. □

Remark 5.3. Given a group 0, let L(0) be its group von Neumann algebra. Given
3≤ 0, it follows from [Rørdam 2021, Proposition 5.1] and [Bédos and Omland
2023, Corollary 4.3] that 0 is icc relatively to 3 if and only if any intermediate
von Neumann algebra of L(3)⊂ L(0) is a factor if and only if any intermediate
C∗-algebra of C∗

r (3)⊂ C∗
r (0) is prime.

Let us now apply Theorem 5.2 to a certain locally finite commensurated subgroup
of Thompson’s group V .

Example 5.4. Let X := {0, 1} and, given n ≥ 0, let Xn be the set of words in X of
length n. Givenw∈ Xn , let C(w) :={(sn)∈ XN

: s[1,n] =w}. Recall that Thompson’s
group V is the group of homeomorphisms on XN consisting of elements g for which
there exist two partitions {C(w1), . . . , C(wm)} and {C(z1), . . . , C(zm)} of {0, 1}

N

such that g(wi s)= zi s for every 1 ≤ i ≤ m and s ∈ XN.
Let us define inductively groups Gn acting by permutations on Xn . Let G1 := Z2

acting nontrivially on X and, for n ∈ N,

Gn+1 :=

( ⊕
w∈Xn

Z2

)
⋊Gn,

where the action of Gn+1 on Xn+1 is defined as follows: given v ∈ Xn , x ∈ X ,
σ ∈ Gn and f ∈

⊕
Xn Z2,

( f, σ )(vx) := σ(v) fσ(v)(x).
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Let G := limn∈N Gn . Then G acts faithfully on XN and, as observed in [Le Boudec
2017, Proposition 7.11], G ≤c V .

We claim that V is icc relatively with G. Given u ∈ Xn , let the rigid stabilizer
of u, denoted by ristG(u), be the subgroup of G consisting of the elements which,
for every v ∈ Xn

\{u}, act as the identity on C(v). Given g ∈ G, there is g̃ ∈ ristG(u)
such that g̃(us)= ug(s) for any s ∈ XN. Clearly, the map g 7→ g̃ is an isomorphism
from G to ristG(u). Fix h ∈ V \ {e} and take w ∈ Xn and z ∈ Xm such that w ̸= z,
n ≥ m and h(ws) = zs for any s ∈ XN. Furthermore, take v ∈ Xn−m such that
zv ̸= w. Given s ∈ XN, we have that

(1) {g̃hg̃−1(wvs) : g̃ ∈ ristG(zv)} = {zvg(s) : g ∈ G}.

Since G↷XN is faithful, it follows from (1) that |hG
| = ∞, thus proving the claim.

From [Glasner et al. 2021, Theorem 1.5], we obtain that G↷∂pG is free and
from Theorem 5.2, we conclude that V ↷∂pG is free.

Remark 5.5. Le Boudec and Matte Bon [2018, Theorem 1.5] showed that Thomp-
son’s group V is C∗-simple, hence V ↷∂F V is free. However, their proof is done
by showing that V does not admit nontrivial amenable URS, not by exhibiting
a concrete topologically free V -boundary. It seems as an interesting problem to
determine whether V ↷∂pG is strongly proximal, thus providing an alternative
proof of C∗-simplicity of V .

Remark 5.6. In [Breuillard et al. 2017, Theorem 1.4], it was shown that the class
of C∗-simple groups is closed by taking normal subgroups. Obviously, this class
is not closed by taking commensurated subgroups, since any finite subgroup is
commensurated. Moreover, Example 5.4 shows that, given 3≤c 0 such that 0 is
icc relatively to 3, C∗-simplicity of 0 does not pass to 3 in general.
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Pacific
JournalofM

athem
atics

2023
Vol.322,N

o.2


	1. Introduction
	2. Preliminaries
	3. C*-irreducibility of commensurated subgroups
	4. Relative boundaries
	5. Commensurated subgroups and proximal actions
	References
	
	

