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We show that the integration of a 1-cocycle I (X) of the space of long knots in
R3 over the Fox–Hatcher 1-cycles gives rise to a Vassiliev invariant of order
exactly three. This result can be seen as a continuation of the previous work
of the Sakai (2011), proving that the integration of I (X) over the Gramain
1-cycles is the Casson invariant, the unique nontrivial Vassiliev invariant of
order two (up to scalar multiplications). The result in the present paper is
also analogous to part of Mortier’s result (2015). Our result differs from,
but is motivated by, Mortier’s one in that the 1-cocycle I (X) is given by the
configuration space integrals associated with graphs while Mortier’s cocycle
is obtained in a combinatorial way.

1. Introduction

Spaces of smooth embeddings of manifolds are receiving a lot of attention in
topology, on the ground that various important methods in algebraic and geometric
topology are being applied to the spaces. In this paper we study the space of
(framed) long knots in R3.

Definition 1.1. A long knot is an embedding f : R1 ↪→ R3 satisfying f (x) =

(x, 0, 0) for any x ∈ R1 with |x | ≥ 1. A framed long knot is a smooth map
f̃ = ( f, w) : R1

→ R3
× SO(3) such that f is a long knot, the first column of

w(x) ∈ SO(3) is equal to f ′(x)/| f ′(x)| and w(x) is the identity matrix for any
x ∈ R1 with |x | ≥ 1. The space of all long knots (respectively framed long knots)
is denoted by K (respectively K̃).

The recent studies of K (and its high dimensional analogues) are revealing
relations between the topological nature of K and the Vassiliev invariants (see for
example [12]) for knots and links. In [17] Sakai has constructed a de Rham 1-cocycle
I (X) of K (see Section 3), by means of the integrations over configuration spaces
associated with a graph cocycle X (see Figure 6), and has shown that the integration
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of I (X) over the Gramain cycles of K gives rise to the Casson invariant v2, the
Vassiliev invariant of order two uniquely characterized by v2(trivial knot)= 0 and
v2(trefoil knot)= 1. This may be seen as a real valued version of [19, Theorem 2].
After that Mortier has given another 1-cocycle α1

3 of K in a combinatorial way and
has shown that its evaluations over the Gramain cycles and the Fox–Hatcher cycles
FH are Vassiliev invariants of orders respectively two and three [14, Theorem 4.1].
In [7; 8; 10] 1-cocycles on K are also studied in detail from a combinatorial
viewpoint.

The main result in the present paper is analogous to the order three part of
Mortier’s result.

Theorem 1.2. The integration of I (X) over the Fox–Hatcher cycles gives rise to a
Vassiliev invariant of order three for framed long knots. More precisely we have

(1-1)
∫

p∗FH f̃

I (X)= 6v3( f )− lk( f̃ )v2( f ),

where

• p : K̃ → K is the first projection and f = p( f̃ ),

• v2 is the Casson invariant, and v3 is the Vassiliev invariant of order three
characterized by the conditions

(1-2) v3(trivial knot)= 0, v3(3+

1 )= 1, v3(3−

1 )= −1

(3+

1 and 3−

1 are respectively the right-handed and the left-handed trefoil knots),
and

• lk( f̃ ) ∈ Z is the framing number of f̃ (see Remark 1.3 below).

Remark 1.3. The framing number lk( f̃ ) is the linking number of f = p( f̃ ) and
f ′, where f ′ is the long knot obtained by moving f slightly into the direction of the
second column of w. In fact the map p× lk : K̃→K×Z is a homotopy equivalence
[5, Proposition 9], and the framing number uniquely determines the framing w up
to homotopy. Thus we may regard a framed long knot as a pair ( f, w) of f ∈ K
and w ∈ Z.

The 1-cocycle I (X) is constructed by means of the configuration space integral
associated with graphs, that was developed in [1; 4; 13] to describe Vassiliev
invariants and was generalized in [6] to obtain a cochain map from a graph complex
to �∗

DR(K) (up to some correction terms, that vanish in the cases of the spaces of
long knots in high dimensional spaces). Vassiliev invariants (which are examples
of 0-cocycles of K) are obtained from trivalent graphs, while our 1-cocycle I (X)
comes from nontrivalent graphs (see Figure 6). It is very interesting, although not
strange, that nontrivalent graphs may also have information of Vassiliev invariants.
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We note that the right hand side of (1-1) coincides with the formula for Mortier’s
invariant of order three. We thus expect that the 1-cocycle I (X) is cohomologous
to Mortier’s α1

3 . This is true on the connected components of torus and hyperbolic
knots, since I (X) agrees with α1

3 on the Gramain and the Fox–Hatcher cycles by
Theorem 1.2, [17, Theorem 3.1] and [14, Theorem 4.1], and these cycles generate
π1 of the components of torus and hyperbolic knots [11, page 2].

This paper is organized as follows: In Section 2 the Fox–Hatcher cycle is
introduced, and in Section 3 the construction of the 1-cocycle I (X) is reviewed. Our
invariant v, the left hand side of (1-1), is shown to be of order three in Corollary 4.2.
The key ingredient is Theorem 4.1 and is proved in Section 4B. The formula (1-1)
is verified in Section 4C.

2. The Fox–Hatcher cycle

2A. The Fox–Hatcher cycle. The Fox–Hatcher cycle was introduced in [9], and
was later studied in [11] from the viewpoint of the space of knots. If f = p( f̃ )
is not trivial, it then gives a nonzero element of π1(K̃ f̃ ), where K̃ f̃ is the path
component of K̃ containing f̃ .

The Fox–Hatcher cycle is defined as follows. A framed long knot can be seen
as a based embedding f : S1 ↪→ S3 (we see S3 as in R4

≈ C2) together with
a framing w, with a prescribed behavior near the basepoint. For t ∈ S1, w(t)
is an orthonormal basis of T f (t)S3 whose first vector is f ′(t)/| f ′(t)|. There ex-
ists an S1-action on the space of such embeddings defined by (θ · ( f, w))(t) :=

(A(θ)−1 f (t − θ), A(θ)−1w(t − θ)), where A(θ) ∈ SO(4) is the matrix given by
A(θ)= (w(θ), f (θ)). For any f̃ ∈ K̃, this action determines a 1-cycle FH f̃ : S1

→

K̃ f̃ and we call it the Fox–Hatcher cycle. We notice that the S1-action looks very
similar to the natural S1-action on free loop spaces by the reparametrization, and in
fact this action defines a BV-operation on H∗(K̃) [18].

Practically it is convenient to describe FH on knot diagrams. In this paper a
framed long knot is drawn in a usual knot diagram with so-called blackboard
framing.

Definition 2.1. Let D be a knot diagram of f̃ with blackboard framing and c the
“left-most” crossing, namely the crossing that we meet first when traveling from
f (−1) along the natural orientation of f . We call the transformation shown in
Figure 1 the Fox–Hatcher move (FH-move for short) on c.

The left-most crossing c disappears after the FH-move on c and the right-most
crossing c′ is created. If the arc that moves in the FH-move is the over-arc (resp.
under-arc) at c, then after the FH-move it becomes the over-arc (resp. under-arc)
at c′. We arrive the original diagram D after performing the FH-moves for all
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Figure 1. The Fox–Hatcher move on c.
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Figure 2. A knot diagram and its Gauss diagram.

the other crossings c of D and the newborn crossings c′. The sequence of these
FH-moves realizes FH f̃ .

2B. FH moves and Gauss diagrams. The configuration of crossings of a knot
diagram is encoded by (linear) Gauss diagrams. Here we see how the FH-move on
the left-most crossing changes the Gauss diagram.

Definition 2.2. A (linear) Gauss diagram is a partition of {1, 2, . . . , 2n} for some
natural number n into a union

⋃
1≤k≤n{ik, jk} of n subsets of cardinality 2.

A Gauss diagram can be seen as a graph on R1 with an even number of vertices
all of which are on R1 and with each vertex joined by exactly one edge with another
vertex. Here segments in R1 interposed between two vertices are not regarded as
edges. See Figure 2 for example.

Definition 2.3 [17, Definition 3.3]. Let c1, . . . , cn be (part of the) crossings of a
knot diagram of f ∈ K such that each ci corresponds to f (pi ) and f (qi ), with
−1< p1 < · · ·< pn < 1 and pi < qi for any i = 1, . . . , n. We say that the crossings
c1, . . . , cn respect a Gauss diagram G if G is isomorphic to the Gauss diagram
Gc1,...,cn obtained by joining pi and qi for i = 1, . . . , n. See Figure 2.

Under the setting of Definition 2.3, the left-most crossing is c1. Let G be the
Gauss diagram that c1, . . . , cn respect. Then the new knot diagram obtained by
performing the FH-move on c1 has crossings c2, . . . , cn, c′

1 that respect the Gauss
diagram G ′ obtained by moving the left-most vertex (corresponding to c1) to the
right-most one. See Figure 3.

We eventually arrive the original Gauss diagram after performing the FH-moves
on all the crossings c of the original diagram and the newborn crossings c′. This
sequence produces a cycle of Gauss diagrams (see Figures 7, 8, 9). In this way the
set of all the Gauss diagrams is decomposed into the disjoint cycles.
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Figure 3. The FH-move on c1 on the Gauss diagram.
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Figure 4. An example of graphs; the i-vertices are those labeled
by 1, . . . , 6 and the f-vertices are those labeled by 7, 8, and there
is a loop at the i-vertex labeled by 6.

3. The cocycle I (X)

In this section we give a quick review of the construction of differential forms on
K associated with graphs. See also [1; 4; 6; 13; 20] for details.

By a graph we mean the oriented real line R1 together with two kind of vertices,
one is called interval and the other free, and oriented edges connecting them (see
Figure 4).

The interval vertices (or i-vertices for short) are placed on the oriented line while
the free vertices (or f-vertices for short) are not on the line. The i-vertices and
the f-vertices of a graph X are labeled by respectively the numbers 1, . . . , vi and
vi + 1, . . . , vi + vf, where vi and vf are respectively the numbers of the i-vertices
and the f-vertices of X , so that the labels of the i-vertices respect the orientation
of the real line. We allow graphs to have loops, where a loop is an edge that has
exactly one i-vertex as its endpoint (see Figure 4).

For a graph X , let EX be the configuration space

(3-1) EX :=
{
( f, (y1, . . . , yvi+vf)) ∈ K× Confvi+vf(R

3)

| yi = f (xi ) for some xi ∈ R1 for i = 1, . . . , vi
}
,

where

(3-2) Confk(M) := {(x1, . . . , xk) ∈ M×k
| xi ̸= x j if i ̸= j}

is the space of k-point configurations on a space M .
To an oriented edge α of X from the i-th vertex to the j-th vertex (i ̸= j), we

assign a map

(3-3) ϕα : EX → S2, ϕα( f, (y1, . . . , yvi +v f )) :=
y j − yi

|y j − yi |
.
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Figure 5. The graph X in Example 3.2 (the left), configurations
where the image of ϕα is contained in supp(vol) (the center), the
Hopf link (the right).

To a loop α at k-th i-vertex (1 ≤ i ≤ vi) we assign

(3-4) ϕα : EX → S2, ϕα( f, (y1, . . . , yvi +v f )) :=
f ′(xk)

| f ′(xk)|
,

where xk ∈ R1 satisfies yk = f (xk).
Let vol ∈�2

DR(S
2) be a unit volume form of S2 that is antisymmetric, meaning

that i∗ vol = − vol for the antipodal map i : S2
→ S2. Define ωX ∈�2e

DR(EX ) by

(3-5) ωX :=

∧
edges α of X

ϕ∗

α(vol),

where e is the number of edges of X . The order of the edges is not important
because deg vol = 2 is even.

Let πX : EX → K be the first projection. This is a fiber bundle with fiber

(3-6) π−1
X ( f )={y ∈Confvi+vf(R

3) | yi = f (xi ) for some xi ∈R1 for i =1, . . . ,vi}

of dimension vi + 3vf. Integrating ωX along the fiber, we get

(3-7) I (X) := πX∗(ωX ) ∈�
2e−vi−3vf
DR (K).

Remark 3.1. The integration (3-7) converges since we can compactify all the fibers
of πX by adding the boundary faces to (3-6) so that the maps ϕα are smoothly
extended to the compactification. See [3; 4; 6; 13].

Example 3.2. Let X be the graph that has only one edge α joining two i-vertices
(Figure 5, the left).

Then EX ≈ K× Conf2(R
1) and I (X) ∈�0

DR(K) is a function on K, but is not a
locally constant function (i.e., not an isotopy invariant), as we see below.

In this paper we use an antisymmetric unit volume form vol whose support is
contained in (small) neighborhoods U± of the poles (0, 0,±1)∈ S2. Suppose f ∈K
is “almost planer,” meaning that

• the image of f coincides with a knot diagram D on R2
× {0} except for

neighborhoods of crossings of D,

• near the crossings the image of f is contained in R2
× (−ϵ, ϵ), and

• the unit tangent vectors f ′(x)/| f ′(x)| are not contained in U±.
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Then ϕα : { f } × Conf2(R
1) → S2 has its image in U± only on the subspace of

(x1, x2) such that f (x1) and f (x2) are on the over- and under-arcs of a crossing of
D, one on each arc (Figure 5, the center). Each crossing contributes to the value
I (X)( f ) by half of its sign; because this contribution is the half of the linking
number of the Hopf link (Figure 5, the right), which is equal to the sign of the
crossing.

By the generalized Stokes’ theorem for fiber integrations, we have

(3-8) d I (X)= πX∗(dωX )±π
∂
X∗
(ω)= ±π∂X∗

(ω),

where π∂X is the restriction of πX to the fiberwise boundary. There exists “almost”
1-1 correspondence between

• the codimension 1 faces of the boundary that nontrivially contribute to d I (X),
and

• the graphs obtained from X by contracting one of its edges and arcs (segments
in R1 interposed between two i-vertices).

Here we in fact need the antisymmetry of vol. We thus have

(3-9) d I (X)= I (∂X)+ (correction terms),

where ∂X is a formal sum of graphs obtained from X by contracting one of its edges
and arcs. The above correspondence is not rigorously 1-1 and we need “correction
terms,” that are conjectured to vanish. We can therefore get a closed form of K if
we have a graph cocycle, a formal sum X of graphs with ∂X = 0 (and if we have
appropriate correction terms). It is known that any R-valued Vassiliev invariant can
be produced from a trivalent graph cocycle.

In [16; 17] Sakai has given an example of nontrivalent graph cocycle

(3-10) X =

∑
1≤k≤9

ak Xk, (a1, . . . , a9)= (−2, 1, 2,−2, 2,−1, 1,−1, 1)

(see Figure 6), and has proved that I (X) ∈ H 1
DR(K) is not zero.1 This follows from:

Theorem 3.3 [17]. The differential form I (X) ∈�1
DR(K) is closed, and its integra-

tion over the Gramain cycle G f (see Remark 3.4 below) is equal to the Casson
invariant v2( f ).

1The coefficients a7, a8, a9 in [16; 17] are wrong and those in (3-10) are correct. The main results
in [16; 17] still hold since the graphs X7, X8, X9 are not essential in the integration of I (X) over the
Gramain cycles. See [16, Lemma 4.2].
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Figure 6. The graphs X1, . . . , X9 that give a graph cocycle∑
i ai X i ; the edges are oriented from the vertex with the smaller

labels.

Remark 3.4. The Gramain 1-cycle G f : S1
→ K for f ∈ K is a cycle that rotates

f around the “long axis” R1
× {(0, 0)}. Explicitly G f is given by

(3-11) G f (θ)(x) :=

1
cos θ

sin θ

 f (x) for θ ∈ S1, x ∈ R1.

Mortier [14, Theorem 4.1] has given a 1-cocycle α1
3 of K in a combinatorial way

and has proved that

(3-12) ⟨α1
3,G f ⟩ = v2( f ) and ⟨α1

3, p∗FH( f,w)⟩ = 6v3( f )−w · v2( f )

for ( f, w) ∈ K × Z ≃ K̃. This result motivates us to compute the integration of
I (X) over the FH-cycles. We will give another proof of ⟨I (X),G f ⟩ = v2( f );
see Corollary 4.9 (actually this corrects the proof of [17, Theorem 3.1], see
Remark 4.11).

4. Integration of I (X) over the Fox–Hatcher cycle

Recall that p : K̃ → K is the map forgetting the framing of f̃ . For any f̃ ∈ K̃ we
define

(4-1) v( f̃ ) :=

∫
p∗FH f̃

I (X)=

∑
1≤k≤9

ak

∫
p∗FH f̃

I (Xk).

This gives an isotopy invariant v for framed long knots. Our goal is to describe v
as a linear combination of the Vassiliev invariants of order less or equal to three.
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x y xzy z y zy zx0 x0 z zy 0
x0 y 0

x0

z zx0 yx0 yx0 x0y yz0 z0z0 z0x xy y

Figure 7. Type I cycle of the Gauss diagrams respecting three
crossings under consideration; {x, y, z} = {c1, c2, c3}.

x y x z y z y yz zx0 x0 z zx0 y 0 y 0
x0

z zy 0 y 0x xy 0 y 0x xz0 z0z0 z0x xy y

Figure 8. Type II cycle of the Gauss diagrams respecting three
crossings under consideration; {x, y, z} = {c1, c2, c3}.

4A. The invariant v is of order three. For any f̃ ∈ K̃ and crossings c1, . . . , cn of
its diagram, define

(4-2) Dnv( f̃ ) :=

∑
ϵ1,...,ϵn∈{+1,−1}

ϵ1 · · · ϵnv( f̃ϵ1,...,ϵn ),

where f̃ϵ1,...,ϵn is a framed long knot obtained by changing, if necessary, the crossings
ci so that its sign is equal to ϵi . It should be noticed that Dnv depends on the choice
of crossings c1, . . . , cn , although it is not explicit in the notation. What we want to
show is D4v( f̃ )= 0 for any choice of f̃ and c1, . . . , c4.

Let c1, c2, c3 be (part of the) crossings of a diagram D of f̃ ∈ K̃ respecting the
Gauss diagram G (Definition 2.3). Let us perform the FH-moves (described in
Section 2) on all the crossings c of D and the corresponding newborn crossings c′.
The Gauss diagram that the three crossings under consideration respect changes
as in Figure 3 when the FH-move is performed on one of ci and c′

i (i = 1, 2, 3),
and in the sequence of the FH-moves realizing the FH-cycle, six Gauss diagrams
(some of which may be equal to each other) respected by the three crossings under
consideration form a cycle. Figures 7, 8 and 9 show three such cycles.

There are 15 Gauss diagrams with three edges, and only 10 of them are included
in these three cycles. The remaining five Gauss diagrams form the other two cycles,
that we omit since in fact they do not contribute to our computation in Section 4B.
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x y xz y z y yz zx0 x0 z zx0 y 0 y 0
x0

z0z0y 0 y 0
x0x0y 0 y 0x xz0 z0z0 z0x xy y

Figure 9. Type III cycle of the Gauss diagrams respecting three
crossings under consideration; {x, y, z} = {c1, c2, c3}.

Theorem 4.1. For any crossings c1, c2, c3, D3v( f̃ ) is given by

(4-3) D3v( f̃ )=
−2 if c1,c2 and c3 respect one of the Gauss diagrams in type I cycle,
2 if c1,c2 and c3 respect one of the Gauss diagrams in type II cycle,
6 if c1,c2 and c3 respect the unique Gauss diagram in type III cycle,
0 otherwise.

Corollary 4.2. The invariant v is a Vassiliev invariant for framed long knots of
order exactly three.

Proof. Let c1, . . . , c4 be crossings of a diagram of f̃ ∈ K̃. Let f̃± be knots obtained
by changing c4 so that its sign is respectively ±1. Then by definition

(4-4) D4v( f )= D3v( f+)− D3v( f−).

Moreover c1, c2 and c3 of f+ and f− respect the same Gauss diagram. Thus we
have D3v( f̃+)= D3v( f̃−) by Theorem 4.1, concluding D4v( f̃ )= 0.

Theorem 4.1 also says that D3v( f̃ ) can be nonzero, and v is not of order two or
less. □

The next subsection is devoted to the proof of Theorem 4.1.

4B. Computation of D3v. We again remind that D3v depends on the choice of
crossings c1, c2, c3. As in Example 3.2, we assume that

• vol ∈�2
DR(S

2) is an antisymmetric unit volume form of S2 whose support is
contained in small neighborhoods of poles (0, 0,±1) ∈ S2, and

• we compute D3v( f̃ ) after transforming f̃ to be “almost planar.”

We moreover assume, just for simplicity, that

• f̃ runs parallel to the x- and y-axes at each crossings (see Figure 15).
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For k = 1, . . . , 9, consider the pullback square:

(4-5)
(p ◦ FH f̃ )

∗EXk

p◦FH f̃
//

π ′

Xk
��

EXk

πXk

��

S1
FH f̃

// K̃
p
// K

Then

(4-6)
∫

p∗FH f̃

I (Xk)=

∫
S1
(p ◦ FH f̃ )

∗πXk∗ωXk

=

∫
S1
π ′

Xk∗
p ◦ FH f̃

∗ωXk

=

∫
(p◦FH f̃ )

∗ EXk

p ◦ FH f̃
∗ωXk .

Note that (p ◦ FH f̃ )
∗EXk is explicitly given by

(4-7) (p◦FH f̃ )
∗EXk

=

{
(p(FH f̃ (θ)), y)∈K×Confvi+vf(R

3)

∣∣∣ θ ∈ S1, yi = p(FH f̃ (θ))(xi )

for some xi ∈ R1, 1 ≤ i ≤ vi

}
⊂ EXk .

Suppose a diagram D of f̃ has n crossings. Then FH f̃ can be realized on knot
diagram by the sequence of 2n FH-moves on c or c′, where c is one of the crossings
of D and c′ is a newly created crossing after the FH-move on c. We can decompose
S1 into 2n intervals

(4-8) S1
=

⋃
c

(Ic ∪ Ic′)

such that FH f̃ restricted on Ic (resp. Ic′) realizes the FH-move on c (resp. c′).

Definition 4.3. Under the above setting, define

(4-9) Ek;c,c′ := {(p∗(FH f̃ (θ)), y) ∈ (p ◦ H f̃ )
∗EXk | θ ∈ Ic ∪ Ic′}.

By definition we have

(4-10) (p ◦ FH f̃ )
∗EXk =

⋃
c

Ek;c,c′

and hence

(4-11)
∫
(p◦FH f̃ )

∗ EX

ωXk =

∑
c

∫
Ek;c,c′

p ◦ FH f̃
∗ωXk .
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Figure 10. hi (i = 1, 2, 3).
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Figure 11. An element of E1;c1,c′

1,A1 .

Combining (4-1), (4-2), (4-6) and (4-11), we have

(4-12) D3v( f̃ )=

∑
1≤k≤9

ak

∑
c

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

ϵ1ϵ2ϵ3

∫
Ek;c,c′

p ◦ FH f̃ ϵ1,ϵ2,ϵ3
∗ωXk .

4B1. Eliminating X3, . . . , X9. Let hi (i = 1, 2, 3) be the distance between two
arcs at ci , i = 1, 2, 3 (Figure 10).

We may compute D3v( f̃ ) in the limit hi → 0 (i = 1, 2, 3) since v is an invariant.
In this limit, only the graphs X1 and X2 essentially contribute to D3v( f̃ );

Proposition 4.4. (1) For k = 1, . . . , 9 and any crossing c other than c1, c2, c3, we
have

(4-13) lim
h1,h2,h3→0

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

ϵ1ϵ2ϵ3

∫
Ek;c,c′

p ◦ FH f̃ ϵ1,ϵ2,ϵ3
∗ωXk = 0.

(2) If k = 3, . . . , 9, then (4-13) also holds for c ∈ {c1, c2, c3}.
Consequently

(4-14) D3v( f̃ )= lim
h1,h2,h3→0

∑
k=1,2

ak

×

∑
c∈{c1,c2,c3}

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

ϵ1ϵ2ϵ3

∫
Ek;c,c′

p◦FH f̃ ϵ1,ϵ2,ϵ3
∗ωXk .

Proof of Proposition 4.4 (1). Let −1< pi < qi < 1 (i = 1, 2, 3) with p1 < p2 < p3

be the real numbers such that f (pi ) and f (qi ) correspond to ci , and let Ai , Bi

be small open intervals that include respectively pi and qi (see Figure 11). Let
Ek;c,c′,A1 ⊂ Ek;c,c′ be the subspace consisting of (θ, y) with no y j (1 ≤ j ≤ vi)
being in A1.
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Then even if we set h1 = 0, any two points y j and y j ′ corresponding to endpoints
of a single edge of Xk do not collide in Ek;c,c′,A1 , and the maps ϕα and hence the
integrand ωXk can be defined on Ek;c,c′,A1 . This implies

(4-15) lim
h1→0

(∫
Ek;c,c′,A1

p ◦ FH f̃+1,ϵ2,ϵ3

∗ωXk −

∫
Ek;c,c′,A1

p ◦ FH f̃−1,ϵ2,ϵ3

∗ωXk

)
= 0.

If we analogously define Ek;c,c′,Am and Ek;c,c′,Bm , then similar cancellation to (4-15)
occurs for them. Moreover we have

(4-16)
⋃

m=1,2,3

(Ek;c,c′,Am ∪ Ek;c,c′,Bm )= Ek;c,c′

because no Xk has six or more i-vertices. Although A1, . . . , B3 are not disjoint, we
can arrange them to be disjoint by considering their difference sets and intersections
(on which the same argument is valid). Thus we have (4-13). □

Proof of Proposition 4.4 (2) for k = 7, 8, 9. It is enough to consider the case c = c1;
the cases c = c2, c3 can be proved similarly.

The similar argument in the proof of (1) also implies (4-15) with A1 and h1

replaced respectively by Am (or Bm) and hm , m = 2, 3. We thus complete the proof,
because Xk (k = 7, 8, 9) has three or less i-vertices and we have

(4-17) Ek;c1,c′

1
=

⋃
m=2,3

(Ek;c1,c′

1,Am ∪ Ek;c1,c′

1,Bm ). □

Proof of Proposition 4.4 (2) for k = 5, 6. It is enough to consider the case c = c1.
Let E ⊂ Ek;c1,c′

1
be the subspace of Ek;c1,c′

1
consisting of (θ, y) with each of

A2, B2, A3 and B3 containing at least one y j corresponding to an i-vertex j of Xk .
Then the integrations in (4-13) with Ek;c1,c′

1
replaced by Ek;c1,c′

1
\ E are defined

even if we set hm = 0 for at least one m ∈ {2, 3}, and the cancellation similar to
(4-15) occurs, similarly as the above proof of (2) for k = 7, 8, 9. Thus it suffices to
show (4-13) with Ek;c1,c′

1
replaced by E . Since Xk (k = 5, 6) has four i-vertices,

each of A2, B2, A3 and B3 contains exactly one point on E . We divide E into two
subspaces:

Type I: The subspace E I of E consisting of (θ, y) with y5 ∈ R3 outside neigh-
borhoods of c2 and c3. Then two i-vertices (4 and 5 in the case of Figure 12)
corresponding to the points in Am ∪ Bm are not joined by any edge, for at least one
m = 2, 3.

Even if we set hm = 0 and these two points may collide, all the maps ϕα and
hence ωXk are still defined on E I , and the cancellation similar to (4-15) occurs.

Type II: the subspace E I I of E consisting of (θ, y) with y5 ∈ R3 in a neighborhood
of cm , m ∈ {2, 3} (see Figure 13; setting h2 = 0 or h3 = 0 are problematic on this
subspace).
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c1 c2 c3

A1

B1 A2

A3

B2 B3

�

�
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�ya

y1

y5

yb

y4

Figure 12. Proposition 4.4(2) for k = 5, 6, Type I subspace (m = 3,
{a, b} = {2, 3}); one of the arcs A1 and B1 moves in the FH-move
on c1.

c1 c2 c3
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�ya

y1

y5

yb

y4

Figure 13. Proposition 4.4(2) for k =5, 6, Type II subspace (m =3,
{a, b} = {2, 3}).

On E I I at least one edge α of Xk joins the vertex 5 and j with the corresponding
point y j not on Am ∪ Bm ( j = 1 in the case of Figure 13). Then the image of ϕα is
not included in supp(vol) and hence ϕ∗

α vol = 0, because supp(vol) is assumed to
be in neighborhoods of (0, 0,±1) ∈ S2 and our f̃ is almost planar. The integrand
ωXk is therefore zero on E I I . □

Proof of Proposition 4.4 (2) for k = 4. Consider the case c = c1 (the same arguments
are valid for c = c2, c3). Let E ⊂ E4;c1,c′

1
be the subspace consisting of (θ, y) where

each of A2, B2, A3 and B3 contains at least one point. It is then enough to show
(4-13) with E4;c1,c′

1
replaced by E , as in the above proofs.

As X4 has four i-vertices, each of A2, B2, A3 and B3 contains exactly one point
on E . In particular y1 ∈ A2, and the map ϕα for the loop α at the vertex 1 has the
image outside supp(vol) by our assumption on f̃ and vol, and hence ωX4 vanishes
on E . □

Proof of Proposition 4.4 (2) for k = 3. Again consider the case c = c1. Let
E ⊂ E3;c1,c′

1
be the subspace consisting of (θ, y) satisfying both (i) and (ii):

(i) y1 is on the arc C that moves in the FH-moves on c1.

(ii) Each of A2, B2, A3 and B3 contains exactly one of y2, . . . , y5.

Then it suffices to show (4-13) with E3;c1,c′

1
replaced by E . This is because:

• If E ′ denotes the subspace of E3;c1,c′

1
consisting of (θ, y) that does not satisfy

(ii), then the integrations in (4-13) with E3;c1,c′

1
replaced by E ′ are defined
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J1

J2 �

y1 A2

B2
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�

y3

y5

�35

x

y

z

�

C

�

�

Figure 14. The configuration that can nontrivially contribute to I (X3).

even if we set hm = 0 for at least one m ∈ {2, 3} and the cancellation similar
to (4-15) occurs, by the same reason as in the above proofs.

• If E ′′ denotes the subspace of E3;c1,c′

1
consisting of (θ, y) that satisfies (ii)

but does not satisfy (i). then the map ϕα (α is the loop of X3 at the i-vertex
labeled by 1) has its image outside on supp(vol) since f̃ is supposed to be
almost planar, and hence ωX3 vanishes on E ′′.

Figure 14 shows the configurations in E that may nontrivially contribute to the
integration of I (X3).

Let Js (s = 1, 2) be the unit intervals identified with those on C drawn with thick
curves in Figure 14. We write p∗FH f̃ (θ) as fθ for short. Define φ1 : Ic1 × Js → S2

(s = 1, 2), φ24 : A2 × B2 → S2 and φ35 : A3 × B3 → S2 by

(4-18) φ1(θ, t) :=
f ′

θ (t)
| f ′

θ (t)|
, φi j (t, u) :=

f (u)− f (t)
| f (u)− f (t)|

, (i, j)= (2, 4), (3, 5).

Then

(4-19)
∫

E
p ◦ FH f̃

∗ωX3 =

∫
Ic1×(J1⊔J2)

φ∗

1 vol
∫

A2×B2

φ∗

24 vol
∫

A3×B3

φ∗

35 vol .

Define the diffeomorphisms ξ : J1 → J2 and η : R3
→ R3 by

(4-20) ξ(t)= 1 − t, η(x, y, z) := (−x, y,−z).

Then, with respect to the coordinates of R3 shown in Figure 14, the following
diagram commutes:

(4-21)

Ic1 × J1
φ1
//

id×ξ

��

S2

η

��

Ic1 × J2
φ1
// S2

⟳

and since ξ reverses the orientation and η preserves the orientation, we have

(4-22)
∫

Ic1×J2

φ∗

1 vol = −

∫
Jc1×J1

φ∗

1 vol
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y3

y5

(1-a) (1-b)
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y2
y5
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the FH-move the FH-move

c c

c c cc

G.1�a/ G.1�b/

Figure 15. Configurations essentially contributing to I (X1); they
can exist only if the three crossings under consideration respect
the Gauss diagrams G(1-a) or G(1-b).

and hence

(4-23)
∫

Ic1×(J1⊔J2)

φ∗

1 vol =

∑
s=1,2

∫
Ic1×Js

φ∗

1 vol = 0.

Thus (4-19) is zero. □

Thus we only need to compute the alternating sums of the integrations of I (X1)

and I (X2) in the limit h1, h2, h3 → 0.

4B2. Computation of I (X1). The following two subspaces of E1;c j ,c′

j
( j = 1, 2, 3)

do not essentially contribute to the alternating sum of I (X1).

• The subspace where the arc near the left-most crossing moving in the FH-move
contains no point; because the integrals on the subspace are the same for
ϵ j = +1 and ϵ j = −1 and they cancel in the alternating sum.

• The subspace where no edge joins points on Am and Bm (m = 2, 3); because
all the maps ϕα and hence the integrand ωX1 can be defined even if hm = 0
and thus the cancellation similar to (4-15) occurs.

Thus only the subspaces of types (1-a) and (1-b) consisting of (θ, y) as shown in
Figure 15 can essentially contribute to the integrations of I (X1).

In both cases, the arc near the left-most crossing containing y2 (case (1-a)) or
y4 (case (1-b)) moves to right in the FH-move, and when the arc comes over or
under the middle crossing, the map ϕ12 or ϕ14 has its image in supp(vol) and the
integrand is not zero at that moment.

If three crossings c1, c2, c3 under consideration respect one of the Gauss diagrams
in the Type I cycle (Figure 7), then in the FH-cycle we meet the situation (1-a) in
Figure 15 once, because the Gauss diagram G(1-a) appears once in the Type I cycle.
If c1, c2, c3 respect one of the Gauss diagrams in the Type II cycle (Figure 8), then
in the FH-cycle we meet the situation (1-b) in Figure 15 twice, because the Gauss
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(The FH-move)
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y4
y2
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Figure 16. Proof of Proposition 4.5; the case (1-a).

diagram G(1-b) appears twice in the Type II cycle. Otherwise we do not meet the
situations (1-a) nor (1-b) and the integration vanishes.

Proposition 4.5. We have

(4-24) ϵ1ϵ2ϵ3
∑

c∈{c1,c2,c3}

∫
E1;c,c′

p◦FH f̃ ϵ1,ϵ2,ϵ3
∗ωX1

=


1
8 if c1,c2,c3 respect one of the Gauss diagrams in Type I cycle,
−

1
4 if c1,c2,c3 respect one of the Gauss diagrams in Type II cycle,

0 otherwise;

see Figures 7 and 8 for Type I and II cycles, respectively.

Proof. Consider the first case; we may assume that c1, c2, c3 respect the Gauss
diagram G(1-a). Then only E1;c1,c′

1
can contain the configurations of type (1-a) and

nontrivially contribute to the alternating sum of the integrations of I (X1).
Let b : R1

→ R1 be a smooth even function whose graph looks as in Figure 16.
For (θ, x1, . . . , x5) ∈ R6, consider y1, . . . , y5 ∈ R3 given by

(4-25)

y1 = (x1, 0, 0),

y2 = (0,−ϵ2x2, b(ϵ2x2)),

y3 = (x3, 0, 0),

y4 = (θ,−ϵ1x4, 2b(ϵ1x4/2)),

y5 = (0,−ϵ3x5, b(ϵ3x5))

and define ϕ : R6
→ (S2)×3 by

(4-26) ϕ(θ, x1, . . . , x5) :=

(
y2 − y1

|y2 − y1|
,

y5 − y3

|y5 − y3|
,

y4 − y1

|y4 − y1|

)
.

Then changing the variables suitably, the left hand side of (4-24) is equal to

(4-27) ϵ1ϵ2ϵ3

∫
R6
ϕ∗(vol×3),

where vol×3
= pr∗1 vol ∧ pr∗2 vol ∧ pr∗3 vol ∈�6

DR((S
2)×3).
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Define 8 : R6
→ (R2)×3 and ψs : R2

→ S2 (s = 1, 2) by respectively

8(θ, x1, . . . , x5) := ((x1, ϵ2x2), (x1 − θ, ϵ1x4), (x3, ϵ3x5)),(4-28)

ψ1(x, x ′) :=
y′

− y
|y′ − y|

, ψ2(x, x ′) :=
y′′

− y
|y′′ − y|

,(4-29)

where y := (x, 0, 0), y′
:= (0,−x ′, b(x ′)), y′′

= (0,−x ′, 2b(x ′/2)). Then 8 is a
linear diffeomorphism whose determinant is ϵ1ϵ2ϵ3, and the following diagram is
commutative:

(4-30)

R6 ϕ
//

8
""

⟳

(S2)×3

(R2)×3
ψ×2

1 ×ψ2

::

Thus (4-27) is equal to

(4-31) (ϵ1ϵ2ϵ3)
2
(∫

R2
ψ∗

1 vol
)2 ∫

R2
ψ∗

2 vol =
( 1

2

)3
=

1
8 ,

here 1
2 appears by exactly the same reason as in Example 3.2.

The second case that c1, c2, c3 respect the Gauss diagram G(1-b) can be similarly
computed, replacing

• (4-25) and (4-26) respectively with

y1 = (x1, 0, 0),

y2 = (θ,−ϵ2x2, b(ϵ2x2/2)),

y3 = (x3, 0, 0),

y4 = (0,−ϵ1x4, b(ϵ1x4)),

y5 = (0,−ϵ3x5, b(ϵ3x5)),

(4-32)

ϕ(θ, x1, . . . , x5) :=

(
y4 − y1

|y4 − y1|
,

y5 − y3

|y5 − y3|
,

y2 − y1

|y2 − y1|

)
(4-33)

(namely y2 and y4 are swapped), and

• (4-28) with

(4-34) 8(θ, x1, . . . , x5) := ((x1, ϵ2x2), (x1 − θ, ϵ1x4), (x3, ϵ3x5)).
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Figure 17. Configurations essentially contributing to I (X2); they
can exist only if the three crossings under consideration respect
the Gauss diagrams G(2-a) or G(2-b).

Then the determinant of 8 is −ϵ1ϵ2ϵ3, and because we meet the situation (1-b)
twice in the FH-cycle, the left-hand side of (4-24) in this case is equal to

(4-35) −2(ϵ1ϵ2ϵ3)
2
(∫

R2
ψ∗

1 vol
)2 ∫

R2
ψ∗

2 vol = −
1
4 . □

4B3. Computation of I (X2). The computation of I (X2) goes similarly to that of
I (X1). Only the subspaces of types (2-a) and (2-b) consisting of (θ, y) as shown
in Figure 17 can essentially contribute to the alternating sum of the integrations of
I (X2).

If three crossings c1, c2, c3 under consideration respect one of the Gauss diagrams
in Type II cycle (Figure 8), then in the FH-cycle we meet the situation (2-a) in
Figure 15 twice, because the Gauss diagram G(2-a) appears twice in Type II cycle.
If c1, c2, c3 respect one of the Gauss diagrams in Type III cycle (Figure 9), then in
the FH-cycle we meet the situation (2-b) in Figure 15 six times, because the Gauss
diagram G(2-b) appears six times in Type III cycle.

Proposition 4.6. We have

(4-36) ϵ1ϵ2ϵ3
∑

c∈{c1,c2,c3}

∫
E2;c,c′

p◦FH f̃ ϵ1,ϵ2,ϵ3
∗ωX2

=


−

1
4 if c1,c2,c3 respect one of the Gauss diagrams in Type II cycle,

3
4 if c1,c2,c3 respect one of the Gauss diagrams in Type III cycle,
0 otherwise;

see Figures 8 and 9 for Type II and III cycles, respectively.

Proof. Consider the first case that c1, c2, c3 respect the Gauss diagram G(2-a). Then
only E2;c1,c′

1
can contain the configurations of type (2-a) and nontrivially contribute

to the integral.
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(The FH-move)
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Figure 18. Proof of Proposition 4.6.

The proof of this case goes very similarly to the above ones; we just need to
replace

• (4-25) and (4-26) respectively with

y1 = (x1, 0, 0),

y2 = (x2, 0, 0),

y3 = (0,−ϵ2x3, b(ϵ2x3)),

y4 = (θ,−ϵ1x4, 2b(ϵ1x4/2)),

y5 = (0, ϵ3x5, b(ϵ3x5)),

(4-37)

ϕ(θ, x1, . . . , x5) :=

(
y3 − y1

|y3 − y1|
,

y5 − y2

|y5 − y2|
,

y4 − y1

|y4 − y1|

)
,(4-38)

• (4-28) with

(4-39) 8(θ, x1, . . . , x5) := ((x1, ϵ2x3), (x1 − θ, ϵ1x4), (x2, ϵ3x5)).

Then 8 is a linear diffeomorphism with the determinant −ϵ1ϵ2ϵ3, and because we
meet the situation (2-a) twice in the FH-cycle, the left hand side of (4-36) in this
case is equal to

(4-40) −2(ϵ1ϵ2ϵ3)
2
(∫

R2
ψ∗

1 vol
)2 ∫

R2
ψ∗

2 vol = −
1
4 .

Consider the second case that c1, c2, c3 respect the Gauss diagram G(2-b). The
proof of this case goes very similarly to that of the case (1-b) in Proposition 4.5;
we just need to replace
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• (4-25) and (4-26) respectively with

y1 = (x1, 0, 0),

y2 = (x2, 0, 0),

y3 = (θ,−ϵ1x3, 2b(ϵ1x3/2)),

y4 = (0,−ϵ2x4, b(ϵ2x4)),

y5 = (0, ϵ3x5, b(ϵ3x5)),

(4-41)

ϕ(θ, x1, . . . , x5) :=

(
y4 − y1

|y4 − y1|
,

y5 − y2

|y5 − y2|
,

y3 − y1

|y3 − y1|

)
,(4-42)

• (4-28) with

(4-43) 8(θ, x1, . . . , x5) := ((x1 − θ, ϵ2x3), (x1, ϵ1x4), (x2, ϵ3x5)).

Then 8 is a linear diffeomorphism with the determinant ϵ1ϵ2ϵ3, and because we
meet the situation (2-b) six times in the FH-cycle, the left hand side of (4-36) in
this case is equal to

(4-44) 6(ϵ1ϵ2ϵ3)
2
(∫

R2
ψ∗

1 vol
)2 ∫

R2
ψ∗

2 vol =
3
4 . □

Proof of Theorem 4.1. Let c1, c2 and c3 respect one of the Gauss diagrams in Type
I cycle (Figure 7). Then by (4-14) and Propositions 4.5, 4.6 we have

(4-45) D3v( f̃ )=
∑

k=1,2

ak

∑
c∈{c1,c2,c3}

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

ϵ1ϵ2ϵ3

∫
Ek;c,c′

p◦FH f̃ ϵ1,ϵ2,ϵ3
∗ωXk

= (−2)·
∑

ϵ1,ϵ2,ϵ3∈{+1,−1}

1
8+1·0

= −2·
1
8 ·8 = −2.

Next suppose that c1, c2 and c3 respect one of the Gauss diagrams in Type II cycle
(Figure 7). Then by (4-14) and Propositions 4.5 and 4.6,

(4-46) D3v( f̃ )=
∑

k=1,2

ak

∑
c∈{c1,c2,c3}

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

ϵ1ϵ2ϵ3

∫
Ek;c,c′

p◦FH f̃ ϵ1,ϵ2,ϵ3
∗ωXk

= (−2)·
∑

ϵ1,ϵ2,ϵ3∈{+1,−1}

(
−

1
4

)
+1·

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

(
−

1
4

)
= 2.
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Lastly suppose that c1, c2 and c3 respect one of the Gauss diagrams in Type III
cycle (Figure 7). Then

(4-47) D3v( f̃ )=
∑

k=1,2

ak

∑
c∈{c1,c2,c3}

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

ϵ1ϵ2ϵ3

∫
Ek;c,c′

p◦FH f̃ ϵ1,ϵ2,ϵ3
∗ωXk

= (−2)·0+1·

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

3
4

= 6.

If c1, c2 and c3 respect no Gauss diagram in three cycles, then D3v( f̃ )= 0. □

4C. An explicit description of v. It is known (see [12, page 215] for example)
that the space of the Vassiliev invariants for framed knots of order less than or
equal to three are multiplicatively generated by the framing number lk, the Casson
invariant v2 and the order three invariant v3 (characterized by the conditions in
Theorem 1.2). Thus all the Vassiliev invariants of order less than or equal to three
are linear combinations of

(4-48) lk, v2, lk2, v3, lk ·v2, lk3 .

Lemma 4.7. Our invariant v is of the form v = av3 + b lk ·v2 + cv2 for some
constants a, b, c ∈ R.

Proof. The value of v on the trivial long knot f0(x) = (x, 0, 0) together with a
framing number w ∈ Z is a linear combination of w, w2 and w3 because v2( f0)=

v3( f0)= 0. But by the definition p∗H( f0,w) is a constant loop of K for any w ∈ Z.
Thus v( f0, w) = 0 for any w ∈ Z, and the coefficients of lk, lk2 and lk3 must be
zero. □

Below we compute the constants a, b, c in Lemma 4.7. We denote by 3+

1 and
3−

1 respectively the right-handed and the left-handed trefoil knots, by 41 the figure
eight knot. By the formulas for v2 and v3 in [15, Theorems 1 and 2] we have

(4-49) v2(3+

1 )= v2(3−

1 )= 1, v2(41)= −1, v3(41)= 0.

Proposition 4.8. We have a = 6, b = −1.

Proof. Consider the “standard” diagram of 3+

1 in Figure 2 and write it as f = f+,+,+.
This can be seen as a framed long knot with framing number +3. The diagram
f−,−,− is 3−

1 with framing number −3 and all the other fϵ1,ϵ2,ϵ3 are trivial. The
Gauss diagram in Figure 2 appears in the Type III cycle in Figure 9 and D3v( f )= 6
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c1 c3

c2

G

Figure 19. A diagram of g = 41 and the Gauss diagram that
c1, c2, c3 respect.

by Theorem 4.1. Thus we have

(4-50) 6 = D3v( f )

= (av3(3+

1 )+ b · 3 + cv2(3+

1 ))− (av3(3−

1 )+ b · (−3)+ cv2(3−

1 ))

= 2a + 6b,

here the last equality holds by (4-49).
Next consider the diagram of 41 in Figure 19.
We write it as g = g+,−,+, focusing on c1, c2, c3. This can be seen as a framed

long knot with framing number 0. Then g−,−,− is the 3−

1 with framing number −4
and all the other gϵ1,ϵ2,ϵ3 are trivial. The Gauss diagram G in Figure 19 appears in
the Type II cycle in Figure 8 and D3v(g)= 2 by Theorem 4.1. Thus we have

(4-51) 2 = D3v(g)

= −(av3(41)+ b · 0 + cv2(41))− (av3(3−

1 )+ b · (−4)+ cv2(3−

1 ))

= a + 4b,

here the last equality holds again by (4-49). Therefore a = 6, b = −1 by (4-50) and
(4-51). □

Corollary 4.9 [17, Theorem 3.1].
∫

G f
I (X)= v2( f ) for any f ∈ K.

Proof. It is not hard to see that p∗FH( f,w+1) = p∗FH( f,w)− G f for any f ∈ K and
w ∈ Z. Thus we have

(4-52) v( f, w+ 1)=

∫
p∗FH( f,w+1)

I (X)

=

∫
p∗FH( f,w)

I (X)−
∫

G f

I (X)

= v( f, w)−
∫

G f

I (X).

Since v = 6v3 − lk ·v2 + cv2,

(4-53) 6v3( f )− (w+ 1)v2( f )+ cv2( f )= 6v3( f )−wv2( f )+ cv2 −

∫
G f

I (X),

implying
∫

G f
I (X)= v2( f ). □
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Proposition 4.10. We have c = 0.

Proof. Let f̃ be the knot 3+

1 with the blackboard framing from the planar projection
in Figure 2. Its framing number is +3, and as explained in [11], the FH-cycle
p∗FH f̃ is homologous to 3 times the Gramain cycle G f (see Remark 3.4), where
f = p( f̃ ) ∈ K. This is because, as we can see in the figure in [11, page 4], the
FH-move on each crossing of f̃ is the rotation around the long axis by degree π ,
and in the FH-cycle we perform the FH-moves six times. Thus

(4-54) 6v3(3+

1 )− 3v2(3+

1 )+ cv2(3+

1 )= v( f̃ )=

∫
p∗FH f̃

I (X)= 3
∫

G f

I (X).

Corollary 4.9 allows us to rewrite (4-54) as

(4-55) 6 · 1 − 3 · 1 + c · 1 = 3 · 1,

and we have c = 0. □

This completes the proof of the formula I (X)= 6v3 − lk ·v2 in Theorem 1.2.

Remark 4.11. In fact the proof of [17, Theorem 3.1] seems to contain an error. In
[17, page 414] the second named author of the present paper claimed that “the zero-
cycle e is given by (ι, 1)”, but e is indeed given by (ι, 2). Thus [17, Lemma 3.4]
has to be corrected as “D2V ( f ) =

1
2 ” and consequently the evaluation of I (X)

over G f should be v2( f )/2, inconsistent with Corollary 4.9. Probably the proof of
Corollary 4.9 is correct and this inconsistency comes from a missing factor of 2 in
[16, Lemma 4.5], a special case of which (n = 3) is [17, Lemma 3.4].

Remark 4.12. An anonymous referee kindly suggested that the formula (1-1) in
Theorem 1.2 can recover a result of Alvarez and Labastida [2]

(4-56) v3(Tm,n)=
mn
6
v2(Tm,n)

for the (m, n)-torus (long) knot Tm,n .
The proof goes as follows. Let f̃ be a framed long knot whose underlying long

knot is f = p( f̃ )= Tm,n and framing number lk( f̃ )= w. Then the formulas (1-1)
and [17, Theorem 3.1] together with the fact that G f generates π1(K f ) ∼= Z if
f = Tm,n imply that p∗FH f̃ = k(w)G f for some k(w) ∈ Z and

(4-57) 6v3( f )−w · v2( f )=

∫
p∗FH f̃

I (X)=

∫
k(w)G f

I (X)= k(w)v2( f ).

We can see that k(mn)= 0, proving the formula (4-56). To see this, we regard the
space of framed long knots as that of framed embeddings S1 ↪→ S3 that preserve
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the basepoints and have a prescribed framing at the basepoint, as explained in
Section 2A. Then we have a homeomorphism

(4-58) Ẽmb(S1, S3)≈ K̃× SO(4), f̃ 7→ (A−1
· f̃ , A(0))

where Ẽmb(S1, S3) is the space of framed embeddings S1 ↪→ S3 (without any
basepoint conditions), A : S1

→ SO(4) is the map given in Section 2A and 0 ∈

S1
= [0, 1]/(0 ≃ 1) is the basepoint of S1. This homeomorphism induces

(4-59) K̃ ≈ Ẽmb(S1, S3)/SO(4)

and the Fox–Hatcher S1-action on K̃ is interpreted as the reparametrization on the
right hand side.

If f = Tm,n is placed on the torus {(z, w) ∈ S3
| |z| = |w| = 1/

√
2} in the

standard way, and if f is given the framing mn, then the reparametrization of
f̃ = ( f,mn) ∈ Ẽmb(S1, S3) by t ∈ S1 can be described as the multiplication of

(4-60) rm,n(t)=

(
e2π

√
−1 mt 0

0 e2π
√

−1 nt

)
∈ SO(4).

In other words FH(Tm,n,mn) is trivial on Ẽmb(S1, S3)/SO(4) and thus on K̃. There-
fore we have k(mn)= 0.
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