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We consider an “orientifold” generalization of Khovanov–Lauda–Rouquier
algebras, depending on a quiver with an involution and a framing. Their
representation theory is related, via a Schur–Weyl duality type functor, to
Kac–Moody quantum symmetric pairs, and, via a categorification theorem,
to highest weight modules over an algebra introduced by Enomoto and
Kashiwara. Our first main result is a new shuffle realization of these
highest weight modules and a combinatorial construction of their PBW
and canonical bases in terms of Lyndon words. Our second main result is
a classification of irreducible representations of orientifold KLR algebras
and a computation of their global dimension in the case when the framing
is trivial.
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1. Introduction

Khovanov–Lauda–Rouquier (KLR) algebras were introduced in [Khovanov and
Lauda 2009; Rouquier 2008] in the context of categorification of quantum groups.
They have since played an increasingly important role in representation theory.
Broadly speaking, KLR algebras can be regarded, via the Brundan–Kleshchev–
Rouquier isomorphism [Brundan and Kleshchev 2009; Rouquier 2008], as a gen-
eralization of the affine Hecke algebra Ĥ(Am) of type A. This generalization is
twofold. Firstly, KLR algebras naturally possess a nontrivial grading, which is
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difficult to discern in the affine Hecke algebra. Secondly, KLR algebras constitute
the correct replacement for Ĥ(Am) from the point of view of Schur–Weyl duality.
Indeed, Kang, Kashiwara and Kim [Kang et al. 2018] have constructed functors
relating categories of modules over KLR algebras and quantum affine algebras
of any type, generalizing the relationship between Ĥ(Am) and Uq(ŝln) established
earlier by Chari and Pressley [1996].

It is natural to ask whether it is possible to construct a KLR-type generalization
of affine Hecke algebras of other classical types. A positive answer to this question
was given by Varagnolo and Vasserot [2011], as well as by Poulain d’Andecy
and Walker [2020]. We will refer to the new graded algebras introduced there as
orientifold KLR algebras (see Remark 2.5 for an explanation of the origin of this
name). It must be stressed that orientifold KLR algebras are very different from
the usual KLR algebras associated to Cartan data of other classical types. From
the point of view of categorification, their representation theory is related to an
algebra introduced by Enomoto and Kashiwara [2006], depending on a Dynkin
diagram together with an involution. More precisely, it was shown in [Varagnolo
and Vasserot 2011] that orientifold KLR algebras categorify irreducible highest
weight modules θV(λ) over the Enomoto–Kashiwara algebra. In analogy to Uq(n−),
these modules also admit a geometric construction in terms of perverse sheaves on
the stack of orthogonal representations of a quiver with a contravariant involution
[Enomoto 2009], as well as a Ringel–Hall–type construction [Young 2016].

Our main motivation for studying orientifold KLR algebras is related to Schur–
Weyl duality. In [Appel and Przeździecki 2022], we construct functors between
categories of modules over orientifold KLR algebras and coideal subalgebras Bc,s
of quantum affine algebras Uq(ĝ) (see [Kolb 2014]), respectively. The parameter λ

is related to the parameters c and s via an additional datum in the definition of an
orientifold KLR algebra, given by a framing dimension vector. Our intention is to use
these functors to develop the graded representation theory of Kac–Moody quantum
symmetric pairs. The study of finite-dimensional representations of orientifold KLR
algebras is the first step in this program.

Let us describe our results in more detail. In Section 2, we introduce a somewhat
more general definition of orientifold KLR algebras (Definition 2.4) associated to
hermitian matrices with an additional symmetry. We construct a faithful polyno-
mial representation (Proposition 2.7) and prove a PBW theorem (Proposition 2.9).
Section 3 is dedicated to the Enomoto–Kashiwara algebra. Inspired by the work of
Leclerc [2004] and Kleshchev and Ram [2011], we construct a shuffle realization
of the modules θV(λ) (Definition 3.6 and Proposition 3.9). This allows us to apply
the combinatorics of Lyndon words to obtain PBW and canonical bases for these
modules, in the case λ = 0 (Theorem 3.28, Corollary 3.30), somewhat simplifying
the original construction of these bases [Enomoto and Kashiwara 2008]. In Section 4,
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we apply these results to the representation theory of orientifold KLR algebras.
A key ingredient is Varagnolo and Vasserot’s categorification theorem [2011],
identifying θV(λ) with the Grothendieck group of the category of finite-dimensional
representations of orientifold KLR algebras. In our main result (Theorem 4.10), we
classify irreducible representations of orientifold KLR algebras in terms of θ -good
Lyndon words, and construct them as heads (respectively, socles) of certain induced
(respectively, coinduced) modules. As an application, we prove that orientifold
KLR algebras have finite global dimension when λ = 0.

Future work. The present paper lays the foundations for a broader programme con-
necting the representation theory of quantum symmetric pairs with orientifold KLR
algebras via generalized Schur–Weyl duality functors. In [Appel and Przeździecki
2022], the results of the present paper, together with a number of new techniques,
including k-matrices for KLR algebras and localization for module categories, are
used to construct Hernandez–Leclerc–type categories [2010; 2015] for coideal
subalgebras Bc,s in affine type A.III with generic parameters c, s.

In future work, we would like to generalize these results to nongeneric parameters
and coideals of type D.IV. This will, in turn, require the development of the
representation theory of orientifold KLR algebras associated to nontrivial framings λ

and quivers of affine type D. To achieve this, we will combine the combinatorial
techniques from the present paper with an in-depth study of the geometry of framed
symplectic and orthogonal quiver representations.

We expect that further study of orientifold KLR algebras with nontrivial fram-
ings will also provide new information about the representation theory of (affine)
Hecke algebras of types B and C with unequal parameters, including the so-called
nonasymptotic case, which is still only partially understood.

In yet another direction, the connection to Hernandez–Leclerc categories suggests
that the combinatorics of the dual canonical bases of the modules θV(λ) should
have an interesting interpretation in terms of cluster theory.

2. Orientifold KLR algebras

2A. Some combinatorics. Let k be a field. Let Sn = ⟨s1, . . . , sn−1⟩ denote the
symmetric group on n letters, and let Wn =⟨s0, s1, . . . , sn−1⟩ denote the Weyl group
of type Bn , i.e., (Z/2Z)n ⋊Sn . We regard them as Coxeter groups in the usual
way. Given 0 ≤ m ≤ n, let Dm,n−m (respectively, θDm,n−m) denote the set of shortest
left coset representatives with respect to the parabolic subgroup Sm ×Sn−m ⊂ Sn

(respectively, Wm ×Sn−m ⊂ Wn). Let w0 ∈ Sn (respectively, θw0 ∈ Wn) be the
longest element, and let θw ∈ Wn be the longest element in θD0,n , i.e., the signed
permutation

θw(l) = −(n − l + 1).
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Let J be a set and θ : J → J an involution. We denote by J θ the subset of fixed
points of θ . Let N[J ] be the commutative semigroup freely generated by J . We call
elements of N[J ] dimension vectors. Given a dimension vector β =

∑
i∈J β(i) · i ,

we set ∥β∥ =
∑

i∈J β(i) and supp(β) = {i ∈ J | β(i) ̸= 0}. We call a sequence
ν = ν1 · · · νn ∈ J n a composition of β of length ℓ(ν) = n if |ν| =

∑n
k=1 νk = β. We

also set ∥ν∥ = n. Let Jβ denote the set of all compositions of β. There is a left
action of Sn on J n by permutations

(2-1) sk · ν1 · · · νn = ν1 · · · νk+1νk · · · νn, 1 ≤ k ≤ n − 1,

whose orbits are the sets Jβ for all β with ∥β∥ = n.
Let J •

=
⋃

β∈N[J ]
Jβ be the set of compositions of all dimension vectors. We

also refer to elements of J • as words in J and denote the empty word by ∅. We
consider J • as a monoid with respect to concatenation: νµ = ν1 · · · νℓνµ1 · · · µℓµ,
with ∅ as the identity.

The involution θ induces an involution θ : N[J ] → N[J ]. We call dimension
vectors in N[J ]

θ self-dual. We will always assume, for any β ∈ N[J ]
θ , that if i ∈ J θ ,

then β(i) is even. Set ∥β∥θ = ∥β∥/2 and

θ(−) : N[J ] → N[J ]
θ , β 7→

θβ = β + θ(β).

We call a sequence ν = ν1 · · · νn ∈ J n an isotropic composition of β if θ
|ν| =∑n

k=1
θνi = β. We abbreviate ν−k = θ(νk). Let θJβ denote the set of all isotropic

compositions of β. There is a left action of Wn on J n extending (2-1), given by

s0 · ν1 · · · νn = θ(ν1)ν2 · · · νn,

whose orbits are the sets θJβ for all self-dual β with ∥β∥θ = n. Let θJ •
=⋃

β∈N[J ]θ
θJβ be the set of all isotropic compositions of all self-dual dimension

vectors. The identity map defines a bijection J • ∼=
θJ •.

We will consider algebras depending on matrices and vectors with polynomial
entries. Below we introduce some terminology for the latter.

Definition 2.1. We call a matrix Q = (Qi j )i, j∈J with entries in k[u, v] a coefficient
matrix. We say that Q is:

(M1) regular if Qi i = 0 for all i ∈ J ,

(M2) θ -symmetric if Qi j (u, v) = Qθ( j)θ(i)(−v, −u) for all i, j ∈ J ,

(M3) nonvanishing if Qi j ̸= 0 for all i ̸= j ∈ J ,

(M4) hermitian if Qi j (u, v) = Q j i (v, u) for each i, j ∈ J .

Moreover, we call a vector Q′
= (Qi )i∈J with entries in k[u] a coefficient vector.

We say that Q′ is:

(V1) regular if Qi = 0 for all i ∈ J θ ,
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(V2) nonvanishing if Qi ̸= 0 for all i /∈ J θ ,

(V3) self-conjugate if Qi (u) = Qθ(i)(−u).

If a coefficient matrix satisfies (M1)–(M4), respectively, if a coefficient vector
satisfies (V1)–(V3), we call it perfect.

2B. Reminder on KLR algebras. Let β ∈ N[J ] with ∥β∥ = n, and let Q be a
regular coefficient matrix.

Definition 2.2. The KLR algebra R(β) associated to (J, Q, β) is the unital k-
algebra generated by e(ν) with ν ∈ Jβ , xl with 1 ≤ l ≤ n and τk with 1 ≤ k ≤ n −1,
subject to the following relations:

• idempotent relations:

e(ν)e(ν ′) = δν,ν′e(ν), xle(ν) = e(ν)xl, τke(ν) = e(sk · ν)τk,

• polynomial relations:
xl xl ′ = xl ′ xl,

• quadratic relations:

τ 2
k e(ν) = Qνk ,νk+1(xk+1, xk)e(ν),

• deformed braid relations:

τkτk′ = τk′τk, if k ̸= k ′
±1,

(τk+1τkτk+1−τkτk+1τk)e(ν) = δνk ,νk+2

Qνk ,νk+1(xk+1, xk)−Qνk ,νk+1(xk+1, xk+2)

xk−xk+2
e(ν),

• mixed relations:

(τk xl − xsk(l)τk)e(ν) =


−e(ν), if l = k, νk = νk+1,

e(ν), if l = k + 1, νk = νk+1,

0, else.

Whenever we want to emphasize the dependence of the KLR algebra on the full
datum (J, Q, β), we will write R(J, Q, β).

Lemma 2.3. If the coefficient matrix Q is hermitian, then there is an algebra
isomorphism R(β) → R(β) sending

(2-2) e(ν) 7→ e(w0(ν)), xl 7→ xn−l+1, τk 7→ −τn−k .

If the coefficient matrix Q is hermitian and θ-symmetric, then there is an algebra
isomorphism R(β) → R(θ(β)) sending

(2-3) e(ν) 7→ e(θw(ν)), xl 7→ −xn−l+1, τk 7→ −τn−k .

Proof. The first statement can be found in, e.g., [Rouquier 2008, §3.2.1]. The
second statement follows from a direct check of the relations using θ -symmetry. □
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If M is an R(β)-module, we will denote by M† the corresponding R(θ(β))-
module with the action twisted by the inverse of the isomorphism given in (2-3).

2C. Orientifold KLR algebras. Let β ∈ N[J ]
θ with ∥β∥θ = n, let Q be a regular

θ -symmetric coefficient matrix and Q′ a regular coefficient vector.

Definition 2.4. Associated to (J, θ, Q, Q′, β), we define the orientifold KLR al-
gebra θR(β) to be the unital k-algebra generated by e(ν) with ν ∈

θJβ , xl with
1 ≤ l ≤ n, τ0 and τk with 1 ≤ k ≤ n − 1 subject to the following relations:

• idempotent relations:

e(ν)e(ν ′) = δν,ν′e(ν), xle(ν) = e(ν)xl,

τke(ν) = e(sk · ν)τk, τ0e(ν) = e(s0 · ν)τ0,

• polynomial relations:
xl xl ′ = xl ′ xl,

• quadratic relations:

τ 2
k e(ν) = Qνk ,νk+1(xk+1, xk)e(ν), τ 2

0 e(ν) = Qν1(−x1)e(ν),

• deformed braid relations:

τkτk′ = τk′τk, if k ̸= k ′
± 1, τ0τk = τkτ0, if k ̸= 1,

(τk+1τkτk+1−τkτk+1τk)e(ν)= δνk ,νk+2

Qνk ,νk+1(xk+1, xk)−Qνk ,νk+1(xk+1, xk+2)

xk −xk+2
e(ν),(

(τ1τ0)
2
−(τ0τ1)

2)e(ν)

=



Qν2(x2)−Qν1(x1)

x1+x2
τ1e(ν), if ν1 ̸= ν2, ν2 = θ(ν1)

Qν1,ν2(x2, −x1)−Qν1,ν2(−x2, −x1)

x2
τ0e(ν), if ν1 ̸= θ(ν1), ν2 = θ(ν2),

Qν1,ν2(x2, −x1)−Qν1,ν2(x2, x1)

x1x2
(x1τ0+1)e(ν), if θ(ν1)= ν1 ̸= ν2 = θ(ν2),

0 else,

• mixed relations:

(τk xl − xsk(l)τk)e(ν) =


−e(ν), if l = k, νk = νk+1,

e(ν), if l = k + 1, νk = νk+1,

0, else,

(τ0x1 + x1τ0)e(ν) =

{
0, if ν1 ̸= θ(ν1),

−2e(ν), if ν1 = θ(ν1),

τ0xl = xlτ0, if l ̸= 1.
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By convention, we set θR(0) = k. Whenever we want to emphasize the depen-
dence of the orientifold KLR algebra on the full datum (J, θ, Q, Q′, β), we will
write θR(J, Q, Q′, β).

Remark 2.5. In the case when the matrices Q and Q′ arise from a quiver with a
contravariant involution and a framing (see Section 2F), under the assumption that
the involution has no fixed points, the algebra θR(β) was introduced by Varagnolo
and Vasserot [2011]. The case of an involution with possible fixed points was first
considered by Poulain d’Andecy and Walker [2020], and later by Poulain d’Andecy
and Rostam [2021]. The latter paper takes a somewhat similar approach to ours —
the definition of the algebra depends on polynomials Qi j , but they are less general
than ours, and the polynomials Qi are absent.

In the literature, these algebras are typically referred to as “generalizations of
KLR algebras for types BCD”. However, we feel that this name may lead to confusion
between, for example, the algebra θR(β) and the KLR algebra R(β) associated
to a quiver of type D. To avoid this confusion, we propose to introduce the name
“orientifold KLR algebras” for θR(β). The motivation comes from the connection
with orientifold Donaldson–Thomas theory, see [Przeździecki 2019; Young 2020].

Proposition 2.6. We list several isomorphisms between orientifold KLR algebras:

(1) If Q is hermitian and Q′ self-conjugate, then there is an algebra automorphism

(2-4) θR(β) ∼
−→

θR(β), e(ν) 7→ e(θw0(ν)), xl 7→ −xl, τk 7→ −τk,

with ν ∈
θJβ , 1 ≤ l ≤ n and 0 ≤ k ≤ n − 1.

(2) If Q is hermitian and Q′ self-conjugate, then there is an algebra isomorphism

(2-5) ω :
θR(β) ∼

−→
θR(β)op, e(ν) 7→e(ν), xle(ν) 7→xle(ν), τke(ν) 7→τke(sk ·ν).

(3) Given {ζi }i∈J in k satisfying ζi = −ζθ(i), as well as {ηi j }i, j∈J and {ηi }i∈J

in k× satisfying: ηi j = ηθ( j)θ(i) for all i, j ∈ J and ηi = ηi i for i ∈ J θ , let
Q̂i j (u, v) = ηi jη j i (η j j u + ζ j , ηi iv + ζi ) and Q̂i (u) = ηiηθ(i)Qi (ηi i u − ζi ).
Then there is an algebra isomorphism θR(J, Q̂, Q̂′, β) ∼

−→
θR(J, Q, Q′, β)

given by

e(ν) 7→ e(ν), xle(ν) 7→ η−1
νl ,νl

(xl − ζνl )e(ν),

τke(ν) 7→ ηνk ,νk+1τke(ν), τ0e(ν) 7→ ην1τ0e(ν).

Proof. The result follows by a direct computation from the defining relations. □

2D. Polynomial representation. Set

Pν = k[x1, . . . , xn]e(ν), P̂ν = kJx1, . . . , xnKe(ν), K̂ν = k((x1, . . . , xn))e(ν),

θPβ =
⊕

ν∈θJβ

Pν,
θ P̂β =

⊕
ν∈θJβ

P̂ν,
θ K̂β =

⊕
ν∈θJβ

K̂ν .
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We abbreviate x−l = −xl for 1 ≤ l ≤ n. The group Wn acts on k((x1, . . . , xn))

from the left by w · xl = xw(l). This induces an action on θ K̂β according to the rule

(2-6) w · f e(ν) = w( f )e(w · ν),

for w ∈ Wn and f ∈ k((x1, . . . , xn)).
Let P = (Pi j )i, j∈J be a coefficient matrix satisfying (M1)–(M3) and P ′

= (Pi )i∈J

a coefficient vector satisfying (V1)–(V2). Set

(2-7)
Qi j (u, v) = Pi j (u, v)Pj i (v, u),

Qi (u) = Pi (u)Pθ(i)(−u),

with i, j ∈ J . Then Q = (Qi j ) is a perfect coefficient matrix and Q′
= (Qi ) a

perfect coefficient vector.

Proposition 2.7. The algebra θR(β) has a faithful polynomial representation
on θPβ , given by:

• e(ν), where ν ∈
θJβ , acting as a projection onto Pν ,

• x1, . . . , xn acting naturally by multiplication,

• τ1, . . . , τn−1 acting via

τk · f e(ν) =


sk( f ) − f
xk − xk+1

e(ν), if νk = νk+1,

Pνk ,νk+1(xk, xk+1)sk( f )e(sk · ν), otherwise,

• τ0 acting via

τ0 · f e(ν) =

{s0( f ) − f
x1

e(ν), if θ(ν1) = ν1,

Pν1(x1)s0( f )e(s0 · ν), otherwise.

Whenever we want to emphasize the dependence of the above representa-
tion on (P, P ′), we will write θP

P,P ′

β .

Proof. The proof that the operators defined above satisfy all the relations from
Definition 2.4 not involving τ0 is the same as in the case of the KLR algebra, and
can be found in, e.g., the proof of [Rouquier 2008, Proposition 3.12]. The other
relations are easy to check, with the exception of the deformed braid relations. We
prove these explicitly below.
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To simplify exposition, we omit the idempotents. We also abbreviate i = ν1 and
j = ν2. First consider the case where i ̸= j and j = θ(i). Then:

τ1τ0τ1τ0( f ) = τ1τ0τ1 Pi (x1)s0( f ) = τ1τ0
Pi (x2)s1s0( f )−Pi (x1)s0( f )

x1−x2

= τ1 Pj (x1)
Pi (x2)s0s1s0( f )−Pi (−x1) f

−x1−x2

= Pi j (x1, x2)Pj (x2)
Pi (x1)s1s0s1s0( f )−Pi (−x2)s1( f )

−x1−x2
,

τ0τ1τ0τ1( f ) = τ0τ1τ0 Pi j (x1, x2)s1( f ) = τ0τ1 Pj (x1)Pi j (−x1, x2)s0s1( f )

= τ0
Pj (x2)Pi j (−x2, x1)s1s0s1( f )−Pj (x1)Pi j (−x1, x2)s0s1( f )

x1−x2

= Pi (x1)
Pj (x2)Pi j (−x2, −x1)s0s1s0s1( f )−Pj (−x1)Pi j (x1, x2)s1( f )

−x1−x2
.

Since, by θ -symmetry, we have Pi j (x1, x2) = Pi j (−x2, −x1), it follows that

(
(τ1τ0)

2
− (τ0τ1)

2)( f ) =
Pj (x2)Pi (−x2) − Pi (x1)Pj (−x1)

x1 + x2
Pi j (x1, x2)s1( f )

=
Q j (x2) − Qi (x1)

x1 + x2
τ1( f ).

Secondly, let i ̸= θ(i) and j = θ( j). Then:

τ1τ0τ1τ0( f )

= τ1τ0τ1 Pi (x1)s0( f ) = τ1τ0 Pθ(i), j (x1, x2)Pi (x2)s1s0( f )

= τ1
Pθ(i), j (−x1, x2)Pi (x2)s0s1s0( f )−Pθ(i), j (x1, x2)Pi (x2)s1s0( f )

x1

= Pj,θ(i)(x1, x2)
Pθ(i), j (−x2, x1)Pi (x1)s1s0s1s0( f )−Pθ(i), j (x2, x1)Pi (x1)s0( f )

x2
,

τ0τ1τ0τ1( f )

= τ0τ1τ0 Pi j (x1, x2)s1( f ) = τ0τ1
Pi j (−x1, x2)s0s1( f )−Pi j (x1, x2)s1( f )

x1

= τ0 Pj i (x1, x2)
Pi j (−x2, x1)s1s0s1( f )−Pi j (x2, x1) f

x2

= Pi (x1)Pj i (−x1, x2)
Pi j (−x2, −x1)s0s1s0s1( f )−Pi j (x2, −x1)s0( f )

x2
.
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Again, θ -symmetry implies that

((τ1τ0)
2
− (τ0τ1)

2)( f )

=
−Pj,θ(i)(x1, x2)Pθ(i), j (x2, x1) + Pi j (x2, −x1)Pj,i (−x1, x2)

x2
Pi (x1)s0( f )

=
Qi j (x2, −x1) − Qi j (−x2, −x1)

x2
τ0( f ).

Thirdly, let θ(i) = i ̸= j = θ( j). Then:

τ1τ0τ1τ0( f )

= τ1τ0τ1
s0( f )− f

x1
= τ1τ0 Pi j (x1, x2)

s1s0( f )−s1( f )

x2

= τ1
Pi j (−x1, x2)[s0s1s0( f )−s0s1( f )]−Pi j (x1, x2)[s1s0( f )−s1( f )]

x1x2

= Pj i (x1, x2)
Pi j (−x2, x1)[s1s0s1s0( f )−s1s0s1( f )]−Pi j (x2, x1)[s0( f )−( f )]

x1x2
,

τ0τ1τ0τ1( f )

= τ0τ1τ0 Pi j (x1, x2)s1( f ) = τ0τ1
Pi j (−x1, x2)s0s1( f )−Pi j (x1, x2)s1( f )

x1

= τ0 Pj i (x1, x2)
Pi j (−x2, x1)s1s0s1( f )−Pi j (x2, x1) f

x2

=
Pj i (−x1, x2)[Pi j (−x2, −x1)s0s1s0s1( f )−Pi j (x2, −x1)s0( f )]

x1x2

−
Pj i (x1, x2)[Pi j (−x2, x1)s1s0s1( f )−Pi j (x2, x1) f ]

x1x2
.

By θ -symmetry, we conclude that

(
(τ1τ0)

2
−(τ0τ1)

2)( f ) =
−Pj i (x1, x2)Pi j (x2, x1)+Pj i (−x1, x2)Pi j (x2, −x1)

x1x2
s0( f )

=
Qi, j (x2, −x1)−Qi, j (x2, x1)

x1x2
(x1τ0+1) f.

Fourthly, let i = θ(i) and j ̸= θ( j). One easily checks (using θ-symmetry)
that ((τ1τ0)

2
− (τ0τ1)

2)( f ) = g · s1s0s110( f ) − 10(g · s1s0s1( f )), where g is an
s0-invariant polynomial and 10 = x−1

1 (s0 − 1). It now follows from the properties
of Demazure operators that(
(τ1τ0)

2
− (τ0τ1)

2)( f )

= g · s1s0s110( f ) −
(
10(g) · s1s0s1( f ) + s0(g)10

(
s1s0s1( f )

))
= 0.
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Fifthly, let i = j and i ̸= θ(i). One checks, as above, that ((τ1τ0)
2
−(τ0τ1)

2)( f )=

11(g · s0s1s0( f )) − g · s0s1s011( f ), where g is an s1-invariant polynomial and
11 = (x1 − x2)

−1(s1 − 1). As above, it follows from the properties of Demazure
operators that ((τ1τ0)

2
− (τ0τ1)

2)( f ) = 0.
Finally, suppose that i = j = θ( j). Then each of τ0 and τ1 acts as a Demazure

operator, but Demazure operators satisfy the braid relation. This completes the
proof that θPβ is a representation of θR(β).

The proof of faithfulness is analogous to the case of KLR algebras, see, e.g.,
[Rouquier 2008, Proposition 3.12]. □

Next, for each i, j ∈ J , we choose holomorphic functions ci j (u, v) ∈ kJu, vK
such that

(2-8) ci j (u, v)c j i (v, u) = 1, ci i (u, v) = 1, ci j (u, v) = cθ( j)θ(i)(−v, −u).

Moreover, for each i ∈ J , we also choose holomorphic functions ci ∈k[[u]] such that

(2-9) ci (u) = cθ(i)(−u), i = θ(i) ⇒ ci (u) = 1.

Set
P̃i j (u, v) = Pi j (u, v)ci j (u, v) and P̃i (u) = Pi (u)ci (u).

Corollary 2.8. There is an injective θPβ-algebra homomorphism

(2-10) θR(β) ↪→ k[Wn]⋉ θ K̂β

given by

τ0e(ν) =

{
x−1

1 (s0 − 1)e(ν), if ν1 = θ(ν1),

P̃ν1(x1)s0e(ν), otherwise,

τke(ν) =

{
(xk − xk+1)

−1(sk − 1)e(ν), if νk = νk+1,

P̃νk ,νk+1(xk, xk+1)ske(ν), otherwise,

for 1 ≤ k ≤ n − 1.

Proof. This follows directly from Proposition 2.7. □

2E. PBW theorem. In this subsection, assume that Q is a coefficient matrix satisfy-
ing (M1)–(M3) and Q′ a coefficient vector satisfying (V1)–(V2). The algebra θR(β)

is filtered with deg xl , deg e(ν) = 0 and deg τk = 1. We say that θR(β) satisfies the
PBW property if gr θR(β) ∼=

0H
f
n ⋉ θPβ , where 0H

f
n is the (nonaffine) nil-Hecke

algebra of type Bn (see, e.g., [Kostant and Kumar 1986]).
For any w ∈ Wn , choose a reduced expression w = sk1 · · · skl and set τw =

τsk1
· · · τskl

. The definition of τw depends on the choice of reduced expression.

Proposition 2.9. Let n ≥ 1. The following are equivalent:

(1) θR(β) satisfies the PBW property,
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(2) θR(β) is a free k-module with basis{
τwxa1

1 . . . xan
n e(ν) | w ∈ Wn, (a1, . . . , an) ∈ Zn

≥0, ν ∈
θJβ

}
,

(3) Q and Q′ are perfect.

Proof. The proof is a straightforward generalization of the proof of [Rouquier 2008,
Theorem 3.7]. Let us briefly comment on the new features. Suppose that (2) holds,
and let ν1 ̸= θ(ν1). The quadratic relation then implies that

Qθ(ν1)(−x1)τ0e(ν) = τ 3
0 e(ν) = τ0 Qν1(−x1)e(ν) = Qν1(x1)τ0e(ν).

It follows that (
Qθ(ν1)(−x1) − Qν1(x1)

)
τ0e(ν) = 0.

Now (2) implies that Qθ(ν1)(−x1) − Qν1(x1) = 0, i.e., Q′ is self-conjugate. Con-
versely, if both Q and Q′ are perfect, then we can use Proposition 2.7, with Pi j = Qi j ,
Pj i = 1 with i < j , Pi = Qi and Pθ(i) = 1 with i < θ(i) for some ordering of J , to
deduce (2). □

2F. Orientifold KLR algebras associated to quivers. Let 0 = (J, �) be a quiver
with vertices J and arrows �. We assume that 0 does not have loops. Given an
arrow a ∈ �, let s(a) be its source, and t (a) its target. If i, j ∈ J , let �i j ⊂ � be the
subset of arrows a such that s(a) = i and t (a) = j . Let ai j = |�i j | and abbreviate
a i j= ai j + a j i . We assume that ai j < ∞ for all i, j ∈ J .

Definition 2.10. A (contravariant) involution of the quiver 0 is a pair of involutions
θ : J → J and θ : � → � such that:

(1) s(θ(a)) = θ(t (a)) and t (θ(a)) = θ(s(a)) for all a ∈ �,

(2) if t (a) = θ(s(a)), then a = θ(a).

Fix a quiver 0 with an involution θ and two dimension vectors β ∈ N[J ]
θ ,

λ ∈ N[J ] such that ∥β∥θ = n and λ(i) = 0 if i ∈ J θ . We call λ the framing
dimension vector. Note that λ need not be self-dual.

Set
Pi j (u, v) = δi ̸= j (v − u)ai j and Pi (u) = δi ̸=θ(i)(−u)λ(i)

for i, j ∈ J , and define (Q, Q′) as in (2-7). Since, by Definition 2.10, ai j = aθ( j)θ(i),
the coefficient matrix P is θ -symmetric and, therefore, (Q, Q′) is perfect.

Definition 2.11. The KLR algebra associated to (0, β) and the orientifold KLR
algebra associated to (0, θ, β, λ) are, respectively,

R0(β) = R(J, Q, β) and θR0(β; λ) =
θR(J, Q, Q′, β).
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We endow these algebras with the following grading:

deg e(ν) = 0,

deg xk = 2,

deg τke(ν) =

{
−2, if νk = νk+1,

aνk ,νk+1, otherwise,

deg τ0e(ν) =

{
−2, if θ(ν1) = ν1,
θλ(ν1), otherwise.

Most of the time we will omit 0 from the notation, as the choice of quiver is
clear from the context. Also note that, by Proposition 2.7, the algebra θR(β; λ) has
a faithful polynomial representation on θP

P,P ′

β .

3. Enomoto–Kashiwara algebra, quantum shuffle modules and Lyndon words

3A. Notation. Let J = {αk | k ∈ Zodd} and equip Q = Z[J ] with the symmetric
bilinear form

(3-1) αk · αl =


2, if k = l,
−1, if k = l ± 2,

0, otherwise.

Then (J, · ) is the Cartan datum associated to g = sl∞. We identify J with the set
of simple roots of the root system 8 of type A∞. Then 8+

= {βk,l | k ≤ l ∈ Zodd},
where βk,l = αk +αk+2 +· · ·+αl , is a set of positive roots. Let P = {λ ∈ Q ⊗Z Q |

λ · i ∈ Z for all i ∈ J } be the weight lattice, P+ = {λ ∈ P | λ · i ∈ Z≥0 for all i ∈ J }

be the set of dominant integral weights, and Q+ = N[J ]. Given β =
∑

i∈J ci i ∈Q+,
let N (β) =

1
2

(
β · β −

∑
i∈J ci i · i

)
.

Let θ : Q → Q be the involution sending αk 7→ α−k . The bilinear form (3-1)
restricts to Qθ . The image of 8 under the symmetrization map

Q → Qθ , αk 7→ αk + α−k

is isomorphic to the unreduced root system θ8 of type BC∞, and the image θ8+

of 8+ is a set of positive roots for θ8.
Let q be an indeterminate and set K = Q(q) and A = Z[q±1

]. Let ¯ : K → K be
the bar involution, i.e., the Q-algebra involution with q̄ = q−1. Set

[n] =
qn

− q−n

q − q−1 , [n]! = [n][n − 1] · · · [1], [2n]!! = [2n][2n − 2] · · · [2].

If A is a K-algebra, a ∈ A and n ∈ N, then a(n)
= an/[n]!. For ν = ν

a1
1 · · · ν

ak
k ∈ J •

with ν j ̸= ν j+1, set [ν]! = [a1]! · · · [ak]!.
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3B. The algebras f and f∗. Let f be the K-algebra generated by the elements fi ,
where i ∈ J , subject to the q-Serre relations:∑

k+l=1−i · j
(−1)k f (k)

i f j f (l)
i = 0, where i ̸= j.

The algebra f is Q-graded with fi in degree −i . We denote by −|u| the Q-degree of
a homogeneous element u ∈ f. Given ν = ν1 · · · νn ∈ J •, let fν = fν1 · · · fνn . We will
use notation of this form more generally, i.e., given any collection of elements yi

labeled by i ∈ J , we write yν = yν1 · · · yνn .
Kashiwara [1991] introduced q-derivations e′

i , e∗

i ∈ EndK(f) characterized by

e′

i ( f j ) = δi j , e′

i (uv) = e′

i (u)v + q−i ·|u|ue′

i (v),

e∗

i ( f j ) = δi j , e∗

i (uv) = q−i ·|v|e∗

i (u)v + ue∗

i (v),

for all homogeneous elements u, v ∈ f. Both {e′

i | i ∈ J } and {e∗

i | i ∈ J } satisfy the
q-Serre relations.

There is a unique nondegenerate symmetric bilinear form ( · , · ) on f such that
(1, 1) = 1 and (e′

i (u), v) = (u, fiv) for u, v ∈ f and i ∈ J . This form differs
slightly from the form ( · , · )L introduced by Lusztig [1993, Proposition 1.2.3] —
see [Leclerc 2004, §2.2] for the precise relationship. Let fA be the integral form
of f, i.e., the A-subalgebra generated by the f (k)

i , with i ∈ J and k ∈ N, and let

f ∗

A = {u ∈ f | (u, v) ∈ A for all v ∈ fA}

be its dual.

3C. Enomoto–Kashiwara algebra. The subalgebra of EndK(f) generated by the e′

i
and left multiplication by fi is called the reduced q-analogue of U (g). The genera-
tors satisfy the relation

e′

i f j = q−αi ·α j f j e′

i + δi j .

Enomoto and Kashiwara [2006] defined a related algebra, which also depends on
the involution θ . As it appears, this algebra does not have a distinctive name in the
literature, so we call it the Enomoto–Kashiwara algebra.

Definition 3.1. The Enomoto–Kashiwara algebra θB(g) is the K-algebra generated
by Ei , Fi and the invertible elements Ti , with i ∈ J , subject to the following
relations:

• the Ti commute,

• Tθ(i) = Ti for any i ,

• Ti E j T −1
i = q(i+θ(i))· j E j and Ti F j T −1

i = q−(i+θ(i))· j F j for i, j ∈ J ,

• Ei F j = q−i · j F j Ei + δi j + δθ(i) j Ti for all i, j ∈ J ,

• the Ei and the Fi satisfy the q-Serre relations.



ORIENTIFOLD KLR ALGEBRAS AND ENOMOTO–KASHIWARA ALGEBRAS 421

Proposition 3.2. Let λ ∈ P+.

(1) There exists a θB(g)-module θV(λ) generated by a nonzero vector vλ such that:

(a) Eivλ = 0 for any i ∈ J ,
(b) Tivλ = q

θλ·ivλ for any i ∈ J ,
(c) {u ∈

θV(λ) | Ei u = 0 for any i ∈ J } = Kvλ.

(2) θV(λ) is irreducible and unique up to isomorphism.

(3) There exists a unique symmetric bilinear form ( · , · ) on θV(λ) such that
(vλ, vλ) = 1 and (Ei u, v) = (u, Fiv) for any i ∈ J and u, v ∈

θV(λ). It is
nondegenerate.

(4) There is a unique endomorphism · of θV(λ), called the bar involution, such
that vλ = vλ and av = āv̄, Fiv = Fi v̄ for a ∈ K and v ∈

θV(λ).

(5) Let θ Ṽ (λ) be the free f-module with generator ṽλ and a θB(g)-module structure
given by

Ti (uṽλ) = q
θλ·i−(i+θ(i))·|u|uṽλ,(3-2)

Ei (uṽλ) = e′

i (u)ṽλ,(3-3)

Fi (uṽλ) = ( fi u + q
θλ·i−i ·|u|u fθ(i))ṽλ,(3-4)

for any i ∈ J and u ∈ f. Then the subspace of θ Ṽ (λ) spanned by the vectors
Fν · ṽλ is a θB(g)-submodule isomorphic to θV(λ).

Proof. See [Enomoto and Kashiwara 2008, Proposition 2.11, Lemma 2.15]. □

From now on, let us identify f with the subalgebra of θB(g) generated by the Fi .
Note that it follows from Proposition 3.2 that θV(λ) = f · vλ. The module θV(λ) has
a Pθ -grading:

θV(λ) =

⊕
µ∈Pθ

θV(λ)µ,

where θV(λ)µ = {v ∈
θV(λ) | Ti · v = qµ·i u}. If v ∈

θV(λ)µ, write µv := µ and
θ
|v| = µv . The integral and dual integral forms are defined as θV(λ)low

A = fAvλ and
θV(λ)

up
A =

{
v ∈

θV(λ) |
(
θV(λ)low

A , v
)
∈ A

}
, respectively.

The operators Ei satisfy a kind of “twisted derivation” property.

Lemma 3.3. We have

Ei y · v = q−i ·|y|yEi · v + (e′

i (y) + q−i ·|e∗

θ(i)(y)|e∗

θ(i)(y)Ti ) · v

for any y ∈ f and v ∈
θV(λ).

Proof. This is [Enomoto and Kashiwara 2008, Lemma 2.9]. □
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3D. Quantum shuffle algebra. The quantum shuffle algebra F is the Q-graded
K-algebra with basis J •, where degQ ν = −|ν|, and multiplication given by

(3-5) ν ◦ ν ′
=

∑
w∈D∥β∥,∥β′∥

q−d(ν,ν′,w)w · νν ′

for ν ∈ Jβ and ν ′
∈ Jβ ′

, where νν ′
= i1 · · · i∥β+β ′∥ and

(3-6) d(ν, ν ′, w) =
∑

k≤∥β∥<l,
w(k)>w(l)

iw−1(k) · iw−1(l).

To ν = i1 · · · ik ∈ J • one associates the q-derivation ∂ν = e∗

i1
· · · e∗

ik
∈ EndK(f).

There is a K-linear map

(3-7) 9 : f −→ F, 9(u) =
∑

ν∈J •,
|ν|=|u|

∂ν(u) · ν

for a homogeneous element u ∈ f.
Let e′

i , e∗

i ∈ EndK(F) be the left and right deletion operators:

e′

i (i1 · · · ik) = δi,i1 i2 · · · ik, e∗

i (i1 · · · ik) = δi,ik i1 · · · ik−1, e′

i (∅) = e∗

i (∅) = 0,

respectively.

Proposition 3.4. The map (3-7) is an injective Q-graded algebra homomorphism
satisfying

e′

i ◦ 9 = 9 ◦ e′

i and e∗

i ◦ 9 = 9 ◦ e∗

i .

Proof. This follows directly from [Leclerc 2004, Lemma 3 and Theorem 4]. The
proof for left deletions is analogous. □

We will now consider some antiautomorphisms of f and F. Set

(3-8) σ : J •
→ J •, ν 7→ w0(ν), θσ : J •

→ J •, ν 7→
θw(ν).

We extend these maps to K-linear maps σ : F → F and θσ : F → F. We use the
same symbols to denote the K-linear maps

σ : f → f, fν 7→ fσ(ν),
θσ : f → f, fν 7→ fθσ(ν),

respectively.

Lemma 3.5. The maps σ and θσ are algebra antiautomorphisms satisfying σ ◦9 =

9 ◦ σ and θσ ◦ 9 = 9 ◦
θσ , respectively.

Proof. The case of σ is [Leclerc 2004, Proposition 6]. The case of θσ follows easily
from (3-5) and (3-6). □
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3E. Quantum shuffle module. We will now realize the modules θV(λ) in terms of
modules over the shuffle algebra.

Definition 3.6. We define the quantum shuffle module θF(λ) to be the Pθ -graded
K-vector space with basis θJ •, where degPθ ν =

θλ−
θ
|ν|, and a right F-action given

by

(3-9) ν 4 ν ′
=

∑
w∈θ D∥β∥θ ,∥β′∥

q−d(ν,ν′,w)w · νν ′

for ν ∈
θJβ and ν ′

∈ Jβ ′

, where

d(ν, ν ′, w) =
∑

1≤k<l≤N ,
w(k)>w(l)

iw−1(k) · iw−1(l) +
∑

1≤k<l≤N ,
w(−k)>w(l)

iw−1(−k) · iw−1(l) −
∑

∥β∥θ<l,
w(l)<w(−l)

θλ · il,

with N = ∥β∥θ + ∥β ′
∥.

Remark 3.7. We have chosen to define θV(λ) as a left θB(g)-module, but θF(λ) as
a right F-module. This choice is a compromise. On the one hand, we wanted to be
consistent with the conventions of [Enomoto and Kashiwara 2006; 2008]. On the
other hand, as shown in [Appel and Przeździecki 2022], θV(λ) can be categorified
via quantum symmetric pairs, which are, by convention (see, e.g., [Kolb 2014]),
right coideal subalgebras.

Let Ei ∈ EndK(θF(λ)) be the right deletion operator:

Ei (i1 · · · ik) = δi,ik i1 · · · ik−1, Ei (∅) = 0.

Lemma 3.8. Formula (3-9) defines a right F-action on θF(λ). Moreover, the
endomorphisms Ei satisfy

Ei (v 4 z) = q−i ·|z|Ei (v) 4 z + v 4 e∗

i (z) + q−i ·|e′

θ(i)(z)|+µv ·iv 4 e′

θ(i)(z).

Proof. The first statement follows easily from the definitions, so we omit a proof.
Let us prove the second statement. It suffices to consider v and z of the form v = ν j
and z = kµl, for ν ∈

θJ •, µ ∈ J • and j, k, l ∈ J . Then (3-9) implies

v 4 z = ν j 4 kµl = (v 4 kµ)l + q−d(v,z,w)(ν 4 z) j + q−d(v,z,w′)(v 4 µl)θ(k),

where w transposes j and z while w′ sends k to θ(k) and transposes it with µl.
One easily sees that d(v, z, w) = j · |z| and d(v, z, w′) = θ(k) · |e′

k(z)| −µv(θ(k)).
Hence,

Ei (v 4 z) = δi,l(v 4 kµ) + δi, j q−i ·|z|(ν 4 z) + δi,θ(k)q
−i ·|e′

θ(i)(z)|+µv ·i (v 4 µl).

The statement follows. □
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To ν = ν1 · · · νk ∈ J • one associates the operator θ∂ν = Eν1 · · · Eνk ∈ End(θV(λ)).
There is a K-linear map

(3-10) θ9 :
θV(λ) →

θF(λ), θ9(u) =
∑

ν∈
θJ •,

θ
|ν|=

θ
|u|

θ∂ν(u) · σ(ν)

for a homogeneous element u ∈
θV(λ). Let us abbreviate

U = 9(f) and θV(λ) =
θ9(θV(λ)).

Proposition 3.9. The map (3-10) is injective, Ei ◦
θ9 =

θ9 ◦ Ei and the diagram

f F
↷ ↶

θV(λ) θF(λ)

9

θ9

commutes.

Proof. The injectivity of θ9 follows directly from Proposition 3.2 (1c). Let
θ9 ′

:
θV(λ) →

θF(λ) be the map sending y · vλ 7→ ∅ 4 8(σ(y)) for y ∈ f. Note
that θ9 ′ is defined on all of θV(λ) since θV(λ) = f · vλ. We claim that θ9 ′ in-
tertwines the actions of f and F, and that θ9 =

θ9 ′. For the first claim, note
that (3-9) implies that ν 4 i = ν ◦ i + q

θλ(i)−i ·|v|θ(i) ◦ ν, for i ∈ J and ν ∈ J •.
Hence, by Proposition 3.2 (5) and (3-4), the first claim follows. Lemma 3.3 and
Lemma 3.8 imply that Ei ◦

θ9 ′
=

θ9 ′
◦ Ei . Let v ∈

θV(λ) be homogeneous, and
let ν ∈

θJ • with θ
|v| =

θ
|ν|. Let γν(v) be the coefficient of σ(ν) in θ9 ′(v). Then

γν(v) = Eσ(ν) ◦
θ9 ′(v) =

θ∂ν(v). Hence θ9 =
θ9 ′, which completes the proof. □

3F. θ-good words. We fix a total order on the set J and equip J • with the corre-
sponding antilexicographic order. Both are denoted by ≤ . Given a linear combina-
tion u of words, let max(u) be the largest word appearing in u.

Lemma 3.10. If µ′
≤ µ, ν ′

≤ ν and θw(ν ′) ≤
θw(ν), for µ, µ′

∈
θJ • and ν, ν ′

∈ J •

(with ∥µ∥ = ∥µ′
∥ and ∥ν∥ = ∥ν ′

∥), then max(µ′ 4 ν ′) ≤ max(µ 4 ν). If any of the
former three inequalities is strict, then the last inequality is strict, too.

Proof. If w ∈
θD∥µ∥θ ,∥ν∥, then the condition in the hypothesis forces w · µ′ν ′ to be

smaller than or equal to w · µν. □

A word ν ∈ J • is called good if ν = max(9(x)) for some homogeneous x ∈ f.
Let J •

+
denote the set of good words and Jβ

+ = J •

+
∩ Jβ . We now define the analogue

of good words for quantum shuffle modules.

Definition 3.11. A word ν ∈
θJ • is called θ-good if ν = max(θ9(u)) for some

homogeneous u ∈
θV(λ). Let θJ •

+
denote the set of all θ-good words, and let

θJβ
+ =

θJ •

+
∩

θJβ .
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In [Leclerc 2004], a monomial basis {mν = 9( fσ(ν)) | ν ∈ J •

+
} of U was con-

structed. An analogous basis exists for θV(λ).

Lemma 3.12. There is a unique basis of homogeneous vectors {
θm∗

ν | ν ∈
θJ •

+
} of

θV(λ) such that Eµ(θmν) = δµ,ν for any µ with θ
|µ| =

θ
|ν|. The adjoint basis is

{
θmν =

θ9(Fσ(ν) · vλ)}.

Proof. The proof is analogous to the proof of [Leclerc 2004, Proposition 12]. □

Let Ffr be the free associative K-algebra generated by J (with multiplication
given by concatenation of letters), and let V fr be its right regular representation.
There is an algebra homomorphism

4 : Ffr
→ F, ν = ν1 · · · νk 7→ ν1 ◦ · · · ◦ νk = 9( fν)

and a linear map
θ4λ : V fr

→
θV(λ), ν 7→ ∅ 4 4(ν) =

θmν .

intertwining the actions of Ffr and F. We have the following characterization of
θ -good words:

Lemma 3.13. The following are equivalent:

(1) ν ∈
θJ • is θ -good,

(2) ν cannot be expressed modulo ker θ4λ as a linear combination of words µ > ν.

Proof. Let u ∈
θV(λ) and ν ∈

θJ • satisfy θ
|u|=

θ
|ν| and Eν(u) ̸=0. Proposition 3.2 (3)

implies that 0 ̸= (Eν(u),∅) = (u, θmν). If ν could be expressed modulo ker θ4λ as
a linear combination of words µ > ν, then there would exist a relation of the form

(3-11) θmν =
∑
µ>ν

cµ
θmµ

for some cν ∈ K. Hence,

0 ̸= Eν(u) =
∑
µ>ν

cµEµ(u).

Therefore, Eµ(u) ̸= 0 for some µ > ν, which implies that µ is not θ-good. This
proves the implication (1) =⇒ (2).

Conversely, let ˜θJ •

+ be the set of words in θJ • satisfying (2). We have shown
that θJ •

+
⊆ ˜θJ •

+. Lemma 3.12 implies that the set {
θmν | ν ∈ ˜θJ •

+} contains a basis
of θV(λ). Moreover, it is linearly independent. Indeed, if there was a linear relation
between words of ˜θJ •

+, one could express the smallest one in terms of the others
and it would not belong to ˜θJ •

+. □

Lemma 3.14. The θ -good words have the following properties:

(1) If ν is θ -good and ν = µ1µ2, then µ1 is θ -good.

(2) If ν is θ -good, then ν is good.
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Proof. By Proposition 3.9, θV(λ) is stable under the operators Ei . Pick u ∈
θV(λ)

with max(u) = ν. Then max(Eµ2(u)) = Eµ2(max(u)) = µ1. This proves the first
part. Next, suppose that ν is not good. Then, by [Leclerc 2004, Lemma 21], we have
a relation of the form mν =

∑
µ>ν cµmµ. Applying both sides to ∅, we get (3-11).

Hence, by Lemma 3.13, ν is not θ -good. This proves the second part. □

3G. Lyndon words. A nontrivial word ν ∈ J • is called Lyndon if it is smaller than all
its proper left factors. Note that our definition uses the opposite of the convention of
[Leclerc 2004; Kleshchev and Ram 2011], where right factors are used instead. Let
L denote the set of Lyndon words and L+ = L ∩ J •

+
the set of good Lyndon words.

Proposition 3.15. Lyndon words have the following properties:

(1) Every word ν ∈ J • has a unique factorization ν = ν⟨k⟩
· · · ν⟨1⟩ into Lyndon

words such that ν⟨1⟩
≥ · · · ≥ ν⟨k⟩.

(2) The word ν is good if and only if each ν⟨m⟩ is good.

(3) The map ν 7→ |ν| yields a bijection L+
∼
−→ 8+. The induced order on 8+ is

convex.

(4) Let µ ∈ L\J and write µ = µ(1)µ(2) with µ(2) a proper Lyndon subword of
maximal length. Then µ(1) ∈ L.

Proof. For part (1), see, e.g., [Lothaire 2002, Theorem 11.5.1]. For parts (2) and (3),
see [Leclerc 2004, Propositions 17, 18 and 26]. For part (4), see [Leclerc 2004,
Lemma 14]. □

We call the factorization from Proposition 3.15 (1) the Lyndon factorization and
the Lyndon words in this factorization Lyndon factors. We will write it in two ways:
ν = ν⟨k⟩

· · · ν⟨1⟩ for ν⟨1⟩
≥ · · · ≥ ν⟨k⟩ or ν = (ν⟨l⟩)nl · · · (ν⟨1⟩)n1 for ν⟨1⟩ > · · · > ν⟨l⟩.

The factorization from Proposition 3.15 (4) is called the standard factorization of a
Lyndon word.

Given x, y ∈ F, let [x, y]q = xy −q |x |·|y|yx . One defines a map [ ] : L → J • by
induction on the standard factorization: [i] = i for i ∈ J , and [ν] = [ν(2), ν(1)]q if
ν = ν(1)ν(2) is the standard factorization of ν. Next, given ν = ν⟨k⟩

· · · ν⟨1⟩
∈ J •, let

[ν] = [ν⟨k⟩
] · · · [ν⟨1⟩

]. For ν ∈ J •

+
, set

lν = 4([ν]), ν ∈ J •

+
, θ lν =

θ4λ([ν]), ν ∈
θJ •

+
.

Proposition 3.16. For any ν ∈ J •, we have min([ν]) = ν. Moreover, the set
{lν | ν ∈ J •

+
} is a basis of U.

Proof. See [Leclerc 2004, Propositions 19 and 22]. □

The basis from Proposition 3.16 is called the Lyndon basis.
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Lemma 3.17. The set {
θ lν | ν ∈

θJ •

+
} is a basis of θV(λ). Moreover, the transition

matrix (cνµ) from {
θ lν | ν ∈

θJ •

+
} to {

θmµ | µ ∈
θJ •

+
} is triangular with cνν =∏k

i=1(−1)ℓ(ν
⟨k⟩)−1q−N (|ν⟨k⟩

|).

Proof. By Proposition 3.16, we can write [ν] = cννν +
∑

ν<µ cνµµ, for some
cνµ ∈ K. Applying θ4λ to both sides, we get θ lν = cνν

θmν +
∑

µ>ν cνµ
θmµ. By

Lemma 3.13, this can be rewritten as θ lν = cνν
θmν +

∑
ν<µ∈θJ •

+
c′
νµ

θmµ. Hence
the transition matrix is triangular. To show the last statement of the lemma, one
uses the same calculation as in [Leclerc 2004, Proposition 30]. □

Assumption 1. From now on, we assume that we are working with the standard
ordering of J , i.e., αk ≤ αl if and only if k ≤ l. In this case, the map θσ in (3-8)
preserves L+.

Before stating the next lemma, we need to introduce some notation. Given
µ, µ′

∈ L+ with |µ| = βk,l , |µ′
| = βm,n , we write

µ ⊂ µ′
⇐⇒ m < k and l < n.

Lemma 3.18. The following hold:

(1) If ν ∈ L+, then lν is a multiple of ν.

(2) If ν, µ ∈ L+ and µ ⊂ ν, then ν ◦ µ = µ ◦ ν.

Proof. It suffices to prove the first statement for ν = ν1 · · · νl ∈ L+. We proceed
by induction on l. The base case l = 1 is clear. Let ν = ν(1)ν(2) be the standard
factorization of ν. Since we are working with the standard ordering on J , ν(1) = i for
some i ∈ J . By induction, we get that lν = 4([ν]) = 4([ν(2)])◦ i −q−1i ◦4([ν(2)])

is a multiple of ν(2)◦i −q−1i ◦ν(2). Write ν(2) = jν ′

(2) with j ∈ J . Then (3-5) implies
that ν(2) ◦ i − q−1i ◦ ν(2) =

(
j (ν ′

(2) ◦ i) + qiν(2)

)
− q−1

(
iν(2) + q j (i ◦ ν ′

(2))
)
= [2]ν.

This completes the proof of the first statement. The second statement now follows
directly from [Leclerc 2004, Proposition 30] and [Enomoto and Kashiwara 2008,
Proposition 3.14 (3)]. □

Definition 3.19. We say that ν ∈ L is θ -Lyndon if ν ≥
θw(ν). Let θL be the set of

θ -Lyndon words, and θL+ = J •

+
∩

θL. Let θJ •

+,0 denote the set of all θ -good words
µ = ν⟨k⟩

· · · ν⟨1⟩, with ν⟨k⟩, · · · , ν⟨1⟩
∈

θL+. Moreover, if µ = ν⟨k⟩
· · · ν⟨1⟩

∈
θJ •

+

and ν⟨k⟩, · · · , ν⟨1⟩ /∈ θL+, then µ is called θ-cuspidal. Let θJ •

+,c denote the set of
all θ -cuspidal words.

Lemma 3.20. The θ -good Lyndon words have the following properties:

(1) If ν ∈ L+, then ν ∈ U.

(2) Let µ ∈
θJ • and ν ∈

θL with ν ≥ µ. Then µν = max(µ 4 ν).

(3) θL+ ⊆ L ∩
θJ •

+
.



428 TOMASZ PRZEŹDZIECKI

(4) Let µ ∈
θJ •

+
and ν ∈

θL+ with ν ≥ µ. Then µν ∈
θJ •

+
.

(5) If all of the Lyndon factors of ν are in θL+, then ν ∈
θJ •

+
.

(6) The map ν 7→
θ
|ν| yields a bijection θL+

∼
−→

θ8+.

Proof. Since ν is good, there exists some homogeneous x ∈ U such that x = ν + y
with ν greater than any word µ in y. By Assumption 1 and [Leclerc 2004, §8.1], ν is
of the form αkαk−2 · · · αk−2l , which implies that ν is the smallest word of weight |ν|,
so x = ν. The proof of (2) is similar to the proof of [Leclerc 2004, Lemma 15]. If
ν ∈

θL+, then, by definition, ν ∈ L+ and ν ≥
θw(ν). Hence, max(∅ 4 ν) = ν. By

part (1), ν ∈ U, so ν ∈
θJ •

+
. This proves (3).

Let us prove (4). If µ = ∅, then the statement reduces to (3). Otherwise, choose
a homogeneous element ∅ ̸= x ∈

θV(λ) such that µ = max(x). Then, after possible
rescaling, x = µ + r , where r is a linear combination of words < µ. We have
x 4 ν = µ 4 ν + r 4 ν. Part (2) implies that max(µ 4 ν) = µν. It follows from
Lemma 3.10 that max(µ 4 ν) > max(r 4 ν).

Next, we prove (5). Suppose that each factor of ν = ν⟨k⟩
· · · ν⟨1⟩ is θ -Lyndon. If

k = 1, then ν is θ -good by (3). By induction on the number of Lyndon factors, we
can assume that ν ′

= ν⟨k⟩
· · · ν⟨2⟩ is θ-good. The statement now follows from (4).

Part (6) is clear from the definitions. □

Given ν = ν⟨s⟩
· · · ν⟨1⟩, ν ′

= ν⟨t⟩
· · · ν⟨s+1⟩

∈ J •

+
, let sh(ν, ν ′) = µ⟨t⟩

· · · µ⟨1⟩ be
the good word obtained by shuffling the Lyndon factors of ν and ν ′ in such a way
that µ⟨t⟩

≤ · · · ≤ µ⟨1⟩.

Lemma 3.21. The map

θJ •

+,c ×
θJ •

+,0 →
θJ •

+
, (ν, ν ′) 7→ sh(ν, ν ′),

is a well-defined injection.

Proof. It is clear the map is injective, so we only have to show that sh(ν, ν ′) is θ-
good. We argue by induction on the number k of Lyndon factors in ν ′

= ν⟨k⟩
· · · ν⟨1⟩.

If k =0, then ν is θ -good by assumption. Otherwise, letting ν ′′
=ν⟨k⟩

· · · ν⟨2⟩, we can
assume that sh(ν, ν ′′) is θ-good. If ν⟨1⟩

≥ sh(ν, ν ′), then sh(ν, ν ′) = sh(ν, ν ′′)ν⟨1⟩,
and we conclude that sh(ν, ν ′) ∈

θJ •

+
from Lemma 3.20 (4).

If ν⟨1⟩ <sh(ν, ν ′), then we require the following generalization of Lemma 3.20 (4):
given a ∈

θJ •

+
and b ∈

θL+ with b < a, we have sh(a, b) ∈
θJ •

+
. The old proof

carries over except that instead of invoking Lemma 3.20 (2), we need to show that
max(a 4 b) = sh(a, b). Without loss of generality, we may assume a is Lyndon.
Since b ≥

θw(b), we have max(a 4 b) = max(a ◦ b). Let us write a = an · · · a1 and
b = bm · · · b1. Since an ≥ · · · ≥ a1 > b1, it follows that max(a ◦ b) = ba. □

Given β ∈ Qθ
+

, let θkpf(β) denote the number of ways to write β as a sum of
roots in θ8+.
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Proposition 3.22. If λ = 0, then: (i) θL+ = L ∩
θJ •

+
, and (ii) θJ •

+
=

θJ •

+,0. Hence,
dimq

θVβ =
θkpf(β).

Proof. Let S be the set of all words ν = ν⟨k⟩
· · · ν⟨1⟩ with ν⟨1⟩

≥ · · · ≥ ν⟨k⟩ and
each ν⟨i⟩

∈
θJ •

+
. Lemma 3.12 and Lemma 3.20 (5) imply that {

θmν | ν ∈ S} is
contained in the monomial basis {

θmν | ν ∈
θJ •

+
} of θV. Let θV′

⊆
θV be the

span of the former. By construction, the generating series of the dimensions of the
homogeneous components of θV′ is equal to

∏
β∈θ8+ 1/(1 − exp β). On the other

hand, it follows from [Enomoto and Kashiwara 2008, Theorem 4.15] that this is
also the generating series of the dimensions of the homogeneous components of θV.
Hence, θV′

=
θV. The statement follows. □

Remark 3.23. Instead of appealing to [Enomoto and Kashiwara 2008, Theo-
rem 4.15] in the proof of Proposition 3.22, one could alternatively use the cat-
egorification theorem [Varagnolo and Vasserot 2011, Theorem 8.31] (cited as
Theorem 4.5 below), together with the geometric realization of orientifold KLR
algebras from [Varagnolo and Vasserot 2011] and the classification of isomorphism
classes of symplectic/orthogonal representations of symmetric quivers from [Derk-
sen and Weyman 2002]. Indeed, this approach appears promising in generalizing
the construction of bases for θV(λ) to the λ ̸= 0 case.

3H. Symmetric words. A word ν ∈
θL+ is called symmetric if θw(ν) = ν and

nonsymmetric otherwise. Given ν ∈
θJ •

+
, let νθ be the word obtained from ν by

deleting its symmetric Lyndon factors and νθ the word obtained by deleting the
nonsymmetric ones. We say that ν ∈

θJ •

+
is symmetric if ν = νθ . For each k ≥ 1,

let ξk be the unique symmetric word in θL+ with |ξk | = β−2k+1,2k−1.

Lemma 3.24. Let ν ∈
θL+. If ν < ξk , then ξk+1 is a subword of ν. Hence, ξk > ξl

if and only if k < l.

Proof. The statement follows immediately from Lemma 3.20 (6). □

Assumption 2. From now until the end of Section 3, we assume that λ = 0. We
abbreviate θF =

θF(0) and θV =
θV (0).

Lemma 3.25. Suppose that ν ∈
θJ •

+
is symmetric or ν ∈

θL+. Then ν is the smallest
word in θJ

θ
|ν|

+ .

Proof. Abbreviate β =
θ
|ν|. First assume that ν ∈

θJ •

+
is symmetric. Let ν =

ν⟨k⟩
· · · ν⟨1⟩ be its Lyndon factorization. Suppose that there exists a word µ =

µ⟨l⟩
· · · µ⟨1⟩

∈
θJ

θ
|ν|

+ with µ<ν. Then, as explained before Lemma 4.1 in [Melançon
1992], there is an a such that µ⟨b⟩

= ν⟨b⟩ for b < a and µ⟨a⟩ < ν⟨a⟩. Hence,
ν⟨a⟩ > µ⟨a⟩

≥ · · · ≥ µ⟨l⟩. Write ν̄ = ν⟨k⟩
· · · ν⟨a⟩ and µ̄ = µ⟨l⟩

· · · µ⟨a⟩.
Since ν⟨a⟩ is symmetric, we have ν⟨a⟩

= ξd for some d ≥ 1. By Proposition 3.22
and Lemma 3.24, ξd+1 is a subword of each µ⟨i⟩, where i ≥ a. In particular,



430 TOMASZ PRZEŹDZIECKI

each µ⟨i⟩ contains α±(2d−1) and α±(2d+1). Hence, if we write θ
|ν̄| =

θ
|µ̄| =∑

i∈Nodd
ci (αi + α−i ), then c2d+1 = c2d−1. On the other hand, since each ν⟨i⟩,

where i ≥ a, is a symmetric good Lyndon word smaller than ν⟨a⟩, Lemma 3.24
implies that each ν⟨i⟩ contains ν⟨a⟩ as a subword. Hence c2d+1 < c2d−1, which is a
contradiction.

Secondly, assume that ν ∈
θL+. We may assume ν is not symmetric. In that

case, observe that if θ
|µ| =

θ
|ν| for some µ ∈

θJ •

+
, then |µ| = |ν|. The result now

follows from [Kleshchev and Ram 2011, Lemma 5.9]. □

3I. PBW and canonical bases. Let us first recall some basic facts about PBW
bases. For the moment let us restrict (J, · ) to a finite Cartan subdatum of type Am .
By [Leclerc 2004, Proposition 26], the antilexicographic order ν⟨1⟩ > · · · > ν⟨N ⟩ on
the set of good Lyndon words induces, via the bijection from Proposition 3.15 (3),
a convex order β1 > · · · > βN on the set of positive roots. This convex order arises
from a unique reduced decomposition w0 = siN · · · si1 in the usual way: βN =

αiN , βN−1 = siN (αiN−1), . . ., β1 = siN · · · si2(α1). Let Pν⟨k⟩ = T ′′

iN ,1 · · · T ′′

ik+1,1( fik ),
where T ′′

i,1 is the braid group operation from [Lusztig 1993, §37.1] with e = −1
and υi = q. Set P (l)

ν⟨k⟩ = (1/[l]!)P l
ν and, given ν = (ν⟨N ⟩)lN · · · (ν⟨1⟩)l1 ∈ J •

+
, let

Pν = P (lN )

ν⟨N ⟩ · · · P (l1)

ν⟨1⟩ and Pν = 9(Pν). Taking an appropriate limit m → ∞, [Lusztig
1993, Proposition 41.1.4] implies that {Pν | ν ∈ J •

+
} is an A-basis of fA.

Next, given ν ∈
θL+, let

P [n]

ν =

P (n)
ν , if ν is not symmetric,
1

[2n]!!
Pn

ν , if ν is symmetric.

Given ν = (ν⟨l⟩)nl · · · (ν⟨1⟩)n1 ∈
θJ •

+
, define

θPν = σ
( ∏

1≤i≤l
P [ni ]

ν⟨i⟩

)
· v0 and θPν =

θ9(Pν).

Proposition 3.26. The set {
θPν | ν ∈

θJ •

+
} is an A-basis of θV low

A .

Proof. See [Enomoto and Kashiwara 2008, Lemma 5.1]. Note that the weaker state-
ment that {

θPµ} is a K-basis of θV low
A follows from Lemma 3.17 and Lemma 3.27 (1)

below. □

We call {θPν |ν ∈
θJ •

+
} the PBW basis of θVlow

A . By [Leclerc 2004, Proposition 30],
for any ν ∈ J •

+
, there exists κν = κν ∈ A with lν = κνPν . Since we are working with

the standard ordering of J , [Leclerc 2004, Proposition 56] implies that κν = 1 for
any ν ∈ L+. If ν = (ν⟨l⟩)nl · · · (ν⟨1⟩)n1 ∈

θJ •

+
, then κν =

∏l
i=1[ni ]!. Set

θκν = κν ·

l∏
i=1

ν⟨i⟩symm

ni∏
j=1

(q j
+ q− j ) =

l∏
i=1,

ν⟨i⟩symm

[ni ]!! ·
l∏

i=1,

ν⟨i⟩nonsymm

[ni ]!.
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Lemma 3.27. Let ν ∈
θJ •

+
.

(1) θ lν =
θκν

θPν and θκν = θκν ∈ A.

(2) We have
θPν =

θPν +
∑
µ>ν

dνµ
θPµ

for some dνµ ∈ A.

Proof. The first part follows directly from the definitions. Let AP, Am and A be
the transition matrices between {

θPν} and {θPν}, {mν} and {mν}, as well as {
θPν}

and {mν}, respectively. By definition, Am = id. Hence, AP = AA−1. Lemma 3.17
implies that A and A−1 are both lower triangular, with eigenvalues θκν and θκ−1

ν .
Part (1) now implies that AP is indeed lower unitriangular. Since {

θPν} forms an
A-basis of θVlow

A and θVlow
A =

θVlow
A , we have dνµ ∈ A. □

Theorem 3.28. There is a unique A-basis {
θbν | ν ∈

θJ •

+
} of θVlow

A , called the
canonical basis, such that

θbν =
θPν +

∑
µ>ν

cνµ
θPµ,

cνµ ∈ qZ[q] and θbν =
θbν . Moreover,

(θbν,
θbµ)q=0 = δν,µ.

Proof. The proof is an application of a standard argument, see, e.g., [Lusztig 1990,
§7.10]. □

Remark 3.29. Theorem 3.28 also appears in [Enomoto and Kashiwara 2008] as
Theorem 5.5. The proof in loc. cit. is somewhat different from ours, in particular, it
does not involve shuffle modules.

Let {
θP∗

ν | ν ∈
θJ •

+
} and {

θb∗
ν | ν ∈

θJ •

+
} be the bases of θVup

A dual, with respect to
the bilinear form ( · , · ), to the PBW and the canonical bases of θVlow

A , respectively.

Corollary 3.30. We have

(3-12) θb∗

ν =
θP∗

ν +
∑
µ<ν

(
θb∗

ν,
θPµ

)
θP∗

µ.

Hence, max(θb∗
ν) = ν and the coefficient of ν in θb∗

ν is θκν . In particular, if ν ∈
θL+

or ν is symmetric, then θb∗
ν =

θP∗
ν .

Proof. The proof is analogous to [Leclerc 2004, Proposition 40]. The last statement
follows from Lemma 3.25. □
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3J. Standard and costandard basis. Given ν = (ν⟨l⟩)nl · · · (ν⟨1⟩)n1 ∈
θJ •

+
, let

1ν = q−s(ν)(ν⟨l⟩)◦nl ◦ · · · ◦ (ν⟨1⟩)◦n1 and θ1ν = q−
θ s(ν)∅ 4 1ν,

where

(3-13) s(ν) =

l∑
i=1

ni (ni − 1)

2
and θ s(ν) =

l∑
i=1,

ν⟨i⟩symm

ni .

Lemma 3.31. If ν ∈
θJ •

+
, then: 1ν = 1νθ ◦1νθ

, max(θ1ν) = ν and the coefficient
of the word ν in θ1ν equals θκν .

Proof. We prove the first statement by induction on the number k of Lyndon factors
in the Lyndon factorization of νθ . If k = 0, the claim is obvious. Next, suppose that
there are k + 1 Lyndon factors in νθ , and let ξm be the smallest. If ξm is also the
smallest word in the standard factorization of ν, then, by induction, we are done.
Otherwise, let µ be a Lyndon factor of ν with µ < ξm . Since µ ∈

θL+, Lemma 3.24
implies that ξm ⊂ µ. By Lemma 3.18, we conclude that µ ◦ ξm = ξm ◦ µ. It now
follows by induction that 1ν = 1νθ ◦ 1νθ

.
We now prove the last two statements by induction on the number k of Lyndon

factors in ν. The base case k = 0 is trivial. Let ν ′
= ν⟨k⟩

· · · ν⟨2⟩. Lemma 3.14
implies that ν ′

∈
θJ •

+
. Hence, by induction, max(θ1ν′) = ν ′. Since λ = 0, we have

ν⟨1⟩
∈

θL+, and so ν⟨1⟩
≥

θw(ν⟨1⟩). It follows from Lemma 3.10 and Lemma 3.20 (2)
that max(θ1ν) = max(ν ′ 4 ν⟨1⟩) = ν. By induction, we may also assume that
dimq(θ1ν′)ν′ =

θκν′ . Let us call the result of applying w ∈
θD∥ν′∥θ ,∥ν⟨1⟩∥ to ν a

θ -shuffle. It is easy to see that the θ -shuffles equal to ν are precisely those arising
from one of the n1 (respectively, 2n1) standard insertions of ν⟨1⟩ between words
equal to ν⟨1⟩ in ν ′ if ν⟨1⟩ is not symmetric (respectively, is symmetric). We conclude
that dimq(θ1ν)ν =

θκν from the fact that the transposition of two words equal to
ν⟨1⟩ appears in the shuffle action with the coefficient q−2. □

Given ν ∈
θJ •

+
with ν = ν⟨k⟩

· · · ν⟨1⟩, let
θ
∇ν = q−

θ s(ν)−t (ν)∅ 4
(
θw(ν⟨k⟩) ◦ · · · ◦

θw(ν⟨1⟩)
)
,

where t (ν) is the degree of an element τw, with w the longest minimal length
coset representative with respect to the parabolic subgroup of Wn defined by the
decomposition of ν into Lyndon words (see [Lauda and Vazirani 2011, §2.3]).

Recall that we have fixed the standard order ≤ on J and equipped J • with the
antilexicographic order ≤ . Let ≤

′ denote both the opposite order on J and the
induced lexicographic order on J •. Given a linear combination u of words, let
max′(u) be the largest word appearing in u with respect to ≤

′.

Lemma 3.32. We have max′(θ∇ν) = ν and the coefficient of ν in θ
∇ν equals θκν .

Proof. It is an easy modification of the last paragraph in the proof of Lemma 3.31. □
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4. Finite-dimensional representation theory of orientifold KLR algebras

We again let λ be arbitrary until Section 4D, where we make the restriction λ = 0.
If A is a graded algebra, let A-Mod be the category of all graded left A-modules,

with degree-preserving module homomorphisms as morphisms. If M and N are
graded A-modules, let HomA(M, N )n denote the space of all homogeneous ho-
momorphisms of degree n, and HOMA(M, N ) =

⊕
n∈Z HomA(M, N )n . Let M{n}

denote the module obtained from M by shifting the grading by n. Let A-pMod
denote the full subcategory of finitely generated graded projective modules, and
A-fMod the full subcategory of graded finite dimensional modules. Given any of
these abelian categories C, we denote its Grothendieck group by [C].

We consider (orientifold) KLR algebras associated to the A∞ quiver 0 = (J, �),
with J as in Section 3A and � the standard linear orientation, as well as the
involution θ from Section 3A. Let 11 and θ1 denote the regular representations
(in degree zero) of the trivial algebras R(0) and θR(0; λ), respectively. For a fixed
λ ∈ N[J ], set

R-Mod =
⊕

β∈N[J ]

R(β)-Mod and θR(λ)-Mod =
⊕

β∈N[J ]θ

θR(β; λ)-Mod.

We use analogous notation for direct sums of categories of finite dimensional and
finitely generated projective modules.

4A. Reminder on categorification via KLR algebras. Basic information about the
representation theory of KLR algebras, including the definitions of the Khovanov–
Lauda pairing ( · , · ) : R(β)-pMod ×R(β)-fMod → A and the dualities P 7→ P♯

on R-pMod and M 7→ M♭ on R-fMod, can be found in, e.g., [Khovanov and Lauda
2009], [Kleshchev and Ram 2011, §3] or [Varagnolo and Vasserot 2011, §7]. Since
these definitions and the notations are standard, we will not explicitly recall them.
If M ∈ R(β)-Mod and ν ∈ J θ , we call Mν = e(ν)M the ν-weight space of M .

Let us recall the definition of the convolution product of modules over KLR
algebras. Let β, β ′

∈ N[J ], with ∥β∥ = n and ∥β ′
∥ = n′. Set

eβ,β ′ =
∑

ν∈Jβ+β′
,

ν1···νn∈Jβ

e(ν) ∈ R(β + β ′).

There is a nonunital algebra homomorphism

(4-1) ιβ,β ′ : R(β, β ′) := R(β) ⊗ R(β ′) → R(β + β ′)

given by e(ν) ⊗ e(µ) 7→ e(νµ) for ν ∈ Jβ , µ ∈ Jβ ′

and

(4-2) xl ⊗ 1 7→ xleβ,β ′, 1 ⊗ xl ′ 7→ xm+l ′eβ,β ′, with 1 ≤ l(′) ≤ n(′),

(4-3) τk ⊗ 1 7→ τkeβ,β ′, 1 ⊗ τk′ 7→ τm+k′eβ,β ′, with 1 ≤ k(′) < n(′).
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Let M be a graded R(β)-module and N be a graded R(β ′)-module. Their convolu-
tion product is defined as

M ◦ N = R(β + β ′)eβ,β ′ ⊗R(β,β ′) (M ⊗ N ).

It descends to a product on [R-pMod] and [R-fMod].
The embedding (4-1) generalizes to an embedding

(4-4) ιβ : R(β) := R(β1) ⊗ · · · ⊗ R(βm) → R(|β|)

for any β ∈ (N[J ])m . The embedding (4-4) gives rise to a triple of adjoint functors
(Indβ, Resβ, Coindβ) between categories of graded modules.

As explained in [Khovanov and Lauda 2009, §2.2] and [Kleshchev and Ram
2011, §3.6], convolution with the class of (an appropriate graded shift of) the
polynomial representation P(i (n)) of the nil-Hecke algebra R(ni) yields an A-
module homomorphism

θ
(n)
i = − ◦ [P(i (n))] : [R(β)-pMod] → [R(β + ni)-pMod].

Let us recall the fundamental categorification theorem from [Khovanov and
Lauda 2009, §3], see also [Kleshchev and Ram 2011, Theorem 4.4].

Theorem 4.1 (Khovanov–Lauda). There exists a unique pair of adjoint (with re-
spect to Lusztig’s form on f and the Khovanov–Lauda pairing) Q-graded A-linear
isomorphisms

γ : fA
∼
−→ [R-pMod] and γ ∗

: [R-fMod]
∼
−→ f ∗

A

such that γ (1) = [1] and γ (x f (n)
i ) = θ

(n)
i (γ (x)) for all x ∈ fA. These isomorphisms

intertwine: (i) multiplication in f with the convolution product, (ii) comultiplication
in f with restriction functors, and (iii) the bar involution on f with the involutions −

♯

and −
♭.

4B. Categorification via orientifold KLR algebras. We recall some fundamental
definitions and results concerning orientifold KLR algebras from [Varagnolo and
Vasserot 2011, §8]. We refer the reader to loc. cit. for a detailed exposition.

Let β ∈ N[J ]
θ and β ′

∈ N[J ], with ∥β∥θ = n and ∥β ′
∥ = n′. Set

θeβ,β ′ =
∑

ν∈
θJβ+

θβ′
,

ν1...νn∈
θJβ ,

νn+1...νn+n′∈Jβ′

e(ν) ∈
θR(β +

θβ ′
; λ).

There is an injective nonunital algebra homomorphism

(4-5) θ ιβ,β ′ :
θR(β, β ′

; λ) :=
θR(β; λ) ⊗ R(β ′) →

θR(β +
θβ ′

; λ)
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given by formulae (4-2)–(4-3), with ν ∈
θJβ and eβ,β ′ replaced by θeβ,β ′ , and

τ0⊗1 7→ τ0
θeβ,β ′ . The convolution action of N ∈R(β ′)-Mod on M ∈

θR(β; λ)-Mod
is defined as

M 4 N =
θR(β +

θβ ′
; λ) θe(β, β ′) ⊗θ R(β,β ′;λ) (M ⊗ N ).

Proposition 4.2. The category R-Mod is monoidal with product ◦ and unit 1.
Moreover, there is a right monoidal action (see, e.g., [Davydov 1998]) of R-Mod
on θR(λ)-Mod via 4.

Proof. It is routine to check that the conditions in the definition of a monoidal action
are satisfied. □

The embedding (4-5) generalizes to an embedding

(4-6) θ ιβ :
θR(β0, β; λ) :=

θR(β0; λ)⊗R(β1)⊗· · ·⊗R(βm) →
θR(β0 +

θ
|β|; λ)

for any β0 ∈ N[J ]
θ and β ∈ (N[J ])m . The embedding (4-6) gives rise to a triple

of adjoint functors (θ Indβ0,β, θResβ0,β, θCoindβ0,β) between categories of graded
modules.

Lemma 4.3. Let M0 ∈
θR(β; λ)-fMod and Mi ∈ R(βi )-fMod. Then, up to a

grading shift, we have

θCoindβ0,β

(
M0 ⊗

(
⊗Mi

))
∼=

θ Indβ0,θ(β)

(
M0 ⊗

(
⊗M†

i

))
∼=

θCoindβ0,|β|

(
M0 ⊗

(
Coindβ(⊗Mi )

))
,

where θ(β) = (θ(β1), . . . , θ(βm)) and −
† is the twist defined below Lemma 2.3.

Proof. The proof is analogous to that of [Lauda and Vazirani 2011, Theorem 2.2]. □

Let β0 ∈ N[J ]
θ and β1, β2 ∈ N[J ]. Define

M1 ◦̂ M2 = Coindβ1,β2(M1 ⊗ M2) and M0 4̂ M1 =
θCoindβ0,β1(M0 ⊗ M1),

for Mi as in Lemma 4.3.

Corollary 4.4. The category R-Mod is also monoidal with product ◦̂ and unit 1.
Moreover, there is a monoidal action of R-Mod on θR(λ)-Mod via 4̂.

The functors P 7→ P♯
= HOMθ Rm(λ)(P, θRm(λ)) and M 7→ M♭

= HOMk(P, k)

on θRm(λ)-pMod and θRm(λ)-fMod, respectively, descend to A-antilinear involu-
tions on the corresponding Grothendieck groups. We also have an analogue of the
Khovanov–Lauda pairing

( · , · ) : [
θR(β; λ)-pMod] × [

θR(β; λ)-fMod] → A,

([P], [M]) 7→ dimq(Pω
⊗θ R(β;λ) M),

where Pω is the twist of P by the antiinvolution (2-5).
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Moreover, set θRm(λ) =
⊕

∥β∥θ=n
θR(β; λ) and θem,β ′ = ⊕∥β∥θ=m

θeβ,β ′ . Abbre-
viate θ Indm+1

m,i =
θRm+1(λ)⊗θ Rm,i(λ)− and θCoindm+1

m,i =HOMθ Rm,i (λ)(
θRm+1(λ), −),

with θRm,i (λ) =
θRm(λ) ⊗ R(i). Setting

Fi (P) =
θ Indm+1

m,i (P ⊗ P(i)), Ei (P) = L(i) ⊗R(i)
θem−1,i P,

F∗

i (M) =
θCoindm+1

m,i (M ⊗ L(i)), E∗

i (M) =
θem−1,i M,

defines exact functors

θRm(λ)-pMod θRm+1(λ)-pMod

Fi

Ei

, θRm(λ)-fMod θRm+1(λ)-fMod

F∗

i

E∗

i

commuting with the dualities −
♯ and −

♭. We will use the same notation for the
induced operators on the corresponding Grothendieck groups.

We now recall the main theorem [Varagnolo and Vasserot 2011, Theorem 8.31]
on the categorification of modules over the Enomoto–Kashiwara algebra.

Theorem 4.5 (Varagnolo–Vasserot). The operators Fi and Ei (respectively, F∗

i
and E∗

i ) define a representation of θB(g) on K ⊗A [
θR(λ)-pMod] (respectively,

K ⊗A [
θR(λ)-fMod]). Moreover, there exists a unique pair of adjoint Pθ-graded

A-linear isomorphisms

θγ :
θV(λ)low

A
∼
−→ [

θR(λ)-pMod], θγ ∗
: [

θR(λ)-fMod]
∼
−→

θV(λ)
up
A

which, upon base change to K, become isomorphisms of θB(g)-modules. They
intertwine the bar involution on θV(λ) with the involutions −

♯ and −
♭.

If M ∈
θR(β; λ)-Mod and ν ∈

θJβ , we call Mν = e(ν)M the ν-weight space of M .
The character of a θR(β; λ)-module M is θchq(M)=

∑
ν dimq(e(ν)M)·ν ∈

θF(λ).

This gives rise to an A-linear map θchq : [
θR(λ)-fMod] →

θF(λ). We then call
max(θchq(M)), if it exists, the highest weight of M .

Corollary 4.6. The following triangle commutes:[
θR(λ)-fMod

]
θV(λ)

up
A

θF(λ)

θγ ∗ θ chq

θ9

The map θchq is injective and θchq(M 4 N ) =
θchq(M) 4 chq(N ).

Proof. The proof is analogous to [Kleshchev and Ram 2011, Theorem 4.4 (3)]. □
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4C. Reminder on KLR representation theory. An irreducible R(β)-module L is
called cuspidal if max(chq(L)) ∈ L+, i.e., its highest weight is a good Lyndon
word. By [Kleshchev and Ram 2011, Proposition 8.4], for each ν ∈ L+, there exists
a unique cuspidal irreducible R(|ν|)-module L(ν).

Let ν = (ν⟨l⟩)nl · · · (ν⟨1⟩)n1 ∈ Jβ
+ . The corresponding standard and costandard

modules are, respectively,

1(ν)= L(ν⟨l⟩)◦nl ◦ · · · ◦L(ν⟨1⟩)◦n1{s(ν)}, ∇(ν)= L(ν⟨l⟩)◦nl ◦̂ · · · ◦̂ L(ν⟨1⟩)◦n1{s(ν)},

with s(ν) as in (3-13).

Theorem 4.7 (Kleshchev–Ram, McNamara). Let ν ∈ Jβ
+ . Then:

(1) The standard R(β)-module 1(ν) has an irreducible head L(ν), and the co-
standard module ∇(ν) has L(ν) as its socle.

(2) The highest weight of L(ν) is ν, and dimq L(ν)ν = κν .

(3) L(ν) = L(ν)♭.

(4) {L(ν) | ν ∈ Jβ
+} is a complete and irredundant set of irreducible graded R(β)-

modules up to isomorphism and degree shift.

(5) If L(µ) is a composition factor of 1(ν) (respectively, ∇(ν)), then µ ≤ ν

(respectively, µ ≤
′ ν). Moreover, L(ν) appears in 1(ν) and ∇(ν) with multi-

plicity one.

(6) If ν = µn for a good Lyndon word µ, then 1(ν) = L(ν).

Proof. See [Kleshchev and Ram 2011, Theorem 7.2] and [McNamara 2015, Theo-
rem 3.1]. □

4D. Orientifold KLR: irreducibles and global dimension. Now assume λ = 0.

Lemma 4.8. If ν ∈
θJ •

+
is symmetric, then θL(ν) =

θ1 4 L(ν){θ s(ν)} is irreducible.
The highest weight of θL(ν) is ν, θchq

θL(ν) =
θb∗

ν , and dimq
θL(ν)ν =

θκν .

Proof. It follows from Lemma 3.10, Lemma 3.25, and Corollary 4.6 that all
composition factors of θL(ν) have highest weight ν. We know from Theorem 4.7 (2)
that max(chq(L(ν))) = ν and dimq L(ν)ν = κν . The last part of Corollary 4.6,
together with an argument analogous to that in the last paragraph of the proof of
Lemma 3.31, then shows that the highest weight of θL(ν) is ν and dimq

θL(ν)ν =
θκν .

Let β =
θ
|ν|. By Theorem 4.5, θchq

θL(ν) ∈
θVup

A,β . Since {
θb∗

µ | µ ∈
θJβ

+} is
an A-basis of θVup

A,β , we have θchq
θL(ν) =

∑
µ∈θJβ

+

cµ
θb∗

µ for some cµ ∈ A. By
Corollary 3.30, max(θb∗

µ) = µ, and, by Lemma 3.25, ν is the smallest word in θJβ
+ .

Hence, cµ = 0 unless µ = ν. Comparing the coefficients of ν in chq L(ν) and θb∗
ν ,

we conclude that cν = 1. The irreducibility of θL(ν) follows directly from the
equality θchq

θL(ν) =
θb∗

ν . □
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For ν ∈
θJβ

+ , let

θ1(ν) =
θ1 4 1(ν) and θ

∇(ν) =
θ1 4̂ ∇(ν).

Lemma 4.9. Let ν ∈
θJ •

+
. Then 1(ν) = 1(νθ ) ◦ 1(νθ ), max(θchq

θ1(ν)) = ν, and
dimq(θ1(ν))ν =

θκν .

Proof. The proof of the first statement is analogous to the proof of the first statement
of Lemma 3.31. Using the inductive argument and the notation from that proof,
one observes that µξm is the lowest good word of weight |µξm |. Theorem 4.7 (5)
then implies that L(µ) ◦ L(ξm) = 1(µξm) = L(µξm) = ∇(µξm) = L(ξm) ◦ L(µ),
allowing the induction to proceed.

Since dimq L(µ) = 1, for all µ ∈ L+ (see [Kleshchev and Ram 2011, §8.4]), we
have θchq(θ1(ν)) =

θ1ν . The second and third statements now follow from the
second and third statements of Lemma 3.31. □

Theorem 4.10. Let ν ∈
θJβ

+ . Then:

(1) The standard θR(β)-module θ1(ν) has an irreducible head θL(ν), and the
costandard θR(β)-module θ

∇(ν) has θL(ν) as its socle.

(2) The highest weight of θL(ν) is ν, and dimq
θL(ν) =

θκν .

(3) θL(ν) =
θL(ν)♭.

(4) {
θL(ν) | ν ∈

θJβ
+} is a complete and irredundant set of irreducible graded

θR(β)-modules up to isomorphism and degree shift.

(5) If θL(µ) is a composition factor of θ1(ν) (respectively, θ
∇(ν)), then µ ≤ ν

(respectively, µ ≤
′ ν). Moreover, θL(ν) appears in θ1(ν) and θ

∇(ν) with
multiplicity one.

(6) If ν is a Lyndon word or ν = νθ , then θ1(ν) =
θL(ν) is irreducible.

Proof. The structure of the proof is similar to [Kleshchev and Ram 2011, The-
orem 7.2], see also [McNamara 2015, Theorem 3.1]. Let us explain the main
points. If νθ = (ν⟨l⟩)nl · · · (ν⟨1⟩)n1 , let β0 =

θ
|νθ

|, β = (nl |ν
⟨l⟩

|, · · · , n1|ν
⟨1⟩

|), and
abbreviate

θResν =
θResβ0,β and θRν =

θR(β0, β).

Also, abbreviate

θL(ν⃗) =
θL(νθ ) ⊗ L(ν⟨l⟩)◦nl ⊗ · · · ⊗ L(ν⟨1⟩)◦n1{s(νθ )}.

Let L be an irreducible θR(β)-module in the head of θ1(ν). By adjunction and the
first part of Lemma 4.9, HOMθ R(β)(

θ1(ν), θ1(ν))= HOMθ Rν
(θL(ν⃗), θResν

θ1(ν))

and 0 ̸= HOMθ R(β)(
θ1(ν), L) = HOMθ Rν

(θL(ν⃗), θResν L). Hence, we get the



ORIENTIFOLD KLR ALGEBRAS AND ENOMOTO–KASHIWARA ALGEBRAS 439

commutative diagram

θL(ν⃗) θResν
θ1(ν) θ1(ν)

θL(ν⃗) θResν L L

The injectivity of the two arrows on the left follows from the θRν-module θL(ν⃗)

being irreducible, which is implied by Theorem 4.7 (5) and Lemma 4.8. Further,
Theorem 4.7 (2), Lemma 4.8, and Lemma 4.9 also imply that

dimq
θL(ν⃗)ν =

θκν = dimq
θ1(ν)ν .

Hence, dimq Lν =
θκν as well, implying that the head of θ1(ν) is irreducible. This

proves (1) in the case of standard modules, as well as (2). Note that the modules
θL(ν) we have thus constructed are pairwise nonisomorphic since they have different
highest weights.

Next, (3) follows from [Varagnolo and Vasserot 2011, Proposition 2] and the
fact that θκν is bar-invariant (Lemma 3.27). Part (4) follows from Proposition 3.22,
Theorem 4.5, and the fact that we have constructed θkpf(β) nonisomorphic irre-
ducible graded θR(β)-modules {

θL(ν) | ν ∈
θJβ

+}. Next, we return to (1) in the
case of costandard modules. An analogous argument to that in the case of standard
modules, using Lemma 3.32 and the adjunction between restriction and coinduction
now shows that θ

∇(ν) has an irreducible socle with highest weight ν, which, by (4),
must be isomorphic to θL(ν). Part (5) follows immediately from the facts that
ν = max

(
θchq(θ1(ν))

)
= max′

(
θchq(θ∇(ν))

)
and dimq

θ1(ν)ν = dimq
θ
∇(ν)ν =

dimq
θL(ν)ν . Next, part (6) follows from Lemma 3.25 and (5). □

Corollary 4.11. As a graded algebra, θR(β) has global dimension ∥β∥θ .

Proof. The proof is analogous to [McNamara 2015, Theorem 4.7]. For the
sake of simplicity, we ignore the grading shifts. Since λ = 0, the set θJ •

+
con-

tains no θ-cuspidal words. Let ν, µ ∈
θJβ

+ . If νθ = (ν⟨l⟩)nl · · · (ν⟨1⟩)n1 , we let
L(ν⃗)=L(νθ )⊗L(ν⟨l⟩)◦nl ⊗· · ·⊗L(ν⟨1⟩)◦n1 . Also let β =(|νθ

|,nl |ν
⟨l⟩

|, · · · ,n1|ν
⟨1⟩

|).
Then, Lemma 4.3 and adjunction between induction and restriction imply that

Exti
θ R(β)

(
θ
∇(ν), θ1(µ)

)
= Exti

R(β)

(
L(ν⃗), Resβ

θ1(µ)
)
,

which, by [McNamara 2015, Theorem 4.7] is zero for i > ∥β∥θ . The rest of the
proof is exactly the same as in [McNamara 2015]. □
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SCHOOL OF MATHEMATICS

UNIVERSITY OF EDINBURGH

EDINBURGH

UNITED KINGDOM

tprzezdz@exseed.ed.ac.uk

http://dx.doi.org/10.1017/CBO9781107326019
http://msp.org/idx/mr/1905123
http://msp.org/idx/zbl/1001.68093
http://dx.doi.org/10.2307/1990961
http://msp.org/idx/mr/1035415
http://msp.org/idx/zbl/0703.17008
http://dx.doi.org/10.1007/978-0-8176-4717-9
http://msp.org/idx/mr/1227098
http://msp.org/idx/zbl/0788.17010
http://dx.doi.org/10.1515/crelle-2013-0075
http://dx.doi.org/10.1515/crelle-2013-0075
http://msp.org/idx/mr/3403455
http://msp.org/idx/zbl/1378.17018
http://dx.doi.org/10.1016/0097-3165(92)90070-B
http://msp.org/idx/mr/1149900
http://msp.org/idx/zbl/0761.05033
http://dx.doi.org/10.24033/bsmf.2828
http://dx.doi.org/10.24033/bsmf.2828
http://msp.org/idx/mr/4250039
http://msp.org/idx/zbl/1475.20011
http://dx.doi.org/10.1017/s0013091519000294
http://dx.doi.org/10.1017/s0013091519000294
http://msp.org/idx/mr/4085039
http://msp.org/idx/zbl/1481.20014
http://msp.org/idx/arx/1907.03679
http://msp.org/idx/arx/0812.5023
http://dx.doi.org/10.1007/s00222-011-0314-y
http://dx.doi.org/10.1007/s00222-011-0314-y
http://msp.org/idx/mr/2827096
http://msp.org/idx/zbl/1239.20007
http://dx.doi.org/10.1016/j.jalgebra.2015.09.013
http://msp.org/idx/mr/3421095
http://msp.org/idx/zbl/1333.16017
http://dx.doi.org/10.1007/s00220-020-03877-z
http://dx.doi.org/10.1007/s00220-020-03877-z
http://msp.org/idx/mr/4166629
http://msp.org/idx/zbl/1483.14103
mailto:tprzezdz@exseed.ed.ac.uk


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Fakultät für Mathematik

Universität Wien
Vienna, Austria

matthias.aschenbrenner@univie.ac.at

Robert Lipshitz
Department of Mathematics

University of Oregon
Eugene, OR 97403

lipshitz@uoregon.edu

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2023 is US $605/year for the electronic version, and $820/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias.aschenbrenner@univie.ac.at
mailto:lipshitz@uoregon.edu
mailto:balmer@math.ucla.edu
mailto:liu@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:popa@math.ucla.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 322 No. 2 February 2023

221Elements of higher homotopy groups undetectable by polyhedral
approximation

JOHN K. ACETI and JEREMY BRAZAS

243Regularity for free multiplicative convolution on the unit circle
SERBAN T. BELINSCHI, HARI BERCOVICI and CHING-WEI HO

251Invariant theory for the free left-regular band and a q-analogue
SARAH BRAUNER, PATRICIA COMMINS and VICTOR REINER

281Irredundant bases for finite groups of Lie type
NICK GILL and MARTIN W. LIEBECK

301Local exterior square and Asai L-functions for GL(n) in odd
characteristic

YEONGSEONG JO

341On weak convergence of quasi-infinitely divisible laws
ALEXEY KHARTOV

369C∗-irreducibility of commensurated subgroups
KANG LI and EDUARDO SCARPARO

381Local Maass forms and Eichler–Selberg relations for negative-weight
vector-valued mock modular forms

JOSHUA MALES and ANDREAS MONO

407Representations of orientifold Khovanov–Lauda–Rouquier algebras
and the Enomoto–Kashiwara algebra

TOMASZ PRZEŹDZIECKI
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