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We equip the basic local crossing bimodules in Ozsváth–Szabó’s theory
of bordered knot Floer homology with the structure of 1-morphisms of 2-
representations, categorifying the Uq(gl(1|1)+)-intertwining property of the
corresponding maps between ordinary representations. Besides yielding a
new connection between bordered knot Floer homology and higher repre-
sentation theory in line with work of Rouquier and Manion, this structure
gives an algebraic reformulation of a “compatibility between summands”
property for Ozsváth and Szabó’s bimodules that is important when building
their theory up from local crossings to more global tangles and knots.
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1. Introduction

Ozsváth and Szabó’s theory [2018; 2019a; 2019b; 2020] of bordered knot Floer
homology, or bordered HFK, has proven to be highly efficient for computations
(see [Ozsváth and Szabó 2023] for a fast computer program based on the theory).
It works by assigning certain dg algebras to sets of n tangle endpoints (oriented up
or down) and certain A∞ bimodules to tangles; one recovers HFK for closed knots
by taking appropriate tensor products of these bimodules.

Manion [2019] showed that the dg algebras of bordered HFK categorify repre-
sentations of the quantum supergroup Uq(gl(1|1)) and that the tangle bimodules
categorify intertwining maps between these representations. While Manion [2019]
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did not consider a categorified action of the quantum group on the bordered HFK
algebras, such an action (for Khovanov’s categorification U [2014] of the positive
half Uq(gl(1|1)+) = C(q)[E]/(E2)) was defined in [Lauda and Manion 2021],
compatibly (via [Lekili and Polishchuk 2020; Manion et al. 2020]) with a more
general family of higher actions defined in [Manion and Rouquier 2020].

Since Ozsváth and Szabó’s tangle bimodules categorify intertwining maps
between representations, it is natural to ask whether the bimodules themselves
intertwine the higher actions of U on the bordered HFK algebras. Since a higher
action of U on a dg algebra A amounts to a dg bimodule E over A together with some
extra data, one (roughly) asks whether tangle bimodules X satisfy X ⊗AE ∼= E⊗A X .
A structured way to require such commutativity is to equip X with the data of a
1-morphism between 2-representations of U .

The main result of this paper is that one can naturally equip Ozsváth and Szabó’s
local crossing bimodules with this 1-morphism structure.

Theorem 1.1. Ozsváth and Szabó’s local bimodules P and N , for a positive and
negative crossing between two strands, can be equipped with the structure of 1-
morphisms of 2-representations over U , encoding the commutativity of P and N
with the 2-action bimodule E .

In fact, the algebra over which P and N are defined has two natural 2-actions
of U , and we prove Theorem 1.1 for both 2-actions. Below we comment a bit more
on the motivation and potential applications for Theorem 1.1, as well as future
directions for study.

Remark 1.2. Theorem 1.1 is an algebraic expression of an important “compat-
ibility between summands” property of the bordered HFK bimodules. Indeed,
like the general strands algebras A(Z) of bordered Heegaard Floer homology,
Ozsváth–Szabó’s bordered HFK algebras have a direct sum decomposition indexed
by Z (in Heegaard diagram terms this index describes occupancy number, while
representation-theoretically it encodes a gl(1|1) weight space decomposition). The
A∞ bimodules for tangles respect this decomposition, and there is a certain com-
patibility between the bimodule summands for different k. In [Ozsváth and Szabó
2018], this compatibility is encoded in a graph from which one can define all
summands of the bimodules. Because of how the 2-action bimodules E interact
with the index of the direct sum decomposition, Theorem 1.1 is a more algebraic
way to formulate this compatibility.

In [Ozsváth and Szabó 2018], this compatibility is the key ingredient in the
“global extension” of the two-strand crossing bimodules to bimodules, over larger
algebras, for n strands with one crossing between two adjacent strands (this extension
is necessary when using the theory of Ozsváth and Szabó [2018] to compute HFK
for knots). The global extension is one of the most technical parts of [Ozsváth and
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Szabó 2018]; the main hoped-for application of the results of this paper is a more
algebraic treatment of the global extension, based on higher representation theory.

Remark 1.3. The 1-morphism structure of Theorem 1.1 can be interpreted as an
instance of an extra layer of the connection between higher representation theory
and cornered Heegaard Floer homology, beyond what was explored in [Manion
and Rouquier 2020]. This extra layer involves 3-manifolds, not just 1- and 2-
manifolds, and begins to relate to the parts of cornered Heegaard Floer homology
that use holomorphic disk counts and domains in Heegaard diagrams with corners.
Generalizing from Theorem 1.1, there should be a general family of Heegaard
diagrams (with the diagrams underlying the bordered HFK bimodules as special
cases) whose bimodules can be upgraded to 1-morphisms of 2-representations, and
the data needed for this upgrade should come from counting holomorphic disks
whose domains have positive multiplicities at the corners of the Heegaard diagram.

Remark 1.4. This paper is focused on the local two-strand aspects of bordered
HFK, since these are the elementary building blocks to which one wants to apply a
global extension procedure to obtain n-strand tangle invariants. One could also ask
whether the globally extended n-strand tangle bimodules of bordered HFK give
1-morphisms of 2-representations of U ; we expect this to be true. Furthermore,
the local bimodules considered here are adapted to two strands pointing in the
same direction (downwards, in the conventions of [Ozsváth and Szabó 2018]). For
strands with other orientations, one has a choice of more elaborate theories from
[Ozsváth and Szabó 2018; 2019b; 2019a], some involving curved dg algebras. We
expect that the bimodules of these more elaborate theories also give 1-morphisms
of 2-representations of U , once, e.g., 2-representations are appropriately defined on
the curved dg algebras.

Remark 1.5. Since it follows from [Lekili and Polishchuk 2020; Manion et al. 2020]
that the local Ozsváth–Szabó algebras appearing in this paper are quasiisomorphic
to certain (larger) dg strands algebras A(Z), it is natural to ask whether there are
bimodules corresponding to P and N over the larger algebras, and if so, whether
these bimodules give 1-morphisms between the 2-representation structures on A(Z)

defined directly in [Manion and Rouquier 2020]. The answer in both cases appears
to be “yes;” the authors of [Manion et al. 2020] hope to address this question in
work in preparation.

Remark 1.6. Along with E , there is another odd generator F of Uq(gl(1|1)); since
we are discussing actions of E here, it is natural to ask about F as well. While
the framework of [Manion and Rouquier 2020] is based on a categorification of
Uq(gl(1|1)+) and fundamentally gives us E but not F , one can categorify at least a
relative F ′ of F by taking homomorphisms of left A-modules from the E bimodule
into A (as discussed e.g., in [Lauda and Manion 2021, Theorem 1.3] with slightly
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different conventions, as well as in [Manion and Rouquier 2020]). If we take
E to be projective on the left (“type D A”) as in this paper, then the bimodule
F ′

:= HomA on left(E,A) will be projective on the right (“type AD”), so since X is
type D A and has higher A∞ actions on the right, it’s more natural to look at the
bimodules E ⊗A X and X ⊗A E than the bimodules F ′

⊗A X and X ⊗A F ′.
If we did define F ′

⊗A − and − ⊗A F ′ appropriately, then we would expect
adjunctions in the homotopy category (E ⊗A −) ⊣ (F ′

⊗A −) and (− ⊗A F ′) ⊣

(− ⊗A E). Specifying maps X ⊗A E → E ⊗A X and X ⊗A F ′
→ F ′

⊗A X
would be equivalent, up to homotopy, to specifying maps X ⊗A E → E ⊗A X and
E ⊗A X → X ⊗A E .

In our case, we will show that E ⊗A X and X ⊗A E are literally the same up to
a renaming of basis elements, so that neither direction is singled out and we have
maps both ways giving an isomorphism. Based on the above, after making the right
definitions one would get a map X ⊗A F ′

→ F ′
⊗A X up to homotopy; since we

only have an adjunction one way, it’s not immediate that this map would be an
isomorphism in the homotopy category, although it seems likely that X ⊗A F ′ ∼=

F ′
⊗AX is still true here. We will not investigate further, though; work in preparation

of the second author at the decategorified level suggests that in some settings, but
not the one under consideration, one should legitimately have actions of both odd
generators E and F of gl(1|1), whereas here we only have E along with whatever
modifications we want to do to it algebraically.

Organization. In Section 2 we review algebraic definitions from bordered Heegaard
Floer homology, including a matrix-based notation from [Manion 2020] that will
be useful here. In Section 3 we review what we need from Ozsváth and Szabó’s
theory of bordered HFK. In Section 4 we review the relevant input from higher
representation theory and define 2-actions of U on the local bordered HFK algebras.
In Section 5 we show that Theorem 1.1 holds for Ozsváth–Szabó’s local positive-
crossing bimodule P , and in Section 6 we do the same for the local negative-crossing
bimodule N .

2. Bordered algebra

2A. D A bimodules. We will work with D A bimodules, as defined by Lipshitz,
Ozsváth and Thurston [Lipshitz et al. 2015, Section 2.2.4], over associative algebras
with no differentials. We will assume that these associative algebras A are defined
over a field k of characteristic 2 and come equipped with a finite collection of
orthogonal idempotents {I1, . . . , In} such that I1 + · · · + In = 1. We will refer to
the I j as distinguished idempotents.

Remark 2.1. An equivalent perspective is to view A as a k-linear category with
objects {I1, . . . , In}.
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For such an algebra A, we will let IA denote the ring of idempotents of A, i.e.,
a finite direct product of copies of k (one for each idempotent I j ), viewed as a
subalgebra of A.

We will also assume that A is equipped with two Z-gradings which we will
call the intrinsic and homological gradings; we let [1] denote an upward shift by 1
in the homological grading (we use upward rather than downward shifts because,
following the conventions of [Lipshitz et al. 2015; Ozsváth and Szabó 2018], we
use differentials that decrease the homological grading by 1).

Definition 2.2. Let A and B be graded associative algebras over a field k of charac-
teristic 2. A D A bimodule over (A,B) is given by the data (X, (δ1

i )
∞

i=1) where X
is a Z ⊕ Z-graded bimodule over (IA, IB) and, for i ≥ 1,

δ1
i : X ⊗B[1]

⊗(i−1)
→ A[1] ⊗ X

(tensor products are over IA or IB as appropriate) is a bidegree-preserving morphism
of bimodules over (IA, IB) such that the D A bimodule relations are satisfied, i.e.,
such that∑
j1+ j2=i+1

(µA ⊗ idX ) ◦ (idA ⊗δ1
j1) ◦ (δ1

j2 ⊗ idB⊗( j1−1))

+

i−2∑
j=1

δ1
i−1 ◦ (idB⊗( j−1) ⊗µB ⊗ idB⊗(i− j−2)) = 0

for all i ≥ 1, where µA and µB are the multiplication operations on A and B.

We will often refer to (X, (δ1
i )

∞

i=1) simply as X . We say that X is strictly unital
if δ1

2(x, 1) = 1 ⊗ x for all x ∈ X and δ1
i (x, b1, . . . , bi−1) = 0 if i > 2 and any b j is

in the idempotent ring IB.
If we have a k-basis for X and x, x ′ are basis elements with a ⊗ x ′ appearing

as a nonzero term of δ1
i (x ⊗ b1 ⊗ · · ·⊗ bi−1) (where a ∈ A and b1, . . . , bi−1 ∈ B),

we will sometimes depict the situation using a “D A module operation graph” as
in [Lipshitz et al. 2015, Definition 2.2.45]. See Figure 1 for an example. In this
notation, the D A bimodule relations are shown in Figure 2.

Remark 2.3. For all D A bimodules (X, (δ1
i )

∞

i=1) considered in this paper, X will be
finite-dimensional over k, as well as left and right bounded in the sense of [Lipshitz
et al. 2015, Definition 2.2.46].

Remark 2.4. If X is a D A bimodule over (A,B), then A⊗IA X is an A∞ bimodule
over (A,B) such that the left action of A has no higher A∞ terms and such that, as
a left A-module, X is a direct sum of projective modules A · I for distinguished
idempotents I of A (disregarding the differential). One can think of the definition
of D A bimodule as a convenient way of specifying and reasoning about such A∞

bimodules.
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Figure 1. A D A module operation graph showing a term a ⊗ x ′ of
the action of δ1

i on x ⊗ b1 ⊗ · · ·⊗ bi−1; this notation allows i = 1
in which case there are no edges to the right of the vertical line
from x to x ′.

Figure 2. The DA bimodule relations in Definition 2.2.

2B. The box tensor product. Let A,B, C be associative algebras as in Section 2A
and let X and Y be D A bimodules over (A,B) and (B, C) respectively. Assuming
X is left bounded or Y is right bounded, Lipshitz–Ozsváth–Thurston define a D A
bimodule X ⊠ Y in [Lipshitz et al. 2015, Section 2.3.2].

Definition 2.5. As a bimodule over (IA, IC), X ⊠ Y is defined to be X ⊗IB Y .
For i ≥ 1, the D A bimodule operation δ

⊠,1
i on X ⊠ Y is defined in terms of the

operations δX,1
∗

on X and δY,1
∗

on Y by

δ
⊠,1
i =

∑
j≥0

∑
i1+···+i j =i+ j−1

(δ
X,1
j ⊗ idY ) ◦ (idX ⊗ idB⊗( j−1) ⊗δ

Y,1
i j

)

◦ (idX ⊗ idB⊗( j−2) ⊗δ
Y,1
i j−1

⊗ idA⊗(i j −1))

◦ · · · ◦ (idX ⊗δ
Y,1
i1

⊗ idA⊗(i2+···+i j − j+1)).

In terms of D A module operation graphs, the general pattern for the operation
δ
⊠,1
i on X ⊠ Y is shown in Figure 3.

Remark 2.6. By [Lipshitz et al. 2015, Proposition 2.3.10], if X and Y are both left
bounded then so is X ⊠ Y .

Remark 2.7. Assuming suitable boundedness, the box tensor product X ⊠ Y is a
convenient way of working with the derived tensor product (A⊗IA X)⊗̃B(B⊗IB Y );
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Figure 3. The general pattern for the operation δ
⊠,1
i on X ⊠ Y .

indeed, by [Lipshitz et al. 2015, Proposition 2.3.18] we have

A⊗IA (X ⊠ Y ) ≃ (A⊗IA X)⊗̃B(B⊗IB Y )

where ≃ denotes homotopy equivalence of D A bimodules; see [Lipshitz et al. 2015,
Section 2.2.4].

2C. Matrix notation. We will describe D A bimodules using the matrix-based
notation of [Manion 2020, Section 2.2]; we recall this notation here. When using
this notation to describe a D A bimodule over (A,B), it is assumed that B comes
equipped with a choice of k-basis such that:

• Distinguished idempotents of B are basis elements.

• Each basis element b satisfies I ·b · I ′
= b for unique distinguished idempotents

I of A and I ′ of B (called the left and right idempotents of b respectively)
with Ĩ · b · Ĩ ′

= 0 whenever Ĩ , Ĩ ′ are distinguished idempotents of A and B
with Ĩ ̸= I or Ĩ ′

̸= I ′.

• Each basis element of B is homogeneous with respect to the bigrading.

Definition 2.8. To specify a D A bimodule (X, (δ1
i )

∞

i=1) over (A,B) (finite-
dimensional over k), we specify two matrices, a primary matrix and a secondary
matrix:

• The primary matrix is a set-valued matrix (each entry is a finite set with a Z⊕Z-
bidegree specified for each element) with columns indexed by the distinguished
idempotents of B and rows indexed by the distinguished idempotents of A.
Given such a matrix, the bimodule X over (IA, IB) is taken to have a k-basis
given by the union of the sets in each entry (with each basis element given its
specified bidegree). More specifically, the left-action of IA and right-action of
IB are fixed by saying that, for distinguished idempotents I of A and I ′ of B,
the vector space I · X · I ′ has a basis given by the set in row I and column I ′.
For an element x of this set, we say that I is the left idempotent of x and I ′ is
the right idempotent of x .
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• The secondary matrix is a matrix whose entries are formal sums of expressions
a (for a ∈ A) and a ⊗ (b1, . . . , bi−1) (for a ∈ A and each b j a basis element
for B). The sums are allowed to be infinite, but there should be finitely many
terms of the form a (without the ⊗ symbol) and finitely many terms for each
given sequence (b1, . . . , bi−1). The rows and columns of the secondary matrix
are each indexed by the union of all entries of the primary matrix, in some
fixed order. Given such a matrix, the operations δ1

i on X are defined as follows
for a basis element x of X (a column label of the secondary matrix):

– δ1
1(x) is the sum of all elements a ⊗ y where a is a term (without the ⊗

symbol) of a secondary matrix entry in column x and y is the row label of
the entry containing this term.

– For i > 1 and a sequence (b1, . . . , bi−1) of basis elements of B, δ1
i (x ⊗

b1 ⊗· · ·⊗bi−1) is the sum of all elements a ⊗ y where a ⊗ (b1, . . . , bi−1)

is a term of a secondary matrix entry in column x and y is the row label
of the entry containing this term.

An example of a D A bimodule specified by primary and secondary matrices can
be found in Definition 3.3 below. We use the following conventions:

Convention 2.9. If indices such as k or l appear in entries of the secondary matrix,
we take an infinite sum over all k ≥ 0 or l ≥ 0 unless otherwise specified.

Convention 2.10. When using matrix notation to specify a strictly unital D A
bimodule, the above rules would say that in each diagonal entry of the secondary
matrix (corresponding to an entry x of the primary matrix), there is a term I ⊗ I ′

where I and I ′ are the left and right idempotents of x respectively (it should also
be the case that no basis element b j appearing in an entry a ⊗ (b1, . . . , bi−1) is a
distinguished idempotent). However, we will omit the terms I ⊗ I ′ when we write
the secondary matrix.

If the primary or secondary matrix has block form, we will often give each block
separately.

Remark 2.11. One advantage of this matrix-based notation is that the D A bimodule
relations can be checked using linear-algebraic manipulations. Indeed, to check the
D A bimodule relations, one forms two new matrices from the secondary matrix.
The first matrix, which we will call the “squared secondary matrix,” is obtained by
multiplying the secondary matrix by itself. When doing so, one will need to take
products of secondary matrix entries; these products are defined by:

• a · a′
= a′a.

• a · (a′
⊗ (b′

1, . . . , b′

i−1)) = a′a ⊗ (b′

1, . . . , b′

i−1).

• (a ⊗ (b1, . . . , bi−1)) · a′
= a′a ⊗ (b1, . . . , bi−1).

• (a⊗(b1, . . . , bi−1))·(a′
⊗(b′

1, . . . , b′

j−1))=a′a⊗(b′

1, . . . , b′

j−1, b1, . . . , bi−1).
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The second matrix, which we will call the “multiplication matrix,” is obtained by,
for each b j in an entry a ⊗(b1, . . . , bi−1) and each pair of B-basis elements (b′, b′′)

(neither a distinguished idempotent in the strictly unital case) such that Cb j is a
term of the basis expansion of b′b′′ for some nonzero element C ∈ k, adding the
term Ca ⊗ (b1, . . . , b j−1, b′, b′′, b j+1, . . . , bi−1) to the corresponding entry of the
multiplication matrix.

Once these two matrices are formed, the D A bimodule relations amount to
saying that the squared secondary matrix and the multiplication matrix sum to zero.

2D. Box tensor products in matrix notation. Suppose we have D A bimodules
X over (A,B) and Y over (B, C) as in Section 2B. To specify X ⊠ Y in matrix
notation, one can do the following manipulations:

• The primary matrix for X ⊠ Y is the matrix product of the primary matrix for
X (on the left) and the primary matrix for Y (on the right). When multiplying
two entries of these primary matrices, one uses the Cartesian product of sets,
and when adding these products together, one uses the disjoint union.

• Let (x, y) and (x ′, y′) be two elements of the primary matrix for X ⊠ Y . To
obtain the secondary matrix element in row (x ′, y′) and column (x, y), there
are two cases to consider:

– For entries a (with no ⊗ symbol) in row x ′ and column x of the secondary
matrix for X , if y = y′ then add an entry a to the secondary matrix for
X ⊠ Y in row (x ′, y′) and column (x, y). If y ̸= y′, do not add such an
entry.

– For entries a ⊗ (b1, . . . , bi−1) in row x ′ and column x of the secondary
matrix for X , look for all sequences (y = y1, y2, . . . , yi = y′) of primary
matrix entries for Y such that, for 1 ≤ j ≤ i − 1, there is a term b ⊗

(c j
1, . . . , c j

m j −1) in row y j+1 and column y j of the secondary matrix for
Y such that C j b j is a term of the basis expansion of b for some nonzero
C j ∈ k. For all such sequences (y1, . . . , yi ) and all such choices of terms
b ⊗ (c j

1, . . . , c j
m j −1), add an entry

C1 · · · Ci−1a ⊗ (c1
1, . . . , c1

m1−1, . . . , ci−1
1 , . . . , ci−1

mi−1−1)

to the secondary matrix of X ⊠ Y in row (x ′, y′) and column (x, y).

3. Bordered HFK

3A. Algebras. We now review Ozsváth and Szabó’s algebra B(2) =
⊕3

k=0 B(2, k)

from [Ozsváth and Szabó 2018, Section 3.2], which is an algebra over F2.

Definition 3.1. The algebra B(2, 0) is F2. The algebra B(2, 1) is the path algebra
of the quiver shown in Figure 4 modulo the relations [Ri , U j ] = 0, [L i , U j ] = 0,
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Figure 4. The quiver for B(2, 1).

Figure 5. The quiver for B(2, 2).

Ri L i = Ui , L i Ri = Ui , R1 R2 = 0, L2L1 = 0, U2 = 0 at the leftmost node, and
U1 = 0 at the rightmost node.

The algebra B(2, 2) is the path algebra of the quiver shown in Figure 5 modulo
the relations [RiU j ] = 0, [L i , U j ] = 0, Ri L i = Ui , and L i Ri = Ui . The algebra
B(2, 3) is F2[U1, U2]. We set B(2) =

⊕3
k=0 B(2, k).

Our definition matches Ozsváth and Szabó’s by [Manion et al. 2021, Theo-
rem 1.1]; also see [Ozsváth and Szabó 2018, Figure 10] for B(2, 1), although in this
figure Ozsváth and Szabó leave out some of the relations. We define an intrinsic
grading on B(2) by setting deg(Ri ) = deg(L i ) = 1 and deg(Ui ) = 2; this grading is
twice Ozsváth and Szabó’s single Alexander grading (the doubling is related to the
expression t = q2 when obtaining the Alexander polynomial from representations
of Uq(gl(1|1))). We define the homological grading to be identically zero on the
generators of B(2).

The algebras B(2, 1) and B(2, 2) each have three distinguished idempotents given
by the length-zero paths at each node. Ordering the nodes from left to right and
following Ozsváth and Szabó’s notation, for B(2, 1) we can call these idempotents
I0, I1, and I2. For B(2, 2) we can call them I01, I02, and I12. The unique nonzero
element of B(2, 0) is its distinguished idempotent and we can call it I∅; for B(2, 3)

the distinguished idempotent is 1 ∈ F2[U1, U2] and we can call it I012.
To avoid subscripts as much as possible, we will relabel these idempotents as

follows:
∅ := I∅,

A := I0, B := I1, C := I2,

AB := I01, AC := I02, BC := I12,

ABC := I012.

To clarify the conventions: in Figure 4 the left and right idempotents of R1 are A
and B respectively, while in Figure 5 the left and right idempotents of R1 are AC
and BC respectively.
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The following proposition can be deduced from the definition of B(2).

Proposition 3.2. A F2-basis for B(2, 1) is given by

{U k
1 (A), U k

1 (B), U k
2 (B), U k

2 (C), R1U k
1 , L1U k

1 , R2U k
2 , L2U k

2 }

(k runs over all integers ≥ 0). A F2-basis for B(2, 2) is given by

{U k
1 U l

2(AB), U k
1 U l

2(AC), U k
1 U l

2(BC), R1U k
1 U l

2, L1U k
1 U l

2, R2U k
1 U l

2, L2U k
1 U l

2}

(k and l run over all integers ≥ 0).

The algebra B(2, 0) = F2 has a unique F2-basis, and for B(2, 3) we use the basis
of monomials U k

1 U l
2 for k, l ≥ 0.

3B. Bimodules. Next we review, in matrix notation, Ozsváth and Szabó’s D A
bimodules P and N over B(2). One thinks of these bimodules as being associated
to two-strand tangles consisting of a single positive crossing and a single negative
crossing respectively and containing the minimal amount of data necessary to
build the bimodules for n-strand single-crossing tangles. They can be obtained by
counting holomorphic disks in the Heegaard diagrams shown in Section 3B3 below.

3B1. The bimodule P . This bimodule is defined in [Ozsváth and Szabó 2018,
Section 5.1]; here we translate Ozsváth and Szabó’s definition into matrix notation.

Definition 3.3. The primary matrix for P has rows and columns indexed by the
distinguished idempotents

∅, A, B, C, AB, AC, BC, ABC

of B(2). The matrix has block-diagonal form with blocks specified by the following
matrices:

[ ∅

∅ ∅S∅
]


A B C

A {A SA} ∅ ∅
B {B WA} {B NB} {B EC}

C ∅ ∅ {C SC}




AB AC BC

AB {AB NAB} {AB E AC} ∅
AC ∅ {AC SAC} ∅
BC ∅ {BC WAC} {BC NBC}


[ ABC

ABC {ABC NABC}
]



264 WILLIAM CHANG AND ANDREW MANION

Below we will abuse notation slightly and omit the braces { }, writing e.g., A SA

instead of {A SA}. The secondary matrix for P has a corresponding block-diagonal
form; the blocks are:

[ ∅S∅

∅S∅ 0
]



A SA B WA B NB B EC C SC

A SA 0 L1 0 0 0
B WA 0 U k+1

2 ⊗U k+1
1 U k+1

2 ⊗L1U k
1 0 L2U k

2 ⊗(L2, L1U k
1 )

B NB R1U k
1 ⊗(R1,U k+1

2 ) U k
2 ⊗R1U k

1 U k+1
2 ⊗U k+1

1 +U k+1
1 ⊗U k+1

2 U k
1 ⊗L2U k

2 L2U k
2 ⊗(L2,U k+1

1 )

B EC R1U k
1 ⊗(R1, R2U k

2 ) 0 U k+1
1 ⊗R2U k

2 U k+1
1 ⊗U k+1

2 0
C SC 0 0 0 R2 0




AB NAB AB E AC AC SAC BC WAC BC NBC

AB NAB U l
1U k

2 ⊗U k
1 U l

2 U k
1 ⊗L2U k

2 ∗1 L1L2U k
2 ⊗L2U k+1

1 L1L2U l
1U k

2 ⊗L1L2U k
1 U l

2

AB E AC U l+1
1 U k

2 ⊗R2U k
1 U l

2 U k+1
1 ⊗U k+1

2 ∗2 L1L2U k
2 ⊗U k+1

1 L1L2U l
1U k

2 ⊗L1U k
1 U l

2
AC SAC 0 R2 0 L1 0
BC WAC R2 R1U l

1U k
2 ⊗R2U k

1 U l
2 R2 R1U k

1 ⊗U k+1
2 ∗3 U k+1

2 ⊗U k+1
1 U l

1U k+1
2 ⊗L1U k

1 U l
2

BC NBC R2 R1U l
1U k

2 ⊗R2 R1U k
1 U l

2 R2 R1U k
1 ⊗R1U k+1

2 ∗4 U k
2 ⊗R1U k

1 U l
1U k

2 ⊗U k
1 U l

2


[ ABC NABC

ABC NABC U l
1U k

2 ⊗U k
1 U l

2

]
.

The entries ∗i for 1 ≤ i ≤ 4 are specified below; also, in any entry of the form
U l

1U k
2 ⊗ U k

1 U l
2, we disallow (k, l) = (0, 0) to match Convention 2.10. The entry ∗1

in column AC SAC and row AB NAB is

L2U t
1U n

2 ⊗ (U n+1
1 , L2U t

2) (0 ≤ n < t)

+ L2U t
1U n

2 ⊗ (R1U n
1 , L1L2U t

2) (0 ≤ n < t)

+ L2U t
1U n

2 ⊗ (L2U n+1
1 , U t

2) (0 ≤ n < t)

+ L2U t
1U n

2 ⊗ (L2U t
2, U n+1

1 ) (1 ≤ t ≤ n)

+ L2U t
1U n

2 ⊗ (U t
2, L2U n+1

1 ) (1 ≤ t ≤ n)

+ L2U t
1U n

2 ⊗ (R1U t
2, L1L2U n

1 ) (1 ≤ t ≤ n)

+ L2U n
2 ⊗ (L2, U n+1

1 ) (0 ≤ n).

The entry ∗2 in column AC SAC and row AB E AC is

L2U t
1U n

2 ⊗ (U n+1
1 , U t

2) (0 ≤ n < t)

+ L2U t
1U n

2 ⊗ (R1U n
1 , L1U t

2) (0 ≤ n < t)

+ L2U t
1U n

2 ⊗ (L2U n+1
1 , R2U t−1

2 ) (0 ≤ n < t)

+ L2U t
1U n

2 ⊗ (U t
2, U n+1

1 ) (1 ≤ t ≤ n)

+ L2U t
1U n

2 ⊗ (R1U t
2, L1U n

1 ) (1 ≤ t ≤ n)

+ L2U t
1U n

2 ⊗ (L2U t−1
2 , R2U n+1

1 ) (1 ≤ t ≤ n).
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The entry ∗3 in column AC SAC and row BC WAC is

R1U t
1U n

2 ⊗ (U t+1
2 , U n

1 ) (0 ≤ t < n)

+ R1U t
1U n

2 ⊗ (L2U t
2, R2U n

1 ) (0 ≤ t < n)

+ R1U t
1U n

2 ⊗ (R1U t+1
2 , L1U n−1

1 ) (0 ≤ t < n)

+ R1U t
1U n

2 ⊗ (U n
1 , U t+1

2 ) (1 ≤ n ≤ t)

+ R1U t
1U n

2 ⊗ (L2U n
1 , R2U t

2) (1 ≤ n ≤ t)

+ R1U t
1U n

2 ⊗ (R1U n−1
1 , L1U t+1

2 ) (1 ≤ n ≤ t)

The entry ∗4 in column AC SAC and row BC NBC is

R1U t
1U n

2 ⊗ (U t+1
2 , R1U n

1 ) (0 ≤ t < n)

+ R1U t
1U n

2 ⊗ (L2U t
2, R2 R1U n

1 ) (0 ≤ t < n)

+ R1U t
1U n

2 ⊗ (R1U t+1
2 , U n

1 ) (0 ≤ t < n)

+ R1U t
1U n

2 ⊗ (R1U n
1 , U t+1

2 ) (1 ≤ n ≤ t)

+ R1U t
1U n

2 ⊗ (U n
1 , R1U t+1

2 ) (1 ≤ n ≤ t)

+ R1U t
1U n

2 ⊗ (L2U n
1 , R2 R1U t

2) (1 ≤ n ≤ t)

+ R1U t
1 ⊗ (R1, U t+1

2 ) (0 ≤ t).

3B2. The bimodule N . The bimodule N is defined in [Ozsváth and Szabó 2018,
Section 5.5] using a symmetry relationship with P . Explicitly, N has the same
primary matrix as P . The blocks of the secondary matrix of N are:

[ ∅S∅

∅S∅ 0
]



A SA B WA B NB B EC C SC

A SA 0 0 L1U k
1 ⊗(U k+1

2 , L1) L1U k
1 ⊗(L2U k

2 , L1) 0
B WA R1 U k+1

2 ⊗U k+1
1 U k

2 ⊗L1U k
1 0 0

B NB 0 U k+1
2 ⊗R1U k

1 U k+1
2 ⊗U k+1

1 +U k+1
1 ⊗U k+1

2 U k+1
1 ⊗L2U k

2 0
B EC 0 0 U k

1 ⊗R2U k
2 U k+1

1 ⊗U k+1
2 L2

C SC 0 R2U k
2 ⊗(R1U k

1 , R2) R2U k
2 ⊗(U k+1

1 , R2) 0 0




AB NAB AB E AC AC SAC BC WAC BC NBC

AB NAB U l
1U k

2 ⊗U k
1 U l

2 U l+1
1 U k

2 ⊗L2U k
1 U l

2 0 L1L2U l
1U k

2 ⊗L2U k
1 U l

2 L1L2U l
1U k

2 ⊗L1L2U k
1 U l

2

AB E AC U k
1 ⊗R2U k

2 U k+1
1 ⊗U k+1

2 L2 L1L2U k
1 ⊗U k+1

2 L1L2U k
1 ⊗L1U k+1

2
AC SAC ∗

′

1 ∗
′

2 0 ∗
′

3 ∗
′

4

BC WAC R2 R1U k
2 ⊗R2U k+1

1 R2 R1U k
2 ⊗U k+1

1 R1 U k+1
2 ⊗U k+1

1 U k
2 ⊗L1U k

1

BC NBC R2 R1U l
1U k

2 ⊗R2 R1U k
1 U l

2 R2 R1U l
1U k

2 ⊗R1U k
1 U l

2 0 U l
1U k+1

2 ⊗R1U k
1 U l

2 U l
1U k

2 ⊗U k
1 U l

2



[ ABC NABC

ABC NABC U l
1U k

2 ⊗U k
1 U l

2

]



266 WILLIAM CHANG AND ANDREW MANION

where in any entry of the specific form U l
1U k

2 ⊗ U k
1 U l

2 we disallow (k, l) = (0, 0)

to match Convention 2.10. The entry ∗
′

1 in column AB NAB and row AC SAC is:

R2U t
1U n

2 ⊗ (R2U t
2, U n+1

1 ) (0 ≤ n < t)

+ R2U t
1U n

2 ⊗ (R2 R1U t
2, L1U n

1 ) (0 ≤ n < t)

+ R2U t
1U n

2 ⊗ (U t
2, R2U n+1

1 ) (0 ≤ n < t)

+ R2U t
1U n

2 ⊗ (U n+1
1 , R2U t

2) (1 ≤ t ≤ n)

+ R2U t
1U n

2 ⊗ (R2U n+1
1 , U t

2) (1 ≤ t ≤ n)

+ R2U t
1U n

2 ⊗ (R2 R1U n
1 , L1U t

2) (1 ≤ t ≤ n)

+ R2U n
2 ⊗ (U n+1

1 , R2) (0 ≤ n).

The entry ∗
′

2 in column AB E AC and row AC SAC is

R2U t
1U n

2 ⊗ (U t
2, U n+1

1 ) (0 ≤ n < t)

R2U t
1U n

2 ⊗ (R1U t
2, L1U n

1 ) (0 ≤ n < t)

R2U t
1U n

2 ⊗ (L2U t−1
2 , R2U n+1

1 ) (0 ≤ n < t)

R2U t
1U n

2 ⊗ (U n+1
1 , U t

2) (1 ≤ t ≤ n)

R2U t
1U n

2 ⊗ (R1U n
1 , L1U t

2) (1 ≤ t ≤ n)

R2U t
1U n

2 ⊗ (L2U n+1
1 , R2U t−1

2 ) (1 ≤ t ≤ n).

The entry ∗
′

3 in column BC WAC and row AC SAC is

L1U t
1U n

2 ⊗ (U n
1 , U t+1

2 ) (0 ≤ t < n)

L1U t
1U n

2 ⊗ (L2U n
1 R2U t

2) (0 ≤ t < n)

L1U t
1U n

2 ⊗ (R1U n−1
1 , L1U t+1

2 ) (0 ≤ t < n)

L1U t
1U n

2 ⊗ (U t+1
2 , U n

1 ) (1 ≤ n ≤ t)

L1U t
1U n

2 ⊗ (L2U t
2, R2U n

1 ) (1 ≤ n ≤ t)

L1U t
1U n

2 ⊗ (R1U t+1
2 , L1U n−1

1 ) (1 ≤ n ≤ t).
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The entry ∗
′

4 in column BC NBC and row AC SAC is

L1U t
1U n

2 ⊗ (L1U n
1 , U t+1

2 ) (0 ≤ t < n)

L1U t
1U n

2 ⊗ (L1L2U n
1 , R2U t

2) (0 ≤ t < n)

L1U t
1U n

2 ⊗ (U n
1 , L1U t+1

2 ) (0 ≤ t < n)

L1U t
1U n

2 ⊗ (U t+1
2 , L1U n

1 ) (1 ≤ n ≤ t)

L1U t
1U n

2 ⊗ (L1U t+1
2 , U n

1 ) (1 ≤ n ≤ t)

L1U t
1U n

2 ⊗ (L1L2U t
2, R2U n

1 ) (1 ≤ n ≤ t)

L1U t
1 ⊗ (U t+1

2 , L1) (0 ≤ t).

The starred terms in row AC SAC of middle block of the secondary matrix for N ,
as well as in the column AC SAC of the middle block of the secondary matrix for P ,
encode the A∞ terms of the right algebra actions on (the middle summands of) the
bimodules; see [Lipshitz et al. 2015, Section 2.2.4] for more context on these A∞

structures in general.
The symmetry relationship between P and N described in [Ozsváth and Szabó

2018, Section 5.5] can be summarized by saying the secondary matrix of N is
obtained from that of P by performing the following operations:

• Take the transpose of the secondary matrix of P .

• In each entry, replace L i with Ri and vice versa, while reversing the order of
multiplication when relevant (so e.g., L1L2 becomes R2 R1).

• For any entry a ⊗ (b1, b2), reverse the order of b1 and b2.

3B3. Heegaard diagram origins. We comment briefly here on the Heegaard di-
agram origins of the D A bimodules P and N . Roughly, they can be thought of
as D A bimodules associated to the bordered sutured Heegaard diagrams shown
in Figure 6 and Figure 7 respectively. A detailed study of the relationship of the
algebraically defined bimodules P and N to the holomorphic geometry associated
with these diagrams can be found in [Ozsváth and Szabó 2019a], although in that
paper Ozsváth and Szabó do not use the language of bordered sutured Heegaard
Floer homology.

Remark 3.4. The diagrams in Figures 6 and 7 do not satisfy all the hypotheses
necessary to be covered by Lipshitz, Ozsváth and Thurston’s results [2015] or
Zarev’s results [2011]; Ozsváth and Szabó [2019a] show that they can still be
analyzed using a generalization of the analytic setup of bordered or bordered
sutured Heegaard Floer homology. However, a more literal generalization of these
theories would yield bimodules over the larger dg algebras of [Lekili and Polishchuk
2020; Manion et al. 2020] rather than over the associative algebra B(2). The second
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Figure 6. The bordered sutured Heegaard diagram for P .

Figure 7. The bordered sutured Heegaard diagram for N .

author, with Marengon and Willis, hope to address this difference in future work,
defining D A bimodules over the larger dg algebras and relating them to P and N .

4. Higher representations

4A. General setup. We now briefly review how higher representation theory inter-
acts with bordered Heegaard Floer homology, as discussed in more generality in
[Manion and Rouquier 2020].

4A1. Monoidal category. The following differential monoidal category U was
defined in [Khovanov 2014], and 2-actions of U are a main subject of [Manion and
Rouquier 2020]; see also [Douglas and Manolescu 2014; Douglas et al. 2019].

Definition 4.1. Let U denote the strict differential monoidal category with objects
generated under ⊗ by a single object e and with morphisms generated under ⊗ and
composition by an endomorphism τ of e ⊗ e, subject to the relations τ 2

= 0 and

(ide ⊗τ) ◦ (τ ⊗ ide) ◦ (ide ⊗τ) = (τ ⊗ ide) ⊗ (ide ⊗τ) ⊗ (τ ⊗ ide),
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and with differential determined by d(τ ) = ide⊗e.

Remark 4.2. A grading on U is defined in [Khovanov 2014], making it into a dg
category. Here we will not need to work with this grading; indeed, in the 2-actions
of U we consider below, τ will act as zero.

The endomorphism algebra in U of e⊗m is the nil-Coxeter dg algebra denoted
by Nm in [Douglas and Manolescu 2014].

4A2. 2-representations. We will be especially concerned with 2-representations
of U on associative algebras in the setting of D A bimodules; we give a concrete
definition of this notion below.

Definition 4.3. Let A be an associative algebra (we make the same assumptions on
A as in Section 2A). A (D A bimodule) 2-representation of U on A is the data of
a D A bimodule E over A and a (typically nonclosed) D A bimodule morphism τ

from E ⊠ E to itself satisfying τ 2
= 0,

(idE ⊠τ) ◦ (τ ⊠ idE) ◦ (idE ⊠τ) = (τ ⊠ idE) ◦ (idE ⊠τ) ◦ (τ ⊠ idE),

and d(τ ) = 1. We also assume that E is left bounded in the sense of [Lipshitz et al.
2015, Definition 2.2.46].

We will write the above data as (A, E, τ ).

Remark 4.4. The definitions of D A bimodule morphisms, their tensor products,
and their differentials can be found in [Lipshitz et al. 2015, Section 2.2.4 and
Section 2.3.2], but we will refrain from spelling out these definitions here because
in the examples we will consider, E ⊠ E will be the zero D A bimodule and τ will
be the zero morphism.

4A3. 1-morphisms of 2-representations. We will also work with a D A bimodule
version of 1-morphisms between 2-representations of U .

Definition 4.5. Let (A, E, τ ) and (A′, E ′, τ ′) be (D A bimodule) 2-representations
of U on associative algebras A and A′. A (D A bimodule) 1-morphism of 2-
representations from (A, E, τ ) to (A′, E ′, τ ′) consists of a left bounded D A bimod-
ule X over (A′,A) together with a homotopy equivalence

α : X ⊠ E → E ′ ⊠ X,

satisfying

(τ ′ ⊠ idX ) ◦ (idE ′ ⊠α) ◦ (α⊠ idE) = (idE ′ ⊠α) ◦ (α⊠ idE) ◦ (idX ⊠τ)

as morphisms from X ⊠ E ⊠ E to E ′ ⊠ E ′ ⊠ X .
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Figure 8. The arc diagram Z such that A(Z) is quasiisomorphic
to B(2); the 2-to-1 matching is indicated by the arcs (red), and by
symmetry one may take any orientation on the circles and intervals.

Remark 4.6. We will not elaborate on the definition of homotopy equivalence of
D A bimodules here (it can be found in [Lipshitz et al. 2015, Section 2.2.4]); in
this paper the homotopy equivalences α will be isomorphisms given by bijections
between primary matrix entries such that the corresponding secondary matrices
agree.

4B. Actions on bordered HFK algebras. In [Manion and Rouquier 2020], 2-
representations of U are defined on the algebras A(Z) appearing in bordered sutured
Heegaard Floer homology. Here Z denotes an arc diagram, i.e., a finite collection
of oriented intervals and circles equipped with a 2-to-1 matching of finitely many
points in the interiors of the intervals and circles, and there is a 2-representation of
U on A(Z) for each interval in Z .

The algebra B(2) was shown in [Manion et al. 2020; Lekili and Polishchuk 2020]
to be quasiisomorphic to A(Z) where Z is the arc diagram shown in Figure 8. Since
Z has two intervals, we should expect two 2-actions of U on B(2); we define these
2-actions below; see [Lauda and Manion 2021] for a related 2-representation of U
on an n-strand Ozsváth–Szabó algebra from [Ozsváth and Szabó 2018]. In more
detail, we will define D A bimodules E1 and E2 over B(2); these bimodules will
satisfy Ei ⊠ Ei = 0, so that (A, Ei , 0) is a 2-representation of U .

Remark 4.7. The arc diagram shown in Figure 8 can also be seen on the front and
back edges of the Heegaard diagrams in Figure 6 and Figure 7, with the red arcs
in Figure 8 determined by the matching pattern of the red arcs in the Heegaard
diagrams.

Definition 4.8. The primary matrix for E1 has block form with the following blocks
(we write e.g., X1 for the singleton set {X1}):

[ A B C

∅ X1 ∅ ∅
] 

AB AC BC

A ∅ ∅ ∅
B X2 ∅ ∅
C ∅ X3 ∅

 
ABC

AB ∅
AC ∅
BC X4


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The secondary matrix for E1 has a corresponding block form with blocks:

[ X1

X1 0
]

[ X2 X3

X2 U k+1
1 ⊗ U k+1

1 + U k+1
2 ⊗ U k+1

2 L2U k
2 ⊗ L2U k

2
X3 R2U k

2 ⊗ R2U k
2 U k+1

2 ⊗ U k+1
2

]
[ X4

X4 U k
1 U l

2 ⊗ U k
1 U l

2

]
In the final block we disallow (k, l) = (0, 0) to match Convention 2.10.

Definition 4.9. The primary matrix for E2 has block form with the following blocks
(again we write e.g., Y1 for the singleton set {Y1}):

[ A B C

∅ ∅ ∅ Y1
] 

AB AC BC

A ∅ Y2 ∅
B ∅ ∅ Y3

C ∅ ∅ ∅

 
ABC

AB Y4

AC ∅
BC ∅


The secondary matrix for E2 has a corresponding block form with blocks:

[ Y1

Y1 0
]

[ Y2 Y3

Y2 U k+1
1 ⊗ U k+1

1 L1U k
1 ⊗ L1U k

1
Y3 R1U k

1 ⊗ R1U k
1 U k+1

1 ⊗ U k+1
1 + U k+1

2 ⊗ U k+1
2

]
[ Y4

Y4 U k
1 U l

2 ⊗ U1U l
2

]
In the final block we disallow (k, l) = (0, 0) to match Convention 2.10.

By multiplying the primary matrix for Ei by itself (i = 1, 2), one can see that
Ei ⊠ Ei has a primary matrix with each entry the empty set; in other words, Ei ⊠ Ei

is zero as claimed above.

5. 1-morphism structure for P

5A. Commutativity with E1.

5A1. The bimodule E1 ⊠ P . We give a matrix description for E1 ⊠ P following
Section 2D. To get the primary matrix for E1 ⊠P , we multiply the primary matrices
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for E1 and P . We can do this block-by-block, so the primary matrix for E1 ⊠P has
block form with blocks given by

[ A B C

∅ X1 ∅ ∅
]
·


A B C

A SA ∅ ∅
B W N E
C ∅ ∅ SC

 =
[ A B C

∅ X1SC ∅ ∅
]
,


AB AC BC

A ∅ ∅ ∅
B X2 ∅ ∅
C ∅ X3 ∅

 ·


AB AC BC

AB NAB E ∅
AC ∅ S ∅
BC ∅ W NBC

 =


AB AC BC

A ∅ ∅ ∅
B X2 NAB X2 E ∅
C ∅ X3 X ∅

,


ABC

AB ∅
AC ∅
BC X4

 ·
[ ABC

ABC N
]
=


ABC

AB ∅
AC ∅
BC X4 N

.

In these matrices, we indicate idempotents only when necessary to distinguish
primary matrix entries in the same block (so, for example, in the block with rows
and columns A, B, C , we distinguish between two types of S generators, but the
only N generator in this block is B NB so we omit the idempotents and just write N ).

The secondary matrix for E1 ⊠P also has block form with blocks given by:

[ X1 SC

X1 SC 0
]


X2 NAB X2 E X3 S

X2 NAB U k+1
2 ⊗ U k+1

1 + U k+1
1 ⊗ U k+1

2 U k
1 ⊗ L2U k

2 L2U k
2 ⊗ (L2, U k+1

1 )

X2 E U k+1
1 ⊗ R2U k

2 U k+1
1 ⊗ U k+1

2 0
X3 S 0 R2 0


[ X4 N

X4 N U l
1U k

2 ⊗ U k
1 U l

2

]

In the final block we disallow (k, l) = (0, 0). An explanation for the terms in the
secondary matrix is given in Figure 9, which uses the operation graph depictions of
Figure 3.
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Figure 9. Operation graphs for the terms in the secondary matrix
of E1 ⊠P .

5A2. The bimodule P ⊠ E1. Similarly, we give a matrix description for P ⊠ E1.
The primary matrix has block form with blocks

[ ∅

∅ S
]
·

[ A B C

∅ X1 ∅ ∅
]
=

[ A B C

∅ SX1 ∅ ∅
]
,


A B C

A SA ∅ ∅
B W N E
C ∅ ∅ SC

 ·


AB AC BC

A ∅ ∅ ∅
B X2 ∅ ∅
C ∅ X3 ∅

 =


AB AC BC

A ∅ ∅ ∅
B N X2 E X3 ∅
C ∅ SC X3 ∅

,


AB AC BC

AB NAB E ∅
AC ∅ S ∅
BC ∅ W NBC

 ·


ABC

AB ∅
AC ∅
BC X4

 =


ABC

AB ∅
AC ∅
BC NBC X4

.

The secondary matrix for P ⊠ E1 also has block form with blocks:

[ SX1

SX1 0
]


N X2 E X3 SC X3

N X2 U k+1
2 ⊗ U k+1

1 + U k+1
1 ⊗ U k+1

2 U k
1 ⊗ L2U k

2 L2U k
2 ⊗ (L2, U k+1

1 )

E X3 U k+1
1 ⊗ R2U k

2 U k+1
1 ⊗ U k+1

2 0
SC X3 0 R2 0


[ NBC X4

NBC X4 U l
1U k

2 ⊗ U k
1 U l

2

]
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Figure 10. Operation graphs for the terms in the secondary matrix
of P ⊠ E1.

In the final block we disallow (k, l) = (0, 0). An explanation for the terms in the
secondary matrix is given in Figure 10.

Corollary 5.1. The D A bimodules E1 ⊠P and P⊠E1 are isomorphic to each other.

Proof. The primary and secondary matrices for E1 ⊠P and P ⊠ E1 agree up to a
relabeling of primary matrix entries. □

5B. Commutativity with E2.

5B1. The bimodule E2 ⊠ P . Next we give a matrix description of E2 ⊠ P . The
primary matrix has block form with blocks

[ A B C

∅ ∅ ∅ Y1
]
·


A B C

A SA ∅ ∅
B W N E
C ∅ ∅ SC

 =
[ A B C

∅ ∅ ∅ Y1SC
]
,


AB AC BC

A ∅ Y2 ∅
B ∅ ∅ Y3

C ∅ ∅ ∅

 ·


AB AC BC

AB NAB E ∅
AC ∅ S ∅
BC ∅ W NBC

 =


AB AC BC

A ∅ Y2S ∅
B ∅ Y3W Y3 NBC

C ∅ ∅ ∅

,


ABC

AB Y4

AC ∅
BC ∅

 ·
[ ABC

ABC N
]
=


ABC

AB Y4 N
AC ∅
BC ∅

.
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The secondary matrix for E2 ⊠P also has block form with blocks:

[ Y1 SC

Y1 SC 0
]


Y2 S Y3W Y3 NBC

Y2 S 0 L1 0
Y3W 0 U k+1

2 ⊗ U k+1
1 U k+1

2 ⊗ L1U k
1

Y3 NBC R1U k
1 ⊗ (R1, U k+1

2 ) U k
2 ⊗ R1U k

1 U k+1
1 ⊗ U k+1

2 + U k+1
2 ⊗ U k+1

1


[ Y4 N

Y4 N U k
1 U l

2 ⊗ U l
1U k

2

]
In the final block we disallow (k, l) = (0, 0). One can draw operation graphs for
the secondary matrix entries as we did above in Figures 9 and 10, but we will omit
the graphs here.

5B2. The bimodule P ⊠ E2. The primary matrix for P ⊠ E2 has block form with
blocks

[ ∅

∅ S
]
·

[ A B C

∅ ∅ ∅ Y1
]
=

[ A B C

∅ ∅ ∅ SY1
]
,


A B C

A SA ∅ ∅
B W N E
C ∅ ∅ SC

 ·


AB AC BC

A ∅ Y2 ∅
B ∅ ∅ Y3

C ∅ ∅ ∅

 =


AB AC BC

A ∅ SAY2 ∅
B ∅ W Y2 NY3

C ∅ ∅ ∅

,


AB AC BC

AB NAB E ∅
AC ∅ S ∅
BC ∅ W NBC

 ·


ABC

AB Y4

AC ∅
BC ∅

 =


ABC

AB NABY4

AC ∅
BC ∅

.

The secondary matrix for P ⊠ E2 also has block form with blocks:

[ SY1

SY1 0
]


SAY2 W Y2 NY3

SAY2 0 L1 0
W Y2 0 U k+1

2 ⊗ U k+1
1 U k+1

2 ⊗ L1U k
1

NY3 R1U k
1 ⊗ (R1, U k+1

2 ) U k
2 ⊗ R1U k

1 U k+1
1 ⊗ U k+1

2 + U k+1
2 ⊗ U k+1

1


[ NAB Y4

NAB Y4 U k
1 U l

2 ⊗ U l
1U k

2

]
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In the final block we disallow (k, l) = (0, 0). As with E2 ⊠P , we will omit drawing
the operation graphs.

Corollary 5.2. The D A bimodules E2 ⊠P and P⊠E2 are isomorphic to each other.

Proof. The primary and secondary matrices for E2 ⊠P and P ⊠ E2 agree up to a
relabeling of primary matrix entries. □

6. 1-morphism structure for N

Here we summarize, with fewer details, the computations for N that are analogous
to those for P in Section 5.

6A. Commutativity with E1.

6A1. The bimodule E1 ⊠N . The primary matrix for E1 ⊠N has block form with
the same blocks as for E1 ⊠P , namely

[ A B C

∅ ∅ ∅ X1SC
]
,


AB AC BC

A ∅ ∅ ∅
B X2 NAB X2 E ∅
C ∅ X3 X ∅

,


ABC

AB ∅
AC ∅
BC X4 N

.

The secondary matrix for E1 ⊠N has block form with blocks given by:

[ X1 SC

X1 SC 0
]


X2 NAB X2 E X3 S

X2 NAB U k+1
2 ⊗ U k+1

1 + U k+1
1 ⊗ U k+1

2 U k+1
1 ⊗ L2U k

2 0
X2 E U k

1 ⊗ R2U k
2 U k+1

1 ⊗ U k+1
2 L2

X3 S R2U k
2 ⊗ (U k+1

1 , R2) 0 0


[ X4 N

X4 N U l
1U k

2 ⊗ U k
1 U l

2

]
In the final block we disallow (k, l) = (0, 0).

6A2. The bimodule N ⊠ E1. The primary matrix for N ⊠ E1 has block form with
the same blocks as for P ⊠ E1, namely

[ A B C

∅ SX1 ∅ ∅
]
,


AB AC BC

A ∅ ∅ ∅
B N X2 E X3 ∅
C ∅ SC X3 ∅

,


ABC

AB ∅
AC ∅
BC NBC X4

.
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The secondary matrix for N ⊠ E1 has block form with blocks given by

[ SX1

SX1 0
]


N X2 E X3 SC X3

N X2 U k+1
2 ⊗ U k+1

1 + U k+1
1 ⊗ U k+1

2 U k+1
1 ⊗ L2U k

2 0
E X3 U k

1 ⊗ R2U k
2 U k+1

1 ⊗ U k+1
2 L2

SC X3 R2U k
2 ⊗ (U k+1

1 , R2) 0 0


[ NBC X4

NBC X4 U l
1U k

2 ⊗ U k
1 U l

2

]
In the final block we disallow (k, l) = (0, 0).

Corollary 6.1. The D A bimodules E1 ⊠N and N ⊠ E1 are isomorphic to each
other.

6B. Commutativity with E2.

6B1. The bimodule E2 ⊠N . The primary matrix for E2 ⊠N has block form with
the same blocks as for E2 ⊠P , namely

[ A B C

∅ ∅ ∅ Y1SC
]
,


AB AC BC

A ∅ Y2S ∅
B ∅ Y3W Y3 NBC

C ∅ ∅ ∅

,


ABC

AB Y4 N
AC ∅
BC ∅

.

The secondary matrix for E2 ⊠N has block form with blocks given by

[ Y1 SC

Y1 SC 0
]


Y2 S Y3W Y3 NBC

Y2 S 0 0 L1U k
1 ⊗ (U k+1

2 , L1)

Y3W R1 U k+1
2 ⊗ U k+1

1 U k
2 ⊗ L1U k

1
Y3 NBC 0 U k+1

2 ⊗ R1U k
1 U k+1

1 ⊗ U k+1
2 + U k+1

2 ⊗ U k+1
1


[ Y4 N

Y4 N U k
1 U l

2 ⊗ U l
1U k

2

]
In the final block we disallow (k, l) = (0, 0).



278 WILLIAM CHANG AND ANDREW MANION

6B2. The bimodule N ⊠ E2. The primary matrix for N ⊠ E2 has block form with
the same blocks as for P ⊠ E2, namely

[ A B C

∅ ∅ ∅ SY1
]
,


AB AC BC

A ∅ SAY2 ∅
B ∅ W Y2 NY3

C ∅ ∅ ∅

,


ABC

AB NABY4

AC ∅
BC ∅

.

The secondary matrix for N ⊠ E2 has block form with blocks given by

[ SY1

SY1 0
]


SAY2 W Y2 NY3

SAY2 0 0 L1U k
1 ⊗ (U k+1

2 , L1)

W Y2 R1 U k+1
2 ⊗ U k+1

1 U k
2 ⊗ L1U k

1
NY3 0 U k+1

2 ⊗ R1U k
1 U k+1

1 ⊗ U k+1
2 + U k+1

2 ⊗ U k+1
1


[ NAB Y4

NAB Y4 U k
1 U l

2 ⊗ U l
1U k

2

]
In the final block we disallow (k, l) = (0, 0).

Corollary 6.2. The D A bimodules E2 ⊠N and N ⊠ E2 are isomorphic to each
other.
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