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THE DEFORMATION SPACE OF
DELAUNAY TRIANGULATIONS OF THE SPHERE

YANWEN LUO, TIANQI WU AND XIAOPING ZHU

We determine the topology of the spaces of convex polyhedra inscribed in
the unit 2-sphere and the spaces of strictly Delaunay geodesic triangulations
of the unit 2-sphere. These spaces can be regarded as discretized groups
of diffeomorphisms of the unit 2-sphere. Hence, it is natural to conjecture
that these spaces have the same homotopy types as those of their smooth
counterparts. The main result of this paper confirms this conjecture for the
unit 2-sphere. It follows from an observation on the variational principles on
triangulated surfaces developed by I. Rivin.

On the contrary, the similar conjecture does not hold in the cases of flat
tori and convex polygons. We will construct simple examples of flat tori and
convex polygons such that the corresponding spaces of Delaunay geodesic
triangulations are not connected.

1. Introduction

One of the fundamental problems in low dimensional topology is to identify the
homotopy types of groups of diffeomorphisms of a smooth manifold. Smale [1959]
proved that the group of orientation preserving diffeomorphisms of the 2-sphere is
homotopy equivalent to SO(3).

This paper studies two types of finite dimensional spaces which could be consid-
ered as discrete analogues of the group of orientation preserving diffeomorphisms
of the 2-sphere. They are the deformation spaces of Delaunay triangulations of
the unit 2-sphere and the deformation spaces of convex polyhedra inscribed in the
unit 2-sphere. The main results of this paper show that these discrete analogues are
homotopy equivalent to SO(3).

Theorem 1.1. The deformation space of Delaunay triangulations of the unit 2-
sphere is homeomorphic to SO(3)× Rk for some k > 0.
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Theorem 1.2. The deformation space of the convex polyhedra inscribed in the unit
2-sphere whose faces are all triangles is homeomorphic to SO(3)× Rk for some
k > 0.

However, we will construct explicit examples of spaces of Delaunay triangula-
tions of convex polygons and flat tori which have different homotopy types from their
smooth counterparts. Specifically, we show the spaces of Delaunay triangulations
of some flat tori and spaces of Delaunay triangulations of some convex polygons
are not connected.

Let T = (V, E, F) denote a 2-dimensional simplicial complex, where V is the
set of vertices, E is the set of edges, and F is the set of triangles. Any edge in E is
identified with the closed interval [0, 1], and any triangle in F is identified with a
Euclidean equilateral triangle with unit length. Denote T (1) as the 1-skeleton of T ,
and |T | as the underlying space of T homeomorphic to a surface possibly with
boundary.

Delaunay triangulations of the unit sphere. Let S2 be the unit sphere as a Rie-
mannian surface. Assume |T | is homeomorphic to S2. An embedding ϕ : T (1)

→ S2

is called a geodesic triangulation of S2 if the restriction of ϕ on each edge is a
geodesic parametrized with constant speed. A geodesic triangulation ϕ naturally
divides S2 into spherical geodesic triangles. For our convenience, we will only
consider the geodesic triangulations where all the spherical triangles are convex.
A geodesic triangulation ϕ of S2 is called a convex geodesic triangulation if any
spherical triangle in ϕ is contained in some open hemisphere. Such a convex
geodesic triangulation ϕ is uniquely determined by the images of the vertices of T .

A convex geodesic triangulation ϕ is called Delaunay if it satisfies the empty
circle property, meaning that for any pair of adjacent spherical triangles △ABC and
△AB D, D is not inside the circumcircle of △ABC . This condition is equivalent
to the following condition on the angles of a convex geodesic triangulation:

(1) b + c + b′
+ c′

− a − a′
≥ 0,

where a, b, c, a′, b′, c′ are the inner angles of two neighbored triangles as in Figure 1.
Similarly, a convex geodesic triangulation is called strictly Delaunay if for any
pair of adjacent spherical triangles △ABC and △AB D, D is strictly outside the
circumcircle of △ABC . This condition is equivalent to the following condition on
the angles of a convex geodesic triangulation:

(2) b + c + b′
+ c′

− a − a′ > 0.

Delaunay and strictly Delaunay triangulations naturally appear in the study of dis-
crete differential geometry and geometry processing. They are widely investigated
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Figure 1. The edge invariant.

and implemented in practice. See [Devadoss and O’Rourke 2011; Edelsbrunner
2001] for example. We will focus on strictly Delaunay triangulations in this paper.

Given an embeddingψ : T (1)
→S2, we define the deformation space of Delaunay

triangulations of the unit sphere determined by ψ , denoted by X (T, ψ), as the
set of all strictly Delaunay convex geodesic triangulations that are isotopic to ψ
in S2. Then X (T, ψ) is naturally a manifold of dimension 2|V | without boundary,
if X (T, ψ) is not empty. Notice that X (T, ψ) could be empty for some T since
there are 3-connected graphs that cannot be realized as the 1-skeleton of a convex
polyhedron with vertices on the unit 2-sphere. See [Steinitz 1928] for noninscribable
polytopes.

Theorem 1.1 can be rephrased as:

Theorem 1.3. Given a strictly Delaunay convex geodesic triangulation ψ , X (T, ψ)
is homeomorphic to R2|V |−3

× SO(3).

Notice that by the assumption, X (T, ψ) is not empty in Theorem 1.3.
The topology of spaces of geodesic triangulations of surfaces has been studied

since Cairns [1944] first proved the connectivity of the spaces of geodesic triangu-
lations of the 2-sphere. It was conjectured that for constant curvature surfaces they
are homotopy equivalent to their smooth counterparts by Connelly et al. [1983].
This conjecture has been confirmed by Bloch, Connelly and Henderson [Bloch et al.
1984] for convex polygons, and a new proof based on Tuttes’ embedding theorem
was provided by Luo [2022]. Recently, this conjecture was proved for the cases of
flat tori and closed surfaces of negative curvature (see the work of Erickson and
Lin [2021] and Luo, Wu and Zhu [2021b; 2021a]).

For the case of the unit sphere, Awartani and Henderson [1987] identified the
homotopy type of a subspace of the space of geodesic triangulations on the unit
2-sphere, but the general case remains open. Theorem 1.3 provides an affirmative
evidence about this conjecture, and we hope that it could be an intermediate step to
prove the conjecture for the unit sphere.
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Convex polyhedra inscribed in the unit sphere. Assume |T | is homeomorphic
to S2. An embedding ϕ : |T | → R3 is called a polyhedral realization inscribed in
the unit sphere if ϕ maps any vertex to the unit sphere and maps any face linearly
to a Euclidean triangle. Such a polyhedral realization ϕ is called (strictly) convex if
for any triangle σ ∈ F , ϕ(σ) is a face of the boundary of the convex hull of ϕ(V )
in R3. Given T , denote Y (T ) as the set of convex polyhedral realization inscribed
in the unit sphere.

We say a point q is inside a convex polyhedral surface P if q is in the interior of the
convex hull of P . Given a point q in the unit open ball, denote pq : R3

\{q} → S2

as the radial projection centered at q to the unit sphere. We say two convex
polyhedral realizations ϕ1, ϕ2 in Y (T ) have the same orientation if and only if
pq1 ◦ ϕ1 is isotopic to pq2 ◦ ϕ2 on S2, for q1 inside ϕ1(|T |) and q2 inside ϕ2(|T |).
It is straightforward to check that the choice of q1 and q2 does not matter.

Given a convex realization polyhedral realization ψ , we define the deformation
space of convex polyhedra inscribed in the sphere determined by ψ , denoted by
Y (T, ψ) ⊂ Y (T ), as the set of all convex realizations ϕ of S2 having the same
orientation withψ . Then Y (T, ψ) is naturally a manifold of dimension 2|V | without
boundary. Theorem 1.2 can be rephrased as

Theorem 1.4. Given a convex realizationψ , Y (T, ψ) is homeomorphic to R2|V |−3
×

SO(3).

The space of inscribed convex polyhedra in the unit sphere is closely related
to realization spaces of polytopes with a fixed combinatorial type. Steinitz [1922]
proved that every planar 3-connected graph is the 1-skeleton of a convex polyhedron
in R3. Moreover, his proof implies that the realization space of polyhedra is a cell
after the normalization by affine transformations. See [Richter-Gebert 1996] for a
detailed discussion about the realization spaces.

Connections between the two spaces. Denote Y0(T ) as the subset of Y (T ) con-
taining all the convex realizations ϕ such that the origin O = (0, 0, 0) is inside
ϕ(|T |). Given a convex realization ψ , denote Y0(T, ψ) = Y (T, ψ) ∩ Y0(T ). If
ϕ ∈ Y0, then the radial projection pO maps the triangulation structure on ϕ(|T |) to
a strictly Delaunay convex geometric triangulation of S2. This naturally produces a
homeomorphism from Y0(T, ψ) to X (T, pO ◦ψ |T (1)) for any convex realization ψ .
Therefore, Theorem 1.3 can be reformulated as

Theorem 1.5. Given a convex realization ψ ∈ Y0, Y0(T, ψ) is homeomorphic to
R2|V |−3

× SO(3).

Organization. In Section 2, we will review the concept of angle structures. In
Section 3, we will determine the topology of the spaces of Delaunay triangulations
of convex polygons with fixed angles. In Section 4, we will prove Theorem 1.4
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and Theorem 1.5. In Section 5, we will provide examples showing the homotopy
types of spaces of Delaunay triangulations of flat tori and convex polygons could
be disconnected.

2. Angle structures on triangulated surfaces

The tool to study the topology of spaces of Delaunay triangulations on S2 is the
concept of angle structure or angle system on triangulated surfaces. This concept
was proposed by Colin de Vedière [1991], and developed by Rivin [1994], Leibon
[2002], Luo [2006], Bobenko and Springborn [2004], Springborn [2008], and others.
We briefly summarize the theory in the following.

Angle structures on triangulated surfaces. Assume |T | is a 2-dimensional mani-
fold possibly with boundary. A corner in T is defined as a vertex-face pair (v, f )
in T such that the face f contains v. It represents the inner angle of the face f at
the vertex v. A Euclidean angle structure θ , or an angle structure in short, on T
is a positive function on the set of the corners such that θ1 + θ2 + θ3 = π for the
three angles in every face f . Every angle structure can be presented as a positive
vector in R3|F |. Denote Vb ⊂ V as the set of boundary vertices, and then the edge
invariant α = α(θ) ∈ RE∪Vb is defined as:

(a) αe = θ1 + θ2, if e is an inner edge, and θ1 and θ2 are the two angles opposite
to e.

(b) αe = θ1, if e is a boundary edge, and θ1 is the angle opposite to e.

(c) αv =
∑

i θi , if v is a boundary vertex, and θi ’s are the angles at v.

Denote the set of angle structures realizing a prescribed edge invariant ᾱ ∈ RE∪Vb

as A(T, ᾱ).
Given an edge length function l ∈ RE satisfying the triangle inequalities, we

can naturally determine a piecewise Euclidean metric on T and induce an angle
structure θ(l) using the inner angles in this piecewise Euclidean metric. Notice
that not every angle structure can be induced from a piecewise Euclidean metric,
and there are holonomy conditions on the angle structures so that we can glue the
Euclidean triangles determined by the angles to form a Euclidean triangle mesh.
We will see that these geometric angle structures can be found by the following
variational principles on A(T, ᾱ).

Variational principles of angle structures. Variational methods are introduced to
find piecewise Euclidean surfaces with a prescribed edge invariant. The functionals
in these variational principles have elegant geometric interpretations in terms of
volumes of polyhedra in the hyperbolic 3-space H3.

For each face f in F , an energy functional is defined in terms of three angles at
the corners of the face in an angle structure. For a face in a Euclidean angle structure
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Figure 2. The volume of an ideal tetrahedron.

with three angles (α, β, γ ), the energy functional is the volume of ideal hyperbolic
tetrahedron whose horospherical section is similar to a Euclidean triangle with three
angles (α, β, γ ). See Figure 2. The volume is given by

V (α, β, γ )=3(α)+3(β)+3(γ ),

where 3 is the Lobachevsky function

3(x)= −

∫ x

0
log(2 sin θ) dθ.

The total energy for a given angle structure is defined as the sum of functionals on
each face

E(θ)=

∑
fi ∈F

Vi (αi , βi , γi ).

The variational principles for these energy functionals can be summarized as follows.

Theorem 2.1 [Rivin 1994]. Assume ᾱ ∈ (0, π]
E∪Vb and A(T, ᾱ) is nonempty, then:

(a) The energy functional E is strictly concave down on A(T, ᾱ).

(b) There exists a unique critical point θ =2(ᾱ) of E in A(T, ᾱ).

(c) 2(ᾱ) is the unique angle structure in A(T, ᾱ) that could be induced from a
piecewise Euclidean metric on T .

Denote A0(T ) as the set of angle structures θ such that α(θ) ∈ (0, π)E∪Vb and
the angle sum

∑
i θi around any interior vertex is 2π . Denote AE(T ) as the set of

angle structures θ in A0(T ) that can be induced from a piecewise Euclidean metric
on T . Notice that the angle structure induced from a Delaunay triangulation of a
convex polygon in the plane belongs to AE(T ). Then by Theorem 2.1, we have the
following.

Lemma 2.2. If AE(T ) is nonempty, then AE(T ) is homeomorphic to Rk for some
k ≥ 0.
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Proof. If AE(T ) is nonempty, then A0(T ) is nonempty. From the definition we can
see that A0(T ) is an open convex subset in an affine subspace of R3|F |. Then its
image α(A0(T )) under the edge invariant map α, which is a linear map, is an open
convex subset of an affine subspace of RE∪Vb . Hence, α(A0(T )) is homeomorphic
to Rk for some k ≥ 0.

It remains to show that ᾱ 7→ 2(ᾱ) is a homeomorphism from α(A0(T )) to
AE(T ). It is straightforward to show that such a map is continuous from α(A0(T ))
to R3|F |. Moreover, ᾱ 7→2(ᾱ) 7→ α(2(ᾱ)) is the identity map on α(A0(T )). By
Theorem 2.1, θ 7→ α(θ) 7→2(α(θ)) is the identity map on AE(T ). Then we only
need to show that the image 2(ᾱ) is in AE(T ). By the definition we only need to
verify that for any interior vertex v, the angle sum around v in 2(ᾱ) is equal to the
angle sum around v in θ . This is because the angle sum of an angle structure θ
around an interior vertex v is determined by the edge invariant α(θ) as the following.∑

f ∈F : f ∋v

θv, f =

∑
f ∈F : f ∋v

π −

∑
e∈E :e∋v

αe. □

The dimension of the space AE(T ) can be explicitly computed in the next section.

3. Delaunay Triangulations of Convex Polygons

Assume that |T | is homeomorphic to a closed disk, an embedding ϕ : |T | → R2 is
called a triangulation of a polygon if ϕ is linear on any triangle of T . Further such
ϕ is called a triangulation of a convex polygon if the inner angle of the polygon
ϕ(|T |) at ϕ(vi ) is less than π for any boundary vertex vi of T . Such ϕ is called
strictly Delaunay if for any pair of adjacent triangles △ABC and △AB D in ϕ(T ),
D is strictly outside the circumcircle of △ABC . This condition is equivalent to
that a + a′ < π , where a, a′ are the inner angles of two neighbored triangles as in
Figure 1.

Denote θ(ϕ) as the angle structure induced from the triangulation ϕ, and Z(T )=
{ϕ : θ(ϕ)∈AE(T )} as the set of strictly Delaunay triangulations of a convex polygon.
We say two embeddings ϕ,ψ from |T | to R2 have the same orientation if ψ ◦ϕ−1

is an orientation preserving map on ϕ(|T |). Given a triangulation ψ of a polygon,
denote Z(T, ψ) as the set of strictly Delaunay triangulations ϕ of a convex polygon
that have the same orientation with ψ .

Furthermore, if we are given a directed edge ei j of T , denote Z(T, ψ, ei j ) as the
set of strictly Delaunay triangulations ϕ ∈ Z(T, ψ) satisfying that ϕ( j)−ϕ(i)=

(λ, 0) for some λ>0. Then it is elementary to see that a triangulation in Z(T, ψ, ei j )

is uniquely determined by the induced angle structure θ(ϕ), ϕ(i) and ϕ( j)−ϕ(i).
Therefore, ϕ 7→(θ(ϕ), ϕ(i), ϕ( j)−ϕ(i)) gives a homeomorphism from Z(T, ψ, ei j )

to AE(T )× R2
× R+. On the other hand, the space Z(T, ψ, ei j ) is a (2|V | − 1)-

dimensional manifold if not empty, then we have the following from Lemma 2.2.
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Figure 3. The stereographic projection of an inscribed convex polyhedron.

Corollary 3.1. Given any Delaunay triangulation of a convex polygon ψ , and a
directed edge ei j , Z(T, ψ, ei j ) is homeomorphic to R2|V |−1.

In the next section, we will reduce the spaces of Delaunay triangulations on the
sphere and the spaces of convex polyhedra inscribed in the sphere to the space
Z(T, ψ, ei j ).

4. Proof of the main theorems

We will prove Theorems 1.4 and 1.5 in this section using the stereographic projection.
It is well known that the stereographic projection

π : (x, y, z) 7→

(
x

1 − z
,

y
1 − z

)
gives an angle-preserving diffeomorphism from S2

\{(0, 0, 1)} to R2. For a circle 0
on S2, the stereographic projection maps 0 to a circle on R2 if 0 does not contain
(0, 0, 1), and maps 0\{(0, 0, 1)} to a straight line in R2 if 0 contains (0, 0, 1).

Assume |T | is homeomorphic to S2, and v0 is a vertex of T , and ψ ∈ Y (T ) is
a convex realization inscribed in the unit sphere, then denote Y (T, ψ, v0) (resp.
Y (T, v0), Y0(T, ψ, v0), Y0(T, v0)) as the set of ϕ ∈ Y (T, ψ) (resp. ϕ ∈ Y (T ),
Y0(T, ψ), Y0(T )) with ϕ(v0)= (0, 0, 1).

Lemma 4.1. Assume |T | is homeomorphic to S2, v0 is a vertex of T , T0 denotes
the subcomplex of T obtained by removing the open 1-ring neighborhood of v0, and
ei j is a directed edge in T0:

(a) There exists a map π̃ : Y (T, v0)→ Z(T0) induced by π such that φ = π̃(ϕ)

is the strictly Delaunay triangulation of a convex polygon determined by
φ(v)= π(ϕ(v)) for any vertex v of T0; see Figure 3.

(b) There exists a map η̃ : Z(T0)→ Y (T, v0) induced by π−1 such that ϕ= η̃(φ) is
the convex realization determined by ϕ(v)= π−1(φ(v)) for any vertex v of T0.
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(c) π̃ and η̃ are inverse to each other and then π̃ is a homeomorphism from
Y (T, v0) to Z(T0).

(d) Given a convex realization ψ ∈ Y (T, v0), π̃ gives a homeomorphism from
Y (T, ψ, v0) to Z(T0, π̃(ψ)).

(e) If φ ∈ π̃(Y0(T, v0)):

(i) The origin (0, 0) is in the interior of φ(|T0|).
(ii) λφ is also in π̃(Y0(T, v0)) for any λ ∈ (0, 1).

(f) For any ϕ ∈ Y (T, ψ), there exists a unique ϕ0 ∈ Y (T, ψ, v0) and g ∈ SO(3),
such that ϕ = g ◦ ϕ0 and π̃(ϕ0) ∈ Z(T0, π̃(ψ), ei j ). Then Y (T, ψ) is homeo-
morphic to Z(T0, π̃(ψ), ei j )× SO(3).

(g) For any ϕ ∈ Y0(T, ψ), there exists a unique ϕ0 ∈ Y0(T, ψ, v0) and g ∈ SO(3),
such that ϕ = g ◦ϕ0 and π̃(ϕ0) ∈ Z(T0, π̃(ψ), ei j ). Then Y0(T, ψ) is homeo-
morphic to (π̃(Y0(T, v0))∩ Z(T0, π̃(ψ), ei j ))× SO(3).

Proof. (a) and (b) are true by the empty circle property of the (strict) Delaunay
triangulations and the fact that the stereographic projection preserves circles.

(c) This is a direct consequence from the definition.

(d) Given a convex realization ϕ ∈ Y (T, v0) and q1 inside ψ(|T |) and q2 inside
ϕ(|T |), the following elementary facts related to orientations are equivalent by the
definition and properties of stereographic projections:

(i) ϕ ∈ Y (T, ψ, v0).

(ii) ψ and ϕ have the same orientation.

(iii) πq1 ◦ψ is isotopic to πq2 ◦ϕ in S2.

(iv) πq1 ◦ψ and πq2 ◦ϕ have the same orientation.

(v) π̃(ψ) and π̃(ϕ) have the same orientation.

(vi) π̃(ϕ) ∈ Z(T0, π̃(ψ)).

(e) If ϕ ∈ Y0(T, v0), then the origin is inside ϕ(|T |). Then the ray starting from the
north pole passing through the origin intersects with ϕ(|T |) at a unique point q in
the interior of ϕ(|T0|). So part (i) is true. We prove part (ii) by contradiction. If
λφ is not in π̃(Y0(T, v0)) for some λ ∈ (0, 1), then the origin (0, 0, 0) is not inside
η̃(λφ) and there is an open hemisphere H on S2 not intersecting η̃(λφ)(V ). Notice
that H does not contain the north pole so π(H) is well-defined. Then π(H) is
an open disk containing (0, 0) or an open half plane with (0, 0) on its boundary,
and π(H) does not intersect (λφ)(V ). So π(H) does not intersect φ(V ), meaning
that H does not intersect η̃(φ)(V ). So (0, 0, 0) is not inside η̃(φ)(|T |), but this
contradicts with that φ ∈ π̃(Y0(T, v0)).
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Figure 4. Counterexample, a convex polygon.

(f) and (g) Follow from the fact that the rotation along the z-axis (or the origin in
the xy-plane) is invariant under the stereographic projection. □

Proof of Theorem 1.4. This is an immediate consequence of Corollary 3.1 and part
(f) of Lemma 4.1. □

Proof of Theorem 1.5. By part (g) of Lemma 4.1, we only need to show that
π̃(Y0(T, v0)) ∩ Z(T0, π̃(ψ), ei j ) is homeomorphic to R2|V |−3. By part (e) of
Lemma 4.1 it is elementary to verify that

ϕ ∈ π̃(Y0(T, v0))∩ Z(T0, π̃(ψ), ei j )

is uniquely determined by θ(ϕ), ϕ−1(0, 0) and d(ϕ), where d(ϕ) is the Euclidean di-
ameter of ϕ(|T |) and describes the scaling transformation needed to determine ϕ. So
ϕ 7→ (θ(ϕ), ϕ−1(0, 0), d(ϕ)) gives a continuous injective map from π̃(Y0(T, v0))∩

Z(T0, π̃(ψ), ei j ) to AE(T0)× int(|T0|)× (0,∞), where int(|T0|)= |T0|\∂(|T0|) is
homeomorphic to R2. Then by Lemma 2.2 and a dimension counting, we complete
the proof. □

5. Delaunay triangulations of other surfaces

In this section, we will discuss the space of Delaunay geodesic triangulations of
convex polygons and flat tori.

Convex polygons. A convex polygon P in the plane is determined by the position
of a sequence of cyclically ordered vertices. The following simple example in
Figure 4 shows that for a fixed convex polygon P in the plane with a triangulation
ψ : T → P , denote the space of Delaunay triangulations of P which are isotopic
to ψ and have the same orientation with ψ as X (T, ψ). Notice that X (T, ψ) is
different from the space Z(T, ψ) in Section 3, since the positions of boundary
vertices of T for elements in X are fixed.

The following example shows that X (T, ψ) may not be connected.
In Figure 4, there are nine interior edges in the triangulation, eight of which are

Delaunay. The dashed edge might not be Delaunay. In Figure 4, if the vertices A
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Figure 5. Counterexample, a flat torus.

and B are close to the vertical boundaries, then α and β are both acute, so we can
construct two Delaunay triangulations τ1 and τ2 on the left and right. If there is
a family of Delaunay triangulations connecting τ1 and τ2, the vertex A or B will
pass the perpendicular bisector of the horizontal boundary of this rectangle. If the
rectangle is flat enough, the angle sum α+ β > π when one of A and B lies on
the perpendicular bisector. This shows that X (T, ψ) for this rectangle P is not
connected.

Delaunay triangulations on flat tori. Assume |T | is homeomorphic to the torus T2

with a marking homeomorphism whose restriction on T (1) is denoted as ψ . An em-
bedding ϕ : T (1)

→ T2 is a Delaunay geodesic triangulation with the combinatorial
type (T, ψ) satisfying:

(a) The restriction ϕi j of ϕ on each edge ei j , identified with a unit interval [0, 1],
is a geodesic parametrized with constant speed.

(b) ϕ is homotopic to ψ .

(c) Equation (2) is satisfied for all edges in T .

Let X = X (T, ψ) denote the set of all such geodesic triangulations, which is called
the deformation space of Delaunay geodesic triangulations of T2 of combinatorial
type (T, ψ).

The following example shows that the space of Delaunay geodesic triangulations
X = X (T, ψ) may not be connected.

In Figure 5, we draw two geodesic triangulations τ1 and τ2 on a flat torus. For
each geodesic triangulation, we draw two fundamental domains of this torus. The
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triangulation has two vertices and six edges. Fixing the vertex A at a point in
the universal covering, we can see that the position of the vertex B determines a
geodesic triangulation of this flat torus. Notice that τ1 and τ2 are both Delaunay,
since all the angles in these two triangulations are acute when B is sufficiently close
to the vertical line connecting two adjacent copies of A in the universal covering.

We can choose the shape of the fundamental domain of the flat torus as shown
in the picture. Then τ1 and τ2 are in two different connected components of the
space of Delaunay triangulations of this flat torus. This observation is based on the
following fact: any path connecting τ1 and τ2 needs to move the vertex B from the
right to the left. However, we can choose a flat enough fundamental domain such
that when B passes the perpendicular bisector of the dashed edge, the dashed edge
is never Delaunay. This implies that the space X = X (T, ψ) for this flat torus is
not connected.
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