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COMBINATORIAL PROPERTIES OF
NONARCHIMEDEAN CONVEX SETS

ARTEM CHERNIKOV AND ALEX MENNEN

We study combinatorial properties of convex sets over arbitrary valued
fields. We demonstrate analogs of some classical results for convex sets
over the reals (for example, the fractional Helly theorem and Bárány’s
theorem on points in many simplices), along with some additional properties
not satisfied by convex sets over the reals, including finite breadth and
VC dimension. These results are deduced from a simple combinatorial
description of modules over the valuation ring in a spherically complete
valued field.

1. Introduction

Convexity in the context of nonarchimedean valued fields was introduced in a
series of papers by Monna [1946], and has been extensively studied since then
in nonarchimedean functional analysis (see for instance the monographs [Perez-
Garcia and Schikhof 2010; Schneider 2002] on the subject). Convexity here is
defined analogously to the real case, with the role of the unit interval played instead
by a valuational unit ball (see Definition 2.1). Convex subsets of Rd admit rich
combinatorial structure, including many classical results around the theorems of
Helly, Radon, Carathéodory, Tverberg, etc. — we refer to [De Loera et al. 2019]
for a recent survey of the subject. In the case of R, or more generally a real
closed field, there is a remarkable parallel between the combinatorial properties of
convex and semialgebraic sets (which correspond to definable sets from the point
of view of model theory). They share many (but not all) properties in the form of
various restrictions on the possible intersection patterns, including the fractional
Helly theorem and existence of (weak) ε-nets. A well-studied phenomenon in
model theory establishes strong parallels between definable sets in R and in many
nonarchimedean valued fields such as the p-adics Qp or various fields of power
series (see for instance [van den Dries 2014]). In this paper we focus on the
combinatorial study of convex sets over general valued fields, trying to understand
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if there is similarly a parallel theory. On the one hand, we demonstrate valued field
analogs of some classical results for convex sets over the reals (e.g., the fractional
Helly theorem and Bárány’s theorem on points in many simplices). On the other
hand, we establish some additional properties not satisfied by convex sets over the
reals, including finite breadth and VC dimension. This suggests that in a sense
convex sets over valued fields are the best of both worlds combinatorially, and
satisfy various properties enjoyed either by convex or by semialgebraic sets over
the reals.

We give a quick outline of the paper. Section 2 covers some basics concerning
convexity for subsets of K d over an arbitrary valued field K , in particular discussing
the connection to modules over the valuation ring. These results are mostly standard
(or small variations of standard results), and can be found in [Perez-Garcia and
Schikhof 2010; Schneider 2002] under the unnecessary assumption that K is spheri-
cally complete and (0, +)⊆ (R>0, ×); we provide some proofs for completeness. In
Section 3 we give a simple combinatorial description of the submodules of K d over
the valuation ring OK in the case of a spherically complete field K (Theorem 3.6
and Corollary 3.12), and an analog for finitely generated modules over arbitrary
valued fields (Corollary 3.14). We also give an example of a convex set over the
field of Puiseux series demonstrating that the assumption of spherical completeness
is necessary for our presentation in the nonfinitely generated case (Example 3.11).
In Section 4 we use this description of modules to deduce various combinatorial
properties of the family of convex subsets ConvK d of K d over an arbitrary valued
field K . First we show that ConvK d has breadth d (Theorem 4.3), VC dimension
d + 1 (Theorem 4.8), dual VC dimension d (Theorem 4.10) — in stark contrast, all
of these are infinite for the family of convex subsets of Rd for d ≥ 2. On the other
hand, we obtain valued field analogs of the following classical results: the family
ConvK d has Helly number d + 1 (Theorem 4.5), fractional Helly number d + 1
(Theorem 4.14), satisfies a strong form of Tverberg’s theorem (Theorem 4.15) and
the Boros–Füredi/Bárány theorem on the existence of a common point in a positive
fraction of all geometric simplices generated by an arbitrary finite set of points
in K d (Theorem 4.16). Some of the proofs here are adaptations of the classical
arguments, and some rely crucially on the finite breadth property specific to the
valued field context. Finally, in Section 5A we point out some further applications,
for example a valued field analog of the celebrated (p, q)-theorem of Alon and
Kleitman [1992] (Corollary 5.1), and that all convex sets over a spherically complete
field are externally definable in the sense of model theory (Remark 5.7); as well
as pose some questions and conjectures. We also discuss some other notions of
convexity over nonarchimedean fields appearing in the literature in Section 5B, and
place our work in the context of the study of abstract convexity spaces in discrete
geometry and combinatorics in Section 5C.
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2. Preliminaries on convexity over valued fields

Notation. For n ∈ N≥1, we write [n] = {1, . . . , n} and ⟨ · ⟩ denotes the span in
vector spaces. Throughout the paper, K will denote a valued field, with value
group 0 = 0K , and valuation ν = νK : K → 0∞ := 0 ⊔ {∞}, valuation ring
O =OK = ν−1([0, ∞]), maximal ideal m=mK = ν−1((0, ∞]), and residue (class)
field k = O/m. The residue map O → k will be denoted α 7→ ᾱ. For a ring R,
R× denotes its group of units.

The following definition of convexity is analogous to the usual one over R, with
the unit interval replaced by the (valuational) unit ball.

Definition 2.1. (1) For d ∈ N≥1, a set X ⊆ K d is convex if, for any n ∈ N≥1,
x1, . . . , xn ∈ X , and α1, . . . , αn ∈ O such that α1 + · · · + αn = 1 we have
α1x1 + · · · +αnxn ∈ X (in the vector space K d ).

(2) The family of convex subsets of K d will be denoted ConvK d .

It is immediate from the definition that the intersection of any collection of
convex subsets of K d is convex.

Definition 2.2. Given an arbitrary set X ⊆ K d , its convex hull conv(X) is the
convex set given by the intersection of all convex sets containing X , equivalently

conv(X) =

{ n∑
i=1

αi xi : n ∈ N, αi ∈ O, xi ∈ X,
n∑

i=1
αi = 1

}
.

Definition 2.3. A (valuational) quasiball is a set B = {x ∈ K : ν(x − c) ∈ 1}

for some c ∈ K and an upwards closed subset 1 of 0∞. In this case we say
that B is around c, and refer to 1 as the quasiradius of B. We say that B is a
closed (respectively, open) ball if additionally 1 = {γ ∈ 0 : γ ≥ r} (respectively,
1 = {γ ∈ 0 : γ > r}) for some r ∈ 0, and just ball if B is either an open or a closed
ball (in which case we refer to r as its radius).

Remark 2.4. (1) If the value group 0 is Dedekind complete, then every quasiball
is a ball (except for K itself, which is a quasiball of quasiradius 0∞).

(2) If B is a quasiball of quasiradius 1 around c and c′
∈ B is arbitrary, then B is

also a quasiball of quasiradius 1 around c′.

(3) Thus, any two quasiballs are either disjoint, or one of them contains the other.

Example 2.5. (1) The convex subsets of K = K 1 are exactly ∅ and the quasiballs
(see Proposition 2.10 and Example 2.11).

(2) If e1, . . . , ed is the standard basis of the vector space K d , then

conv({0, e1, . . . , ed}) = Od .
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(3) The image and the preimage of a convex set under an affine map are convex.
In particular, a translate of a convex set is convex, and a projection of a
convex set is convex. (Recall that given two vector spaces V, W over the same
field K , a map f : V → W is affine if f (αx + βy) = α f (x) + β f (y) for all
x, y ∈ V, α, β ∈ K , α + β = 1.)

One might expect, by analogy with real convexity, that the definition of a convex
set could be simplified to: if x, y ∈ X , α, β ∈O such that α+β =1, then αx+βy ∈ X .
The following two propositions show that this is the case if and only if the residue
field is not isomorphic to F2, and that in general we have to require closure under
3-element convex combinations.

Proposition 2.6. Let K be a valued field and X ⊆ K d . If X is closed under 3-
element convex combinations (in the sense that if x, y, z ∈ X and α, β, γ ∈ O such
that α + β + γ = 1, then αx + βy + γ z ∈ X ), then X is convex.

Proof. Suppose X is closed under 3-element convex combinations. We will show
by induction on n that then X is closed under n-element convex combinations. Let
n ≥ 3, x1, . . . , xn ∈ X and α1, . . . , αn ∈ O such that α1 + · · · + αn = 1 be given.
Then one of the following two cases holds.

Case 1. α1 + α2 ∈ O×. Then α1/(α1 + α2) and α2/(α1 + α2) are elements of O
that sum to 1, so

α1
α1+α2

x1 +
α2

α1+α2
x2 ∈ X

by assumption. But then

α1x1 + · · · +αnxn = (α1 + α2)
(

α1
α1+α2

x1 +
α2

α1+α2
x2

)
+ α3x3 + · · · +αnxn ∈ X

by the induction hypothesis, as it is a convex combination of n − 1 elements of X .

Case 2. α1 + α2 ∈ m. Then, as ν
(∑n

i=1 αi
)

= 0, there must exist some i with
3 ≤ i ≤ n such that αi ∈ O×. Hence α1 + α2 + αi ∈ O×, so α1/(α1 + α2 + αi ),
α2/(α1 + α2 + αi ), and αi/(α1 + α2 + αi ) are elements of O that sum to 1. Thus

α1
α1+α2+αi

x1 +
α2

α1+α2+αi
x2 +

αi
α1+α2+αi

xi ∈ X

by assumption, and so

α1x1+· · ·+αnxn = (α1+α2+αi )
(

α1
α1+α2+αi

x1+
α2

α1+α2+αi
x2+

αi
α1+α2+αi

xi

)
+ α3x3 + · · · +αi−1xi−1 + αi+1xi+1 + · · · +αnxn ∈ X

by the induction hypothesis, as it is a convex combination of n−2 elements of X . □

Proposition 2.7. For any valued field K , the following are equivalent:

(1) For every d ≥ 1, every set in K d that is closed under 2-element convex combi-
nations is convex.
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(2) The residue field k is not isomorphic to F2.

Proof. (1) implies (2). If k = F2, consider the set

X := {(a1, a2, a3) | a1, a2, a3 ∈ O, ∃i such that ai ∈ m} ⊆ K 3.

We claim that X is closed under 2-element convex combinations. That is, given
arbitrary (a1, a2, a3), (b1, b2, b3) ∈ X and α, β ∈ O with α +β = 1, we must show
that α(a1, a2, a3)+β(b1, b2, b3) ∈ X . We have ᾱ + β̄ = 1 in k = F2, so necessarily
one of ᾱ and β̄ is 1 and the other is 0. Without loss of generality ᾱ = 1 and β̄ = 0.
Then β ∈ m. By definition of X , ai ∈ m for some i . Then αai ∈ m, and βbi ∈ m as
bi ∈ O, so αai +βbi ∈m. Thus (αa1 +βb1, αa2 +βb2, αa3 +βb3) ∈ X . However
X is not convex: for an arbitrary a ∈ m we have (0, 0, 0), (1, 0, 0), (0, 1, 1) ∈ X ,
1, −1 ∈O, but (−1)(0, 0, 0)+1(1, 0, 0)+1(0, 1, 1) = (1, 1, 1) /∈ X . (This example
can be modified to work in K 2.)

(2) implies (1). If k ̸∼=F2, suppose X is closed under 2-element convex combinations.
By Proposition 2.6, we only need to check that it is then closed under 3-element
convex combinations. Let x, y, z ∈ X , and α, β, γ ∈ O such that α + β + γ = 1.
Then one of the following two cases holds.

Case 1. At least one of α +β, β + γ, α + γ is an element of O×. Without loss of
generality, α + β ∈ O×. Then (α/(α + β))x + (β/(α + β))y ∈ X by assumption,
and thus

αx + βy + γ z = (α + β)
(

α

α+β
x +

β

α+β
y
)

+ γ z ∈ X.

Case 2. α +β, β +γ, α +γ ∈ m. In the residue field, ᾱ + β̄ = β̄ + γ̄ = ᾱ + γ̄ = 0,
and ᾱ+ β̄+ γ̄ = 1, hence necessarily ᾱ = β̄ = γ̄ = 1, and char(k) = 2. Since k ̸∼= F2,
there is δ ∈O such that δ̄ /∈ {0, 1}. Then ᾱ+ δ̄ = 1+ δ̄ ̸= 0 and β̄ − δ̄+ γ̄ = δ̄ ̸= 0, so

αx + βy + γ z =

(α + δ)
(

α

α+δ
x +

δ

α+δ
y
)

+ (β − δ + γ )
(

β−δ

β−δ+γ
y +

γ

β−δ+γ
z
)

∈ X. □

The following proposition gives a very strong form of Radon’s theorem (not only
do we obtain a partition into two sets with intersecting convex hulls, but moreover
one of the points is in the convex hull of the other ones).

Proposition 2.8. Let K be a valued field. For any d + 2 points x1, . . . , xd+2 ∈ K d ,
one of them is in the convex hull of the others.

Proof. There exist a1, . . . , ad+2 ∈ K , not all 0, such that
∑d+2

i=1 ai xi = 0 and∑d+2
i=1 ai = 0 (because those are d + 1 linear equations on d + 2 variables, as

we are working in K d). Let i ∈ [d + 2] be such that ν(ai ) is minimal among
ν(a1), . . . , ν(ad+2), in particular ai ̸= 0. Then xi =

∑
j ̸=i (−a j/ai )x j , and this is a
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convex combination: for i ̸= j we have −a j/ai ∈O (as ν(−a j/ai )=ν(a j )−ν(ai )≥

0 by the choice of i) and
∑

j ̸=i (−a j/ai ) =
(
−

∑
j ̸=i a j

)
/ai = ai/ai = 1. □

By a repeated application of Proposition 2.8 we immediately get a very strong
form of Carathéodory’s theorem:

Corollary 2.9. Let K be a valued field. Then the convex hull of any finite set in K d

is already given by the convex hull of at most d + 1 points from it.

Convex sets over valued fields have a natural algebraic characterization.

Proposition 2.10. (1) A subset C ⊆ K d is an O-submodule of K d if and only if it
is convex and contains 0.

(2) Nonempty convex subsets of K d are precisely the translates of O-submodules
of K d .

Proof. (1) O-submodules of K d are clearly convex and contain 0. Now suppose
C ⊆ K d is convex and 0 ∈C . Then for any α ∈O and x ∈C , αx =αx+(1−α)0 ∈C .
And for any x, y ∈ C , x +y = 1·x +1·y−1·0 ∈ C . Therefore C is an O-submodule.

(2) Given a nonempty convex C ⊆ K d , we can choose a ∈ K d such that the translate
C+a contains 0 and is still convex, hence C+a is an O-submodule of K d by (1). □

Example 2.11. Let C be an O-submodule of K , and take 1 := ν(C). Then 1 is
nonempty because it contains ∞ = ν(0), and upward-closed because for γ ∈ 1

and δ > γ , there is x ∈ C with ν(x) = γ , and α ∈ K with ν(α) = δ − γ ; then
αx ∈ C and ν(αx) = δ. Clearly C ⊆ {x ∈ K | ν(x) ∈ 1} by definition of 1. To
show C ⊇ {x ∈ K | ν(x) ∈ 1}, given any x ∈ K with ν(x) ∈ 1, there is y ̸= 0 ∈ C
with ν(y) = ν(x), and x/y ∈ O, so x = (x/y)y ∈ C . Thus C = {x ∈ K | ν(x) ∈ 1}

is a quasiball around 0.

Corollary 2.12. The convex hull of any finite set in K d is the image of Od under an
affine map.

Proof. By Corollary 2.9, the convex hull of a finite subset of K d is the convex hull
of some d + 1 points x0, . . . , xd from it (possibly with xi = x j for some i, j). Let
e1, . . . , ed be the standard basis for K d , and let f be an affine map f : K d

→ K d

such that f (0)= x0 and f (ei )= xi for 1≤ i ≤d (we can take f to be the composition
of two affine maps: the linear map sending ei to xi −x0 for 1 ≤ i ≤ d , and translation
by x0). Then we have conv({x0, . . . , xd}) = f (conv{0, e1, . . . , ed}) = f (Od), by
Example 2.5(2). □

Proposition 2.13. For any convex C ⊆ K d and a ∈ K d , the translate C + a :=

{x + a | x ∈ C} is either equal to or disjoint from C.

Proof. If x ∈ C ∩ (C + a), then y + a = y + x − (x − a) ∈ C for all y ∈ C since
that is a convex combination, and conversely y = (y + a) − x + (x − a) ∈ C if
y + a ∈ C . □
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Definition 2.14. Given a valued field K , by a valued K -vector space we mean a K -
vector space V equipped with a surjective map ν =νV : V →0∞ =0∪{∞} such that
ν(x)=∞ if and only if x =0, ν(x+y)≥min{ν(x), ν(y)} and ν(αx)=νK (α)+ν(x)

for all x, y ∈ V and α ∈ K .

Remark 2.15. Here we restrict to the case when V has the same value group
as K , and refer to [Fuchs 1975] for a more general treatment (see also [Johnson
2016, Section 6.1.3; Hrushovski 2014, Section 2.5; Aschenbrenner et al. 2017,
Section 2.3]).

By a morphism of valued K -vector spaces we mean a morphism of vector
spaces preserving valuation. If V and W are valued K -vector spaces, their direct
sum V ⊕ W is the direct sum of the underlying vector spaces equipped with the
valuation ν(x, y) := min{νV (x), νW (y)}. In particular, the vector space K d is a
valued K -vector space with respect to the valuation νK d : K d

→ 0∞ given by

νK d (x1, . . . , xd) := min{νK (x1), . . . , νK (xd)}.

Note that for any scalar α ∈ K and vector v ∈ K d we have νK d (αv)=νK (α)+νK d (v).
By a (valuational) ball in K d we mean a set of the form {x ∈ K d

: νK d (x − c)□r}

for some center c ∈ K d , radius r ∈ 0∪{∞} and □∈ {>, ≥} (corresponding to open
or closed ball, respectively). The collection of all open balls forms a basis for the
valuation topology on K d turning it into a topological vector space. Note that due
to the “ultrametric” property of valuations, every open ball is also a closed ball, and
vice versa. Equivalently, this topology on K d is just the product topology induced
from the valuation topology on K .

Recall that the affine span aff(X) of a set X ⊆ K d is the intersection of all affine
sets (i.e., translates of vector subspaces of K d ) containing X , equivalently

aff(X) =

{ n∑
i=1

αi xi : n ∈ N≥1, αi ∈ K , xi ∈ X,
n∑

i=1
αi = 1

}
.

We have conv(X) ⊆ aff(X) for any X .

Proposition 2.16. Any convex set in K d is open in its affine span.

Proof. For x ∈ C ⊆ K d , C convex, let d ′
≤ d be the dimension of the affine span

of C , and let y1, . . . , yd ′ ∈ C be such that x, y1, . . . , yd ′ are affinely independent,
and thus have the same affine span as C . Then the map (α1, . . . , αd ′) 7→ x +

α1(y1 − x)+· · ·+αd ′(yd ′ − x) is a homeomorphism from K d ′

to the affine span of
C , and sends Od ′

(which is open in K d ′

) to a neighborhood of x contained in C . □

Corollary 2.17. Convex sets in K d are closed.

Proof. For convex C ⊆ K d and x ∈ aff(C) \ C , C + x is an open subset of aff(C)

that is disjoint from C , so C is a closed subset of its affine span, and hence closed
in K d , since affine subspaces are closed. □
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3. Classification of O-submodules of K d

In this section we provide a simple description for the O-submodules of K d over
a spherically complete valued field K (and over an arbitrary valued field K in
the finitely generated case). Combined with the description of convex sets in
terms of O-submodules from Section 2, this will allow us to establish various
combinatorial properties of convex sets over valued fields in the next section. In
the following lemma, the construction of the valuation ν is a special case of the
standard construction of the quotient norm, when modding out a normed space by
a closed subspace, while the second part is more specific to our situation.

Lemma 3.1. Let K be a valued field, and V ⊆ K d a subspace. Then the quotient
vector space K d/V is a valued K -vector space equipped with the valuation

ν(u) := max{νK d (v) | π(v) = u, v ∈ K d
},

for u ∈ K d/V , where π : K d
→ K d/V is the projection map (and the maximum is

taken in 0∞). If dim(V ) = n, then K d/V ∼= K d−n as valued K -vector spaces, and
there is a valuation preserving embedding of K -vector spaces f : K d/V ↪→ K d so
that π ◦ f = idK d/V .

Proof. First we prove the lemma for n = 1. Let V ⊆ K d be one-dimensional.
There exists i ∈ [d] such that νK d ((x1, . . . , xd)) = νK (xi ) for all (x1, . . . , xd) ∈ V
(indeed, if νK (xi ) = min{νK (x1), . . . , νK (xd)} for some (x1, . . . , xd) ∈ V , then
we also have νK (αxi ) = νK (α) + νK (xi ) = νK (α) + min{νK (x1), . . . , νK (xd)} =

min{νK (αx1), . . . , νK (αxd)} for any α ∈ K ). Given any (x1, . . . , xd) ∈ K d with
xi = 0 and (y1, . . . , yd) ∈ V , we have

(3-1) νK d (x1 + y1, . . . , xd + yd) = min
j∈[d]

{νK (x j + y j )}

= min{νK (yi ), min
j ̸=i

{νK (x j + y j )}} ≤ νK (yi )

= νK d (y1, . . . , yd).

Now consider an arbitrary affine translate x + V of V , x = (x1, . . . , xd) ∈ K d .
Then there exists x ′

= (x ′

1, . . . , x ′

d) ∈ x + V so that x ′

i = 0. Indeed, fix any
0 ̸= y′

∈ V , then V = {αy′
: α ∈ K }. Take α′

:= −xi/y′

i (note that, by the choice of
i , y′

̸= 0 ⇒ νK d (y′) ̸= ∞ ⇒ νK (y′

i ) ̸= ∞ ⇒ y′

i ̸= 0), and let x ′
:= x + α′y′. We

claim that νK d (x ′) = max{νK d (z) : z ∈ x +V }, thus the valuation ν on K d/V is well
defined. Indeed, x + V = x ′

+ V , so fix any y ∈ V . If νK d (x ′) < νK d (x ′
+ y), we

must necessarily have νK d (x ′)= νK d (y), but by (3-1) we have νK d (x ′
+y)≤ νK d (y),

so νK d (y) < νK d (y) — a contradiction; thus νK d (x ′) ≥ νK d (x ′
+ y).

Let K ′
:={(x1, . . . , xd)∈ K d

| xi =0}, then we have K d
=V ⊕K ′ as vector spaces,

hence the projection of K d onto K ′ along V induces an isomorphism between K d/V
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and K ′, which in turn is naturally isomorphic to K d−1, and these isomorphisms
preserve the valuation and give the desired embedding f : K d/V → K d . The general
case follows by induction on n using the vector space isomorphism theorems. □

We recall an appropriate notion of completeness for valued fields. Recall that a
family {Ci : i ∈ I } of subsets of a set X is nested if for any i, j ∈ I , either Ci ⊆ C j

or C j ⊆ Ci .

Definition 3.2. A valued field K is spherically complete if every nested family of
(closed or open) valuational balls has nonempty intersection.

For the following standard fact, see for example Theorem 5 in Section II.3 and
Theorem 8 in Section II.6 of [Schilling 1950].

Fact 3.3. Every valued field K (with valuation νK , value group 0K and residue
field kK ) admits a spherical completion, i.e., a valued field K̃ (with valuation νK̃ ,
value group 0K̃ and residue field kK̃ ), so that:

(1) K̃ is an immediate extension of K , i.e., K̃ is a field extension of K , νK̃ ↾K = νK ,
0K̃ = 0K and kK̃ = kK .

(2) K̃ is spherically complete.

We remark that in general a valued field might have multiple nonisomorphic
spherical completions.

Lemma 3.4. If K is spherically complete, then every nested family of nonempty
convex subsets of K d has a nonempty intersection.

Proof. By induction on d. For d = 1, let {Ci }i∈I be a nested family of nonempty
convex sets, so each Ci is a quasiball; see Example 2.5(1). If there exists some
i ∈ I such that Ci is the smallest of these under inclusion, then any element of Ci

is in the intersection of the whole family. Hence we may assume that for each i ∈ I
there exists some i ′

∈ I such that Ci ′ ⊊ Ci . Let 1i and 1i ′ be the quasiradii of
Ci and Ci ′ , respectively. We may assume that both quasiballs are around the same
point xi ∈ Ci ′ (by Remark 2.4), hence necessarily 1i ′ ⊊ 1i . Let ri ∈ 1i \ 1i ′ , and
let C ′

i be a (open or closed) ball of radius ri around xi . We have C ′

i ⊆ Ci , so if⋂
i∈I C ′

i is nonempty, then so is
⋂

i∈I Ci . Hence it is sufficient to show that {C ′

i }i∈I

is nested, and then the intersection is nonempty by spherical completeness of K .
By construction for any i, j ∈ I there exists some ℓ ∈ I such that Cℓ ⊆ C ′

i ∩ C ′

j , so
C ′

i and C ′

j have nonempty intersection, and are thus nested as they are balls.
For d ≥ 2, let {Ci }i∈I be a nested family of nonempty convex sets, and let

π1 : K d
→ K be the projection onto the first coordinate. Then {π1(Ci )}i∈I is a

nested family of nonempty convex sets in K , hence has an intersection point x . Then
{π−1

1 (x) ∩ Ci }i∈I is a nested family of nonempty convex sets in π−1
1 (x) ∼= K d−1,

which is nonempty by the induction hypothesis. □
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Lemma 3.5. If C ⊆ K d is an O-module, and γ ∈ 0∞, then the set

Xγ = {(x1, . . . , xd−1) ∈ Od−1
| ∃α ∈ K , ν(α) = γ, (α, αx1, . . . , αxd−1) ∈ C}

is convex.

Proof. Let x = (x1, . . . , xd−1), y = (y1, . . . , yd−1), z = (z1, . . . , zd−1) ∈ Xγ

and β1, β2, β3 ∈ O with β1 + β2 + β3 = 1 be arbitrary. Then there exist some
α1, α2, α3 ∈ K with ν(αi ) = γ , so that

(α1, α1x1, . . . , α1xd−1), (α2, α2 y1, . . . , α2 yd−1), (α3, α3z1, . . . , α3zd−1) ∈ C.

Taking α := α1, we have

x ′
:= (α, αx1, . . . , αxd−1), y′

:= (α, αy1, . . . , αyd−1),

z′
:= (α, αz1, . . . , αzd−1) ∈ C,

as for every i ∈ [3], α/αi ∈ O, and hence (α/αi )v ∈ C for any v ∈ C as C is an
O-module. Using this and convexity of C we thus have

(α, α(β1x1 + β2 y1 + β3z1), . . . , α(β1xd−1 + β2 yd−1 + β3zd−1))

= β1(α, αx1, . . . , αxd−1) + β2(α, αy1, . . . , αyd−1) + β3(α, αz1, . . . , αzd−1)

= β1x ′
+ β2 y′

+ β3z′
∈ C.

This shows that β1x + β2 y + β3z ∈ Xγ , and hence that Xγ is convex using
Proposition 2.6. □

Combining the lemmas, we obtain a description of the OK -submodules of K d

for spherically complete K :

Theorem 3.6. Suppose K is a spherically complete valued field, d ∈ N≥1, and let
C ⊆ K d be an O-submodule. Then there exists a complete flag of vector subspaces
{0}⊊ F1 ⊊ · · ·⊊ Fd = K d and a decreasing sequence of nonempty, upwards closed
subsets 11 ⊇ 12 ⊇ · · · ⊇ 1d of 0∞ such that

C = {v1 + · · · + vd | vi ∈ Fi , ν(vi ) ∈ 1i }.

Remark 3.7. If Fi and 1i satisfy the conclusion of Theorem 3.6 for C , then
νK d (C ∩ F1) = νK d (C) = 11.

Indeed, any v ∈ C is of the form v = v1 +· · ·+ vd with vi ∈ Fi , ν(vi ) ∈ 1i and
11 ⊇ 1i for all i ∈ [d], hence ν(v) ≥ min{ν(vi ) : i ∈ [d]} ∈ 11, hence ν(v) ∈ 11

as 11 is upwards closed, so ν(C) ⊆ 11. Conversely, assume γ ∈ 11. If γ = ∞,
then ν(0) = ∞ and 0 ∈ F1. So assume γ ∈ 0 and let v be any nonzero vector
in F1, and define δ := ν(v) ∈ 0. Taking α ∈ K so that νK (α) = γ − δ, we have
αv ∈ F1 and νK d (αv) = νK (α) + νK d (v) = γ . Note also that αv = v1 + · · · + vd
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with v1 := αv, vi := 0 for 2 ≤ i ≤ d; in particular vi ∈ Fi and ν(vi ) ∈ 1i , so αv ∈ C ,
hence 11 ⊆ ν(F1 ∩ C).

Proof of Theorem 3.6. By induction on d. For d = 1, every O-submodule of K is
a quasiball C = {x ∈ K : ν(x) ∈ 1} for some upwards closed 1 ⊆ 0 ∪ {∞} (see
Example 2.11), hence we take F1 := K and 11 := 1.

For d > 1, let 11 := {γ ∈ 0∞ | ∃v ∈ C, νK d (v) = γ }. Note that 11 is nonempty
because it contains ∞ = ν(0). Then there is some i ∈ [d] such that every γ ∈ 11 is
the valuation of the i-th coordinate of some element of C . To see this, note that for
each i ∈ [d], the set

Si := {γ ∈ 0∞ | ∃v = (v1, . . . , vd) ∈ C such that νK d (v) = ν(vi ) = γ }

is upwards closed in 0∞. Indeed, assume v = (v1, . . . , vd) ∈ C , γ = ν(vi ) =

min{ν(vj ) : j ∈ [d]} and δ ≥ γ in 0∞. Let α ∈ K be arbitrary with ν(α) = δ − γ ,
then α ∈ O, hence αv ∈ C , and so νK d (αv) = min{ν(αvj ) : j ∈ [d]} = ν(αvj ) = δ.
As we also have 11 =

⋃
i∈[d]

Si , it follows that 11 = Si for some i ∈ [d] as wanted
(and thus 11 is upwards closed in 0∞).

Without loss of generality we may assume i = 1. Then, given any γ ∈11, there is
some (α, y1, . . . , yd−1) ∈ C such that γ = ν(α) ≤ min{ν(y j ) : j ∈ [d −1]}. Taking
x j := y j/α ∈ O, we thus have (α, αx1, . . . , αxd−1) ∈ C . Hence for any γ ∈ 11,
the set

Xγ := {(x1, . . . , xd−1) ∈ Od−1
| ∃α ∈ K , ν(α) = γ ∧ (α, αx1, . . . , αxd−1) ∈ C}

is nonempty and convex (by Lemma 3.5). Note that for γ <δ∈0∞ we have Xγ ⊆ Xδ ,
hence

⋂
γ∈11

Xγ ̸= ∅ by Lemma 3.4. That is, there exists (x1, . . . , xd−1) ∈ Od−1

such that for all γ ∈11, there exists α ∈ K with ν(α)=γ ∧(α, αx1, . . . , αxd−1)∈C .
Hence

(3-2) ∀α ∈ K , ν(α) ∈ 11 =⇒ (α, αx1, . . . , αxd−1) ∈ C,

since there exists β ∈ K such that ν(β) = ν(α) ∧ (β, βx1, . . . , βxd−1) ∈ C , so
α/β ∈ O and multiplying by it we get (α, αx1, . . . , αxd−1) ∈ C .

Let F1 := ⟨(1, x1, . . . , xd−1)⟩. Let π : K d ↠ K d/F1 be the projection map,
f : K d/F1 ↪→ K d the valuation preserving embedding given by Lemma 3.1, and
π ′

:= f ◦ π : K d
→ K d . Note that K d/F1 ∼= K d−1 as a valued K -vector space

by Lemma 3.1, and that C̃ := π(C) is still an O-submodule of K d/F1. By the
induction hypothesis there is a full flag {0}⊊ F̃2 ⊊ · · ·⊊ F̃d = K d/F1 and upwards
closed subsets νK d/F1

(C̃) = 12 ⊇ · · · ⊇ 1d of 0∞ satisfying the conclusion of the
theorem with respect to C̃ (the equality νK d/F1(C̃) = 12 is by Remark 3.7). Note
that

(3-3) ∀v ∈ K d , νK d (π ′(v)) = νK d/F1(π(v)) ≥ νK d (v).
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In particular we have 11 ⊇ 12.
Let the subspaces F2, . . . , Fd be the preimages of F̃2, . . . , F̃d in K d . We let

W := f (K d/F1) ⊆ K d be the image of the valuation preserving embedding f :

K d/F1 ↪→ K d . Then we have

(3-4) C = {v1 + w | v1 ∈ F1, νK d (v1) ∈ 11, w ∈ C ∩ W }.

To see this, given an arbitrary v ∈ C , let w := π ′(v) and v1 := v − w. As π ◦ f =

idK d/F1 by assumption, we have π(w)=π(π ′(v))=π( f (π(v)))=π(v), hence v1 ∈

F1. By (3-3) we have νK d (w)≥νK d (v), and thus νK d (v1)≥min{νK d (v), νK d (w)}≥

νK d (v) as well. Thus νK d (v1) ∈ 11, and v1 ∈ F1, which together with (3-2) and
the definition of F1 implies v1 ∈ C ; hence w = v − v1 ∈ C as well. The opposite
inclusion is obvious.

Furthermore, applying the isomorphism f : K d/F1 → W to

C̃ = C/F1 = {v2 + · · · + vd | vi ∈ F̃i , νK d/F1(vi ) ∈ 1i },

we get
C ∩ W = {v2 + · · · + vd | vi ∈ Fi ∩ W, νK d (vi ) ∈ 1i },

which together with (3-4) implies

C = {v1 + · · · + vd | vi ∈ Fi , ν(vi ) ∈ 1i , vi ∈ W for i ≥ 2}.

Now C = {v1 + · · · + vd | vi ∈ Fi , ν(vi ) ∈ 1i } follows because for any such
vectors v1, . . . , vd , the vector vi (for i ≥ 2) can be moved into W by subtracting
an element of F1 with valuation in 11, and collecting the differences in with v1.
That is, given arbitrary vi ∈ Fi with ν(vi ) ∈ 1i , let wi := π ′(vi ) ∈ W for i ≥ 2, and
let w1 := v1 + (v2 −π ′(v2))+ · · ·+ (vd −π ′(vd)). As above, using (3-3), for each
i ≥ 2 we have νK d (vi −π ′(vi )) ≥ min{νK d (vi ), νK d (π ′(vi ))} ≥ νK d (vi ) ∈ 1i ⊆ 11.
Hence νK d (w1) ≥ min{v1, v2 − π ′(v2), . . . , vd − π ′(vd)} ∈ 11. We also have
νK d (wi ) ≥ νK d (vi ) ∈ 1i for i ≥ 2 by (3-3). Using that f is a one-sided inverse of
π as above, we also have vi − π ′(vi ) ∈ F1 ⊆ Fi for i ≥ 2. It follows that wi ∈ Fi

for all i ∈ [d]. Putting all of this together, we get w1 + · · · + wd = v1 + · · · + vd ,
wi ∈ Fi , ν(wi ) ∈ 1i , and wi ∈ W for i ≥ 2. □

Remark 3.8. Note that as Fd = K d in Theorem 3.6, we have

1d = {γ ∈ 0∞ | ∀v ∈ K d , ν(v) = γ =⇒ v ∈ C}.

That is, 1d is the quasiradius of the largest quasiball around 0 contained in C .

Remark 3.9. Given a convex set 0 ∈ C ⊆ K d and any Fi and 1i , i ∈ [d] satisfying
the conclusion of Theorem 3.6 with respect to it, for every j ∈ [d] we have

C ∩ F j = {v1 + · · · + vj | vi ∈ Fi , ν(vi ) ∈ 1i for all j ∈ [i]}.
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Indeed, if x ∈ C ∩ F j , then x = v1 +· · ·+vd ∈ F j for some vi ∈ Fi with ν(vi ) ∈ 1i

for i ∈ [d]. Then, using that the Fi are increasing under inclusion and 1i are
increasing under inclusion and upwards closed, vj+1 + · · · + vd ∈ F j and taking
v′

j := vj + · · · + vd we have v′

j ∈ F j , ν(v′

j ) ≥ min{ν(vi ) : j ≤ i ≤ d} ∈ 1 j and
x = v1 + · · · + vj−1 + v′

j . Conversely, any element x = v1 + · · · + vj with vi ∈ Fi ,
ν(vi ) ∈ 1i for i ∈ [ j] can be written as x = v1 + · · · + vd with vi := 0 ∈ Fi and
ν(vi ) = ∞ ∈ 1i for j + 1 ≤ i ≤ d . So x ∈ C ∩ F j .

Remark 3.10. (1) It follows from the conclusion of Theorem 3.6 that the subspace
Fd−1 is a linear hyperplane in K d , and every element of C differs from an element
of Fd−1 (and hence of Fd−1 ∩ C in view of Remark 3.9) by a vector in K d with
valuation in 1d (with 1d as in Remark 3.8).

(2) Conversely, Fd−1 can be chosen to be any linear hyperplane H in K d such that
every element of C differs from an element of H by a vector in K d with valuation
in 1d . To see this, let H be such a hyperplane in K d . Then C ∩ H is a convex
subset of H ∼= K d−1 containing 0, hence an O-submodule of H by Proposition 2.10.
Applying Theorem 3.6 to C ∩ H in H (with the induced valuation on H ), there
are 11 ⊇ 12 ⊇ · · · ⊇ 1d−1 and a full flag {0} ⊊ F1 ⊊ · · · ⊊ Fd−1 = H , such that
C ∩ H = {v1 + · · · + vd−1 | vi ∈ Fi , ν(vi ) ∈ 1i }. Then

{v1 + · · · + vd | vi ∈ Fi , ν(vi ) ∈ 1i } = {w + vd | w ∈ C ∩ H, ν(vd) ∈ 1d} = C.

Example 3.11. The assumption of spherical completeness of K is necessary in
Theorem 3.6. For example, let K :=

⋃
n≥1 k((t1/n)) be the field of Puiseux series

over a field k, and let K̃ := k[[tQ
]] be the field of Hahn series over k with rational

exponents. The field K̃ is the spherical completion of K (both fields have value
group Q and valuation ν(x) = q where x has leading term tq ; see [Aschenbrenner
et al. 2017, Example 3.3.23] for instance). In particular

∑
n≥1 t1−1/n

∈ K̃ \K , and let

C̃ :=

{
α
(

1,
∑
n≥1

t1−1/n
)

+ v
∣∣ α ∈ K̃ , v ∈ K̃ 2, νK̃ (α) ≥ 0, νK̃ 2(v) ≥ 1

}
⊆ K̃ 2,

as well as C := C̃ ∩ K 2. Then C̃ is convex in K̃ 2, and hence C is also convex
as a subset of K 2. The basic idea behind why C is not of the form described in
Theorem 3.6 is that C is close enough to C̃ , and the subspace F1 appearing in the
conclusion of Theorem 3.6 for C̃ must be close to

〈(
1,

∑
n≥1 t1−1/n

)〉
; specifically,

it must be
〈(

1, x +
∑

n≥1 t1−1/n
)〉

for some x ∈ K 2 with ν(x) ≥ 1, but K 2 contains
no such subspaces.

Indeed, by Remark 3.7, given any Fi and 1i satisfying the conclusion of
Theorem 3.6 with respect to C , the valuation of every element of C must also
be the valuation of some element of F1 ∩ C . So, to show that C is not of the form
described in Theorem 3.6, it suffices to show that C contains elements of valuation
arbitrarily close to 0, but that for every 1-dimensional subspace F1 ⊂ K 2, there is
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some q > 0 in 0 such that every element of F1 ∩ C has valuation at least q (and
note that from the definition of C , every element in it has positive valuation).

Claim. For every n ∈ N≥1, there is some v ∈ C with νK 2(v) = 1/n.

Proof. To see this, note that

t1/n
(

1,

n−1∑
m=1

t1−1/m
)

= t1/n
(

1,
∑
m≥1

t1−1/m
)

− t1/n
(

0,
∑
m≥n

t1−1/m
)

∈ C

as νK (t1/n) = 1/n ≥ 0 and νK 2
(
t1/n

(
0,

∑
m≥n t1−1/m

))
= 1/n + (1 − 1/n) ≥ 1. □

Claim. For every 1-dimensional subspace F1 ⊂ K 2, there is some n ∈ Nn≥1 such
that every element of F1 ∩ C has valuation at least 1/n.

Proof. We prove this by breaking into two cases.

Case 1. F1 =⟨(0, 1)⟩. Assume x ∈ F1∩C , then x = (x1, x2)=α
(
1,

∑
n≥1 t1−1/n

)
+v

for some α ∈ K , v = (v1, v2) ∈ K̃ 2 with νK̃ (α) ≥ 0, νK̃ 2(v) ≥ 1, and x1 = 0, so
α = −v1. But 1 ≤ νK̃ 2(v) = min{νK̃ (v1), νK̃ (v2)}, hence νK̃ (α) ≥ 1 as well. Since
νK̃

(∑
n≥1 t1−1/n

)
= 0, it follows that

νK̃ 2(x) = min
{
νK̃ (0), νK̃

(
α
( ∑

n≥1
t1−1/n

))}
≥ 1.

Thus every element of F1 ∩ C has valuation at least 1.

Case 2. F1 = ⟨(1, x)⟩ for some x ∈ K . Given any x ∈ K , there must exist some
n ∈ N such that νK̃

(
x −

∑
m≥1 t1−1/m

)
≤ 1 − 1/n. Given any v ∈ F1 ∩ C , we have

v = α(1, x) = β

(
1,

∑
m≥1

t1−1/m
)

+ w

for some α ∈ K , some β ∈ K̃ with νK̃ (β) ≥ 0 and w = (w1, w2) ∈ K̃ 2 with
νK̃ 2(w) ≥ 1. Without loss of generality, α ̸= 0, so we have

x =
αx
α

=

(
w2 + β

∑
m≥1

t1−1/m
)

(w1 + β)−1
=

(
w2

β
+

∑
m≥1

t1−1/m
)(

1 +
w1

β

)−1

.

If νK̃ (β) < 1/n, then

νK̃

(
w1
β

)
> 1 −

1
n
, νK̃

(
w2
β

)
> 1 −

1
n
,

νK̃

((
1 +

w1
β

)−1)
= 0, νK̃

((
1 +

w1
β

)−1
− 1

)
> 1 −

1
n
,

so

ν

(
x−

∑
m≥1

t1−1/m
)

=ν

(
w2

β
(w1+β)−1

+

( ∑
m≥1

t1−1/m
)((

1+
w1
β

)−1
−1

))
>1−

1
n
,

a contradiction to the choice of n. Thus ν(β) ≥ 1/n, and hence ν(v) ≥ 1/n. □
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Thus no 1-dimensional subspace F1 of K 2 can fill its desired role in the presen-
tation for C .

Theorem 3.6 implies the following simple description of convex sets over spheri-
cally complete valued fields.

Corollary 3.12. If K is a spherically complete valued field and d ∈ N≥1, then the
nonempty convex subsets of K d are precisely the affine images of ν−1(11)× · · ·×

ν−1(1d) for some upwards closed 11, . . . ,1d ⊆ 0∞.

Proof. Let C ⊆ K d be an affine image of ν−1(11) × · · · × ν−1(1d) for some
upwards closed 11, . . . ,1d ⊆ 0∞. Note that ν−1(11)× · · ·× ν−1(1d) is convex,
and an image of a convex set under an affine map is convex (Example 2.5), hence
C is convex.

Conversely, let ∅ ̸= C ⊆ K d be convex. Since the affine images of O-submodules
of K d give us all nonempty convex sets by Proposition 2.10, without loss of
generality 0 ∈ C and C is an O-submodule of K d . Let {0} ⊊ F1 ⊊ · · · ⊊ Fd = K d

and νK d (C) = 11 ⊇ 12 ⊇ · · · ⊇ 1d be as given by Theorem 3.6 for C . Using
Lemma 3.1 we can choose v1, . . . , vd ∈ K d such that for every i ∈ [d] we have:

(1) v1, . . . , vi is a basis for Fi .

(2) ν(vi ) = 0.

(3) ν(vi + x) ≤ 0 for all x ∈ Fi−1.

Then C is the image of ν−1(11) × · · · × ν−1(1d) under the linear map f : K d
→

K d such that f (ei ) = vi , where ei is the i-th standard basis vector. Indeed, if
x ∈ f (ν−1(11)× · · ·× ν−1(1d)) then x =

∑d
i=1 civi for some ci with ν(ci ) ∈ 1i .

Using (2) this implies ν(civi ) = ν(ci ) ∈ 1i , and civi ∈ Fi , hence x ∈ C . Conversely,
let x be an arbitrary element of C , then x = w1 + · · · +wd for some wi ∈ Fi with
ν(wi ) ∈ 1i . Each wi is a linear combination of v1, . . . , vi , say wi =

∑i
j=1 ci, jvj .

Now we claim that for any i ∈ [d], α ∈ K and v ∈ Fi−1 we have ν(αvi + v) =

min{ν(αvi ), ν(v)}. Indeed, replacing v and α by α−1v ∈ Fi−1 and α−1α ∈ K ,
respectively, changes both sides of the claimed equality by the same amount, hence
we may assume that α = 0 or α = 1. The first case holds trivially, in the second
case we need to show that ν(vi + v) = min{ν(vi ), ν(v)}. If ν(vi ) ̸= ν(v) this holds
by the ultrametric inequality, so we assume ν(vi ) = ν(v) = 0 (using (2)). Then,
using (3), 0 ≥ ν(vi + v) ≥ min{ν(vi ), ν(v)} = 0, so ν(vi + v) = 0 as well.

Applying this claim by induction on i ∈ [d], we get

ν

( i∑
j=1

ci, jvj

)
= min

j
{ν(ci, jvj )},

which using (2) implies ν(wi ) = ν
(∑i

j=1 ci, jvj
)
= min j {ν(ci, j )} for each i ∈ [d].

As for each i ∈ [d], we have ν(wi ) ∈ 1i and 1i is upwards closed, it follows that
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ν(ci, j ) ∈ 1i for all i ∈ [d], j ∈ [i]. Regrouping the summands ci, jvi , it follows that
x = w1 +· · ·+wd is a linear combination of v1, . . . , vd where the coefficient of vi

has valuation in 1i , hence x belongs to f (ν−1(11) × · · · × ν−1(1d)). □

We can eliminate the assumption of spherical completeness of the field when
only considering convex hulls of finite sets. We will say that a convex set is finitely
generated if it is the convex hull of a finite set of points.

Lemma 3.13. A subset C ⊆ K d is a finitely generated O-module if and only if it is
a finitely generated convex set and contains 0.

Proof. If an O-module C ⊆ K d is generated as an O-module by some finite set X ,
then it is the convex hull of X ∪ {0}. If a set C is the convex hull of some finite set
X and contains 0, then it is an O-module by Proposition 2.10, clearly generated as
an O-module by X . □

We have the following analog of Theorem 3.6 in the finitely generated case over
an arbitrary valued field.

Corollary 3.14. Let K be an arbitrary valued field and C a finitely generated
convex set containing 0. Then there is a full flag {0} ⊊ F1 ⊊ · · · ⊊ Fd = K d and an
increasing sequence γ1 ≤ γ2 ≤ · · · ≤ γd ∈ 0∞ such that

C = {v1 + · · · + vd | vi ∈ Fi , ν(vi ) ≥ γi }.

Proof. Let C ∋ 0 be the convex hull of some finite set X ⊆ K d . By a repeated
application of Proposition 2.8, C is the convex hull of some d+1 elements v0, . . . , vd

from X (possibly with xi = x j for some i, j ). As 0 ∈ C , we have 0 =
∑d

i=0 αivi for
some αi ∈O with

∑d
i=0 αi = 1. Let j be such that ν(αj ) is minimal among {ν(αi ) :

0≤ i ≤d}. In particular αj ̸=0, hence vj =
(
1−

∑
i ̸= j αi/αj

)
0+

∑
i ̸= j (αi/αj )vi . By

the choice of j we have αi/αj ∈O for all i ̸= j , hence also 1−
∑

i ̸= j αi/αj ∈O, thus
vj ∈ conv({0}∪{vi : i ̸= j}), and so also C = conv({0}∪{vi : i ̸= j}). Reordering if
necessary, we can thus assume that C is the convex hull of some {0, v1, . . . , vd}⊆ C
with ν(v1) ≤ ν(vi ) for each i ∈ [d].

Let F1 := ⟨v1⟩ and γ1 := ν(v1). Let π1 : K d ↠ K d/F1 be the projection map,
f1 : K d/F1 ↪→ K d the valuation preserving embedding given by Lemma 3.1,
V1 := f1(K d/F1) and π ′

1 := f1 ◦ π1 : K d
→ K d .

For i ≥ 2, as we explained after (3-4) in the proof of Theorem 3.6, we have
vi −π ′

1(vi )∈ F1; and by (3-3) and our assumption we have ν(π ′

1(vi ))≥ν(vi )≥ν(v1).
So vi − π ′

1(vi ) ∈ Ov1 for all i ≥ 2, which implies

conv({0, v1, π
′

1(v2), . . . , π
′

1(vd)}) = conv({0, v1, . . . , vd}) = C.

Without loss of generality we suppose ν(π ′

1(v2)) ≤ ν(π ′

1(vi )) for i ≥ 3, and let
F2 := ⟨v1, π

′

1(v2)⟩ and γ2 := ν(π ′

1(v2)) ≥ ν(v1) = γ1 by assumption. By definition
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of the valuation on the quotient space, using the properties of f , we have

νK (π ′

1(vi )) = νK d/F1(π1(vi )) = νK d/F1(π1(π
′

1(vi ))) ≥ νK d (π ′

1(vi ) + αv1)

for all α ∈ K . As in the proof of Corollary 3.12, this implies ν(βπ ′

1(vi ) + αv1) =

min{βν(π ′

1(vi )), ν(αv1))} for all i ≥ 2 and α, β ∈ K . It follows that

{nv1 + mπ ′

1(v2) | n, m ∈ O} = {w1 + w2 | wi ∈ Fi , ν(wi ) ≥ γi }.

To see that the set on the right is contained in the set on the left, assume x =

w1 + w2 for some wi ∈ Fi , ν(wi ) ≥ γi . Then w1 = α1v1 and w2 = α2v1 +

βπ ′

1(v2) for some α1, α2, β ∈ K , and by the observation above γ2 ≤ ν(w2) =

min{ν(α2v1), ν(βπ ′

1(v2))}. So x = (α1 +α2)v1 +βπ ′

1(v2), ν((α1 +α2)v1) ≥ γ1 =

ν(v1), so (α1 + α2) ∈ O, and ν(β) ≥ γ2, as wanted.
Now we replace vi by π ′

1(vi ) for i ≥ 2, and let π2 : K d ↠ K d/F2 be the projection
map, f2 : K d/F2 ↪→ K d the valuation preserving embedding given by Lemma 3.1,
V2 := f2(K d/F2) and π ′

2 := f2 ◦ π2 : K d
→ K d . For i ≥ 3, vi − π ′

2(vi ) ∈ F2 and
vi − π ′

2(vi ) ∈ Ov1 + Ov2, so again replacing vi with π ′

2(vi ) for i ≥ 3 does not
change the convex hull. Again we may assume ν(π ′

2(v3)) ≤ ν(π ′

2(vi )) for i ≥ 4,
and let F3 := ⟨v1, v2, v3⟩ and γ3 := ν(π ′

2(v3)). Repeating this argument as above d
times, we have chosen vectors vi , increasing spaces Fi =⟨v1, . . . , vi ⟩ and increasing
γi = ν(vi ) ∈ 0 for i ∈ [d], so that

C = conv({0, v1, . . . , vd}) = {n1v1 + · · · + ndvd | ni ∈ O}

= {w1 + · · · +wd | wi ∈ Fi , ν(wi ) ≥ γi }. □

4. Combinatorial properties of convex sets

The following definition is from [Aschenbrenner et al. 2016, Section 2.4].

Definition 4.1. Given a set X and d ∈ N≥1, a family of subsets F ⊆ P(X) has
breadth d if any nonempty intersection of finitely many sets in F is the intersection
of at most d of them, and d is minimal with this property.

Lemma 4.2. Let K be a valued field and S a convex subset of K d .

(1) If 0 ∈ S and S is finitely generated, then it is generated as an O-module by a
finite linearly independent set of vectors.

(2) Let K̃ be a valued field extension of K and S̃ := convK̃ d (S) ⊆ K̃ d . Then
S̃ ∩ K d

= S.

Proof. (1) By Lemma 3.13, S is generated as an O-module by some finite set
v1, . . . , vn ∈ S. Assume these vectors are not linearly independent, then 0 =∑

i∈[n]
αivi for αi ∈ K not all 0. Let i ∈ [n] be such that ν(αi )≤ ν(αj ) for all j ∈ [n],

and αi ̸= 0. Then vi =
∑

j ̸=i (αj/(−αi ))vj and ν(αj/(−αi )) = ν(αj ) − ν(αi ) ≥ 0,
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hence αj/(−αi ) ∈O for all j ̸= i , and S is still generated as an O-module by the set
{vj : j ̸= i}. Repeating this finitely many times, we arrive at a linearly independent
set of generators.

(2) Since convexity is invariant under translates, we may assume 0 ∈ S. Since
every element in the convex hull of a set is in the convex hull of some finite
subset, we may also assume that S is finitely generated as an O-module, and
by (1) let v1, . . . , vn ∈ S be a linearly independent (in the vector space K d , so
n ≤ d) set of its generators. Let vn+1, . . . , vd ∈ K d be such that {vi : i ∈ [d]} is a
basis of K d , and say vi = (vi, j : j ∈ [d]) with vi, j ∈ K . Then the square matrix
A := (vi, j : i, j ∈ [d]) ∈ Md×d(K ) is invertible, so A−1

∈ Md×d(K ) ⊆ Md×d(K̃ ),
so A is also invertible in Md×d(K̃ ), hence {vi : i ∈ [d]} are linearly independent
vectors in K̃ d as well. But now if

∑
i∈[n]

αivi = u for some αi ∈ K̃ and u ∈ K d , then
necessarily αi ∈ K for all i (otherwise we would get a nontrivial linear combination
of v1, . . . , vd in K̃ d ). Thus, any element of the OK̃ -module generated by v1, . . . , vn

which is in K d already belongs to the OK -module generated by v1, . . . , vn , hence
S̃ ∩ K d

= S. □

We can now demonstrate an (optimal) finite bound on the breadth of the family
of convex sets over valued fields. In sharp contrast, over the reals there is no such
finite bound already for convex subsets of R2 (for any n, a convex n-gon in R2 is
the intersection of n half-planes, but not the intersection of any fewer of them).

Theorem 4.3. Let K be a valued field and d ≥ 1. Then the family ConvK d has
breadth d. That is, any nonempty intersection of finitely many convex subsets of K d

is the intersection of at most d of them.

Proof. The family ConvK d cannot have breadth less than d because the d coordinate-
aligned hyperplanes are convex, have common intersection {0}, but any d − 1 of
them intersect in a line.

We now show that ConvK d has breadth at most d, by induction on d. The case
d = 1 is clear by Example 2.5(1) since for any two quasiballs, they are either
disjoint or one is contained in the other. For d > 1, assume C1, . . . , Cn ∈ ConvK d

with n ≥ d are convex and satisfy
⋂

i∈[n]
Ci ̸= ∅. Translating, we may assume

0 ∈
⋂

i∈[n]
Ci .

We may also assume that K is spherically complete. Indeed, let K̃ be a spher-
ical completion of K as in Fact 3.3, and let C̃i := convK̃ d (Ci ) ∈ ConvK̃ d . By
Lemma 4.2(2), C̃i ∩ K d

= Ci for each i ∈ [n]. Hence
⋂

i∈[n]
C̃i ̸= ∅, and if⋂

i∈[n]
C̃i =

⋂
i∈S C̃i for some S ⊆ [n] with |S| ≤ d , then also

⋂
i∈[n]

Ci =
⋂

i∈S Ci .
Then let the vector subspaces {0}⊊ F1 ⊊ · · ·⊊ Fd = K d and the upwards closed

subsets 11 ⊇ 12 ⊇ · · · ⊇ 1d of 0∞ be as given by Theorem 3.6 for the convex set
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C := C1 ∩ · · · ∩ Cn . By Remark 3.8 we have

1d = {γ ∈ 0∞ | ∀v ∈ K d , ν(v) = γ =⇒ v ∈ C1 ∩ · · · ∩ Cn}.

It follows that there is some id ∈ [n] such that in fact

(4-1) 1d = {γ ∈ 0∞ | ∀v ∈ K d , ν(v) = γ =⇒ v ∈ Cid }.

(Since these are finitely many upwards closed sets in 0, their intersection is already
given by one of them.)

Let {0} ⊊ F ′

1 ⊊ · · · ⊊ F ′

d = K d and 1′

1 ⊇ 1′

2 ⊇ · · · ⊇ 1′

d be as given by
Theorem 3.6 for Cid . By Remark 3.10(1), F ′

d−1 is a linear hyperplane so that every
element of Cid differs from an element of F ′

d−1 ∩ Cid by a vector with valuation
in 1′

d . As 1d = 1′

d by (4-1) and C ⊆ Cid , by Remark 3.10(1) we may assume that
Fd−1 = F ′

d−1, hence every element in Cid differs from an element of Fd−1 ∩ Cid by
a vector with valuation in 1d .

Consider C ∩ Fd−1 = C1 ∩ · · · ∩ Cn ∩ Fd−1 = (C1 ∩ Fd−1) ∩ · · · ∩ (Cn ∩ Fd−1).
Note that each Ci ∩ Fd−1 is a convex subset of Fd−1 ∼= K d−1, so by induction
hypothesis there exist i1, . . . , id−1 ∈ [n] such that

(4-2) Ci1 ∩ · · · ∩ Cid−1 ∩ Fd−1 = C1 ∩ · · · ∩ Cn ∩ Fd−1 = C ∩ Fd−1.

Let x ∈ Ci1 ∩· · ·∩Cid be arbitrary. As x ∈ Cid , by the choice of Fd−1, x =w+vd

for some w ∈ Fd−1 and vd ∈ K d with ν(vd) ∈ 1d . By the choice of 1d we have
vd ∈Ci1 ∩· · ·∩Cid . And as each Ci is a module, it follows that also w∈Ci1 ∩· · ·∩Cid .
Combining this with (4-2) and using Remark 3.9 (for j = d − 1) we thus have

Ci1 ∩ · · · ∩ Cid = {w + vd | w ∈ Ci1 ∩ · · · ∩ Cid ∩ Fd−1, ν(vd) ∈ 1d}

= {w + vd | w ∈ C ∩ Fd−1, ν(vd) ∈ 1d} = {v1 + · · · + vd | vi ∈ Fi , ν(vi ) ∈ 1i }

= C1 ∩ · · · ∩ Cn. □

Definition 4.4. (1) A family of sets F ⊆P(X) has Helly number k ∈ N≥1 if given
any n ∈ N and any sets S1, . . . , Sn ∈ F , if every k-subset of {S1, . . . , Sn} has
nonempty intersection, then

⋂
i∈[n]

Si ̸= ∅.

(2) The Helly number of F refers to the minimal k with this property (or ∞ if it
does not exist).

(3) We say that F has the Helly property if it has a finite Helly number.

Theorem 4.5. Let K be a valued field and d ≥ 1. Then the Helly number of ConvK d

is d + 1.

Proof. The Helly number is bounded by the Radon number minus 1 in an arbitrary
convexity space (see Section 5C), but we include a proof for completeness. Let n
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be arbitrary, and let S1, . . . , Sn ⊆ K d be convex sets so that any d +1 of them have
a nonempty intersection. We will show by induction on n that S1 ∩ · · · ∩ Sn ̸= ∅.

Base case: n = d +2. By assumption for each i ∈ [d +2] there exists some xi ∈ K d

so that xi ∈
⋂

j∈[d+2]\{i} S j . By Proposition 2.8 there exists some i∗
∈ [d + 2] so

that xi∗ ∈ conv({xi | i ̸= i∗
}). By the choice of the xi we have xi∗ ∈ Si for all i ̸= i∗.

We also have xi ∈ Si∗ for all i ̸= i∗, Si∗ is convex and xi∗ ∈ conv({xi | i ̸= i∗
}),

hence xi∗ ∈ Si∗ . Thus xi∗ ∈
⋂

i∈[d+2]
Si , as wanted.

Inductive step: n > d + 2. Let S̃n−1 := Sn−1 ∩ Sn; in particular S̃n−1 is convex. By
induction hypothesis, any n−1 sets from {S1, . . . , Sn} have a nonempty intersection.
Hence any n − 2 sets from {S1, . . . , Sn−2, S̃n−1} have a nonempty intersection. As
n − 2 ≥ d + 1 by assumption, applying the induction hypothesis again we get

S1 ∩ · · · ∩ Sn = S1 ∩ · · · ∩ Sn−2 ∩ S̃n−1 ̸= ∅.

This completes the induction, and shows that ConvK d has Helly number d + 1.
It remains to show that ConvK d does not have Helly number d. Let ei ∈ K d be

the i-th standard basis vector. The set E := {0, e1, . . . , ed} is affinely independent,
hence the intersection of the affine spans of its d + 1 maximal proper subsets is
empty. The convex hull of a subset of K d is contained in its affine hull, hence the
intersection of the d + 1 convex hulls of its maximal proper subsets is also empty.
But for any d among the (d + 1) maximal proper subsets of E , some element of E
belongs to their intersection, and hence in particular the intersection of their convex
hulls is nonempty. □

We recall some terminology around the Vapnik–Chervonenkis dimension (and
refer to [Aschenbrenner et al. 2016, Sections 1 and 2] for further details).

Definition 4.6. Let F ⊆ P(X) be a family of subsets of X .

(1) For a subset Y ⊆ X , we let F ∩ Y := {S ∩ Y : S ∈ Y } ⊆ P(Y ).

(2) We say that F shatters a subset Y ⊆ X if F ∩ Y = P(Y ).

(3) The VC dimension of F , or VC(F), is the largest k ∈ N (if one exists) such
that F shatters some subset of X size k. If F shatters arbitrarily large finite
subsets of X , then it is said to have infinite VC dimension.

(4) The dual family F∗
⊆ P(F) is given by F∗

= {Sx | x ∈ X}, where Sx = {A ∈

F | x ∈ A}.

(5) The dual VC dimension of F , or VC∗(F), is the VC dimension of F∗. Equiva-
lently, it is the largest k ∈ N (or ∞ if no such k exists) such that there are sets
S1, . . . , Sk ∈ F that generate a Boolean algebra with 2k atoms, i.e., for any
distinct I, J ⊆ [k],

⋂
i∈I Si ∩

⋂
i∈[k]\I (X \ Si ) ̸=

⋂
i∈J Si ∩

⋂
i∈[k]\J (X \ Si ).
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(6) The shatter function πF : N → N of F is

πF (n) := max{|F ∩ Y | : Y ⊆ X, |Y | = n}.

(7) By the Sauer–Shelah lemma (see for instance [Aschenbrenner et al. 2016,
Lemma 2.1]), if VC(F) ≤ d, then πF (n) ≤ (e/d)dnd for all n ≥ d (and
πF (n) = 2n for all n if VC(F) = ∞).

(8) The VC density of F , or vc(F), is the infimum of all r ∈ R>0 such that
πF (n) = O(nr ), and ∞ if there is no such r . (In particular vc(F) ≤ VC(F).)

(9) Finally, we define the dual shatter function π∗
F := πF∗ and the dual VC-density

vc∗(F) := vc(F∗) of the family F .

Remark 4.7. Note that if F ⊆ P(X) and Y ⊆ X , then VC(F ∩ Y ) ≤ VC(F) and
VC∗(F ∩ Y ) ≤ VC∗(F).

The following results are in stark contrast with the situation for the family of
convex sets over the reals, where already the family of convex subsets of R2 has
infinite VC dimension (e.g., any set of points on a circle is shattered by the family
of convex hulls of its subsets).

Theorem 4.8. Let K be a valued field and d ≥ 1. Then the family ConvK d has VC
dimension d + 1.

Proof. We have VC(ConvK d ) ≥ d +1 since the set E := {0, e1, . . . , ed} ⊆ K d , with
ei the i-th vector of the standard basis, is shattered by ConvK d . Indeed, the convex
hull of any subset is contained in its affine span, and for any S ⊆ E , aff(S) does
not contain any of the points in E \ S.

On the other hand, VC(ConvK d ) ≤ d + 1 as no subset Y of K d with |Y | ≥ d + 2
can be shattered by ConvK d . Indeed, by Proposition 2.8, at least one of the points
of Y belongs to every convex set containing all the other points of Y . □

The dual VC dimension of a family of sets is bounded by its breadth.

Fact 4.9 [Aschenbrenner et al. 2016, Lemma 2.9]. Let F ⊆ P(X) be a family of
subsets of X of breadth at most d. Then also VC∗(F) ≤ d.

Using this fact, we get the following:

Theorem 4.10. For any valued field K and d ≥ 1, the family ConvK d has dual VC
dimension d.

Proof. The dual VC dimension of ConvK d is at least d because the d coordinate-
aligned (convex) hyperplanes in K d generate a Boolean algebra with 2d atoms.

Conversely, the breadth of ConvK d is d by Theorem 4.3, hence by Fact 4.9 its
dual VC dimension is also at most d . □
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Definition 4.11. (1) A family of sets F ⊆ P(X) has fractional Helly number
k ∈ N≥1 if for every α ∈ R>0 there exists β ∈ R>0, so that for any n ∈ N and
any sets S1, . . . , Sn ∈ F (possibly with repetitions), if there are at least α

(n
k

)
k-element subsets of the multiset {S1, . . . , Sn} with a nonempty intersection,
then there are at least βn sets from {S1, . . . , Sn} with a nonempty intersection.

(2) The fractional Helly number of F refers to the minimal k with this property.
We say that F has the fractional Helly property if it has a fractional Helly
number.

Note that any finite family of sets trivially has fractional Helly number 1 by
choosing β sufficiently small with respect to the size of F . We will use the following
theorem of Matoušek.

Fact 4.12 [Matoušek 2004, Theorem 2]. Let F ⊆ P(X) be a set system whose dual
shatter function satisfies π∗

F (n) = o(nk), i.e., limn→∞ π∗
F (n)/nk

= 0, where k is a
fixed integer. Then F has fractional Helly number k.

Remark 4.13. Moreover, if VC∗(F) = d < ∞, then the fractional Helly number is
at most d + 1, and the β witnessing this can be chosen depending only on d and α

(and not on the family F).
Indeed, by Definition 4.6, if VC∗(F) ≤ d , then π∗

F (n) ≤ (e/d)dnd for all n ≥ d ,
hence π∗

F (n) ≤ cnd for all n ∈ N, where c = c(d) := (e/d)d
+ 2d . We can choose

m =m(d, α), so that π∗
F (m)< 1

4α
( m

d+1

)
. Then it follows from the proof of [Matoušek

2004, Theorem 2] that β = 1/(2m) works for all n ≥ m/β = 2m2, and trivially
β = 1/(2m2) works for all n ≤ 2m2, hence β := β(α, d) := 1/(2m2) works for all
n ∈ N.

Using this, we get the following:

Theorem 4.14. If K is a valued field, d ≥ 1, and X ⊆ K d is an arbitrary subset,
then the fractional Helly number of the family

ConvK d ∩X = {C ∩ X : C ∈ ConvK d } ⊆ P(X)

is at most d + 1. Moreover, β in Definition 4.11 can be chosen depending only on
d and α (and not on the field K or set X ). And if K is infinite, then the fractional
Helly number of the family ConvK d is exactly d + 1.

Proof. By Fact 4.12 we have that the fractional Helly number of a set system
is at most the smallest integer larger than its dual VC density. Dual VC density
is, in turn, at most its dual VC dimension. Also for any set X ⊆ K d we have
VC∗(ConvK d ∩X) ≤ VC∗(ConvK d ) by Remark 4.7. So ConvK d ∩X has dual VC
density at most d by Theorem 4.10, hence its fractional Helly number is at most
d + 1 by Fact 4.12. And an appropriate β can be chosen depending only on d and
α by Remark 4.13.
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To show that the fractional Helly number of ConvK d is at least d + 1 when K
is infinite, we can use the standard example with affine hyperplanes in general
position. We include the details for completeness. First note that as the field K is
infinite, for any K -vector space V of dimension k and v ∈ V \ {0} there exists an
infinite set S ⊆ V so that v ∈ S and any k vectors from S are linearly independent.
This is clear for k = 1 by taking any infinite set of nonzero vectors, so assume that
k > 1. By induction on i ∈ N≥k we can find sets Si such that v ∈ Si , |Si | ≥ i and
every k vectors from Si are linearly independent, for all i . Let Sk be any basis of V
containing v. Assume i > k and Si satisfies the assumption. Since K is infinite, V
is not a union of finitely many proper subspaces; in particular there exists some

w ∈ V \

⋃
s⊆Si ,|s|=k−1

⟨s⟩.

Let Si+1 := Si ∪ {w}. Since any s ⊆ Si with |s| = k − 1 is linearly independent by
the inductive assumption, it follows that s ∪ {w} is also linearly independent, hence
Si+1 satisfies the assumption. Finally, S :=

⋃
i∈N≥k

Si is as wanted.
In particular, we can find an infinite set of vectors S in K d

× K so that any d +1
of them are linearly independent and the standard basis vector ed+1 ∈ S. Then

X := {⟨v, −⟩ : v ∈ S} ⊆ (K d
× K )∗

is an infinite set of dual vectors such that any d +1 of them are linearly independent,
and it contains the projection map onto the last coordinate πd+1 := ⟨ed+1, −⟩ :

(x1, . . . , xd+1) 7→ xd+1. Consider the family

H := {ker( f ) | f ∈ X \ {πd+1}} ⊆ P(K d
× K )

of kernels of these dual vectors (excluding the projection map onto the last coordi-
nate), and let

H′
:= {{v ∈ K d

| (v, 1) ∈ H} | H ∈ H} ⊆ P(K d).

Then H′ is an infinite family of affine hyperplanes in K d , and we wish to show
that any d elements of H′ intersect in a point, and any d + 1 elements of H′ have
empty intersection. For any pairwise distinct f1, . . . , fd ∈ X \ {πd+1}, by linear
independence,

dim(ker( f1) ∩ · · · ∩ ker( fd)) = d + 1 − dim(⟨ f1, . . . , fd⟩) = 1.

And by their linear independence with πd+1,

dim(ker( f1) ∩ · · · ∩ ker( fd) ∩ ker(πd+1)) = 0.

That is, ker( f1) ∩ · · · ∩ ker( fd) is a line in K d
× K that intersects ker(πd+1) =

K d
×{0} only at the origin, and thus must also intersect K d

×{1} in a single point;
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this shows that every d elements of H′ intersect in a point. And any pairwise
distinct f1, . . . , fd+1 ∈ X \ {πd+1} span (K d

× K )∗ by linear independence, so
ker( f1) ∩ · · · ∩ ker( fd+1) = {0}, and thus has empty intersection with K d

× {1}.
This shows that every d + 1 elements of H′ have empty intersection.

Using α = 1, for any β > 0, take an arbitrary n ≥ (d +1)/β. Let H1, . . . , Hn ∈H′

be any distinct hyperplanes from this collection. All d-subsets, α
(n

d

)
of them, of

{H1, . . . , Hn} have an intersection point, but there are no βn ≥ d + 1 of them with
a common intersection point. Therefore ConvK d does not have fractional Helly
number d . □

Note that Theorems 4.5 and 4.14 replicate results for real convex sets, while
Theorems 4.3, 4.8, and 4.10 do not: as we have already remarked, ConvR2 has
infinite breadth, VC dimension, and dual VC dimension. The following result is
somewhere in between. The classical Tverberg theorem says that for any X ⊆ Rd

with |X |≥ (d+1)(r −1)+1, X can be partitioned into r disjoint subsets X1, . . . , Xr

whose convex hulls intersect: conv(X1)∩· · ·∩conv(Xr ) ̸=∅. Over valued fields, we
obtain a much stronger version (any element of the nonempty set Xr in the statement
of Theorem 4.15 belongs to the convex hulls of each of the sets X i , i ∈ [r ] — which
gives the usual conclusion of Tverberg’s theorem over the reals):

Theorem 4.15. Let K be a valued field and d, r ∈ N≥1. Then any set X ⊆ K d with

|X | ≥ (d + 1)(r − 1) + 1

points in K d can be partitioned into subsets X1, . . . , Xr such that |X i | = d + 1 for
i < r , |Xr | = |X | − (d + 1)(r − 1), and conv(X i ) ⊇ conv(X j ) for all i ≤ j ∈ [r ].

Proof. Since any finitely generated convex set is the convex hull of some d + 1
points from it by Corollary 2.9, we can find X1 ⊆ X with |X1| = d + 1 and
conv(X1)= conv(X), X2 ⊆ X \X1 with |X2|= d+1 and conv(X2)= conv(X \X1),
and so on: once X1, . . . , X i−1 have been chosen, pick X i ⊆ X \

(⋃i−1
j=1 X j

)
such

that |X i | = d + 1, conv(X i ) = conv
(
X \

⋃i−1
j=1 X j

)
, and then let Xr consist of

everything left over at the end. □

From this strong Tverberg theorem and the fractional Helly property, we finally
get an analog of the result due to Boros and Füredi [1984] and Bárány [1982] on
the common points in the intersections of many “simplices” over valued fields.
Note that the conclusion is actually stronger than over the reals: the common point
comes from the set X itself. This answers a question asked by Kobi Peterzil and
Itay Kaplan. Our argument is an adaptation of the second proof in [Matoušek 2002,
Theorem 9.1.1].

Theorem 4.16. For each d ≥ 1 there is a constant c = c(d) > 0 such that for any
valued field K and any finite X ⊆ K d (say n := |X |), there is some a ∈ X contained
in the convex hulls of at least c

( n
d+1

)
of the

( n
d+1

)
subsets of X of size d + 1.
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Proof. Let X ⊆ K d with |X | = n be given, and let

F := ConvK d ∩X = {C ∩ X : C ∈ ConvK d }

be the family of all subsets of X cut out by the convex subsets of K d . Let (Si )i∈[N ]

with Si ∈ ConvK d be the sequence listing all convex hulls of subsets of X of size
d + 1 in an arbitrary order (possibly with repetitions). Then N =

( n
d+1

)
, and for a

(d + 1)-element subset Y ⊆ X we let g(Y ) ∈ [N ] be the index at which conv(Y )

appears in this sequence. For each i ∈ [N ] let S′

i := Si ∩ X ∈ F . It is thus sufficient
to show that there exists some α > 0, depending only on d , such that at least α

( N
d+1

)
of the (d +1)-element subsets I ⊆[N ] satisfy

⋂
i∈I S′

i ̸=∅— as then Theorem 4.14
applied to F ⊆ P(X) shows the existence of c > 0 depending only on α and d , and
hence only on d, so that for some I ⊆ [N ] with |I | ≥ cN = c

( n
d+1

)
there exists

some a ∈
⋂

i∈I S′

i ⊆
⋂

i∈I Si (in particular a ∈ X ).
Now we find an appropriate α. For any (d + 1)2-element subset Y ⊆ X , by

Theorem 4.15 (with r := d +1), we can fix a partition of Y into d +1 disjoint parts
Y1, . . . , Yd+1, each of which having d+1 elements, and so that conv(Yi )⊇ conv(Y j )

for all i ≤ j ∈ [d + 1]. In particular any element of the nonempty set Y[d+1] ⊆ X
belongs to

⋂
i∈[d+1]

(conv(Yi ) ∩ X) =
⋂

i∈[d+1]
(S′

g(Yi )
). As g is a bijection, Y 7→

{g(Yi ) : i ∈ [d + 1]} gives a function f from (d + 1)2-element subsets of X to
(d + 1)-element subsets I ⊆ [N ], so that

⋂
i∈I S′

i ̸= ∅. Moreover, f is an injection.
Indeed, given a set { ji : i ∈ [d + 1]} in the image of f , as g is a bijection, there is a
unique set {Y1, . . . , Yd+1} with Yi ⊆ X disjoint of size d + 1, so that g(Yi ) = ji for
all i ∈ [d + 1], and there can be only one set Y ⊆ X of size (d + 1)2 for which it is
a partition. If follows that the number of sets I ⊆ [N ] with

⋂
i∈I S′

i ̸= ∅ is at least( n
(d+1)2

)
= �(n(d+1)2

) ≥ α
( N

d+1

)
for some sufficiently small α depending only on d . □

5. Final remarks and questions

5A. Some further results and future directions. The results of Section 4 imply
the following analog of the celebrated (p, q)-theorem of Alon and Kleitman [1992]
for convex sets over valued fields.

Corollary 5.1. For any d, p, q ∈ N≥1 with p ≥ q ≥ d + 1 there exists T =

T (p, q, d) ∈ N such that if K is a valued field and F is a family of convex subsets
of K d such that among every p sets of F , some q have a nonempty intersection,
then there exists a T -element set Y ⊆ K d intersecting all sets of F .

Corollary 5.1 follows formally by applying [Alon et al. 2002, Theorem 8] since
the family ConvK d has fractional Helly property (Theorem 4.14) and is closed
under intersections. Alternatively, it follows with a slightly better bound on T by
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combining the fractional Helly property with the existence of ε-nets for families of
bounded VC dimension (Theorem 4.8), as outlined at the end of [Matoušek 2004,
Section 1]. The problem of determining the optimal bound on T (p, q, d) is widely
open over the reals (see [Bárány and Kalai 2022, Section 2.6]), and we expect that
it might be easier in the valued fields setting.

Kalai [1984] and Eckhoff [1985] proved that in the fractional Helly property
for convex sets over the reals, one can take β(d, α) = 1 − (1 −α)1/(d+1) (and this
bound is sharp).

Problem 5.2. What is the optimal dependence of β on d, α in Theorem 4.14?

Over R, Sierksma’s Dutch cheese conjecture predicts a lower bound for the num-
ber of Tverberg partitions (see for instance [De Loera et al. 2019, Conjecture 3.12]).
We expect the same bound to hold over valued fields:

Conjecture 5.3. For any valued field K and X ⊂ K d with |X | = (r −1)(d +1)+1,
there are at least ((r − 1)!)d partitions of X into parts whose convex hulls intersect.

Remark 5.4. In Theorem 4.15, we showed the existence of Tverberg partitions
satisfying the stronger property that the convex hulls of the parts are linearly
ordered by inclusion. It is not true that for X ⊆ K d with |X | = (d + 1)(r − 1) + 1,
there are at least ((r − 1)!)d different ways of partitioning X into X1, . . . , Xr

such that conv(X1) ⊇ · · · ⊇ conv(Xr ). Thus any attempt to prove Conjecture 5.3
would have to involve other Tverberg partitions that do not have this property.
For an example in K 2 where this bound fails, let x ∈ K with ν(X) ̸= 0, and let
X := {(xn, x−n) | n ∈ [3(r − 1)+ 1]}. For any partition of X into X1, . . . , Xr such
that conv(X1) ⊇ · · · ⊇ conv(Xr ), for each i < r , X i must consist of the points
corresponding to the lowest and highest values of n among all points not already in
X1 ∪ · · · ∪ X i−1, together with one of the other 3(r − i) − 1 remaining points, and
Xr must consist of whatever point is left over. So the number of partitions of X of
this form is

∏r−1
i=1 (3(r − i) − 1) <

∏r−1
i=1 3(r − i) = 3r−1(r − 1)! < ((r − 1)!)2 for

large enough r .

We expect that the colorful Tverberg theorem also holds over valued fields,
however the proofs for convex sets over R rely on topological arguments not readily
available in the valued field context:

Conjecture 5.5. For any integers r, d ≥ 2 there exists t ≥ r such that for any valued
field K and X ⊆ K d with |X | = t (d + 1), partitioned into d + 1 color classes
C1, . . . , Cd+1 each of size t , there exist pairwise disjoint X1, . . . , Xr ⊆ X with
|X i ∩ C j | = 1 for i ∈ [r ] and j ∈ [d + 1], and

⋂
i∈[r ]

conv(X i ) ̸= ∅.

It would formally imply (see [Matoušek 2002, Section 9.2]) the “second selection
lemma” over valued fields generalizing Theorem 4.16:
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Conjecture 5.6. For each d ∈ N≥1 there exist c, s > 0 such that for any valued
field K , α ∈ (0, 1] and n ∈ N, for every X ⊆ K d with |X | = n, and every family F
of (d + 1)-element subsets of X with |F | ≥ α

( n
d+1

)
, there is a point contained in

the convex hulls of at least cαs
( n

d+1

)
of the elements of F .

Corollary 3.12 has the following immediate model-theoretic application.

Remark 5.7. If K is a spherically complete valued field, then every convex subset
of K d is definable in the expansion of the field K by a predicate for each Dedekind
cut of the value group (so in particular definable in Shelah expansion of K by
all externally definable sets [Shelah 2009; Chernikov and Simon 2013]). And
conversely, every Dedekind cut of the value group is definable in the expansion of
K by a predicate for each O-submodule of K . In particular, if K has value group Z,
then all convex subsets of K d form a definable family.

Example 5.8. In contrast, naming a single (bounded) convex subset of R2 in the
field of reals allows to define the set of integers. Indeed, we can define a continuous
and piecewise linear function f : [0, 1] → [0, 1] such that

C := {(x, y) : x ∈ [0, 1], 0 ≤ y ≤ f (x)}

is convex but the set of points where f is not differentiable is exactly {1/n :n ∈N≥2}.
Now in the field of reals with a predicate for C we can define f and the set of
points where it is not differentiable, hence N is also definable.

5B. Other notions of convexity over nonarchimedean fields. We briefly overview
several other kinds of convexities over nonarchimedean fields considered in the
literature. The extension of Hilbert (projective) geometry to convex sets in a
generalized sense is a topic of high current interest, see for instance [Guilloux
2016]. In a different spirit, in tropical geometry, convex sets over real closed
nonarchimedean fields have been considered (unlike what is done here, this leads to
a combinatorial convexity similar to the classical one, since by Tarski’s completeness
theorem, polyhedral properties of a combinatorial nature are the same over all
real closed fields). Moreover, tropical polyhedra are obtained as images of such
polyhedra by the nonarchimedean valuation, see for instance [Develin and Yu
2007]. Polytopes and simplexes in p-adic fields are introduced in [Darnière 2017;
2019], and demonstrated to play in p-adically closed fields the role played by real
simplexes in the classical results of triangulation of semialgebraic sets over real
closed fields. Although we are not aware of any direct link of these results with the
present work, we hope for some connections to be found in the future.

5C. Abstract convexity spaces. Our results here can be naturally placed in the
context of abstract convexity spaces; we refer to [van de Vel 1993] for an introduction
to the subject. A convexity space is a pair (X, C), where X is a set and C ⊆ 2X is
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a family of subsets of X closed under intersection with ∅, X ∈ C. The sets in C
are called convex. Given a subset Y ⊆ X , the convex hull of Y , denoted conv(Y ),
is the smallest set in C containing Y (equivalently, the intersection of all sets in
C containing Y ). A convex set C ∈ C is called a half-space if its complement
is also convex. The convexity space (X, C) is separable if for every C ∈ C and
x ∈ X \C , there exists a half-space H ∈ C such that C ⊆ H and x /∈ H (equivalently,
if every convex set is the intersection of all half-spaces containing it). Separability
is an abstraction of the hyperplane separation (and more generally Hahn–Banach)
theorem. In particular, (Rd , ConvRd ) is a separable convexity space (see [Moran
and Yehudayoff 2019, Section 1.1] or [van de Vel 1993] for many other examples).
The Radon number1 of a convexity space (X, C) is the smallest k ∈ N≥1 (if it exists)
such that every Y ⊆ X with |Y | > k can be partitioned into two parts Y1, Y2 such
that conv(Y1)∩conv(Y2) ̸=∅. The classical Radon’s theorem states that the Radon
number of (Rd , ConvRd ) equals d +1. Given ∅ ̸= Y ⊆ X , a partition Y1, . . . , Yr of
Y is Tverberg if

⋂r
i=1 conv(Yi ) ̸= ∅. The r-th Tverberg number of (X, C) is the

smallest k such that every Y ⊆ X with |Y | > k has a Tverberg partition in r +1 parts.
Note that the first Tverberg number is the Radon number, and the classical theorem
of Tverberg says that the r -th Tverberg number of (Rd , ConvRd ) is r(d + 1).

Now let K be a valued field and d ∈ N≥1. Then (K d , ConvK d ) is a convexity
space, but we stress that it is not separable; in fact, ∅ and K d are the only half-
spaces. This is because for any nonempty proper convex set C , if we let x ∈ C ,
y ∈ K d

\C , and α ∈ K \O, then z := x +α(y−x) /∈ C , since y = α−1z+(1−α−1)x
is a convex combination. But then x = (1 −α)−1(z −αy) is a convex combination
of elements of K d

\ C , so K d
\ C is not convex.

Proposition 2.8 implies that the Radon number of (K d , ConvK d ) is d +1. By the
Levi inequality in an arbitrary convexity space [van de Vel 1993, Chapter II(1.9)],
it follows that the Helly number of ConvK d (Definition 4.4) is at most d + 1 (we
included a proof in Theorem 4.5 for completeness). It was also recently shown in
[Holmsen and Lee 2021] that in any convexity space (X, C) with Radon number k,
C has a fractional Helly number (Definition 4.11) bounded by some function of k. In
the case of (K d , ConvK d ) this general bound is much weaker than the optimal bound
d + 1 given in Theorem 4.14. Corollary 2.9 implies that the Carathéodory number
of (K d , ConvK d ) is d +1 (see [van de Vel 1993, Chapter II(1.5)] for the definition).
Finally, Theorem 4.15 implies that the r-th Tverberg number of (K d , ConvK d ) is
r(d+1); finiteness of the r -th Tverberg numbers for all r follows from the finiteness
of the Radon number in an arbitrary convexity space, with a much weaker bound
[van de Vel 1993, Chapter II(5.2)].

1An alternative definition uses ≥ instead of >, leading to a value higher by 1. The definition here
follows [van de Vel 1993, Chapter II].
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GENERALISATIONS OF HECKE ALGEBRAS
FROM LOOP BRAID GROUPS

CELESTE DAMIANI, PAUL MARTIN AND ERIC C. ROWELL

We introduce a generalisation LHn of the ordinary Hecke algebras informed
by the loop braid group LBn and the extension of the Burau representation
thereto. The ordinary Hecke algebra has many remarkable arithmetic
and representation theoretic properties, and many applications. We show
that LHn has analogues of several of these properties. In particular we
consider a class of local (tensor space/functor) representations of the braid
group derived from a meld of the (nonfunctor) Burau representation (1935)
and the (functor) Deguchi et al., Kauffman and Saleur, and Martin and
Rittenberg representations here called Burau–Rittenberg representations. In
its most supersymmetric case somewhat mystical cancellations of anomalies
occur so that the Burau–Rittenberg representation extends to a loop Burau–
Rittenberg representation. And this factors through LHn. Let SPn denote
the corresponding (not necessarily proper) quotient algebra, k the ground
ring, and t ∈ k the loop-Hecke parameter. We prove the following:
(1) LHn is finite dimensional over a field.
(2) The natural inclusion LBn ↪→LBn+1 passes to an inclusion SPn ↪→SPn+1.
(3) Over k = C, SPn / rad is generically the sum of simple matrix algebras of

dimension (and Bratteli diagram) given by Pascal’s triangle. (Specifically
SPn / rad ∼= CSn/e1

(2,2) where Sn is the symmetric group and e1
(2,2) is a

λ = (2, 2) primitive idempotent.)
(4) We determine the other fundamental invariants of SPn representation

theory: the Cartan decomposition matrix; and the quiver, which is of
type-A.

(5) The structure of SPn is independent of the parameter t , except for t = 1.
(6) For t2 ̸= 1 then LHn ∼= SPn at least up to rank n = 7 (for t = −1 they are

not isomorphic for n > 2; for t = 1 they are not isomorphic for n > 1).
Finally we discuss a number of other intriguing points arising from this
construction in topology, representation theory and combinatorics.
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1. Introduction

Until the 1980s, methods to construct linear representations of the braid group Bn

were relatively scarce. We have those factoring through the symmetric group and
the Burau representation [1935], and those factoring through the Hecke algebra
[Hoefsmit 1974] and the Temperley–Lieb algebra [Temperley and Lieb 1971];
and, as for every group, the closure in the monoidal category Rep(Bn). These
proceed essentially through “combinatorial” devices such as Artin’s presentation.
Then there are some more intrinsically “topological” constructions such as Artin’s
representation [1947] (and Burau can be recast in this light [Long and Paton 1993]).

In the 80s there were notable steps forward. Algebraic formulations of the
Yang–Baxter equation began to yield representations; see e.g., [Baxter 1982]. Jones’
discovery [1986] of link invariants from finite dimensional quotients of the group
algebra K[Bn] inspired a revolution in braid group representations and topological
invariants [Kauffman 1990; Birman and Wenzl 1989; Murakami 1987; Freyd et al.
1985; Wenzl 1988]. Work of Drinfeld [1987], Reshetikhin and Turaev [1991], Jimbo
[1986] and others on quantum groups yielded yet further representations. Enriched
through modern category theory [Turaev 1994; Kassel and Turaev 2008; Bakalov
and Kirillov 2001; Damiani et al. 2021], constructions are now relatively abundant.

The connections among Bn representations, (2+1)-dimensional topological
quantum field theory (see e.g., [Witten 1989]) and statistical mechanics (see e.g.,
[Baxter 1982; Akutsu and Wadati 1987; Martin 1988; Deguchi 1989; Deguchi and
Akutsu 1990]) were already well established in the 1980s. Even more recently,
the importance of such representations in topological phases of matter [Freedman
et al. 2003; Rowell and Wang 2018] in two spacial dimensions has led to an
invigoration of interest, typically focused on unitary representations associated
with the 2-dimensional part of a (2+1)-TQFT. In this context the braid group is
envisioned as the group of motions of point-like quasiparticles in a disk, with the
trajectories of these anyons forming the braids in 3-dimensions. Here the braid
group generators σi correspond to exchanging the positions of the i and (i+1)-st
anyons. The density of such braid group representations in the group of (special)
unitary matrices is intimately related to the universality of quantum computational
models built on these topological phases of matter [Freedman et al. 2002a; 2002b],
as well as the (classical) computational complexity of the associated link invariants
[Rowell 2009]. Indeed, there is a circle of conjectures relating finite braid group
images [Naidu and Rowell 2011; Rowell et al. 2009], classical link invariants,
nonuniversal topological quantum computers and localisable unitary braid group
representations [Rowell and Wang 2012; Galindo et al. 2013]. The other side of this
conjectured coin relates the holy grail of universal topological quantum computation
with powerful 3-manifold invariants through surgery on links in the three sphere.
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What is a nontrivial generalisation of the braid group to 3-dimensions? Nat-
ural candidates are groups of motions: heuristically, the elements are classes of
trajectories of a compact submanifold N inside an ambient manifold M for which
the initial and final positions of N are set-wise the same. The group of motions
of points in a 3-manifold in effect simply permutes the points, but the motion of
circles or more general links in a 3-manifold is highly nontrivial. This motivates
the study of these 3-dimensional motion groups, as defined in the mid-20th century
by Dahm [1962] and expounded upon by Goldsmith [1981; 1982].

More formally, a motion of N inside M is an ambient isotopy ft(x) of N in M
so that

f0 = idM and f1(N ) = N .

Such a motion is stationary if ft(N ) = N for all t ; and given any motion f , we
have the usual notion of the reverse f̄ . We say two motions f, g are equivalent
if the composition of f with ḡ (via concatenation) gives a motion endpoint-fixed
homotopic to a stationary motion as isotopies

M × [0, 1] → M.

The motion group Mo(M, N ) is the group of motions modulo this equivalence.
When M and N are both oriented we will consider only motions f so that f1(N )= N
as an oriented submanifold, although one may consider the larger groups allowing
for orientation reversing motions.

The motion groups of links inside R3, S3 or D3 and their representations are
very rich, and only recently explored in the literature [Bellingeri and Bodin 2016;
Damiani and Kamada 2019; Kádár et al. 2017; Bullivant et al. 2020; Baez et al.
2007; Bullivant et al. 2019]. Further enticement is provided by the prospect of
applications to 3-dimensional topological phases of matter with loop-like excitations
(i.e., vortices) [Wang and Levin 2014]. The fruitful symbiosis between braid
group representations and 2-dimensional condensed matter systems give us hope
that 3-dimensional systems could enjoy a similar relationship with motion group
representations, (3+1)-TQFTs, and invariants of surfaces embedded in 4-manifolds;
see e.g., [Kamada 2007; Carter et al. 2004].

There are a few hints in the literature that the (3+1)-dimensional story has some
key differences from the (2+1)-dimensional situation. Reutter [2020] has shown that
semisimple (3+1)-TQFTs cannot detect smooth structures on 4-manifolds. Wang
and Qiu [2021] provided evidence that the mapping class group and motion group
representations associated with (3+1)-dimensional Dijkgraaf–Witten TQFTs are
determined via dimension reduction by the corresponding (2+1)-dimensional DW
theory. As the representation theory of motion groups has been largely neglected
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until very recently, it is hard to speculate on precise statements analogous to the
2-dimensional conjectures and theorems.

In this article we take hints from the classical works [Burau 1935; Hoefsmit 1974],
from the braid group revolution [Jones 1987], and more directly from statistical
mechanics [Deguchi and Akutsu 1990; Kauffman and Saleur 1991; Martin and
Rittenberg 1992; Deguchi and Martin 1992], to study representations of the motion
group of free unlinked circles in 3-dimensional space, the loop braid group LBn .
Presentations of LBn are known; see [Fenn et al. 1997; Damiani 2017]. As LBn

contains the braid group Bn as an abstract subgroup, a natural approach to finding
linear representations is to extend known Bn representations to LBn . This has been
considered by various authors; see e.g., [Bruillard et al. 2015; Bardakov 2005;
Kádár et al. 2017]. Another idea is to look for finite dimensional quotients of the
group algebra, mimicking the techniques of [Jones 1987; Birman and Wenzl 1989].
As nontrivial finite-dimensional quotients of the braid group are not so easy to find,
we take a hybrid approach: we combine the extension of the Burau representation
to LBn [Burau 1935; Bardakov 2005] with the Hecke algebras Hn obtained from
Q(t)[Bn] as the quotient by the ideal generated by

(σi + 1)(σi − t).

While the naive quotient of Q(t)[LBn] by this ideal does not provide a finite
dimensional algebra, certain additional quadratic relations (satisfied by the extended
Burau representation) are sufficient for finite dimensionality, with quotient denoted
LHn . We find a local representation of LHn that aids in the analysis of its structure —
the loop Burau–Rittenberg representation. One important feature of the algebras
LHn is that they are not semisimple; in fact, the image of the loop Burau–Rittenberg
representation has a 1-dimensional center, but is far from simple. Its semisimple
quotient by the Jacobson radical gives an interesting tower of algebras with Bratteli
diagram exactly Pascal’s triangle.

Our results suggest new lines of investigation into motion group representations.
What other finite dimensional quotients of motion group algebras can we find (see
e.g., [Banjo 2013])? What is the role of (non)semisimplicity in such quotients?
Can useful topological invariants be derived from these quotients? What do these
results say about (3+1)-dimensional TQFTs?

Outline of the paper. In Section 2 we recall the Burau representation and corre-
sponding knot invariants. In Section 3 we introduce loop Hecke algebras and prove
they are finite dimensional. In Section 4 we develop arithmetic tools (calculus) that
we will need. In Section 5 we construct our local representations and hence prove
our main structure Theorems. In Section 6 we apply the results from Section 5 to
LHn , and make several conjectures on the open cases with t2

= 1. We conclude
with a discussion of new directions opened up by this work.
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2. Burau representation, Hecke algebra and invariants of knots

Let n := {1, 2, . . . , n}. Then the braid group Bn may be identified with the motion
group Mo(R2, n ×{0}). Artin showed that, for n ≥ 1, Bn admits the presentation

(2-1)

〈
σ1, . . . , σn−1

∣∣∣∣ σiσ j = σ jσi for |i − j | > 1

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n − 2

〉
We will write An(σ) for the set of relations here.

We will also need the symmetric group Sn . In a “motion group spirit” this can be
identified with Mo(R3, n × {0} × {0}). It can be presented as a quotient of Bn by
the relation σ1

2
= 1 (however since we will often want to have both groups together

we will soon rename the Sn generators).

2A. Burau representation. We define Burau representation ϱ:Bn→GLn(Z[t, t−1
])

as follows:

(2-2) σi 7→ Ii−1 ⊕

(
1 − t t

1 0

)
⊕ In−i−1.

The Burau representation has Jordan–Holder decomposition into a 1-dimensional
representation (the vector (1, . . . , 1)T remains fixed) and an (n − 1)-dimensional
irreducible representation known as reduced Burau representation ϱ : Bn →

GLn−1(Z[t, t−1
]). The decomposition is not split over Z[t, t−1

] — an inverse
of t + 1 is needed (see later).

Remark 2.1. One can also use the transpose matrix of (2-2) (depending on ori-
entation choices while building the “carpark cover” of the punctured disc in the
homological definition of Burau). The transpose fixes (1, . . . , 1, t, t2, 1, . . . , 1)T .

2B. Facts about the Burau representation.

(1) Burau is unfaithful for n ≥ 5 (Moody [1991] proved unfaithfulness for n ≥ 9,
Long and Paton [1993] for n ≥ 6, Bigelow [1999] for n = 5).

(2) The case n = 4 is open, Beridze and Traczyk [2018] recently published some
advances toward closing the problem.

(3) It is faithful for n = 2, 3 [Magnus and Peluso 1969].

(4) If we consider the braid group in its mapping class group formulation, it has
a homological meaning (attached a posteriori to it, since Burau [1935] used only
combinatorial aspects of matrices). The Burau representation describes the action
of braids on the first homology group of the (covering of) the punctured disk. On
the other hand the Alexander polynomial is extracted from the presentation matrix
of the first homology group of the knot complement (the Alexander matrix). When
we close up a braid, each element of homology of the punctured disk on the bottom
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becomes identified with its image in the punctured disk at the top. At this point
the Alexander matrix of the closed braid is (roughly) the Burau matrix of the braid
with the modification of identifying the endpoints.

More specifically, let K be a knot, and b a braid such that b̂ is equivalent to K .
Then the Alexander polynomial 1K (t) can be obtained by computing:

1K (t) =
det(ϱ(b) − In−1)

1 + t + · · · + tn−1 .

So one can think of the Alexander polynomial of K ∼ b̂ as a rescaling of the
characteristic polynomial of the image of b in the reduced representation.

Representations of Bn are partially characterised by the eigenvalue spectrum of
the image of σi . Observe that

(2-3) ϱ(σi
2) = (1 − t)ϱ(σi ) + t In,

i.e., the eigenvalue spectrum is Spec(ϱ(σi )) = {1, −t}. Recall also that Kronecker
products obey Spec(A ⊗ B) = Spec(A). Spec(B), so Spec(ϱ(σi ) ⊗ ϱ(σi ) = ϱ ⊗

ϱ(σi )) = {1, −t, t2
}. From this we see that the spectrum is fixed under tensor

product only if t = ±1; see for example [Kauffman and Saleur 1991].

2C. Hecke algebras. Let R be an integral domain and q1, q2 elements of R with
q2 invertible. We define the Hecke algebra H R

n (q1, q2) to be the algebra with
generators {1, T1, . . . , Tn−1} and the following defining relations:

Ti T j = T j Ti for |i − j | > 1,(2-4)

Ti Ti+1Ti = Ti+1Ti Ti+1 for i = 1, . . . , n − 2,(2-5)

T 2
i = (q1 + q2)Ti − q1q2 for i = 1, . . . , n − 1.(2-6)

Remark 2.2. (1) Relation (2-6) coincides with the characteristic equation of the
images of the generators under the Burau representation 2A when (q1, q2)= (1, −t).
We denote the resulting 1-parameter Iwahori–Hecke algebra by H R

n (t).

(2) If t = 1 then H R
n (t) is the group algebra R[Sn] (the free R-module RSn made

an R-algebra in the usual way).

(3) There is a map from Bn to H R
n (t) sending σi to Ti . Thus representations of

H R
n (t) are equivalent to representations of Bn for which the generators satisfy

relation (2-6). This is described in [Bigelow 2006, Section 3; Jones 1987, Section 4;
Martin 1991, Section 5.7] and many other places.

(4) Fixing R = C, point (3) allows us to think of H R
n (t) as being isomorphic to the

quotient Hn(t) := C[Bn]σ
2
i = (1 − t)σi + t .
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(5) Using the map in (3) we can represent any element of Hn(t) as a linear combi-
nation of braid diagrams. The quadratic relation can be seen as a skein relation on
elementary crossings. Knowing a basis for Hn(t) makes this fact usable.

Question 2.3. Why these parameters and this quadratic relation?
As noted, Hecke algebras can be defined with two units of R as parameters.

We chose to fix these parameters to (1, −t) because from this quotient one should
recover the Alexander polynomial. Choosing (−1, t) one should get the quotient
on which Ocneanu traces are defined; see [Kassel and Turaev 2008, Chapter 4.2].
With the Ocneanu trace being a 1-parameter family over a 1-parameter algebra,
we end up with polynomials in two variables. These polynomials are attached to
the braid diagrams that we can see representing elements of Hn(t). Moreover they
are defined in such a way to respect Markov moves, so they are invariants for the
closures of said braids. Hence, they are knot invariants. The quadratic relation
from Remark 2.2(3) translates the trace in a skein relation. Through the Ocneanu
trace (normalised) the invariant that is obtained is the HOMFLY-PT polynomial,
which specialises in both Alexander and Jones. Each specialisation corresponds to
factoring through a further quotient of the Hecke algebra (in the case of Jones, this
is a quotient of the Temperley–Lieb algebra). Below we “reverse engineer” this
process.

3. Generalising Burau and Hecke to loop braid groups

3A. The loop braid group. Here S1 denotes the unit circle. We now consider the
loop braid group

LBn = Mo(R3, n × S1);

see e.g., [Goldsmith 1981; Savushkina 1996; Fenn et al. 1997; Brendle and Hatcher
2013; Damiani 2017; Kádár et al. 2017; Bruillard et al. 2015].

Consider the set 4n = {σi , ρi , i = 1, 2, . . . , n−1} and group ⟨4n |Qn⟩ presented
by generators σi and ρi , and relations Qn as follows. The generators may be
visualised as the “leapfrog” and loop exchange, such as the following depictions of
σ1 and ρ1 as generators of LB3 (motions read bottom-to-top):

σ1 =

31 2

ρ1 =

31 2
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The σi obey the braid relations as in (2-1); the ρi obey the braid relations and
also

(3-1) ρiρi = 1

and then there are mixed braid relations

ρiρi+1σi = σi+1ρiρi+1,(3-2)

ρiσi+1σi = σi+1σiρi+1,(3-3)

σiρi± j = ρi± jσi ( j > 1) (all distant commutators).(3-4)

Remark 3.1. The first mixed relation (3-2) implies its reversed order counterpart:

(3-5) σiρi+1ρi = ρi+1ρiσi+1

whereas the reversed order second mixed relation does not hold. The relations also
imply

(3-6) ρ2σ1ρ2 = ρ1σ2ρ1.

We have (see e.g., [Fenn et al. 1997]) that

(3-7) LBn ∼= ⟨4n | Qn⟩.

It will be convenient to give an algebra presentation for the group algebra. Recall
that in an algebra presentation inverses are not present automatically by freeness,
so we may put them in by hand as formal symbols and then impose the inverse
relations. Thus as a presented algebra we have

k⟨4n | Qn⟩ = ⟨4n ∪ 4−

n | Qn, In⟩k;

here kG means the group k-algebra of group G, ⟨− | −⟩k means a k-algebra
presentation and In is the set of inverse relations σiσ

−

i = 1.

3B. The loop–Hecke algebra LHn. With Section 2 in mind, there is a suitable
generalisation of the Burau representation to LBn .

Proposition 3.2 [Vershinin 2001]. The map on generators of LBn given by

σi 7→ Ii−1 ⊕

(
1 − t t

1 0

)
⊕ In−i−1.(3-8)

ρi 7→ Ii−1 ⊕

(
0 1
1 0

)
⊕ In−i−1.(3-9)

extends to a representation ϱG B : LBn → GLn(Z[t, t−1
]).

Proof. Direct calculation. □
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This group representation is not faithful for n ≥ 3 [Bardakov 2005], and corre-
sponds to an Alexander polynomial for welded knots.

We consider a quotient algebra of the group algebra (over a suitable commutative
ring) of the group ⟨4n | Qn⟩. The quotient algebra is

(3-10) LHZ
n := Z[t, t−1

]⟨4n | Qn⟩Rn = ⟨4n ∪ 4−

n | Qn, In,Rn⟩Z[t,t−1]

where Rn is the set of (algebra) relations:

σ 2
i = (1 − t)σi + t (i.e., (σi − 1)(σi + t) = 0),(3-11)

ρiσi = −tρi + σi + t (i.e., (ρi − 1)(σi + t) = 0),(3-12)

σiρi = −σi + ρi + 1 (i.e., (σi − 1)(ρi + 1) = 0).(3-13)

(NB we already have (ρi − 1)(ρi + 1 = 0.)
Observe that (3-11) yields an inverse for σi (the inverse to t is specifically needed),

so we have

(3-14) LHZ
n = ⟨4n | Qn,Rn⟩Z[t,t−1].

Observe then that the relations as such do not require an inverse to t , so we could
consider the variant algebra over Z[t].

For any field K that is a Z[t, t−1
] algebra we then define the base change

LHK
n = K ⊗Z[t,t−1] LHZ

n and, for given tc ∈ C,

LHn(tc) = LHn = LHC
n

where C is a Z[t]-algebra by evaluating t at tc (the choice of which we notationally
suppress). Note that there is no reason to suppose that this gives a flat deformation
(i.e., the same dimension) in all cases. (It will turn out that it does, at least in low
rank, if we can localise at t2

− 1. In particular, perhaps surprisingly, in the variant
t = 0 is isomorphic to the generic case.)

Remark. The relations (3-11) et seq. are suggested by (2-3) and the following
calculations (on σ1 and ρ1 in LB3, noting that blocks work the same way for all
generators):

ϱG B(σ1ρ1) =

t 1 − t 0
0 1 0
0 0 1

 = −

1 − t t 0
1 0 0
0 0 1

 +

0 1 0
1 0 0
0 0 1

 + I3,

ϱG B(ρ1σ1) =

 1 0 0
1 − t t 0

0 0 1

 = −t

0 1 0
1 0 0
0 0 1

 +

1 − t t 0
1 0 0
0 0 1

 + t I3.
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3C. Notable direct consequences of the relations: Finiteness. Given a word in
the generators, of form σ3σ4ρ2 say, by a translate of it we mean the word obtained
by shifting the indices thus: σ3+iσ4+iρ2+i .

With the Q and R relations we can derive the following ones, together with the
natural translates thereof (here

∗
= uses (3-1);

ρρσ
= uses (3-2);

σρ
= uses (3-13), and so on):

σ2ρ1σ2
∗
= σ2ρ2ρ2ρ1σ2(M1)

ρρσ
= σ2ρ2σ1ρ2ρ1
σρ
= −σ2σ1ρ2ρ1 + ρ2σ1ρ2ρ1 + σ1ρ2ρ1

ρσσ,ρρσ
= −ρ1σ2σ1ρ1 + ρ2ρ2ρ1σ2 + σ1ρ2ρ1
σρ
= σ1ρ2ρ1 + ρ1σ2σ1 − ρ1σ2ρ1,

ρ2σ1σ2
∗
= ρ2σ1ρ2ρ2σ2(M2)
ρσ
= −tρ2σ1ρ2ρ2 + ρ2σ1ρ2σ2 + tρ2σ1ρ2

∗,ρσρ
= −tρ2σ1 + ρ1σ2ρ1σ2 + tρ1σ2ρ1
M1
= −tρ2σ1 + ρ1(ρ1σ2σ1 − ρ1σ2ρ1 + σ1ρ2ρ1) + tρ1σ2ρ1

∗,ρσ
= −tρ2σ1 + σ2σ1 − σ2ρ1 + (−tρ1 + σ1 + t)ρ2ρ1 + tρ1σ2ρ1

= σ1ρ2ρ1 + tρ1σ2ρ1 − tρ1ρ2ρ1 + σ2σ1 − σ2ρ1 − tρ2σ1 + tρ2ρ1.

Definition 3.3. For given n and m ≤ n let LH⟨
m denote the subalgebra of LHn+1

generated by 4m (it is a quotient of LHm , as per the 9 map formalism in Section 4B).

Lemma 3.4. For any n let X i be the vector subspace of L Hn spanned by {1, σi , ρi }.
Then LHn+1 = LH⟨

n Xn LH⟨
n .

Proof. It is enough to show that Xn LH⟨
n Xn lies in LH⟨

n Xn LH⟨
n . We work by

induction on n. The case n = 1 is clear, since L H1 = C. Assume true in case n − 1
and consider case n. We have

Xn LH⟨

n Xn = Xn LH⟨

n−1 Xn−1 LH⟨

n−1 Xn

by assumption. But LH⟨

n−1 and Xn commute so we have LH⟨

n−1 Xn Xn−1 Xn LH⟨

n−1.
The inductive step follows from the relations Q and R and the relations (M1) and
(M2) above. □

Corollary 3.5. LHn is finite dimensional. □

Remark 3.6. We may also treat certain other quotients of C LBn . For example,
eliminating either relations (3-12) or (3-13) we still obtain finite dimensional
quotients. In particular, if we only include (3-13) and not (3-12) then the analogous
proof with Xn replaced by {1, ρn, σn, ρnσn} proves finite dimensionality.
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3D. Refining the spanning set. Can we express elements of LH3 as sums of length-
2 words (and hence eventually solve word problem)? We have, for example,
(3-15)

ρ1ρ2ρ1 = −1+ρ2 +
(−t − 1)

(t − 1)
(−ρ1 +ρ2ρ1 −ρ1ρ2)+

2
(t − 1)

(−σ1 +σ2ρ1 −ρ1σ2)

But in general this is not easy. And another problem is that we do not have
immediately manifest relationships between different ranks (such as inclusion) that
would be useful. With this (and several related points) in mind it would be useful
to have a tensor space representation. In what follows we address the construction
of such a representation.

4. Basic arithmetic with LHn

Here we briefly report some basic arithmetic in LHn that gives the clues we need
for our local representation constructions below.

4A. Fundamental tools, locality. In what follows, B denotes the braid cate-
gory: a strict monoidal category with object monoid (N0, +) generated by 1, and
B(n, n)= Bn , B(n, m)=∅ otherwise, and monoidal composition is via side-by-side
concatenation of suitable braid representatives; see e.g., [Mac Lane 1998, XI.4].
Similarly S is the permutation category (of symmetric groups). Let H denote the
ordinary Hecke category — again monoidal, but less obviously so [Humphreys
1990]. (We have not yet shown that LH, the loop-Hecke category, is monoidal.)

Let LB denote the loop-braid category — this is the strict monoidal category
analogous to the braid category where the object monoid is (N, +), LB(n, n)= LBn ,
LB(n, m)=∅ otherwise, and monoidal composition ⊗ is side-by-side concatenation
of loop-braids.

Suppose C is a strict monoidal category with object monoid (N0, +) generated by
1 (for example, LB). Write 11 for the unique element of C(1, 1) and for x ∈ C(n, n)

define the translate

(4-1) x (t)
= 1⊗t

1 ⊗ x ∈ C(n + t, n + t)

For k a commutative ring, define translates of elements of k LBn (i.e., kLB(n, n)),
and kSn and so on, by linear extension.

Caveat. Note that it is a property of the geometric topological construction of
loop braids that the composition ⊗ in LB makes manifest sense. It requires that
side-by-side concatenation of rank n with rank m passes to n + m. This is clear by
construction. But in groups/algebras defined by generators and relations it would
not be intrinsically clear. For example, how do we know that the subalgebra of
LHn generated in LHn by the elements pi , si , i = 1, 2, . . . , n − 2 is isomorphic
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to LHn−1? (Some of our notation requires care at this point since it may lead us to
take isomorphism for granted!)

4B. The 9 maps. Let A = ⟨X | R⟩k be an algebra presented with generators X
and relations R. Then there is a homomorphism from the free algebra generated
by any subset X1 of X to A, taking s ∈ X1 to its image in A. This factors through
the quotient by any relations, R1 say, expressed only in X1. We may consider it
as a homomorphism from this quotient. But of course the kernel may be bigger —
relations induced indirectly by the relations in R. A 9 map is such a homomorphism:

⟨X1 | R1⟩k
9

−↠ ⟨X1 | R⟩k ↪→ ⟨X | R⟩k

Note that arithmetic properties such as idempotency, orthogonality and vanishing
are preserved under 9 maps. Thus for example a decomposition of 1 into orthogonal
idempotents in kSn passes to such a decomposition in LHn (see (4-3)). However
conditions such as primitivity, inequality and even nonzeroness are not preserved
in general.

Note that there is a natural (not generally isomorphic) image of

(4-2) kSn ∼= k⟨p1, . . . , pi , . . . , pn−1 | An(p), pi pi = 1⟩

in LHn obtained by the map of generators pi 7→ ρi . Let us call it LHρ
n . Thus

(4-3) kSn
9

−↠ LHρ
n ↪→ LHn

Similarly Hn =⟨T1, . . . , Ti , . . . , Tn−1 |An(T), . . . ⟩k has image LHσ
n under Ti 7→ σi :

(4-4) Hn ↠ LHσ
n ↪→ LHn

Let us consider the image of a primitive idempotent decomposition in kSn

1 =

∑
λ∈3n

dλ∑
i=1

ei
λ

under 9 : kSn → LHn . Here 3n denotes the set of integer partitions of n, and dλ

is the dimension of the Sn irrep. See the Appendix for explicit constructions. We
will also write (3, ⊆) for the poset of all integer partitions ordered by the usual
inclusion as a Young diagram.

Proposition 4.1. Let k be the field of fractions of Z[t, t−1
]:

(I) The image 9(ei
λ) in LHk

n of every idempotent with (2, 2) ⊆ λ ∈ 3n is zero.

(II) On the other hand all other λ ∈ 3n , i.e., all hook shapes, give nonzero image.
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Proof. (I) Note that e1
µ with µ ∈ 3m is defined in kSn for n ≥ m by Sm ↪→ Sn . It

is shown for example in [Martin and Rittenberg 1992] that if the relation e1
µ = 0

is imposed in a quotient of kSn then ei
ν = 0 holds for µ ⊆ ν ∈ 3n (a proof uses

Sn−1 ↪→ Sn restriction rules, from which we see that e1
µ is expressible as a sum of

orthogonal such idempotents). Consider e1
(2,2) (i.e., with (2, 2) ∈ 34) which may

be expressed as

e1
(2,2) = ∝ (p1 + 1)(p3 + 1)p2(p1 − 1)(p3 − 1)p2(p1 + 1)(p3 + 1)

(using notation and a choice from (A-5)). By a direct calculation in LH4

(4-5) 9((p1 + 1)(p3 + 1)p2(p1 − 1)(p3 − 1)) = 0

(NB we know no elegant way to do this calculation; the result holds also for generic
t , but not for t = 1).

(II) This can be verified by evaluation as nonzero in a suitable representation. (For
simplicity it is sufficient to work in the “SP quotient” that we give in Theorem 5.2
below, working with Kronecker products. We will omit the explicit calculation.) □

With identity (4-5) in mind, recall that in [Martin and Rittenberg 1992] local
representations of ordinary Hecke (and hence Sn) with this property were constructed
from spin chains. In Section 5 we will combine this with Burau and thus find the
representations of loop-Hecke that we need here.

By Proposition 4.1 we have a decomposition of 1 in LHn according to hook
partitions

(4-6) 1 =

n−1∑
i=0

d
(n−i,1i )∑
j=1

9(e j
(n−i,1i )

).

(NB j varies over idempotents that are equivalent in the sense that they induce
isomorphic modules — it will be sufficient to focus on j = 1.)

(Left) multiplying by A = LHn we thus have a decomposition of the algebra

A ∼= ⊕
n−1
i=0 ⊕ j A9(e j

(n−i,1i )
)

as a left-module for itself, into projective summands.
We have not yet shown that these summands are indecomposable. But consider

for a moment the action of LHn on the image under 9 of

Y n
±

=

∑
g∈Sn

(±1)len(g)g

in LHn (we write Y n
+

for unnormalised e1
(n) and Y n

−
for e1

(1n); again, see the Appendix
for a review). By abuse of notation we will write Y n

±
also for the image. By (3-13)
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and the classical identities Y a(1)
± Y n

±
= a!Y n

±
(recall Y a(1)

± means Y a
±

with indices
shifted by +1, see (A-2) et seq.) we have

(4-7) σi Y n
+

= Y n
+
, Y n

−
σi = −tY n

−
.

It follows that Y n
+

spans a 1-d left ideal in LHn . If we work over a field containing the
rationals then it is normalisable as an idempotent, and so we have an indecomposable
projective left module

P(n) = LHn Y n
+

= LHn e1
(n) = ke1

(n).

5. On local representations

Here Mat is the monoidal category of matrices over a given commutative ring (and
Matk the case over commutative ring k), with object monoid (N, ×) and tensor
product on morphisms given by a Kronecker product (NB there is a convention
choice in defining the Kronecker product). We often focus on the monoidal subcat-
egory Matm generated by a single object m ∈ N — usually m = 2. Then the object
monoid (2N, ×) becomes (N, +) in the natural way.

In the study of ordinary Hecke algebras (and particularly quantum-group-
controlled quotients like Temperley–Lieb) a very useful tool is the beautiful set of
local tensor space representations generalising those arising from XXZ spin chains
and Schur–Weyl duality. For example we have the following.

Consider the TL diagram category T with object monoid (N, +) k-linear-
monoidally generated by the morphisms represented by diagrams

u = ∈ T(2, 0) and u∗
= .

This has a TQFT F2 given by u 7→ (0, τ, τ−1, 0) (the target category is Mat) and
taking ∗ to transpose. Of course for 11 ∈ T(1, 1) we have F2(11) = I2.

To pass to our present topic we note that 11 ⊗ 11 = 12 and that the Yang–Baxter
construction σ1 7→ 12 − τ 2u∗u gives

(5-1) σ1 7→ F2(12) − τ 2


0

τ 2 1
1 τ−2

0

 =


1

1 − τ 4
−τ 2

−τ 2 0
1


thus a representation of the braid category B (note that eigenvalues are 1 and −τ 4 so
τ 4 here passes to t in our parametrisation for loop-Hecke). But also note that u, u∗

can be used for a Markov trace. And also for idempotent localisation functors: let
U= u∗u, U1 =U⊗1n−2, and Tn =T(n, n) regarded as a k-algebra; then we have the
algebra isomorphism U1TnU1 ∼= Tn−2. This naturally gives a category embedding
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GU of Tn−2-mod in Tn-mod. Recall that irreps are naturally indexed by partitions of
n into at most two parts: λ = (n − m, m), or equivalently (for given n) by “charge”
λ1 − λ2 = n − 2m, thus by ϒn = {n, n − 2, n − 4, . . . , 0/1} (depending on n is
odd or even). This latter labeling scheme is stable under the embedding. That is,
indecomposable projective modules are mapped by GU according to ϒn−2 ↪→ ϒn .

5A. Charge conservation. Another useful property of F2 is “charge conservation”.
We may label the row/column index for object 2 in Mat by {ε1, ε2} or {+, −}. Then
2 ⊗ 2 has index set {ε1 ⊗ ε1, ε2 ⊗ ε1, ε1 ⊗ ε2, ε2 ⊗ ε2} (which we may abbreviate to
{11, 21, 12, 22}) and so on. The “charge” ch of an index is ch = #1−#2. Note from
(5-1) that F2 does not mix between different charges (hence charge conservation).

For a functor with the charge conservation property the representation of Bn

(say) obtained has a direct sum decomposition according to charge, with “Young
blocks” βi of charge i = n, n − 2, . . . ,−n. The dimensions of the blocks are given
by Pascal’s triangle. It will be convenient to express this with the semiinfinite
Toeplitz matrices U and T :

U =


1 1

1 1
1 1

1 1
. . .

 , U2
=


1 2 1

1 2 1
1 2 1

1 2 1
. . .

 , T =


0 1
1 0 1

1 0 1
1 0 1

. . .


and semiinfinite vectors v1 = (1, 0, 0, 0, . . . ), v2 = (0, 1, 0, 0, . . . ), . . . . Thus v1Un

(respectively vn+1T n) gives the numbers in the n + 1-th row of Pascal (followed
by a tail of zeros). (The two different formulations correspond to two different
thermodynamic limits — T corresponds to the ϒn−2 ↪→ ϒn limit — see later.) Then

(5-2) dim(βi ) = (v1Un)(n−i+2)/2 = (vn+1T n)n−i+1.

In the case of F2 these blocks are not linearly irreducible in general (the generic
irreducible dimensions are given by v1T n). But they still provide a useful framework.
We return to this later.

With this construction and Proposition 3.2 in mind, it is natural to ask if we can
make a local version of generalised Burau. (Folklore is that this cannot work, and
directly speaking it does not. But we now have some more clues at our disposal.)

5B. Representations of B. Now we have in mind Proposition 4.1; and brute force
calculations in low rank showing (see Section 6) that LHn is nonsemisimple but has
irreducible representations with dimensions given by Pascal’s triangle. This is rem-
iniscent of Rittenberg’s analysis of the quantum spin chains over Lie superalgebras
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found in [Deguchi 1989; Deguchi et al. 1989; Deguchi and Akutsu 1990; Kauffman
and Saleur 1991; Martin and Rittenberg 1992; Deguchi and Martin 1992]. It is
also reminiscent of work of Saleur on “type-B” braids [Martin and Saleur 1994];
emdash but for this see e.g., [Bullivant et al. 2020]. Inspired by this and the Burau
representation (and see [Damiani and Florens 2018]) we proceed as follows. Define

(5-3) Mt(σ ) =


1

1 − t t
1 0

1

 , M ′

t (σ ) =


1

1 − t t
1 0

−t


as in [Deguchi 1989; Kauffman and Saleur 1991]. Fix a commutative ring k, τ ∈ k×,
and t = τ 4. Observe that there is a monoidal functor FM from the Braid category B

to Vect (or at least Mat) given by object 1 mapping to V = C{e1, e2} (i.e., to 2 in
MatZ[t]) and the positive braid σ in B(2, 2) mapping to Mt(σ ). The conjugation
of this matrix to F2(σ ) lifts to a natural isomorphism of functors. Another natural
isomorphism class of charge conserving functors has representative functor FM ′

given by M ′
t (σ ). (According to the scheme of Deguchi et al., this is the (1,1)-super

class; see for example [Deguchi 1989; Kauffman and Saleur 1991]. But note that in
extending to LB below, isomorphism will not be preserved, so we are focusing on
the specific representative.) In fact some elementary analysis shows that these two
classes are all of this form that factor through Hecke (apart from the trivial class).

Let us formulate this in language that will be useful later. First note that (like
any invertible matrix) Mt(σ ) and M ′

t (σ ) extend to monoidal functors from the free
monoidal category generated by σ to Mat. Thus, in particular,

M ′

t (σ ⊗ 11) = M ′

t (σ ) ⊗ Id2 ∈ Mat(23, 23).

Given the form of the construction, proof of the above factoring through B follows
from a direct verification of the braid relation in each case. More interestingly we
have, again by direct calculation, the stronger result

(5-4) M ′

t (σ ⊗ 11)M ′

t (11 ⊗ σ)M ′

s(σ ⊗ 11) = M ′

s(11 ⊗ σ)M ′

t (σ ⊗ 11)M ′

t (11 ⊗ σ)

while the tss version of this identity does not hold (unless we force s = 1, or s = t)
(NB care must be taken with conventions here.)

To pass back from the basic-algebra/homology to the full algebra we need the
dimensions of the irreducibles. For an algebra A with Cartan matrix CL(A) and a
vector vL(A) giving the dimensions of the irreducible heads of the projectives we
have

(5-5) dim(A) = vL(A)CL(A)vL(A)T .
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Definition 5.1. Let the n × n matrix Mn be:

Mn =



1
1 1

1 1
1 1

. . .
. . .

1 1


We label columns left to right (and rows top to bottom) by the ordered set hn of
hook integer partitions of n:

hn = ((n), (n − 1, 1), (n − 2, 12), . . . , (1n)).

We will see in Theorem 5.8 that Mn is the left Cartan decomposition matrix of
SPn (it follows that the Ext-matrix is the same except without the main diagonal
entries).

5C. Extending to LB. Recall we introduced the loop-braid category LB. We write
σ ∈ LB(2, 2) for the positive braid exchange and ρ ∈ LB(2, 2) for the symmetric
exchange.

Formally extending with elementary transpositions (cf. ϱG B), the FM construction
fails to satisfy the mixed braid relation (3-3). However the functor FM ′ fairs better.

Theorem 5.2. (i) The σ 7→ M ′
t (σ ) construction extended using the super transpo-

sition ρ 7→ M ′

1(σ ) gives a monoidal functor Fe
M ′ from the loop Braid category LB

to Mat.

(ii) Fe
M ′ factors through LH.

Proof. The proof is a linear algebra calculation similar to the B cases above, using
Kronecker product identities; but also using the appropriate special case of (5-4)
for (3-3). □

Definition 5.3. Fix a field k and t ∈ k. Then the k-algebra SPn = k LBn / Ann Fe
M ′ .

We conjecture that the extended super representation, which we call Burau–
Rittenberg, or “SP” rep for short, is faithful on LH unless t2

= 1 (see later).

Remark 5.4. As the Hecke algebra is related to the quantum groups Uqsl(k | m)

via Schur–Weyl duality [Jimbo 1986; Deguchi and Akutsu 1990] one naturally
wonders if local representations of LH can be obtained from the R-matrices coming
from quantum groups, by extension. The results of [Kádár et al. 2017] suggest that
R-matrices that extend to local representations of LBn are in general somewhat rare.
The SP representation is of this form: M ′

t comes from the super-quantum group
Uqsl(1 | 1). We are not aware of other R-matrices coming from quantum groups
that extend to LBn , but this approach is nevertheless intriguing.
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Proposition 5.5. Fix a field k and t ∈ k, t ̸= 1. Let χi = (σi − ρi )/(1 − t). Then:

(a) χi and ρi (i = 1, 2, . . . , n − 1) are alternative generators of SPn .

(b) The k-algebra isomorphism class of SPn is independent of t .

Proof. (a) Elementary. (b) The images of the alternative generators in the defining
representation are independent of t . □

5D. Towards linear structure of SP. Let us work out the linear structure of SP.
(i.e., its Artin–Wedderburn linear representation theory over C: simple modules,
projective modules and so on. See Section 5E for a review.)

Proposition 5.6. Suppose t ̸= 1 ∈ k. Let χ = (σ − ρ)/(1 − t) and χ1 =

(σ1 − ρ1)/(1 − t) ∈ SPn .

(I) Then

(5-6) χ1 SPn χ1 ∼= SPn−1

and

(5-7) SPn / SPn χ1 SPn ∼= k.

(II) In particular the map fχ : SPn−1 → χ1 SPn χ1 given by w 7→ χ1w
(1)χ1 (recall

the translation notation from (4-1)) is an algebra isomorphism.

Proof. (I) Let us write simply F = Fn for the defining representation Fe
M ′ of SPn .

We write {1, 2}
n for the basis (i.e., we write simply symbols 1, 2 for e1, e2 and the

word 112 for e1 ⊗e1 ⊗e2 and so on). Our convention for ordering the basis is given
by 11,21,12,22. First observe that the image in F is (here with n = 3):

(5-8) (χ ⊗ 12) 7→


0

1 −1
0

1

 ⊗ 12 =



0
1 −1

0
1

0
1 −1

0
1


Note that the basis change conjugating by

(5-9)


1

1 1
1

1

 ⊗ 12
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(again this is the example with n = 3) brings this into diagonal form, projecting onto
the 2{1, 2}

n−1 subspace (the subspace of V n
= C{1, 2}

n spanned by basis elements
of form 2w with w ∈ {1, 2}

n−1, i.e., of form e2 ⊗ . . .). That is: χ 7→
(0

1

)
⊗ 12.

Furthermore:

(5-10) (χ ⊗ 12)(12 ⊗ σ)(χ ⊗ 12) 7→



0
1 −1

0
1 − t 0 t −t

0
1 0 0

0
−t


Note that after the (5-9) basis change this decomposes as a sum of several copies
of the 0 module together with the submodule N with basis 2{1, 2}

n−1. Then the
map from N to {1, 2}

n−1 given by 2w 7→ w gives

χ1σ1χ1 = −t.χ1 7→ Fn−1(−t.1)

and χ1σ2χ1 7→ Fn−1(σ1) and χ1ρ2χ1 7→ Fn−1(ρ1). Also note that χ1 commutes
with σi for i > 2 so we have

(5-11) χ1σiχ1 = χ1σi 7→ Fn−1(σi−1), χ1ρiχ1 7→ Fn−1(ρi−1) i > 2.

Thus the images of the generators under w 7→ χ1wχ1 are the generators of SPn−1,
establishing (5-6) on generators. To show that the images of the generators span we
proceed as follows. From Lemma 3.4 and the (sufficient) symmetry of the relations
under i 7→ n − i on indices, writing LHn = Ln for short, we have

Ln+1 = Ln Xn Ln

= L(1)
n X1L(1)

n

= L(2)
n−1 X2L(2)

n−1 X1L(2)
n−1 X2L(2)

n−1

= L(2)
n−1 X2L(3)

n−2 X3L(3)
n−2 X1 X2L(2)

n−1

= L(2)
n−1 X2 X3 X1 X2L(2)

n−1.

Thus

χ1Ln+1χ1 = χ1L(2)
n−1 X2 X3 X1 X2L(2)

n−1χ1 = L(2)
n−1χ1 X2 X3 X1 X2χ1L(2)

n−1.

We can show by direct calculations that χ1 X2 X3 X1 X2χ1 lies in the algebra gener-
ated by the images of the generators. (We can do this even in LH4. The result then
holds in SP4 since it is a quotient; and then in SPn by construction. Note however
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that we have not shown that it holds in LHn .) Also L(2)
n−1χ1 evidently lies in the

algebra generated by the images of the generators, by commutation, so we are done.
Finally (5-7) follows on noting that the quotient corresponds to imposing χ1 = 0,

i.e., σ1 = ρ1. Noting that t ̸= 1, this gives σi = 1.

(II) Note that fχ inverses the map from (5-11) above. □

5E. Aside on linear/Artinian representation theory. Since this paper bridges
between topology and linear representation theory it is perhaps appropriate to say a
few words on the bridge. While topology focuses on topological invariants, linear
rep theory is concerned with invariants such as the spectrum of linear operators
(and the generalised “spectrum” of algebras of linear operators). The former is thus
of interest for topological quantum field theories, and the latter for usual quantum
field theories (where notions such as mass are defined). In this section we recall a
few key points of linear/Artinian rep theory that are useful for us. (So of course it
can be skipped if you are not interested in this aspect, or are already familiar.)

Recall that every finite dimensional algebra over an algebraically closed field is
Morita equivalent to a basic algebra; see e.g., [Nesbitt and Scott 1943; Jacobson
1974; Benson 1991]. This allows us to track separately the combinatorial and
homological data of an algebra.

Let A be a finite dimensional algebra over an algebraically closed field k; see,
e.g., [Benson 1991]. Let J (A) denote the radical. Let L = {L1, . . . , Lr } be an
ordered set of the isomorphism classes of simple A-modules, with projective covers
Pi = Aei (i.e., the ei s are a set of primitive idempotents). Given an A-module M let
Rad(M) denote the intersection of the maximal proper submodules. Now suppose
A is basic. Recall that Ext1A(L i , L j ) codifies the nonsplit extensions between these
modules; i.e., the “atomic” components of nonsemisimplicity. The corresponding
“Ext-matrix” EL(A) is given by

(EL(A))i j = dimk Ext1A(L i , L j )

or equivalently

dimk Ext1A(L i , L j ) = dimk(HomA(Pj , Rad(Pi ))/ HomA(Pj , Rad2(Pi )))

= dimk(e j J (A)ei/e j J 2(A)ei ).

This perhaps looks technical, but note that e j J (A)ei = e j Aei when i ̸= j and so
then is essentially what we study in Section 4B et seq. (and in our case the quotient
factor is even conjecturally zero, so in fact we are already studying the Ext-matrix!).
Note that the Ext-matrix defines a quiver and hence a path algebra k EL(A). For
any finite dimensional algebra A, basic or otherwise, the Cartan decomposition
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matrix CL(A) is given by

(5-12) (CL(A))i j = dimk HomA(Pj , Pi )

that is, the i-th row gives the number of times each simple module occurs in Pi .

5F. Linear structure of SPn. A corollary of Proposition 5.6 is that we have an
embedding of module categories Gχ : SPn−1 − mod → SPn − mod . In fact we
can use this (together with our earlier calculations) to determine the structure of
these algebras. Before giving the structure theorem let us recall the relevant general
theory.

Lemma 5.7 (see, e.g., [Green 1980, Section 6.2]). Let A be an algebra and e ∈ A
an idempotent. Then:

(i) The functor Ae ⊗eAe − : eAe− mod → A− mod takes a complete set of in-
equivalent indecomposable projective left eAe-modules to a set of inequivalent
indecomposable projective A-modules that is complete except for the projective
covers of simple modules L in which eL = 0. (There is a corresponding right-
module version.)

(ii) This functor and the functor Ge : A− mod → eAe− mod given by M 7→ eM
form a left-right adjoint pair.

(iii) The Cartan decomposition matrix of eAe embeds in that of A according to the
labeling of modules in (i). □

Theorem 5.8. (i) Isomorphism classes of irreps of SPn are naturally indexed
by hn . (Indeed SPn /rad ∼= QSn/e1

2,2 so the dimensions are given by the n-th
row of Pascal’s triangle; see Figure 1.)

(ii) The left Cartan decomposition matrix is Mn . Note that this determines the
structure of SPn . It gives the dimension as

dim =

(
2(n − 1)

n − 1

)
+

(
2(n − 1)

n

)
=

1
2

(
2n
n

)
.

(iii) The image of the decomposition (4-6) is complete in SPn .

Proof. (i) Consider Lemma 5.7(i). In our case, putting

A = SPn and e = χ1,

then by (5-7) there is exactly one module L such that eL = 0 (at each n) — the
trivial module. Thus by Proposition 5.6 SPn has one more class of projectives and
hence irreps than SPn−1.
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Figure 1. Young graph up to rank 5 with 22-diagrams removed.

In particular write

Gχ : SPn−1 − mod → SPn − mod

for the functor in our case obtained using (5-6) from Proposition 5.6, that is

Gχ (M) = SPn χ ⊗χ SPn χ fχ M,
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suppressing the index n, where fχ is as described above. Then a complete set of
indecomposable projectives is

Pn
n = SPn e1

(n),

Pn
n−1 = Gχ (Pn−1

n−1 ) = Gχ (SPn−1 e1
(n−1)),

Pn
n−2 = Gχ (Gχ (SPn−2 e1

(n−2)),

...

Pn
n− j = G◦ j

χ (SPn− j e1
(n− j)),

...

Pn
1 = G◦n−1

χ (k).

It follows that the Cartan decomposition matrix C(n) contains C(n−1) as a sub-
matrix, with one new row and column with the label n. The new row gives the
simple content of Pn

n . But by (4-7) (noting Theorem 5.2(ii)) this projective is simple.
Iterating, we deduce that C(n) is lower-unitriangular.

Working by induction, suppose C(n) is of the claimed form in (ii) at level n−1.
Then at level n we have

(5-13) C(n) =



1
∗ 1
∗ 1 1
∗ 1 1
∗ 1 1
...

. . .
. . .

∗ 1 1


(omitted entries 0). To complete the inductive step we need to compute the e1

(n) Pn− j

for each j . Write Gm
χ for Gχ and f m

χ for fχ at level m < n, and note that

Gχ (SPn−1 e1
λ) = SPn χ1 ⊗χ SPn χ fχ (SPn−1 e1

λ)

= SPn χ1 ⊗χ SPn χ χ1 SP(1)
n−1 e(1)

λ χ1

= SPn χ1 SP(1)
n−1 e(1)

λ χ1 ⊗χ SPn χ χ1

∼= SPn χ1 SP(1)
n−1 e(1)

λ χ1

where we have used that these modules are idempotently generated ideals to apply
the tensor product up to isomorphism (and where again we use the notation from
(4-1), so SP(1)

n−1 is the 1-step translated copy of SPn−1 in SPn). So in particular

e1
(n) SPn Gχ (SPn−1 e1

(n−1))
∼= e1

(n) SPn χ1 SP(1)
n−1 e(1)

(n−1)χ1 ⊆ e1
(n) SPn χ1.
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It follows from the form of the image of e1
(n) in the SP representation (see

[Hamermesh 1962; Martin 1992, Appendix B; Martin and Rittenberg 1992]) that
the dimension of e1

(n) SPn χ1 is 1, so the first ∗ is 1. Specifically we have for example

e2 =
1
2(1 + p1) 7→


1

1/2 1/2
1/2 1/2

0

 , χ 7→


0

1 −1
0 0

1


and

e3 7→
1
3



3
1 1 1
1 1 1
1 1 1

0 0 0
0 0 0
0 0 0

0


, χ1 7→



0
0

1 −1
0 0

1 −1 0
0 0 0
0 0 1

1


where we have reordered the basis into fixed charge sectors, i.e., as 111, 112, 121,
211, 122, 212, 221, 222 (the charge of a basis element is #(1)−#(2), where #(1) is
the number of 1’s [Baxter 1982; Martin 1992]). Note from the construction that
charge is conserved in SP, so each charge sector is a submodule. We see that in
each charge sector except (n−1, 1) we have that either the image of e1

(n) is zero or
the image of χ1 is zero. Finally in the (n−1, 1) sector both of these have rank 1.
We deduce that e1

n Aχ1 is 1-dimensional as required.
Similarly we have to consider

Gχ Gn−1
χ (SPn−2 e1

(n−2))
∼= SPn χ1 fχ f n−1

χ (SPn−2 e1
(n−2))

∼= SPn χ1 fχ (χ1 SP(1)
n−2 e(1)

(n−2)χ1)

= SPn χ1χ1χ
(1)
1 SP(2)

n−2 e(2)
(n−2)χ

(1)
1 χ1,

(NB χ
(1)
1 = χ2) giving

e1
(n) SPn Gχ Gχ (SPn−2 e1

(n−2))
∼= e1

(n) SPn fχ fχ (SPn−2 e1
(n−2)) = e1

(n) SPn χ1χ2 . . . .
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We have, in the charge block basis,

χ2 7→



0
1 −1

0 0
0 0

1 0 0
0 1 −1
0 0 0

1


, χ1χ2 7→



0
0 0

0 0
0 0

1 −1 1
0 0 0
0 0 0

1


(in general for a nonzero entry in χ1χ2 we need basis elements with 2 in the first
and second position) so

e1
(n) SPn χ1χ2 = 0.

Remark. Indeed we can verify that e1
(n)χ2χ1 = 0 holds in LHn) so the second ∗

and indeed the other ∗s in (5-13) are all zero. We have verified the inductive step
for (ii).

Statement (iii) may be deduced from (i,ii) as follows. Note that we have n iso-
morphism classes in the decomposition, and their multiplicities are the dimensions
of the hook irreps of Sn in the natural order. On the other hand the n+1 charge
blocks of the SP representation are each either an irrep or contains two irreps, since
each contains one or two irreps upon restricting to Sn . The first is an irrep (since
dimension 1). By the proof of (ii) the second contains the first irrep, so two irreps
in total, and the other again has the same dimension as the corresponding Sn hook
representation. Furthermore no other block contains the first irrep so this block
must be indecomposable (else the SP representation could not be faithful, which it
is by definition). Proceeding through the blocks then by (ii) the first n of them are
a complete set of projective modules, so each one except the first and last contains
two simple modules (“adjacent” in the hook order). But then by the construction of
the Pascal triangle and (ii) these simple modules have the same dimension as the
corresponding Sn irreps, and (iii) follows. □

6. On representation theory of LHn

Combining (5-2) with (5-5) and Theorem 5.8 we have

dim(SPn(t ̸= 1)) = v1Un−1


1
1 1

1 1
1 1

. . .
. . .

 (v1Un−1)T
=

(
2n − 1
n − 1

)
=

1
2

(
2n
n

)
.
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t = 1 t = −1 t2
̸= 1 t ̸= 1 irreps/dimensions

n dim dim dim ss dim –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6

1 1 1 1 1 1
2 3 3 3 2 1 1
3 15 11 10 6 1 2 1
4 114 42 35 20 1 3 3 1
5 1170 163 126 70 1 4 6 4 1
6 15570 638 462 252 1 5 10 10 5 1
7 2510 1716 924 1 6 15 20 15 6 1

Table 1. A summary of what we learn for the algebra dimensions,
and irreducible reps, of LHn . The irrep labels here are given by
(n − i, 1i ) 7→ n − 2i − 1.

NB we have used the obvious “global” limit of all the Cartan matrices (it is a
coincidence that this and the U matrix are similar).

Given a vector v we write Diag(v) for the diagonal matrix with v down the
diagonal. Let pn be the vector with the n-th row of Pascal’s triangle as the entries,
thus for example p4

= (1, 3, 3, 1). We have

Mp
n := Diag(pn)Mn Diag(pn)

(examples are given in (6-2) below) and the dimension is the sum of all the entries.
The closed form follows readily from this. Also from Theorem 5.8 we have:

Corollary 6.1. For t ̸= 1 the Morita class of SPn is of the path algebra with An

quiver (directed 1 → 2 → · · · → n) and relations given by vanishing of all proper
paths of length 2. In particular the radical-squared vanishes.

6A. Properties determined from Theorem 5.8 and direct calculation in low rank.
Our results for LHn may be neatly given as follows. Firstly,

Proposition 6.2. For t2
̸= 1 and n < 8,

LHn ∼= SPn .

Proof. Here we can compute dimensions directly, which saturates the bound on the
kernel. □

Conjecture 6.3. For t2
̸= 1,

LHn ∼= SPn .
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Combining (5-2) with (5-5), Theorems 5.8 and 6.3 we have the conjecture

dim(LHn(t2
̸=1))=v1Un−1


1
1 1

1 1
1 1

. . .
. . .

 (v1Un−1)T
=

(
2n − 1
n − 1

)
=

1
2

(
2n
n

)
.

For t = −1 we note that SPn is generally a proper quotient of LHn , and that LHn

has larger radical (the square does not vanish). We define the semiinfinite matrix

C(LH(t = −1)) =


1
1 1
1 1 1
1 1 1 1
...

...
...

...
. . .


and conjecture that the Cartan matrix C(LHn(t = −1)) is this truncated at n × n
(i.e., the quiver is the same as the generic case, but without quotient relations); and
thus we conjecture

(6-1) dim(LHn(t = −1)) = v1Un−1


1
1 1
1 1 1
1 1 1 1
...

...
...

...
. . .

 (v1Un−1)T
=

n2
+

(2n−2
n−1

)
2

;

see OEIS A032443. Note that our calculations verify this for n ≤ 7.
For t = 1 we see that LHn(t = 1) has semisimple quotient at least as big as CSn ,

which is of dimension n!. Indeed, in this case the quotient by the relation σi = ρi

is precisely CSn , since in this case σ 2
i = 1. For n ≤ 4 we have computationally

verified that the semisimple subalgebra of LHn(t = 1) is precisely CSn , and we
conjecture that this is the case for all n. The Jacobson radical grows quite quickly
however, and we do not have a conjecture on the general structure.

Observe that the numbers in Table 1 follow the conjectured patterns. Since the
vector v1 has finite support the nominally infinite sums above are all finite. To
inspect the supported part, in the generic case consider matrices Mp

n (n = 2, 3, 4, 5)

(6-2)
(

1
1 1

)
,

1
2 22

2 1

 ,


1
3 33

9 33

3 1

 ,


1
4 42

24 62

24 42

4 1

 .
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Here the semisimple dimension is given by the sum down the diagonal and the
radical dimension is given by the sum in the off-diagonal.

For t = −1

(
1
1 1

)
,

1
2 22

1 2 1

 ,


1
3 33

3 9 33

1 3 3 1

 ,


1
4 42

6 24 62

4 16 24 42

1 4 6 4 1

 .

6B. On χ elements. Let us define

(6-3) χ (m+1)
= (σ1 − ρ1)(σ2 − ρ2) . . . (σm − ρm),

understood as an element in LHn with n >m. Thus in particular χ (2)
=χ1. Similarly

for sequence X = (x1, x2, . . . , xk) define

(6-4) χ (X)
= (σx1 − ρx1)(σx2 − ρx2) · · · (σxk − ρxk ),

and

(6-5) χ
(m+1)
− = (σm − ρm)(σm−1 − ρm−1) · · · (σ2 − ρ2)(σ1 − ρ1).

It is easy to verify that if X is nonincreasing then χ (X)χ (X)
= (1 − t)kχ (X). Thus

(for t ̸= 1) the nonincreasing cases can all be normalised as idempotents. However
it is also easy to check that no increasing case can. (A nice illustration of the
“chirality” present in the defining relations.)

Observe that imposing the relation σ1 = ρ1 in LHn forces σ1 = 1, unless t = 1.
Thus the quotient algebra

(6-6) LHn /χ (2) ∼= k, t ̸= 1

i.e., only the trivial, or label λ = +n, irrep survives. And the same holds for SPn .
The following has been checked up to rank 5.

Conjecture 6.4. The structure of the quotient LHn /χ ( j+1) is given by the j × j
truncation of Mp

n .

7. Discussion and avenues for future work

Above we give answers to the main structural questions for SPn and LHn . But
exploration of generalisations is also well-motivated, since these algebras (even
taken together with the constructions discussed in [Kádár et al. 2017]) cover a
relatively small quotient inside Rep(LBn). With this in mind, there are a number of
other questions worth addressing around SPn and LHn , offering clues on generali-
sation, and hence towards understanding more of the structure of the group algebra.
Remark 3.6 suggests that for most values of t we obtain larger finite dimensional
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quotients by eliminating one of the local relations (3-12) or (3-13). Computational
experiments suggest that for t = 0 eliminating (3-13) yields infinite dimensional
algebras. This parameter-dependence should be further explored.

In light of the results of [Reutter 2020] the nonsemisimplicity of LHn is an impor-
tant feature, rather than a shortcoming. Extracting topological information from the
nonsemisimple part requires some further work, as Markov traces typically “see” the
semisimple part. Another aspect of our work is the (conjectural) localisation of the
regular representation of LHn . It is worth pointing out that localisations of unitary
sequences of Bn representations are relatively rare, conjecturally corresponding to
representations with finite braid group image [Rowell and Wang 2012; Galindo et al.
2013]. Since LHn is nonsemisimple and hence nonunitary this does not contradict
this conjectural relationship, but gives us some hope that localisations are possible
for other parameter choices and other quotients.

The quotient of LBn by the relation σi
2
= 1 is a potentially interesting infinite

group, which we call the mixed double symmetric group MDSn . The reason for
this nomenclature is that MDSn is a quotient of the free product of two copies of
the symmetric group. In particular, MDSn surjects onto Sn by σi → ρi . It is of
special interest here as LHn(1) is a quotient of Z[MDSn]. We expect it could be of
quite general interest.

In [Kádár et al. 2017] constructions are developed based on BMW algebras, but
still starting from “classical” precepts. It would be very interesting to meld the
super-Burau–Rittenberg construction to the KMRW construction. For example, one
might try to use cubic local (eigenvalue) relations among the generators ρi , σi to
obtain finite dimensional quotients, possibly inspired by the relations satisfied by a
subsequence of LBn lifts of BMW algebra representations.

Appendix: Preparatory arithmetic and notation for left ideals

AA. Symmetric group and Hecke algebra arithmetic. Recall Young’s (anti)
symmetrisers in kSn . Unnormalised in ZSn they are

(A-1) Y n
±

=

∑
g∈Sn

(±1)len(g)g

where len(g) is the usual Coxeter length function. If k has characteristic 0 then
kSn is semisimple and these elements are simply the (unnormalised) idempotents
corresponding to the trivial and alternating representations respectively. Note that
exactly the same classical construction works for the Hecke algebra over any field
where it is semisimple. (The corresponding idempotents are sometimes called Jones–
Wenzl projectors.) Specifically (see e.g., [Curtis and Reiner 1981, Section 9B])

Xn
±

=

∑
g∈Sn

(−λ∓)− len(g)Tg, i.e., X2
−

= 1 − σ1, X2
+

= 1 + t−1σ1, . . .
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where for us λ− = −t and λ+ = 1 (the apparent flip of labels is just because we
use non-Lusztig scaling), and Tg is the product of generators obtained by writing g
in reduced form then applying ρi 7→ Ti .

Working in kSn+m we understand Y n
±

and translates such as Y n(1)
+ in the obvious

way. Note then that we have many identities like

(A-2) Y 2
+

Y n
+

= 2Y n
+
, Y a(1)Y n

+
= a!Y n

+
(a < n).

Recall 3n denotes the set of integer partitions of n. Over the rational field we
have a decomposition of 1 ∈ kSn into primitive central idempotents

(A-3) 1 =

∑
λ∈3n

ϵλ

where each ϵλ is a known unique element; see e.g., [Cohn 1977, Section 7.6] or
[Curtis and Reiner 1981] for gentle expositions. There is a further (not generally
unique) decomposition of each ϵλ into primitive orthogonal idempotents

(A-4) ϵλ =

dimλ∑
i=1

ei
λ

where dimλ is the number of walks from the root to λ on the directed Young graph.
The elements ei

λ are conjugate to each other. The elements ei
λ are not uniquely

defined in general. Two possible constructions of one for each λ are exemplified
pictorially by (case λ = 442)

(A-5) e1
λ = cλ , ê1

λ = cλ

where an undecorated box is a symmetriser and a “−” decorated box an antisym-
metriser, and the factor cλ is just a scalar. (NB For the moment we write e1

λ instead
of e1

λ for this specific choice.) In particular though, e1
(n) is unique: e1

(n) =
1
n!

Y n
+

. (The
whole story lifts to the Hecke case; see e.g., [Martin 1991] for a gentle exposition.)

An idempotent decomposition of 1 in a subalgebra B of an algebra A is of course
a decomposition in A. Thus in particular we can take an idempotent in kSn and
consider it as an idempotent in kSn+1 by the inclusion that is natural from the
presentation (pi 7→ pi ). Understanding e1

λ with λ ⊢ n in kSn+1 in this way, a useful
property in our k = C case will be

(A-6) e j
λ =

∑
µ∈λ+

e′

µ
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where λ+ denotes the set of partitions obtained from λ by adding a box, and the
prime indicates that we identify this idempotent only up to equivalence. (Various
proofs exist. For example note that the existence of such a decomposition follows
from the induction rules for Sn ↪→ Sn+1.) For example

e1
(2,2) = e′

(3,2) + e′

(2,2,1).
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BACKSTRÖM ALGEBRAS

YURIY DROZD

We introduce Backström pairs and Backström rings, study their derived
categories and construct for them a sort of categorical resolutions. For the
latter we define the global dimension, construct a sort of semiorthogonal
decomposition of the derived category and deduce that the derived dimension
of a Backström ring is at most 2. Using this semiorthogonal decomposition,
we define a description of the derived category as the category of elements of
a special bimodule. We also construct a partial tilting for a Backström pair
to a ring of triangular matrices and define the global dimension of the latter.

Introduction

Backström orders were introduced in [Ringel and Roggenkamp 1979], where it
was shown that their representations are in correspondence with those of quivers
or species. A special class of Backström orders are nodal orders, which appeared
(without this name) in [Drozd 1990] as such pure noetherian algebras that the
classification of their finitely generated modules is tame. In [Burban and Drozd
2004] tameness was also proved for the derived categories of nodal orders. Global
analogues of nodal algebras, called nodal curves, were considered in [Burban and
Drozd 2011; Drozd and Voloshyn 2012; Voloshyn and Drozd 2013]. Namely, in
[Burban and Drozd 2011] a sort of tilting theory for such curves was developed,
which related them to some quasihereditary finite dimensional algebras. In [Drozd
and Voloshyn 2012] a criterion was found for a nodal curve to be tame with respect
to the classification of vector bundles, and in [Voloshyn and Drozd 2013] it was
proved that the same class of curves has tame derived categories. It was clear that
the tilting theory of [Burban and Drozd 2011] can be extended to a general situation,
namely, to Backström curves, i.e., noncommutative curves having Backström orders
as their localizations. Nodal orders and related gentle algebras appear in studying
mirror symmetry, see for instance, [Lekili and Polishchuk 2018]. Finite dimensional
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analogues of nodal orders, called nodal algebras, were introduced in [Drozd and
Zembyk 2013; Zembyk 2014]. In the latter paper their structure was completely
described. In [Zembyk 2015] it was shown that certain important classes of algebras,
such as gentle and skewed-gentle algebras, are nodal. In [Burban and Drozd 2017]
a tilting theory was developed for nodal algebras, which was applied to the study
of derived categories of gentle and skewed-gentle algebras.

This paper is devoted to a tilting theory for Backström rings, which are a straight-
forward generalization of Backström orders and algebras.

In Section 1, we propose a variant of partial tilting, which generalizes the
technique of minors from [Burban et al. 2017].

In Section 2, we introduce Backström pairs, which are pairs of semiperfect rings
H ⊇ A with a common radical; (piecewise) Backström rings are likewise intro-
duced as those rings A that occur in (piecewise) Backström pairs with (piecewise)
hereditary H. We construct the Auslander envelope Ã of a Backström pair and
calculate its global dimension. It turns out that this global dimension only depends
on the global dimension of H. In particular, Auslander envelopes for Backström
rings are of global dimension at most 2.

In Section 3, we apply the tilting technique to show that the derived category
of the algebra A is connected by a recollement with the derived category of its
Auslander envelope. This implies that the derived dimension of A in the sense of
[Rouquier 2008] is not greater than that of the Auslander envelope.

In Section 4, we consider a recollement between the derived categories of the
algebra H and of the Auslander envelope. It is used to calculate the derived
dimension of the Auslander envelope, thus obtaining an upper bound for the derived
dimension of the algebra A. In particular, we prove that the derived dimension
of a Backström or piecewise Backström algebra is at most 2. Moreover, if A
is a Backström or piecewise Backström algebra of Dynkin type, then either it is
piecewise hereditary of Dynkin type, so der.dim A = 0, or else der.dim A = 1.

In Section 5, we establish an equivalence between the category D( Ã) and a
bimodule category. This gives a useful instrument for calculations in this derived
category. (See, for instance, [Bekkert et al. 2003; Bekkert and Merklen 2003;
Burban and Drozd 2004; 2006; 2017; Voloshyn and Drozd 2013].)

In Section 6, we consider another partial tilting for the Auslander envelope Ã of a
Backström pair, relating its derived category by a recollement to the derived category
of an algebra B of triangular matrices which looks simpler than the Auslander
algebra. In this case, we calculate explicitly the global dimension of B and the
kernel of the partial tilting functor

F : D(B)→ D(A).
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1. Partial tilting

Let T be a triangulated category, R ⊆ Ob T . We denote by Tri(R) the smallest
strictly full triangulated subcategory containing R that is closed under coproducts
(this means that if a coproduct of objects from Tri(R) exists in T , it belongs to
Tri(R)). For a DG-category R we denote by D(R) its derived category [Keller
1994]. The following result is a generalization of [Lunts 2010, Proposition 2.6]:

Theorem 1.1. Let R be a subset of the set of compact objects of Ob D(A ),
where A is a Grothendieck category. We consider the DG-category R with the
set of objects R and the sets of morphisms R(T, R) = RHom(T, R). Define
the functor F : D(A )→ D(R op) by mapping a complex C to the DG-module
FC = RHomD(A )(−,C) restricted onto R.

(1) The restriction of F onto Tri(R) is an equivalence Tri(R)→ D(R op).

(2) There is a recollement diagram in the sense of [Beı̆linson et al. 1982, 1.4.3]

(1-1) Ker F I // D(A )
I∗tt

I!
jj

F // D(R op),
F∗

tt

F!
jj

where I is the embedding.1

Recall that this means that the following conditions hold:

(a) F and I are exact.
(b) FI = 0.
(c) F∗ and F ! are left and right adjoint functors to F , respectively.
(d) Both adjunction morphisms η : IdD(R op) → FF∗ and ζ : FF!

→ IdD(R op) are
isomorphisms.

(e) The same holds for the triple (I, I∗, I!).

(Note that Condition 1.4.3.4 from [Beı̆linson et al. 1982] is a consequence of
the other ones; see [Neeman 2001, 9.2].)

If R generates D(A ), we obtain an equivalence D(A ) ≃ D(R op), as in [Lunts
2010]. If R consists of one object R, we obtain an equivalence Tri(R)≃ D(Rop),
where R = RHom(R, R).

Proof. (1) We identify D(A ) with the homotopy category I (A ) of K-injective
complexes, i.e., complexes I such that Hom(C, I ) is acyclic for every acyclic
complex C , and suppose that R⊆ I (A ). Then, RHom coincides with Hom within
the category I (A ); so, for C ∈ I (A ), FC = HomI (A )(−,C)) restricted onto R.
The full subcategory of I (A ) consisting of complexes C such that the natural map
HomI (A )(R,C)→ HomD(R op)(FR, FC) is bijective for all R ∈ R contains R, is
strictly full, triangulated and closed under coproducts, since all objects from R are

1Note that R is not necessarily recollement-defining in the sense of [Nicolás and Saorín 2009].
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compact. Therefore, it contains Tri(R). Quite analogously, the full subcategory of
complexes C such that the natural map HomI (A )(C,C ′)→ Hom I (A )(FC, FC ′)

is bijective for every C ′
∈ Tri(R) also contains Tri(R). Hence, the restriction of

F onto Tri(R) is fully faithful. Moreover, as the functors HomR(−, R), where R
runs through R, generate D(R op), the functor F is essentially surjective. Therefore,
restricted to Tri(R), it gives an equivalence Tri(R)→ D(R).

(2) Note that D(R op) is cocomplete and compactly generated, hence satisfies
the Brown representability theorem [Neeman 2001, Theorem 8.3.3]. Therefore,
it is true for Tri(R) too. Then, [Neeman 2001, Proposition 9.1.19] implies that
a Bowsfield localization functor exists for Tri(R) ⊆ D(A ) and [Neeman 2001,
Proposition 9.1.18] implies that the embedding E : Tri(R) → D(A ) has a right
adjoint 2 : D(A )→ Tri(R). Let F′

: D(R op)→ Tri(R) be a quasi-inverse to the
restriction of F onto Tri(R). In particular, F′ is a left adjoint to this restriction and
the adjunction FF′

→ IdD(R op) is an isomorphism. Then,

FC = HomI (A )(−,C)|R ≃ HomI (A )(−,2C)|R = F2C.

Set F∗
= EF′. Since F′M ∈ Tri(R) for every M ∈ D(R op),

HomI (A )(F
∗M,C)≃ HomTri(R)(F

′M,2C)

≃ HomD(R op)(M, F2C)≃ HomD(R op)(M, FC),

for any M ∈ D(R op) and C ∈ I(A ). Hence, F∗ is a left adjoint to F. If, moreover,
C ∈ Tri(R), we obtain

HomD(R op)(FF
∗M, FC)≃ HomI (A )(F

∗M,C)≃ HomD(R op)(M, FC).

As F is essentially surjective, this implies that η : FF∗
→ IdD(R op) is an isomor-

phism. As all objects from R are compact, F respects coproducts, hence has a right
adjoint F! [Neeman 2001, Theorem 8.4.4]. Now it follows from [Burban et al. 2017,
Corollary 2.3] that ζ : FF!

→ IdD(R op) is an isomorphism and there is a recollement
diagram (1-1). □

Note that Im F∗
= Tri(R) by construction, but usually Im F!

̸= Tri(R), though it
is equivalent to Tri(R).

Corollary 1.2. Under the conditions and notations of the preceding theorem, sup-
pose that HomD(A )(R, T [m]) = 0 for R, T ∈ R and m ̸= 0. Then, the functor F

induces an equivalence Tri(R) ∼
−→ D(R op), where R is the category with the set

of objects R and the sets of morphisms R(A, B)= HomD(A )(A, B).
In this situation, we call the functor F a partial tilting functor.
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2. Backström pairs

Recall from [Bass 1960; Lambek 1976] that a semiperfect ring is a ring A such that
A/rad A is a semisimple artinian ring and idempotents can be lifted modulo rad A.
Equivalently, as a left (or as a right) A-module, A decomposes into a direct sum of
modules with local endomorphism rings.

Definition 2.1. (1) A Backström pair is a pair of semiperfect rings H ⊇ A such
that rad A = rad H. We denote by C(H, A) the conductor of H in A:

C(H, A)= {α ∈ A | Hα ⊆ A} = ann(H/A)A

(the right subscript A means that we consider H/A as a right A-module). Obviously,
C(H, A)⊇ rad A, so both A/C and H/C are semisimple rings.

(2) We call a ring A a (left) Backström ring (resp. piecewise Backström ring) if
there is a Backström pair H ⊇ A, where the ring H is left hereditary (resp. left
piecewise hereditary [Happel 1988], i.e., derived equivalent to a left hereditary
ring). If, moreover, both A and H are finite dimensional algebras over a field k,
we call A a Backström algebra (resp. piecewise Backström algebra).

Remark 2.2. If e is an idempotent in A, then rad(e Ae) = e(rad A)e, hence, if
H ⊇ A is a Backström pair, so is eHe ⊇ e Ae. This implies that if P is a finitely
generated projective A-module, A′

= EndA P and H ′
= EndH(H ⊗A P), then

H ′
⊇ A′ is also a Backström pair. Note that if H is left hereditary (or piecewise

hereditary), so is H ′, hence A′ is a Backström ring (piecewise Backström ring)
whenever A is. In particular, the notion of Backström (or piecewise Backström)
ring is Morita invariant. Note also that if H is left hereditary and noetherian, it is
also right hereditary, so Aop is also a Backström ring (piecewise Backström ring).

Examples 2.3. (1) An important example of Backström algebras are nodal algebras
introduced in [Drozd and Zembyk 2013; Zembyk 2014]. By definition, they are
finite dimensional algebras such that there is a Backström pair H ⊇ A, where H
is a hereditary algebra and lengthA(H ⊗A U ) ≤ 2 for every simple A-module U.
Their structure was completely described in [Zembyk 2014].

(2) Recall that a k-algebra A is called gentle [Assem and Skowroński 1987] if
A ≃ k0/J , where 0 is a finite quiver (oriented graph) and J is an ideal in the
path algebra k0 such that (J+)

2
⊇ J ⊇ (J+)

k for some k, where J+ is the ideal
generated by all arrows, and the following conditions hold:
(a) For every vertex i ∈ Ver0 there are at most two arrows starting at i and at most

two arrows ending at i .
(b) If an arrow a starts at i (resp. ends at i) and arrows b1, b2 end at i (resp. start

at i), then either ab1 = 0 or ab2 = 0 (resp. either b1a = 0 or b2a = 0), but not
both.
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(c) The ideal J is generated by products of arrows of the sort ab.

It is proved in [Zembyk 2015] that such algebras are nodal, hence Backström
algebras. The same is true for skewed-gentle algebras [Geißand de la Peña 1999]
obtained from gentle algebras by blowing up some vertices.

(3) Backström orders are orders A over a discrete valuation ring such that there is
a Backström pair H ⊇ A, where H is a hereditary order. They were considered in
[Ringel and Roggenkamp 1979].

(4) Let H = T (n, k) be the ring of upper triangular n × n matrices over a field
k and A = UT(n, k) be its subring of unitriangular matrices M, i.e., such that all
diagonal elements of M are equal. Then, H is hereditary and rad H = rad A, hence
A is a Backström algebra. In this case, C(H, A)= rad A.

(5) 3n = k[x1, x2, . . . , xn]/(x1, x2, . . . , xn)
2 embeds into H =

∏n
i=1 k0i , where

0i = ·
ai
→· (xi maps to ai ). Obviously, under this embedding rad3n = rad H, so 3n

is a Backström algebra.

We consider a fixed Backström pair H ⊇ A, set r = rad A = rad H and denote
by C the conductor C(H, A). Obviously, C is a two-sided A-ideal and the biggest
left H-ideal contained in A. Actually, it even turns out to be a two-sided H-ideal
and its definition is left-right symmetric.

Lemma 2.4. Let R ⊆ S be semisimple rings, I = {α ∈ R | Sα ⊆ R}. Then, I is a
two-sided S-ideal.

Proof. Obviously, I is a left S-ideal and a two-sided R-ideal. As R is semisimple,
I = Re for some central idempotent e ∈ R. Then, Se ⊆ Re, so Se = Re = eR
and (1 − e)Se = 0. Hence, eS(1 − e) is a left ideal in S and (eS(1 − e))2 = 0, so
eS(1 − e)= 0 and I = Se = eS is also a right S-ideal. □

Proposition 2.5. C is a two-sided H-ideal. It is the biggest H-ideal contained
in A. Therefore, it coincides with the set {α ∈ A | αH ⊆ A} or with annA(H/A)
considered as a left A-module.

Proof. It follows from the preceding lemma applied to the rings A/rad A and
H/rad H. □

In what follows we assume that A ̸= H, so C ̸= A. To calculate C, we con-
sider a decomposition A =

⊕m
i=1 Ai , where Ai are indecomposable projective left

A-modules. Arrange them so that H Ai ̸= Ai for 1 ≤ i ≤ r and H Ai = Ai for
r < i ≤ m, and set A0

=
⊕r

i=1 Ai , H 0
= H A0 and A1

=
⊕m

i=r+1 Ai = H A1. Then,
A = A0

⊕ A1 and H = H 0
⊕ A1 (possibly, r = m, so A0

= A and H 0
= H).

Let A0
= Ae0 and A1

= Ae1, where e0 and e1 are orthogonal idempotents and
e0 + e1 = 1. Set Aa

b = eb Aea and Ha
b = eb Hea , where a, b ∈ {0, 1}. Note that

A1
b = H 1

b and A0
1 = H 0

1. As A0 and A1 have no isomorphic direct summands,
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Aa
b ⊆ rad A if a ̸= b. Hence, if we set ra

= rad Aa(a = 0, 1) and consider the Pierce
decomposition of the ring A

A =

(
A0

0 A1
0

A0
1 A1

1

)
,

the Pierce decomposition of the ideal r becomes

r =

(
r0

0 A1
0

A0
1 r1

1

)
,

where ra
a = rad Aa

a , a = 0, 1. This implies that H 0 and H 1 have no isomorphic
direct summands, the Pierce decomposition of H is

H =

(
H 0

0 A1
0

A0
1 A1

1

)

and r0
0 = rad H 0

0 . Now, one easily sees that an element a =
(
α
γ
β
δ

)
belongs to C if

and only if H 0α ⊆ A0. We claim that in that case H 0α ⊆ rad A0. Otherwise H 0α

contains an idempotent, hence a direct summand of A0, which is isomorphic to
some Ai with 1 ≤ i ≤ r . This is impossible, since H Ai ̸= Ai . Therefore, α ∈ r0

0
and we obtain the following result:

Proposition 2.6. The Pierce decomposition of the ideal C is

C =

(
r0

0 A1
0

A0
1 A1

1

)
.

Definition 2.7. Analogously to [Burban and Drozd 2011], we define the Auslander
envelope of the Backström pair H ⊇ A as the ring Ã of 2 × 2 matrices of the form

Ã =

(
A H
C H

)
with the usual matrix multiplication.

Using Pierce decompositions of A, H and C, we also present Ã as the ring of
4 × 4 matrices

(2-1) Ã =


A0

0 A1
0 H 0

0 A1
0

A0
1 A1

1 A0
1 A1

1

r0
0 A1

0 H 0
0 A1

0

A0
1 A1

1 A0
1 A1

1

.
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We also define H̃ as the ring of 4 × 4 matrices of the form

H̃ =

(
H H
C H

)
or H̃ =


H 0

0 A1
0 H 0

0 A1
0

A0
1 A1

1 A0
1 A1

1

r0
0 A1

0 H 0
0 A1

0

A0
1 A1

1 A0
1 A1

1

.
Obviously, rad H̃ = rad Ã, so H̃ ⊇ Ã is also a Backström pair. Ã is left noetherian
if and only if A is left noetherian and H is finitely generated as a left A-module.

In the noetherian case one can calculate the global dimensions of Ã and H̃. It
turns out that it only depends on H.

Theorem 2.8. Suppose that either A (hence also H) is left perfect or A is left noe-
therian and H is finitely generated as a left A-module (hence also left noetherian).
Then

l.gl.dim Ã = 1 + max(1 + pr.dimH r0, pr.dimH r1)

=

{
1 + l.gl.dim H if pr.dimH r0

≥ pr.dimH r1,

l.gl.dim H if pr.dimH r0 < pr.dimH r1

and
l.gl.dim H̃ = l.gl.dim H,

where we set pr.dim 0 = −1. In particular, if A is a Backström ring, so is Ã, and if
A is not left hereditary, then l.gl.dim Ã = 2.2

For instance, this is the case for nodal (in particular, gentle or skewed-gentle)
algebras (Examples 2.3).

Proof. Under these conditions Ã and H̃ are either left perfect or left noetherian.
We recall that if a ring 3 is left perfect or left noetherian and semiperfect, then
l.gl.dim3= pr.dim3(3/rad3)= 1+pr.dim3 rad3. The 4×4 matrix presentation
(2-1) of Ã implies that the corresponding presentation of rad Ã is

(2-2) rad Ã =


r0

0 A1
0 H 0

0 A1
0

A0
1 r1

1 A0
1 r1

1

r0
0 A1

0 r0
0 A1

0

A0
1 r1

1 A0
1 r1

1

.
An Ã-module M is given by a quadruple (M ′,M ′′, φ, ψ), where M ′ is an A-module,
M ′′ is an H-module, ψ : M ′′

→ M ′ is a homomorphism of A-modules and
φ : C ⊗A M ′

→ M ′′ is a homomorphism of H-modules. Namely, M ′
= e′M,

M ′′
= e′′M, where e′

=
( 1

0
0
0

)
, e′′

=
( 0

0
0
1

)
, ψ(m′′)=

( 0
0

1
0

)
m′′ and φ(c⊗m′)=

( 0
c

0
0

)
m′.

2Note that if Ã is left hereditary, so is A = e′ Ãe′ [Sandomierski 1969].
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We frequently write M =
( M ′

M ′′

)
, not mentioning φ and ψ . For an H-module N

we define the Ã-module N+
=
( N

N

)
. Then, N 7→ N+ is an exact functor mapping

projective modules to projective ones, since H+
=
( H

H
)

is a projective Ã-module.
We denote by L i and by Ri the i-th column of the presentations (2-1) and (2-2),

respectively. Then, R1
= (r0)+ and R2

= R4
= (r1)+, where ra

= rea . If

· · · → Fk → · · · → F1 → F0 → N → 0

is a minimal projective resolution of an H-module N,

· · · → F+

k → · · · → F+

1 → F+

0 → N+
→ 0

is a minimal projective resolution of N+, so pr.dim Ã N+
= pr.dimH N. In particular,

pr.dim Ã R1
= pr.dimH r0 and pr.dim Ã R2

= pr.dimH r1. For the module R3 we
have an exact sequence

(2-3) 0 → (r0)+ → R3
→

(
H 0/r0

0

)
→ 0.

Note that H 0/r0 is a semisimple A-module and e1(H 0/r0)= 0, hence it contains
the same simple direct summands as A0/r0. The same is true for(

H 0/r0

0

)
and

(
A0/r0

0

)
= L1/R1.

Hence,

pr.dim Ã

(
H 0/r0

0

)
= 1 + pr.dim Ã R1

= 1 + pr.dimH r0.

Therefore, the exact sequence (2-3) shows that pr.dim Ã R3
= 1 + pr.dimH r0 and

pr.dim Ã rad Ã = max(1 + pr.dimH r0, pr.dimH r1),

which gives the necessary result for Ã. On the other hand, R3 is a projective
H̃-module, whence l.gl.dim H̃ = l.gl.dim H. □

3. The structure of derived categories

In what follows we denote by D(A) the derived category D(A-Mod). We denote
by D f (A) the full subcategory of D(A) consisting of complexes quasi-isomorphic
to complexes of finitely generated projective modules. If A is left noetherian, it
coincides with the derived category of the category A-mod of finitely generated
A-modules. We also use the usual superscripts +,−, b. By Perf(A) we denote the
full subcategory of perfect complexes from D(A), i.e., complexes quasi-isomorphic
to finite complexes of finitely generated projective modules. It coincides with
the full subcategory of compact objects in D(A) [Rouquier 2008]. If A is left
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noetherian, an A-module M belongs to Perf(A) if and only if it is finitely generated
and of finite projective dimension.

There are close relations between the categories D(A), D(H) and D( Ã) based
on the following construction [Burban et al. 2017]:

Let P =
( A

C
)
. It is a projective Ã-module and End P ≃ Aop, so it can be

considered as a right A-module. Consider the functors

F = Hom Ã(P,−)≃ P∨
⊗ Ã − : Ã-Mod → A-Mod,

F∗
= P ⊗A − : A-Mod → Ã-Mod,

F!
= HomA(P∨,−) : A-Mod → Ã-Mod,

where P∨
= Hom Ã(P, Ã) ≃ (A H) is the dual right projective Ã-module, the

functor F is exact, F∗ is its left adjoint and F! is its right adjoint. Moreover,
the adjunction morphisms FF∗

→ IdA-Mod and IdA-Mod → FF! are isomorphisms
[Burban et al. 2017, Theorem 4.3]. The functors F∗ and F! are fully faithful and
F is essentially surjective, i.e., every A-module is isomorphic to FM for some
Ã-module M. Ker F is a Serre subcategory of Ã-Mod equivalent to H-Mod, where
H = H/C ≃ Ã/

( A
C

H
C
)
. The embedding functor I : Ker F → Ã-Mod has a left

adjoint I∗ and a right adjoint I! and we obtain a recollement diagram

Ker F I // Ã-Mod
I∗tt

I!
jj

F // A-Mod.
F∗

ss

F!
jj

As the functor F is exact, it extends to the functor between the derived categories
DF : D( Ã)→ D(A) acting on complexes componentwise. The derived functors
LF∗ and RF! are its left and right adjoints, respectively, the adjunction morphisms
IdD(A) → DF · LF∗ and DF · LF∗

→ IdD(A) are again isomorphisms and we have a
recollement diagram

KerDF DI // D( Ã)
LI∗ss

RI!
jj

DF // D(A).
LF∗

tt

RF!
jj

(It also follows from Corollary 1.2.) Here KerDF = DH( Ã), the full subcategory
of complexes whose cohomologies are H-modules, i.e., are annihilated by the ideal( A

C
H
C
)
. Note that, as a rule, it is not equivalent to D(H). From the definition of F

it follows that

KerDF = P⊥
= {C ∈ D( Ã) | HomD( Ã)(P,C[k])= 0 for all k}.

Obviously, DF maps Dσ ( Ã) to Dσ (A) for σ ∈ {+,−, b}, LF∗ maps D−(A) to
D−( Ã) and RF! maps D+(A) to D+( Ã). If Ã is left noetherian, DF maps D f ( Ã)
to D f (A) and LF∗ maps D f (A) to D f ( Ã). Finally, both DF and LF∗ have right
adjoints, hence map compact objects (i.e., perfect complexes) to compact ones.
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On the contrary, usually LF∗ does not map Db(A) to Db( Ã). For instance, it is
definitely so if l.gl.dim Ã < ∞ while l.gl.dim A = ∞ as in Examples 2.3 (4, 5).
If l.gl.dim H is finite, so is l.gl.dim Ã, thus this recollement can be considered as
a sort of categorical resolution of the category D(A). In any case, it is useful for
studying the categories A-Mod and D(A) if we know the structure of the categories
Ã-Mod and D( Ã). For instance, it is so if we are interested in the derived dimension,
i.e., the dimension of the category Db

f (A) in the sense of [Rouquier 2008].

Definition 3.1. Let T be a triangular category and M be a set of objects from T .

(1) We denote by ⟨M⟩ the smallest full subcategory of T containing M and closed
under direct sums, direct summands and shifts (not closed under cones, so not
a triangulated subcategory).

(2) If N is another subset of T , we denote by M †N the set of objects C from T

such that there is an exact triangle A → B → C +
→, where A ∈ M, B ∈ N.

(3) We define ⟨M⟩k recursively, setting ⟨M⟩1 = ⟨M⟩ and ⟨M⟩k+1 = ⟨⟨M⟩ †⟨M⟩k⟩.

(4) The dimension dim T of T is the smallest k such that there is a finite set
of objects M such that ⟨M⟩k+1 = T (if it exists). We call the dimension
dim Db

f (A) the derived dimension of the ring A and denote it by der.dim A.

As the functor F is exact and essentially surjective, the next result is evident:

Proposition 3.2. We have der.dim A ≤ der.dim Ã. Namely, if Db
f ( Ã) = ⟨M⟩k+1,

then Db
f (A)= ⟨DF(M)⟩k+1.

4. Semiorthogonal decomposition

There is another recollement diagram for D( Ã) related to the projective module
Q =

( H
H
)

with End Q ≃ Hop. Namely, we set

G = Hom Ã(Q,−)≃ Q∨
⊗ Ã − : Ã-Mod → H-Mod,

G∗
= Q ⊗H − : H-Mod → Ã-Mod,

G!
= HomH(Q∨,−) : H-Mod → Ã-Mod,

where Q∨
= Hom Ã(Q, Ã)≃ (C H),

DG : D( Ã)→ D(H) is G applied componentwise,

LG∗
: D(A)→ D( Ã) is the left adjoint of DG,

RG!
: D(A)→ D( Ã) is the right adjoint of DG.
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We also set A = A/C ≃ Ã/
(C

C
H
H
)
. Then, we have recollement diagrams

KerG J // Ã-Mod
J∗

tt

J!
jj

G // H-Mod
G∗

ss

G!
jj

and

KerDG DJ // D( Ã)
LJ∗

ss

RJ!
jj

DG // D(H),
LG∗

tt

RG!
jj

where KerG ≃ A-Mod. Since the Ã-ideal (C H) is projective as a right Ã-module,
[Burban et al. 2017, Theorem 4.6] implies that KerDG ≃ D(A).

As usual, this recollement diagram gives semiorthogonal decompositions [Burban
et al. 2017, Corollary 2.6]

(4-1) D( Ã)= (KerDG, Im LG∗)= (ImRG!,KerDG)

with KerDG ≃ D(A) and Im LG∗
≃ ImRG!

≃ D(H) (though usually Im LG∗
̸=

ImRG!).
Recall from [Kuznetsov and Lunts 2015] that a semiorthogonal decomposition

T = (T1,T2), where T1, T2 are full triangulated subcategories of T , means that

HomT (T2, T1)= 0 for all T1 ∈ T1 and T2 ∈ T2,

and for every object T ∈ T there is an exact triangle T1 → T2 → T +
→, where

Ti ∈ Ti .

Lemma 4.1.3 If T = (T1,T2) is a semiorthogonal decomposition of a triangulated
category T , then

dim T ≤ dim T1 + dim T2 + 1.

Proof. First we show that for any subsets M, N of objects of the category T

(4-2) ⟨M⟩k+1 †N⊆ ⟨M⟩ †⟨⟨M⟩k † N ⟩ ⊆ ⟨M⟩ †⟨⟨M⟩ †⟨⟨M⟩ † · · · ⟨⟨M⟩︸ ︷︷ ︸
k+1

†N⟩ · · ·⟩⟩.

Indeed, let C ∈ ⟨M⟩k+1 †N, i.e., there is an exact triangle A → B → C +
→,

where A ∈ ⟨M⟩k+1, B ∈ N. There is also an exact triangle A1 → A → A2
+
→,

where A1 ∈ ⟨M⟩k , A2 ∈ ⟨M⟩. The octahedron axiom implies that there are exact
triangles A1 → B → B ′ +

→ and A2 → B ′
→ C +

→. Therefore, B ′
∈ ⟨M⟩k †N and

C ∈ ⟨M⟩ †⟨⟨M⟩k †N⟩.
Now, let ⟨M⟩k+1 = T1 and ⟨N⟩l+1 = T2. Then, for every T ∈ T there is an exact

triangle T1 → T2 → T +
→, where T1 ∈ ⟨M⟩k+1, T2 ∈ ⟨N⟩l+1. But, according to (4-2),

⟨M⟩k+1 †⟨N⟩l+1 ⊆⟨M∪N⟩k+l+2, so T =⟨M∪N⟩k+l+2 and dim T ≤ k+l +1. □

3In [Psaroudakis 2014, Theorem 7.4] this result is proved in the case when this decomposition
arises from a recollement.
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Since A is semisimple, any indecomposable object from D(A) is just a shifted
simple module, so Db

f (A) = ⟨A⟩ and der.dim A = 0. If H is hereditary, every
indecomposable object from Db

f (H) is a shift of a module. For every module M
there is an exact sequence 0 → P ′

→ P → M → 0 with projective modules P , P ′

and, since H is semiperfect, every indecomposable projective H-module is a direct
summand of H. Hence, Db

f (H)= ⟨H⟩2 and der.dim H ≤ 1.

Corollary 4.2. We have der.dim A ≤ der.dim H + 1. In particular, if A is a
Backström (or piecewise Backström) ring, der.dim A ≤ 2.

A finite dimensional hereditary algebra is said to be of Dynkin type if it has
finitely many isomorphism classes of indecomposable modules. Such algebras, up to
Morita equivalence, correspond to Dynkin diagrams [Dlab and Ringel 1976; Gabriel
1972]. If the derived category of an algebra H is equivalent to the derived category
of a hereditary algebra of Dynkin type, we say that H is piecewise hereditary
of Dynkin type.4 We say that a Backström (or piecewise Backström) algebra A
is of Dynkin type if there is a Backström pair H ⊇ A, where H is a hereditary
(piecewise hereditary) algebra of Dynkin type. For instance, it is so if A is a gentle
or skewed-gentle algebra [Zembyk 2015], or the algebra UT(nk) of unitriangular
matrices over a field (Examples 2.3 (4)), or the algebra3n from Examples 2.3 (5). In
this case, Db

f (H)= ⟨M1,M2, . . . ,Mm⟩1, where M1,M2, . . . ,Mm are all pairwise
nonisomorphic indecomposable H-modules, so der.dim H = 0.

In [Chen et al. 2008] it was proved that der.dim A = 0 for a finite dimensional
algebra A if and only if A is a piecewise hereditary algebra of Dynkin type.

Corollary 4.3. If A is a Backström (or piecewise Backström) algebra of Dynkin
type (for instance, gentle or skewed-gentle), but is not piecewise hereditary of
Dynkin type, then der.dim A = 1.

Example 4.4. The path algebra of the commutative quiver

2 α1

&&

4

1

α0 88

β0
&&

3

γ 88

γ ′ &&

α1α0 = β1β0

2′ β1

88

4′

is a tilted (hence piecewise hereditary) algebra of type D̃5. At the same time it is a
Backström algebra of type A4. Namely, it is a skewed-gentle algebra obtained from
the path algebra of the quiver 1 → 2 → 3 → 4 by blowing up vertices 2 and 4.5

4It is proved in [Happel 1988] that piecewise hereditary algebras of Dynkin type are just iterated
tilted algebras of Dynkin type.

5See [Zembyk 2014] for the construction of blowing up and its relation to nodal algebras.
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5. Relation to bimodule categories

In this section, we explain how a semiorthogonal decomposition allows us to apply
to calculations in a triangulated category the technique of matrix problems, namely,
of bimodule categories, as in [Drozd 2010].

Let A and B be additive categories, U be an A -B-bimodule, i.e., a biadditive
functor A op

×B → Ab. Recall from [Drozd 2010] that the bimodule category or the
category of elements of the bimodule U is the category El(U) whose set of objects is⋃

A∈A ,B∈B U(A, B) and whose morphisms from u ∈ U(A, B) to v ∈ U(A′, B ′) are
the pairs (α, β) such that uα = βv, where α : A′

→ A, β : B → B ′. Here, as usual,
we wrote uα and βv instead of U(α,1B)u and U(1A′,β)v. Bimodule categories
appear when there is a semiorthogonal decomposition of a triangulated category.

Theorem 5.1. Let (A ,B) be a semiorthogonal decomposition of a triangulated
category C . Consider the A -B-bimodule U such that U(A, B) = HomC (A, B),
A ∈ A, B ∈ B. For every f : A → B fix a cone C f, that is, an exact triangle
A

f
→ B

f1
→ C f

f2
→ A[1]. The map f 7→ C f induces an equivalence of categories

C : El(U) ∼
−→ C /J, where J is the ideal of C consisting of morphisms η such that

there are factorizations η= η′ξ = ζη′′, where the source of η′ is in A and the target
of η′′ is in B. Moreover, J 2

= 0, so C induces a bijection between isomorphism
classes of objects from El(U) and from C .6

Proof. As (A ,B) is a semiorthogonal decomposition of C , every object from C

occurs in an exact triangle A f
→ B → C +

→, where A ∈ A , B ∈ B, so f is an
object from El(U) and C ≃ C f . Let f ′

: A′
→ B ′ be another object of El(U) and

(α, β) : f → f ′ be a morphism from El(U). Fix a commutative diagram

(5-1)

A
f
//

α

��

B
f1
//

β

��

C f
f2
//

γ

��

A[1]

α[1]

��

A′
f ′

// B ′
f ′

1
// C f ′

f ′

2
// A′

[1]

It exists, though is not unique. Let γ ′ be another morphism making the diagram
(5-1) commutative and set η = γ − γ ′. Then, η f1 = 0, hence η factors through f2,
and f ′

2η = 0, hence η factors through f ′

1. Thus, η ∈ J. On the other hand, if
η : C f → C f ′ is in J, the decomposition η = η′ξ implies that η f1 = η′ξ f1 = 0
and the decomposition η= ζη′′ implies that f ′

2η= f ′

2ζη
′′
= 0, hence the morphism

γ ′
= γ + η makes the diagram (5-1) commutative. Therefore, the class C(α, β)

of γ modulo J is uniquely defined, so the maps f 7→ C f and (α, β) 7→ C(α, β)

define a functor C : El(U)→ C /J.

6This theorem is a partial case of [Drozd 2010, Theorem 1.1].
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Let now γ : C f → C f ′ be any morphism. Then, f ′

2γ f1 = 0, so γ f1 = f ′

1β

for some β : B → B ′. Hence, there is a morphism α : A → A′ making the
diagram (5-1) commutative, i.e., defining a morphism (α, β) : f → f ′ such that
γ ≡ C(α, β) (mod J ). If (α′, β ′) is another such morphism, f ′

1(β − β ′) = 0, so
β − β ′

= f ′ξ for some ξ : B → A. But ξ = 0, so β = β ′. In the same way
α = α′. Hence, the functor C is fully faithful. As we have already noticed, it is
essentially surjective, and therefore defines an equivalence El(U) ∼

−→ C /J. The
equality J 2

= 0 follows immediately from the definition and the conditions of the
theorem. □

We apply Theorem 5.1 to Backström pairs H ⊆ A such that A is left noetherian
and H is left hereditary and finitely generated as a left A-module. For instance,
it is so in the case of Backström algebras or Backström orders. Then, the ring
Ã is also noetherian and C is projective as a left H-module. According to (4-1),
(KerDG, Im LG∗) is a semiorthogonal decomposition of D( Ã). Moreover, both
G and G∗ map finitely generated modules to finitely generated modules, so the
same is valid if we consider their restrictions onto D f ( Ã) and D f (H). Note
also that G∗ is exact, so G∗ can be applied to complexes componentwise. The
Ã-module G∗M can be identified with the module of columns M+

=
(M

M

)
with

the action of Ã given by matrix multiplication. It gives an equivalence of D(H)
with Im LG∗. As H is left hereditary, every complex from D(H) is equivalent to
a direct sum of shifted modules (see [Keller 2007, Section 2.5]). On the other
hand, KerDG ≃ D(A) and A is semisimple, since C ⊇ r. Hence, every complex
from D(A) is isomorphic to a direct sum of shifted simple A-modules, which
are direct summands of A. So, to calculate the bimodule U, we only have to
calculate Exti

Ã
(A,M+), where M is an H-module. Note also that C+ is a projective

Ã-module, since C is a projective H-module. Therefore, a projective resolution of
A is 0 → C+ ε

→ P → A → 0 and pr.dim Ã A = 1. Hence, we only have to calculate
Hom Ã(A,M+) and Ext1

Ã
(A,M+).

Theorem 5.2. (1) Hom Ã(A,M+)≃ annM C = {u ∈ M | Cu = 0}.

(2) Ext1
Ã
(A,M+)≃ HomH(C,M)/(M/ annM C), where the quotient M/ annM C

embeds into HomH(C,M) if we map an element u ∈ M to the homomorphism
µu : c 7→ cu.

Proof. (1) Hom Ã(A,M+) is identified with the set of homomorphisms φ : P → M+

such that φε= 0. A homomorphism φ : P → M+ is uniquely defined by an element
u ∈ M such that φ

( 1
0

)
=
( u

0

)
. Namely, φ

(a
c

)
=
(au

cu

)
. Obviously, φε = 0 if and only

if Cu = 0, i.e., u ∈ annM C.
(2) Ext1

Ã
(A,M+) ≃ Hom Ã(C

+,M+)/Hom Ã(P,M+)ε. As the functor G∗ is
fully faithful, Hom Ã(C

+,M+) ≃ HomH(C,M). Namely, ψ : C → M induces
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ψ+
: C+

→ M+ mapping
(a

b

)
to
(
ψ(a)
ψ(b)

)
. Let φ : P → M+ correspond, as above,

to an element u ∈ M. Then,

φε

(
a
c

)
=

(
au
cu

)
,

so it equals µu , and Hom Ã(P,M+)ε is identified with M/ annM C embedded into
HomH(C,M) as above. □

Actually, in our case an object E from the category El(U) (therefore, also an
object from Db( Ã)) is given by the vertices and solid arrows of a diagram

An

αn

��

µn

��

ηn

""

An+1

αn+1

��

µn+1

��

ηn+1

##

An+2

αn+2

��

µn+2

��

ηn+3

##

An+3

αn+3

��

µn+3

��

· · ·

Mn
βn
//

γn

WW
Mn+1

βn+1
//

γn+1

VV
Mn+2

βn+2
//

γn+2

VV
Mn+3

γn+3

VV
· · ·

(of arbitrary length), where Ai are A-modules, Mi are H-modules, µi belongs to
Hom Ã(Ai ,M+

i ) and ηi belongs to Ext1
Ã
(Ai ,M+

i−1). A morphism between E and
E′ is given by the dotted arrows, where

αi ∈ HomA(Ai , A′

i )≃ Hom Ã(Ai , A′

i ),

γi ∈ HomH(Mi ,M ′

i )≃ Hom Ã(M
+

i , (M
′

i )
+),

βi ∈ Ext1H(Mi ,M ′

i+1)≃ Ext1Ã(M
+

i , (M
′

i+1)
+).

These morphisms must satisfy the relations

µ′

iαi = γiµi , η′

iαi = γi+1ηi +βiµi .

6. Partial tilting for Backström pairs

Let H ⊆ A be a Backström pair. Consider the ring B of triangular matrices of the
form

B =

(
A H
0 H

)
.

Let e1 =
( 1

0
0
0

)
and e2 =

( 0
0

0
1

)
, and let B1 = Be1 and B2 = Be2 be projective

B-modules given by the first and the second column of B, i.e.,

B1 =

(
A
0

)
, B2 =

(
H
H

)
.
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A B-module M is defined by a triple
(M1

M2
χM
)
, where M1 = e1 M is an A-module,

M2 = e2 M is an H-module and χM : M2 → M1 is an A-homomorphism such that
KerχM ⊇ C M2 (it is necessary since C M1 = 0). Namely, χM is multiplication by( 0

0
1
0

)
. We write an element u ∈ M as a column

( u1
u2

)
, where u1 = e1u, u2 = e2u.

Then, (
a b
0 c

)(
u1

u2

)
=

(
au1 +χM(bu2)

cu2

)
.

A homomorphism α : M → N is defined by two homomorphisms α1 : M1 → N1

and α2 : M2 → N2 such that α1χM = χNα2. We write α =
(
α1
α2

)
.

Proposition 6.1. We have l.gl.dim B = max(l.gl.dim H,w.dim H H + 1).
In particular, if H is left hereditary and H is not flat as a right H-module, then

l.gl.dim B = 2.

Proof. [Palmér and Roos 1973, Theorem 5] shows that l.gl.dim B ≤ n if and only if

l.gl.dim H ≤ n and RnHomA(H ⊗H − ,−)= 0.

As the ring A is semisimple,

RnHomA(H ⊗H − ,−)= HomA(TorH
n (H,−),−).

This implies the first assertion. The second is obvious, since TorH
1 (H,−) = 0 if

and only if H is flat as a right H-module. □

We denote by R the B-module given by the triple
( H/A

H π
)
, where π : H → H/A

is the natural surjection.

Proposition 6.2. (1) EndB R ≃ Aop.

(2) pr.dimB R = 1.

(3) Ext1B(R, R)= 0.
Recall that conditions (2) and (3) mean that R is a partial tilting B-module.

Proof. The minimal projective resolution of R is

0 → B1
ε
→ B2 → R → 0,

where ε is the embedding, which gives (2). Any endomorphism γ of R induces a
commutative diagram:

B1
ε
//

γ1

��

B2

γ2

��

B1
ε
// B2

As EndB B2 ≃ Hop, γ2 is given by multiplication with an element h ∈ H on the right.
If there is a commutative diagram as above, necessarily h ∈ A, which proves (1).
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Finally, a homomorphism α : B1 → R maps the generator
( 1

0

)
of B1 to an element( h̄

0

)
∈ R. If h is a preimage of h̄ in H, then α extends to the homomorphism B2 → R

that maps the generator
( 0

1

)
of B2 to

( 0
h

)
∈ R. This implies (3). □

Now Theorem 1.1 applied to the module R gives the following result:

Theorem 6.3. (1) The functor F = RHom(R,−) induces an equivalence

Tri(R) ∼
−→ D(A).

(2) Ker F consists of complexes C such that the map χH k(C) is bijective for all k.

(3) There is a recollement diagram

Ker F I // D(B)
I∗tt

I!
jj

F // D(A).
F∗

tt

F!
jj

Actually, claim (2) means that a complex C is in Ker F if and only if its coho-
mologies are direct sums of B-modules of the form

(U
U 1U

)
, where U is a simple

H-module.

F is a partial tilting functor in the sense of Corollary 1.2.

Proof. (1) and (3) follow from Proposition 6.2 and Theorem 1.1, since the complex
P : 0 → B1

ε
→ B2 → 0 is perfect, hence compact, and isomorphic to R in D(B).

To find Ker F, consider a complex

C : · → Ck−1 dk−1
−→ Ck dk

→ Ck+1
→ · · · ,

where Ck is defined by a triple
(Ck

1
Ck

2
χk
)

and dk
=
(dk

1
dk

2

)
, where dk

1χk = χk+1dk
2 for

all k. Note that Ci = (Ck
i , dk

i ) (i = 1, 2) are complexes, (χk) is a homomorphism
of complexes and H k(C)=

( H k(C1)

H k(C2)
χ̄k
)
, where χ̄k = χH k(C) is induced by χk . A

homomorphism P →C[k] is a pair of homomorphisms α : B2 →Ck , β : B1 →Ck−1

such that α1π = χkα2, β2 = 0, dk
i αi = 0 (i = 1, 2) and dk−1β1 = α1|A. Let

α2(1) = x ∈ Ck
2 and β1(1) = y ∈ Ck−1

1 . These values completely define α and β.
The conditions for α and β mean that dk

2 x = 0 and dk−1 y = χk x .
This morphism is homotopic to zero if and only if there are maps σ : B2 → Ck−1

and τ : B1 → Ck−2 such that α = dk−1σ and β = σε+ dk−2τ . Again, σ is defined
by the element z = σ2(1) ∈ Ck−1

2 and τ is defined by the element t = τ1(1) ∈ Ck−2
1 .

Then, the conditions for α and β mean that x = dk−1
2 z and y = χk−1z + dk−2

1 t .
Suppose that any homomorphism P → C[k] is homotopic to zero. Let x̄ in

H k(C2) be such that χ̄k(x̄) = 0 and x ∈ Ker dk
2 be a representative of x̄ . Then,

χk(x) = dk−1
1 y for some y ∈ Ck−1, so the pair (x, y) defines a homomorphism

P → C[k]. Therefore, there must be z ∈ Ck−1
2 such that x = dk−1z; thus x̄ = 0 and

χ̄k is injective. Let now ȳ ∈ H k−1(C2) and y ∈ Ck−1
2 be its representative. Then, the

pair (0, y) defines a homomorphism P → C[k], so there must be elements z ∈ Ck−1
2
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and t ∈ Ck−2
1 such that dk−1

1 z = 0 and y = χk−1z + dk−2
1 t . Hence, ȳ = χ̄k−1(z̄), so

χ̄k−1 is surjective. As this holds for all k, we have that all maps χ̄k are bijective.
On the contrary, suppose that all χ̄k are bijective. If a pair (x, y) defines a

homomorphism P → C[k], then χk(x)= dk−1
1 y, so χ̄k(x)= 0. Therefore, x̄ = 0,

i.e., x =dk−1
2 z for some z ∈Ck−1

2 and χk x =dk−1
1 χk−1z. Then, dk−1

1 (y−χk−1z)=0,
hence there is an element z′

∈ Ck−1
2 such that dk−1

2 z′
= 0 and the cohomology class

of y − χk−1z equals χ̄k−1 z̄′, i.e., y − χk−1z = χk−1z′
+ dk−2

1 t for some t . Then,
x = dk−1

2 (z+z′) and y =χk−1(z+z′)+dk−2
1 t , so this homomorphism is homotopic

to zero. □

As usual, we identify the category A-Mod with the full subcategory of D(A)
consisting of the complexes C concentrated in degree 0. The following result shows
how the partial titling functor F behaves with respect to modules:

Corollary 6.4. Let a B-module M be given by the triple
(M1

M2
χM
)
.

(1) FM ∈ A-Mod if and only if χM is surjective. Namely, then FM ≃ KerχM .

(2) FM ∈ A-Mod[1] if and only if χM is injective. Namely, then FM ≃ CokχM [1].

Proof. Note that HomB(B1,M) ≃ M1, HomB(B2,M) ≃ M2 and if φ : B2 → M
maps

( 0
1

)
to
( 0

x

)
, then φε maps

(1
0

)
to
(
χM (x)

0

)
. Therefore, RHomB(R,M) is the

complex
0 → M2

χM
−→ M1 → 0,

which proves the claim. □

Remark 6.5. There are several derived equivalences related to Ã.

(1) If A is a Backström order, it is known (see [Burban et al. 2017]) that the
complex T = B1[1] ⊕ H+, where B1 =

( A
0

)
, is a tilting complex for Ã and

(EndD( Ã))
opT ≃ B, hence Ã is derived equivalent to B. Nevertheless, in the general

situation of Backström rings (even of Backström algebras) this is not so. First of all,
Hom Ã(B1, H+)≃ annH C , so it can happen that HomD( Ã)(T, T [1]) ̸= 0. This is so,
for instance, for the pair (T (n, k),UT(n, k)) from Equation (2-3) (4), since in this
case the matrix unit enn belongs to annH C. This is also so for Equation (2-3) (5).
Moreover, even if annH C = 0, one can see that H ′

= Ext1
Ã
(B1, H+)≃ C−1/C H ,

where C−1
= HomH(C, H) and C H = H/ annH C is naturally embedded into C−1.

Therefore, in this case,

(EndD( Ã) T )op
≃ B′

=

(
A H ′

0 H

)
,

which need not coincide with B (see Example 6.6 below). If H is a hereditary
order, then annH C = 0 and H ′

≃ H , hence B′
≃ B, in accordance with [Burban

et al. 2017].
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(2) On the other hand, set T ′
=
( A

C
H/A

H

)
considered as a left Ã-module. One can

check it is a tilting module for Ã and

(EndD( Ã) T ′)op
≃ B̃ =

(
A H/A
0 A

)
,

hence Ã is derived equivalent to B̃. Unfortunately, this ring can be not so good
from the homological point of view. At least, it is not better than A itself. Namely,
as one can easily check,

l.gl.dim B̃ = max(l.gl.dim A, 1 + pr.dimA(H/A)),

which is either l.gl.dim A or (more often) l.gl.dim A + 1.

(3) One more observation: Consider the right Ã-modules (A 0) and (C H). One
can check that T ′′

= (A 0)[1] ⊕ (C H) is a tilting complex for D( Ãop) and

EndD( Ãop) T ′′
≃ B′′

=

(
A 0
H H

)
,

hence Ãop is derived equivalent to (B′′)op.
Note that the functor P 7→ HomR(P, R) induces an exact duality

Perf(R)→ Perf(Rop)

for any ring R. Hence, Perf( Ã)≃ Perf(B′′).

Example 6.6. Let H = T(3, k) and A = {(ai j ) ∈ H | a11 = a22}. Set Hi = Hei i

and Ui = Hi/rad Hi . Then, C = {(ai j ) ∈ H | a11 = a22 = 0}, hence H = U1 ⊕ U2.
On the other hand, C = rad H2 ⊕ H3 ≃ H1 ⊕ H3, so C−1

= HomH(C, H) can be
identified with the set of 3×2 matrices (bi j ) such that b12 = b22 = 0. One can check
that C H is identified with the subset {(bi j ) | b11 = 0} ⊂ C−1 and H ′

≃ U2 ̸≃ H
(even dimk H ′

̸= dimk H).
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RIGIDITY OF 3D SPHERICAL CAPS VIA µ-BUBBLES

YUHAO HU, PENG LIU AND YUGUANG SHI

By using Gromov’s µ-bubble technique, we show that the 3-dimensional
spherical caps are rigid under perturbations that do not reduce the metric,
the scalar curvature, and the mean curvature along its boundary. Several
generalizations of this result will be discussed.

1. Introduction

In recent decades, a lot of progress has been made toward understanding the scalar
curvature of a Riemannian manifold; see [Gromov 2023]. A particular medium
for gaining such understanding is to answer whether one can perturb the metric
of a “model space” in certain ways without reducing its scalar curvature. This
viewpoint was famously represented by the positive mass theorem and its various
generalizations and analogues. One analogue, which motivated the current work,
is the following conjecture proposed by Min-Oo around 1995; see [Min-Oo 1998,
Theorem 4].

Conjecture 1.1 (Min-Oo). Suppose that g is a smooth Riemannian metric on the
(topological) hemisphere Sn

+
(n ≥ 3) with the properties:

(1) The scalar curvature Rg satisfies Rg ≥ n(n − 1) on Sn
+

.

(2) The boundary ∂ Sn
+

is totally geodesic with respect to g.

(3) The induced metric on ∂ Sn
+

agrees with the standard metric on Sn−1.

Then g is isometric to the standard metric on Sn
+

.

Unlike its counterparts modeled on Rn and Hn ,1 Min-Oo’s conjecture turned
out to admit counterexamples; see [Brendle et al. 2011]. Yet, its statement remains
interesting, especially when it is compared with the following theorem of Llarull
[1998, Theorem A].

Theorem 1.2 (Llarull). Let (Sn, ĝ) be the standard n-sphere (n ≥ 3). Suppose that
g is another Riemannian metric on Sn satisfying g ≥ ĝ and Rg ≥ Rĝ. Then g = ĝ.

MSC2020: primary 53C21; secondary 53C24.
Keywords: Llarull’s theorem, spherical cap, µ-bubble.

1See [Schoen and Yau 1979, Corollary 2; Gromov and Lawson 1983, Theorem A; Min-Oo 1989;
Andersson et al. 2008].
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A side-by-side view of Min-Oo’s conjecture and Llarull’s theorem suggests the
following.

Conjecture 1.3. Let (Sn
+
, ĝ) be the standard n-dimensional hemisphere. Then

Conjecture 1.1 holds under the additional assumption: g ≥ ĝ.

Our first result in this article is that Conjecture 1.3 holds when n = 3; here is a
more precise statement; also see Corollary 3.12 below.

Theorem 1.4. Let (S3
+
, ĝ) be the standard 3-dimensional hemisphere. Suppose that

g is another Riemannian metric on S3
+

with the properties:

(1) g ≥ ĝ and Rg ≥ Rĝ on S3
+

.

(2) the mean curvature Hg on ∂ S3
+

satisfies Hg ≥ 0.2

(3) The induced metrics on ∂ S3
+

satisfy g∂ S3
+

= ĝ∂ S3
+

.

Then g = ĝ.

As we will see below, Theorem 1.4 admits a somewhat direct proof. With more
technical work, we can generalize it in the following aspects: (i) the assumption (3)
in Theorem 1.4 will be removed; and (ii) the model space will not need to be the
standard hemisphere — it can be a “spherical cap” or, more generally, a geodesic
ball inside a space form. To make these points explicit, we now state our main
result; also see Theorem 5.3 below.

Theorem 1.5. For any suitable constants κ, µ, let (Bκ,µ, ĝκ) be a geodesic ball in
the 3-dimensional space form with sectional curvature κ such that ∂ Bκ,µ has mean
curvature µ. Suppose that g is another Riemannian metric on Bκ,µ satisfying

g ≥ ĝκ , Rg ≥ 6κ on Bκ,µ and Hg ≥ µ on ∂ Bκ,µ.

Then g = ĝκ .

In Gromov’s first preprint of [2019a], a (more general) version of Theorem 1.5
was stated as a “nonexistence” result (see [Gromov 2019b, Theorem 1]); an outline
of proof was sketched, which relied on a “generalized Llarull’s theorem”. Fol-
lowing Gromov’s main idea, we present a detailed and purely variational proof of
Theorem 1.5; this theorem also confirms, in the case of n = 3, a rigidity statement
mentioned in [Gromov 2019b, Remark (d)] without proof.

A simple modification of the proof of Theorem 1.5 yields the following; also
see Theorem 5.1.

2Given a domain � in a Riemannian manifold, unless we specify otherwise, we shall adopt the
(sign) convention for the mean curvature of ∂� to be H = tr(∇ν), where ν is the outward unit normal
along ∂�. Under this convention, the mean curvature of the boundary of the unit ball in Rn is n − 1.
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Theorem 1.6. Let (S3
\ {O, O ′

}, ĝ) be the standard 3-sphere with a pair of antipo-
dal points removed, and let h ≥ 1 be a smooth function on S3

\ {O, O ′
}. Suppose

that g is another Riemannian metric on S3
\ {O, O ′

} satisfying

g ≥ h4ĝ and Rg ≥ h−2 Rĝ.

Then h ≡ 1, and g = ĝ.

When h ≡ 1, Theorem 1.6 is a special case of Gromov’s theorem of “extremality
of doubly punctured spheres” (see [Gromov 2023, Sections 5.5 and 5.7]), and it
implies Theorem 1.2 in the case of n = 3. We also remark that Theorem 1.6 would
fail without the assumption h ≥ 1 (see Remark 5.2 below). We tend to believe that
the conclusion of Theorem 1.6 still holds when the condition g ≥ h4ĝ is replaced
by g ≥ h2ĝ; a condition such as inf h > 0 would still be needed, otherwise, the
metric in Remark 5.2 would serve as a counterexample.

Before sketching our technical ingredients, let us remind the reader that since
the early 1980s, two different approaches — variational and spinorial — have been
developed for studying the scalar curvature. Yet, for more than two decades,
extensions of Llarull’s rigidity theorem, like Llarull’s original proof, had been
mainly carried out from the spinorial approach. See, for example, [Goette and
Semmelmann 2002; Herzlich 2005; Listing 2009; Cecchini and Zeidler 2022,
especially Theorem 1.15, Corollary 1.17; Lott 2021; Su et al. 2022; Zhang 2020]. It
is relatively recent that variational methods have also become available for proving
results of Llarull type.3 A key in this new development, which is also a main tool
for the current paper, is Gromov’s µ-bubble technique [2023, Section 5].

Roughly speaking, given a function µ on a Riemannian manifold (Mn, g), a
µ-bubble is a minimizer (and a critical point) of the functional

(1-1) � 7→ voln−1(∂�) −

∫
�

µ

defined for suitable subsets � ⊂ M ; given a µ-bubble, useful geometric information
can be extracted from its first and second variation formulae. In order to guarantee
that a nondegenerate µ-bubble exists, (M, g) is often assumed to be a Riemannian
band,4 and µ is often required to satisfy a barrier condition (see (2-2) below),
which prevents minimizing sequences from collapsing either to a point or into ∂ M .

In some cases, even without the assumption of either a Riemannian band or
a barrier condition, a µ-bubble may still be found by direct observation of the
functional (1-1). This is the case with our proof of Theorem 1.4. In fact, if we

3To our best knowledge, a purely variational proof of Llarull’s original theorem remains to be
found.

4See Section 2A below for definition, and see [Gromov 2018; Räde 2021] for related discussion.
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modify (1-1) by considering the new functional

(1-2) � 7→ voln−1(∂�) +

∫
S3

+\�

µ,

the variational properties remain unchanged; in our situation, the new functionals
associated to g and ĝ admit an inequality, which becomes an equality when � =

S3
+

, and then direct comparison shows that S3
+

is a µ-bubble (see the proof of
Corollary 3.12). We note that this argument crucially relies on the assumption (3)
in Theorem 1.4.

Now let us continue to take Theorem 1.4 as an example to explain how to obtain
rigidity results from having an “initial” µ-bubble �. Although � need not be S3

+
,

we do, for a technical reason, require that ∂� has a connected component 60 whose
projection onto S2 has nonzero degree (see (3-6)) — for simplicity, let us call such
a 60 a “good component”. By using the second variation and the Gauss–Bonnet
formulae, we show that, under certain extra assumptions, 60 must be a 2-sphere
parallel (with respect to ĝ) to the equator ∂ S3

+
; furthermore, along 60 the ambient

metric g must agree with ĝ (Proposition 3.4). This obtained, a standard foliation
lemma (Lemma 3.8) and minimality of � imply that g must agree with ĝ in a
neighborhood of 60 (Lemma 3.10). Finally, with an “open-closed” argument and
standard facts in geometric measure theory, we show that such a neighborhood can
be extended to the whole manifold, thus completing the proof (Proposition 3.11).

In the more general setting of Theorem 1.5, the existence of an “initial” µ-bubble
becomes less direct to prove. For simplicity, let us still assume that the model
space is the standard hemisphere. Although (S3

+
, g) is not a Riemannian band, we

may consider creating one from it by removing a small geodesic ball centered at
the north pole O ∈ (S3

+
, ĝ), but an immediate problem arises: the natural choice

µ = Ĥ (see (3-3)), which corresponds to the mean curvature of the geodesic spheres
centered at O with respect to ĝ, may not satisfy the barrier condition.

To address this problem, we construct a sequence of perturbations µϵ (see (4-3);
also see [Zhu 2021, Section 3]) of Ĥ that do satisfy the barrier conditions on a
corresponding sequence of Riemannian bands Mϵ ⊂ S3

+
. In particular, in each Mϵ

there exists a µϵ-bubble �ϵ (Lemma 4.1). By construction, µϵ tends to Ĥ , and Mϵ

tends to S3
+

, as ϵ approaches 0. However, two new questions arise:

(a) As ϵ tends to 0, do the �ϵ subconverge to an Ĥ-bubble � in (S3
+
, g)?

(b) If so, does ∂� possess a component whose projection to S2 has nonzero degree?

To put these in a slightly different way, regarding (a), we worry that �ϵ may become
degenerate in the limit; regarding (b), we worry that the “good components” of
∂�ϵ may either approach the north pole O and thus lose the “degree” property, or
“meet and cancel” each other so that none of them is actually preserved in the limit.
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In Sections 4C and 4D, we answer both questions (a) and (b) in the affirmative. A
key step is to argue that each ∂�ϵ not only possesses a “good component” 6ϵ

0 , but
such a component must be disjoint from a fixed neighborhood of O ∈ S3

+
provided

that ϵ is small (Proposition 4.7), which is, again, enforced by the Gauss–Bonnet
theorem. This step allows us to obtain a universal upper bound for the norm of the
second fundamental form on 6ϵ

0 , which is then used to prove the existence of a
limiting hypersurface 60 that is indeed a component of ∂� (Lemma 4.11).

Once having an “initial” µ-bubble, one may complete the proof of Theorem 1.5
by the foliation argument described above.

Regarding Theorem 1.6, we may consider Riemannian bands in S3
\ {O, O ′

}

bounded by small geodesic spheres in (S3, ĝ) centered at O and O ′, but because of
the lack of mean curvature information with respect to g along those boundaries,
perturbations of the form (4-3) are no longer adequate for meeting the barrier
condition. To address this issue, we construct new functions µα by composing the
function Ĥ with dilations of S3

\ {O, O ′
} in the “longitude” direction, and then µα

will satisfy the desired barrier conditions; see Section 5 for more detail. The rest of
the proof is similar to the other cases.

Remark 1.7. After our paper was submitted, an analogous result of Theorem 1.5 for
higher dimensional spherical domains was proved in [Lee and Tam 2022]. Relying
on harmonic maps flow and Ricci flow their argument works only for the case of
compact domains in sphere for the time being.

2. Elements of Gromov’s µ-bubble technique

In this section we recall some elements of Gromov’s µ-bubble technique. Our
discussion follows Section 5 of [Gromov 2023], Section 2 of [Zhu 2021] and
Section 3 of [Zhou and Zhu 2020].

2A. µ-bubbles in a Riemannian band. Let (Mn, g) be a compact Riemannian
manifold whose boundary ∂ M is expressed as a disjoint union ∂ M = ∂− ⊔ ∂+

where both ∂− and ∂+ are closed hypersurfaces. Such a quadruple (M, g; ∂−, ∂+)

is called a Riemannian band. Given a Riemannian band, let �0 ⊂ M be a fixed
smooth Caccioppoli set that contains a neighborhood of ∂− and is disjoint from
a neighborhood of ∂+;5 we call such an �0 a reference set. Let C�0 denote the
collection of Caccioppoli sets � ⊂ M satisfying �1�0 ⋐ M̊ (“⋐” reads “is
compactly contained in”); here �1�0 denotes the symmetric difference between
� and �0, and M̊ stands for the interior of M .

5Also known as “sets of locally finite perimeter”; see [Giusti 1984] for details.
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Let µ be either a smooth function on M , or a smooth function defined on M̊
satisfying µ → ±∞ on ∂∓. For � ∈ C�0 consider the brane action

(2-1) Aµ
�0

(�) := Hn−1(∂�) −Hn−1(∂�0) −

∫
M

(χ� − χ�0)µ dHn

where Hk is the k-dimensional Hausdorff measure induced by g and χ� denotes
the characteristic function associated to �. A minimizer � of (2-1) is called a
µ-bubble.

Remark 2.1. (1) For �1, �2 ∈ C�0 , we have Aµ
�0

(�2)−Aµ
�1

(�2)=Aµ
�0

(�1); thus,
in a sense, minimizers are independent of the choice of a reference set. (2) The
brane action (2-1) may be defined on manifolds that are not necessarily Riemannian
bands; in those cases, one may replace Hn−1(∂�) by Hn−1(∂(�∩K )) and similarly
for Hn−1(∂�0), where K is a compact set such that �1�0 ⊂ K .

2B. Existence and regularity.

Definition 2.2. Given a Riemannian band (M, g; ∂−, ∂+), a function µ is said
to satisfy the barrier condition if either µ ∈ C∞(M̊) with µ → ±∞ on ∂∓, or
µ ∈ C∞(M) with

(2-2) µ|∂−
> H∂−

, µ|∂+
< H∂+

where H∂−
is the mean curvature of ∂− with respect to the inward normal and H∂+

is the mean curvature of ∂+ with respect to the outward normal.

Lemma 2.3 [Zhu 2021, Proposition 2.1]. Let (Mn, g; ∂−, ∂+) be a Riemannian
band with n ≤ 7, and let �0 be a reference set. If µ satisfies the barrier condition,
then there exists an � ∈ C�0 with smooth boundary such that

Aµ
�0

(�) = inf
�′∈C�0

Aµ
�0

(�′).

Remark 2.4. In Lemma 2.3 the smooth hypersurface 6 := ∂� \ ∂− is homologous
to ∂+.

2C. Variational properties. Let � be a smooth µ-bubble in a Riemannian band
(Mn, g; ∂−, ∂+), and let 6 = ∂� \ ∂−. One may derive variation formulae for Aµ

at �; see (2.3) in [Zhu 2021] and the unnumbered equation above it. Specifically,
the first variation implies that the mean curvature of 6 (with its outward normal ν)
is equal to µ|6; the second variation implies that the Jacobi operator

(2-3) J6 := −16 +
1
2(R6 − Rg − µ2

− |II|2) − ν(µ)

is nonnegative, where 16 and R6 are respectively the g-induced Laplacian and
scalar curvature of 6; Rg is the scalar curvature of (M, g); and II is the second
fundamental form of 6.
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Definition 2.5. Let µ be a smooth function on a Riemannian manifold (Mn, g).
A smooth two-sided hypersurface S ⊂ M with unit normal ν is said to be a µ-
hypersurface if its mean curvature taken with respect to ν is equal to µ|S .

Clearly, (2-3) also makes sense when 6 is replaced by a µ-hypersurface; this
motivates the following notion of stability.

Definition 2.6. A µ-hypersurface S ⊂ M with unit normal ν is said to be stable if
JS is nonnegative on C∞

0 (S).

Remark 2.7. If µ satisfies the barrier condition, then for any µ-bubble � each con-
nected component of ∂�\∂− with its outward unit normal is a stable µ-hypersurface.

Let S be a µ-hypersurface. Following [Gromov 2023, Section 5.1] we consider
the operator

(2-4) LS := −1S +
1
2(RS − Rµ

+)

where

(2-5) Rµ
+ := Rg +

n
n − 1

µ2
− 2|dµ|g.

In fact, LS is obtained from applying the obvious inequalities

(2-6) −∂νµ ≤ |dµ|g, |II|2 ≥
1

n − 1
µ2

to JS . One can easily verify that the following holds when S is stable:

(2-7) LS ≥ JS ≥ 0.

Example 2.8. Consider S2
× [t1, t2] (0 < t1 < t2 < π) equipped with the metric

g = (sin2 t)gS2 + dt2 where gS2 is the standard metric on S2. This represents an
annular region in the standard S3. Take µ(t) = 2 cot t . It is easy to see that each
t-level set St , with the unit normal ν = ∂t , is a µ-hypersurface. Moreover, on St we
have

Rg = 6, RSt =
2

sin2 t
, |II|2 = 2 cot2 t, ν(µ) = µ′(t) = −

2

sin2 t
.

In this case, both JSt and L St reduce to −1St .

The following lemma is a direct consequence of Theorem 3.6 in [Zhou and Zhu
2020].
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Lemma 2.9. Let (Mn, g) be a closed Riemannian manifold with 2 ≤ n ≤ 6, and let
µ ∈ C∞(M). Let S be an immersed stable µ-hypersurface contained in an open
subset V ⊂ M and satisfying ∂S ∩ V = ∅. If area(S) ≤ C for some constant C ,
then there exists a constant C1 = C1(M, n, ∥µ∥C3(M), C) such that

(2-8) |II|2(x) ≤
C1

dist2g(x, ∂V )
for all x ∈ S.

2D. Comparison with a warped-product metric. Given a Riemannian manifold
(N n−1, gN ), an interval I (with coordinate t) and a function ϕ : I → R+, consider
the warped product metric defined on N̂ := N × I

(2-9) ĝ := ϕ(t)2gN + dt2.

A standard calculation shows that the mean curvature on each slice N ×{t} with
respect to the ∂t -direction is

(2-10) Ĥ(t) = (n − 1)
ϕ′(t)
ϕ(t)

;

moreover, one may verify that the scalar curvature Rĝ of ĝ satisfies

(2-11) 0 = −Rĝ +
1
ϕ2 RN −

n
n − 1

Ĥ 2
− 2

d Ĥ
dt

,

where RN is the scalar curvature of (N , gN ).
Now suppose that f : M → N̂ is a smooth map from a Riemannian band

(M, g; ∂−, ∂+) to N̂ . By pulling back all functions in (2-11) via f and adding the
resulting equation with (2-5), we obtain

(2-12) Rµ
+ =

1
ϕ2 RN + (Rg − Rĝ) +

n
n − 1

(µ2
− Ĥ 2) − 2(∂t Ĥ + |dµ|g),

where pull-back symbols are omitted for clarity. The expression (2-12) will be
useful in our analysis of µ-bubbles.

3. Rigidity of 3D spherical caps

A spherical cap of radius T ∈ (0, π) in the standard S3 may be represented by the
closed ball BT := {x ∈ R3

: |x| ≤ T } equipped with the metric

(3-1) ĝ = ϕ(t)2gS2 + dt2 with ϕ(t) = sin t,

where t ∈ [0, T ] serves as the radial coordinate on BT and gS2 is the standard metric
on S2. For t ∈ (0, T ], let St := ∂ Bt . For 0 < t1 < t2 ≤ T , let B[t1,t2] := Bt2 \ B̊t1 ;
similarly, let B(t1,t2] := Bt2 \ Bt1 . Given a domain � ⊂ BT with smooth boundary
6, the outward normal along 6 with respect to the metric ĝ will be denoted by ν̂.
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The objective of this section and the next is to prove the following rigidity
theorem.

Theorem 3.1. Let (BT , ĝ) be the 3-dimensional spherical cap of radius T ∈ (0, π).
Suppose that g is another Riemannian metric on BT satisfying

(3-2) g ≥ ĝ, Rg ≥ Rĝ on BT , and Hg ≥ Hĝ = 2 cot T on ∂ BT .

Then g = ĝ.

Our proof begins by establishing a key ingredient: certain stable µ-hypersurfaces
are necessarily t-level sets in BT (Proposition 3.4), the justification of which hinges
on an integral inequality (see (3-14)) involving an application of the Gauss–Bonnet
formula. This result is followed by a classical foliation lemma (Lemma 3.8). Under
a suitable “minimality” assumption (Assumption 3.9), each leaf in that foliation
turns out to be stable, which implies local rigidity of the metric (Lemma 3.10).
Section 3 culminates at Proposition 3.11, which justifies Theorem 3.1 assuming
the existence of an “initial” minimizer (Assumption 3.9); this assumption will be
verified in Section 4 via a perturbation argument (see Proposition 4.12).

3A. Stable µ-hypersurfaces and t-level sets. The metric (3-1) is of the form (2-9);
thus, (2-10) applies to give

(3-3) Ĥ(t) = 2 cot t.

It will be useful to define, for µ = µ(t), the function (see the last two terms in
(2-12))

(3-4) Zµ(t) :=
3
2(µ(t)2

− Ĥ(t)2) − 2(Ĥ ′(t) − µ′(t))

=
3
2µ(t)2

+ 2µ′(t) − 6 cot2 t +
4

sin2 t
.

Notice, in particular, that Z Ĥ (t) ≡ 0. As t is a coordinate on BT , we may regard µ

and Zµ as functions defined on BT \ {0}.

Lemma 3.2. Let µ(t) be a smooth, decreasing function defined on (0, T ], and let g
be a Riemannian metric on BT satisfying (3-2). At a point q ∈ BT , if Zµ ≥ 0, then
Rµ

+ ≥ 2/ϕ2 > 0.

Proof. On the right-hand side of (2-12), the second term is nonnegative by assump-
tion. Moreover, g ≥ ĝ implies

(3-5) |dµ|g ≤ |dµ|ĝ = |∂tµ| = −µ′(t).

Substituting this in the last term of (2-12) and noticing that RS2 = 2, we obtain the
desired inequality. □
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Now let 60 be a hypersurface in B(0,T ], and let 8 denote the projection map
from 60 to S2, namely,

(3-6) 8 : 60 ↪→ B(0,T ]
∼= (0, T ] × S2

−→ S2.

Lemma 3.3. Let dσĝ be the area form on 60 induced by ĝ. We have

(3-7) dσĝ ≥ ϕ2
|8∗ dσS2 |

where the absolute-value sign is put to eliminate the ambiguity of orientation.

Proof. Let (θα) (α = 1, 2) be local coordinates on S2, and write gS2 = hαβdθαdθβ .
We get

(3-8) 8∗(gS2) = hαβ dθα dθβ ≤
1
ϕ2 (dt2

+ ϕ2hαβ dθα dθβ) =
1
ϕ2 ĝ60,

where the functions and forms are restricted to 60. The conclusion follows. □

Proposition 3.4. Let µ(t) be a smooth, decreasing function defined on (0, T ].
Suppose that 60 ↪→ (BT \ {0}, g) is a stable, closed µ-hypersurface with unit
normal ν, where g satisfies g ≥ ĝ and Rg ≥ Rĝ. Moreover, suppose that Zµ ≥ 0 on
60 and that the projection 8 from 60 to S2 has nonzero degree. Then:

(a) 60 = Sτ for some τ ∈ (0, T ].

(b) J60 = L60 = −160 ; see (2-3), (2-4).

(c) 60 ⊂ (BT , g) is umbilic with constant mean curvature µ(τ).

(d) g(p) = ĝ(p) at all points p ∈ 60; in particular, g60 = ĝ60 = (sin2)τgS2 .

(e) On 60, ν = ∂t .

(f) On 60, Rµ
+ = 2/ϕ2 and Zµ = 0.

We prepare our proof of this proposition with the following two lemmas.

Lemma 3.5. Under the assumption of Proposition 3.4, 60 is homeomorphic to S2.

Proof. By stability, the operator L60 defined by (2-4) is nonnegative. Let u ∈

C∞(60) be a principal eigenfunction of L60 , and let λ1 ≥ 0 be the corresponding
eigenvalue. By the maximum principle, we can always choose u to be strictly
positive. Thus,

(3-9) −u−1160u +
1
2(R60 − Rµ

+) = λ1 ≥ 0.

Expanding

(3-10) div(u−1
∇60u) = −u−2

|∇60u|
2
+ u−1160u,
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applying it in the previous equation and integrating over 60, we obtain

(3-11) 1
2

∫
60

(R60 − Rµ
+) dσg =

∫
60

(λ1 + u−2
|∇60u|

2) dσg ≥ 0.

From (3-11), the Gauss–Bonnet formula, and Lemma 3.2, we deduce

(3-12) 4πχ(60) =

∫
60

R60 dσg ≥

∫
60

Rµ
+ dσg > 0;

since 60 is a connected oriented surface, it is homeomorphic to S2. □

Remark 3.6. Lemma 3.5 remains true if we assume Rµ
+ > 0 instead of Zµ ≥ 0

on 60.

Lemma 3.7. Under the assumption of Proposition 3.4, if J60 = L60 = −160 , then:

(i) 60 ⊂ (BT , g) is umbilic.

(ii) 60 = Sτ for some τ ∈ (0, T ].

(iii) µ|60 = µ(τ).

Proof. By assumption, (2-6) must be equalities. In particular, the traceless part
of II60 must vanish, and thus 60 ⊂ (BT , g) is umbilic, justifying (i). Moreover,
−ν(µ) = |dµ|g, and so ν must be parallel to ∇gµ. Thus, for any tangent vector X ∈

T 60, we have that dµ(X) = g(∇gµ, X) is proportional to g(ν, X) = 0; this implies
that µ is constant along 60. Combining with the fact that 60 ∼= S2 (Lemma 3.5), we
conclude that 60 is a level set Sτ , justifying (ii), and (iii) immediately follows. □

Proof of Proposition 3.4. The assumption g ≥ ĝ implies the relation between area
forms on 60:

(3-13) dσg ≥ dσĝ.

We deduce

(3-14)
∫

60

Rµ
+ dσg ≥

∫
60

2
ϕ2 dσĝ

≥ 2
∫

60

|8∗ dσS2 |

≥ 2
∣∣∣∣∫

60

8∗ dσS2

∣∣∣∣
= 2k

∫
S2

dσS2

= 8kπ,
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where k := |deg(8)| ≥ 1 by assumption. In (3-14), the first inequality is due
to (3-13) and Lemma 3.2; the second inequality follows from Lemma 3.3; the
remaining (in)equalities are obvious.

On combining (3-12) with (3-14), we obtain

(3-15) 8π =

∫
60

R60 dσg ≥

∫
60

Rµ
+ dσg ≥ 8kπ, (k ≥ 1).

This enforces the two inequalities in (3-15) to become equalities. Saturation of the
first inequality, which we deduced from (3-11), implies that λ1 = 0 and that u is
a constant; hence, by (3-9), R60 = Rµ

+; then, by (2-4), L60 = −160 . With this
established, the relation (2-7) would enforce that J60 = L60 = −160 , justifying (b).
By Lemma 3.7, (a) and (c) follow.

Next consider saturation of the second inequality in (3-15), or rather (3-14).
Because we have already deduced that 60 is a t-level set, the second and third
inequalities in (3-14) automatically become equalities. Saturation of the first in-
equality in (3-14), on the other hand, has two implications:

dσg = dσĝ and Rµ
+ =

2
ϕ(τ)2 .

The former, along with g ≥ ĝ, implies that

(3-16) g60 = ĝ60 = ϕ(τ)2gS2;

the latter, along with the proof of Lemma 3.2, implies that Zµ(τ ) = 0 and |dµ|g =

|dµ|ĝ, which is just −ν(µ)=|∂tµ| (see the proof of Lemma 3.7). Hence, ν = ∂t +X
for some vector field X on 60 = Sτ . Note that

(3-17) 1 = |ν|g ≥ |ν|ĝ =

√
|∂t |

2
ĝ + |X |

2
ĝ =

√
1 + |X |

2
ĝ;

we have X = 0 and ν = ∂t . Combining this with (3-16), we get g(p) = ĝ(p) for all
p ∈ 60. This justifies (d), (e) and (f), completing the proof. □

3B. Foliation, minimality and rigidity. The following “foliation” lemma is stan-
dard; see [Ye 1991; Andersson et al. 2008; Nunes 2013; Zhu 2021].

Lemma 3.8. Suppose that 60 ⊂ (BT , g) is a µ-hypersurface (with unit normal ν)
on which the stability operator J (see (2-3)) reduces to −160 . Then there exists an
interval I and a map φ : 60 × I → BT such that:6

(1) φ is a diffeomorphism onto a neighborhood of 60 ⊂ BT .

(2) The family 6s = φ(60, s) is a normal variation of 60 with ∂sφ = ν along 60.

(3) On each 6s , the difference H6s − µ is a constant ks .

6If 0 < τ < T , I can be taken to be an open interval containing 0; if τ = T , I is of the form (a, 0];
and if τ = δ, I is of the form [0, b).
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Proof. The proof is the same as that of Lemma 3.4 in [Zhu 2021], except for the
extra step: once having obtained a foliation, we reexpress it as a normal variation
by using a vector field normal to all its leaves; see [Andersson et al. 2008, page 6,
second paragraph]. □

Before proceeding further, let us state a recurring assumption.

Assumption 3.9. Let g be a metric on BT satisfying (3-2), and let � ⊂ (BT , g) be
a Caccioppoli set such that ∂� \ {0} is smooth and embedded. Define the class C�

of Caccioppoli sets by

(3-18) C� := {�′
⊂ BT Caccioppoli set : �′1� ⋐ BT \ {0}}.

Suppose that � is a minimizer in the sense that for any �′
∈C�, we have AĤ

� (�′)≥0;
and assume that there is a connected component 60 ⊂ ∂� that is a stable Ĥ -
hypersurface,7 disjoint from 0 ∈ BT and with nonzero-degree projection onto S2.
Assume that distg(60, ∂� \ 60) > 0.

Lemma 3.10 (compare to [Gromov 2023, Section 5.7]). If Assumption 3.9 holds,
then:

(1) There exists a constant τ ∈ (0, T ] such that 60 = Sτ with outward normal ∂t .

(2) There exists an open neighborhood U of 60 = Sτ , disjoint from ∂� \ 60, on
which g = ĝ.

Proof. Since 60 is assumed to be a stable, closed Ĥ -hypersurface, and since Z Ĥ ≡ 0
(see (3-4)), Proposition 3.4 applies and yields (1).

To prove (2), first note that Proposition 3.4 and Lemma 3.8 together imply that
a neighborhood U of 60 is foliated by a normal variation {6s} (s ∈ I ) of 60;
moreover, on each leaf 6s the difference H6s − Ĥ is a constant ks . Since 0 /∈ 60

and distg(60, ∂� \ 60) > 0, U can be chosen to be disjoint from both ∂� \ 60

and 0.
For s1, s2 ∈ I with s1 < s2 define 6[s1,s2] ⊂ BT to be the (compact) subset with

boundary 6s1 ∪ 6s2 ; then consider �s defined by

(3-19) �s :=

{
� ∪ 6[0,s] if s ≥ 0,

� \ 6[−s,0] if s < 0.

Clearly, these �s belong to the class C�. Let us denote AĤ
� (�s) by A(s) for brevity,

and write us =⟨∂sφ, νs⟩> 0 where νs is the (suitably oriented) unit normal along 6s .
By Lemma 3.8 and the first variation formula,

(3-20) A′(s) =

∫
6s

ksus .

7We allow 60 to overlap with ∂ BT .
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Since A(0) attains the minimum, it is necessary that:

(i) Either A(s) ≡ 0 for all s ≥ 0, or A′(s) > 0 (equivalently, ks > 0) for some s > 0.

(ii) Either A(s) ≡ 0 for all s ≤ 0, or A′(s) < 0 (equivalently, ks < 0) for some s < 0.

To complete the proof, it suffices to show that A(s) ≡ 0 for all s ∈ I . If this does
not hold, first suppose that ks > 0 for some s > 0. Then on the Riemannian band
6[0,s] with ∂− = 60 and ∂+ = 6s define the function

(3-21) µ̃(t) = Ĥ(t) +
ϵ

sin3 t
,

which is smooth and decreasing in t . By choosing sufficiently small ϵ, we can
arrange that µ̃ > H60 on 60 and that µ̃ < H6s on 6s . Thus, by Lemma 2.3, there
exists a µ̃-bubble �̃ in 6[0,s]; in particular, 6̃ = ∂�̃ \ 60 has a component 6̃0

whose projection to S2 has nonzero degree. However, by a direct calculation using
(3-4), we get

(3-22) Zµ̃(t) =
3ϵ2

2 sin6 t
> 0,

contradicting Proposition 3.4(f).
The case when ks < 0 for some s < 0 may be similarly and independently ruled

out; it suffices to consider 6[s,0] with ∂− = 6s and ∂+ = 60 and the following
analogue of (3-21): µ̃(t) = Ĥ(t) − ϵ sin−3 t .

Finally, since we have proved that all �s are AĤ -minimizing in the class C�,
each 6s must be a t-level set. By Proposition 3.4(d), g = ĝ on U , and this completes
the proof. □

Proposition 3.11. If Assumption 3.9 holds, then g = ĝ on BT .

Proof. By Lemma 3.10, 60 = Sτ for some τ ∈ (0, T ], and its outward normal is ∂t .
Without loss of generality, we assume τ ∈ (0, T ). Let I = (t1, t2) be the maximum
open interval containing τ such that B(t1,t2) is disjoint from ∂� \60 and that g = ĝ
on B(t1,t2). For t ∈ I , let �t denote � \ B(t,τ ] if t < τ and � ∪ B[τ,t] if t ≥ τ . In
particular, ∂�t = (∂� \ 60) ∪ St .

It suffices to show that t1 = 0 and t2 = T , and we argue by contradiction. First
suppose that t1 > 0. Then �t1 is in the class C�, and it satisfies AĤ

� (�t1) = 0. If St1
were disjoint from ∂� \60, then, by Lemma 3.10, the interval I can be extended
further, violating its maximality. On the other hand, if St1 were to touch a connected
component 6′

⊂ ∂� \60, then by smoothness and embeddedness ∂�t1 \ {0} (see
[Zhou and Zhu 2020, Theorem 2.2]), 6′ must be equal to 6t1 but with the opposite
outward normal, violating Proposition 3.4(e). Thus, we conclude that t1 = 0. The
proof of t2 = T is similar. □
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With Proposition 3.11, it becomes clear that Theorem 3.1 would follow if one
can verify Assumption 3.9. To illustrate this point, we now discuss a special case
of Theorem 3.1 which admits a more direct proof. (The general situation is more
subtle and will be addressed in the next section.)

Corollary 3.12. Let (BT , ĝ) be the 3-dimensional spherical cap of radius T ∈

(0, π/2]. Suppose that g is another Riemannian metric on BT satisfying g ≥ ĝ and
Rg ≥ Rĝ on BT ; in addition, suppose that Hg ≥ Hĝ = 2 cot T and g∂ BT = ĝ∂ BT on
∂ BT . Then g = ĝ.

Proof. Take µ = Ĥ , which is in L1(BT ). Since adding a constant to a functional
does not affect its variational properties, we may consider, instead of (2-1),

(3-23) Bµ(�) := H2(∂�) +

∫
BT \�

µ dH3,

for all smooth Caccioppoli sets � ⊂ BT with �1BT ⋐ BT \ {0}, and underlying
metrics will be specified in subscripts. Since Ĥ = div(∂t) on BT \ {0}, we have

(3-24) Bµ

ĝ (�) = H2
ĝ(∂�) −

∫
∂�

⟨∂t , ν̂⟩ĝ dH2
ĝ +H2

ĝ(ST ) ≥ H2
ĝ(ST ) = Bµ

ĝ (BT ),

where the first equality is an application of the divergence formula, and the inequality
is derived from the relation ⟨∂t , ν̂⟩ĝ ≤ 1. Now, since g ≥ ĝ and µ ≥ 0 on BT

(T ≤π/2), we have Bµ
g (�)≥Bµ

ĝ (�); moreover, by g∂ BT = ĝ∂ BT , we have Bµ

ĝ (BT )=

Bµ
g (BT ). Combining these with (3-24) gives Bµ

g (�) ≥ Bµ
g (BT ); and using Hg ≥

2 cot T = Ĥ |∂ BT , we deduce that Hg = 2 cot T and hence, for any φ ∈ Lip(ST ) and
φ ≥ 0, we have

D2A(φ, φ) :=

∫
ST

|∇φ|
2
+

∫
ST

(RST − Rg − Ĥ 2
− |II|2 − 2ν(Ĥ))φ2

≥ 0,

and then clearly, for all ϕ ∈ C∞(ST ) we have

D2A(ϕ, ϕ) ≥ D2A(|ϕ|, |ϕ|) ≥ 0,

hence, ST is a stable Ĥ -hypersurface. Now it is easy to see that the pair (BT , ST )

satisfies Assumption 3.9. The conclusion then follows from Proposition 3.11. □

4. Existence of an initial minimizer

Throughout this section, let g be a Riemannian metric on BT satisfying (3-2). Our
goal is to obtain an “initial” minimizer � and a connected component 60 ⊂ ∂�

which satisfy Assumption 3.9. To achieve this, we consider perturbations µϵ of
Ĥ = 2 cot t (see (4-3)). For each ϵ, we find a Riemannian band Mϵ ⊂ BT on which
µϵ satisfies the barrier condition; thus, a µϵ-bubble �ϵ exists, and ∂�ϵ ∩ M̊ϵ has
a component 6ϵ

0 which projects onto S2 with nonzero degree. One may wonder
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whether this “degree” property is preserved in the limit as ϵ → 0; this led us to find
that each 6ϵ

0 must be disjoint from a fixed open neighborhood of 0 ∈ BT , provided
ϵ is small (Proposition 4.7). Then we verify Assumption 3.9 by analyzing the limits
of �ϵ and 6ϵ

0 (Proposition 4.12).

4A. A choice of µϵ . Let ϵ > 0 be a small constant, and define

(4-1) tc := min
{

π
4 , T

2

}
.

Moreover, we shall fix a function β ∈ C∞((0, T ]) which is strictly decreasing and
satisfies

(4-2) β(t) = cot t on (0, tc] and β(T ) = −1;

such a β clearly exists. Now consider the function defined on (0, T ]:

(4-3) µϵ(t) ≡ Ĥ(t) + ϵβ(t) = 2 cot t + ϵβ(t).

Writing Z ϵ for Zµϵ
, we have (see (3-4))

(4-4) Z ϵ(t) =
3
2 [ϵβ(t)]2

+ 2ϵβ ′(t) + 6ϵ(cot t)β(t),

and, in particular,

(4-5) Z ϵ(t) =
ϵ

2 sin2 t
[(3ϵ + 12) cos2 t − 4] > 0 for t ∈ (0, tc].

Moreover, by (4-4), it is clear that there exists a constant b0 > 0, depending only
on β, such that

(4-6) Z ϵ(t) ≥ −ϵ b0 for t ∈ (0, T ].

4B. Existence of a µϵ-bubble. Let S(r, g) (resp., B(r, g)) denote the geodesic
sphere (resp., open geodesic ball) of radius r , taken with respect to the metric g
and centered at 0 ∈ BT . An asymptotic expansion of the mean curvature function
(see Lemma 3.4 of [Fan et al. 2009]) gives: for small r > 0 and all q ∈ S(r, g),

(4-7) HS(r,g)(q) =
2
r

+ O(r), Ĥ(q) =
2

t (q)
+ O(t (q)).

Since g ≥ ĝ, we have r ≥ t (q); then by (4-3) and (4-2), as long as r < tc, we have

(4-8) µϵ(t (q)) =
2 + ϵ

t (q)
+ O(t (q)) ≥

2 + ϵ

r
+ O(t (q)), q ∈ S(r, g).

It is now clear that there exists an rϵ < ϵ such that µϵ > HS(rϵ ,g) on S(rϵ, g). On the
other hand, we have Hg ≥ 2 cot T > µϵ(T ) on ST , where the first inequality is part
of (3-2), and the second inequality is due to the choice of µϵ and β. Therefore, µϵ

satisfies the barrier condition (see Definition 2.2) applied to the Riemannian band



RIGIDITY OF 3D SPHERICAL CAPS VIA µ-BUBBLES 105

(Mϵ, g), where Mϵ = BT \B(rϵ, g), with the distinguished boundaries: ∂− = S(rϵ, g)

and ∂+ = ST . The lemma below follows directly from Lemma 2.3.

Lemma 4.1. In the Riemannian band (Mϵ, g; S(rϵ, g), ST ) there exists a minimal
µϵ-bubble �ϵ ; moreover, ∂�ϵ \ S(rϵ, g) is disjoint from ST , and it has a connected
component 6ϵ

0 whose projection onto S2 has nonzero degree.

Lemma 4.2. 6ϵ
0 ∩ B[tc,T ] is nonempty.

Proof. Otherwise, Z ϵ > 0 on 6ϵ
0 , which contradicts Proposition 3.4(f). □

4C. A “no-crossing” property of 6ϵ
0 . From now on, let t∗ ∈ (0, tc) be fixed. We will

begin by assuming that 6ϵ
0 ∩ Bt∗ were nonempty; consequences of this hypothesis

will be developed progressively with three lemmas (Lemmas 4.3, 4.5 and 4.6).
Based on these lemmas, we prove that 6ϵ

0 must be disjoint from Bt∗ for small
enough ϵ (Proposition 4.7).

In the following, let ν̂ denote the outward-pointing unit normal on 6ϵ
0 with

respect to ĝ, and let 8 denote the projection map from 6ϵ
0 to S2; see (3-6).

Lemma 4.3. If 6ϵ
0 ∩ Bt∗ were nonempty, then there would exist a point q ∈ 6ϵ

0 ∩

B[t∗,T ] such that the angle ̸ ĝ(ν̂, ∂t) ∈ [α, π − α] at q , where

(4-9) α = min
{

arctan
(

tc − t∗
2π

)
,
π

4

}
.

Proof. We argue by contradiction, so let us assume that ̸ ĝ(ν̂, ∂t)∈[0, α)∪(π−α, π]

everywhere on 6ϵ
0 ∩ B[t∗,T ]. Because 6ϵ

0 is connected and intersects both St∗ (by
assumption) and Stc (by Lemma 4.2), the image of t |6ϵ

0
contains the interval [t∗, tc].

Let t ′
∈ (t∗, tc) be a regular value of t |6ϵ

0
that is sufficiently close to t∗. Because

6ϵ
0 is connected, there exists a connected component E ⊂6ϵ

0 ∩ B(t ′,tc] whose closure
Ē intersects both St ′ and Stc . On E , the angle ̸ ĝ(ν̂, ∂t) can only take value in one
of the intervals [0, α) and (π −α, π], but not both. Without loss of generality, let
us assume that ̸ ĝ(ν̂, ∂t) ∈ [0, α) on E .

Since t ′ is a regular value of t |6ϵ
0
, E meets St ′ transversely. In particular, C :=

E∩St ′ is a disjoint union of finitely many circles. It is easy to see that St ′\C =U1∪U2

for some open subsets Ui ⊂ St ′ with ∂Ui = C (i = 1, 2).
Both Ui and E are oriented, and the orientations are associated to the respective

normal directions, ∂t and ν̂, by the right-hand rule. The orientation on C induced
by E must completely agree with that induced by either U1 or U2; otherwise, gluing
E with either U1 or U2 along C and smoothing would yield a nonorientable closed
surface embedded in BT , which is impossible.

Thus, we can assume that U1 and E induce opposite orientations on C . Since
̸ ĝ(ν̂, ∂t) ∈ [0, α) on E , it is easy to see that the restriction of 8 to E ∪ U1 is a
local homeomorphism to S2. Since E ∪ U1 is compact, 8|E∪U1

is a covering map;
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this map must be a homeomorphism, since S2 is simply connected and E ∪ U1 is
connected.

Pick any x ∈ E ∩ Stc . Choose a shortest (regular) curve 0 : [0, 1] → 8(E)

connecting 0(0) = 8(x) and ∂(8(E)); in particular,

(4-10) lengthgS2
(0) ≤ π.

Now let γ = (8|E)
−1

◦ 0, and write its tangent vectors γ ′ as the sum of γ ′

N
(parallel to ∂t ) and γ ′

T (tangent to t-level sets). By ĝ ≤ gS2 +dt2 and the hypothesis
̸ ĝ(ν̂, ∂t) ∈ [0, α)∪ (π − α, π], we obtain the estimate

(4-11) |γ ′

N |ĝ ≤ (tan α)|γ ′

T |ĝ ≤ (tan α)|d8(γ ′)|gS2 .

Hence,

(4-12) tc − t ′
≤

∫
γ

|γ ′

N |ĝ ≤ (tan α) · lengthgS2
(8(γ )) ≤ π tan α ≤

1
2(tc − t∗),

where the first inequality holds because γ (0) ∈ Stc and γ (1) ∈ St ′ ; the second and
third inequalities are due to (4-11) and (4-10), respectively; the last inequality holds
by the choice of α. Since t ′ is close to t∗, (4-12) is a contradiction. □

Corollary 4.4. In Lemma 4.3 we can choose q such that: ̸ ĝ(ν̂, ∂t) = α or π − α

at q.

Proof. In 6ϵ
0 there exists a point at which t attains global maximum. At that point

ν̂ = ±∂t . Thus, by continuity of angle, there exists a point q ∈ 6ϵ
0 ∩ B[t∗,T ] at which

the angle between ν̂ and ∂t is equal to either α or π − α. □

Lemma 4.5. Let α be defined by (4-9). If 6ϵ
0 ∩ Bt∗ were nonempty, then there

would exist a constant S = S(g, ĝ, β, t∗) > 0, independent of ϵ, and an open subset
Uϵ ⊂ 6ϵ

0 ∩ B[t∗/2,T ] such that:

(1) At each point q ∈ Uϵ , ̸ ĝ(ν̂, ∂t) ∈ (α/2, 2α) ∪ (π − 2α, π − α/2).

(2)
∫

Uϵ
|8∗ dσS2 | ≥ S.

Proof. To begin with, let q be as in Corollary 4.4. For any unit tangent vector X
(with respect to ĝ) of 6ϵ

0 , we have

(4-13) |X⟨ν̂, ∂t ⟩ĝ| = |⟨∇̂X ν̂, ∂t ⟩ĝ + ⟨ν̂, ∇̂X∂t ⟩ĝ| ≤ |ÎI|ĝ + |∇̂∂t |ĝ.

where ∇̂ is the connection of ĝ. It is clear that there exists a constant C = C(ĝ, t∗)
such that |∇̂∂t |ĝ ≤ C on B[t∗/2,T ]. Moreover, by applying Lemma 2.9 ( if necessary,
extend g to a smooth metric on BT +δ0 for some fixed δ0 >0, and let V = B(t∗/2,T +δ0))
and by comparing between |II|g and |ÎI|ĝ, it is not difficult to see that there exists a
constant C ′

= C ′(g, ĝ, β, t∗) such that |ÎI|ĝ ≤ C ′ on 6ϵ
0 ∩ B[t∗/2,T ] for all sufficiently
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small ϵ. Thus, there exists a constant ρ = ρ(g, ĝ, β, t∗) > 0 such that on the
geodesic ball

Uϵ := {x ∈ 6ϵ
0 : distĝ6ϵ

0
(x, q) ≤ ρ}

we have

(4-14) ̸ ĝ(ν̂, ∂t) ∈
(

α
2 , 2α

)
∪

(
π − 2α, π −

α
2

)
.

It is easy to see that 8(Uϵ) contains a ball B of radius cos(2α)ρ in S2. The proof
is complete by taking S := areagS2 (B). □

Lemma 4.6. If 6ϵ
0 ∩ Bt∗ were nonempty, then we would have

(4-15)
∫

6ϵ
0

2
ϕ2 dσĝ − 2

∫
6ϵ

0

|8∗ dσS2 | ≥ A0

for some positive constant A0 that is independent of ϵ.

Proof. Up to sign, the area form dσĝ induced by ĝ on each tangent space of 6ϵ
0 is

equal to
1

cos(̸ ĝ(ν̂, ∂t))
ϕ28∗dσS2

provided that ν̂ is not orthogonal to ∂t . Thus, by Lemma 4.5, we have

(4-16)
∫

Uϵ

2
ϕ2 dσĝ ≥

∫
Uϵ

2
ϕ2

1
cos(α/2)

ϕ2
|8∗ dσS2 |

≥ 2S
(

1
cos(α/2)

− 1
)

+ 2
∫

Uϵ

|8∗ dσS2 |.

On the other hand, by Lemma 3.3,

(4-17)
∫

6ϵ
0\Uϵ

2
ϕ2 dσĝ ≥ 2

∫
6ϵ

0\Uϵ

|8∗ dσS2 |.

Adding (4-16) with (4-17) and rearranging terms, we get

(4-18)
∫

6ϵ
0

2
ϕ2 dσĝ − 2

∫
6ϵ

0

|8∗ dσS2 | ≥ 2S
(

1
cos(α/2)

− 1
)

.

The proof is complete by taking A0 to be the right-hand side of (4-18). □

Proposition 4.7. For sufficiently small ϵ, 6ϵ
0 must be disjoint from the set Bt∗ ⊂ BT .

Proof. By (4-6) and the proof of Lemma 3.2, we obtain

(4-19) Rµϵ

+ ≥
2
ϕ2 − 2b0ϵ on 6ϵ

0 .
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For small ϵ, Remark 3.6 and Lemma 3.5 imply that 6ϵ
0 is homeomorphic to S2.

Moreover, since �ϵ is a µϵ-bubble, the area of 6ϵ
0 with respect to g has an upper

bound C0 > 0, which can be chosen to depend only on the metric g and not on ϵ.
Now suppose that 6ϵ

0 ∩ Bt∗ ̸=∅. Then from (4-19), (3-13) and (4-15), we obtain

(4-20)
∫

6ϵ
0

Rµϵ

+ dσg ≥

∫
6ϵ

0

2
ϕ2 dσĝ − 2ϵb0C0 ≥ (A0 − 2ϵb0C0)+ 2

∫
6ϵ

0

|8∗ dσS2 |.

For small enough ϵ, A0 > 2ϵb0C0; by stability of 6ϵ
0 , the analogue of (3-12) reads

(4-21) 4πχ(S2) =

∫
6ϵ

0

R6ϵ
0

dσg ≥

∫
6ϵ

0

Rµϵ

+ dσg > 2
∫

6ϵ
0

|8∗ dσS2 | ≥ 8π;

a contradiction. □

Remark 4.8. There is another way to get (4-21), which does not rely on the
assumption of an upper bound C0 of areag(6

ϵ
0) but does rely on the fact that ϕ ≤ 1.

In fact, (4-19) implies that Rµϵ

+ ≥ 2ϕ−2(1 − b0ϵ), and again by (3-13), (4-15) and
the degree assumption we have∫

6ϵ
0

Rµϵ

+ dσg ≥ (1 − b0ϵ)(A0 + 2
∫

6ϵ
0

|8∗ dσS2 |) ≥ (1 − b0ϵ)(A0 + 8π) > 8π

for small enough ϵ.

4D. Existence of a minimizer. Let Mϵ , �ϵ and 6ϵ
0 be as in Lemma 4.1. We now

study how �ϵ and 6ϵ
0 behave as ϵ → 0.

Recall from (4-1) the definition of tc, and let t∗ ∈ (0, tc) be fixed. By considering
small enough ϵ, we can assume 6ϵ

0 to be homeomorphic to S2 and disjoint from Bt∗ .
For a fixed ϵ, since 6ϵ

0 is disjoint from ST , the Jordan–Brouwer separation
theorem applies. As a result, BT \6ϵ

0 has exactly two connected components, say
Uϵ

−
and Uϵ

+
. Without loss of generality, let us assume that ν points away from Uϵ

−

along 6ϵ
0 . Given any constant δ > 0, let us define

(4-22)
W ϵ

−δ := {x ∈ Uϵ
−

: distg(x, 6ϵ
0) ≤ δ},

W ϵ
+δ := {x ∈ Uϵ

+
: distg(x, 6ϵ

0) ≤ δ},

where distance is taken in (BT , g).

Lemma 4.9. There exists a constant δ > 0, independent of ϵ, such that for all small
enough ϵ we have W ϵ

−δ ⊂ �̊ϵ and W ϵ
+δ ∩ �ϵ = ∅.

Proof. Since in B[t∗/2,T ] all derivatives of µϵ are uniformly bounded, it follows
from Lemma 2.9 that the norm of the second fundamental form of ∂�ϵ ∩ B[t∗/2,T ]

is also uniformly bounded. If some other component 6′ in ∂�ϵ were to get
arbitrarily close to 6ϵ

0 , then a suitable surgery (i.e., a connected sum of 6ϵ
0 and 6′
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Figure 1. The shaded regions represent �′
ϵi

(left figure) and �∗
ϵi

(right figure).

performed within Mϵ) would yield a Caccioppoli set that has strictly less brane
action, contradicting the minimality of �ϵ . □

Now we fix a sequence {ϵi } → 0 and corresponding sequences of �ϵi and 6
ϵi
0 .

Lemma 4.10. The sequence {�ϵi } subconverges to a Caccioppoli set � ⊂ BT

where convergence is interpreted via the characteristic functions with respect to the
L1

loc-norm. Moreover:

(1) ∂� \ {0} is smooth and embedded.

(2) � is a minimizer in the sense that AĤ
� (�′) ≥ 0 for any Caccioppoli set �′ with

�′1� ⋐ BT \ {0}.

Proof. The existence of a convergent subsequence and that of � follow from
standard theory of BV functions (see [Giusti 1984, Theorem 1.20]), and let us
replace {�ϵi } by that subsequence.

Now let K ⊂ BT \{0} be any compact domain. For sufficiently large i , the second
fundamental form of ∂�ϵi ∩ K has a uniform upper bound, and thus ∂�ϵi ∩ K
subconverges to a smooth hypersurface S ⊂ K in the graph sense. By using
Lemma 4.9, it is easy to see that S is embedded and S = ∂� ∩ K . Since K is
arbitrary, we conclude (1).

To show that � is a minimizer, we argue by contradiction. Suppose that there
exists a Caccioppoli set �′ and a constant c > 0 such that �′1� ⋐ BT \ {0} and
AĤ

� (�′) ≤ −c < 0. Let us choose a compact domain K ⊂ BT \ {0} with smooth
boundary such that �′1�⋐ K̊ . Consider a thin tubular neighborhood T of ∂�∩ K
that is generated by the unit normal field along ∂� ∩ K ; as T is diffeomorphic
to (∂� ∩ K ) × I for some interval I , we may modify K such that the image of
(∂�∩∂K )× I is equal to ∂T ∩∂K (in particular, ∂� is transversal to ∂K ). Note that
for large i , S(rϵi , g) would be disjoint from K , and ∂�ϵi ∩ K would be completely
contained in T .

Now consider the following Caccioppoli sets (see Figure 1):

(4-23) �′

ϵi
:= (�ϵi \ K ) ∪ (�′

∩ K ), �∗

ϵi
:= (�ϵi \ K ) ∪ (� ∩ K ).
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We claim that, for sufficiently large i ,

(4-24) A
µϵi
�ϵi

(�∗

ϵi
) ≤

c
4
.

To see this, note that χ�∗
ϵi

− χ�ϵi
is just χ�ϵi ∩K − χ�∩K ; since µϵi |K is uniformly

bounded and χ�ϵi
→ χ� in L1, we have

(4-25)
∫

BT

(χ�∗
ϵi

− χ�ϵi
)µϵi → 0 (i → ∞).

Moreover, it is easy to see that

(4-26) H2(∂�∗

ϵi
)−H2(∂�ϵi ) ≤ [H2(∂�∩ K )−H2(∂�ϵi ∩ K )]+H2(∂T ∩ ∂K ).

Thus, by graph convergence of ∂�ϵi ∩ K , we can choose T and i such that

(4-27) H2(∂�∗

ϵi
) −H2(∂�ϵi ) ≤

c
8
.

On combining (4-25) and (4-27), we obtain (4-24) for large i .
Now, since µϵi → µ in L1(K ) and �′

ϵi
1�∗

ϵi
= �1�′ ⋐ K̊ , we have, for

sufficiently large i ,

(4-28) A
µϵi
�∗

ϵi
(�′

ϵi
) ≤ −

c
2
.

On comparing (4-24) and (4-28), we get A
µϵi
�ϵi

(�′
ϵi
) ≤ −c/4 < 0, contradicting the

minimality of �ϵi . This proves (2). □

Lemma 4.11. Let � be as in Lemma 4.10. The sequence {6
ϵi
0 } subconverges to a

smooth, closed stable Ĥ-hypersurface 60 ⊂ B[t∗,T ], which is a t-level set in BT ;
moreover, 60 ⊂ ∂� and ∂� \ 60 ⋐ BT \ 60.

Proof. By our choice of {ϵi }, all 6
ϵi
0 are contained in the compact set B[t∗,T ] and

have a uniform upper bound on their second fundamental form. Thus, by standard
minimal surface theory (see [Colding and Minicozzi 2011, Proposition 7.14]), {6

ϵi
0 }

subconverges to a smooth closed hypersurface 60 whose projection onto S2 has
nonzero degree. Now recall that each 6

ϵi
0 is a stable µϵi -hypersurface. Since all

derivatives of µϵi respectively and uniformly converge to those Ĥ , by passing
stability to limit, 60 is a stable Ĥ -hypersurface; hence, 60 is a t-level set, by
Proposition 3.4.

To see that 60 ⊂ ∂�, first suppose that 60 ̸= ST ; in this case, it suffices to show
that each open neighborhood of any x ∈ 60 must intersect both �̊ and BT \ �,
and this can be easily deduced from Lemma 4.9. The case of 60 = ST is similar.
Also by Lemma 4.9, 60 has a tubular neighborhood that is disjoint from all other
components of ∂�, hence distg(60, ∂� \ 60) > 0. □

On combining Lemmas 4.10 and 4.11, we immediately get the following.
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Proposition 4.12. Let g be a Riemannian metric on BT satisfying (3-2). Then there
exists a Caccioppoli set � ⊂ BT and a connected component 60 ⊂ ∂� that satisfy
Assumption 3.9.

Theorem 3.1 follows directly from Propositions 3.11 and 4.12.

5. Generalizations

In this section we discuss a few variants of Theorem 3.1.
To begin with, we consider a version of Gromov’s rigidity theorem for the doubly

punctured sphere (see [Gromov 2023, Sections 5.5 and 5.7]), restricted to the
3-dimensional case.

Theorem 5.1. Let (S3
\ {O, O ′

}, ĝ) be the standard 3-sphere with a pair of antipo-
dal points removed, and let h ≥ 1 be a smooth function on S3

\ {O, O ′
}. Suppose

that g is another Riemannian metric on S3
\ {O, O ′

} satisfying

(5-1) g ≥ h4ĝ and Rg ≥ h−2 Rĝ.

Then h ≡ 1, and g = ĝ.

Proof. For convenience, let us use slightly different notations than those intro-
duced at the beginning of Section 3 by representing S3

\ {O, O ′
} as B(−π/2,π/2)

∼=

S2
× (−π/2, π/2) with t being the coordinate on (−π/2, π/2). Under this repre-

sentation we have ϕ(t) = cos t and

(5-2) Ĥ(t) = −2 tan t

instead of (3-3). Now for α ∈ (0, π/2) sufficiently close to π/2, consider the
Riemannian band Bα := (B[−α,α], g; S−α, Sα) and the functions

(5-3) tα =
t
α

·
π

2
and µα = −2 tan tα on B(−α,α),

and consider the problem of finding µα-bubbles in Bα . Since µα →±∞ as t →∓α,
µα satisfies the barrier condition; thus, there exists a µα-bubble �α ⊂ Bα, which
satisfies analogous properties as described in Lemma 4.1. Let 6α

0 be a connected
component of ∂�α \ S−α whose projection to S2 has nonzero degree; 6α

0 is a stable
µα-hypersurface, on which

(5-4) Rµα

+ = Rg +
3
2(µα)2

− 2|dµα|g

≥
1
h2

(
RS2

ϕ2 −
3
2

Ĥ 2
+ 2|dĤ |ĝ

)
+

3
2
(µα)2

−
2
h2 |dµα|ĝ

≥
1
h2

(
RS2

ϕ2 + Zµα

)
where the last step follows from the assumption h ≥ 1 and the definition

Zµα
:=

3
2(µ2

α − Ĥ 2) + 2(∂tµα − ∂t Ĥ).
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By a careful estimate of Zµα
using the mean value theorem, it is not difficult to

show that there exists a constant tc > 0 such that

(5-5) Zµα
>0 for t ∈(−α,−tc)∪(tc,α) and ϕ2 Zµα

≥C(α) for t ∈(−α,α),

where C(α) < 0 is a constant depending only on α and satisfies C(α) → 0 as
α → π/2. Similar to the proof of Proposition 4.7, here (5-5) implies that 6α

0 is
contained in a fixed compact domain in B(−π/2,π/2) that is independent of the choice
of α. Thus, as α → π/2, such 6α

0 subconverge to a stable Ĥ -hypersurface, and an
analogue of Proposition 4.12 can be obtained. An analogue of Proposition 3.4 and
a foliation argument yield that h ≡ 1 and g = ĝ. □

Remark 5.2. The assumption h ≥ 1 is important for Theorem 5.1 to hold. With-
out this assumption, one may let g = cos2 t (dt2

+ gS2) ̸= ĝ on S3
\ {O, O ′

} ∼=

S2
× (−π/2, π/2) and take h = (cos t)1/2, and it is easy to check that (5-1) is

satisfied — in particular, Rg = (2 + 4 cos2 t)(cos t)−4 and h−2 Rĝ = 6(cos t)−1, so
Rg ≥ h−2 Rĝ.

Theorem 3.1 has Euclidean and hyperbolic analogues. Putting together, let us
take

(5-6) ĝκ = ϕκ(t)2gS2 + dt2 on BT

where

ϕκ(t) =


sin

√
κt, κ > 0,

t, κ = 0,

sinh
√

−κt, κ < 0,

and T ∈ (0, π/
√

κ) if κ > 0; T > 0 if κ ≤ 0. In particular, sec(ĝκ) = κ , and
Ĥκ(t) = 2ϕ′

κ(t)/ϕκ(t).

Theorem 5.3. Let BT , ĝκ be as above. Let g be a Riemannian metric on BT

satisfying

g ≥ h4ĝκ , Rg ≥ h−2 Rĝκ
, H∂ BT ≥ Ĥκ(T ),

for some smooth function h ≥ 1 defined on BT . Then h ≡ 1, and g = ĝκ .

As pointed out by Gromov [2023, Section 5.5], a key fact that allows the different
cases (corresponding to different choices of κ) in Theorem 5.3 to be treated similarly
is that the function ϕκ(t) is “log-concave” — in other words, Ĥκ(t) is strictly
decreasing in t ; see Lemma 3.2 and Proposition 3.4. Having this in mind, the
proof proceeds as that of either Theorem 3.1 or 5.1, and we leave the details to the
interested reader.

Remark 5.4. When κ ≤ 0 and T = +∞, whether Theorem 5.3 holds remains
unknown to us.
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THE DEFORMATION SPACE OF
DELAUNAY TRIANGULATIONS OF THE SPHERE
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We determine the topology of the spaces of convex polyhedra inscribed in
the unit 2-sphere and the spaces of strictly Delaunay geodesic triangulations
of the unit 2-sphere. These spaces can be regarded as discretized groups
of diffeomorphisms of the unit 2-sphere. Hence, it is natural to conjecture
that these spaces have the same homotopy types as those of their smooth
counterparts. The main result of this paper confirms this conjecture for the
unit 2-sphere. It follows from an observation on the variational principles on
triangulated surfaces developed by I. Rivin.

On the contrary, the similar conjecture does not hold in the cases of flat
tori and convex polygons. We will construct simple examples of flat tori and
convex polygons such that the corresponding spaces of Delaunay geodesic
triangulations are not connected.

1. Introduction

One of the fundamental problems in low dimensional topology is to identify the
homotopy types of groups of diffeomorphisms of a smooth manifold. Smale [1959]
proved that the group of orientation preserving diffeomorphisms of the 2-sphere is
homotopy equivalent to SO(3).

This paper studies two types of finite dimensional spaces which could be consid-
ered as discrete analogues of the group of orientation preserving diffeomorphisms
of the 2-sphere. They are the deformation spaces of Delaunay triangulations of
the unit 2-sphere and the deformation spaces of convex polyhedra inscribed in the
unit 2-sphere. The main results of this paper show that these discrete analogues are
homotopy equivalent to SO(3).

Theorem 1.1. The deformation space of Delaunay triangulations of the unit 2-
sphere is homeomorphic to SO(3)× Rk for some k > 0.
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Theorem 1.2. The deformation space of the convex polyhedra inscribed in the unit
2-sphere whose faces are all triangles is homeomorphic to SO(3)× Rk for some
k > 0.

However, we will construct explicit examples of spaces of Delaunay triangula-
tions of convex polygons and flat tori which have different homotopy types from their
smooth counterparts. Specifically, we show the spaces of Delaunay triangulations
of some flat tori and spaces of Delaunay triangulations of some convex polygons
are not connected.

Let T = (V, E, F) denote a 2-dimensional simplicial complex, where V is the
set of vertices, E is the set of edges, and F is the set of triangles. Any edge in E is
identified with the closed interval [0, 1], and any triangle in F is identified with a
Euclidean equilateral triangle with unit length. Denote T (1) as the 1-skeleton of T ,
and |T | as the underlying space of T homeomorphic to a surface possibly with
boundary.

Delaunay triangulations of the unit sphere. Let S2 be the unit sphere as a Rie-
mannian surface. Assume |T | is homeomorphic to S2. An embedding ϕ : T (1)

→ S2

is called a geodesic triangulation of S2 if the restriction of ϕ on each edge is a
geodesic parametrized with constant speed. A geodesic triangulation ϕ naturally
divides S2 into spherical geodesic triangles. For our convenience, we will only
consider the geodesic triangulations where all the spherical triangles are convex.
A geodesic triangulation ϕ of S2 is called a convex geodesic triangulation if any
spherical triangle in ϕ is contained in some open hemisphere. Such a convex
geodesic triangulation ϕ is uniquely determined by the images of the vertices of T .

A convex geodesic triangulation ϕ is called Delaunay if it satisfies the empty
circle property, meaning that for any pair of adjacent spherical triangles △ABC and
△AB D, D is not inside the circumcircle of △ABC . This condition is equivalent
to the following condition on the angles of a convex geodesic triangulation:

(1) b + c + b′
+ c′

− a − a′
≥ 0,

where a, b, c, a′, b′, c′ are the inner angles of two neighbored triangles as in Figure 1.
Similarly, a convex geodesic triangulation is called strictly Delaunay if for any
pair of adjacent spherical triangles △ABC and △AB D, D is strictly outside the
circumcircle of △ABC . This condition is equivalent to the following condition on
the angles of a convex geodesic triangulation:

(2) b + c + b′
+ c′

− a − a′ > 0.

Delaunay and strictly Delaunay triangulations naturally appear in the study of dis-
crete differential geometry and geometry processing. They are widely investigated
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Figure 1. The edge invariant.

and implemented in practice. See [Devadoss and O’Rourke 2011; Edelsbrunner
2001] for example. We will focus on strictly Delaunay triangulations in this paper.

Given an embeddingψ : T (1)
→S2, we define the deformation space of Delaunay

triangulations of the unit sphere determined by ψ , denoted by X (T, ψ), as the
set of all strictly Delaunay convex geodesic triangulations that are isotopic to ψ
in S2. Then X (T, ψ) is naturally a manifold of dimension 2|V | without boundary,
if X (T, ψ) is not empty. Notice that X (T, ψ) could be empty for some T since
there are 3-connected graphs that cannot be realized as the 1-skeleton of a convex
polyhedron with vertices on the unit 2-sphere. See [Steinitz 1928] for noninscribable
polytopes.

Theorem 1.1 can be rephrased as:

Theorem 1.3. Given a strictly Delaunay convex geodesic triangulation ψ , X (T, ψ)
is homeomorphic to R2|V |−3

× SO(3).

Notice that by the assumption, X (T, ψ) is not empty in Theorem 1.3.
The topology of spaces of geodesic triangulations of surfaces has been studied

since Cairns [1944] first proved the connectivity of the spaces of geodesic triangu-
lations of the 2-sphere. It was conjectured that for constant curvature surfaces they
are homotopy equivalent to their smooth counterparts by Connelly et al. [1983].
This conjecture has been confirmed by Bloch, Connelly and Henderson [Bloch et al.
1984] for convex polygons, and a new proof based on Tuttes’ embedding theorem
was provided by Luo [2022]. Recently, this conjecture was proved for the cases of
flat tori and closed surfaces of negative curvature (see the work of Erickson and
Lin [2021] and Luo, Wu and Zhu [2021b; 2021a]).

For the case of the unit sphere, Awartani and Henderson [1987] identified the
homotopy type of a subspace of the space of geodesic triangulations on the unit
2-sphere, but the general case remains open. Theorem 1.3 provides an affirmative
evidence about this conjecture, and we hope that it could be an intermediate step to
prove the conjecture for the unit sphere.
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Convex polyhedra inscribed in the unit sphere. Assume |T | is homeomorphic
to S2. An embedding ϕ : |T | → R3 is called a polyhedral realization inscribed in
the unit sphere if ϕ maps any vertex to the unit sphere and maps any face linearly
to a Euclidean triangle. Such a polyhedral realization ϕ is called (strictly) convex if
for any triangle σ ∈ F , ϕ(σ) is a face of the boundary of the convex hull of ϕ(V )
in R3. Given T , denote Y (T ) as the set of convex polyhedral realization inscribed
in the unit sphere.

We say a point q is inside a convex polyhedral surface P if q is in the interior of the
convex hull of P . Given a point q in the unit open ball, denote pq : R3

\{q} → S2

as the radial projection centered at q to the unit sphere. We say two convex
polyhedral realizations ϕ1, ϕ2 in Y (T ) have the same orientation if and only if
pq1 ◦ ϕ1 is isotopic to pq2 ◦ ϕ2 on S2, for q1 inside ϕ1(|T |) and q2 inside ϕ2(|T |).
It is straightforward to check that the choice of q1 and q2 does not matter.

Given a convex realization polyhedral realization ψ , we define the deformation
space of convex polyhedra inscribed in the sphere determined by ψ , denoted by
Y (T, ψ) ⊂ Y (T ), as the set of all convex realizations ϕ of S2 having the same
orientation withψ . Then Y (T, ψ) is naturally a manifold of dimension 2|V | without
boundary. Theorem 1.2 can be rephrased as

Theorem 1.4. Given a convex realizationψ , Y (T, ψ) is homeomorphic to R2|V |−3
×

SO(3).

The space of inscribed convex polyhedra in the unit sphere is closely related
to realization spaces of polytopes with a fixed combinatorial type. Steinitz [1922]
proved that every planar 3-connected graph is the 1-skeleton of a convex polyhedron
in R3. Moreover, his proof implies that the realization space of polyhedra is a cell
after the normalization by affine transformations. See [Richter-Gebert 1996] for a
detailed discussion about the realization spaces.

Connections between the two spaces. Denote Y0(T ) as the subset of Y (T ) con-
taining all the convex realizations ϕ such that the origin O = (0, 0, 0) is inside
ϕ(|T |). Given a convex realization ψ , denote Y0(T, ψ) = Y (T, ψ) ∩ Y0(T ). If
ϕ ∈ Y0, then the radial projection pO maps the triangulation structure on ϕ(|T |) to
a strictly Delaunay convex geometric triangulation of S2. This naturally produces a
homeomorphism from Y0(T, ψ) to X (T, pO ◦ψ |T (1)) for any convex realization ψ .
Therefore, Theorem 1.3 can be reformulated as

Theorem 1.5. Given a convex realization ψ ∈ Y0, Y0(T, ψ) is homeomorphic to
R2|V |−3

× SO(3).

Organization. In Section 2, we will review the concept of angle structures. In
Section 3, we will determine the topology of the spaces of Delaunay triangulations
of convex polygons with fixed angles. In Section 4, we will prove Theorem 1.4
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and Theorem 1.5. In Section 5, we will provide examples showing the homotopy
types of spaces of Delaunay triangulations of flat tori and convex polygons could
be disconnected.

2. Angle structures on triangulated surfaces

The tool to study the topology of spaces of Delaunay triangulations on S2 is the
concept of angle structure or angle system on triangulated surfaces. This concept
was proposed by Colin de Vedière [1991], and developed by Rivin [1994], Leibon
[2002], Luo [2006], Bobenko and Springborn [2004], Springborn [2008], and others.
We briefly summarize the theory in the following.

Angle structures on triangulated surfaces. Assume |T | is a 2-dimensional mani-
fold possibly with boundary. A corner in T is defined as a vertex-face pair (v, f )
in T such that the face f contains v. It represents the inner angle of the face f at
the vertex v. A Euclidean angle structure θ , or an angle structure in short, on T
is a positive function on the set of the corners such that θ1 + θ2 + θ3 = π for the
three angles in every face f . Every angle structure can be presented as a positive
vector in R3|F |. Denote Vb ⊂ V as the set of boundary vertices, and then the edge
invariant α = α(θ) ∈ RE∪Vb is defined as:

(a) αe = θ1 + θ2, if e is an inner edge, and θ1 and θ2 are the two angles opposite
to e.

(b) αe = θ1, if e is a boundary edge, and θ1 is the angle opposite to e.

(c) αv =
∑

i θi , if v is a boundary vertex, and θi ’s are the angles at v.

Denote the set of angle structures realizing a prescribed edge invariant ᾱ ∈ RE∪Vb

as A(T, ᾱ).
Given an edge length function l ∈ RE satisfying the triangle inequalities, we

can naturally determine a piecewise Euclidean metric on T and induce an angle
structure θ(l) using the inner angles in this piecewise Euclidean metric. Notice
that not every angle structure can be induced from a piecewise Euclidean metric,
and there are holonomy conditions on the angle structures so that we can glue the
Euclidean triangles determined by the angles to form a Euclidean triangle mesh.
We will see that these geometric angle structures can be found by the following
variational principles on A(T, ᾱ).

Variational principles of angle structures. Variational methods are introduced to
find piecewise Euclidean surfaces with a prescribed edge invariant. The functionals
in these variational principles have elegant geometric interpretations in terms of
volumes of polyhedra in the hyperbolic 3-space H3.

For each face f in F , an energy functional is defined in terms of three angles at
the corners of the face in an angle structure. For a face in a Euclidean angle structure
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Figure 2. The volume of an ideal tetrahedron.

with three angles (α, β, γ ), the energy functional is the volume of ideal hyperbolic
tetrahedron whose horospherical section is similar to a Euclidean triangle with three
angles (α, β, γ ). See Figure 2. The volume is given by

V (α, β, γ )=3(α)+3(β)+3(γ ),

where 3 is the Lobachevsky function

3(x)= −

∫ x

0
log(2 sin θ) dθ.

The total energy for a given angle structure is defined as the sum of functionals on
each face

E(θ)=

∑
fi ∈F

Vi (αi , βi , γi ).

The variational principles for these energy functionals can be summarized as follows.

Theorem 2.1 [Rivin 1994]. Assume ᾱ ∈ (0, π]
E∪Vb and A(T, ᾱ) is nonempty, then:

(a) The energy functional E is strictly concave down on A(T, ᾱ).

(b) There exists a unique critical point θ =2(ᾱ) of E in A(T, ᾱ).

(c) 2(ᾱ) is the unique angle structure in A(T, ᾱ) that could be induced from a
piecewise Euclidean metric on T .

Denote A0(T ) as the set of angle structures θ such that α(θ) ∈ (0, π)E∪Vb and
the angle sum

∑
i θi around any interior vertex is 2π . Denote AE(T ) as the set of

angle structures θ in A0(T ) that can be induced from a piecewise Euclidean metric
on T . Notice that the angle structure induced from a Delaunay triangulation of a
convex polygon in the plane belongs to AE(T ). Then by Theorem 2.1, we have the
following.

Lemma 2.2. If AE(T ) is nonempty, then AE(T ) is homeomorphic to Rk for some
k ≥ 0.
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Proof. If AE(T ) is nonempty, then A0(T ) is nonempty. From the definition we can
see that A0(T ) is an open convex subset in an affine subspace of R3|F |. Then its
image α(A0(T )) under the edge invariant map α, which is a linear map, is an open
convex subset of an affine subspace of RE∪Vb . Hence, α(A0(T )) is homeomorphic
to Rk for some k ≥ 0.

It remains to show that ᾱ 7→ 2(ᾱ) is a homeomorphism from α(A0(T )) to
AE(T ). It is straightforward to show that such a map is continuous from α(A0(T ))
to R3|F |. Moreover, ᾱ 7→2(ᾱ) 7→ α(2(ᾱ)) is the identity map on α(A0(T )). By
Theorem 2.1, θ 7→ α(θ) 7→2(α(θ)) is the identity map on AE(T ). Then we only
need to show that the image 2(ᾱ) is in AE(T ). By the definition we only need to
verify that for any interior vertex v, the angle sum around v in 2(ᾱ) is equal to the
angle sum around v in θ . This is because the angle sum of an angle structure θ
around an interior vertex v is determined by the edge invariant α(θ) as the following.∑

f ∈F : f ∋v

θv, f =

∑
f ∈F : f ∋v

π −

∑
e∈E :e∋v

αe. □

The dimension of the space AE(T ) can be explicitly computed in the next section.

3. Delaunay Triangulations of Convex Polygons

Assume that |T | is homeomorphic to a closed disk, an embedding ϕ : |T | → R2 is
called a triangulation of a polygon if ϕ is linear on any triangle of T . Further such
ϕ is called a triangulation of a convex polygon if the inner angle of the polygon
ϕ(|T |) at ϕ(vi ) is less than π for any boundary vertex vi of T . Such ϕ is called
strictly Delaunay if for any pair of adjacent triangles △ABC and △AB D in ϕ(T ),
D is strictly outside the circumcircle of △ABC . This condition is equivalent to
that a + a′ < π , where a, a′ are the inner angles of two neighbored triangles as in
Figure 1.

Denote θ(ϕ) as the angle structure induced from the triangulation ϕ, and Z(T )=
{ϕ : θ(ϕ)∈AE(T )} as the set of strictly Delaunay triangulations of a convex polygon.
We say two embeddings ϕ,ψ from |T | to R2 have the same orientation if ψ ◦ϕ−1

is an orientation preserving map on ϕ(|T |). Given a triangulation ψ of a polygon,
denote Z(T, ψ) as the set of strictly Delaunay triangulations ϕ of a convex polygon
that have the same orientation with ψ .

Furthermore, if we are given a directed edge ei j of T , denote Z(T, ψ, ei j ) as the
set of strictly Delaunay triangulations ϕ ∈ Z(T, ψ) satisfying that ϕ( j)−ϕ(i)=

(λ, 0) for some λ>0. Then it is elementary to see that a triangulation in Z(T, ψ, ei j )

is uniquely determined by the induced angle structure θ(ϕ), ϕ(i) and ϕ( j)−ϕ(i).
Therefore, ϕ 7→(θ(ϕ), ϕ(i), ϕ( j)−ϕ(i)) gives a homeomorphism from Z(T, ψ, ei j )

to AE(T )× R2
× R+. On the other hand, the space Z(T, ψ, ei j ) is a (2|V | − 1)-

dimensional manifold if not empty, then we have the following from Lemma 2.2.
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Figure 3. The stereographic projection of an inscribed convex polyhedron.

Corollary 3.1. Given any Delaunay triangulation of a convex polygon ψ , and a
directed edge ei j , Z(T, ψ, ei j ) is homeomorphic to R2|V |−1.

In the next section, we will reduce the spaces of Delaunay triangulations on the
sphere and the spaces of convex polyhedra inscribed in the sphere to the space
Z(T, ψ, ei j ).

4. Proof of the main theorems

We will prove Theorems 1.4 and 1.5 in this section using the stereographic projection.
It is well known that the stereographic projection

π : (x, y, z) 7→

(
x

1 − z
,

y
1 − z

)
gives an angle-preserving diffeomorphism from S2

\{(0, 0, 1)} to R2. For a circle 0
on S2, the stereographic projection maps 0 to a circle on R2 if 0 does not contain
(0, 0, 1), and maps 0\{(0, 0, 1)} to a straight line in R2 if 0 contains (0, 0, 1).

Assume |T | is homeomorphic to S2, and v0 is a vertex of T , and ψ ∈ Y (T ) is
a convex realization inscribed in the unit sphere, then denote Y (T, ψ, v0) (resp.
Y (T, v0), Y0(T, ψ, v0), Y0(T, v0)) as the set of ϕ ∈ Y (T, ψ) (resp. ϕ ∈ Y (T ),
Y0(T, ψ), Y0(T )) with ϕ(v0)= (0, 0, 1).

Lemma 4.1. Assume |T | is homeomorphic to S2, v0 is a vertex of T , T0 denotes
the subcomplex of T obtained by removing the open 1-ring neighborhood of v0, and
ei j is a directed edge in T0:

(a) There exists a map π̃ : Y (T, v0)→ Z(T0) induced by π such that φ = π̃(ϕ)

is the strictly Delaunay triangulation of a convex polygon determined by
φ(v)= π(ϕ(v)) for any vertex v of T0; see Figure 3.

(b) There exists a map η̃ : Z(T0)→ Y (T, v0) induced by π−1 such that ϕ= η̃(φ) is
the convex realization determined by ϕ(v)= π−1(φ(v)) for any vertex v of T0.
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(c) π̃ and η̃ are inverse to each other and then π̃ is a homeomorphism from
Y (T, v0) to Z(T0).

(d) Given a convex realization ψ ∈ Y (T, v0), π̃ gives a homeomorphism from
Y (T, ψ, v0) to Z(T0, π̃(ψ)).

(e) If φ ∈ π̃(Y0(T, v0)):

(i) The origin (0, 0) is in the interior of φ(|T0|).
(ii) λφ is also in π̃(Y0(T, v0)) for any λ ∈ (0, 1).

(f) For any ϕ ∈ Y (T, ψ), there exists a unique ϕ0 ∈ Y (T, ψ, v0) and g ∈ SO(3),
such that ϕ = g ◦ ϕ0 and π̃(ϕ0) ∈ Z(T0, π̃(ψ), ei j ). Then Y (T, ψ) is homeo-
morphic to Z(T0, π̃(ψ), ei j )× SO(3).

(g) For any ϕ ∈ Y0(T, ψ), there exists a unique ϕ0 ∈ Y0(T, ψ, v0) and g ∈ SO(3),
such that ϕ = g ◦ϕ0 and π̃(ϕ0) ∈ Z(T0, π̃(ψ), ei j ). Then Y0(T, ψ) is homeo-
morphic to (π̃(Y0(T, v0))∩ Z(T0, π̃(ψ), ei j ))× SO(3).

Proof. (a) and (b) are true by the empty circle property of the (strict) Delaunay
triangulations and the fact that the stereographic projection preserves circles.

(c) This is a direct consequence from the definition.

(d) Given a convex realization ϕ ∈ Y (T, v0) and q1 inside ψ(|T |) and q2 inside
ϕ(|T |), the following elementary facts related to orientations are equivalent by the
definition and properties of stereographic projections:

(i) ϕ ∈ Y (T, ψ, v0).

(ii) ψ and ϕ have the same orientation.

(iii) πq1 ◦ψ is isotopic to πq2 ◦ϕ in S2.

(iv) πq1 ◦ψ and πq2 ◦ϕ have the same orientation.

(v) π̃(ψ) and π̃(ϕ) have the same orientation.

(vi) π̃(ϕ) ∈ Z(T0, π̃(ψ)).

(e) If ϕ ∈ Y0(T, v0), then the origin is inside ϕ(|T |). Then the ray starting from the
north pole passing through the origin intersects with ϕ(|T |) at a unique point q in
the interior of ϕ(|T0|). So part (i) is true. We prove part (ii) by contradiction. If
λφ is not in π̃(Y0(T, v0)) for some λ ∈ (0, 1), then the origin (0, 0, 0) is not inside
η̃(λφ) and there is an open hemisphere H on S2 not intersecting η̃(λφ)(V ). Notice
that H does not contain the north pole so π(H) is well-defined. Then π(H) is
an open disk containing (0, 0) or an open half plane with (0, 0) on its boundary,
and π(H) does not intersect (λφ)(V ). So π(H) does not intersect φ(V ), meaning
that H does not intersect η̃(φ)(V ). So (0, 0, 0) is not inside η̃(φ)(|T |), but this
contradicts with that φ ∈ π̃(Y0(T, v0)).
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Figure 4. Counterexample, a convex polygon.

(f) and (g) Follow from the fact that the rotation along the z-axis (or the origin in
the xy-plane) is invariant under the stereographic projection. □

Proof of Theorem 1.4. This is an immediate consequence of Corollary 3.1 and part
(f) of Lemma 4.1. □

Proof of Theorem 1.5. By part (g) of Lemma 4.1, we only need to show that
π̃(Y0(T, v0)) ∩ Z(T0, π̃(ψ), ei j ) is homeomorphic to R2|V |−3. By part (e) of
Lemma 4.1 it is elementary to verify that

ϕ ∈ π̃(Y0(T, v0))∩ Z(T0, π̃(ψ), ei j )

is uniquely determined by θ(ϕ), ϕ−1(0, 0) and d(ϕ), where d(ϕ) is the Euclidean di-
ameter of ϕ(|T |) and describes the scaling transformation needed to determine ϕ. So
ϕ 7→ (θ(ϕ), ϕ−1(0, 0), d(ϕ)) gives a continuous injective map from π̃(Y0(T, v0))∩

Z(T0, π̃(ψ), ei j ) to AE(T0)× int(|T0|)× (0,∞), where int(|T0|)= |T0|\∂(|T0|) is
homeomorphic to R2. Then by Lemma 2.2 and a dimension counting, we complete
the proof. □

5. Delaunay triangulations of other surfaces

In this section, we will discuss the space of Delaunay geodesic triangulations of
convex polygons and flat tori.

Convex polygons. A convex polygon P in the plane is determined by the position
of a sequence of cyclically ordered vertices. The following simple example in
Figure 4 shows that for a fixed convex polygon P in the plane with a triangulation
ψ : T → P , denote the space of Delaunay triangulations of P which are isotopic
to ψ and have the same orientation with ψ as X (T, ψ). Notice that X (T, ψ) is
different from the space Z(T, ψ) in Section 3, since the positions of boundary
vertices of T for elements in X are fixed.

The following example shows that X (T, ψ) may not be connected.
In Figure 4, there are nine interior edges in the triangulation, eight of which are

Delaunay. The dashed edge might not be Delaunay. In Figure 4, if the vertices A
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A A A

B B

A A A

B B

Figure 5. Counterexample, a flat torus.

and B are close to the vertical boundaries, then α and β are both acute, so we can
construct two Delaunay triangulations τ1 and τ2 on the left and right. If there is
a family of Delaunay triangulations connecting τ1 and τ2, the vertex A or B will
pass the perpendicular bisector of the horizontal boundary of this rectangle. If the
rectangle is flat enough, the angle sum α+ β > π when one of A and B lies on
the perpendicular bisector. This shows that X (T, ψ) for this rectangle P is not
connected.

Delaunay triangulations on flat tori. Assume |T | is homeomorphic to the torus T2

with a marking homeomorphism whose restriction on T (1) is denoted as ψ . An em-
bedding ϕ : T (1)

→ T2 is a Delaunay geodesic triangulation with the combinatorial
type (T, ψ) satisfying:

(a) The restriction ϕi j of ϕ on each edge ei j , identified with a unit interval [0, 1],
is a geodesic parametrized with constant speed.

(b) ϕ is homotopic to ψ .

(c) Equation (2) is satisfied for all edges in T .

Let X = X (T, ψ) denote the set of all such geodesic triangulations, which is called
the deformation space of Delaunay geodesic triangulations of T2 of combinatorial
type (T, ψ).

The following example shows that the space of Delaunay geodesic triangulations
X = X (T, ψ) may not be connected.

In Figure 5, we draw two geodesic triangulations τ1 and τ2 on a flat torus. For
each geodesic triangulation, we draw two fundamental domains of this torus. The
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triangulation has two vertices and six edges. Fixing the vertex A at a point in
the universal covering, we can see that the position of the vertex B determines a
geodesic triangulation of this flat torus. Notice that τ1 and τ2 are both Delaunay,
since all the angles in these two triangulations are acute when B is sufficiently close
to the vertical line connecting two adjacent copies of A in the universal covering.

We can choose the shape of the fundamental domain of the flat torus as shown
in the picture. Then τ1 and τ2 are in two different connected components of the
space of Delaunay triangulations of this flat torus. This observation is based on the
following fact: any path connecting τ1 and τ2 needs to move the vertex B from the
right to the left. However, we can choose a flat enough fundamental domain such
that when B passes the perpendicular bisector of the dashed edge, the dashed edge
is never Delaunay. This implies that the space X = X (T, ψ) for this flat torus is
not connected.
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NONEXISTENCE OF NEGATIVE WEIGHT DERIVATIONS OF
THE LOCAL k-TH HESSIAN ALGEBRAS ASSOCIATED TO

ISOLATED SINGULARITIES

GUORUI MA, STEPHEN S.-T. YAU AND HUAIQING ZUO

A new conjecture about the nonexistence of negative weight derivations of
the k-th Hessian algebras for weighted homogeneous isolated hypersurface
singularities is proposed. We verify this conjecture up to dimension three.

1. Introduction

A holomorphic function f : (Cn+1, 0) → (C, 0) is called quasihomogeneous if
f ∈ J ( f ), where J ( f ) := (∂ f/∂z0, ∂ f/∂z1, . . . , ∂ f/∂zn) is the Jacobian ideal.

A polynomial f (z0, . . . , zn) is called weighted homogeneous of type (α0, . . . ,αn;d),
where α0, . . . , αn and d are fixed positive integers, if it can be expressed as a linear
combination of monomials zi0

0 zi1
1 · · · zin

n for which α0i0 +· · ·+αnin = d . According
to a beautiful theorem of Saito [1971], if V = V ( f ) has isolated singularities, then f
is a weighted homogeneous polynomial after a biholomorphic change of coordinates
if and only if f is quasihomogeneous. The order of the lowest nonvanishing term in
the power series expansion of f at 0 is called the multiplicity, denoted by mult( f ),
of the singularity (V, 0).

For any isolated hypersurface singularity (V, 0) ⊂ (Cn, 0) that is defined by
the holomorphic function f : (Cn+1, 0) → (C, 0), one has the moduli algebra
A(V ) := On+1/( f, ∂ f/∂z0, . . . , ∂ f/∂zn) which is finite dimensional. The well-
known Mather–Yau theorem [1982] states that: Let (V1, 0) and (V2, 0) be two
isolated hypersurface singularities, and let A(V1) and A(V2) be their respective
moduli algebras, then (V1, 0)∼= (V2, 0)⇐⇒ A(V1)∼= A(V2). In 1983, Yau introduced
the Lie algebra of derivations of A(V ), i.e., L(V ) = Der(A(V ), A(V )). The finite
dimensional Lie algebra L(V ) is called the Yau algebra, and its dimension λ(V ) is
called the Yau number in ([Khimshiashvili 2006; Yu 1996]). The Yau algebra plays
an important role in singularity theory and was used to distinguish complex analytic
structures of isolated hypersurface singularities [Seeley and Yau 1990]. Yau and
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his collaborators have been systematically studying the Yau algebras of isolated
hypersurface singularities and their generalizations from the eighties (see [Yau 1986;
Xu and Yau 1996; Seeley and Yau 1990; Chen et al. 2019; Hussain et al. 2021]). In
[Hussain et al. 2021] and [Chen et al. 2020], many new derivation Lie algebras that
arise from isolated hypersurface singularities are introduced. These Lie algebras
are more subtle invariants of singularities compared with previous Lie algebras.
These Lie algebras are defined as follows: For any isolated hypersurface singu-
larity (V, 0) ⊂ (Cn+1, 0) defined by the holomorphic function f (z0, z1, . . . , zn),
let Hess( f ) be the Hessian matrix ( fi j ) of the second-order partial derivatives
of f and h( f ) be the Hessian of f , i.e., the determinant of the matrix Hess( f ).
More generally, for each k satisfying 0 ≤ k ≤ n + 1, we denote by Ik the ideal
in On+1 generated by all k × k-minors in the matrix Hess( f ). In particular, the
ideal In+1 = (h( f )) is a principal ideal. For each k as above, consider the graded
k-th Hessian algebra of the polynomial f defined by

Hk( f ) = On+1/
(
( f ) + J ( f ) + Ik

)
.

In particular, H0( f ) is exactly the well-known moduli algebra A(V ).
It is easy to check that the isomorphism class of the local k-th Hessian algebra

Hk( f ) is contact invariant of f , i.e., it depends only on the isomorphism class of
the germ (V, 0) [Dimca and Sticlaru 2015].

In particular, Hn+1( f ) has a geometric meaning. We recall the following beau-
tiful characterization theorem of zero-dimensional isolated complete intersection
singularities:

Theorem 1.1 [Dimca 1984]. Two zero-dimensional isolated complete intersection
singularities X and Y are isomorphic if and only if their singular subspaces Sing(X)

and Sing(Y ) are isomorphic.

Remark 1.2. Let V = V ( f ) be an isolated quasihomogeneous hypersurface singu-
larity. It follows that X , defined by (∂ f/∂z0, . . . , ∂ f/∂zn), is a zero-dimensional
isolated complete intersection singularity. In this case, Sing(X) is defined by(

f,
∂ f
∂z0

, . . . ,
∂ f
∂zn

, h( f )

)
.

Theorem 1.1 implies that to study the analytic isomorphism type of the zero-
dimensional isolated complete intersection singularity X , we only need to consider
the Artinian local algebra Hn+1( f ), which is the coordinate ring of Sing(X).

Combining Theorem 1.1 with the Mather–Yau theorem, we know that Hn+1( f )

is a complete invariant of quasihomogeneous isolated hypersurface singularities
(i.e., Hn+1( f ) determines and is determined by the analytic isomorphism type of
the singularity). In [Chen et al. 2020], we also call Hn+1( f ) the generalized moduli
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algebra of V . As a generalization of the Yau algebra, it is natural to introduce the
following new Lie algebras for isolated hypersurface singularities:

Definition 1.3. Let V = { f = 0} be a germ of the isolated hypersurface singularity
at the origin of Cn+1 defined by f (z0, z1, . . . , zn), with n ≥ 1. The series of new
derivation Lie algebras arising from the isolated hypersurface singularity (V, 0) is
defined as Lk(V ) := Der(Hk( f ), Hk( f )), where 0 ≤ k ≤ n + 1, or Der(Hk( f )) for
short. The dimension of Lk(V ) is denoted by λk(V ).

It is known that the Yau algebra cannot characterize the ADE singularities
completely. In fact, Elashvili and Khimshiashvili [2006] proved the following
result: If X and Y are two simple singularities except for the pair A6 and D5, then
L(X) ∼= L(Y ) as Lie algebras, if and only if X and Y are analytically isomorphic.
However, we have proven that the ADE singularities are characterized completely
by the new Lie algebra Ln+1(V ) as follows. We have reasons to believe that the
new Lie algebras Lk(V ) and numerical invariants λk(V ), where 1 ≤ k ≤ n +1, will
also play an important role in the study of singularities.

Theorem 1.4 [Chen et al. 2020]. If X and Y are two n-dimensional ADE singu-
larities, then Ln+1(X) ∼= Ln+1(Y ) as Lie algebras, if and only if X and Y are
analytically isomorphic.

Let A be a weighted zero-dimensional complete intersection, i.e., a commutative
algebra of the form

A = C[z0, z1, . . . , zn]/I,

where the ideal I is generated by a regular sequence of length n+1, ( f0, f1, . . . , fn).
Here, the variables have strictly positive integral weights, denoted by wt(zi ) = αi ,
where 0 ≤ i ≤ n, and the equations are weighted homogeneous with respect to
these weights. Consequently, the algebra A is graded and one may speak about
its homogeneous degree k derivations, where k is an integer. Recall that a linear
map D : A → A is a derivation if D(ab) = D(a)b + aD(b), for any a, b ∈ A. The
map D belongs to Derk(A) if D : A∗

→ A∗+k .
On the one hand, one of the most prominent open problems in rational homotopy

theory is related to the vanishing of the above derivations in strictly negative degrees.

Halperin Conjecture [Meier 82; Chen et al. 2019]. Let

A = C[z0, z1, . . . , zn]/I,

where the ideal I is generated by a regular sequence of length n+1, ( f0, f1, . . . , fn).
Here, the variables have strictly positive even integer weights, denoted by wt(zi)=αi ,
0≤ i ≤n, and the equations are weighted homogeneous with respect to these weights.
Then Der<0(A) = 0.
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The Halperin Conjecture has been verified in several particular cases, see [Pa-
padima and Paunescu 1996; Thomas 1981]. For recent progress, please see [Chen
et al. 2019].

Let (V, 0) = {(z0, z1, . . . , zn) ∈ Cn+1
: f (z0, z1, . . . , zn) = 0} be an isolated

singularity defined by the weighted homogeneous polynomial f (z0, z1, . . . , zn)

of type (α0, α1, . . . , αn; d). Then by a well-known result of Saito [1971], we can
always assume, without loss of generality, that d ≥ 2αi > 0 for all 0 ≤ i ≤ n. We give
the variable zi weight αi for 0 ≤ i ≤ n, thus the moduli algebra A(V ) is a graded
algebra, i.e., A(V ) =

⊕
∞

i=0 Ai (V ), and the Lie algebra of derivations Der(A(V ))

is also graded. Thus, L(V ) is graded.
On the other hand, Yau discovered independently the following conjecture on

the nonexistence of the negative weight derivation, which is a special case of the
Halperin Conjecture.

Yau Conjecture (see [Chen 1995; Chen et al. 1995]). Consider the isolated singu-
larity

(V, 0) =
{
(z0, z1, . . . , zn) ∈ Cn+1

: f (z0, z1, . . . , zn) = 0
}

defined by the weighted homogeneous polynomial f (z0, z1, . . . , zn) of weight type
(α0, α1, . . . , αn; d). Assume that d ≥ 2α0 ≥ 2α1 ≥ · · · ≥ 2αn > 0, without loss
of generality. Then there is no nonzero negative weight derivation on the moduli
algebra (= Milnor algebra)

A(V ) = C[z0, z1, . . . , zn]
/ (

∂ f
∂z0

, . . . ,
∂ f
∂zn

)
,

i.e., L(V ) is nonnegatively graded.

This conjecture is still open and was only proved in the low-dimensional case
n ≤ 3 by explicit calculations [Chen 1995; Chen et al. 1995]. It was also proved
for the high-dimensional singularities under certain conditions [Yau and Zuo 2016]
and for homogeneous singularities (see Proposition 2.1).

Theorem 1.5 [Chen 1995, Theorem 2.1]. Let f (z0, z1, z2, z3) be a weighted homo-
geneous polynomial of type (α0, α1, α2, α3; d) with an isolated singularity at the
origin. Assume that d ≥ 2α0 ≥ 2α1 ≥ 2α2 ≥ 2α3 > 0, without loss of generality. Let
D be a derivation of the moduli algebra

A(V ) = C[z0, z1, z2, z3]
/ (

∂ f
∂z0

, . . . ,
∂ f
∂z3

)
.

Then D ≡ 0 if D is negatively weighted.

Assume that f is a weighted homogeneous polynomial, then the k-th Hessian
algebra Hk(V ) and Lk(V ) are also naturally graded. It is natural to propose the
following new conjecture:
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Conjecture 1.6. Let (V, 0) = {(z0, z1, . . . , zn) ∈ Cn+1
: f (z0, z1, . . . , zn) = 0} be

an isolated singularity defined by the weighted homogeneous polynomial f of
weight type (α0, α1, . . . , αn; d). Assume that d ≥ 2α0 ≥ 2α1 ≥ · · · ≥ 2αn > 0,
without loss of generality. Let Hk(V ) be the k-th Hessian algebra. Furthermore,
in the case of 1 < k ≤ n (respectively, k = 1), we need to assume that mult( f ) ≥ 4
(respectively, 5). Then for any 0 ≤ k ≤ n + 1, there is no nonzero, negative weight
derivation on the Hk(V ), i.e., Lk(V ) is nonnegatively graded.

This Conjecture 1.6 seems very hard to verify in general, in fact, when k = 0, it
is exactly the long-standing Yau Conjecture above. When k = n + 1, it was also
verified for n ≤ 3 as follows:

Theorem 1.7 [Ma et al. 2020]. Consider the isolated singularity

(V, 0) =
{
(z0, z1, . . . , zn) ∈ Cn+1

: f (z0, z1, . . . , zn) = 0
}

defined by the weighted homogeneous polynomial f of weight type (α0,α1, . . . ,αn;d),
where 1 ≤ n ≤ 3. Assume that d ≥ 2α0 ≥ 2α1 ≥ · · · ≥ 2αn > 0, without loss of
generality. Let D be a derivation of the algebra

C[z0, z1, . . . , zn]
/ (

∂ f
∂z0

,
∂ f
∂z1

, . . . ,
∂ f
∂zn

, det
(

∂2 f
∂zi∂z j

)
0≤i, j≤n

)
.

Then D ≡ 0, if D has negative weight, i.e., Ln+1(V ) is nonnegatively graded for
1 ≤ n ≤ 3.

In this paper, we shall verify Conjecture 1.6 for the case n = 1, 2, with 1 ≤ k ≤ n,
and n = 3, with 1 < k ≤ 3 (the case n = 0 is trivial). The proof of the case where
n = 3 and k = 1 is completely different and long. It will appear in our subsequent
paper. In this paper, we obtain the following main result which partially verifies the
Conjecture 1.6:

Main Theorem. Let (V, 0) = {(z0, z1, . . . , zn) ∈ Cn+1
: f (z0, z1, . . . , zn) = 0}

be an isolated singularity defined by the weighted homogeneous polynomial f of
weight type (α0, α1, . . . , αn; d), where 1 ≤n ≤ 3. Assume, without loss of generality,
that d ≥ 2α0 ≥ 2α1 ≥ · · · ≥ 2αn > 0. Let Lk(V ) be the derivation Lie algebra of
the k-th Hessian algebra Hk(V ) and Dk ∈ Lk(V ).

(a) For n = 1, if D1 is of negative weight, then D1 ≡ 0.

(b) For n = 2, if D1 (respectively, D2) is of negative weight, then D1 ≡ 0
(respectively, D2 ≡ 0). In this case, we need the assumption mult( f ) ≥ 4,
see Example 1.8.

(c) For n = 3, if D2 (respectively, D3) is of negative weight, then D2 ≡ 0
(respectively, D3 ≡ 0). In this case, we need the assumption mult( f ) ≥ 4,
see Example 1.9.
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Example 1.8. We need to add the condition mult( f ) ≥ 4 in Main Theorem (b) due
to the following two examples:

(a) Let f = z3
0 + z0z1z2

2 + z3
1z2 + z5

2 with weighted type (5, 4, 3; 15). We have

∂ f
∂z0

= 3z2
0 + z1z2

2,
∂ f
∂z1

= z0z2
2 + 3z2

1z2,
∂ f
∂z2

= 2z0z1z2 + z3
1 + 5z4

2

and
∂2 f
∂z2

0
= 6z0,

∂2 f
∂z2

1
= 6z1z2,

∂ f
∂z2

2
= 2z0z1 + 20z3

2,

∂2 f
∂z0∂z1

= z2
2,

∂2 f
∂z0∂z2

= 2z1z2,
∂ f

∂z1∂z2
= 2z0z2 + 3z2

1.

It is easy to check that D1 = z2(∂/∂z1) is a negative weight derivation (weighted
degree of D1 is −1, i.e., wt(D1) = −1) of

C[z0, z1, z2]
/ (

∂2 f
∂z2

0
,
∂2 f
∂z2

1
,
∂2 f
∂z2

2
,

∂2 f
∂z0∂z1

,
∂2 f

∂z0∂z2
,

∂2 f
∂z1∂z2

)
,

i.e., D1 ∈ L1(V ( f )).

(b) Let f = z2
0z2 + z0z5

2 + z3
1 with weighted type (4, 3, 1; 9). We have

∂ f
∂z0

= 2z0z2 + z5
2,

∂ f
∂z1

= 3z2
1,

∂ f
∂z2

= z2
0 + 5z0z4

2

and ∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2z2 0 2z0+5z4

2
0 6z1 0

2z0+5z4
2 0 20z0z3

2

∣∣∣∣∣∣ .
Thus I2 = ⟨ f1, f2, f3, f4⟩, where

f1 =

∣∣∣∣ f00 f01

f01 f11

∣∣∣∣ = 12z1z2, f2 =

∣∣∣∣ f01 f02

f11 f12

∣∣∣∣ = −12z0z1 − 30z1z4
2,

f3 =

∣∣∣∣ f00 f02

f02 f22

∣∣∣∣ = 20z0z4
2 − 4z2

0 − 25z8
2, f4 =

∣∣∣∣ f11 f12

f12 f12

∣∣∣∣ = 120z0z1z3
2.

It is easy to check that D2 = z1(∂/∂z0) ∈ L2(V ( f )) is a negative weight derivation
(wt(D2) = −1).

Example 1.9. We need to add the condition mult( f ) ≥ 4 in Main Theorem (c) due
to the following example:

Let f = z2
0z2 + z3

2z0 + z3
1 + z5

3 with weighted type (6, 5, 3, 3; 15). We have

∂ f
∂z0

= 2z0z2 + z3
2,

∂ f
∂z1

= 3z2
1,

∂ f
∂z2

= z2
0 + 3z2

2z0,
∂ f
∂z3

= 5z4
3
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and ∣∣∣∣∣∣∣∣
f00 f01 f02 f03

f01 f11 f12 f13

f02 f12 f22 f23

f03 f13 f23 f33

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
2z2 0 2z0+3z2

2 0
0 6z1 0 0

2z0+3z2
2 0 6z0z2 0

0 0 0 20z3
3

∣∣∣∣∣∣∣∣ .
Thus I2 = ⟨ f1, f2, f3, f4, f5, f6, f7, f8⟩, where

f1 =

∣∣∣∣ f00 f01

f01 f11

∣∣∣∣ = 12z1z2, f2 =

∣∣∣∣ f01 f02

f11 f12

∣∣∣∣ = −12z0z1 − 18z1z2
2,

f3 =

∣∣∣∣ f00 f02

f02 f22

∣∣∣∣ = −4z2
0 − 9z4

2, f4 =

∣∣∣∣ f00 f03

f03 f33

∣∣∣∣ = 40z2z3
3,

f5 =

∣∣∣∣ f02 f23

f03 f33

∣∣∣∣ = 40z0z3 + 60z2
2z3, f6 =

∣∣∣∣ f11 f12

f12 f22

∣∣∣∣ = 36z0z1z2,

f7 =

∣∣∣∣ f11 f13

f13 f33

∣∣∣∣ = 120z1z3
3, f8 =

∣∣∣∣ f22 f23

f23 f33

∣∣∣∣ = 120z0z2z3
3.

It is easy to check that D2 := z1(∂/∂z0) ∈ L2(V ( f )) is a negative weight derivation
(wt(D2) = −1).

Remark 1.10. Examples 1.8 and 1.9 are interesting because one cannot find such
examples when k = 0 (see the Yau Conjecture) and k = n + 1 (see Theorem 1.7).

Xu and Yau [1996] used the property of nonexistence of negative derivations
of the moduli algebra A(V ) to obtain a characterization of quasihomogeneous
singularities (see [Xu and Yau 1996, Theorem 3.2] for details). We believe this
characterization can be generalized by using the Lie algebra of derivations of the
k-th Hessian algebra. The Main Theorem in this paper provides evidence for the
generalization.

2. Proof of the Main Theorem

Firstly, we recall the following known results which will be used in proof of the
Main Theorem frequently:

Proposition 2.1 [Xu and Yau 1996, Proposition 2.6]. Let A =
⊕k

i=0 Ai be a graded
commutative Artinian local algebra with A0 = C. Suppose the maximal ideal of A
is generated by A j for some j > 0. Then L(A) is a graded Lie algebra without
negative weight.

Lemma 2.2 [Yau 1986]. Let (A,m) be a commutative local Artinian algebra (m is
the unique maximal ideal of A and D ∈ L(A) is the derivation of A). Then D
preserves the m-adic filtration of A, i.e., D(m) ⊂ m.
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Lemma 2.3 [Chen et al. 1995, Lemma 2.1]. Let f be a weighted homogeneous poly-
nomial with isolated singularity in the variables z0, . . . , zn of type (α0, . . . , αn; d).
Assume wt(z0) = α0 ≥ wt(z1) = α1 ≥ · · · ≥ wt(zn) = αn . Then f must be as in one
of the following two cases:

Case 1: Let f = zm
0 +a1(z1, . . . ,zn)zm−1

0 + · · · +am−1(z1, . . . ,zn)z0+am(z1, . . . ,zn).

Case 2: Let f = zm
0 zi+a1(z1, . . . ,zn)zm−1

0 +· · ·+am−1(z1, . . . ,zn)z0+am(z1, . . . ,zn).

Lemma 2.4 [Chen 1995, Lemma 1.2]. Let f be a weighted homogeneous polyno-
mial in z0, . . . , zn which defines an isolated singularity at the origin. Then there
is a term of the form zai

i or zai
i z j in f for any i (ai ≥ 2 in the case zai

i and ai ≥ 1
otherwise).

Remark 2.5. When we talk about the weight of an element in an ideal, we always
assume that the element is nonzero.

Now we begin to prove the Main Theorem.

Proof of the Main Theorem. Let

Aν := C[z0, z1, . . . , zn]
/ (

∂ f
∂z0

,
∂ f
∂z1

, . . . ,
∂ f
∂zn

, Iν

)
and

B := C[z0, z1, . . . , zn]
/ (

∂ f
∂z0

,
∂ f
∂z1

, . . . ,
∂ f
∂zn

)
.

It is clear that Aν = B/(Iν), and Aν is a commutative Artinian algebra. Let
Dν ∈ L(Aν) be a derivation of Aν , and let Dν be an Aν-linear combination of
∂/∂z0, ∂/∂z1, . . . , ∂ f/∂zn . By Lemma 2.2, we know that Dν(m) ⊂ m, where m is
the maximal ideal (z0, . . . , zn), thus the coefficients of ∂/∂z0, ∂/∂z1, . . . , ∂ f/∂zn

do not contain the constant term. Moreover, Dν has negative weight, thus we write

Dν = p0(z1, . . . , zn)
∂

∂z0
+ p1(z2, . . . , zn)

∂

∂z1
+ · · · + pn−2(zn−1, zn)

∂

∂zn−2

+ czk
n

∂

∂zn−1
,

where k ≥ 1 and c is a constant. Observe that

wt
(

∂ f
∂z0

)
= d − α0, wt

(
∂ f
∂z1

)
= d − α1, . . . , wt

(
∂ f
∂zn

)
= d − αn,

so we have 0 < wt(∂/∂z0) ≤ wt(∂/∂z1) ≤ · · · ≤ wt(∂ f/∂zn). Since Dν is a deriva-
tion of Aν , we have Dν(Jν) ⊂ Jν , where Jν = (∂ f/∂z0, ∂ f/∂z1, . . . , ∂ f/∂zn, Iν).
Moreover, wt(Dν(∂ f/∂z0))<wt(∂ f/∂z0) implies that Dν(∂ f/∂z0) does not contain
any linear combination of ∂ f/∂z0, ∂ f/∂z1, . . . , ∂ f/∂zn .

We divide the proof of the main theorem into four propositions.
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Proposition 2.6. Let f (z0, z1) be a weighted homogeneous polynomial of type
(α0, α1; d) with an isolated singularity at the origin. Assume that d ≥ 2α0 ≥ 2α1.
Let D be a derivation of the algebra

C[z0, z1]
/ (

∂2 f
∂z2

0
,

∂2 f
∂z0∂z1

,
∂2 f
∂z2

1

)
.

Then D ≡ 0, if D is of negative weight.

Proof. It is clear that D(∂2 f/∂z2
0) = 0. We have D = zk

1(∂/∂z0), where k ≥ 1 and
wt(D) = kα1 − α0 < 0. Let

f (z0, z1) =

∑
α0n0+α1n1=d

c(n0,n1)z
n0
0 zn1

1 .

Then we have

D
(

∂2 f
∂z2

0

)
= zk

1
∂

∂z0

( ∑
α0n0+α1n1=d

n0(n0 − 1)c(n0,n1)z
n0−2
0 zn1

1

)
=

∑
α0n0+α1n1=d

n0(n0 − 1)(n0 − 2)c(n0,n1)z
n0−3
0 zn1+k

1 = 0.

So, when n0 ≥ 3, c(n0,n1) = 0, i.e.,

f (z0, z1) = c(2,p)z2
0zr

1 + c(1,p)z0z p
1 + c(0,q)z

q
1 ,

where d = 2α0 + rα1 = α0 + pα1 = qα1.
If c(2,p) = 0, then in order for f to have isolated singularity at the origin, we

need p = 1. So

f (z0, z1) = c(1,p)z0z1 + c(0,q)z
q
1 and

∂2 f
∂z0∂z1

= c(1,p).

So, D = zk
1(∂/∂z0) is a zero derivation on C[z0, z1]/(∂

2 f /∂z2
0,∂

2 f /∂z0∂z1,∂
2 f /∂z2

1).
If c(2,p) ̸= 0, then by Lemma 2.4, we obtain that r = 0 or r = 1. If r = 0, then

∂2 f/∂z2
0 = 2c(2,p). If r = 1, then ∂2 f/∂z2

0 = 2c(2,p)z1. Hence, D = zk
1(∂/∂z0) is a

zero derivation on C[z0, z1]/(∂
2 f/∂z2

0, ∂
2 f/∂z0∂z1, ∂

2 f/∂z2
1). □

Proposition 2.7. Let (V, 0) = {(z0, z1, z2) ∈ C3
: f (z0, z1, z2) = 0} be an isolated

singularity defined by the weighted homogeneous polynomial f of weight type
(α0, α1, α2; d) with mult( f ) ≥ 4. Assume that d ≥ 2α0 ≥ 2α1 ≥ 2α2 > 0, without
loss of generality. Let H1(V ) be the first Hessian algebra. Let D1 be a derivation of
the algebra H1(V ), i.e., D1 ∈ L1(V ), then D1 ≡ 0, if D1 is of negative weight.

Proof. For simplicity, we use D to denote D1. It is clear that D(∂2 f/∂z2
0) = 0.

We have D = p(z1, z2)(∂/∂z0) + czk
2(∂/∂z1), where c is a constant. There are two

cases: c = 0 or c ̸= 0.
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Case 1: Assume c = 0. In this case, D = p(z1, z2)(∂/∂z0). By Lemma 2.3, we
separate it into two cases.

Case 1.1: Let f = zm
0 + a1(z1, z2)zm−1

0 + · · · + am−1(z1, z2)z0 + am(z1, z2). Then

D
(

∂2 f
∂z2

0

)
= p(z1, z2)

[
m(m−1)(m−2)zm−3

0 +(m−1)(m−2)(m−3)a1(z1, z2)zm−4
0

+ · · · +6am−3(z1, z2)
]
= 0,

which implies p(z1, z2) = 0.

Case 1.2: Let f = zm
0 zi + a1(z1, z2)zm−1

0 + · · · + am(z1, z2). Then

D
(

∂2 f
∂z2

0

)
= p(z1, z2)

[
m(m−1)(m−2)zm−3

0 zi+(m−1)(m−2)(m−3)a1(z1, z2)zm−3
0

+· · ·+6am−3(z1, z2)],

which implies p(z1, z2) = 0, i.e., D ≡ 0.

Case 2: Assume c ̸= 0. According to Lemma 2.3, we also need to separate it into
two cases.

Case 2.1: Let f = zm
0 + a1(z1, z2)zm−1

0 + · · · + am−1(z1, z2)z0 + am(z1, z2). Then

D
(

∂2 f
∂z2

0

)
= p(z1, z2)

[
m(m−1)(m−2)zm−3

0 +(m−1)(m−2)(m−3)a1(z1, z2)zm−4
0

+ · · · +6am−3(z1, z2)
]

+czk
2

[
(m−1)(m−2)

∂a1(z1, z2)

∂z1
zm−3

0 +(m−2)(m−3)
∂a2(z1, z2)

∂z1
zm−4

0

+ · · · +2
∂am−2(z1, z2)

∂z1

]
.

Because D(∂2 f/∂z2
0) = 0 and m ≥ 4, we have

mp(z1, z2) = −czk
2
∂a1(z1, z2)

∂z1
.

We construct the coordinate transformation
z0 = z′

0 −
1
m

a1(z′

1, z′

2),

z1 = z′

1,

z2 = z′

2.

Then

D = −
1
m

czk
2
∂a1(z1, z2)

∂z1

∂

∂z0
+ czk

2
∂

∂z1

= czk
2

(
−

1
m

∂a1(z1, z2)

∂z1

∂

∂z0
+

∂

∂z1

)
= c(z′

2)
k ∂

∂z′

1
.
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Letting g(z′

0, z′

1, z′

2)= f (z0, z1, z2), we know that g is also a weighted homogeneous
polynomial and

g = (z′

0)
m

+ b1(z′

1, z′

2)(z
′

0)
m−1

+ · · · + bm(z′

1, z′

2).

By the same argument as before, we have

D
(

∂2g

∂z′

0
2

)
= 0.

So we assume that

D
(

∂2g
∂(z′

0)
2

)
= c(z′

2)
k ∂

∂z′

1

(
∂2g

∂(z′

0)
2

)
= 0.

So
∂b1(z′

1, z′

2)

∂z′

1
= · · · =

∂bm−2(z′

1, z′

2)

∂z′

1
= 0.

Furthermore,

D
(

∂2g
∂z′

0∂z′

1

)
= c(z′

2)
k ∂3g
∂z′

0∂(z′

1)
2 = c(z′

2)
k ∂2bm−1(z′

1, z′

2)

∂(z′

1)
2

belongs to the principal ideal generated by ∂2g/∂(z′

0)
2. Hence,

c = 0 or
∂2bm−1(z′

1, z′

2)

∂(z′

1)
2 = 0.

If c = 0, then we have already finished it. In the following, we assume that
∂2bm−1(z′

1, z′

2)/∂(z′

1)
2
= 0. So we have

∂2g
∂z′

0∂z′

1
=

∂bm−1(z′

1, z′

2)

∂z′

1
.

Then, it is easy to see that

D
(

∂2g
∂(z′

1)
2

)
= c(z′

2)
k ∂3g
∂(z′

1)
3 = c(z′

2)
k ∂3bm(z′

1, z′

2)

∂(z′

1)
3

belongs to the ideal generated by ∂2g/∂(z′

0)
2, ∂2g/(∂z′

0∂z′

1) and ∂2g/(∂z′

0∂z′

2). If
one of b1, . . . , bm−2 is not zero, then D(∂2g/∂(z′

1)
2) belongs to the principal ideal

generated by ∂2g/(∂z′

0∂z′

1), i.e., there exists a polynomial h(z2, z3) such that

D
(

∂2g
∂(z′

1)
2

)
= h

∂2g
∂z′

0∂z′

1
,

i.e.,

(1) c(z′

2)
k ∂3bm(z′

1, z′

2)

∂(z′

1)
3 = h(z′

1, z′

2)
∂bm−1(z′

1, z′

2)

∂z′

1
.
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Let bm−1(z′

1, z′

2) = pz′

1(z
′

2)
s
+q(z′

2)
t , where p ̸= 0. By Lemma 2.4, we obtain that

at least one of (z′

1)
l1 and (z′

1)
l2 z′

2 is contained in bm(z′

1, z′

2). If (z′

1)
l1 is contained in

bm(z′

1, z′

2) as a monomial, then ∂3bm(z′

1, z′

2)/∂(z′

1)
3 is not divisible by z′

2. Hence,
k ≥ s by (2). Moreover, since sα2 + α1 + α0 = mα0, we easily obtain

(m − 1)α0 − α1 = sα2 ≤ kα2 < α1,

i.e., (m −1)α0 < 2α0 which is in contradiction with m ≥ 4. Hence, (z′

1)
l2 z′

2 must be
contained in bm(z′

1, z′

2). Then ∂3bm(z′

1, z′

2)/∂(z′

1)
3 is not divisible by (z′

2)
2. By (1),

it is easy to see that k + 1 ≥ s, which implies

(m − 1)α0 − α1 − α2 = (s − 1)α2 ≤ kα2 < α1,

i.e., (m − 1)α0 < 2α1 + α2, which is in contradiction with m ≥ 4.
In the following, we assume that b1 = · · · = bm−2 = 0, then

f = (z′

0)
m

+ bm−1(z′

1, z′

2)z
′

0 + bm(z′

1, z′

2).

Hence there exist two polynomial h1 and h2 such that

(2) c(z′

2)
k ∂3bm(z′

1, z′

2)

∂(z′

1)
3 = h1(z′

1, z′

2)
∂bm−1(z′

1, z′

2)

∂z′

1
+ h2(z′

1, z′

2)
∂bm−1(z′

1, z′

2)

∂z′

2
.

The weight of the left-hand side of (2) is equal to kα2+mα0−3α1. The weight of the
right-hand side of (2) is equal to wt(h2)+ (m − 1)α0 −α2. Hence, wt(h2) = kα2 +

α0 − 3α1 +α2 ≥ α2, which implies that α0 ≥ 3α1 − kα2 > 2α1. Let bm−1(z′

1, z′

2) =

pz′

1(z
′

2)
s
+ q(z′

2)
t , where p ̸= 0. By Lemma 2.4, we obtain that at least one of

(z′

1)
l1 and (z′

1)
l2 z′

2 is contained in bm(z′

1, z′

2). If (z′

1)
l1 is contained in bm(z′

1, z′

2)

as a monomial, then ∂3bm(z′

1, z′

2)/∂(z′

1)
3 is not divisible by z′

2. Hence, we obtain
k ≥ s − 1 by (2). Moreover, since sα2 + α1 + α0 = mα0, we easily obtain

(m − 1)α0 − α1 = sα2 ≤ (k + 1)α2 < α1 + α2,

i.e., (m −1)α0 < 3α0, which is in contradiction with m ≥ 4. Hence, (z′

1)
l2 z′

2 must be
contained in bm(z′

1, z′

2). Then ∂3bm(z′

1, z′

2)/∂(z′

1)
3 is not divisible by (z′

2)
2. By (2),

it is easy to see that k + 1 ≥ s − 1, which implies

(m − 1)α0 − α1 − α2 = (s − 1)α2 ≤ (k + 1)α2 < α1 + α2,

i.e., (m − 1)α0 < 2α1 + 2α2 < 3α0, which is in contradiction with m ≥ 4.

Case 2.2: Let f = zm
0 zi + a1(z1, z2)zm−1

0 +· · ·+ am−1(z1, z2)z0 + am(z1, z2), with
m ≥ 3.
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If i = 1, then we have

0 = D
(

∂2 f
∂z2

0

)
= p(z1, z2)

[
m(m−1)(m−2)zm−3

0 z1+(m−1)(m−2)(m−3)a1(z1, z2)zm−4
0 + · · ·

]
+czk

2

[
m(m−1)zm−2

0 +(m−1)(m−2)
∂a1(z1, z2)

∂z1
zm−3

0 + · · ·

]
.

This forces c = 0 which contradicts our hypothesis. So this case does not occur.
If i = 2, then we have

(3) 0 = D
(

∂2 f
∂z2

0

)
= p(z1, z2)

∂

∂z0

(
∂2 f
∂z2

0

)
+ czk

2
∂

∂z1

(
∂2 f
∂z2

0

)
=

∂2

∂z2
0

[
p(z1, z2)

∂ f
∂z0

+ czk
2

∂ f
∂z1

]
,

and similarly D((∂2 f )/∂z0∂z1) is a multiple of ∂2 f/∂z2
0.

(4) D
(

∂2 f
∂z0∂z1

)
= p(z1, z2)

∂

∂z0

(
∂2 f

∂z0∂z1

)
+ czk

2
∂

∂z1

(
∂2 f

∂z0∂z1

)
=

∂2

∂z0∂z1

(
p(z1, z2)

∂ f
∂z0

+ czk
2

∂ f
∂z1

)
−

∂p(z1, z2)

∂z1
·
∂2 f
∂z2

0

= h
∂2 f
∂z2

0
.

Equation (4) implies that

∂2

∂z0∂z1

(
p(z1, z2)

∂ f
∂z0

+ czk
2

∂ f
∂z1

)
= h̃

∂2 f
∂z2

0
.

From (3), we know that the left-hand side of this equation is independent of z0

variable. Since m ≥ 3, the right-hand side of this equation is independent of z0

variable only if h̃ = 0. Thus we have

∂2

∂z0∂z1

(
p(z1, z2)

∂ f
∂z0

+ czk
2

∂ f
∂z1

)
= 0.

So we have
∂

∂z0

(
p(z1, z2)

∂ f
∂z0

+ czk
2

∂ f
∂z1

)
= uzl

2,
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where either u = 0 or u ̸= 0 and l > k. This is

(5) ∂

∂z0

[
p(z1, z2)

(
mz2zm−1

0 + (m − 1)a1(z1, z2)zm−2
0 + · · · + am−1(z1, z2)

)
+ czk

2

(
∂a1(z1, z2)

∂z1
zm−1

0 +
∂a2(z1, z2)

∂z1
zm−2

0 + · · · +
∂am(z1, z2)

∂z1

)]
= uzl

2.

As m ≥ 4, (5) implies

mp(z1, z2)z2 + czk
2
∂a1(z1, z2)

∂z1
= 0.

If czk
2(∂a1(z1, z2)/∂z1) = 0, then p(z1, z2) = 0 and (5) becomes

∂

∂z0

[
czk

2

(
∂a1(z1, z2)

∂z1
zm−1

0 +
∂a2(z1, z2)

∂z1
zm−2

0 + · · · +
∂am(z1, z2)

∂z1

)]
= uzl

2.

Since c ̸= 0 and m ≥ 3, we have

∂a1(z1, z2)

∂z1
=

∂a2(z1, z2)

∂z1
= · · · =

∂am−2(z1, z2)

∂z1
= 0

and
∂am−1(z1, z2)

∂z1
= ezl−k

2 ,

where e ̸= 0. Hence,
am−1(z1, z2) = ez1zl−k

2 + e′zl ′
2 .

Now we consider
∂2 f
∂z2

1
= czk

2
∂3am(z1, z2)

∂z3
1

.

We can do a similar computation as in Case 2.1 and get a contradiction.
If czk

2(∂a1(z1, z2)/∂z1) ̸= 0. Then

p(z1, z2) = zk−1
2 q(z1, z2),

where

q(z1, z2) = −
c
m

∂a1(z1, z2)

∂z1
.

So we have
∂

∂z0

(
q(z1, z2)

∂ f
∂z0

+ cz2
∂ f
∂z1

)
= uzl−k+1

2 .

We write
q(z1, z2) = αzs

1 + z2γ (z1, z2).
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We claim that α = 0. Suppose on the contrary that α ̸= 0. If we rewrite f in the
form

f = b0(z0, z1)zn
2 + b1(z0, z1)zn−1

2 + · · · + bn(z0, z1),

then

(6) ∂

∂z0

[
(αzs

1 + z2γ (z1, z2))

(
∂b0(z0, z1)

∂z0
zn

2 + · · · +
∂bn(z0, z1)

∂z0

)
+ cz2

(
∂b0(z0, z1)

∂z1
zn

2 + · · · +
∂bn(z0, z1)

∂z1

)]
= (αzs

1 + z2γ (z1, z2))

(
∂2b0(z0, z1)

∂z2
0

zn
2 + · · · +

∂2bn(z0, z1)

∂z2
0

)
+ cz2

(
∂2b0(z0, z1)

∂z0∂z1
zn

2 + · · · +
∂2bn(z0, z1)

∂z0∂z1

)
= uzl−k+1

2 .

Considering the coefficient of zs
1, we know that ∂2bn(z0, z1)/∂z2

0 = 0, and hence
from (6) again, we have

(7) (αzs
1 + z2γ (z1, z2))

(
∂2b0(z0, z1)

∂z2
0

zn−1
2 + · · · +

∂2bn−1(z0, z1)

∂z2
0

)
+ c

(
∂2b0(z0, z1)

∂z0∂z1
zn

2 + · · · +
∂2bn(z0, z1)

∂z0∂z1

)
= uzl−k

2 .

Recall that either u = 0 or u ̸= 0 and l > k. Equation (7) implies

αzs
1
∂2bn−1(z0, z1)

∂z2
0

= −c
∂2bn(z0, z1)

∂z0∂z1
.

Since ∂2bn(z0, z1)/∂z2
0 = 0, we have

∂2bn−1(z0, z1)

∂z2
0

= c′zs′

1 ,

where c′
̸= 0.

If s ′
= 0, then bn−1(z0, z1) = c′z2

0 + · · · and z2
0z2 occur in f which is in contra-

diction with our assumption.
If s ′ > 0, then

bn−1(z0, z1) = c′zs′

1 z2
0 + c′′zs′′

1 z0 + ũzτ
1,

where s ′ >0 and τ ≥0. Now ∂2bn(z0, z1)/∂z2
0 =0 implies bn(z0, z1)=wz0zt

1+w′zt ′
1 ,

where t > 1. Notice that
∂ f
∂z2

= nb0(z0, z1)zn−1
2 + (n − 1)b1(z0, z1)zn−2

2 + · · · + bn−1(z0, z1).
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It follows that f is singular along the z0-axis. The contradiction comes from our
hypothesis that α ̸= 0. Thus, α = 0.

Now we have

q(z1, z2) = z2γ (z1, z2) and γ (z1, z2)
∂2 f
∂z2

0
+ c

∂2 f
(∂z0∂z1)

= uzl−k
2 .

So we have

γ (z1, z2)
[
m(m−1)zm−2

0 z2+(m−1)(m−2)a1(z1, z2)zm−3
0 +· · ·+2am−2(z1, z2)

]
+c

[
(m−1)

∂a1(z1, z2)

∂z1
zm−2

0 +· · ·+
∂am−1(z1, z2)

∂z1

]
= uzl−k

2 .

This implies that

mγ (z1, z2)z2 + c
∂a1(z1, z2)

∂z1
= 0.

Hence, ∂a1(z1, z2)/∂z1 is divisible by z2. Let a′

1(z1, z2) be a weighted homogeneous
polynomial satisfying ∂a′

1(z1, z2)/∂z1 = (∂a1/∂z1)/z2. Consider the coordinate
transformation 

z0 = z′

0 −
1
m

a′

1(z
′

1, z′

2),

z1 = z′

1,

z2 = z′

2.

After this coordinate transformation, we have

∂2

∂(z′

0)
2 =

∂2

∂z2
0

and ∂2

∂z′

0∂z′

1
= −

1
m

∂a′

1

∂z′

1

∂2

∂z2
0

+
∂2

∂z0∂z1
.

Hence,

γ (z1, z2)
∂2 f
∂z2

0
+ c

∂2 f
∂z0∂z1

= −
c
m

∂a′

1

∂z1

∂2 f
∂z2

0
+ c

∂2 f
∂z0∂z1

= c
(
−

1
m

∂a′

1

∂z1

∂2 f
∂z2

0
+

∂2 f
∂z0∂z1

)
= c

∂2 f
∂z′

0∂z′

1

= u(z′

2)
l−k .

For simplicity of notation, we still use (z0, z1, z2) to represent the coordinates after
coordinate transformation. Without loss of generality, we assume

f = zm
0 z2 + a1(z2)zm−1

0 + · · · + am−2(z2)z2
0 + am−1(z1, z2)z0 + am(z1, z2).

Now we have czk
2(∂a1/∂z1) = 0. From a similar discussion as above, we obtain the

conclusion. □
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Proposition 2.8. Let f (z0, z1, z2) be a weighted homogeneous polynomial of type
(α0, α1, α2; d) with isolated singularity at the origin. Assume d ≥ 2α0 ≥ 2α1 ≥ 2α2.
Let D2 be a derivation of the algebra C[z0, z1, z2]/(I, I2). Then D2 ≡ 0, if D2 is of
negative weight.

First, we need the following lemma:

Lemma 2.9. The smallest weight of an element in I2 is greater than or equal to the
weight of ∂ f/∂z0 when m ≥ 3, where m is the exponent of z0 in Lemma 2.3.

Proof. It is obvious that

I2 =

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣ , ∣∣∣∣ f00 f02

f01 f12

∣∣∣∣ , . . . , ∣∣∣∣ f01 f02

f12 f22

∣∣∣∣ , ∣∣∣∣ f11 f12

f12 f22

∣∣∣∣)
and

wt
(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣) = 2d − 2α0 − 2α1.

Note that
∣∣∣ f00

f01

f01
f11

∣∣∣ is an element with the smallest weight in I2. We obtain that

wt
(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣) ≥ wt
(

∂ f
∂z0

)
if and only if 2d − 2α0 − 2α1 ≥ d − α0, which is equivalent to d ≥ α0 + 2α1.

Case 1: Let f = zm
0 + a1(z1, z2)zm−1

0 + · · · + am(z1, z2). In this case, d = mα0.
So d ≥ α0 + 2α1 if and only if mα0 ≥ α0 + 2α1. This is clearly true when m ≥ 3.

Case 2: Let f = zm
0 z1+a1(z1, z2)zm−1

0 + · · · +am(z1, z2). In this case, d =mα0+α1.
So d ≥ α0 + 2α1 if and only if mα0 + α1 ≥ α0 + 2α1. This is clearly true when
m ≥ 2.

Case 3: Let f = zm
0 z2+a1(z1, z2)zm−1

0 + · · · +am(z1, z2). In this case, d =mα0+α2.
So d ≥ α0 + 2α1 if and only if mα0 + α2 ≥ α0 + 2α1. This is clearly true when
m ≥ 3. □

Proof of Proposition 2.8. By Lemma 2.9, we obtain that D2(∂ f/∂z0) = 0 when
m ≥ 3. We only need to consider the following two cases:

Case 1: Assume c = 0. In this case, D = p(z1, z2)(∂/∂z0). By Lemma 2.3, we
have to consider two subcases.

Case 1.1: Let f = zm
0 + a1(z1, z2)zm−1

0 + · · · + am−1(z1, z2)z0 + am(z1, z2). Then

D
(

∂ f
∂z0

)
= p(z1, z2)

[
m(m − 1)zm−2

0 + (m − 1)(m − 2)a1(z1, z2)zm−3
0

+ · · · + 2am−2(z1, z2)
]
= 0,

which implies p(z1, z2) = 0. If not, the above equation holds only if m = 1, which
is absurd in view of our assumption. So we must have p(z1, z2) = 0, i.e., D ≡ 0.
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Case 1.2: Let f = zm
0 zi + a1(z1, z2)zm−1

0 + · · · + am(z1, z2). Then

D
(

∂ f
∂z0

)
= p(z1, z2)

[
m(m − 1)zm−2

0 zi + (m − 1)(m − 2)a1(z1, z2)zm−3
0

+ · · · + 2am−2(z1, z2)
]
,

which implies p(z1, z2) = 0. If not, the above equation holds only if m = 1, which
is absurd in view of our assumption. So we must have p(z1, z2) = 0, i.e., D ≡ 0.

Case 2: Assume c ̸= 0. According to Lemma 2.3, we also need to divide it into
two subcases.

Case 2.1: Let f = zm
0 + a1(z1, z2)zm−1

0 + · · · + am−1(z1, z2)z0 + am(z1, z2). Then

D
(

∂ f
∂z0

)
= p(z1, z2)

[
m(m−1)zm−2

0 +(m−1)(m−2)a1(z1, z2)zm−3
0 +· · ·+2am−1(z1, z2)

]
+czk

2

[
(m−1)

∂a1(z1, z2)

∂z1
zm−2

0 +(m−2)
∂a2(z1, z2)

∂z1
zm−3

0 +· · ·+
∂am−1(z1, z2)

∂z1

]
.

Because D(∂ f/∂z0) = 0 and m ≥ 3, we have

mp(z1, z2) = −czk
2
∂a1(z1, z2)

∂z1
.

We construct the coordinate transformation
z0 = z′

0 −
1
m

a1(z′

1, z′

2),

z1 = z′

1,

z2 = z′

2.

Then

D = −
1
m

czk
2
∂a1(z1, z2)

∂z1

∂

∂z0
+ czk

2
∂

∂z1

= czk
2

(
−

1
m

∂a1(z1, z2)

∂z1

∂

∂z0
+

∂

∂z1

)
= c(z′

2)
k ∂

∂z′

1
.

Letting g(z′

0, z′

1, z′

2) = f (z0, z1, z2), we obtain that g is also a weighted homoge-
neous polynomial and

g = (z′

0)
m

+ b1(z′

1, z′

2)(z
′

0)
m−1

+ · · · + bm(z′

1, z′

2).

By the same argument as before, we have D(∂g/∂z′

0) = 0. So

D
(

∂g
∂z′

0

)
= c(z′

2)
k ∂

∂z′

1

(
∂g
∂z′

0

)
= 0.
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Thus,
∂b1(z′

1, z′

2)

∂z′

1
= · · · =

∂bm−1(z′

1, z′

2)

∂z′

1
= 0.

Consider

D
(

∂g
∂z′

1

)
= c(z′

2)
k ∂2g
∂(z′

1)
2 = c(z′

2)
k ∂2bm(z′

1, z′

2)

∂(z′

1)
2 .

Since wt(D(∂g/∂z′

1)) < wt(∂g/∂z′

1) = mα0 − α1 and

wt
(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣) = (2m − 2)α0 − 2α1 ≥ mα0 − α1 = wt
(

∂g
∂z′

1

)
,

where m ≥ 3, D(∂g/∂z′

1) is a multiple of ∂g/∂z′

0:

D
(

∂g
∂z′

1

)
= c(z′

2)
k ∂2g
∂(z′

1)
2 = c(z′

2)
k ∂2bm(z′

1, z′

2)

∂(z′

1)
2 ,

∂g
∂z′

0
= m(z′

0)
m−1

+ · · · + bm−1(z′

1, z′

2).

Further, D(∂g/∂z′

1) is a multiple of ∂g/∂z′

0, i.e., there exists h such that

c(z′

2)
k ∂2bm(z′

1, z′

2)

∂(z′

1)
2 = h

∂g(z′

1, z′

2)

∂z′

0
= h

[
m(z′

0)
m−1

+ · · · + bm−1(z′

1, z′

2)
]
.

If ∂2bm(z′

1, z′

2)/∂(z′

1)
2

̸= 0, then we have m = 1, which is absurd. So we have
∂2bm(z′

1, z′

2)/∂(z′

1)
2
= 0. This implies

bm(z′

1, z′

2) = d1z′

1(z
′

2)
l1 + d2(z′

2)
l2,

where d1, d2 are constants. Then g has an isolated singularity at 0 only if l1 = 1.
Because bm(z′

1, z′

2) is weighted homogeneous, we have d =α1+α2. It follows from
the assumption d ≥ 2α0 ≥ 2α1 ≥ 2α2 that α0 = α1 = α2. So g is a homogeneous
polynomial. It follows from Proposition 2.1 that D ≡ 0.

Case 2.2: Let f = zm
0 zi + a1(z1, z2)zm−1

0 + · · · + am−1(z1, z2)z0 + am(z1, z2).

Case 2.2.1: Let i = 1. Then we have

0 = D
(

∂ f
∂z0

)
= p(z1, z2)

[
m(m−1)zm−2

0 z1+(m−1)(m−2)a1(z1, z2)zm−3
0 + · · ·

]
+czk

2

[
mzm−1

0 +(m−1)
∂a1(z1, z2)

∂z1
zm−2

0 + · · ·

]
.

This forces c = 0, which is in contradicts with our hypothesis. So this case does
not occur.
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Case 2.2.2: Let i = 2. In this case, m ≥ 3 by our assumption. Then

(8) 0 = D
(

∂ f
∂z0

)
= p(z1, z2)

∂

∂z0

(
∂ f
∂z0

)
+ czk

2
∂

∂z1

(
∂ f
∂z0

)
=

∂

∂z0

[
p(z1, z2)

∂ f
∂z0

+ czk
2

∂ f
∂z1

]
.

Similarly, we obtain that D(∂ f/∂z1) is a multiple of ∂ f/∂z0:

(9) D
(

∂ f
∂z1

)
= p(z1, z2)

∂

∂z0

(
∂ f
∂z1

)
+ czk

2
∂

∂z1

(
∂ f
∂z1

)
=

∂

∂z1

(
p(z1, z2)

∂ f
∂z0

+ czk
2

∂ f
∂z1

)
−

∂p(z1, z2)

∂z1

∂ f
∂z0

= h
∂ f
∂z0

.

Equation (9) implies that

∂

∂z1

[
p(z1, z2)

∂ f
∂z0

+ czk
2

∂ f
∂z1

]
= h̃

∂ f
∂z0

.

From (8), we know that the left-hand side of this equation is independent of the
variable z0. Since m > 1, the right-hand side of this equation is independent of the
variable z0 only if h̃ = 0. Thus, we have

∂

∂z1

(
p(z1, z2)

∂ f
∂z0

+ czk
2

∂ f
∂z1

)
= 0.

So we have

p(z1, z2)
∂ f
∂z0

+ czk
2

∂ f
∂z1

= uzl
2,

where either u = 0 or u ̸= 0 and l > k. This is

(10) p(z1, z2)
(
mz2zm−1

0 + (m − 1)a1(z1, z2)zm−2
0 + · · · + am−1(z1, z2)

)
+ czk

2

[
∂a1(z1, z2)

∂z1
zm−1

0 +
∂a2(z1, z2)

∂z1
zm−2

0 + · · · +
∂zm(z1, z2)

∂z1

]
= uzl

2.

As m > 1, (10) implies

mp(z1, z2)z2 + czk
2
∂a1(z1, z2)

∂z1
= 0.

If czk
2(∂a1(z1, z2)/∂z1) = 0, then p(z1, z2) = 0 and (10) becomes

czk
2

(
∂a1(z1, z2)

∂z1
zm−1

0 +
∂a2(z1, z2)

∂z1
zm−2

0 + · · · +
∂am(z1, z2)

∂z1

)
= uzl

2.
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Since c ̸= 0, we have

∂a1(z1, z2)

∂z1
=

∂a2(z1, z2)

∂z1
= · · · =

∂am−1(z1, z2)

∂z1
= 0,

∂am(z1, z2)

∂z1
= ezl−k

2 ,

where e ̸= 0. Hence,
am(z1, z2) = ez1zl−k

2 + zk
2.

We must have l − k = 1 and e ̸= 0, otherwise f will be singular along the z1-
axis, which is a contradiction. Since the term z1z2 appears in f , we conclude that
α1 + α2 = d . The assumption d ≥ 2α0 ≥ 2α1 ≥ 2α2 implies that α0 = α1 = α2. So
f is a homogeneous polynomial. By Proposition 2.1, we have that D ≡ 0.

If czk
2(∂a1(z1, z2)/∂z1) ̸= 0, then

p(z1, z2) = zk−1
2 q(z1, z2),

where

q(z1, z2) = −
c
m

∂a1(z1, z2)

∂z1
.

So we have

q(z1, z2)
∂ f
∂z0

+ cz2
∂ f
∂z1

= uzl−k+1
2 .

Write
q(z1, z2) = αzs

1 + z2γ (z1, z2).

We claim that α = 0; suppose on the contrary that α ̸= 0. If we rewrite f in the
form

f = b0(z0, z1)zn
2 + b1(z0, z1)zn−1

2 + · · · + bn(z0, z1),

then

(11) [αzs
1 + z2γ (z1, z2)]

(
∂b0(z0, z1)

∂z0
zn

2 + · · · +
∂bn(z0, z1)

∂z0

)
+ cz2

(
∂b0(z0, z1)

∂z1
zn

2 + · · · +
∂bn(z0, z1)

∂z1

)
= uzl−k+1

2 .

Considering the coefficient of zs
1, we know that ∂bn(z0, z1)/∂z0 = 0, and hence

from (11) again, we have

(12) [αzs
1 + z2γ (z1, z2)]

(
∂b0(z0, z1)

∂z0
zn−1

2 + · · · +
∂bn−1(z0, z1)

∂z0

)
+ c

(
∂b0(z0, z1)

∂z1
zn

2 + · · · +
∂bn(z0, z1)

∂z1

)
= uzl−k

2 .
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Recall that either u = 0 or u ̸= 0 and l > k. Equation (12) implies

αzs
1
∂bn−1(z0, z1)

∂z0
= −c

∂bn(z0, z1)

∂z1
.

Since ∂bn(z0, z1)/∂z0 = 0, we have

∂bn−1(z0, z1)

∂z0
= c′zs′

1 ,

where c′
̸= 0.

If s ′
= 0, then bn−1(z0, z1) = c′z0 + c′′z1, and hence z0z2 and z1z2 occur in f .

It follows again that α0 = α1 = α2, and we are finished.
If s ′ > 0, then

bn−1(z0, z1) = c′zs′

1 z0 + ũzτ
1,

where s ′ > 0 and τ > 0. Now ∂bn(z0, z1)/∂z0 = 0 implies bn(z0, z1) = wzt
1,

where t > 1. Notice that

∂ f
∂z2

= nb0(z0, z1)zn−1
2 + (n − 1)b1(z0, z1)zn−2

2 + · · · + bn−1(z0, z1).

It follows that f is singular along the z0-axis. The contradiction comes from our
hypothesis that α ̸= 0. Thus, α = 0.

Now we have q(z1, z2)= z2γ (z1, z2) and γ (z1, z2)(∂ f/∂z0)+c(∂ f/∂z1)=uzl−k
2 .

So we have

γ (z1, z2)

(
∂b0(z0, z1)

∂z0
zn

2 + · · · +
∂bn(z0, z1)

∂z0

)
+ c

(
∂b0(z0, z1)

∂z1
zn

2 + · · · +
∂bn(z0, z1)

∂z1

)
= uzl−k

2 .

It follows that γ (z1, 0) ̸= 0, otherwise we will have ∂bn(z0, z1)/∂z1 = 0. So
bn(z0, z1) = zm

0 for some n. Therefore, f will be of the form

f = zm
0 + c1(z1, z2)zm−1

0 + · · · + cm(z1, z2),

which contradicts our assumption.
Now, let γ (z1, z2) = vzh

1 + z2γ̄ (z1, z2), where h > 0 and v ̸= 0. Then we have

vzh
1
∂bn(z0, z1)

∂z0
+ c

∂bn(z0, z1)

∂z1
= 0,

where v ̸= 0 and c ̸= 0. Let

bn(z0, z1) = d0zk
0zl0

1 + d1zk−1
0 zl1

1 + · · · + dkzlk
1 ,



NONEXISTENCE OF NEGATIVE WEIGHT DERIVATIONS 151

where d0 ̸= 0. Then

∂bn(z0, z1)

∂z0
= kd0zk−1

0 zl0
1 + (k − 1)d1zk−2

0 zl1
1 + · · · + dk−1zlk−1

1 ,

∂bn(z0, z1)

∂z1
= l0d0zk

0zl0−1
1 + l1d1zk−1

0 zl1−1
1 + · · · + lkdkzlk−1

1 .

Clearly, the equation

vzh
1
∂bn(z0, z1)

∂z0
+ c

∂bn(z0, z1)

∂z1
= 0

is true only if k = 0 or l0 = 0.
If k = 0, then bn(z0, z1) = d0zl0

1 , which is absurd.
If l0 = 0, then

bn(z0, z1) = d0zk
0 + d1zk−1

0 zl1
1 + · · · + dkzlk

1 .

Hence, f is again of the form

f = zm
0 + a1(z1, z2)zm−1

0 + · · · + am(z1, z2),

which is absurd. This completes the proof of Case 2.2. □

Proposition 2.10. Let f (z0, z1, z2, z3) be a weighted homogeneous polynomial
of type (α0, α1, α2, α3, d) with isolated singularity at the origin and mult( f ) > 3.
Assume that d ≥ 2α0 ≥ 2α1 ≥ 2α2 ≥ 2α3.

(a) Let D2 be a derivation of the algebra C[z0, z1, z2, z3]/(I, I2). Then D2 ≡ 0, if
D2 is of negative weight.

(b) Let D3 be a derivation of the algebra C[z0, z1, z2, z3]/(I, I3). Then D3 ≡ 0, if
D3 is of negative weight.

Proof. The derivation Dν has the following form for ν = 2, 3:

Dν = p0(z1, z2, z3)
∂

∂z0
+ p1(z2, z3)

∂

∂z1
+ czk

3
∂

∂z2
,

where c, k are constants and k ≥ 1.

Lemma 2.11. The smallest weight of an element in I2 is greater than or equal to
the weight of ∂ f/∂z0 when m ≥ 3, where m is the exponent of z0 in Lemma 2.3.

Proof. It is obvious that

I2 =

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣ , ∣∣∣∣ f01 f02

f11 f12

∣∣∣∣ , . . . , ∣∣∣∣ f12 f13

f23 f33

∣∣∣∣ , ∣∣∣∣ f22 f23

f23 f33

∣∣∣∣),

and

wt
(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣) = 2d − 2α0 − 2α1.
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The element with smallest weight in I2 is
∣∣∣ f00

f01

f01
f11

∣∣∣. We obtain that

wt
(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣) ≥ wt
(

∂ f
∂z0

)
if and only if 2d − 2α0 − 2α1 ≥ d − α0 that is d ≥ α0 + 2α1.

Case 1: Let f = zm
0 + a1(z1, z2)zm−1

0 +· · ·+ am(z1, z2). In this case, d = mα0. So
d ≥ α0 + 2α1 if and only if mα0 ≥ α0 + 2α1. This is clearly true when m ≥ 3.

Case 2: Let f = zm
0 z1 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3). In this case,
d = mα0 +α1. So d ≥ α0 +2α1 if and only if mα0 +α1 ≥ α0 +2α1. This is clearly
true when m ≥ 2.

Case 3: Let f = zm
0 z2 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3). In this case,
d = mα0 +α2. So d ≥ α0 +2α1 if and only if mα0 +α2 ≥ α0 +2α1. This is clearly
true when m ≥ 3.

Case 4: Let f = zm
0 z3 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3). In this case,
d = mα0 +α3. So d ≥ α0 +2α1 if and only if mα0 +α3 ≥ α0 +2α1. This is clearly
true when m ≥ 3. □

By Lemma 2.11 and our assumption that when n = 3, the multiplicity of f is
greater than 3, we obtain that D2(∂ f/∂z0) = 0 always holds.

Lemma 2.12. The smallest weight of an element in I3 is greater than or equal to
the weight of ∂ f/∂z0 when m ≥ 3, where m is the exponent of z0 in Lemma 2.3.

Proof. It is obvious that

I2 =

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

f00 f01 f03

f01 f12 f13

f02 f22 f23

∣∣∣∣∣∣ , . . . ,
∣∣∣∣∣∣

f01 f02 f03

f12 f12 f13

f13 f23 f33

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

f11 f12 f13

f12 f22 f23

f13 f23 f33

∣∣∣∣∣∣
 ,

and

wt

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣
 = 3d − 2α0 − 2α1 − 2α2.

The element with the smallest weight in I3 is∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣ .
We obtain that

wt

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣
 ≥ wt

(
∂ f
∂z0

)
if and only if 3d − 2α0 − 2α1 − 2α2 ≥ d − α0, which is 2d ≥ α0 + 2α1 + 2α2.



NONEXISTENCE OF NEGATIVE WEIGHT DERIVATIONS 153

Case 1: Let f = zm
0 +a1(z1, z2, z3)zm−1

0 + · · · +am(z1, z2, z3). In this case, d =mα0.
So 2d ≥ α0 + 2α1 + 2α2 if and only if 2mα0 ≥ α0 + 2α1 + 2α2. This is clearly true
when m ≥ 3.

Case 2: Let

f = zm
0 z1 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3).

In this case, d = mα0 + α1. So 2d ≥ α0 + 2α1 + 2α2 if and only if 2mα0 + 2α1 ≥

α0 + 2α1 + 2α2. This is clearly true when m ≥ 2.

Case 3: Let f = zm
0 z2 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3). In this case,
d = mα0 +α2. So 2d ≥ α0 +2α1 +2α2 if and only if 2mα0 +2α2 ≥ α0 +2α1 +2α2.
This is clearly true when m ≥ 2.

Case 4: Let f = zm
0 z3 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3). In this case,
d = mα0 +α3. So 2d ≥ α0 +2α1 +2α2 if and only if 2mα0 +2α3 ≥ α0 +2α1 +2α2.
This is clearly true when m ≥ 3. □

By Lemma 2.12 and our assumption that when n = 3, the multiplicity of f
is greater than 3, we obtain that D3(∂ f/∂z0) = 0 always holds. The commutator
[∂/∂zi , Dν] is of the following form by a direct computation:[

∂

∂z0
, Dν

]
= 0,[

∂

∂z1
, Dν

]
=

∂p0

∂z1

∂

∂z0
,[

∂

∂z2
, Dν

]
=

∂p0

∂z2

∂

∂z0
+

∂p1

∂z2

∂

∂z1
,[

∂

∂z3
, Dν

]
=

∂p0

∂z3

∂

∂z0
+

∂p1

∂z3

∂

∂z1
+

∂(czk
3)

∂z3

∂

∂z2
.

By Lemma 2.3, there are also two cases to be considered for f .

Case 1: Let f = zm
0 +a1(z1, z2, z3)zm−1

0 + · · · +am−1(z1, z2, z3)z0+am(z1, z2, z3),
with m ≥ 4.

In the first part, we consider D2. Firstly, we investigate D2(∂ f/∂z1):

wt
(

∂ f
∂z1

)
= mα0 − α1 ≤ (2m − 2)α0 − 2α1 = wt

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣),

so D2(∂ f/∂z1) is a multiple of ∂ f/∂z0.
Secondly, we investigate D2(∂ f/∂z2):

wt
(

∂ f
∂z2

)
= mα0 − α2 ≤ (2m − 2)α0 − 2α1 = wt

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣),

with m ≥ 4, so D2(∂ f/∂z1) is a linear combination of ∂ f/∂z0 and ∂ f/∂z1.
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Thirdly, we investigate D2(∂ f/∂z3):

wt
(

∂ f
∂z3

)
= mα0 − α3 ≤ (2m − 2)α0 − 2α1 = wt

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣),

with m ≥ 4, so D2(∂ f/∂z1) is a linear combination of ∂ f/∂z0, ∂ f/∂z1 and ∂ f/∂z2.
In the second part, we consider D3. Firstly, we investigate D3(∂ f/∂z1):

wt
(

∂ f
∂z1

)
= mα0 − α1 ≤ (3m − 2)α0 − 2α1 − 2α2 = wt

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣
,

so D3(∂ f/∂z1) is a multiple of ∂ f/∂z0.
Secondly, we investigate D3(∂ f/∂z2):

wt
(

∂ f
∂z2

)
= mα0 − α2 ≤ (3m − 2)α0 − 2α1 − 2α2 = wt

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣
,

so D3(∂ f/∂z2) is a linear combination of ∂ f/∂z0 and ∂ f/∂z1.
Thirdly, we investigate D(∂ f/∂z3):

wt
(

∂ f
∂z3

)
= mα0 − α3 ≤ (3m − 2)α0 − 2α1 − 2α2 = wt

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣
,

so D(∂ f/∂z3) is a linear combination of ∂ f/∂z0, ∂ f/∂z1 and ∂ f/∂z2.

Case 2: Let

f = zm
0 zi + a1(z1, z2, z3)zm−1

0 + · · · + am−1(z1, z2, z3)z0 + am(z1, z2, z3),

with m ≥ 3.

Case 2.1: Assume i = 1, i.e.,

f = zm
0 z1 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3).

In the first part, we consider D2. Firstly, we investigate D2(∂ f/∂z1):

wt
(

∂ f
∂z1

)
= mα0 < (2m − 2)α0 = wt

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣),

so D2(∂ f/∂z1) is a multiple of ∂ f/∂z0.
Secondly, we investigate D2(∂ f/∂z2):

wt
(

∂ f
∂z2

)
= mα0 + α1 − α2 < (2m − 2)α0 = wt

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣),

so D2(∂ f/∂z1) is a linear combination of ∂ f/∂z0 and ∂ f/∂z1.
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Thirdly, we investigate D2(∂ f/∂z3):

wt
(

∂ f
∂z3

)
= mα0 + α1 − α3 < (2m − 2)α0 = wt

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣),

so D2(∂ f/∂z1) is a linear combination of ∂ f/∂z0, ∂ f/∂z1 and ∂ f/∂z2.
In the second part, we consider D3. Firstly, we investigate D3(∂ f/∂z1):

wt
(

∂ f
∂z1

)
= mα0 < (3m − 2)α0 + α1 − 2α2 = wt

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣
,

so D3(∂ f/∂z1) is a multiple of ∂ f/∂z0.
Secondly, we investigate D3(∂ f/∂z2):

wt
(

∂ f
∂z2

)
= mα0 + α1 − α2 < (3m − 2)α0 + α1 − 2α2 = wt

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣
,

so D3(∂ f/∂z2) is a linear combination of ∂ f/∂z0 and ∂ f/∂z1.
Thirdly, we investigate D(∂ f/∂z3):

wt
(

∂ f
∂z3

)
= mα0 + α1 − α3 < (3m − 2)α0 + α1 − 2α2 = wt

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣
,

so D(∂ f/∂z3) is a linear combination of ∂ f/∂z0, ∂ f/∂z1 and ∂ f/∂z2.

Case 2.2: Assume i = 2, i.e.,

f = zm
0 z2 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3).

In the first part, we consider D2. Firstly, we investigate D2(∂ f/∂z1):

wt
(

∂ f
∂z1

)
= mα0 − α1 + α2 < (2m − 2)α0 − 2α1 + 2α2 = wt

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣),

so D2(∂ f/∂z1) is a multiple of ∂ f/∂z0.
Secondly, we investigate D2(∂ f/∂z2). When m ≥ 4, we obtain that

wt
(

∂ f
∂z2

)
= mα0 < (2m − 2)α0 − 2α1 + 2α2 = wt

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣),

so D2(∂ f/∂z2) is a linear combination of ∂ f/∂z0 and ∂ f/∂z1.
Thirdly, we investigate D2(∂ f/∂z3). When m ≥ 4, we obtain that

wt
(

∂ f
∂z3

)
= mα0 + α2 − α3 < (2m − 2)α0 − 2α1 + 2α2 = wt

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣),

so D2(∂ f/∂z3) is a linear combination of ∂ f/∂z0, ∂ f/∂z1 and ∂ f/∂z2.
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In the second part, we consider D3. Firstly, we investigate D3(∂ f/∂z1):

wt
(

∂ f
∂z1

)
= mα0 − α1 + α2 < (3m − 2)α0 − 2α1 + α2 = wt

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣
,

so D3(∂ f/∂z1) is a multiple of ∂ f/∂z0.
Secondly, we investigate D3(∂ f/∂z2):

wt
(

∂ f
∂z2

)
= mα0 < (3m − 2)α0 − 2α1 + α2 = wt

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣
,

so D3(∂ f/∂z2) is a linear combination of ∂ f/∂z0 and ∂ f/∂z1.
Thirdly, we investigate D(∂ f/∂z3):

wt
(

∂ f
∂z3

)
= mα0 + α2 − α3 ≤ (3m − 2)α0 − 2α1 + α2 = wt

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣
,

so D(∂ f/∂z3) is a linear combination of ∂ f/∂z0, ∂ f/∂z1 and ∂ f/∂z2.

Case 2.3: Assume i = 3, i.e.,

f = zm
0 z3 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3).

In the first part, we consider D2. Firstly, we investigate D2(∂ f/∂z1):

wt
(

∂ f
∂z1

)
= mα0 − α1 + α3 < (2m − 2)α0 − 2α1 + 2α3 = wt

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣),

so D2(∂ f/∂z1) is a multiple of ∂ f/∂z0.
Secondly, we investigate D2(∂ f/∂z2). When m ≥ 4, we obtain that

wt
(

∂ f
∂z2

)
= mα0 − α2 + α3 < (2m − 2)α0 − 2α1 + 2α3 = wt

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣),

so D2(∂ f/∂z2) is a linear combination of ∂ f/∂z0 and ∂ f/∂z1.
Thirdly, we investigate D2(∂ f/∂z3). When m ≥ 4, we obtain that

wt
(

∂ f
∂z3

)
= mα0 < (2m − 2)α0 − 2α1 + 2α3 = wt

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣),

so D2(∂ f/∂z3) is a linear combination of ∂ f/∂z0, ∂ f/∂z1 and ∂ f/∂z2.
In the second part, we consider D3. Firstly, we investigate D3(∂ f/∂z1):

wt
(

∂ f
∂z1

)
= mα0−α1+α3 <(3m−2)α0−2α1−2α2+3α3 = wt

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣
,

so D3(∂ f/∂z1) is a multiple of ∂ f/∂z0.
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Secondly, we investigate D3(∂ f/∂z2):

wt
(

∂ f
∂z2

)
= mα0−α2+α3 <(3m−2)α0−2α1−2α2+3α3 = wt

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣
,

so D3(∂ f/∂z2) is a linear combination of ∂ f/∂z0 and ∂ f/∂z1.
Thirdly, we investigate D(∂ f/∂z3):

wt
(

∂ f
∂z3

)
= mα0 ≤ (3m − 2)α0 − 2α1 − 2α2 + 3α3 = wt

∣∣∣∣∣∣
f00 f01 f02

f01 f11 f12

f02 f12 f22

∣∣∣∣∣∣
,

so D(∂ f/∂z3) is a linear combination of ∂ f/∂z0, ∂ f/∂z1 and ∂ f/∂z2.

Lemma 2.13. Let

f (z0, z1, z2, z3) = z3
0z2 + a1(z1, z2, z3)z2

0 + a2(z1, z2, z3)z0 + a3(z1, z2, z3)

be a weighted homogeneous polynomial of type (α0, α1, α2, α3; d) that satisfies
d ≥ 2α0 ≥ 2α1 ≥ 2α2 ≥ 2α3 with isolated singularity at the origin. Assume
α0 + α2 + α3 < 2α1, which is equivalent to

wt
(

∂ f
∂z3

)
> wt

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣).

Let D2 be a derivation of the algebra C[z0, z1, z2, z3]/(I, I2). Then D2 ≡ 0, if D2

is of negative weight.

Proof. By the assumption, we conclude that wt(a1(z1, z2, z3)) = α0+α2 < 2α1−α3.
We obtain that a1(z1, z2, z3) = z1 f ′(z2, z3) + f ′′(z2, z3). Let

D2 = p0(z1, z2, z3)
∂

∂z0
+ p1(z2, z3)

∂

∂z1
+ czk

3
∂

∂z2
,

be a nonzero negative weight derivation.
Firstly, we investigate D2(∂ f/∂z0):

0 = D2

(
∂ f
∂z0

)
= p0(z1, z2, z3)

[
6z0z2 + 2a1(z1, z2, z3)

]
+ p1(z2, z3)

[
2z0

∂a1(z1, z2, z3)

∂z1
+

∂a2(z1, z2, z3)

∂z1

]
+ czk

3

[
3z2

0 + 2z0
∂a1(z1, z2, z3)

∂z2
+

∂a2(z1, z2, z3)

∂z2

]
.

So we obtain that c = 0, i.e., D2 = p0(z1, z2, z3)(∂/∂z0) + p1(z2, z3)(∂/∂z1).
If p1(z2, z3) = 0, then p0(z1, z2, z3) = 0, which is absurd.
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If p1(z2, z3) ̸= 0, then

(13)

{
3p0(z1, z2, z3)z2+p1(z2, z3) f ′(z2, z3) = 0,

2p0(z1, z2, z3)
[
z1 f ′(z2, z3)+ f ′′(z2, z3)

]
+p1(z2, z3)

∂a2(z1, z2, z3)

∂z1
= 0.

Hence, we obtain that

2 f ′(z2, z3)
[
z1 f ′(z2, z3) + f ′′(z2, z3)

]
= 3z2

∂a2(z1, z2, z3)

∂z1
,

which implies f ′(z2, z3) is divisible by z2. Let f ′(z2, z3) = 3dze
2 + 3

∑
i di z

ei
2 zsi

3 ,
with e > 0 and ei > 0 for all i , then we obtain that

(14) 2
(

dze−1
2 +

∑
i

di z
ei −1
2 zsi

3

)[
3z1

(
dze

2 +

∑
i

di z
ei
2 zsi

3

)
+ f ′′(z2, z3)

]
=

∂a2(z1, z2, z3)

∂z1
.

Next, we investigate D(∂ f/∂z1):

D
(

∂ f
∂z1

)
= p0(z1, z2, z3)

[
2z0

∂a1(z1, z2, z3)

∂z1
+

∂a2(z1, z2, z3)

∂z1

]
+ p1(z2, z3)

[
z0

∂2a2(z1, z2, z3)

∂z2
1

+
∂2a3(z1, z2, z3)

∂z2
1

]
.

Since D(∂ f/∂z1) = h(∂ f/∂z0) and ∂ f/∂z0 = 3z2
0z2 + · · · , then D(∂ f/∂z1) = 0.

Hence, we have

p0(z1, z2, z3)
∂a2(z1, z2, z3)

∂z1
+ p1(z2, z3)

∂2a3(z1, z2, z3)

∂z2
1

= 0.

Let
g1(z2, z3) := dze−1

2 +

∑
i

di z
ei −1
2 zsi

3 ,

i.e., 3z2g1(z2, z3) = f ′(z2, z3). Hence, by (14), we have

a2(z1, z2, z3) = z2
1g1(z2, z3) f ′(z2, z3) + 2z1g1(z2, z3) f ′′(z2, z3) + f ′′′(z2, z3),

and by (13) and (14), we obtain that

a3(z1, z2, z3) =
1
3 z3

1[g1(z2, z3)]
2 f ′(z2, z3) + z2

1[g1(z2, z3)]
2 f ′′(z2, z3)

+ z1 f ′′′′(z2, z3) + f ′′′′′(z2, z3).

By Lemma 2.4, we obtain that one of zl0
1 , zl1

1 z1, zl2
1 z2, zl3

1 z3 must be contained in f ,
which is absurd, i.e., D2 does not exist. □
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Lemma 2.14. Let

f (z0, z1, z2, z3) = z3
0z3 + a1(z1, z2, z3)z2

0 + a2(z1, z2, z3)z0 + a3(z1, z2, z3)

be a weighted homogeneous polynomial of type (α0, α1, α2, α3; d) that satisfies
d ≥ 2α0 ≥ 2α1 ≥ 2α2 ≥ 2α3 with isolated singularity at the origin. Assume that
α0 + 2α3 < 2α1, which is equivalent to

wt
(

∂ f
∂z3

)
> wt

(∣∣∣∣ f00 f01

f01 f11

∣∣∣∣).

Let D2 be a derivation of the algebra C[z0, z1, z2, z3]/(I, I2). Then D2 ≡ 0, if D2

is of negative weight.

Proof. By the assumption, we have wt(a1(z1, z2, z3)) = α0 + α3 < 2α1. We obtain
that a1(z1, z2, z3) = z1 f ′(z2, z3) + f ′′(z2, z3). Let

D2 = p0(z1, z2, z3)
∂

∂z0
+ p1(z2, z3)

∂

∂z1
+ czk

3
∂

∂z2
,

be a nonzero negative weight derivation.
Firstly, we investigate D2(∂ f/∂z0):

0 = D2

(
∂ f
∂z0

)
= p0(z1, z2, z3)

[
6z0z3 + 2a1(z1, z2, z3)

]
+ p1(z2, z3)

[
2z0

∂a1(z1, z2, z3)

∂z1
+

∂a2(z1, z2, z3)

∂z1

]
+ czk

3

[
2z0

∂a1(z1, z2, z3)

∂z2
+

∂a2(z1, z2, z3)

∂z2

]
.

There are two subcases.

Case 1: Assume c = 0, i.e., D2 = p0(z1, z2, z3)(∂/∂z0) + p1(z2, z3)(∂/∂z1).
If p1(z2, z3) = 0, then p0(z1, z2, z3) = 0, which is absurd.
If p1(z2, z3) ̸= 0, then{
3p0(z1, z2, z3)z3 + p1(z2, z3) f ′(z2, z3) = 0,

2p0(z1, z2, z3)
[
z1 f ′(z2, z3) + f ′′(z2, z3)

]
+ p1(z2, z3)

∂a2(z1, z2, z3)

∂z1
= 0.

Hence, we obtain that

2 f ′(z2, z3) ·
[
z1 f ′(z2, z3) + f ′′(z2, z3)

]
= 3z3

∂a2(z1, z2, z3)

∂z1
,

which implies f ′(z2, z3) is divisible by z3. Let f ′(z2, z3) = 3dzs
3 + 3

∑
i di z

ei
2 zsi

3 ,
with s > 0 and si > 0 for all i , then we obtain that

2
(

dzs−1
3 +

∑
i

di z
ei
2 zsi −1

3

)[
3z1(dzs

3 +

∑
i

di z
ei
2 zsi

3 )+ f ′′(z2, z3)

]
=

∂a2(z1, z2, z3)

∂z1
.
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Next, we investigate D(∂ f/∂z1):

D
(

∂ f
∂z1

)
= p0(z1, z2, z3)

[
2z0

∂a1(z1, z2, z3)

∂z1
+

∂a2(z1, z2, z3)

∂z1

]
+ p1(z2, z3)

[
z0

∂2a2(z1, z2, z3)

∂z2
1

+
∂2a3(z1, z2, z3)

∂z2
1

]
.

It is obvious that D(∂ f/∂z1) = 0. Hence, we obtain a new relation as follows:

p0(z1, z2, z3)
∂a2(z1, z2, z3)

∂z1
+ p1(z2, z3)

∂2a3(z1, z2, z3)

∂z2
1

= 0.

Let
g1(z2, z3) = dzs−1

3 +

∑
i

di z
ei
2 zsi −1

3 ,

i.e., 3z3g1(z2, z3) = f ′(z2, z3). Hence,

a2(z1, z2, z3) = z2
1g1(z2, z3) f ′(z2, z3) + 2z1g1(z2, z3) f ′′(z2, z3) + f3(z2, z3),

and

a3(z1, z2, z3) =
1
3 z3

1[g1(z2, z3)]
2 f ′(z2, z3) + z2

1[g1(z2, z3)]
2 f ′′(z2, z3)

+ z1 f4(z2, z3) + f5(z2, z3).

By Lemma 2.4, we obtain that one of zl0
1 , zl1

1 z0, zl2
1 z2, zl3

1 z3 must be contained in f ,
which is absurd, i.e., D2 does not exist.

Case 2: Assume c ̸= 0.

Case 2.1: Let p1(z2, z3) = 0.

Case 2.1.1: Let p0(z1, z2, z3) = 0, i.e., D = czk
3(∂/∂z2). Then, we obtain that

0 = D
(

∂ f
∂z0

)
= czk

3

(
2z0

∂a1(z1, z2, z3)

∂z2
+

∂a2(z1, z2, z3)

∂z2

)
.

This implies that ∂a1(z1, z2, z3)/∂z2 = 0 and ∂a2(z1, z2, z3)/∂z2 = 0. Hence,

0 = D
(

∂ f
∂z1

)
= czk

3

(
z2

0
∂2a1(z1, z2, z3)

∂z1∂z2
+z0

∂2a2(z1, z2, z3)

∂z1∂z2
+

∂2a3(z1, z2, z3)

∂z1∂z2

)
,

and

0 = D
(

∂ f
∂z2

)
= czk

3

(
z2

0
∂2a1(z1, z2, z3)

∂z2
2

+z0
∂2a2(z1, z2, z3)

∂z2
2

+
∂2a3(z1, z2, z3)

∂z2
2

)
.

Hence, ∂2a3(z1, z2, z3)/(∂z1∂z2) = 0 and ∂2a3(z1, z2, z3)/∂z2
2 = 0. By Lemma 2.4,

we obtain that one of zl0
2 , zl1

2 z0, zl2
2 z1, zl3

2 z3 must be contained in f , which is absurd,
i.e., D2 does not exist.
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Case 2.1.2: Let p0(z1, z2, z3) ̸= 0, i.e., D2 = p0(z1, z2, z3)(∂/∂z0) + czk
3(∂/∂z2).

Hence,

(15) 0 = D
(

∂ f
∂z0

)
= p0(z1, z2, z3)

∂

∂z0

(
∂ f
∂z0

)
+ czk

3
∂

∂z2

(
∂ f
∂z0

)
=

∂

∂z0

[
p0(z1, z2, z3)

∂ f
∂z0

+ czk
3

∂ f
∂z2

]
.

Moreover,

(16) 0 = D
(

∂ f
∂z0

)
= p0(z1, z2, z3)

[
6z0z3 + 2a1(z1, z2, z3)

]
+ czk

3

[
2z0

∂a1(z1, z2, z3)

∂z2
+

∂a2(z1, z2, z3)

∂z2

]
,

and 
3p0(z1, z2, z3)z3 + czk

3
∂a1(z1, z2, z3)

∂z2
= 0,

2p0(z1, z2, z3)
[
z1 f ′(z2, z3) + f ′′(z2, z3)

]
+ czk

3
∂a2(z1, z2, z3)

∂z2
= 0.

From this, we obtain that

2
∂a1(z1, z2, z3)

∂z2
a1(z1, z2, z3) = 3z3

∂a2(z1, z2, z3)

∂z2
.

It is easy to verify that a1(z1, z2, z3) is divisible by z3. Let f ′(z2, z3) = z3g′(z2, z3)

and f ′′(z2, z3) = z3g′′(z2, z3). So ∂a2(z1, z2, z3)/∂z2 is divisible by z3. Then we
consider

(17) D
(

∂ f
∂z1

)
= p0(z1, z2, z3)

∂

∂z0

(
∂ f
∂z1

)
+ czk

3
∂

∂z2

(
∂ f
∂z1

)
=

∂

∂z1

[
p0(z1, z2, z3)

∂ f
∂z0

+ czk
3

∂ f
∂z2

]
−

∂p0(z1, z2, z3)

∂z1

∂ f
∂z0

= h
∂ f
∂z0

.

Equation (17) implies that

∂

∂z1

[
p0(z1, z2, z3)

∂ f
∂z0

+ czk
3

∂ f
∂z2

]
= h̃

∂ f
∂z0

.

From (15), we know that the left-hand side of this equation is independent of the
variable z0. Since f = z3

0z3+ · · · , the right-hand side of this equation is independent
of the variable z0 only if h̃ = 0. Thus, we have

∂

∂z1

(
p0(z1, z2, z3)

∂ f
∂z0

+ czk
3

∂ f
∂z2

)
= 0.
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Therefore,

p0(z1, z2, z3)
∂ f
∂z0

+ czk
3

∂ f
∂z2

= g1(z2, z3).

This is

(18) p0(z1, z2, z3)
(
3z3z2

0+2a1(z1, z2, z3)z0+a2(z1, z2, z3)
)

+czk
3

[
∂a1(z1, z2, z3)

∂z2
z2

0+
∂a2(z1, z2, z3)

∂z2
z0+

∂a3(z1, z2, z3)

∂z2

]
= g1(z2, z3).

Equation (18) implies
3p0(z1, z2, z3)z3 + czk

3
∂a1(z1, z2, z3)

∂z2
= 0,

2p0(z1, z2, z3)a1(z1, z2, z3) + czk
3
∂a2(z1, z2, z3)

∂z2
= 0,

and

∂
[

p0(z1, z2, z3)a2(z1, z2, z3)+czk
3(∂a3(z1, z2, z3)/∂z2)

]
∂z1

=
∂p0(z1, z2, z3)

∂z1
a2(z1, z2, z3)+p0(z1, z2, z3)

∂a2(z1, z2, z3)

∂z1
+czk

3
∂2a3(z1, z2, z3)

∂z1∂z2
= 0.

It is clear that a1(z1, z2, z3) ̸=0, ∂a1(z1, z2, z3)/∂z2 ̸=0 and ∂a2(z1, z2, z3)/∂z2 ̸=0.
Hence, there exists h(z1, z2, z3) such that

3z3h(z1, z2, z3) = 2a1(z1, z2, z3),

∂a1(z1, z2, z3)

∂z2
h(z1, z2, z3) =

∂a2(z1, z2, z3)

∂z2
.

Thus, czk
3(∂a1(z1, z2)/∂z1) ̸= 0. Then

p0(z1, z2, z3) = zk−1
3 q0(z1, z2, z3),

where

q0(z1, z2, z3) = −
c
3

∂a1(z1, z2, z3)

∂z2
.

Hence, q0(z1, z2, z3) is divisible by z3, i.e., p0(z1, z2, z3) is divisible by zk
3. Thus,

the differential equation

p0(z1, z2, z3) + czk
3
∂g(z1, z2, z3)

∂z2
= 0
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has a solution. We also use g(z1, z2, z3) to denote the solution which does not
contain the constant term. We construct the following coordinate transformation:

z′

0 = z0 + g(z1, z2, z3),

z′

1 = z1,

z′

2 = z2,

z′

3 = z3.

Under this transformation of coordinates, we obtain that

∂

∂z0
=

∂

∂z′

0
,

∂

∂z1
=

∂g
∂z1

∂

∂z′

0
+

∂

∂z′

1
,

∂

∂z2
=

∂g
∂z2

∂

∂z′

0
+

∂

∂z′

2
.

Hence,

D = p0(z1, z2, z3)
∂

∂z0
+ czk

3
∂

∂z2

= p0(z′

1, z′

2, z′

3)
∂

∂z′

0
+ c(z′

3)
k
(

∂g
∂z2

∂

∂z′

0
+

∂

∂z′

2

)
=

(
p0(z′

1, z′

2, z′

3) + c(z′

3)
k ∂g
∂z2

)
∂

∂z′

0
+ c(z′

3)
k ∂

∂z′

2

= c(z′

3)
k ∂

∂z′

2
.

By the discussion of Case 2.1.1, such D does not exist.

Case 2.2: Let p1(z2, z3) ̸= 0.

Case 2.2.1: Let p0(z1, z2, z3) = 0. Then D(∂ f/∂z0) = 0 implies that
p1(z2, z3)

∂a1(z1, z2, z3)

∂z1
+ czk

3
∂a1(z1, z2, z3)

∂z2
= 0,

p1(z2, z3)
∂a2(z1, z2, z3)

∂z1
+ czk

3
∂a2(z1, z2, z3)

∂z2
= 0.

Hence, f ′(z2, z3) = 0 or a constant multiple of zs
3.

Next, we investigate D(∂ f/∂z1):

0 = D
(

∂ f
∂z1

)
= p1(z2, z3)

[
z0

∂2a2(z1, z2, z3)

∂z2
1

+
∂2a3(z1, z2, z3)

∂z2
1

]
+ czk

3

[
z0

∂2a2(z1, z2, z3)

∂z1∂z2
+

∂2a3(z1, z2, z3)

∂z1∂z2

]
.
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Hence, 
p1(z2, z3)

∂2a2(z1, z2, z3)

∂z2
1

+ czk
3
∂2a2(z1, z2, z3)

∂z1∂z2
= 0,

p1(z2, z3)
∂2a3(z1, z2, z3)

∂z2
1

+ czk
3
∂2a3(z1, z2, z3)

∂z1∂z2
= 0.

If p1(z2, z3) is divisible by zk
3, then the differential equation

p1(z2, z3) + czk
3
∂g(z2, z3)

∂z2
= 0

has a solution. We also use g(z2, z3) to denoted the solution which does not contain
the constant term. We construct the following coordinate transformation:

z′

0 = z0,

z′

1 = z1 + g(z2, z3),

z′

2 = z2,

z′

3 = z3.

Under this transformation of coordinates, we obtain that

∂

∂z0
=

∂

∂z′

0
,

∂

∂z1
=

∂

∂z′

1
,

∂

∂z2
=

∂g
∂z2

∂

∂z′

1
+

∂

∂z′

2
.

Hence,

(19) D = p1(z2, z3)
∂

∂z1
+ czk

3
∂

∂z2

= p1(z′

2, z′

3)
∂

∂z′

1
+ c(z′

3)
k
(

∂g
∂z2

∂

∂z′

1
+

∂

∂z′

2

)
=

(
p1(z′

2, z′

3) + c(z′

3)
k ∂g
∂z2

)
∂

∂z′

1
+ c(z′

3)
k ∂

∂z′

2
.

By Case 2.1.1, such D does not exist. In the following, we assume that p1(z2, z3)

is not divisible by zk
3. Hence, z3 | (∂a1/∂z1), z3 | (∂a2/∂z1), z3 | (∂2a2/∂z2

1) and
z3 | (∂2a3/∂z2

1). By the weight inequality α0 + 2α3 < 2α1, we have

f = z3
0z3 + (z1 f1 + f0)z2

0 + (z3
1g3 + z2

1g2 + z1g1 + g0)z0

+ z5
1h5 + z4

1h4 + z3
1h3 + z2

1h2 + z1h1 + h0,
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where fi = fi (z2, z3), with i = 0, 1; g j = g j (z2, z3), with 0 ≤ j ≤ 3; and
hl = hl(z2, z3), with 0 ≤ l ≤ 5. Hence, the following equations:

∂ f
∂z0

= 3z2
0z3 + 2z0(z1 f1 + f0) + (z3

1g3 + z2
1g2 + z1g1 + g0),

∂ f
∂z1

= z2
0 f1 + z0(3z2

1g3 + 2z2
1g2 + g1) + 5z4

1h5 + 4z3
1h4 + 3z2

1h3 + 2z1h2 + h1,

∂ f
∂z2

= z2
0

(
z1

∂ f1

∂z2
+

∂ f0

∂z2

)
+ z0

(
z3

1
∂g3

∂z2
+ z2

1
∂g2

∂z2
+ z1

∂g1

∂z2
+

∂g0

∂z2

)
+

(
z5

1
∂h5

∂z2
+ z4

1
∂h4

∂z2
+ z3

1
∂h3

∂z2
+ z2

1
∂h2

∂z2
+ z1

∂h1

∂z2
+

∂h0

∂z2

)
,

∂ f
∂z3

= z3
0 + z2

0

(
z1

∂ f1

∂z3
+

∂ f0

∂z3

)
+ z0

(
z3

1
∂g3

∂z3
+ z2

1
∂g2

∂z3
+ z1

∂g1

∂z3
+

∂g0

∂z3

)
+

(
z5

1
∂h5

∂z3
+ z4

1
∂h4

∂z3
+ z3

1
∂h3

∂z3
+ z2

1
∂h2

∂z3
+ z1

∂h1

∂z3
+

∂h0

∂z3

)
,

have solution 
z2 = 0,

z3 = 0,

∂ f
∂z3

= 0.

Hence, f does not have an isolated singularity at the origin.

Case 2.2.2: Let p0(z1, z2, z3) ̸= 0. Then

(20) 0 = D
(

∂ f
∂z0

)
=

∂

∂z0

[
p0(z1, z2, z3)

∂ f
∂z0

+ p1(z2, z3)
∂ f
∂z1

+ czk
3

∂ f
∂z2

]
and

(21) D
(

∂ f
∂z1

)
=

∂

∂z1

[
p0(z1, z2, z3)

∂ f
∂z0

+p1(z2, z3)
∂ f
∂z1

+czk
3

∂ f
∂z2

]
−

∂p0(z1, z2, z3)

∂z1

∂ f
∂z0

= h
∂ f
∂z0

.

Equation (21) implies that

∂

∂z1

[
p0(z1, z2, z3)

∂ f
∂z0

+ p1(z2, z3)
∂ f
∂z1

+ czk
3

∂ f
∂z2

]
= h̃

∂ f
∂z0

.
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From (20), we know that the left-hand side of this equation is independent of the
variable z0. Since f = z3

0z3+ · · · , the right-hand side of this equation is independent
of the variable z0 only if h̃ = 0. Thus, we have

∂

∂z1

(
p0(z1, z2, z3)

∂ f
∂z0

+ p1(z2, z3)
∂ f
∂z1

+ czk
3

∂ f
∂z2

)
= 0.

Therefore,

p0(z1, z2, z3)
∂ f
∂z0

+ p1(z2, z3)
∂ f
∂z1

+ czk
3

∂ f
∂z2

= g1(z2, z3).

This is

(22) p0(z1, z2, z3)
(
3z3z2

0+2a1(z1, z2, z3)z0+a2(z1, z2, z3)
)

+p1(z2, z3)

[
z2

0
∂a1(z1, z2, z3)

∂z1
+z0

∂a2(z1, z2, z3)

∂z1
+

∂a3(z1, z2, z3)

∂z1

]
+czk

3

[
∂a1(z1, z2, z3)

∂z2
z2

0+
∂a2(z1, z2, z3)

∂z2
z0+

∂a3(z1, z2, z3)

∂z2

]
= g1(z2, z3).

Equation (22) implies

(23)



3p0(z1, z2, z3)z3 + p1(z2, z3)
∂a1(z1, z2, z3)

∂z1
+ czk

3
∂a1(z1, z2, z3)

∂z2
= 0,

2p0(z1, z2, z3)a1(z1, z2, z3) + p1(z2, z3)
∂a2(z1, z2, z3)

∂z1

+ czk
3
∂a2(z1, z2, z3)

∂z2
= 0,

and

(24) ∂

∂z1

[
p0(z1, z2, z3)a2(z1, z2, z3)+p1(z2, z3)

∂a3(z1, z2, z3)

∂z1
+czk

3
∂a3(z1, z2, z3)

∂z2

]
=

∂p0(z1, z2, z3)

∂z1
a2(z1, z2, z3)+p0(z1, z2, z3)

∂a2(z1, z2, z3)

∂z1

+p1(z2, z3)
∂2a3(z1, z2, z3)

∂z2
1

+czk
3
∂2a3(z1, z2, z3)

∂z1∂z2

= 0.

From (23), we obtain that

(25) p1(z2, z3)

[
2a1(z1, z2, z3)

∂a1(z1, z2, z3)

∂z1
− 3z3

∂a2(z1, z2, z3)

∂z1

]
+ czk

3

[
2a1(z1, z2, z3)

∂a1(z1, z2, z3)

∂z2
− 3z3

∂a2(z1, z2, z3)

∂z2

]
= 0.
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If p1(z2, z3) is divisible by czk
3, then the differential equation

p1(z2, z3) + czk
3
∂g(z2, z3)

∂z2
= 0,

has a solution. We also use g(z2, z3) to denote the solution which does not contain
the constant term. We construct the following coordinate transformation:

z′

0 = z0,

z′

1 = z1 + g(z2, z3),

z′

2 = z2,

z′

3 = z3.

Under this transformation of coordinates, we obtain that

∂

∂z0
=

∂

∂z′

0
,

∂

∂z1
=

∂

∂z′

1
,

∂

∂z2
=

∂g
∂z2

∂

∂z′

1
+

∂

∂z′

2
.

Hence,

(26) D = p0(z1, z2, z3)
∂

∂z0
+p1(z2, z3)

∂

∂z1
+czk

3
∂

∂z2

= p0
(
z′

1−g(z′

2, z′

3), z′

2, z′

3
) ∂

∂z′

0
+p1(z′

2, z′

3)
∂

∂z′

1
+c(z′

3)
k
(

∂g
∂z2

∂

∂z′

1
+

∂

∂z′

2

)
= p0

(
z′

1−g(z′

2, z′

3), z′

2, z′

3
) ∂

∂z′

0
+

(
p1(z′

2, z′

3)+c(z′

3)
k ∂g
∂z2

)
∂

∂z′

1
+c(z′

3)
k ∂

∂z′

2
.

By Case 2.1.2, such D does not exist.
In the following, we assume that p1(z2, z3) is not divisible by czk

3. According
to (25), we obtain that z3 is divisible by ∂a1(z1, z2, z3)/∂z1.

By the weight inequality α0 + 2α3 < 2α1, we have

f = z3
0z3 + (z1 f1 + f0)z2

0 + (z3
1g3 + z2

1g2 + z1g1 + g0)z0

+ z5
1h5 + z4

1h4 + z3
1h3 + z2

1h2 + z1h1 + h0,

where fi = fi (z2, z3), with i = 0, 1; g j = g j (z2, z3), with j = 0, 1, 2, 3; and
hl = hl(z2, z3), with l = 0, 1, 2, 3, 4, 5. By (23), we obtain that

(27) 3p0z3 + p1 f1 + czk
3

(
z1

∂ f1

∂z2
+

∂ f0

∂z2

)
= 0,
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and

(28) 2p0(z1 f1 + f0) + p1(3z2
1g3 + 2z1g2 + g1)

+ czk
3

(
z3

1
∂g3

∂z2
+ z2

1
∂g2

∂z2
+ z1

∂g1

∂z2
+

∂g0

∂z2

)
= 0.

If ∂ f1/∂z2 = 0, then p0(z1, z2, z3) = p0(z2, z3) does not depend on z1. Thus, (27)
and (24) become

(29) 3p0z3 + p1 f1 + czk
3
∂ f0

∂z2
= 0,

and

(30) p0(3z2
1g3 + 2z1g2 + g1) + p1(20z3

1h5 + 12z2
1h4 + 6z1h3 + 2h2)

+ czk
3

(
5z4

1
∂h5

∂z2
+ 4z3

1
∂h4

∂z2
+ 3z2

1
∂h3

∂z2
+ 2z1

∂h2

∂z2
+

∂h1

∂z2

)
= 0.

By (28), we obtain that

(31)



∂g3

∂z2
= 0,

3p1g3 + czk
3
∂g2

∂z2
= 0,

2p0 f1 + 2p1g2 + czk
3
∂g1

∂z2
= 0,

2p0 f0 + p1g0 + czk
3
∂g0

∂z2
= 0.

By (30), we obtain that

(32)



∂h5

∂z2
= 0,

20p1h5 + 4czk
3
∂h4

∂z2
= 0,

3p0g3 + 12p1h4 + 3czk
3
∂h3

∂z2
= 0,

2p0g2 + 6p1h3 + 2czk
3
∂h2

∂z2
= 0,

p0g1 + 2p1h2 + czk
3
∂h1

∂z2
= 0.
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If g3 = 0, then ∂g2/∂z2 = 0 and z3 | h4 by (31) and (32). By Lemma 2.4 and z3 | h4,
we obtain that h5 = 0. Hence, the following equations:

∂ f
∂z0

= 3z2
0z3 + 2z0(z1 f1 + f0) + (z3

1g3 + z2
1g2 + z1g1 + g0),

∂ f
∂z1

= z2
0 f1 + z0(3z2

1g3 + 2z2
1g2 + g1) + 5z4

1h5 + 4z3
1h4 + 3z2

1h3 + 2z1h2 + h1,

∂ f
∂z2

= z2
0

(
z1

∂ f1

∂z2
+

∂ f0

∂z2

)
+ z0

(
z3

1
∂g3

∂z2
+ z2

1
∂g2

∂z2
+ z1

∂g1

∂z2
+

∂g0

∂z2

)
+

(
z5

1
∂h5

∂z2
+ z4

1
∂h4

∂z2
+ z3

1
∂h3

∂z2
+ z2

1
∂h2

∂z2
+ z1

∂h1

∂z2
+

∂h0

∂z2

)
,

∂ f
∂z3

= z3
0 + z2

0

(
z1

∂ f1

∂z3
+

∂ f0

∂z3

)
+ z0

(
z3

1
∂g3

∂z3
+ z2

1
∂g2

∂z3
+ z1

∂g1

∂z3
+

∂g0

∂z3

)
+

(
z5

1
∂h5

∂z3
+ z4

1
∂h4

∂z3
+ z3

1
∂h3

∂z3
+ z2

1
∂h2

∂z3
+ z1

∂h1

∂z3
+

∂h0

∂z3

)
,

have solution 
z2 = 0,

z3 = 0,

∂ f
∂z3

= 0.

Hence f does not have isolated singularity at the origin.
If g3 ̸= 0, then g3 = zl

3, where l ≥ 1 (due to (32) and omitting a nonzero constant
multiple). If h5 = 0, then ∂h4/∂z2 = 0 and h3 ̸= z2. Similarly, f does not have
isolated singularity at the origin. If h5 ̸= 0, then h5 = zl ′

3 , where l ′ ≥ 1 (due to (32)
and omitting a nonzero constant multiple). Similarly, f does not have isolated
singularity at the origin.

In the following, we assume that ∂ f1/∂z2 ̸= 0. Then p0(z1, z2, z3) depends on
z1. Let f1 = z3 f ′

1(z2, z3), with f ′

1 ̸= 0, depend on z2. By (27), without loss of
generality, we can assume that p0 is divisible by zk

3. (Otherwise, if

p0 = z1zk
3 p′

0(z2, z3) + p′′

0(z2, z3),

then we can do the same argument as the condition ∂ f1/∂z2 = 0.) Moreover, p1 is
not divisible by zk

3. By (28) and (30), we obtain that

z3 | 3z2
1g3 + 2z1g2 + g1 and z3 | 20z3

1h5 + 12z2
1h4 + 6z1h3 + 2h2.

This implies that z3 | g3, z3 | g2, z3 | g1, z3 | h5, z3 | h4, z3 | h3, z3 | h2. Moreover
we obtain that z3 | (∂g3/∂z2), z3 | (∂g2/∂z2), z3 | (∂g1/∂z2), z3 | (∂h5/∂z2), z3 |

(∂h4/∂z2), z3 | (∂h3/∂z2) and z3 | (∂h2/∂z2). So f does not have isolated singularity
at the origin. □
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When investigating the derivation D2, we assume that f has one of the following
forms:

(1) f = zm
0 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3) with m ≥ 4,

(2) f = zm
0 z1 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3) with m ≥ 3,

(3) f = zm
0 z2 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3) with m ≥ 3,

(4) f = zm
0 z3 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3) with m ≥ 3,

with the following relations:

D2

(
∂ f
∂z0

)
= 0,

D2

(
∂ f
∂z1

)
= p(z1, z2, z3)

∂ f
∂z0

,

D2

(
∂ f
∂z2

)
= q0(z1, z2, z3)

∂ f
∂z0

+ q1(z2, z3)
∂ f
∂z1

,

D2

(
∂ f
∂z3

)
= w0(z1, z2, z3)

∂ f
∂z0

+ w1(z2, z3)
∂ f
∂z1

+ w2(z3)
∂ f
∂z2

.

When investigating the derivation D3, we assume that f has one of the following
forms:

(1) f = zm
0 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3), with m ≥ 3,

(2) f = zm
0 z1 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3), with m ≥ 2,

(3) f = zm
0 z2 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3), with m ≥ 2,

(4) f = zm
0 z3 + a1(z1, z2, z3)zm−1

0 + · · · + am(z1, z2, z3), with m ≥ 3,

with the following relations:

D3

(
∂ f
∂z0

)
= 0,

D3

(
∂ f
∂z1

)
= p(z1, z2, z3)

∂ f
∂z0

,

D3

(
∂ f
∂z2

)
= q0(z1, z2, z3)

∂ f
∂z0

+ q1(z2, z3)
∂ f
∂z1

,

D3

(
∂ f
∂z3

)
= w0(z1, z2, z3)

∂ f
∂z0

+ w1(z2, z3)
∂ f
∂z1

+ w2(z3)
∂ f
∂z2

.

If Dν is a derivation of Aν , then Dν is a derivation of B. By Theorem 1.5, such a
derivation is nonnegative. □

In view of Proposition 2.6, Proposition 2.7, Proposition 2.8 and Proposition 2.10,
the proof of the Main Theorem is now complete. □
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3. Future work

For an isolated hypersurface singularity defined by f (z0, . . . , zn), the moduli alge-
bra is defined by A( f )=On+1/

(
( f )+ J ( f )

)
and the k-th Hessian algebra is defined

by Hk( f ) = On+1/
(
( f ) + J ( f ) + Ik

)
. Suppose that the ideal

(
( f ) + J ( f ) + Ik

)
is generated by g1, . . . , gm , we use Jℓ(g1, . . . , gm) to denote the ideal generated
by all ℓ × ℓ-minors of the Jacobian matrix of g1, . . . , gm , then we introduce a
series of local algebras Mk,ℓ( f ) = On+1/

(
( f ) + J ( f ) + Ik + Jℓ(g1, . . . , gm)

)
. We

believe Conjecture 1.6 and the Main Theorem can be generalized to these new local
algebras. Some progress has been made, and we will include the results in our
subsequent papers.
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THE STRUCTURE OF THE UNRAMIFIED ABELIAN IWASAWA
MODULE OF SOME NUMBER FIELDS

ALI MOUHIB

For a given positive integer m, we determine an explicit infinite family of
real quadratic number fields F, such that the unramified abelian Iwasawa
module over the Z2-extension of F, is isomorphic to (Z/2Z)2m .

1. Introduction

Let p be a prime number and Zp be the ring of p-adic integers. We denote by K a
number field, K∞ be the cyclotomic Zp-extension of K , and for each nonnegative
integer n, Kn be the n-th layer of K∞. For any nonnegative integer n, we denote
by An(K ) the p-class group of Kn . We simply denote by A(K ) := A0(K ) the
p-class group of K . The unramified abelian Iwasawa module X∞(K ) of K is
defined by

X∞(K ) := lim
←−−

An(K ),

where the projective limit is defined with respect to the norm mappings. It is well
known, by Iwasawa’s results that X∞(K ) is a finitely generated torsion 3 :=Zp[[T ]]-
module and for large n, we have

|An(K )| = pλp(K )n+µp(K )pn
+νp(K ),

where λp(K ), µp(K ) and νp(K ) are so called Iwasawa invariants of K∞/K . In the
case where K is abelian over Q, we have µp(K ) = 0 [3]. It is conjectured that
for totally real number fields K , λp(K )= µp(K )= 0 [5]. This conjecture, called
Greenberg’s conjecture, is considered as one of the fascinating problems in Iwasawa
theory of Zp-extensions. So proving the finiteness of X∞(K ), leads us to ask the
following questions:

• What about the structure of X∞(K )?

• What is the least nonnegative integer n such that X∞(K )≃ An(K )?
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We will deal with these questions in a special case of totally real quadratic number
fields.

Next, for each group G which is a finitely generated Zp-module, we denote by
rkp(G) the p-rank of G, that is, the dimension of the Fp-vectorial space G/G p.

Note that M. Ozaki [13] constructed a nonexplicit infinite family of cyclic number
fields K of degree p, verifying Greenberg’s conjecture and such that rkp(X∞(K ))

is arbitrarily large.
For p= 2, several articles tackled the Greenberg’s conjecture for some totally real

quadratic number fields. Precisely, for the prime numbers ℓ and ℓ′, the quadratic
number fields F = Q(

√
ℓℓ′) has been studied intensively, where ℓ and ℓ′ are

prime numbers such that ℓ ≡ −ℓ′ ≡ 1 (mod 4). In particular, Y. Mizusawa [9]
proved that for certain quadratic number fields F , the Galois groups of the maximal
unramified pro-2-extensions over the cyclotomic Z2-extension of F are metacyclic
pro-2-groups; he also studied the finiteness of X∞(F) in relation with Greenberg’s
conjecture. Clearly in this case X∞(F) is of rank equal to 2. Let us mention the
articles [4; 8; 9; 10; 11; 12; 14], where we have found selected explicit totally real
quadratic number fields F satisfying Greenberg’s conjecture.

The common point in all these articles is that the unramified abelian Iwasawa
module X∞(F) for the selected number fields F , is of small rank equal to 1 or 2.

Our contribution is to check Greenberg’s conjecture for a new family of fields
F =Q(

√
ℓℓ′). Precisely, we give the structure of X∞(F) and determine the least

positive integer m from which the groups An(F) stabilize. The main result of this
article is the following theorem.

Theorem 1.1. Let ℓ and ℓ′ be prime numbers such that ℓ ≡ −ℓ′ ≡ 1 (mod 4),
F = Q(

√
ℓℓ′). Put v2(ℓ− 1)− 2 = m and v2(ℓ

′
+ 1)− 2 = m′. Assume that

(ℓ/ℓ′)=−1 and m′ ≥ m. Then we have

An(F)≃ (Z/2Z)2n
for all n ≤ m and X∞(F)≃ Am(F)≃ (Z/2Z)2m

2. Totally real quadratic number fields verifying Greenberg’s conjecture and
the structure of the unramified abelian Iwasawa module

Let p be a prime number, K a number field and Kn the layers of the cyclotomic
Zp-extension of K . For each nonnegative integer n, let Ln be the Hilbert p-
class field of Kn and L ′n be the maximal extension of Kn contained in Ln in
which all p-adic places of Kn split completely. By class field theory, we have
An(K )≃Gal(Ln/Kn) and the subgroup Dn(K ) of An(K ) generated by the classes
of p-adic primes fixes L ′n , in order that Gal(Ln/L ′n) ≃ Dn(K ). Also, for any
nonnegative integer n, we denote by A′n(K ) the group of p-ideal p-classes of Kn ,
that is, An(K )/Dn(K ). We simply denote by A′(K ) := A′0(K ) the group of p-ideal
p-classes of K , that is, A(K )/D(K ). We define L∞ :=

⋃
Ln , L ′

∞
=

⋃
L ′n and the
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Iwasawa module X ′
∞

(K ) as the projective limit of the groups A′n(K ) with respect
to the norm maps

X ′
∞

(K )= lim
←−−

A′n(K )≃ lim
←−−

Gal(L ′n/Kn)= Gal(L ′
∞

/K∞),

where the second projective limit is defined with respect to the restriction maps.
Also, we define the group D∞(K ) as the projective limit of the groups Dn(K ), with
respect to the norm maps

D∞(K ) := lim
←−−

Dn(K ).

Let γ be a topological generator of Gal(K∞/K ), let w0= T =γ−1, and for each
positive integer n, we denote by wn = γ pn

− 1= (1+ T )pn
− 1, νn = wn/w0 and

3 = Zp[[T ]] the ring of formal power series, which is a local ring of maximal
ideal (p, T ).

Preparation to the proof of the main theorem. We will prove the following general
result giving the least layer of the cyclotomic Zp-extension of K , from which the
elementary groups A′n(K )/p of the layers Kn stabilize.

Proposition 2.1. Let p be a prime number and K a number field containing a unique
p-adic place that is totally ramified in K∞. Suppose there exists a nonnegative
integer m such that rkp(A′m(K )) < pm . Then we have

X ′
∞

(K )/p ≃ A′m(K )/p.

Proof. Since K contains a unique p-adic place which is totally ramified in K∞,
then the maximal abelian extension of Kn contained in L ′

∞
is K∞L ′n , and hence

wn X ′
∞

(K ) fixes K∞L ′n [6]. We obtain

X ′
∞

(K )/w0 X ′
∞

(K )≃ Gal(K∞L ′0/K∞)≃ Gal(L ′0/K )≃ A′(K ),

X ′
∞

(K )/wn X ′
∞

(K )≃ Gal(K∞L ′n/K∞)≃ Gal(L ′n/Kn)≃ A′n(K ).

Let r be a nonnegative integer such that rkp(A′(K ))= r :

A′(K )/p ≃ (Z/pZ)r .

Hence from Nakayama’s lemma, X ′
∞

(K ) is a finitely generated 3-module with
r generators. Thus the elementary p-group X ′

∞
(K )/p is a Fp[[T ]]-module with

r generators:

X ′
∞

(K )/p ≃
r⊕

i=1

Fp[[T ]]
(T ni )

,

where ni are positive integers. Clearly we have

rkp(X ′
∞

(K ))=

r∑
i=1

ni .
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As reported above, the groups A′n(K ) are determined by giving quotient of X ′
∞

(K )

over wn . Hence we obtain

X ′
∞

(K )/(p, wn)≃ A′n(K )/p ≃
r⊕

i=1

Fp[[T ]]
(wn, T ni )

.

Hence

rkp(A′m(K ))=

r∑
i=1

(
min(deg(wm), ni )

)
=

r∑
i=1

(
min(pm, ni )

)
.

The hypothesis, rkp(A′m(K )) < pm , implies ni < pm for each i = 1, . . . , r . We
conclude that

rkp(X ′
∞

(K ))=

r∑
i=1

ni = rkp(A′m(K ). □

Below we consider the quadratic number field F = Q(
√

ℓℓ′), where ℓ and ℓ′ are
prime numbers such that ℓ≡−ℓ′≡ 1 (mod 4). Let m+2 and m′+2 be respectively
the 2-adic valuations of ℓ− 1 and ℓ′+ 1:

v2(ℓ− 1)− 2= m and v2(ℓ
′
+ 1)− 2= m′.

Clearly in terms of decomposition in the cyclotomic Z2-extension of Q, we have
Qm and Qm′ respectively the decomposition fields of ℓ and ℓ′.

For each positive integer n, denote αn = 2 cos(2π/2n+2). The n-th layer of the
cyclotomic Z2-extension of Q is Qn= Q(αn). One can verify that αn+1=

√
2+αn .

We have N Qn/ Q(2+αn)= 2 and (2+αn)o Qn is the unique prime ideal of Qn lying
over 2, and hence

2o Qn = (2+αn)
2n

o Qn .

Put for each positive integer n, βn = 2+αn , so

βn+1 = 2+αn+1 = 2+
√

2+αn = 2+
√

βn.

Then we have
Qn = Q(βn) and Qn+1 = Qn(

√
βn).

Next, we denote by E Qn (resp. E ′Qn
), the group of units (resp. the group of 2-units)

of Qn . Clearly, the group E ′Qn
is generated by βn and E Qn .

Proposition 2.2. Suppose that m′ ≥ m. We have:

(1) If m = 0, then A′n(F)= 0 for each nonnegative integer n.

(2) If m ≥ 1, then 1
2 X ′
∞

(F)≃ Z/2Z⊕2m
−1, precisely we have

1
2 An(F)≃ 1

2 A′n(F)≃ Z/2Z⊕2n
for all n ≤ m− 1,(2-1)

Dn ≃ Z/2Z, 1
2 A′n(F)≃ Z/2Z⊕2m

−1, 1
2 An(F)≃ Z/2Z⊕2m

for all n ≥ m.(2-2)
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Proof. By genus theory, we have A(F)≃ Z/2Z. Since F contains a unique 2-adic
place, then X ′

∞
(F)/T ≃ A′(F) is cyclic (possible trivial). Suppose that m= 0, then

ℓ is inert in Q1, which is equivalent to (2/ℓ)=−1. Hence, the 2-adic place of F
is inert in Q(

√
ℓ,
√

ℓ′) the genus field of F , thus A′(F) is trivial. In that case, by
Nakayama’s lemma X ′

∞
(F) is trivial, then we have (1). Next suppose that m ≥ 1.

Then ℓ splits in Q1, so the 2-adic place of F splits in Q(
√

ℓ,
√

ℓ′), thus A′(F) is
cyclic nontrivial.

On the other hand, since A( Qn) is trivial, then each class of An(F) of order 2 is
an ambiguous class relative to the extension Fn/ Qn . Hence we obtain

1
2 An(F)≃ An(F)G and 1

2 A′n(F)≃ A′n(F)G,

where G = Gal(Fn/ Qn).
From A′ version of ambiguous class number formula applied to the exten-

sion Fn/ Qn (see, for instance, [2]), we have, for each nonnegative integer n

|A′n(F)G
| =


22n
+2n
[E ′Qn

: E ′Qn
∩ NFn/ Qn (F∗n )]−1 for all n ≤ m− 1,

22m
+2n
[E ′Qn

: E ′Qn
∩ NFn/ Qn (F∗n )]−1 for all m ≤ n ≤ m′,

22m
+2m′

[E ′Qn
: E ′Qn

∩ NFn/ Qn (F∗n )]−1 for all n ≥ m′.

Hence to compute the unit index [E ′Qn
: E ′Qn

∩ NFn/ Qn F∗n ], it suffices to look
to the units of Qn and βn whether or not they are norms in the extension Fn/ Qn .
Clearly, the unit index [E ′Qn

: E ′Qn
∩NFn/ Qn (F∗n )] is less than or equal to 22n

+1; we
will compute this unit index. It is well known that an element u ∈ E ′Qn

is a norm
in the extension Fn/ Qn if and only if the quadratic norm residue symbol

( u,ℓℓ′

P
)

relatively to the extension Fn/ Qn , is trivial for each prime ideal P of Qn ramified
in Fn . Note that there is only one 2-adic place Q of Qn ramified in Fn . Then from
the product formula ∏

L|ℓ

(
u, ℓℓ′

L

) ∏
L′|ℓ′

(
u, ℓℓ′

L′

)(
u, ℓℓ′

Q

)
= 1,

u is a norm in the extension Fn/ Qn if and only if
( u,ℓℓ′

P
)
= 1, for each prime ideal P

of Qn dividing ℓℓ′. In particular, since each ℓ-adic (resp. ℓ′-adic) place L (resp. L′)
of Qn is unramified in Qn(

√
ℓ′) (resp. Qn(

√
ℓ)), and by the fact that u is a 2-unit,

we obtain(
u, ℓ

L′

)
=
√

ℓ

(
Qm (
√

βm )/ Qm
L′

)−vL′ ((u))

−1
=1,

(
u, ℓ′

L

)
=
√

ℓ′

(
Qm (
√

βm )/ Qm
L

)−vL((u))

−1
=1,

where
(
∗/∗

∗

)
denotes the Artin symbol and vP((u)) is the P-adic valuation of the

ideal (u) of Qn generated by u, so vP((u))= 0.
Hence, since for each prime ideal P dividing ℓℓ′, we have

( u,ℓℓ′

P
)
=

( u,ℓ
P

)( u,ℓ′

P
)
,

then u is a norm in the extension Fn/ Qn if and only if u is a norm in the extensions
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Qn(
√

ℓ)/ Qn and Qn(
√

ℓ′)/ Qn . Thus, we have the following surjective maps:

f : E ′Qn
/E ′Qn

∩ NFn/ Qn F∗n ↠ E ′Qn
/E ′Qn

∩ N Qn(
√

ℓ′)/ Qn
Qn(
√

ℓ′)∗,

E Qn/E Qn ∩ NFn/ Qn F∗n ↠ E Qn/E Qn ∩ N Qn(
√

ℓ′)/ Qn
Qn(
√

ℓ′)∗.

Since Q(
√

ℓ′) contains a unique 2-adic place which is totally ramified in the
Z2-extension ( Q(

√
ℓ′))∞, then X ′

∞
( Q(
√

ℓ′))/T ≃ A′0( Q(
√

ℓ′)), which is trivial.
Hence A′n( Q(

√
ℓ′)) is trivial for each nonnegative integer n. Thus from the am-

biguous class number formula applied to the quadratic extension Qn(
√

ℓ′)/ Qn , we
obtain

[E ′Qn
: E ′Qn

∩ N Qn(
√

ℓ′)/ Qn
Qn(
√

ℓ′)∗] =

{
22n

for all n ≤ m′,

22m′

for all n ≥ m′.

Similarly, we obtain the maximality of the following unit index for n ≤ m′:

[E Qn : E Qn ∩ N Qn(
√

ℓ′)/ Qn
Qn(
√

ℓ′)∗] =

{
22n

for all n ≤ m′,

22m′

for all n ≥ m′.

It follows from the above maps that

[E ′Qn
: E ′Qn

∩ NFn/ Qn F∗n ] ≥
{

22n
for all n ≤ m′,

22m′

for all n ≥ m′,

[E Qn : E Qn ∩ NFn/ Qn F∗n ] ≥
{

22n
for all n ≤ m′,

22m′

for all n ≥ m′.

Therefore, since [E Qn : E Qn ∩ NFn/ Qn F∗n ] ≤ 22n
, we obtain the maximality of the

following unit index:

[E Qn : E Qn ∩ NFn/ Qn F∗n ] = 2n for all n ≤ m′.

For n ≤ m− 1, from the hypotheses, the ℓ-adic and ℓ′-adic places of Qn split in
Qn+1 = Qn(

√
βn), then for each prime ideal P|ℓℓ′, by the properties of the norm

residue symbol, βn is a norm in the extension Fn/ Qn:(
βn, ℓℓ

′

P

)
=

(
ℓℓ′, βn

P

)
=

√
βn

(
Qn (
√

βn )/ Qn
P

)−vP ((ℓℓ′))

−1
=

( Qn+1/ Qn
P

)−1
(
√

βn)
√

βn
= 1,

where vP((ℓℓ′)) = 1 is the P-adic valuation of the ideal (ℓℓ′) of Qn generated
by ℓℓ′. Hence we obtain

[E ′Qn
: E ′Qn

∩ NFn/ Qn (F∗n )] = [E Qn : E Qn ∩ NFn/ Qn (F∗n )] = 22n
.

It follows from the ambiguous class number formula that∣∣ 1
2 An(F)

∣∣= ∣∣ 1
2 A′n(F)

∣∣= |A′n(F)G
| = 22n

+2n
[E ′Qn

: E ′Qn
∩ NFn/ Qn (F∗n )]−1

= 22n
.

Hence we obtain (2-1) of Proposition 2.2.
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Suppose now that n ≥ m, especially when n = m, we have

|A′m(F)G
| = 22m+1

[E ′Qm
: E ′Qm

∩ NFm/ Qm (F∗m)]−1.

We will prove that the unit index [E ′Qm
: E ′Qm

∩ NFm/ Qm (F∗m)] is maximal equal
to 22m

+1. If we denote by U a fundamental system of units of Qm , it suffices to
look if the system of the classes of units

{−1, β̄m, ū | u ∈U }

is a base of the F2-vectorial space E ′Qm
/E ′Qm

∩ NFn/ Qm (F∗m). From the equalities

[E ′Qm
: E ′Qm

∩ N Qm(
√

ℓ′)/ Qm
Qm(
√

ℓ′)∗] = [E Qm : E Qm ∩ N Qm(
√

ℓ′)/ Qm
Qm(
√

ℓ′)∗]

= 2m,

it is clear that {−1, ū | u ∈U } is a base of the F2-vectorial space

E ′Qm
/E ′Qm

∩ N Qm(
√

ℓ′)/ Qm
Qm(
√

ℓ′)∗.

Therefore, {−1, ū | u ∈U }, is a free system of the F2-vectorial space

E ′Qm
/E ′Qm

∩ NFn/ Qm (F∗m).

On the other hand, from the hypotheses, the ℓ-adic places of Qm are inert
in Qm+1. Hence βm is not norm in the extension Fm/ Qm , precisely for each ℓ-adic
place L of Qm , we have(

βm, ℓℓ′

L

)
=

(
ℓℓ′, βm

L

)
=

√
βm

(
Qm (
√

βm )/ Qm
L

)−vL((ℓℓ′))

−1
=

√
βm

(
Qm+1/ Qm

L

)−1
−1
=−1.

Hence βm is not norm in the extension Fm/ Qm .
Also, the ℓ′-adic places of Qm are inert in Qm+1 if and only if m=m′. Therefore,

one of the following two facts can occur:

(i) In the case where m′ ≥ m+ 1, for each ℓ′-adic place L′ of Qm , we have(
βm, ℓ′

L′

)
=

(
ℓ′, βm

L′

)
=

√
βm

(
Qm (
√

βm )/ Qm
L′

)−vL′ ((ℓ
′))

−1
=

√
βm

(
Qm+1/ Qm

L′

)−1
−1
= 1.

Hence, βm is norm in the extension Qm(
√

ℓ′)/ Qm , so the kernel of the previous
map f is nontrivial. Thus we obtain

ker( f )= β̄mF2.

(ii) In the case where m = m′, for each ℓ′-adic place L′ of Qm , we have(
βm, ℓ′

L′

)
=

(
ℓ′, βm

L′

)
=

√
βm

(
Qm (
√

βm )/ Qm
L′

)−vL′ ((ℓ
′))

−1
=

√
βm

(
Qm+1/ Qm

L′

)−1
−1
=−1.

Thus βm is not norm in the extension Qm(
√

ℓ′)/ Qm , so β̄m ̸∈ ker( f ).
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Also, for each ℓ-adic place L and ℓ′-adic place L′ of Qm , we have(
−1, ℓℓ′

L

)
=

(
−1, ℓ

L

)
=

(
−1
ℓ

)
= 1 and

(
−1, ℓ′

L′

)
=

(
−1
ℓ′

)
=−1.

Consequently, in this case, −βm is not norm in the extension Fm/ Qm , but norm in
the extension Qm(

√
ℓ′)/ Qm . Hence the kernel of f is nontrivial:

ker( f )=−β̄mF2.

Consequently, we conclude that the system {−1, β̄m, ū | u ∈U } is free. Thus, we
find∣∣ 1

2 A′m(F)
∣∣= |A′m(F)G

| = 22m
+2m
[E ′Qm

: E ′Qm
∩ NFm/ Qm (F∗m)]−1

= 22m
−1.

So clearly, Dm(F) is nontrivial. Moreover, since the 2-adic place of Fm is totally
ramified in F∞, then for n ≥ m, the norm map Dn(F)→ Dm(F) is onto, implies
that Dn(F) is nontrivial. Also, since Fn contains a unique 2-adic place and its
square is trivial, then we have

Dn(F)≃ Dm(F)≃ Z/2Z.

Furthermore, since rk2(A′m(F))= 2m
−1 < 2m , it follows from Proposition 2.1 that

1
2 X ′
∞

(F)≃ 1
2 A′m(F)≃ 1

2 A′n(F)≃ Z/2Z⊕2m
−1 for all n ≥ m.

In addition, by the ambiguous class number formula we conclude that for each
n ≥ m,

rk2(An(F))= rk2(An(F)G)= 2m . □

Corollary 2.3. We have

X∞(F)≃ X ′
∞

(F)⊕ D∞(F),

where D∞(F)≃ Z/2Z.

Proof. From Proposition 2.2, for each n ≥ m, we have

Dn(F)≃ Z/2Z, rk2(A′n(F))= 2m
− 1 and rk2(An(F))= 2m .

It follows that An ≃ A′n⊕Dn(F). Hence, passing to the projective limit with respect
to the norm maps, we have the result. □

Proof of the main theorem. From the hypotheses, we have A(F)= A′(F)≃ Z/2Z

and generated by the class of the ℓ-adic place. By Proposition 2.2, we have
rank(A′m(F)) < 2m , then A′(F) capitulates in Fm [15, Lemma 7]. Consider the
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commutative diagram [6, Theorems 6 and 7]:

A′(F)
∼
//

��

X ′
∞

(F)/w0 X ′
∞

(F)

νm

��

A′m(F)
∼
// X ′
∞

(F)/wm X ′
∞

(F)

Since A′(F) capitulates in Fm , then the left vertical map is trivial, thus

νm X ′
∞

(F)⊂ wm X ′
∞

(F).

Hence we obtain

wm X ′
∞

(F)= νm X ′
∞

(F)= w0(νm X ′
∞

(F)).

On the other hand, since νm X ′
∞

(F) is a finitely generated 3-module and w0 is con-
tained in (p, T ), then by Nakayama’s lemma we obtain wm X ′

∞
(F)=νm X ′

∞
(F)=0;

hence X ′
∞

(F)≃ A′m(F). Consequently, from Corollary 2.3, we have

X∞(F)≃ X ′
∞

(F)⊕ D∞(F)≃ Am(F)≃ A′m(F)⊕Z/2Z.

Also, from Proposition 2.2, we have rk2(Am−1(F)) = 2m−1 < rk2(Am(F)) = 2m ,
then X∞(F) ̸≃ Am−1(F).

Now, we will prove that X∞(F) is an elementary abelian 2-group. We will use
other notations. For each nonnegative integer n ≤ m′, let Sn be the set of ℓ′-adic
places of Fn , and DSn the subgroup of An(F) generated by the classes of places
in Sn . Let ASn

n be the group of Sn-classes, that is, ASn
n := An(F)/DSn . Let Mn be

the maximal abelian unramified 2-extension over Fn , in which all places of Sn split
completely. By class field theory, we have

Gal(Mn/Fn)≃ ASn
n .

Since F contains a unique 2-adic place which is totally ramified in F∞ and the
ℓ′-adic place of F splits completely in Fm′ , then the maximal abelian unramified
extension of F contained in Mm′ is Fm′M0. On the other hand, ASm′

m′ is a finitely
generated 3 = Z2[[T ]]-module and ASm′

m′ /T ≃ AS0
0 . By the hypotheses, we have

(ℓ/ℓ′) = −1, then AS0
0 = 0 and by Nakayama’s lemma, ASm′

m′ = 0. It follows that
for each nonnegative integers n ≤ m′, we have An(F) ≃ DSn . But, all classes of
places in Sn are trivial or of order 2, then An(F) is an elementary 2-group, thus
X∞(F) is an elementary group isomorphic to (Z/2Z)2m

. □

Application to the Z2-torsion of X∞(K ), for some imaginary biquadratic number
fields K. It is well known from the results of Ferrero and Kida [2; 7] that the
Z2-torsion part X0

∞
(K ) of the unramified abelian Iwasawa module X∞(K ) of any

imaginary quadratic number field K is trivial or cyclic of order 2. As an application
of the main theorem, we will determine an infinite family of imaginary biquadratic
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number fields K , in which the Z2-torsion part of the Iwasawa module X∞(K ) is
an elementary group of arbitrary large rank.

M. Atsuta [1] studied the minus quotient X−
∞

(K ) of the Iwasawa module X∞(K )

for CM number fields K , that is,

X−
∞

(K )= X∞(K )/(1+ J )X∞(K ),

where J is the complex conjugation. He determined the maximal finite submodule
of X−

∞
under some mild assumptions. Precisely for a CM number field K such

that its totally real maximal subfield K+ is unramified at 2 and contains a unique
2-adic place, then X−

∞
(K ) has no nontrivial finite 3-submodule [1, Example 2.8].

So from the exact sequence

0→ X∞(K+)→ X∞(K )→ X−
∞

(K )→ 0,

we have the maximal finite 3-submodule of X∞(K ) which coincides with the
maximal finite submodule of X∞(K+):

X0
∞

(K )= X0
∞

(K+).

We reconsider now, the quadratic number field F = Q(
√

ℓℓ′) of the main
Theorem 1.1. Recall that ℓ and ℓ′ are two prime numbers such that

ℓ≡−ℓ′ ≡ 1 (mod 4) and (ℓ/ℓ′)=−1.

The positive integers m and m′ are defined as

v2(ℓ− 1)− 2= m and v2(ℓ
′
+ 1)− 2= m′ (m′ ≥ m).

Then we have:

Proposition 2.4. For the imaginary biquadratic number field K = F(i), we have
the structure of the unramified abelian Iwasawa module X∞(K ) of K :

X∞(K )≃ Z
λ2(K )
2 ⊕ X0

∞
(K ),

where λ2(K )= 2m
+ 2m′

− 1 and X0
∞

(K )≃ X∞(F)≃ (Z/2Z)2m
.

Proof. From Kida’s formula [7, Theorem 3], we see immediately that

λ(K )= 2m
+ 2m′

− 1.

On the other hand, since the quadratic extension K/K+ (here K+= F) is unramified
at 2-adic primes, then X−

∞
(K ) has no nontrivial 3-submodule [1, Corollary 1.4].

Hence, the Z2-torsion X0
∞

(K ) of the Iwasawa module X∞(K ) coincides with the
Iwasawa module X∞(F):

X0
∞

(K )= X∞(F).
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Consequently from Theorem 1.1, we obtain

X∞(K )≃ Z2m
+2m′
−1

2 ⊕ (Z/2Z)2m
. □
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CONJUGACY CLASSES OF π -ELEMENTS
AND NILPOTENT/ABELIAN HALL π -SUBGROUPS

NGUYEN N. HUNG, ATTILA MARÓTI AND JUAN MARTÍNEZ

Let G be a finite group and π be a set of primes. We study finite groups with
a large number of conjugacy classes of π -elements. In particular, we obtain
precise lower bounds for this number in terms of the π-part of the order of
G to ensure the existence of a nilpotent or abelian Hall π -subgroup in G.

1. Introduction

Let G be a finite group. The number k(G) of conjugacy classes of G is an important
and much investigated invariant in group theory. It is equal to the number of
complex irreducible representations of G. The probability Pr(G) that two uniformly
and randomly chosen elements from G commute is given by k(G)/|G| where
|G| denotes the order of G. This is called the commuting probability or the
commutativity degree of G and it has a large literature; see [Gustafson 1973;
Neumann 1989; Lescot 2001; Guralnick and Robinson 2006; Eberhard 2015]. The
commuting probability has also been studied for infinite groups; see [Tointon 2020].

A starting point of our work is a much cited theorem of Gustafson [1973] stating
that Pr(G) > 5

8 for a finite group G if and only if it is abelian. Let p be the smallest
prime divisor of the order of a finite group G. It was observed by Guralnick and
Robinson [2006, Lemma 2] that if Pr(G) > 1/p, then G is nilpotent. Moreover,
Burness, Guralnick, Moretó and Navarro [Burness et al. 2021, Lemma 4.2] recently
showed that if Pr(G) > (p2

+ p −1)/p3, then G is abelian. An aim of this paper is
to give a generalization of all three of these results.
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Let π be a set of primes. A positive integer is called a π-number if it is not
divisible by any prime outside π . The π -part nπ of a positive integer n is the largest
π-number which divides n. An element of a finite group is called a π-element if
its order is a π-number. The set of all π-elements in a finite group is a union of
conjugacy classes of the group. Let kπ (G) be the number of conjugacy classes of
π -elements in a finite group G and let

dπ (G) := kπ (G)/|G|π .

This invariant is always at most 1 by an old result of Robinson; see [Malle et al.
2021, Lemma 3.5]. The main theorem of the paper [Maróti and Nguyen 2014] is
that if dπ (G) > 5

8 for a finite group G and a set of primes π , then G possesses an
abelian Hall π-subgroup. The following result is a far reaching generalization of
this statement.

Theorem 1.1. Let G be a finite group and let π be a set of primes. Let p be the
smallest member of π . If dπ (G) > 1/p, then G has a nilpotent Hall π-subgroup,
whose derived subgroup has size at most p. Moreover, if dπ (G) > (p2

+ p −1)/p3,
then G has an abelian Hall π -subgroup.

A well-known theorem of Wielandt [1954] states that if a finite group G contains
a nilpotent Hall π-subgroup for some set of primes π then all Hall π-subgroups
of G are conjugate and every π -subgroup of G is contained in a Hall π -subgroup.
Therefore, the π-subgroups of a group satisfying the hypothesis of Theorem 1.1
behave like Sylow subgroups.

There are several results in the literature on the existence of abelian or nilpotent
Hall subgroups in finite groups. For example [Beltrán et al. 2016, Theorem B]
states that if G is a finite group and π a set of primes, then G has nilpotent Hall
π -subgroups if and only if for every pair of distinct primes p, q in π the class sizes
of the p-elements of G are not divisible by q .

For certain sets π , Tong-Viet [2020] proved some nice results on the existence
of normal π-complements in finite groups G under the condition that dπ (G) is
large. For example, [Tong-Viet 2020, Theorem E] states that if p > 2 is the smallest
prime in π and dπ (G) > (p + 1)/2p, then G contains not only an abelian Hall
π-subgroup but also a normal π-complement. Another is [loc. cit., Theorem A],
which states that if d2(G) > 1

2 then G has a normal 2-complement. We in fact make
use of this result to prove Theorem 1.1 in the case 2 ∈ π . As a consequence, the
proof for this case does not depend on the classification of finite simple groups.
The other case 2 /∈ π , however, is more challenging and our proof has to rely on
the classification.

The paper is organized as follows. In Section 2 we prove some preliminary
results on the commuting probability Pr(G). In Section 3 we prove some basic
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properties of the π -class invariant dπ (G) and, in particular, we show in Theorem 3.4
that in order to prove the main result, it suffices to show the existence of a nilpotent
Hall π -subgroup under the hypothesis dπ (G) > 1

p . We then establish this statement
in Section 4, modulo a result on finite simple groups (Theorem 4.9) that will be
proved in Section 5. Finally, in Section 6, we present examples showing that the
converse of Theorem 1.1 is false and that the obtained bounds are sharp in general.

2. Commuting probability

In this section we recall and prove some results about the commuting probability
Pr(G) that will be needed later.

The first lemma is a generalization of Gustafson’s result [1973] mentioned earlier.
The inequality part is due to Burness, Guralnick, Moretó, and Navarro [2021].

Lemma 2.1. Let G be a finite group and p the smallest prime dividing |G|. If
G is not abelian, then Pr(G) ≤ (p2

+ p − 1)/p3 with equality if and only if
G/Z(G) = C p × C p.

Proof. The first part of the lemma is [Burness et al. 2021, Lemma 4.2]. Following
its proof, we see that the equality Pr(G) = (p2

+ p − 1)/p3 holds if and only if
G/Z(G) = C p ×C p and |xG

| = p for every x ∈ G \ Z(G). It suffices to prove that
if G/Z(G) = C p × C p, then |xG

| = p for every x ∈ G \ Z(G).
Assume that G/Z(G) = C p ×C p and let x ∈ G \ Z(G). Since x ∈ CG(x)\ Z(G),

we have that Z(G) < CG(x). Therefore, |xG
| = |G|/|CG(x)| is a proper divisor

of |G|/|Z(G)| = p2. On the other hand, since x is not central, |xG
| > 1. Thus,

|xG
| = p, and the claim follows. □

Note that if G is an extra-special p-group of order p3 with p odd or if G is a
dihedral group when p = 2, then G/Z(G) = C p × C p. Therefore, the bound in
Lemma 2.1 is sharp for all p.

We next give a bound for Pr(G) in terms of the smallest prime factor of the order
of G and the order of its derived subgroup G ′.

Lemma 2.2. If p is the smallest prime dividing the order of a finite group G, then

Pr(G) ≤
1 + (p2

− 1)/|G ′
|

p2 .

Proof. Let Irr(G) denote the set of all irreducible complex characters of G. We
have

|G| =

∑
χ∈Irr(G)

χ(1)2
≥ |G/G ′

| + p2(k(G) − |G/G ′
|),
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since χ(1) divides |G| for every χ ∈ Irr(G). After dividing both sides of the
previous inequality by |G|, we obtain 1 ≥ 1/|G ′

|+ p2(Pr(G)−1/|G ′
|). This yields

Pr(G) ≤ (1 + (p2
− 1)/|G ′

|)/p2, as we claimed. □

Lemma 2.3. Let G be a finite group and p the smallest prime dividing |G|. Suppose
that |G ′

| ≤ p. Then G ′
≤ Z(G), and thus G/Z(G) is abelian. In particular, G is

nilpotent.

Proof. The case |G ′
| = 1 is obvious, so we assume |G ′

| = p. Since G ′ is normal
and its order is the smallest prime dividing |G|, we deduce that G ′ is central in G,
and the result follows. □

Next we refine Lemma 2.1. It follows from [Guralnick and Robinson 2006,
Lemma 2(xiii)] that if Pr(G) > 1/p, where p is the smallest prime dividing |G|,
then G is nilpotent.

Theorem 2.4. Let G be a finite group and p the smallest prime dividing |G|. Then
1/p < Pr(G) ≤ (p2

+ p − 1)/p3 if and only if |G ′
| = p. Moreover, in such case,

Pr(G) =
1
p

+
p − 1

p|G : Z(G)|
.

Proof. By Lemma 2.1 we may assume that G is nonabelian. Assume that |G ′
| > p.

Then |G ′
| ≥ p + 1 and hence, applying Lemma 2.2, we have Pr(G) ≤ 1/p. The

only if part is therefore done.
Conversely, assume that |G ′

| = p. Then G ′
≤ Z(G) by Lemma 2.3. By [Isaacs

1976, Proble 2.13], we have χ(1)2
= |G : Z(G)| for every χ ∈ Irr(G) with χ(1) > 1.

We deduce that

|G| =

∑
χ∈Irr(G)

χ(1)2
= |G|/p + |G : Z(G)|(k(G) − |G|/p),

and it follows that

Pr(G) =
1
p

+
p − 1

p|G : Z(G)|
>

1
p
,

as stated. □

Remark 2.5. It is worth noting that if G/Z(G) ∼= C p × C p, then, by Lemma 2.1,
we have Pr(G) = (p2

+ p − 1)/p3 > 1/p, and hence |G ′
| = p by Theorem 2.4.

Let us denote

gp(x) :=
1 + (p2

− 1)/x
p2 .

We note that the function gp(x) is decreasing in terms of x . Also, gp(1) = 1,
gp(p) = (p2

+ p − 1)/p3, and gp(p + 1) = 1/p. These values of gp, that appear
in our main result, explain the relevance of gp.
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The next theorem could be compared with a result of Lescot [2001] stating that
Pr(G) =

1
2 if and only if G is isoclinic to the symmetric group 63.

Theorem 2.6. Let G be a finite group and p the smallest prime dividing |G|. If
|G ′

| > p, then

Pr(G) ≤
n(p) + p2

− 1
p2n(p)

≤
1
p
,

where n(p) denotes the smallest prime larger than p. Moreover, Pr(G) = 1/p if
and only if p = 2 and G/Z(G) ∼= 63.

Proof. By Bertrand’s postulate, we know that n(p) < 2p ≤ p2. Therefore, if
|G ′

| > p then |G ′
| ≥ n(p) and hence, applying Lemma 2.2, we have

Pr(G) ≤ gp(n(p)) =
n(p) + p2

− 1
p2n(p)

.

The second inequality holds because gp(n(p)) ≤ gp(p + 1) = 1/p.
Suppose that Pr(G) = 1/p. This forces n(p) = p + 1, which implies that p = 2

and |G ′
| = 3. We claim that Pr(G) =

1
2 if and only if G/Z(G) = 63. Assume first

that G/Z(G) = 63. Let q be a prime dividing |G| and let Q ∈ Sylq(G). Since
G/Z(G) = 63, we deduce that |Q : Z(Q)| ≤ q and hence Q is abelian. It follows
that G possesses an abelian Sylow q-subgroup for every prime q dividing |G|. Thus,
by [Guralnick and Robinson 2006, Lemma 2(xiii)], we have

Pr(G) = Pr(G/Z(G)) = Pr(63) =
1
2 .

The other direction of the claim follows from the above-mentioned theorem of
Lescot [2001] since if G is isoclinic to 63, then G/Z(G) = 63. □

3. Hall π -subgroups

In this section we prove that the second statement of Theorem 1.1 follows from the
first.

Let Dπ be the collection of all finite groups G such that G has a Hall π -subgroup,
any two Hall π -subgroups of G are conjugate, and any π -subgroup of G is contained
in a Hall π-subgroup. Of course Dπ is everything when π is a single prime by
Sylow’s theorems. Also, Dπ contains all π-separable groups. The following easy
observation is useful to bound dπ (G) in the case G ∈ Dπ .

Lemma 3.1. Let G be a finite group in Dπ . If H is a Hall π -subgroup of G, then

dπ (G) ≤ Pr(H).

Proof. Since |H | = |G|π , it suffices to see that kπ (G) ≤ k(H). If x, y ∈ H are not
conjugate in G, then they cannot be conjugate in H . Since G ∈ Dπ , every G-class
of π -elements has a representative in H . □
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From this, we can easily prove Theorem 1.1 in case G ∈ Dπ .

Theorem 3.2. Let π be a set of primes and G a finite group in Dπ . Then Theorem 1.1
holds for G.

Proof. By hypothesis, G has a Hall π -subgroup H and all the Hall π -subgroups of
G are G-conjugates of H . Thus, by Lemma 3.1, we have dπ (G) ≤ Pr(H). Let p
be the smallest prime in π . Assume that dπ (G) > 1/p. We then have

Pr(H) >
1
p
.

Theorem 2.4 and Lemma 2.3 then imply that |H ′
|≤ p and H is nilpotent, as claimed.

Moreover, if dπ (G) > (p2
+ p − 1)/p3 then H is abelian by Lemma 2.1. □

As a consequence of Theorem 3.2, we have that Theorem 1.1 holds if π = {p}

or if G is π -separable.
We also recall some facts on the groups in Dπ . The first one is a result of

Wielandt [1954] mentioned in the Introduction and the second one is due to Hall
[1956, Theorem D5].

Lemma 3.3. Let G be a finite group and π a set of primes:

(i) If G possesses a nilpotent Hall π -subgroup, then G ∈ Dπ .

(ii) If N possesses nilpotent Hall π-subgroups, G/N possesses solvable Hall
π -subgroups, and G/N ∈ Dπ , then G ∈ Dπ .

Theorem 3.4. The second statement of Theorem 1.1 follows from the first.

Proof. Let G be a group with dπ (G) > (p2
+ p − 1)/p3 > 1/p. By hypothesis, G

possesses a nilpotent Hall π -subgroup. It then follows that G ∈ Dπ by Lemma 3.3.
The result follows by Theorem 3.2. □

The rest of the paper is therefore devoted to prove that G has a nilpotent Hall
π -subgroup under the condition dπ (G) > 1/p.

4. Reducing to a problem on simple groups

In this section we prove Theorem 1.1, assuming a result on finite simple groups.

Reducing to simple groups. We begin by recalling two properties of dπ (G). The
first one is [Maróti and Nguyen 2014, Proposition 5], essentially due to Robinson.
The second is due to Fulman and Guralnick [2012, Lemma 2.3].

Lemma 4.1. Let G be a finite group and π a set of primes.

(i) Let µ ⊆ π . Then dπ (G) ≤ dµ(G).

(ii) dπ (G) ≤ dπ (N ) dπ (G/N ) for any normal subgroup N of G.
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Lemma 4.2. Let G be a finite group, π a set of primes, and p the smallest prime
in π . Let q ∈ π and Q ∈ Sylq(G). Suppose dπ (G) > 1/p. We have:

(i) Q/Z(Q) is abelian and |Q′
| ≤ q.

(ii) If q ∈ π \ {p}, then Q is abelian.

Proof. By Sylow’s theorems and Lemma 3.1 we have dq(G) ≤ Pr(Q). On the other
hand, by Lemma 4.1(i), we have dπ (G) ≤ dq(G). We deduce that

1
q

≤
1
p

< Pr(Q).

Theorem 2.4 and Lemma 2.3 now imply that Q/Z(Q) is abelian and |Q′
| ≤ q .

Suppose q > p. Then q ≥ p+1, and one can easily check that (q2
+q −1)/q3 <

1/p. Now Pr(Q) > (q2
+q −1)/q3, and thus Q must be abelian by Lemma 2.1. □

The next lemma is [Moretó 2013, Lemma 3.1], which allows us to work with a
set of two primes instead of an arbitrary set.

Lemma 4.3 (Moretó). Let G be a finite group and let π a set of primes. If G
possesses a nilpotent Hall τ -subgroup for every τ ⊆ π with |τ | = 2, then G
possesses a nilpotent Hall π -subgroup.

Proposition 4.4. Suppose that Theorem 1.1 is false for a group G. Then there exists
π = {p, q}, where p < q are two primes, such that G does not possess nilpotent
Hall π-subgroups and for all P ∈ Sylp(G) and Q ∈ Sylq(G), P/Z(P) is abelian,
|P ′

| ≤ p, and Q is abelian.

Proof. By Theorem 3.4, we may assume that there exists π , a set of primes, such
that dπ (G) > 1/p, but G does not possess nilpotent Hall π -subgroups, where p is
the smallest member of π .

If G has a nilpotent Hall τ -subgroup for every τ ⊆ π with |τ | = 2, then by
Lemma 4.3, G has nilpotent Hall π-subgroups. Thus, there exists {q, r} ⊆ π

with q < r such that G does not possess a nilpotent Hall {q, r}-subgroup. By
Lemma 4.1(i), we also have dπ (G) ≤ d{q,r}(G), and it follows that

1
q

≤
1
p

< dπ (G) ≤ d{q,r}(G).

Therefore, Theorem 1.1 fails for G and the set {q, r}, and hence we may assume
that |π | = 2, that is π = {p, q} with p < q .

Finally, the assertion on the Sylow subgroups follows from Lemma 4.2. □

Proposition 4.5. Let π be a set of primes and p the smallest member in π . Let G
be a finite group with minimal order subject to the conditions that dπ (G) > 1/p
and G does not possess nilpotent Hall π -subgroups. Then G is nonabelian simple.
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Proof. We may assume that G is nonabelian and not simple. Let N be a nontrivial
proper normal subgroup in G. By Lemma 4.1(ii), we have

1
p

< dπ (G) ≤ dπ (G/N ) dπ (N ).

It follows that 1/p < dπ (G/N ) and 1/p < dπ (N ), as both dπ (N ) and dπ (G/N )

are at most one; see [Malle et al. 2021, Lemma 3.5]. By the minimality of G,
N and G/N possess nilpotent Hall π-subgroups. Applying Lemma 3.3, we then
deduce that both N and G/N are members of Dπ . It follows that G/N ∈Dπ , G/N
possesses solvable Hall π -subgroups and N possesses nilpotent Hall π -subgroups.
By Lemma 3.3(ii), we have G ∈ Dπ . Therefore, by Theorem 3.2, we have that G
possesses nilpotent Hall π-subgroups, which is a contradiction. We conclude that
G is nonabelian simple. □

Reducing to a question on simple groups. The following is a consequence of a
result of Tong-Viet, which asserts that if d2(G) > 1

2 then G possesses a normal
2-complement.

Lemma 4.6. Let S be a nonabelian simple group and π be a set of primes containing
2. Then dπ (S) ≤

1
2 .

Proof. Suppose that dπ (S) > 1
2 . Then 1

2 < dπ (S) ≤ d2(S). By [Tong-Viet 2020,
Theorem A], S possesses a normal 2-complement, which is impossible. □

Proposition 4.7. Let G be a group and π a set of primes such that dπ (G) > 1/p,
where p is the smallest prime in π . Let q ∈ π but q ̸= p. Then q does not divide
|NG(P) : CG(P)| where P ∈ Sylp(G).

Proof. Assume by contradiction that q divides |NG(P)/CG(P)|. Let x be an
element of order q in NG(P)/CG(P) where P ∈ Sylp(G). Consider the action of
X = ⟨x⟩ on P . Let r be the number of elements of P fixed by X .

We claim that r > |P|/p2. Assume to the contrary that r ≤ |P|/p2. We have
|P| = r + t ·q , implying that t = (|P|−r)/q . Since each X -orbit on P is contained
in a conjugacy class of p-elements it is easy to see that kp(G) ≤ r + t . Now we
have

1
p

<dπ (G)≤dp(G)=
kp(G)

|P|
≤

r + t
|P|

=
1
q

(
(q−1)

r
|P|

+1
)

≤
1
q

(
(q−1)

1
p2 +1

)
.

It is not hard to see that this implies q ≤ p, which is a contradiction. We have
shown that r > |P|/p2.

Since r divides |P|, it follows that

r ∈ {|P|, |P|/p}.
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If r = |P| then X centralizes P , which is impossible. Thus r = |P|/p and hence
there exists a subgroup H of order |P|/p that is centralized by X . That is,

H = CP(X) = {z ∈ P | zx
= z for all x ∈ X}.

Let L := P : X be the semidirect product of the relevant action of X on P . Then
L/H ∼= C : X for some C ∼= C p. Since H is maximal in P , the subgroup H is
normal in P , and it is X -invariant, applying [Isaacs 2008, Corollary 3.28], we have

CP/H (X) = CP(X)H/H = H/H,

and hence X acts nontrivially on C . Let O be a nontrivial orbit of the action of X
on C . We now have q = |X | = |O| ≤ |C | = p, which is a contradiction. □

Corollary 4.8. Let G be a group and π = {p, q} a set of primes with p < q such
that dπ (G) > 1/p. Let P ∈ Sylp(G). Then q divides |Sylp(G)| = |G : NG(P)| or
G possesses a nilpotent Hall π -subgroup.

Proof. We know that |G|q divides

|G| = |G : NG(P)||NG(P) : CG(P)||CG(P)|

but q cannot divide |NG(P) : CG(P)| by Proposition 4.7. Assume that q does
not divide |G : NG(P)|. Then |G|q divides |CG(P)|. Therefore, there exists
Q ∈ Sylq(G) with Q ≤ CG(P). Now P Q is a nilpotent Hall π -subgroup of G. □

Now we can prove Theorem 1.1, modulo the following statement about simple
groups whose proof is deferred to the next section.

Theorem 4.9. Let G be a nonabelian simple group and π = {p, q} be a set of two
odd primes with p < q. Assume that there exist P ∈ Sylp(G) and Q ∈ Sylq(G)

such that P/Z(P) is abelian, |P ′
| ≤ p, Q is abelian, and q divides |G : NG(P)|.

Then dπ (G) ≤ 1/p.

Observe that in Theorem 4.9 we may assume that both p and q divide the order
of G.

Theorem 4.10. Let G be a finite group, π be a set of primes, and p be the smallest
prime in π . Assume Theorem 4.9. If dπ (G) > 1/p then G has a nilpotent Hall
π -subgroup.

Proof. Assume that the theorem is false and let G be a minimal counterexam-
ple. In particular, dπ (G) > 1/p but G has no nilpotent Hall π-subgroups. By
Proposition 4.5, we know that G is nonabelian simple. Using Lemma 4.6, we know
furthermore that p ̸= 2.

By Proposition 4.4, there exists π = {p, q} with (odd) p < q such that dπ (G) >

1/p, P/Z(P) is abelian, |P ′
| ≤ p, and Q is abelian, where P ∈ Sylp(G) and

Q ∈ Sylq(G). We also have that q divides |G : NG(P)|, by Corollary 4.8. We now
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have all the hypotheses of Theorem 4.9, and therefore deduce that dπ (G) ≤ 1/p.
This is a contradiction. □

We remark that we have indeed proved Theorem 1.1 when the set π contains the
prime 2, and this result does not rely on the classification of finite simple groups.

5. Simple groups

In this section we prove Theorem 4.9, by using the classification. We begin with
the alternating groups.

Lemma 5.1. Let p be an odd prime, n ≥ 5 be an integer and P ∈ Sylp(An):

(i) If n ≥ p2, then P/Z(P) is not abelian.

(ii) If n < p2, then P is elementary abelian.

Proof. For (i) it is sufficient to exhibit a subgroup H of P such that H/Z(H) is
not abelian. If n ≥ p2, then H = C p ≀ C p is such a subgroup of P . Statement (ii)
follows from the description of the Sylow p-subgroups of An found in [Huppert
1967, Satz III.15.3]. □

Theorem 5.2. Let n ≥ 5, π = {p, q} be a set of two odd primes with p < q , and
P ∈ Sylp(An). Assume that both p and q divide the order of An . If P/Z(P) is
abelian, then dπ (An) ≤ 1/p. In particular, Theorem 4.9 holds for alternating
groups.

Proof. Let P ∈ Sylp(An) and Q ∈ Sylq(An). Since P/Z(P) is abelian, n < p2

by Lemma 5.1. Let n = r p + s = lq + t , where r, s ∈ {0, 1, . . . , p − 1} and
l, t ∈ {0, 1, . . . , q −1}. Then P = (C p)

r and Q = (Cq)l with both r and l at least 1.
It is easy to see that every π -element of An can be expressed as a product of the

form xy = yx , where x is a product of cycles of length p and y is a product of
cycles of length q. Since n < p2, the supports of x and y are disjoint.

Assume first that n ≥ p + q + 2. In this case we have that kp(An) = 1 + r ≤ p,
kq(An) = 1 + l ≤ q and |An|π = pr ql . Thus we have

dπ (An) =
kπ (An)

|An|π
≤

pq
pr ql .

If (r, l) ̸= (1, 1), then dπ (An) ≤ 1/p. Assume now that r = l = 1. Then kπ (An) ≤

kp(An)kq(An)= 4 and hence dπ (An)≤ (4/q)(1/p)< 1/p, where the last inequality
holds because q ≥ 5.

Assume now that n ≤ p + q + 1 and so l = 1. In this case it may happen that
a 6n-conjugacy class of π-elements splits in two different An-conjugacy classes.
We thus have kπ (An) ≤ (1 + r)(1 + l) + 1 = 2(1 + r) + 1 = 2r + 3. It follows that
dπ (An) ≤ (2r + 1)/(pr q). If r ≥ 2, then (2r + 3)/(pr q) < 1/q < 1/p. If r = 1,
then 2r + 3 = 5 ≤ q and so once again dπ (An) ≤ 1/p. □
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For convenience, we will consider the Tits group 2 F4(2)′ as a sporadic simple
group.

Theorem 5.3. Let S be a sporadic simple group and π = {p, q} where p < q are
odd primes dividing |S|. If (S, π) ̸= (J1, {3, 5}) then dπ (S) ≤ 1/p. In particular,
Theorem 4.9 holds for S.

Proof. In what follows we use information in [Conway et al. 1985] without further
notice. We may assume that π is a set of primes such that kπ (S) ≥ 6, for otherwise

dπ (S) =
kπ (S)

|S|π
≤

5
pq

≤
1
p

There is no such π for the four smallest Mathieu groups. For each of the groups
M24, H S, J2 there are two possibilities for π . In each of the six cases kπ (S) is at
most |S|p or |S|q and this is sufficient to obtain the bound dπ (S) ≤ 1/p.

So we assume that S is not one of the groups already analyzed. If S is different
from Fi23, Fi ′

24 and J1, then we count the total number of conjugacy classes of
S of elements of odd order. These numbers are usually less that |S|r for a given
prime divisor r of |S|. If this is the case for a prime r , then we can assume that r
does not lie in π (otherwise we would be done). This gives strong restrictions on
the set π . In fact, given that kπ (S) ≥ 6, we find this way that S must be J4 and π is
either {3, 7} or {5, 7}. In each of these two cases we count the number of π -classes
in S to obtain our bound of 1/p for dπ (S).

If S is Fi23 or Fi ′

24, then we again count the number of conjugacy classes of S
of elements of odd order. This allows us to conclude that 3 cannot lie in π . We then
count the number of conjugacy classes of S whose elements have orders divisible
neither by 2 nor 3. This number is 8 in the first case and 14 in the second. By
looking at the prime factorization of |S|, the only case to consider is S = Fi ′

24 and
π = {11, 13}. But it turns out that kπ (S) = 3 in this case.

The only group remaining is S = J1. The number of conjugacy classes of S of
elements of odd order is 11 forcing π to be a subset of {3, 5, 7}. Then kπ (S) = 3
or π = {3, 5} and kπ (S) = 6, giving dπ (S) =

2
5 .

The last assertion follows from the fact that if P ∈ Syl3(J1), then 5 does not
divide |J1 : NJ1(P)|. □

We are left with the case of simple groups of Lie type S ̸=
2 F4(2)′. For the sake

of convenience, we rename the prime q in Theorem 4.9 to s in order to reserve q
for the size of the underlying field of S.

The proof of Theorem 4.9 for groups of Lie type is divided into two fundamentally
different cases: π contains the defining characteristic of S and π does not. The
former case is fairly straightforward.
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Theorem 5.4. Let S be a finite simple group of Lie type in characteristic p > 2 and
π = {p, s}, where s is an odd prime dividing |S|. Then,

dπ (S) ≤
1
s
.

In particular, Theorem 4.9 holds for simple groups of Lie type when π contains the
defining characteristic of S.

Proof. First we observe that the desired inequality is satisfied if kπ (S) ≤ |S|p. We
shall make use of well-known bounds of Fulman and Guralnick [2012] for the
numbers of conjugacy classes of finite Chevalley groups to show that, when S has
high enough rank, even the stronger inequality k(S) ≤ |S|p holds true.

Let S = PSL(n, q). Then k(S) ≤ min{2.5qn−1, qn−1
+ 3qn−2

} by [Fulman and
Guralnick 2012, Proposition 3.6]. This is certainly smaller than |S|p = qn(n−1)/2 if
n ≥ 4. Therefore, we just need to verify the theorem for n = 2 or 3. The theorem is in
fact straightforward to verify for these low rank cases, using the known information
on conjugacy classes of the group (see [Dornhoff 1971, Chapter 38] for n = 2 and
[Simpson and Frame 1973] for n = 3). The case S = PSU(n, q) is entirely similar.

Next, we consider PSp(2n, q) with n ≥ 3. Then k(S) ≤ 10.8qn for odd q, and
it easily follows that k(S) ≤ |S|p = qn2

. The case of orthogonal groups is similar,
with a remark that k(�(2n + 1, q)) ≤ 7.3qn for n ≥ 2 and k(P�±(2n, q)) ≤ 6.8qn

for n ≥ 4.
Now we turn to exceptional groups. Recall that the defining characteristic p of S

is odd, so we will exclude the types 2 B2 and 2 F4. By [Fulman and Guralnick 2012,
Table 1] (or [Lübeck ≥ 2023] for more details), we observe that k(S) is bounded
above by a polynomial with positive coefficients, say gS , evaluated at q . Suppose S
is one of 3 D4(q), F4(q), E6(q), 2 E6(q), E7(q), or E8(q). We then have

k(S) ≤ gS(1)qdeg(gS)
≤ 252qdeg(gS) and

qdeg(gS)

|S|p
≤

1
q8 .

Therefore,

dπ (S) ≤
k(S)

|S|p|S|s
≤

252
sq8 <

1
s
,

as wanted. The remaining cases of the types G2 and 2G2 are even easier, using the
more refined bounds k(G2(q)) ≤ q2

+ 2q + 9 and k(2G2(q)) ≤ q + 8. □

Lemma 5.5. Let G be a finite group and let π be a set of primes such that
|Z(G)|π = 1. Then, kπ (G) = kπ (G/Z(G)).

Proof. Let Z := Z(G). Every coset gZ of Z in G contains at most one π -element
of G since |Z |π = 1. The π-elements of G/Z are gZ where g runs through the
π-elements of G. If g is a π-element, then the conjugacy class of gZ in G/Z
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consists of h Z where h ∈ gG . Thus, there is a bijection between the π-conjugacy
classes of G and the π -conjugacy classes of G/Z . □

In the case when π does not contain the defining characteristic of S, the conjugacy
classes of π-elements of S will be semisimple classes, which can be conveniently
described via an ambient algebraic group of S and its Weyl group.

It is well-known that every simple group of Lie type S ̸=
2 F4(2)′ is of the form

S = GF/Z(GF ) for some simple algebraic group G of simply connected type
and a suitable Steinberg endomorphism F on G; see [Malle and Testerman 2011,
Theorem 24.17] for instance.

Theorem 5.6. Let S be a finite simple group of Lie type and G, F as above. Let
π = {p, s} with p < s be a set of primes not containing the defining characteristic
of S. Suppose that s divides |Sylp(S)|. Then

dπ (GF ) ≤
1
p
.

In particular, if |Z(GF )|π = 1, then dπ (S) ≤ 1/p.

Proof. Let G := GF . We first claim that a Hall π -subgroup of G, if exists, cannot
be abelian. Assume by contradiction that G does have such subgroup, say H . Then
H := H Z(G)/Z(G) would be an abelian Hall π-subgroup of S, implying that
NS(P) contains H , where P is a Sylow p-subgroup of S that is contained in H . It
follows that s does not divide |S : NS(P)|, violating the hypothesis.

Let T be an F-stable maximal torus of G, and let W = NG(T )/T be the Weyl
group of G. Since π does not contain the defining characteristic of S, the conjugacy
classes of π-elements of G are semisimple classes. According to [Carter 1985,
Proposition 3.7.3] and its proof, there is a well-defined bijection

τ : Clss(G) → (T/W )F

between the set Clss(G) of semisimple conjugacy classes of G and the set (T/W )F

of F-stable orbits of W on T . Malle, Navarro, and Robinson showed [Malle et al.
2021, Theorem 3.15] that this bijection τ preserves element orders, and therefore
the counting formula (and its proof) for the number of F-stable orbits of W on T
in [Carter 1985, Proposition 3.7.4] implies that

kπ (G) =
1

|W |

∑
w∈W

|Tw−1 F
|π .

It follows that

dπ (G) =
1

|W |

∑
w∈W

|Tw−1 F
|π

|G|π
.
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Now, if |Tw−1 F
|π = |G|π for some w ∈ W then a Hall π-subgroup of Tw−1 F ,

which is abelian, would be a Hall π -subgroup of G, and this contradicts the above
claim. Thus

|Tw−1 F
|π

|G|π
≤

1
p

for every w ∈ W . It then follows that

dπ (G) ≤
1
p
,

proving the first part of the theorem.
For the second part, assume that |Z(G)|π = 1. By Lemma 5.5, we then have

dπ (S) = dπ (G/Z(G)) = dπ (G) ≤
1
p
,

as stated. □

Theorem 5.6 already proves Theorem 4.9 in several cases, as seen in the next
result. In what follows, to unify the notation, we use GLϵ , SLϵ and PSLϵ for linear
groups when ϵ = + and for unitary groups when ϵ = −. We also use E+

6 for E6

and E−

6 for 2 E6.

Theorem 5.7. Let S be a simple group of Lie type, π be a set of two odd primes
not containing the defining characteristic of S, and p be the smaller prime in π .
Assume that we are not in one of the following situations:

(i) S = Eϵ
6(q) and 3 ∈ π .

(ii) S = PSLϵ(n, q) with n ≥ 3 and gcd(n, q − ϵ)π ̸= 1.

Then dπ (S) ≤ 1/p.

Proof. Let G and F be as in Theorem 5.6. According to [Malle and Testerman
2011, Table 24.12], if we are not in one of the stated situations, then |Z(GF )|π = 1.
The result then follows from Theorem 5.6. □

Next we prove Theorem 4.9 for case (i) in Theorem 5.7.

Proposition 5.8. Let S = Eϵ
6(q) with (3, q) = 1 and P ∈ Syl3(S). Then |P ′

| > 3.
In particular, Theorem 4.9 holds in the case S = Eϵ

6(q) and 3 ∈ π .

Proof. Let G be a simple algebraic group of simply connected type and F : G → G
a Frobenius map such that S = GF/Z(GF ). By [Malle and Testerman 2011,
Theorem 25.17], we know that every Sylow 3-subgroup of GF lies in NGF (T )

for some maximal F-stable torus T of G. Therefore Sylow 3-subgroups of
NGF (T )/T F

= SO(5, 3) (the Weyl group of E6) are homomorphic images of
Sylow 3-subgroups of S = GF/Z(GF ). Since the size of the derived subgroup of
Sylow 3-subgroups of SO(5, 3) is 9, we deduce that |P ′

| > 3. □
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For the rest of this section, we will prove Theorem 4.9 for case (ii) in Theorem 5.7.

Lemma 5.9. Let p be an odd prime and S = PSLϵ(n, q). Assume that p divides
gcd(n, q−ϵ) and Sylow p-subgroups of S are abelian. Then n = p=3. Furthermore,
q − ϵ is divisible by 3 but not 9.

Proof. It is argued in Lemma 2.8 of [Koshitani and Sakurai 2021] that if Sylow
p-subgroups of S are abelian and p ≥ 5 then p cannot divide |Z(SLϵ(n, q))|.
Therefore our hypotheses imply that p = 3.

We first prove that n = 3. The condition p = 3 divides gcd(n, q − ϵ), implies
that n ≥ 3. Assume by contradiction that n > 3. Let w be the (unique) element of
order 3 of F×

q2 , and consider the element g := diag(In−2, w,w−1). We have

CGLϵ(n,q)(g) = GLϵ(n − 2, q) × GLϵ(1, q)2,

and so

|GLϵ(n, q) : CGLϵ(n,q)(g)| = q2n−1 (qn
− ϵn)(qn−1

− ϵn−1)

(q − ϵ)2 .

Since 3 divides gcd(n, q −ϵ), we have that 3 must divide |GLϵ(n, q) : CGLϵ(n,q)(g)|.
In fact, we also have 3 divides |SLϵ(n, q) : CSLϵ(n,q)(g)|. On the other hand, as
1 is the only eigenvalue of g with multiplicity larger than 1 (recall that n > 3),
it is easy to see that CSLϵ(n,q)(g) is the full preimage of CPSLϵ(n,q)(ḡ) under the
natural projection from SLϵ to PSLϵ , where ḡ is the image of g in PSLϵ(n, q).
In particular, |SLϵ(n, q) : CSLϵ(n,q)(g)| = |PSLϵ(n, q) : CPSLϵ(n,q)(ḡ)|, and hence
3 divides |PSLϵ(n, q) : CPSLϵ(n,q)(ḡ)|, implying that Sylow 3-subgroups of S =

PSLϵ(n, q) are not abelian. We have shown that n = 3.
Finally, assume that 9 divides q − ϵ. Let λ be the element of order 9 in

F×

q2 and consider h := diag(λ, λ3, λ5) ∈ SLϵ(3, q), also of order 9. We then
have CGLϵ(3,q)(h) = GLϵ(1, q)3, so that |CSLϵ(3,q)(h)| = (q − ϵ)2. Moreover, as
{λ, λ3, λ5

}= {aλ, aλ3, aλ5
} if and only if a = 1, CSLϵ(3,q)(h) is the full preimage of

CPSLϵ(3,q)(h̄). We deduce that |CPSLϵ(3,q)(h̄)| = (q −ϵ)2/3. This is smaller than the
3-part of |PSLϵ(3, q)|, and thus Sylow 3-subgroups of PSLϵ(3, q) are not abelian,
violating the hypothesis. So 9 cannot divide q − ϵ, as stated. □

Theorem 5.10. Let p be an odd prime, n ≥ 4, and (n, p) ̸= (6, 3). Let G :=

SLϵ(n, q) defined in characteristic not equal to p, S := G/Z(G) = PSLϵ(n, q),
and P ∈ Sylp(S). Suppose that P/Z(P) is abelian. Then p does not divide |Z(G)|.

Proof. Assume by contradiction that p | |Z(G)| = gcd(n, q −ϵ). Lemma 5.9 already
shows that P is nonabelian, but we need to work harder to achieve that P/Z(P) is
nonabelian. Let λ ∈ F×

q2 be an element of order p and consider the p-element

x := diag(λ, λ−1, In−2) ∈ G.
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Let V = Fn
q , respectively Fn

q2 , denote the natural G-module for ϵ = +, respectively
ϵ = −. Fix a basis B = {v1, v2, . . . , vn} of V , and consider the permutation y on B
defined by

y := {v1 7→ v2, v2 7→ v3, . . . , vp−1 7→ vp, vp 7→ v1, vi 7→ vi for p < i ≤ n},

which is well-defined as p ≤ n. Note that, as p > 2, we have y ∈ G and ord(y) = p.
Direct calculation shows that

[x, y] = diag(λ−1, λ2, λ−1, In−3) =: s.

Suppose that the p-part of q − ϵ is pa and let C be the (unique) cyclic subgroup
of order pa of F×

q2 . As y permutes the diagonal matrices in G with diagonal entries
in C , one can form the corresponding semidirect product that is then a p-group. It
follows that x and y both belong to a Sylow p-subgroup, say P̂ , of G. We deduce
that s = [x, y] ∈ P̂ ′, which implies that s Z(G) ∈ P ′, where P ∈ Sylp(S) is the
image of P̂ under the natural projection SLϵ

→ PSLϵ .
We will show that s Z(G) does not belong to Z(P), which is enough to conclude

that P/Z(P) is not abelian.
Let G̃ := GLϵ(n, q). We have

CG̃(s) =

{
GLϵ(3, q) × GLϵ(n − 3, q) if p = 3,

GLϵ(1, q) × GLϵ(2, q) × GLϵ(n − 3, q) if p > 3.

It is easy to see that |S : CS(s Z(G))| = |G : CG(s)| = |G̃ : CG̃(s)|. Hence,

|S : CS(s Z(G))| =

{
|GLϵ(n,q)|

|GLϵ(3,q)||GLϵ(n−3,q)|
if p = 3,

|GLϵ(n,q)|

|GLϵ(1,q)||GLϵ(2,q)||GLϵ(n−3,q)|
if p > 3.

It follows that, if ℓ is the defining characteristic of S, then

|S : CS(s Z(G))|ℓ′ =

{
(qn

−ϵn)(qn−1
−ϵn−1)(qn−2

−ϵn−2)

(q−ϵ)(q2−1)(q3−ϵ3)
if p = 3,

(qn
−ϵn)(qn−1

−ϵn−1)(qn−2
−ϵn−2)

(q−ϵ)2(q2−1)
if p > 3.

Using the condition p | gcd(n, q − ϵ) and the assumption (n, p) ̸= (6, 3), we see
that this is divisible by p. It follows that s Z(G) does not belong to Z(P), and this
finishes the proof. □

Lemma 5.11. Let S = PSLϵ(n, q) with n ≥ 4. If 3 divides q − ϵ, then d3(S) ≤
1
3 .

In particular, if 3 divides q − ϵ and 3 ∈ π , then dπ (S) ≤
1
3 .

Proof. Assume, to the contrary, that d3(S) > 1
3 . Then d3(P) > 1

3 , and thus
|P ′

| ≤ 3 by Theorem 2.4. The proof of Theorem 5.10 shows that P ′ contains
two elements s Z(G) and t Z(G), where s = diag(λ−1, λ2, λ−1, In−3) and t =

diag(1, λ−1, λ2, λ−1, In−4). Obviously these elements generate a group of order
greater than 3, a contradiction. □
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Lemma 5.12. Let S = PSLϵ(3, q) and π a set of odd primes with 3 ∈ π . Then
dπ (S) ≤

1
3 .

Proof. If 3 does not divide q − ϵ, then the result follows by Theorem 5.6. We
therefore assume that 3 divides q − ϵ. In particular, 3 divides q2

+ ϵq + 1. Denote
t := (q − ϵ)3/3. We have

|S|3 =
((q − ϵ)2(q + ϵ)(q2

+ ϵq + 1))3

3
≥ (q − ϵ)2

3 = 9t2.

On the other hand, counting the number of conjugacy classes of 3-elements
in PSLϵ(3, q) (see for example [Simpson and Frame 1973]) we have k3(S) =

(t2
+ t + 2)/2 ≤ 2t2. Therefore,

dπ (S) ≤ d3(S) =
k3(S)

|S|3
≤

2t2

9t2 <
1
3
,

as wanted. □

Proposition 5.13. Theorem 4.9 holds for S = PSLϵ(n, q) with n ≥ 3 and π = {p, s}
with p < s be odd primes such that q is not divisible by neither p nor s.

Proof. The result follows by Theorem 5.6 in the case gcd(n, q −ϵ)π = 1. So assume
that gcd(n, q − ϵ)π > 1, so that there exists r ∈ π such that r divides gcd(n, q − ϵ).
The case n = 3 is then done by Lemma 5.12. So we assume furthermore that n ≥ 4.

Let R ∈ Sylr (S). We have that R/Z(R) is abelian by hypothesis. This and the
condition r divides gcd(n, q − ϵ) contradict Theorem 5.10 if r ≥ 5. The remaining
case r = 3 is handled by Lemma 5.11. □

We have completed the proof of Theorem 4.9, by combining Theorems 5.2, 5.3,
5.4, 5.7 and Propositions 5.8 and 5.13.

As mentioned before, Theorem 1.1 follows from Theorems 4.9 and 4.10 together
with Theorem 3.4.

6. Examples and further discussion

In this section, we present examples showing that the converses of both statements
of Theorem 1.1 are false and the bounds are generically sharp.

Consider the converse of the first part of Theorem 1.1. Assume first that 2 ∈ π

and 3 ̸∈ π . If G is the direct product of 64 and an abelian group, then dπ (G) =
1
6 .

Now, let π have size at least 2 and p > 2. Let P be a finite p-group with |P ′
| = p.

Let C be the cyclic group which is the direct product of the groups Cq where q
runs over all primes in π except for p. Let T be the elementary abelian 2-group of



202 NGUYEN N. HUNG, ATTILA MARÓTI AND JUAN MARTÍNEZ

rank |π | − 1. Let G = P × (C : T ) where C : T =
∏

p ̸=q∈π (Cq : C2). In this case

dπ (G) ≤

(
p2

+ p − 1
p3

)( ∏
p ̸=q∈π

q + 1
2q

)
≤

(
p2

+ p − 1
p3

)
·

(
p + 1
2p

)|π |−1

≤

(
p2

+ p − 1
p3

)
·

(
p + 1
2p

)
.

Since p ≥ 3, this is less than 5
6p , so the converse of the first statement is false.

Consider the converse of the second statement. Assume first that 2 ∈ π and
3 ̸∈ π . If G is the direct product of A4 and an abelian group, then dπ (G) =

1
6 . Now,

let p ̸= 2 and let |π | ≥ 3. Let C =
∏

q∈π Cq . Let T = C p−1 × (C2)
|π |−1 and set

G = C : T . Then

dπ (G) =
2
p

·

∏
p ̸=q∈π

q + 1
2q

.

Since |π | ≥ 3, q ≥ p + 2 and all primes q in π are odd, we get

dπ (G) ≤

(
2
p

)
·

(
(p + 2) + 1

2(p + 2)

)
·

(
(p + 4) + 1

2(p + 4)

)
≤

24
35p

.

Thus the converse of the second statement of Theorem 1.1 is also false.
The inequality dπ (G)>(p2

+p−1)/p3 in the second statement of Theorem 1.1 is
sharp for every set of primes π . Take G to be the direct product of a finite nonabelian
p-group P such that P/Z(P) is isomorphic to C p×C p with an abelian group. In this
case dπ (G) = (p2

+ p −1)/p3 and G does not contain an abelian Hall π -subgroup.
Let us consider now the inequality dπ (G) > 1/p of the first part. This condition

is best possible when p = 2 and 3 ∈ π , for if G is a direct product of 63 and an
abelian group, then dπ (G) =

1
2 and G does not contain a nilpotent Hall π -subgroup.

However the bound is certainly not best possible when p is odd. In fact, following
our proofs closely, it can be seen that in such case, the group G still possesses a
nilpotent Hall π -subgroup even when dπ (G) = 1/p.

Now let p be odd. We will show that in certain cases the inequality dπ (G)>1/2p
does not imply that G has a nilpotent Hall π-subgroup. To see this let π = {p, q}

where q = 2p + 1; that is, p is a Sophie Germain prime. Let G be the direct
product of Cq : C p and an abelian group. Elementary character theory gives
kπ (Cq : C p) = p + (q − 1)/p. Thus

dπ (G) = dπ (Cq : C p) =
1

2p + 1

(
1 +

2
p

)
,

which is strictly larger than 1/2p.
The last example naturally raises the following question: for π a set of odd primes,

what is the exact (lower) bound for dπ (G) to ensure the existence of a nilpotent
Hall π -subgroup in G? This seems nontrivial to us at the time of this writing.
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Let G be a finite group and let p be the smallest prime dividing |G|. If n(p)

denotes the smallest prime larger than p and

Pr(G) >
n(p) + p2

− 1
p2n(p)

=: f (p),

then |G ′
| ≤ p and thus G is nilpotent by Theorem 2.6 and Lemma 2.3. Note that

f (p) ≤ 1/p and equality occurs if and only if p = 2.
Now let π be a set of primes and p be the smallest member in π . It is perhaps

true that if dπ (G) > f (p) then G possesses a nilpotent Hall π-subgroup, but this
would require significant more effort, especially on the part of simple groups of Lie
type in characteristic not belong to π . We have decided to work with the bound
1/p instead in order to make our arguments flowing smoothly. We certainly do not
claim that f (p) is the (conjectural) best possible bound for dπ (G) to ensure the
existence of a nilpotent Hall π -subgroup in G, and thus the question we just raised
above remains open.
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THE CLASSIFICATION OF NONDEGENERATE
UNICONNECTED CYCLE SETS
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Dedicated to B. V. M.

It is known that the set-theoretic solutions to the Yang–Baxter equation
studied by Etingof et al. (1999) are equivalent to a class of sets with a binary
operation, called nondegenerate cycle sets. There is a covering theory for cy-
cle sets which associates a universal covering to any indecomposable cycle set.
The cycle sets arising as universal covers are said to be uniconnected. In this
paper, the category of nondegenerate uniconnected cycle sets is determined,
and it is proved that up to isomorphism, a nondegenerate uniconnected
cycle set is given by a brace A with a transitive cycle base (an adjoint orbit
which generates the additive group of A). The theorem is applied to braces
with cyclic additive or adjoint group, where a more explicit classification is
obtained.

Introduction

Set-theoretic solutions to the Yang–Baxter equation [2; 30] are self-maps S W
X �X !X �X which satisfy the equation

.S � 1X /.1X �S/.S � 1X /D .1X �S/.S � 1X /.1X �S/

in X �X �X . A solution S.x; y/ D .xy; xy/ is said to be nondegenerate if the
maps y 7! xy and y 7! yx are bijective for all x 2 X . Suggested by Drinfeld
[10], set-theoretic solutions were found on the symplectic leaves of a Poisson Lie
group [29] and in connection with semigroups of I -type [14; 28]. A systematic
study of nondegenerate involutive (S2D 1X�X ) solutions was first given by Etingof,
Schedler, and Soloviev [11]. By [18, Propositions 1 and 2], nondegenerate involutive
solutions on X are equivalent to nondegenerate cycle sets .X I � /, that is, sets with
a binary operation such that the maps �.x/ W X ! X with �.x/.y/ WD x � y and
x 7! x � x are bijective, and the equation

.x �y/ � .x � z/D .y � x/ � .y � z/
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holds in X . The correspondence is given as follows. For a nondegenerate involutive
solution S onX , the inverse maps y 7!x �y of y 7!yx makeX into a nondegenerate
cycle set, and every nondegenerate cycle set X gives rise to a nondegenerate
involutive solution S.x; y/D .xy �y; xy/. If X is finite, the bijectivity of x 7! x �x

is redundant.
For any cycle set X , the �.x/ generate a permutation group G.X/D .G.X/I ı/

on X . If X is nondegenerate, G.X/ admits a unique cycle set structure such that

� WX !G.X/

is a morphism of cycle sets. In other words, a nondegenerate involutive solution S
on X lifts to a solution on G.X/. The cycle set structure on G.X/ gives rise to a
left action of G.X/ on the underlying set: .a ı b/ � c D a � .b � c/, and the operation

aC b WD .a � b/ ı a

is commutative. Such a structure .GI ı;C; � / is called a brace [19]. For any
brace A, the underlying cycle set is nondegenerate, and .AIC/ is an abelian group.
The group Aı WD .AI ı/ is called the adjoint group of A. Its action on A makes A
into a left Aı-module. Every abelian group A can be regarded as a trivial brace
with a ı b D aC b and a � b D b for all a; b 2 A. For a trivial brace A, we write
A� for the set of its generators as a group.

While cycle sets give rise to solutions to the Yang–Baxter equation, braces form
an efficient tool for the study of cycle sets. Besides this, braces arise in affine
geometry [3; 4; 5], the theory of solvable groups [6; 7; 23], Hopf–Galois structures
[1; 8; 13; 15], and other topics [21].

For a nondegenerate cycle set X , let A.X/ denote the associated brace with
adjoint group G.X/. Any surjective morphism f WX� Y of nondegenerate cycle
sets lifts along the morphism � WX!A.X/ to a brace morphism A.f / WA.X/�
A.Y /. If X is indecomposable [12], that is, G.X/ acts transitively on X , then Y is
indecomposable. If, in addition, A.f / is invertible, the morphism f is said to be
a covering [24]. A strategy to classify indecomposable cycle sets was outlined in
the latter reference: any indecomposable cycle set X admits a universal covering
zp W zX� X so that no noninvertible covering of zX is possible. The cycle set zX
is indecomposable in a strong sense: the permutation group G. zX/ acts freely and
transitively on zX . If zp W zX�X is invertible, X is said to be uniconnected. The
descent from zX to a cycle set X is given by the fundamental group �1.X/ of X
and is described in [24, Theorem 3.3 and Theorem 4.3].

So the complete classification of indecomposable cycle sets hinges decisively on
the determination of the uniconnected cycle sets. By the choice of a base point, the
free transitive action of the permutation group allows to identify a uniconnected
cycle set X with G.X/. If X is nondegenerate, the cycle set structure of X can
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be determined explicitly in terms of the brace A.X/. For cycle sets X with cyclic
permutation group G.X/, this has been applied in [26, Theorem 1], but ignoring
the dependence of a base point, it was falsely assumed that the isomorphism class
of X is determined by the brace A.X/. The fact that the base point matters was
observed recently by Jedlička et al. [17], who give a classification of uniconnected
cycle sets with a finite cyclic permutation group. Note that these cycle sets are
nondegenerate [18].

In this paper, we determine the category of all nondegenerate uniconnected cycle
sets (Theorem 2). Its objects are braces A with a distinguished element e 2 A such
that the adjoint orbit X of e generates the additive group of A. Such a subcycle set
X is said to be a transitive cycle base [24] of A. Morphisms can be viewed as affine
extensions of brace morphisms with a translational part in the adjoint group. As a
corollary, it follows that a complete set of invariants of a nondegenerate uniconnected
cycle set X consists in the brace A.X/ together with the transitive cycle base �.X/.
Conversely, every brace A with a transitive cycle base corresponds to a unique
nondegenerate uniconnected cycle set X , up to isomorphism. If the permutation
group G.X/ is cyclic, the result of [17] is obtained in a more conceptional form: the
isomorphism classes of nondegenerate uniconnected cycle sets X with A.X/D A
correspond bijectively to the set .A=.Soc.A/CA2//� of generators of the trivial
brace A=.Soc.A/CA2/ (Theorem 17). For finite A, the ideals A2 and Soc.A/—
the socle [19] — are complementary in the sense that jAj D jA2j � jSoc.A/j.

For general braces A, a certain duality between A2 and Soc.A/ remains true: A2

is the smallest ideal I such that A=I is a trivial brace, and Soc.A/ is the largest
ideal I such that the adjoint group I ı acts trivially on A.

The correspondence between nondegenerate uniconnected cycle sets and braces
with a transitive cycle base leads us to the question of which braces A have a
nonempty set T .A/ of transitive cycle bases. As a necessary condition, we show that
the group A=A2 is cyclic if T .A/¤¿ (Proposition 7). For abelian braces A (i.e.,
with an abelian adjoint group Aı) with T .A/¤¿, we prove that T .A/D .A=A2/�

(Proposition 12). Abelian braces A are equivalent to commutative radical rings,
with a ı b D abCaC b. If A is nilpotent, the necessary condition of Proposition 7
for T .A/¤¿ is sufficient (Corollary 13).

It is well known that a nontrivial brace A with Aı cyclic must be finite. As
a commutative radical ring, A is a direct product of its primary components Ap.
For odd primes p, the brace Ap is cyclic, which means that its additive group is
cyclic, and A2 is cyclic unless .A2IC/ is the Klein four-group. Thus, with a trivial
exception, braces A with Aı cyclic are contained in the class of cyclic braces, which
have been classified in [22]. By [20, Section 7], there are six infinite classes of
exceptional cyclic braces of order 2n, and all these braces are determined by their
adjoint group. We refine this result by showing that up to brace automorphisms,
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these braces A admit a unique transitive cycle base, hence a unique nondegenerate
uniconnected cycle set associated with A (Theorem 19).

1. Uniconnected cycle sets

Recall [23] that an affine structure on a group .AI ı/ is given by a binary operation
.AI � / satisfying the equations

.a ı b/ � c D a � .b � c/;(1)

.a � b/ ı aD .b � a/ ı b:(2)

By [23, Theorem 2.1], a group with an affine structure is equivalent to a brace [19],
that is,

(3) aC b WD .a � b/ ı a

defines an abelian group structure on A with the same unit element as .A; ı/.
Equivalently (see [15]), a brace can be described as an abelian group .AIC/ with a
second group structure .A; ı/ such that

(4) .aC b/ ı cC c D a ı cC b ı c

holds for a; b; c2A. Equation (4) shows that aCbDcCd implies that aıeCbıeD
c ı eC d ı e. Thus each b 2 A defines an affine map a 7! a ı b on .AIC/. The
group Aı WD .AI ı/ is said to be the adjoint group of the brace A. For example, any
radical ring [16] is a brace with aıb WD abCaCb, which explains the terminology.
Accordingly, we write 0 for the common unit element of .AIC/ and Aı, and a0 for
the inverse of a in Aı.

The adjoint group acts on .AIC/ via b 7! a � b which makes A into a left
Aı-module:

(5) a � .bC c/D .a � b/C .a � c/:

If a 7! ab denotes the inverse of a 7! b � a, then (3) can be rewritten as

(6) a ı b D abC b:

The right action a 7! ab makes A into a right Aı-module:

abıc D .ab/c ; .aC b/c D ac C bc :

Equation (6) shows that a 7! ab is the linear part of the affine map a 7! a ı b, with
translational part a 7! aCb. Recall that a set .X I � / with a binary operation is said
to be a cycle set [18] if the left multiplications �.x/ WX!X with �.x/.y/ WD x �y
are bijective and the equation

(7) .x �y/ � .x � z/D .y � x/ � .y � z/
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holds in X . A cycle set X is said to be nondegenerate [18] if the square map
x 7! x � x is bijective. Every finite cycle set is nondegenerate [18, Theorem 2].
By [18, Proposition 1], nondegenerate cycle sets are equivalent to nondegenerate
involutive set-theoretic solutions to the Yang–Baxter equation [11]. By (1) and (3),
every brace A is a cycle set with

(8) .aC b/ � c D .a � b/ � .a � c/:

For b D�a, (3) gives 0D a� aD .a � .�a// ı a. Hence

a0 D a � .�a/D�.a � a/;

which shows that every brace is nondegenerate as a cycle set. Equations (6), (5),
(3), and (7) show that a brace satisfies a � .b ıc/D a � .bcCc/D .a �bc/C .a �c/D
..a � c/ � .a � bc// ı .a � c/D ..c � a/ � .c � bc// ı .a � c/. Thus

(9) a � .b ı c/D ..c � a/ � b/ ı .a � c/:

A morphism of cycle sets X; Y is a map f WX! Y with f .x �y/D f .x/ �f .y/
for all x; y 2X . A morphism of braces is a group homomorphism for the additive
and adjoint group:

f .aC b/D f .a/Cf .b/; f .a ı b/D f .a/ ıf .b/:

By (3), this implies that f is a morphism of cycle sets. The category of braces will
be denoted by Bra.

For a cycle set X , the group G.X/ generated by all �.x/; x 2X , is called the
permutation group of X . So there is a natural map � WX !G.X/, and G.X/ acts
from the left on X . If this action is transitive, X is said to be indecomposable. For
a nondegenerate cycle set X , the permutation group G.X/ is the adjoint group of a
brace A.X/ such that

(10) � WX ! A.X/

is a morphism of cycle sets; see [19, Section 1]. Equations (1) and (9) show that
the brace A.X/ is uniquely determined by these properties. The image �X is of the
map (10) together with the cycle set morphism X� �X is called the retraction
of X .

By [24, Section 2], every surjective morphism f WX� Y of cycle sets extends
to a unique group homomorphism G.f / so that the diagram

X
f

// //

�
��

Y

�
��

G.X/
G.f /

// // G.Y /
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commutes. If X is indecomposable, then Y D f .X/ is indecomposable, too. If X
is indecomposable and G.f / invertible, f is said to be a covering [24]. Then f is
equivariant under the action ofG.X/. By [24, Corollary 3.7], every indecomposable
cycle set X has a universal covering zp W zX� X so that every covering of zX is
invertible. If zp is invertible, X is said to be uniconnected, in analogy to simply
connected spaces in topology. By [24, Corollary 3.9], X is uniconnected if and
only if G.X/ acts freely and transitively on X . With the choice of a base point
e 2X , the group G.X/ can then be identified with X .

Recall that a subset X of a brace A is said to be a cycle base [19] if X is
invariant under the action of Aı and X generates the additive group of A. If Aı

acts transitively on X , then X is said to be a transitive cycle base [24]. By T .A/

we denote the set of transitive cycle bases of A. Equation (6) shows that a cycle
base X of A also generates the adjoint group Aı.

The following characterization was proved in [27]:

Theorem 1. Let A be a brace with a transitive cycle base X and e 2X . Then

(11) aˇ b WD b ı .ea/0

makes A into a nondegenerate uniconnected cycle set. Every nondegenerate unicon-
nected cycle set arises in this way.

Remark. Theorem 1 is proved, but not correctly stated, in [27] where the condition
e 2X 2 T .A/ is replaced by the stronger assumption that e generates A. By [25,
Theorem 3], both conditions are equivalent if the multipermutation level of X is
finite. In general, this is not true even if X is finite; see [25, Example 2].

Equation (11) shows that eaˇb D ebı.e
a/0 D ea � eb . So the map

(12) exp W .AIˇ/�X

with exp.a/ WD ea is a cycle set morphism onto X D eA WD fea j a 2 Ag. For a; b
in .AIˇ/, we have �.a/D �.b/() ea D eb . Thus, up to isomorphism, (12) is
the retraction of .AIˇ/. Moreover, Equation (11) shows that Aı is isomorphic to
the permutation group of .AIˇ/. Hence AŠ A.AIˇ/.

2. Coaffine brace morphisms

In this section, we determine the category of nondegenerate uniconnected cycle
sets by means of Theorem 1. To this end, we need a weak type of brace morphism.

Definition. We define a coaffine mapA!B between braces to be a pair .b; f /with
a brace morphism f WA!B and a constant b 2B such that .b; f /.a/ WD b ıf .a/
for all a 2 A. We write Hom].A;B/ for the set of coaffine maps f W A! B .
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The composition of coaffine maps is given by

(13) .c; g/.b; f /D .c ıg.b/; gf /:

It is easily checked that the composition is associative with .0; 1A/ W A! A as unit
morphisms. So Bra is a subcategory of the category Bra] of braces with coaffine
maps as morphisms. A morphism .b; f / in Bra] is invertible if and only if f is
bijective. Then

.b; f /�1 D .f �1.b/0; f �1/:

Every coaffine map .b; f / W A! B has a translational part b D .b; f /.0/, so that

.b; f /D .b; 1B/.0; f /:

The translations .b; 1B/ are left translations of the adjoint group Bı. Therefore,
we speak of “coaffine” rather than “affine” maps. The invertible coaffine maps
A!A form a group Aut].A/ with the brace automorphisms as a subgroup Aut[.A/.
The translations in Aut].A/ form a normal subgroup isomorphic to Aı. Since
Aı\Aut[.A/D f.0; 1A/g, we have a semidirect product

Aut].A/D Aı ÌAut[.A/:

Let Bra] be the category of braces with morphisms Œb; f � W A! B given by a
brace morphism f W A! B and an element b 2 B such that

Œb; f �.a/ WD b �f .a/:

Note that in contrast to Bra], the morphisms in Bra] are additive maps. The
composition is given by Œc; g�Œb; f �.a/ D c � g.b � f .a//D c � .g.b/ � gf .a//. By
(1), this gives

Œc; g�Œb; f �D Œc ıg.b/; gf �;

similarly to (13). We write Hom].A;B/ for the morphisms A!B in Bra]. So the
maps .b; f / 7! Œb; f � provide surjections Hom].A;B/� Hom].A;B/ which are
compatible with compositions.

Theorem 1 shows that every nondegenerate uniconnected cycle set can be repre-
sented by a brace A together with an element e 2X 2 T .A/. In what follows, we
write .AI e/ for the uniconnected cycle set .AIˇ/ of Theorem 1. By (11),

e D .0ˇ 0/0:

Theorem 2. Let .AI e/ and .BIu/ be nondegenerate uniconnected cycle sets. The
cycle set morphisms .AI e/! .BIu/ coincide with the coaffine morphisms .c; f / W
A! B with uD Œc; f �.e/.
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Proof. Assume first that .c; f / WA!B is a coaffine morphism with uD Œc; f �.e/D
c � f .e/. For a; b 2 A, we have .c; f /.aˇ b/ D c ı f .b ı .ea/0/ D c ı f .b/ ı

.f .e/f .a//0D cıf .b/ı
�
.c �f .e//cıf .a/

�0
D .c; f /.b/ı.u.c;f /.a//0D .c; f /.a/ˇ

.c; f /.b/. Thus .f; c/ is a morphism .AI e/! .BIu/.
Conversely, let g W .AI e/! .BIu/ be a cycle set morphism. Then g.bı.ea/0/D

g.aˇ b/D g.a/ˇg.b/D g.b/ ı .ug.a//0 for all a; b 2 A. Replacing b by b ı ea

gives g.b/D g.b ı ea/ ı .ug.a//0. So we have

g.b ı ea/D g.b/ ıug.a/;(14)

g.b ı .ea/0/D g.b/ ı .ug.a//0:(15)

Recursively, we define aın by aı1 WD a and aı.nC1/ D aın ı a. By induction,
(14)–(15) give

g.b ı .ea/ın/D g.b/ ı .ug.a//ın

for all n 2 Z, and a further induction yields

(16) g.b ı .ea1/ın1 ı � � � ı .ear /ınr /D g.b/ ı .ug.a1//ın1 ı � � � ı .ug.ar //ınr :

Since eA is a cycle base of A, each element a 2 A is of the form

aD .ea1/ın1 ı � � � ı .ear /ınr

for some a1; : : : ; ar 2 A and n1; : : : ; nr 2 Z. For b D 0, (16) turns into g.a/ D
g.0/ ı .ug.a1//ın1 ı � � � ı .ug.ar //ınr . Hence

(17) g.b ı a/D g.b/ ıg.0/0 ıg.a/

holds for all a; b 2 A. So the map f W A! B with f .a/ WD g.0/0 ıg.a/ satisfies

f .a ı b/D f .a/ ıf .b/:

Now we show that f is a brace morphism. For b D a0, (17) gives g.0/ D
g.a0/ ıg.0/0 ıg.a/. Hence

(18) g.a0/D g.0/ ıg.a/0 ıg.0/:

With b D 0, (14) gives g.ea/D g.0/ ıug.a/. Hence

(19) f .ea/D ug.a/:
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Thus (3), (19), (17), and (18) yield

f .aC eb/D f ..a � eb/ ı a/D f .ebıa
0

ı a/

D f .ebıa
0

/ ıf .a/D ug.bıa
0/
ıf .a/D ug.b/ıg.0/

0ıg.a0/
ıf .a/

D ug.b/ıg.a/
0ıg.0/

ıf .a/D ..g.0/0 ıg.a// �ug.b// ıf .a/

D .f .a/ �ug.b// ıf .a/D f .a/Cug.b/ D f .a/Cf .eb/:

Since eA is a cycle base of A, we obtain f .aC b/D f .a/Cf .b/ for all a; b 2 A,
by induction. Hence f is a brace morphism, and g D .g.0/; f /. For aD 0, (19)
gives f .e/D ug.0/. Thus uD g.0/ �f .e/D Œg.0/; f �.e/. �

Corollary 3. Let A be a brace with e; u 2X 2 T .A/. Then .AI e/Š .AIu/.

Proof. There is an element b 2 A with b � e D u. Hence Œb; 1A�.e/D u, and thus
.AI e/Š .AIu/. �

Now let Uni be the category of braces A with a distinguished transitive cycle base
X 2 T .A/. We write .AIX/ for the objects of Uni. Morphisms .AIX/! .BIY /

are brace morphisms f WA!B with f .X/� Y . Recall that a functor F is said to
be conservative if it reflects isomorphisms: if F.g/ is an isomorphism, then g is an
isomorphism. We define a factor category of a category C to be a category D with
a full conservative functor F W C ! D such that each object of D is isomorphic to
an object F.C/. So the existence of such a functor implies that up to isomorphism,
C and D have the same objects.

Corollary 4. The object map .AI e/ 7! .AI eA/ makes Uni into a factor category of
the category of nondegenerate uniconnected cycle sets.

Proof. Every morphism .AI e/! .BIu/ is given by a coaffine morphism .c; f / W

A! B with u D c � f .e/. Hence f W .AI eA/! .BIuB/ is a morphism in Uni.
Conversely, let f W .AI eA/! .BIuB/ be a morphism in Uni. Then f .e/D c �u
for some c 2 B . Hence .c; f / is a morphism .AI e/! .BIu/ which is mapped to
f W .AI eA/! .BIuB/. If f is invertible, .c; f / is invertible, too. �

This implies two characterizations of nondegenerate uniconnected cycle sets:

Corollary 5. Let A be a brace. The automorphism group Aut[.A/ acts on the set
T .A/ of transitive cycle bases, and there is a bijection between the isomorphism
classes of nondegenerate uniconnected cycle sets X with A.X/Š A, and the set
xT .A/ of Aut[.A/-orbits of T .A/.

Corollary 6. Two nondegenerate uniconnected cycle sets X and Y are isomorphic
if and only if there is a brace isomorphism f W A.X/ ��! A.Y / which maps the
retraction �X onto �Y .
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To analyse T .A/ for a brace A, we have to recall the concept of brace ideal. To
stress the analogy to ring theory, consider the operation ab WD ab � a in A, which
satisfies

a ı b D abC aC b

for all a; b 2 A. An additive subgroup I of a brace A is said to be an ideal [19] if
ab 2 I and ba 2 I whenever a 2 I and b 2A. If only ab 2 I is required, I is said
to be a right ideal of A. The residue classes I C b D faC b j a 2 I g of an ideal
form a brace A=I with the induced operations in analogy with ring-theoretic ideals.
In particular, b 7! I C b is a brace morphism A� A=I . For example, the socle
[19] of any brace A is an ideal

Soc.A/ WD fa 2 A j 8b 2 A W a � b D bg;

such that A� A=Soc.A/ is the retraction of A as a cycle set. Furthermore,
the finite sums a1b1 C � � � C anbn with ai ; bi 2 A form an ideal A2 of A. The
brace A=A2 is trivial in the sense that all products ab are zero, or equivalently,
a ı b D aC b for all a; b 2 A=A2. For an abelian group A and its corresponding
trivial brace, we write A� for the set of its generators. Thus A� is empty if the
group .AIC/D Aı is not cyclic.

Proposition 7. Let A be a brace with a transitive cycle base. Then A=A2 is a cyclic
group.

Proof. Two elements x; y of a transitive cycle base satisfy x D ya for some a 2 A.
Hence x�y D ya �y D ya 2 A2. Thus A� A=A2 maps a transitive cycle base
X to a single element g 2 A=A2. Since X generates the additive group of A, the
element g generates A=A2. �
Proposition 8. Let f W A� B be a surjective morphism of braces. Any transitive
cycle base X of A is mapped to a transitive cycle base f .X/ 2 T .B/.

Proof. Since X generates the additive group of A, the image f .X/ generates
.BIC/. For any pair x; y 2 X , there is an element a 2 A with y D a � x. Hence
f .a/ �f .x/D f .a � x/D f .y/, which shows that f .X/ 2 T .B/. �

3. Abelian braces

Recall that a braceA is said to be abelian [20] if its adjoint groupAı is commutative.
Such braces are radical rings, so that no ambiguity with respect to the powers An is
possible; see [19, Section 3]. For a finite brace A, the additive group is the direct
sum of its primary components Ap WD fa 2 A j 9n 2N W pnaD 0g, which are right
ideals of A. In what follows, we study the set xT .A/ of Aut[.A/-orbits of T .A/.
By Corollary 5, the elements of xT .A/ correspond to the isomorphism classes of
nondegenerate uniconnected cycle sets X with A.X/Š A.
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Proposition 9. Let A be a finite abelian brace. Then T .A/ Š
Q
p T .Ap/ and

xT .A/Š
Q
p T .Ap/.

Proof. By [20, Proposition 3], the braceA is a product of its primary componentsAp .
Thus, Proposition 8 implies that the projection Xp of a cycle base X 2 T .A/ into
Ap is a transitive cycle base, and X D

Q
p Xp . Conversely, let .Xp/ be a collection

of cycle bases Xp 2 T .Ap/ for each prime p. Then X WD
Q
p Xp is a transitive

cycle base of A. Hence T .A/Š
Q
p T .Ap/. The second statement follows since

Aut[.A/Š
Q
p Aut[.Ap/. �

By Proposition 9, the classification of finite uniconnected cycle sets X with
G.X/ abelian reduces to the case that G.X/ is a finite p-group. Since any transitive
action of an abelian group on a set is free, we have the following:

Proposition 10. Every indecomposable cycle set with an abelian permutation group
is uniconnected.

The following example shows that uniconnected cycle sets with an abelian
permutation group need not be nondegenerate.

Example 11. Let C .X/ be the ring of continuous real functions on a nonempty
topological space X . With respect to the partial order f 6 g if and only if f .x/6
g.x/ for all x 2X , the additive group of C .X/ is an abelian `-group [9], that is, an
abelian group with a lattice structure satisfying .f _g/C hD .f C h/_ .gC h/.
With

f �g WD g� .f _ 0/;

C .X/ satisfies

.f �g/ � .f � h/D .g� .f _ 0// � .h� .f _ 0//

D h� .f _ 0/� ..g� .f _ 0//_ 0/

D h�
�
..g� .f _ 0//_ 0/C .f _ 0/

�
D h� .g_f _ 0/:

Thus, by symmetry, C .X/ is a cycle set. Since every continuous function is of the
form f � g with f; g > 0, the permutation group of C .X/ is the additive group
of C .X/. Its action on C .X/ is transitive. Hence C .X/ is uniconnected. However,
f �f D f � .f _ 0/6 0 shows that C .X/ is degenerate.

Proposition 12. Let A be an abelian brace with a transitive cycle base X and
e 2X . Then AD ZeC eA and T .A/D .A=A2/�. If en 2 AnC1, then en D 0.

Proof. By [20, Proposition 3], A is a commutative radical ring. SinceX 2T .A/, we
have X D eAD eCeA. Hence ADZeCeA, which yields A2D .ZeCeA/AD eA.
Thus T .A/ D .A=A2/�. Now assume that en 2 AnC1. By induction, we have
AnC1 D enA. Indeed, A2 D eA, and if AnC1 D enA holds for some n > 1, then
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AnC2D .enA/AD en.eA/D enC1A. Hence en 2 enA�AnC2D enC1A, and thus
en D enC1a for some a 2 A. So we obtain en D enea D enC2a2 D � � � D e2nan.
Hence i WD enan is idempotent. Thus i�i D i.�i/C i D�i C i D 0, which yields
i D 0. Therefore, we get en D eni D 0. �

Corollary 13. A nilpotent abelian brace admits a transitive cycle base if and only
if A=A2 is cyclic.

Proof. By Proposition 7, T ¤¿ implies that A=A2 is cyclic. Conversely, let A=A2

be cyclic. Choose e 2 A such that eCA2 generates A=A2. Then A D ZeCA2.
Hence A2 D eACA3. Assume that An � eACAnC1 holds for some n> 2. Then
AnC1 � eA2 CAnC2 � eACAnC2. By induction, this yields A2 D eA. Thus
AD ZeCeA, which shows that eCeAD fea j a 2Ag is a transitive cycle base. �

Corollary 14. Let A be an abelian brace with T .A/¤¿. Then there is an element
e 2 A such that for all n 2 N, we have AnC1 D enA and

(20) AD ZeCZe2C � � �CZenC enA:

Proof. By Proposition 12 and its proof, ADZeCeA andAnC1D enA. Assume that
(20) holds for some n> 1. Then ADZeCeADZeCZe2C� � �CZenC1CenC1A.
By induction, this proves the claim. �

Let A be an abelian brace with T .A/¤¿. For positive integers n, we define

In WD fm 2 Z jmAn � AnC1g:

This gives an increasing chain of ideals I1 � I2 � � � � in Z. So there are unique
integers rn 2 N with In D Zrn and divisibility relations

� � � j r4 j r3 j r2 j r1:

Definition. Let A be an abelian brace with T .A/¤¿. If n is the smallest integer
with rn D rnC1, we call .r1; : : : ; rn/ the characteristic sequence of A.

If e 2X 2 T .A/, Corollary 14 implies that AnC1 D enA. So the characteristic
sequence is given by

rn jm()men 2 enA:

By Proposition 12, rn D 1 implies that en D 0. Thus A is nilpotent if and only if
the last entry of the characteristic sequence is 1.

Let yA WD lim
 ��

A=An be the inverse limit of the sequence of radical rings

� � �� A=A4� A=A3� A=A2:

By Corollary 14, each element a 2 A can be developed into a power series a D
m1eCm2e

2Cm3e
3C� � � with unique coefficients mi 2 Z satisfying 06mi < ri
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for ri > 0. So there is an exact sequence

1\
nD1

An ,! A� yA:

Example 15. Let p be a prime and Zp the ring of p-adic rational numbers. Consider
the local ring Zp˚Q of pairs .a; x/ 2 Zp˚Q with .a; x/.b; y/ WD .ab; ayC bx/.
The Jacobson radical of Zp ˚Q is A WD pZp ˚Q. Hence An D pnZp ˚Q andT1
nD1A

nDQ. The cycle bases are Xr D .rpCp2Zp/˚Q with r 2 f1; : : : ; p�1g.
As there are no nonzero additive maps Q! pZp, a brace automorphism ˆ of
AD pZp˚Q is given by a matrix �

˛ 0

ˇ 


�
:

Applying ˆ to .p; 0/.0; 1/D .0; p/, we get .˛.p/; ˇ.p//.0; 
.1//D .0; 
.p//. So
˛.p/
.1/D 
.p/Dp
.1/, which gives ˛.p/Dp. Since ˛ is a ring automorphism,
this implies that ˛ D 1. So the Aı-orbits of T .A/ are trivial, which shows that
j xT .A/j D p� 1.

Example 16. The Jacobson radical of the power series ring ZŒŒe�� is A WD eZŒŒe��.
Its characteristic sequence is .0/. There are two cycle bases eC eA and �eC eA,
and e 7! �e induces a brace automorphism. Thus j xT .A/j D 1.

4. Cyclic and cocyclic braces

Recall that a brace A is said to be cyclic [20] if its additive group is cyclic. If
the adjoint group Aı is cyclic, A is said to be cocyclic [22]. Note that in contrast
to cocyclic braces, cyclic braces need not be abelian. In this section, we apply
Corollary 5 to cyclic and cocyclic braces.

Theorem 17. Let A be a cocyclic brace. There is a one-to-one correspondence
between the isomorphism classes of nondegenerate uniconnected cycle sets X with
A.X/Š A and the set .A=.Soc.A/CA2//�.

Proof. By Proposition 12, we have T .A/D .A=A2/�. Since A=A2 is cyclic, the
epimorphism A=A2� A=.A2CSoc.A// restricts to a surjection

p W .A=A2/�� .A=.Soc.A/CA2//�:

The embedding Aut[.A/ ,!Aut.Aı/D .Aı/� shows that every brace automorphism
of A is given by a map a 7! aık for some k 2 Z. By [22, Proposition 12], a 7! aık

is a brace automorphism if and only if aı.k�1/ 2 Soc.A/ for all a 2A. So we have
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a commutative diagram

Aut[.A/ �
�

// .Aı/� // //

��

.Aı=Soc.A/ı/�

��

.A=A2/�
p
// // .A=.Soc.A/CA2//�

with an exact first row. Now Aut[.A/ acts on T .A/D .A=A2/�, and the orbit of a
cycle base eCA2DA2ıe isA2ıeıSoc.A/D .A2ıe/CSoc.A/D eCA2CSoc.A/.
So the Aut[.A/-orbits of T .A/ correspond to the elements of .A=.Soc.A/CA2//�.
By Corollary 5, this completes the proof. �

Remark. Theorem 17 corrects [26, Theorem 1], and its corollary, where it is falsely
assumed that Aut[.A/ acts transitively on T .A/ for a cocyclic brace. The inaccuracy
was observed recently by Jedlička et al. [17] who gave a correct classification by
using different methods.

Example 18. Up to isomorphism, there is a single infinite cocyclic brace A, and
A is trivial; see [22, Section 3]. The brace AD hui has two transitive cycle bases,
fug and fu�1g, and there are two brace automorphisms. So the only uniconnected
cycle set X with A.X/Š A is given by aˇ b D b ıu0, that is, aˇuın D uı.n�1/.

We turn our attention to cyclic braces A. It is convenient to identify the additive
group of A with Z=nZ for some n 2N. Assume first that nD 0. Besides the trivial
infinite cyclic brace, there is a nonabelian one, given by k` WD k.�1/`; see [20,
proof of Proposition 6]. So there is a single transitive cycle base f1;�1g, which
shows that j xT .A/j D 1. The corresponding uniconnected cycle set is given by

aˇ b D .�1/a � b:

Now let A be finite. For simplicity, we restrict ourselves to the primary case:
jAj D pn for some prime p. (For a classification of all cyclic braces, see [22].)
Let d denote the order of the socle Soc.A/. Then A is said to be exceptional [20;
22] if A is nontrivial (i.e., d < pn) and either d D pn�1 ¤ 1 or A=Soc.A/ is not
cocyclic.

By [20, Theorem 3], a cyclic brace A with jAj D pn is cocyclic or exceptional.
If A is exceptional, then p D 2, and the adjoint group Aı admits a cyclic subgroup
of order 2n�1. Moreover, the isomorphism class of A is uniquely determined by
the adjoint group Aı. The following result refines this fact by showing that there is
a single isomorphism class of uniconnected cycle sets X with G.X/D Aı.

Theorem 19. LetA be an exceptional cyclic brace with jAjD 2n. Then j xT .A/jD 1.

Proof. By [20, Section 7], there are six classes of exceptional cyclic braces A with
jAj D 2n, n > 2, according to their adjoint group; see [20, Proposition 11; 22,



THE CLASSIFICATION OF NONDEGENERATE UNICONNECTED CYCLE SETS 219

Section 6]. Let Cm denote the cyclic group of orderm. The first two classes contain
abelian braces:

(1a) Aı is cyclic with jAj> 8 and Soc.A/D 2A. There are 2n�2 cycle bases with
two elements each. By [22, Proposition 1], every automorphism of .AIC/ is a
brace automorphism. Hence j xT .A/j D 1.

(1b) Aı D h�1i � h1i Š C2 � C2n�1 is abelian, not cyclic. The socle of A is
f0; 2n�1g. By [22, Proposition 1], the cycle set structure of A is given by

ab D 2abC a:

Hence there is a single cycle base f1; 3; 5; : : :g. Thus j xT .A/j D 1.
For the next three cases, the adjoint group Aı is one of the following groups:

D2m D fa; b j a2
m

D b2 D 1; bab�1 D a�1g; m> 2;

Q2m D fa; b j a2
mC1

D 1; b2 D a2
m

; bab�1 D a�1g; m> 1;

SD2m D fa; b j a2
m

D b2 D 1; bab�1 D a�1C2
m�1

g; m> 3:

These groups are the dihedral group D2m of order 2mC1 (type 2a), the generalized
quaternion group Q2m of order 2mC2 (type 2b), and the semidihedral group SD2m

of order 2mC1 (type 3a). For the groups D2m and Q2m , the brace structure is given
by aD 2 and b D 1, and

x �y D yx D

�
.�1/xy for type (2a),

.�1C 2mC1/xy for type (2b).

and Soc.A/ D hai D 2A. Hence, as in case (1a), Aut[.A/ D Aut.AIC/, which
yields j xT .A/j D 1.

(3a) Aı D SD2m . The brace structure is given by

x �y D yx D

8̂̂̂<̂
ˆ̂:

y for x � 0 (mod 4);
.�1C 2m/y for x � 1 (mod 4);
.1C 2m/y for x � 2 (mod 4);
.�1/y for x � 3 (mod 4);

with aD 2 and b D�1, and Soc.A/D 4A. The transitive cycle bases are

fk;�kC 2m; kC 2m;�kg

for k � 1 (mod 4), and the brace automorphisms are x 7! xk with k � 1 (mod 4).
Hence j xT .A/j D 1.

(3b) Here Aı is the group

M2m WD fa; b j bab�1 D a1C2
m�1

g; m> 3;
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of order 2mC1. By [20, Proposition 10], the brace structure is given by aD 1 and
b D�1, and

(21) c1 D c.3C 2m/; c�1 D�c

for c 2 AD Z=2mC1Z. We show that

(22) 2mC1 j .3C 2m/k � 1() 2m�1 j k

holds for m > 3 and k 2 N. Modulo 8, we have .3C 2m/k � 3 for odd k, and
.3C2m/k � 1 for even k. Thus, to verify (22), we can assume that kD 2`. Modulo
2mC1, the binomial formula gives .3C 2m/k � 3k � 9`. By [20, Lemma 4], we
have

2m�2 j 1
8
..1C 8/`� 1/() 2m�2 j `:

Hence 2mC1 j .3C2m/k�1() 2m�2 j 1
8
..1C8/`�1/() 2m�2 j `() 2m�1 j k.

This proves (22). Thus 3C 2m is of order 2m�1 in the ring A D Z=2mC1Z, and
.3C 2m/k � 1 or � 3 (mod 8) for all k. By (21), it follows that there is a single
cycle base A n 2A of A. Whence j xT .A/j D 1. �
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