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THEIR CHARACTER TABLES

ALEXANDER MORETÓ AND BENJAMIN SAMBALE

Let G be a finite group with a Sylow p-subgroup P. We show that the
character table of G determines whether P has maximal nilpotency class
and whether P is a minimal nonabelian group. The latter result is obtained
from a precise classification of the corresponding groups G in terms of their
composition factors. For p-constrained groups G we prove further that the
character table determines whether P can be generated by two elements.

1. Introduction

Recently, Navarro and Sambale [2023] have investigated finite groups G with a
Sylow p-subgroup P such that |P : P ′

| = p2 or |P : Z(P)| = p2 where P ′
= [P, P]

denotes the commutator subgroup and Z(P) is the center of P. It was proved that
both properties can be read off from the character table X (G) of G. This was another
contribution to Richard Brauer’s Problem 12 [1963], which asks what properties
of a Sylow p-subgroup P are determined by X (G). We refer the reader to the
introduction of [Navarro and Sambale 2023] and [Sambale 2020] for a collection
of the known results on this problem. We just mention that one important property
is that X (G) knows whether P is abelian. While there is an elementary proof of
the case p = 2 by Camina and Herzog [1980], the full solution has required the
classification of finite simple groups (see [Kimmerle and Sandling 1995; Navarro
et al. 2015; Malle and Navarro 2021]).

After dealing with P ′ and Z(P), it is natural to turn our attention to the Frattini
subgroup 8(P) of P. Recall that |P : 8(P)| ≤ p holds if and only if P is cyclic.
It is easy to show that this property can be read off from X (G) (see [Navarro 2018,
Corollary 3.12]). In the first part of the present paper we consider groups G with
|P : 8(P)| = p2, i.e., P is generated by two elements, but not by one. For p = 2
this property is detectable by X (G) as was shown in [Navarro et al. 2021]. We
obtain the corresponding result for odd primes p provided that G is p-constrained
in Corollary 5. In the general case we offer a partial solution depending on the
socle of G (see Proposition 6 and the subsequent remark).

MSC2020: 20C15, 20D20.
Keywords: maximal class, minimal nonabelian, Sylow subgroup, fusion system, character table.

© 2023 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2023.323-2
https://doi.org/10.2140/pjm.2023.323.337
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


338 ALEXANDER MORETÓ AND BENJAMIN SAMBALE

Our next objective are groups with Sylow p-subgroups P of maximal nilpotency
class. For p = 2, this property is equivalent to |P : P ′

| = 4. This case was previously
handled in an elementary fashion by Navarro, Sambale, and Tiep [Navarro et al.
2018]. The general result is our first main theorem.

Theorem A. The character table of a finite group G determines whether G has
Sylow p-subgroups of maximal nilpotency class.

It is known that X (G) determines the isomorphism types of abelian Sylow
subgroups. Of course we cannot expect this for maximal class Sylow subgroups
as X (D8) = X (Q8). Perhaps surprisingly, X (G) does not even determine X (P).
Counterexamples for p = 3 arise as semidirect products of nonequivalent faithful
actions of SL(2, 3) on C9 × C9 (the groups are SmallGroup(2335, a) with a ∈

{2289, 2290} in GAP [2020]). Here P indeed has maximal class. This is related to
[Navarro et al. 2022, Question E].

We obtain Theorem A as a consequence of the following structure description,
which might be of independent interest:

Theorem B. Let G be a finite group with a Sylow p-subgroup P of maximal class.
Suppose that Op′(G) = 1 and Op′

(G) = G. Then one of the following holds:

(i) There exists x ∈ P such that |CG(x)|p = p2.

(ii) G is quasisimple and |Z(G)| ≤ p.

The proof uses recent work by Grazian and Parker [2022] on fusion systems and
is given in Section 3.

In the final part of the paper we study groups with minimal nonabelian Sylow
p-subgroups P, i.e., P is nonabelian, but every proper subgroup of P is abelian. It
is easy to see that this happens if and only if |P : Z(P)| = |P : 8(P)| = p2 (see
Lemma 9 below). Refining [Navarro and Sambale 2023, Theorem 7.5], we obtain
in Section 4 the following description:

Theorem C. Let G be a finite group with a minimal nonabelian Sylow p-subgroup
P and Op′(G) = 1. Then one of the following holds:

(i) p = 2, P ∈ {D8, Q8} and O2′

(G) ∈ {SL(2, q), PSL(2, q ′), A7} where q ≡

±3 (mod 8) and q ′
≡ ±7 (mod 16).

(ii) |P| = p3 and exp(P) = p > 2.

(iii) G = P ⋊ Q where Q ≤ GL(2, p).

(iv) p > 2, Op′

(G) = S ⋊C pa where S is a simple group of Lie type with cyclic
Sylow p-subgroups. The image of C pa in Out(S) has order p.

(v) p = 2 and G = PSL(2, q f ) ⋊ C2ad where q is a prime, q f
≡ ±3 (mod 8)

and d | f . Moreover, C2a acts as a diagonal automorphism of order 2 on
PSL(2, q f ) and Cd induces a field automorphism of order d.
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(vi) p =3 and O3′

(G)=PSLϵ(3, q f )⋊C3a where ϵ =±1, q is prime, (q f
−ϵ)3 =3

and G/O3′

(G) ≤ C f × C2.

Here, PSLϵ stands for PSL if ϵ = 1 and PSU otherwise. Again the proof is based
on the classification of the corresponding fusion systems. To show that Case (iv) in
Theorem C occurs for all odd primes p, we will exhibit appropriate examples after
the proof.

Corollary D. The character table of a finite group G determines whether G has
minimal nonabelian Sylow p-subgroups.

2. 2-generated Sylow subgroups

In the following G will always denote a finite group. The exponent of G is
denoted by exp(G). The core of a subgroup H ≤ G is defined by coreG(H) :=⋂

g∈G gHg−1 ⊴G. For x, y ∈ G let [x, y] := xyx−1 y−1. The Fitting subgroup and
the generalized Fitting subgroup of G are denoted by F(G) and F∗(G) = F(G)E(G)

respectively. We write Irr(G) to denote the set of ordinary complex irreducible
characters of G. For g ∈ G and χ ∈ Irr(G) let

Q(g) := Q(χ(g) : χ ∈ Irr(G)),

Q(χ) := Q(χ(g) : g ∈ G).

It is well-known that Q(χ) lies in the cyclotomic field Qn where n = |G|. Let fχ
be the smallest positive integer such that Q(χ) ⊆ Q fχ ( fχ is called the Feit number
in [Navarro 2018]). Let Irrp′(G) := {χ ∈ Irr(G) : p ∤ χ(1)} as usual. The p-part
and the p′-part of an integer n are denoted by n p and n p′ respectively.

Our first lemma is applied multiple times throughout the paper.

Lemma 1. Let A be an abelian normal subgroup of G such that G = ⟨x⟩A for some
x ∈ G. Then the map A → G ′, a 7→ [x, a] is an epimorphism with kernel CA(x). In
particular, |G ′

| = |A/CA(x)|.

Proof. See [Isaacs 2008, Lemma 4.6]. □

To get from P ′ to 8(P) we need the following variant:

Lemma 2. Let P be a p-group with a proper normal subgroup Q and x ∈ P
such that P = ⟨x⟩Q and ⟨x⟩ ∩ Q ≤ P ′. Then |P : 8(P)| = p2 if and only if
|CQ/8(Q)(x)| = p.

Proof. Since ⟨x⟩ ∩ Q ≤ P ′
≤ 8(P) and Q < P, we have

P/8(P) = Q8(P)/8(P) × ⟨x⟩8(P)/8(P) ∼= Q/(Q ∩ 8(P)) × C p.

Moreover,

8(P) ∩ Q = P ′8(Q)⟨x p
⟩ ∩ Q = P ′8(Q)(⟨x p

⟩ ∩ Q) = P ′8(Q).
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Now |P : 8(P)| = p2 if and only if

|Q/8(Q) : (P/8(Q))′| = |Q : P ′8(Q)| = p.

By Lemma 1 applied to Q/8(Q)⊴ P/8(Q), this is equivalent to

|CQ/8(Q)(x)| = p. □

The next result is a variation of [Navarro and Sambale 2023, Theorem 6.1].

Lemma 3. Let G be a finite group with a Sylow p-subgroup P and Op′(G) = 1.
Then

K :=

⋂
χ∈Irrp′ (G)

p2 ∤ fχ

Ker(χ) = coreG(8(P)).

Proof. Let n := |G|. If n p = 1, then the claim holds since
⋂

χ∈Irr(G) Ker(χ) = 1 = P.
Thus, let n p ̸= 1. Then G := Gal(Qn|Qpn p′ ) is a p-group. Let N := coreG(8(P))

and χ ∈ Irrp′(G) with p2 ∤ fχ . Since Q(χP) ⊆ Q(χ) ⊆ Qpn p′ , G permutes the
irreducible constituents of χP. Since the sizes of the G-orbits are p-powers and
p ∤χ(1), there must be a linear constituent λ ∈ Irr(P|χ) fixed by G, i.e., Q(λ) ⊆ Qp.
It follows that N ⊆ 8(P) ⊆ Ker(λ). By Clifford theory, χN is a sum of conjugates
of λN . Hence, N ⊆ Ker(χ). This shows that N ≤ K .

Now let λ ∈ Irr(P/8(P)). This time, G acts on the irreducible constituents of λG.
Since p ∤ |G : P| = λG(1), there must be a constituent χ ∈ Irrp′(G|λ) fixed by G, i.e.,
p2 ∤ fχ . This implies χP∩K = χ(1)1P∩K . On the other hand, λP∩K is a constituent
of χP∩K . Therefore, P ∩ K ⊆ Ker(λ). Since λ ∈ Irr(P/8(P)) was arbitrary, we
obtain P ∩ K ≤ 8(P). Now Tate’s theorem (see [Huppert 1967, Satz IV.4.7]) yields
that K is p-nilpotent. By hypothesis, Op′(K ) ≤ Op′(G) = 1 and K is a p-group.
Finally, K ≤ Op(G) ∩ K ≤ P ∩ K ≤ 8(P) and K ≤ N . □

We mention that the characters χ with p2 ∤ fχ are precisely the almost p-rational
characters introduced in [Hung et al. 2022]. Lemma 3 allows to read off K :=

coreG(8(P)) from the character table. Since |P/K : 8(P/K )| = |P : 8(P)|, it is
therefore no loss to assume that K = 1. The next theorem comes close to [Navarro
and Sambale 2023, Theorem 3.1].

Theorem 4. Let G be a finite group with a nonabelian Sylow p-subgroup P
such that |P : 8(P)| = p2 and Op′(G) = 1 = coreG(8(P)). Then F∗(G) is
the unique minimal normal subgroup of G and PF∗(G)/F∗(G) is cyclic. If F∗(G)

is nonabelian, then P permutes the simple components of F∗(G) transitively. In
particular, their number is a p-power in this case.
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Proof. Let N be a minimal normal subgroup of G. Then

|P N/N : 8(P N/N )| = |P/P ∩ N : 8(P/P ∩ N )|

= |P/P ∩ N : 8(P)(P ∩ N )/P ∩ N |

= |P : 8(P)(P ∩ N )|

≤ |P : 8(P)|

= p2,

where the second equality follows from [Isaacs 2008, Lemma 4.5], for instance.
Suppose first that P ∩ N ≤ 8(P). Then by Tate’s theorem (see [Huppert 1967,
Satz IV.4.7]), N is a p-group and N ≤ 8(P). This contradicts coreG(8(P)) = 1.
Consequently, |P N/N : 8(P N/N )| ≤ p and P N/N is cyclic. Let M ̸= N be
another minimal normal subgroup of G. Then G/N and similarly G/M have cyclic
Sylow p-subgroups. Since G is isomorphic to a subgroup of G/M × G/N , G has
abelian Sylow p-subgroups, which we have excluded explicitly. This shows that N
is the unique minimal normal subgroup.

Assume now that N is nonabelian. Then F(G)∩ N = 1 implies F(G) = 1 = Z(G)

and F∗(G) = E(G) = N . Write N = T1 × · · ·× Tn with nonabelian simple groups
T1 ∼= · · · ∼= Tn . If P ≤ N , using that P is 2-generated and nonabelian, we conclude
that n = 1 and P certainly acts transitively on {T1, . . . , Tn}. Hence, we may assume
that P ⊈ N and n ≥ 2. Let Qi := P ∩ Ti for i = 1, . . . , n. Let x ∈ P such that
P N/N =⟨x N ⟩. Since P ∩N ⊈8(P), there exists some 1 ≤ i ≤ n with Qi ⊈8(P).
Without loss of generality, let i =1. Choose y ∈ Q1\8(P). For all j ∈Z we note that
xy j /∈ N ⊇8(P). Since |P :8(P)| = p2, it follows that P =⟨x, y⟩. Without loss of
generality, let T1, . . . , Tk be the orbit of T1 under P. Suppose by way of contradiction
that k <n. Then Q1 · · · Qk⊴P and Qk+1×· · ·×Qn ≤ P/Q1 · · · Qk =⟨x Q1 · · · Qk⟩

is cyclic. This is only possible if n = k+1 and Qn is cyclic. Moreover, Qn =⟨x pa
z⟩

for some a ≥ 1 and z ∈ Q1 · · · Qk . Since a nonabelian simple group cannot have
a cyclic Sylow 2-subgroup, p > 2. It follows from [Gross 1982, theorem A] that
x induces an inner automorphism on Tn . This is impossible since x pa

induces an
inner automorphism of order |Tn|p. This contradiction shows that P permutes the
Ti transitively.

Finally, assume that N is elementary abelian. Since Op′(G) = 1, we have
F := F(G) = Op(G). Suppose that N < F . Then 8(F) ≤ 8(P) yields 8(F) ≤

coreG(8(P)) = 1, i.e., F is elementary abelian. Now the existence of an element
of order p in P \ N implies the existence of a (cyclic) complement of N in P. By a
theorem of Gaschütz (see [Huppert 1967, Hauptsatz I.17.4]), N has a complement K
in G. Since F centralizes N , we obtain 1 ̸= K ∩ F ⊴N K = G. This contradicts the
fact that N is the unique minimal normal subgroup of G. Hence, F = N . Suppose
that E(G) ̸=1 and choose a central product M⊴G of quasisimple components. Then
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N ≤ Z(M), because 1 ̸= N ∩ M ⊴G. Since M/N has cyclic Sylow p-subgroups,
the order of the Schur multiplier of M/N is not divisible by p. This contradicts
N ≤ Z(M). We have therefore shown that N = F∗(G). □

In order to decide whether |P : 8(P)| = p2, we may assume that the hypotheses
of Theorem 4 are fulfilled. The situation now splits into two cases. When F∗(G)

is abelian, the group G is p-constrained (recall that in general a group G is called
p-constrained if CG(Op(G)) ≤ Op(G) where G := G/Op′(G)). In this case we
solve the problem completely. To do so, we will use a result of Higman (see
[Navarro 2018, Corollary 7.18]) that allows to locate the p-elements in X (G).

Corollary 5. The character table of a p-constrained group G determines whether
a Sylow p-subgroup P is generated by two elements.

Proof. Let P be a Sylow p-subgroup of G. Since the character table X (G) deter-
mines X (G/Op′(G)), we may assume that Op′(G) = 1. Since G is p-constrained,
Op(G) > 1. By Lemma 3, we may assume that coreG(8(P)) = 1. Moreover,
the orders and embeddings of the normal subgroups of G can be read off from
X (G). Hence by Theorem 4, we may assume that N = Op(G) = F(G) is the only
minimal normal subgroup of G. If P = N , then |P : 8(P)| = |P| and we are
done. Hence, let N < P. By [Navarro 2018, Corollary 3.12], X (G/N ) detects
whether P/N is cyclic. By Theorem 4, we can assume that this is the case. Choose
x ∈ P with P/N = ⟨x N ⟩ (note that x can be spotted in X (G) using [Navarro 2018,
Corollary 3.12]). Since P = N ⟨x⟩ = Op(G)⟨x⟩ is the only Sylow p-subgroup of
G containing x , CP(x) = CN (x)⟨x⟩ is a Sylow p-subgroup of CG(x). In particular,
|CN (x)| = |CG(x)|p/|P/N | is determined by X (G). By Lemma 1, we have

(2-1) P ′
= [x, N ] = {[x, y] : y ∈ N }

and |P ′
| = |N/CN (x)| can be computed from X (G). Let |P/N | = pa and

|N/P ′
| = pn. If x pa

∈ P ′, then P/P ′ ∼=C pa ×Cn
p and otherwise P/P ′ ∼=C pa+1×Cn−1

p .
Since Q(x) can be read off from X (G), it suffices to show that

p|Q(x) : Q|p = exp(P/P ′).

Taking only X (G/N ) into account, we obtain Q(x N ) = Qpa or equivalently
|Q(x N ) : Q|p = pa−1 by [Navarro 2018, Theorem 3.11]. Thus |Q(x) : Q|p ≥ pa−1.
If x pa

= 1, then p|Q(x) : Q|p = pa
= exp(P/P ′) as desired. Now let |⟨x⟩| = pa+1.

If x pa
∈ P ′, then there exists y ∈ N with x pa

= [x, y] = xyx−1 y−1 by (2-1). It
follows that yxy−1

= x1−pa
and |NG(⟨x⟩) : CG(x)|p = p. Again by [Navarro 2018,

Theorem 3.11], we have p|Q(x) : Q|p = pa
= exp(P/P ′). Assume conversely

that |Q(x) : Q|p = pa−1. Then there exists y ∈ G with yxy−1
= x1+kpa

for some
0 < k < p. We observe that y ∈ NG(⟨x⟩N ) = NG(P). Replacing y by its p-part,
we get y ∈ P. Now x−kpa

= [x, y] ∈ P ′ and exp(P/P ′) = pa as desired. □
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If G is p-solvable in the situation of Corollary 5 (recall that every p-solvable
group is p-constrained), then Op(G) has a complement K in Opp′(G) by the Schur–
Zassenhaus theorem. Using the Frattini argument, it is easy to show that NG(K ) is
a complement of N in G. In this situation, G is a primitive permutation group on
N of affine type.

On the other hand, every nonabelian simple group S gives rise to a nonsplit
extension G = N .S where N = 8(G) is elementary abelian without complement
(see [Doerk and Hawkes 1992, Theorem B.11.8]). Garrison [1976] has exhibited
examples to show that X (G) does not determine whether G splits over N . For
instance,

PerfectGroup(7500, 1) ∼= C3
5 ⋊ A5 and PerfectGroup(7500, 2) ∼= C3

5 .A5

in GAP [2020] have the same character table and the Sylow 5-subgroup is 2-
generated in both cases.

Now assume that N = F∗(G) in the situation of Theorem 4 is nonabelian. If
N ∩ P is abelian, then N has a complement in P N by [Huppert 1967, Satz IV.3.8].
In this case P N is a twisted wreath product. The nonsplit extension M10 = A6.C2

with P = SD16, a semidihedral group, shows that this is not always the case. Even
when N is not simple, P ∩ N is not always abelian (as in [Navarro and Sambale
2023, Theorem 3.1]). One example is

G = PSL(2, 7)2 ⋊ ⟨x⟩ ∼= PSL(2, 7)2 ⋊C4 ≤ PGL(2, 7) ≀ C2,

where x2 acts as a diagonal automorphism on both factors PSL(2, 7) simultaneously.
Here P = D2

8 ⋊C4 is 2-generated. Nevertheless, we provide the following reduction
theorem:

Proposition 6. Let G be a finite group with Sylow p-subgroup P such that Op′(G)=1
and N = F∗(G) is the unique minimal normal subgroup of G. Suppose that N is
nonabelian and P N/N is cyclic. Let S be a simple component of N . Assume that
|G : NG(S)| is a p-power. Then the following hold:

(i) G = NG(S)P.

(ii) P̃ := NP(S)CG(S)/CG(S) is a Sylow p-subgroup of the almost simple group
NG(S)/CG(S) with socle S̃ := SCG(S)/CG(S) ∼= S. Moreover, P̃ S̃/S̃ is cyclic.

(iii) |P : 8(P)| ≤ p2 if and only if |P̃ : 8(P̃)| ≤ p2.

(iv) S and |P̃| are determined by X (G).

Proof. (i) Since |G : NG(S)| is a p-power, |NG(S)P| = |NG(S) : NP(S)||P| = |G|

and G = NG(S)P.

(ii) By (i), NP(S) is a Sylow p-subgroup of NG(S). Hence, P̃ is a Sylow p-
subgroup of NG(S)/CG(S). Let Q := N ∩ P ⊴ P. Then P/Q ∼= P N/N is cyclic by
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hypothesis. Let x ∈ P such that P =⟨x⟩Q. Then P̃ S̃/S̃ ∼=NP(S)SCG(S)/SCG(S)≤

⟨x⟩SCG(S)/SCG(S) is cyclic.

(iii) If P ≤ N ≤ NG(S), then S⊴G and N = S. Here, P ∼= P̃ , so we are done. Now
assume P N/N ̸= 1. As in (ii), let Q := N ∩ P ⊴ P. Since Op(P N ) = N , there
exists x ∈ P such that P = ⟨x⟩Q and ⟨x⟩ ∩ Q ≤ P ′ (see [Brandis 1978, Satz 3.3]).
Lemma 2 yields |P : 8(P)| = p2 if and only if |CQ/8(Q)(x)| = p.

By (i), we may write N =T1×· · ·×Tpa such that Ti = x i−1Sx1−i for i =1, . . . , pa.
Let Qi := Ti ∩ P ≤ Q. Then Q̃ := Q1CG(S)/CG(S) ∼= Q1 is a normal subgroup
of P̃ . Since NP(S) = ⟨x pa

⟩Q, we have P̃ = ⟨x̃⟩Q̃ where x̃ := x pa
CG(S). It is easy

to see that the map

CQ1/8(Q1)(x pa
) → CQ/8(Q)(x), y8(Q1) 7→

pa
−1∏

i=0

x i yx−i8(Q)

is an isomorphism. In particular, |CQ/8(Q)(x)| = |CQ1/8(Q1)(x pa
)|. Assume for

the moment that x pa
∈ Q. Then

P̃ = Q̃ ≤ S̃ and |CQ1/8(Q1)(x pa
)| = |Q1/8(Q1)| = |P̃/8(P̃)|.

In this case, |P : 8(P)| = p2 if and only if P̃ is cyclic, i.e., |P̃ : 8(P̃)| = p. Now
let x pa

/∈ Q. By way of contradiction, suppose that x pa
∈ Q1CG(S). Then there

exists y ∈ Q1 such that x pa
y ∈ CG(S). Now also

z := x pa
pa

−1∏
i=0

x i yx−i
∈ CG(S).

Since z is centralized by x , it follows that z ∈ x i CG(S)x−i
=CG(Ti ) for i =1, . . . , pa.

Hence, z ∈ CG(N ) = 1 and x pa
∈ Q, a contradiction. Thus, Q̃ < P̃ and

Q̃ ∩ ⟨x̃⟩ = (Q ∩ ⟨x pa
⟩)CG(S)/CG(S) ≤ P ′CG(S)/CG(S) = P̃ ′.

Lemma 2 shows that |P̃ : 8(P̃)| = p2 if and only if

|CQ1/8(Q1)(x pa
)| = |CQ̃/8(Q̃)(x̃)| = p.

Now the claim follows.

(iv) The isomorphism types of N and S are determined by X (G) according to
[Navarro and Sambale 2023, Theorem 4.1]. We obtain |NP(S)| from |N | =

|S|
|P:NP (S)|. Arguing as in (iii), shows that CP(S) = CQ(S) = Q2 · · · Q pa. Hence,

|CP(S)| = |S|
pa

−1
p is computable from X (G). The claim follows from P̃ ∼=

NP(S)/CP(S). □

To decide whether |P : 8(P)| = p2 holds, it suffices to obtain the structure
of P̃ with the notation from Proposition 6. If p ≥ 5 and S is neither a linear nor
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a unitary group, then Out(S) has a cyclic Sylow p-subgroup by [Conway et al.
1985, Table 5]. In this case the isomorphism type of P̃ is uniquely determined by
X (G) and the problem is solved. On the other hand, the proof of [Navarro and
Sambale 2023, Lemma 5.1] shows that for linear and unitary groups S the condition
|P : 8(P)| = p2 is not determined by |P̃| alone. It remains a challenge to settle
these cases (and p = 3 with S = D4(q), E6(q) and 2 E6(q)).

3. p-groups of maximal class

We start by introducing some terminology of (saturated, nonexotic) fusion systems.
Let P be a Sylow p-subgroup of G as before. The fusion system F = FP(G) of
G on P is a category whose objects are the subgroups of P and the morphisms
of F have the form f : S → T, x 7→ gxg−1 where S, T ≤ P and g ∈ G. Then
AutF (S) ∼= NG(S)/CG(S) and OutF (S) ∼= NG(S)/SCG(S). Elements x, y ∈ P (or
subsets S, T ⊆ P) are called F-conjugate if there exists a morphism f such that
f (x) = y (or f (S) = T ). A subgroup S ≤ P is called

• fully normalized, if |NP(T )| ≤ |NP(S)| for all F-conjugates T of S,

• centric, if CP(T ) = Z(T ) for all F-conjugates T of S,

• radical, if Op(AutF (S)) = Inn(S) (equivalently, Op(OutF (S)) = 1),

• essential, if S is fully normalized, centric and OutF (S) contains a strongly
p-embedded subgroup (see [Aschbacher et al. 2011, Definition A.6]). For our
purpose, it is enough to know that S is radical in this case.

By Alperin’s fusion theorem, every morphism in F is a composition of restrictions
of morphisms f ∈ AutF (S) where S = P or S is essential (see [Aschbacher et al.
2011, Theorem I.3.5]). Note that AutF (P) permutes the essential subgroups by
conjugation. Hence, if Q ≤ P does not lie in any essential subgroup, then Q is fully
normalized. In this case, NP(Q) is a Sylow p-subgroup of NG(Q) (see [Aschbacher
et al. 2011, Lemma I.1.2]). Consequently, CP(Q) = NP(Q) ∩ CG(P) is a Sylow
p-subgroup of CG(P).

We call F controlled if NG(P) controls the fusion in P with respect to G, i.e.,
every morphism S → T has the form x 7→ gxg−1 for some g ∈ NG(P). Abstractly,
this means that there are no essential subgroups and F = FP(P ⋊ A) for some
Schur–Zassenhaus complement A of Inn(P) in AutF (P). More generally, F is
called constrained if there exists Q ⊴ P such that CP(Q) = Z(Q) and NG(Q)

controls the fusion in P. By the model theorem (see [Aschbacher et al. 2011,
Theorem I.4.9]), a constrained fusion system is realized by a unique group G such
that CG(Op(G)) ≤ Op(G) (note that G is p-constrained). The largest subgroup
Q ⊴ P such that NG(Q) controls the fusion in P is denoted by Op(F). Note that
Op(G) ≤ Op(F).
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It is well-known that a p′-automorphism of Q ≤ P acts nontrivially on Q/8(Q).
If Q is radical, it follows that OutF (Q) acts faithfully on Q/8(Q). Now assume
that there exists a series of characteristic subgroups 8(Q) = Q0 < · · · < Qn = Q
of Q. Then OutF (Q) acts faithfully on Qn/Qn−1 × · · · × Q1/Q0 by [Gorenstein
1980, 5.3.2]. This argument will often be applied in the following to exclude same
candidates of essential subgroups.

We say that a p-group P of order pn has maximal class if the nilpotency class
is n − 1. This may include the case |P| = p2. The 2-groups of maximal class
are the dihedral groups (including C2

2 ), the semidihedral groups, the (generalized)
quaternion groups and C4 (see [Huppert 1967, Satz III.11.9]). Now assume that
n ≥ 4 and p > 2 to avoid some degenerate cases. Let K2(P) = P ′ and Ki+1(P) =

[P, Ki (P)] for i ≥ 2. Let Z0(P) := 1 and Zi+1(P/Zi (P)) := Z(P/Zi (P)) for
i ≥ 0. Then Ki (P) = Zn−i (P) is the only normal subgroup of P of index pi by
[Huppert 1967, Hilfssatz III.14.2]. It is easy to see that the characteristic subgroups
P1 := CP(K2(P)/K4(P)) and P2 := CP(Z2(P)) are maximal in P.

Lemma 7. Let P be a p-group with a nonabelian subgroup Q ≤ P of order p3 and
exponent p. If CP(Q) = Z(Q), then Z2(P) ≤ Q.

Proof. Since Z(P) ≤ CP(Q), we have Z := Z(P) = Z(Q) ∼= C p. Let x Z ∈

CP/Z (Q/Z). Then x ∈ NP(Q). By [Winter 1972], NP(Q)/Q ≤ Out(Q) ∼=

GL(2, p). As mentioned above, the kernel of the action of Aut(Q) on Q/Z is
a p-group. Since Op(GL(2, p)) = 1, we obtain x ∈ Q. Hence, Z2(P)/Z =

Z(P/Z) ≤ CP/Z (Q/Z) = Q/Z and Z2(P) ≤ Q. □

Lemma 8. Let G be a finite group with Sylow p-subgroup P of maximal class. Let
N ⊴G such that p2

≤ |N |p < |P|. Then there exists x ∈ P such that |CG(x)|p = p2.

Proof. By hypothesis, |P| ≥ p|N |p ≥ p3. In particular, Z(P) is the unique normal
subgroup of order p of P. Since M := P ∩ N ⊴ P, we have Z(P) ≤ N . If |P| = p3,
every element x ∈ P \ N cannot be conjugate to an element of Z(P) ≤ N . Hence,
|CG(x)|p = p2. Now assume that |P| ≥ p4. If p = 2, P is a dihedral, semidihedral
or quaternion group and we choose x ∈ P outside the cyclic maximal subgroup
of P. For p > 2, let x ∈ P \ (P1 ∪ P2). By [Huppert 1967, Hilfssatz III.14.13], we
have |CP(x)| = p2. Since |P| ≥ p4, Z2(P) is the unique normal subgroup of order
p2 in P. In particular, Z2(P) ≤ M since |M | ≥ p2. If p = 2, we may assume that
x /∈ M. For p > 2, we have P1 ∪ P2 ∪ M ⊊ P. Again we may choose x /∈ M.

Let F be the fusion system of G on P. If x is not contained in any essential
subgroup, then ⟨x⟩ is fully normalized as explained above. It follows that |CG(x)|p =

|CP(x)| = p2 and we are done. Now let Q < P be essential containing x . By
[Grazian and Parker 2022, Theorem D], Q is a so-called pearl, i.e., Q is elementary
abelian of order p2 or nonabelian of order p3 and exponent p (or Q = Q8 if p = 2,
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see [Grazian and Parker 2022, Lemma 6.1]). As an essential subgroup, Q is centric
and CP(Q) = Z(Q). Assume first that |Q| = p2. Then

Z := Z(P) = M ∩ Q = N ∩ Q ⊴NG(Q).

Since Q is radical, OutF (Q) ∼= NG(Q)/Q acts faithfully on Z × Q/Z ∼= C2
p. But

then OutF (Q) would be a p′-group in contradiction to Q < NP(Q). Next let
|Q| = p3. Here, Lemma 7 shows that Z2(P) = M ∩ Q = N ∩ Q ⊴NG(Q). Then
OutF (Q) acts faithfully on Z2(P)/Z × Q/Z2(P) ∼= C2

p and we derive another
contradiction. □

Theorem B. Let G be a finite group with a Sylow p-subgroup P of maximal class.
Suppose that Op′(G) = 1 and Op′

(G) = G. Then one of the following holds:

(i) There exists x ∈ P such that |CG(x)|p = p2.

(ii) G is quasisimple and |Z(G)| ≤ p.

Proof. We may assume that G is not simple and |P| ≥ p3. Let N < G be a maximal
normal subgroup. Then 1 < |N |p < |P| as Op′(G) = 1 and Op′

(G) = G. If
|N |p ≥ p2, then the claim follows from Lemma 8. Hence, let |N |p = p. Then
P ∩ N ⊴ P has index ps

≥ p2 and therefore P ∩ N = Ks(P) ≤ P ′. By Tate’s
theorem (see [Huppert 1967, Satz IV.4.7]), N has a normal p-complement. Since
Op′(G) = 1, this forces |N | = p. Since |G : CG(N )| divides p −1, we further have
N ≤ Z(G). Since G/N is simple, G is quasisimple with |Z(G)| ≤ p. □

If Case (ii) in Theorem B applies with |Z(G)| = p and (i) fails, then Robinson’s
ordinary weight conjecture predicts the existence of an irreducible character χ in
the principal p-block such that p2χ(1)p = |G|p (see [Robinson 2008, Lemma 4.7]).
Conversely, such a character can only appear when P has maximal class. Examples
are SL(2, 9) for p = 2, SL(3, 19) for p = 3 and SL(p, q) for p ≥ 5 where q −1 is
divisible by p just once. Our proof of Theorem A does however not rely on any
conjecture.

Theorem A. The character table of a finite group G determines whether G has
Sylow p-subgroups of maximal class.

Proof. Let P be a Sylow p-subgroup of G. We may assume that Op′(G) = 1 and
|P| ≥ p3. Let K := Op′

(G). The character table detects elements x ∈ P such that
|CG(x)|p = |CK (x)|p = p2. In this case |CP(x)| = p2 and P has maximal class by
[Huppert 1967, Satz III.14.23]. Hence, by Theorem B we may assume that K is
quasisimple with |Z(K )| ≤ p. Note that the character table of G determines the
isomorphism type of the simple chief factor K/Z(K ) (see [Navarro and Sambale
2023, Theorem 4.1]). In this way we confirm that the Sylow p-subgroup P/Z(K )

of K/Z(K ) has maximal class. If Z(K ) = 1, then we are done. Otherwise, P
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has maximal class if and only if Z(K ) = Z(P). This happens if and only if
|CG(x)|p < |P| for all x ∈ P \ Z(K ). □

4. Minimal nonabelian Sylow subgroups

The following elementary lemma underlines the importance of minimal nonabelian
groups. For elements x , y, z of a group we use the commutator convention
[x, y, z] := [x, [y, z]].

Lemma 9. For a p-group P the following assertions are equivalent:

(1) P is minimal nonabelian.

(2) |P : 8(P)| = |P : Z(P)| = p2.

(3) |P : 8(P)| = p2 and |P ′
| = p.

Proof. (1) ⇒ (2) : Since P is nonabelian, there exist noncommuting elements
x, y ∈ P. Since ⟨x, y⟩ is nonabelian, we have P = ⟨x, y⟩. By Burnside’s basis
theorem, |P : 8(P)| = p2. Choose distinct maximal subgroups S, T < P. Since S
and T are abelian and P = ST, it follows that 8(P)= S∩T ⊆Z(P). It is well-known
that P/Z(P) cannot be a nontrivial cyclic group. In particular, |P : Z(P)| ≥ p2 and
8(P) = Z(P).

(2) ⇒ (3) : Let Z(P) < S < P. Since S/Z(P) is cyclic and Z(P) ≤ Z(S), we obtain
that S is abelian. Pick x ∈ P \ S. Then Lemma 1 yields that |P ′

| = |S : Z(P)| = p.

(3) ⇒ (1) : Obviously, P is nonabelian since P ′
̸= 1. For g, x ∈ P we have

gxg−1
= [g, x]x ∈ P ′x . Thus, every conjugacy class lies in a coset of P ′. The

hypothesis |P ′
| = p implies |P : CP(x)| ≤ p for every x ∈ P. Since 8(P) is the

intersection of the maximal subgroups of P, we deduce 8(P) ≤
⋂

x∈P CP(x) =

Z(P). Now for every maximal subgroup S < P, we see that S/Z(S) is cyclic and S
must be abelian. We conclude that P is minimal nonabelian. □

The nonnilpotent, minimal nonabelian groups were classified by Miller and
Moreno [1903]. The nilpotent ones are p-groups and have been determined by
Rédei [1947]. For the convenience of the reader we give a proof.

Lemma 10 (Rédei). Every minimal nonabelian p-group belongs to one of the
following classes:

(i) 0(a, b) := ⟨x, y | x pa
= y pb

= 1, yxy−1
= x1+pa−1

⟩ a metacyclic group where
a ≥ 2 and b ≥ 1,

(ii) 1(a, b) := ⟨x, y | x pa
= y pb

= [x, y]
p

= [x, x, y] = [y, x, y] = 1⟩ where
a ≥ b ≥ 1,

(iii) Q8.
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Proof. Let P be minimal nonabelian. By Lemma 9, there exist x, y ∈ P such that
P/P ′

= ⟨x P ′
⟩ × ⟨y P ′

⟩ ∼= C pa × C pb . Since |P ′
| = p, we have P ′

= ⟨z⟩ where
z := [x, y]. Note that P ′

≤ 8(P) = Z(P) and [x, z] = [y, z] = 1. We distinguish
three cases:

Case 1: x pa
= y pb

= 1. Here P fulfills the same relations as 1(a, b), so it
must be a quotient of the latter group. Moreover, every element of P can be
written uniquely in the form x i y j zk with 1 ≤ i ≤ pa, 1 ≤ j ≤ pb and 1 ≤ k ≤ p.
Consequently, |P| = pa+b+1. For the same reason we have |1(a, b)| ≤ pa+b+1.
Therefore, P ∼= 1(a, b).

Case 2: Either x pa
= 1 or y pb

= 1. Without loss of generality, let x pa
̸= 1 and

y pb
= 1. Then P ′

≤ ⟨x⟩⊴ P and yxy−1
= xk for some k ∈ Z. Since ⟨x p, y⟩ < P

is abelian, x p
= yx p y−1

= xkp and p ≡ kp (mod pa+1) as |⟨x⟩| = pa+1. Hence,
we may assume that k = 1 + pal for some 0 < l < p. Let 0 < l ′ < p such that
ll ′ ≡ 1 (mod p). Then yl ′ xy−l ′

= x (1+pal)l′

= x1+pa
. Thus, after replacing y by yl ′,

we obtain yxy−1
= x1+pa

. Now P satisfies the relations of 0(a + 1, b). It is clear
that these groups have the same order, so P ∼= 0(a + 1, b).

Case 3: x pa
̸= 1 ̸= y pb

. Without loss of generality, let a ≥ b. Let x pa
= zi and

y pb
= z j where 0 < i, j < p. Then (x j )pa

= zi j, (yi )pb
= zi j and [x j , yi

] = zi j by
[Huppert 1967, Hilfssatz III.1.3] (using z ∈ Z(P)). Hence, replacing x by x j and y
by yi, we may assume that x pa

= z = y pb
. Again by [Huppert 1967, Hilfssatz III.1.3],

(x pa−b
y−1)pb

= x pa
y−pb

[y−1, x pa−b
](

pb
2 ) = z pa−b(pb

2 ) = 1

unless pb
= pa

= 2. In this exceptional case, P ∼= Q8. Otherwise, we replace y by
x pa−b

y−1. Afterwards we still have P/P ′
= ⟨x P ′

⟩× ⟨y P ′
⟩, but now y pb

= 1. Thus,
we are in Case (2). □

The metacyclic groups 0(a, b) can of course be constructed as semidirect prod-
ucts, while the groups 1(a, b) can be constructed as subgroups of 0(a, b)× C pa .
For p = 2, note that 0(2, 1) ∼= D8 ∼= 1(1, 1). Apart from that, the groups in
Lemma 10 are pairwise nonisomorphic (for different parameters a, b).

We digress slightly to present a counterexample to a related question. Since for p-
groups P in general we have 8(P)= P ′℧(P) where ℧(P)=⟨x p

: x ∈ P⟩, one might
wonder if X (G) determines the property |P :℧(P)|= p2. For p =2, it is well-known
that ℧(P) = 8(P), so the answer is yes in this case. For p > 2, |P : ℧(P)| = p2

holds if and only if P is metacyclic (see [Huppert 1967, Satz III.11.4]). The
following example shows that this is not even determined by X (P).

Proposition 11. For a ≥ 2 and all primes p the groups 0(2, a) and 1(a, 1) have
the same character table.
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Proof. We denote the generators of P := 0(2, a) by x, y and those of P̃ := 1(a, 1)

by x̃, ỹ as in Lemma 10. Additionally, let z̃ := [x̃, ỹ]. We consider the maximal
subgroups Q := ⟨x p, y⟩ ≤ P and Q̃ := ⟨x̃, z̃⟩ ≤ P̃ . Since xyx−1

= x−p y and
ỹ x̃ ỹ−1

= z̃−1 ỹ, the map

Q → Q̃, x p
7→ z, y 7→ x̃

is an isomorphism compatible with the action of P and P̃ . The irreducible characters
of P of degree p are induced from linear characters of Q, which are not P-invariant.
Since these characters vanish outside Q, they correspond naturally to irreducible
characters of P̃ . On the other hand, the linear characters of P are extensions
of characters of Q with x p in their kernel. For λ ∈ Irr(Q/P ′) the extensions
λ̂ are determined by λ̂(x) = ζ where ζ is a p-th root of unity. Similarly, for
λ ∈ Irr(Q̃/P̃ ′) the extensions are determined by λ̂(ỹ) = ζ . Therefore, the bijection
P → P̃ , x i+ j p yk

7→ x̃k ỹi z̃ j where 0 ≤ i, j < p and 0 ≤ k < pa induces the equality
of the matrices X (P) and X (P̃). □

The second author has investigated fusion systems on minimal nonabelian 2-
groups in order to classify blocks with such defect groups (see e.g., [Sambale 2016]).
We now determine the fusion systems for odd primes too (partial results were
obtained in [Yang and Gao 2011]). It turns out that they all come from finite groups
unless |P| = 73. We make use of the Frobenius group M9 ∼= PSU(3, 2) ∼= C2

3 ⋊ Q8

with Out(M9) ∼= S3.

Theorem 12. Let F be a saturated fusion system on a minimal nonabelian p-group P.
Then one of the following holds:

(i) P ∈ {D8, Q8} and F = FP(G) where G ∈ {P, S4, GL(3, 2), SL(2, 3)}.

(ii) |P| = p3, exp(P) = p > 2 and the possibilities for F are given in [Ruiz and
Viruel 2004].

(iii) P ∼= 0(a, b), a ≥ 2, b ≥ 1 and F = FP(C pa ⋊C pbd) for some d | p − 1.

(iv) P ∼= 1(a, b), a > b and F = FP(P ⋊ Q) where Q ≤ C2
p−1.

(v) P ∼= 1(a, a), a ≥ 2 and F = FP(P ⋊ Q) for some p′-group Q ≤ GL(2, p).

(vi) p = 2, P ∼= 1(a, 1), a ≥ 2 and F = FP(A4 ⋊ C2a ) where C2a acts as a
transposition in Aut(A4) = S4.

(vii) p = 3, P ∼=1(a, 1), a ≥ 2 and F =FP(G) where G ∈{M9⋊C3a , M9⋊D2·3a }.
Here the image of C3a and D2·3a in Out(M9) is C3 and S3 respectively.

Proof. The case P ∈ {D8, Q8} is well-known and can be found in [Craven and
Glesser 2012, Theorem 5.3], for instance. If p = 2 and P = 0(a, b) with |P| ≥ 16,
then F is trivial, i.e., F = FP(P) by [Craven and Glesser 2012, Theorem 3.7].
Then (iii) holds. Now suppose that p > 2 and P = 0(a, b). Then F is controlled,
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i.e., F = FP(P ⋊ Q) for some p′-group Q ≤ Aut(P) by [Stancu 2006] (see
also [Craven and Glesser 2012, Theorem 3.10]). By [Sasaki 1997, Lemma 2.4],
Aut(P) = A⋊ ⟨σ ⟩ where A is a p-group, |⟨σ ⟩| = p − 1, σ(x) ∈ ⟨x⟩ and σ(y) = y.
Hence, Q is conjugate to a subgroup of ⟨σ ⟩. After renaming the generators of P,
we may assume that Q ≤ ⟨σ ⟩. Now (iii) holds.

Next assume that P ∼= 1(a, b) for some a ≥ b ≥ 1. If a = 1 and p > 2, then
|P| = p3 and exp(P) = p, so (ii) holds. Hence, let a ≥ 2. Set z := [x, y] ∈ P.
Since the p′-group OutF (P) acts faithfully on P/8(P) ∼= C2

p, we have OutF (P) ≤

GL(2, p). If a > b, then OutF (P) acts on P/�a−1(P) × �a−1(P)/8(P) where
�a−1(P) = ⟨g ∈ P : g pa−1

= 1⟩ = ⟨x p, y, z⟩. In this case OutF (P) ≤ C2
p−1. If F

is controlled, then we are in Case (iv) or (v). Hence, we may assume that F is not
controlled. Then there exists an essential subgroup Q ≤ P. Since Q is centric and
8(P) = Z(P) ≤ CP(Q) ≤ Q, Q is a maximal subgroup. Those are given by

⟨xyi , y p, z⟩ ∼= C pa × C pb−1 × C p, i = 0, . . . , p − 1,

⟨x p, y, z⟩ ∼= C pa−1 × C pb × C p.

By [Gorenstein 1980, Theorem 5.2.4], A := AutF (Q) acts faithfully on �(Q) =

{g ∈ Q : g p
= 1}. Since P/Q ≤ A, this implies �(Q) ⊈ Z(P) and Q = ⟨x p, y, z⟩

with b = 1. Now Q is the only maximal subgroup of P isomorphic to C pa−1 × C2
p.

In particular, Q is characteristic in P. By Alperin’s fusion theorem, F is constrained
with Op(F) = Q. By the model theorem, there exists a unique p-constrained group
H with P ∈ Sylp(H), Op′(H) = 1 and F = FP(H). We will construct H in the
following.

By [Oliver 2014, Lemma 1.11], there exists an A-invariant decomposition Q =

Q1×Q2 with Q1 ∼=C2
p and Q2 ∼=C pa−1. Moreover, Op′

(A)∼=SL(2, p) acts faithfully
on Q1 and trivially on Q2. Since P/Q ≤Op′

(A), it follows that Q2 ≤Z(P)=⟨x p, z⟩.
Moreover, xyx−1

= yz implies z ∈ Q1. Let α ∈ A be a p′-automorphism acting
trivially on Q1. Then α commutes with the action of P/Q. Since Q is receptive
(see [Aschbacher et al. 2011, Definition I.2.2]), α extends to an automorphism
of P. Suppose that α ̸= 1. Since Q2 ≤ Z(P) = 8(P), α must act nontrivially
on P/Q2. Note that P/Q2 is nonabelian of order p3 as z ∈ Q1. An analysis of
Aut(P/Q2) reveals that α cannot act trivially on Q/Q2 ∼= Q1. Hence, α = 1 and
A acts faithfully on Q1. In particular, A ≤ GL(2, p). If p = 2, then

A ∼= SL(2, 2) = GL(2, 2) ∼= S3.

It is easy to see that (vi) holds here. If p = 3, then SL(2, 3) ∼= Q8⋊C3, GL(2, 3) ∼=

Q8⋊S3 and (vii) is satisfied. Thus, let p ≥5. Then the Sylow normalizer in SL(2, p)

acts nontrivially on a Sylow p-subgroup of SL(2, p). Hence, there exists α ∈Op′

(A)
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acting nontrivially P/Q. But then α acts nontrivially on ⟨x p
⟩Q1/Q1 = Q/Q1 ∼= Q2.

This contradicts [Oliver 2014, Lemma 1.11]. □

The groups A4⋊C4, M9⋊C9 and M9⋊D18 can be constructed in GAP [2020] as
SmallGroup(n, k) where (n, k) ∈ {(48, 39), (648, 534), (64, 2892)} respectively.

Corollary 13. Let F be a fusion system on a minimal nonabelian p-group P with
|P| ≥ p4. Then F is constrained. If p ≥ 5, then F is controlled.

We now gather some information on simple groups in order to prove Theorem C.
As customary, if q is a prime power, let

PSLϵ(n, q) :=

{
PSL(n, q) if ϵ = 1,

PSU(n, q) if ϵ = −1.

The following is certainly known, but included for convenience.

Lemma 14. Let q be a prime power. Let S = PSLϵ(n, q) with a cyclic Sylow
p-subgroup and n ≥ 3. Then there exists a unique integer 2 ≤ d ≤ n such that p
divides qd

− ϵd.

Proof. Since a nonabelian simple group cannot have cyclic Sylow 2-subgroups,
we have p > 2. If p | q, then a Sylow p-subgroup of S is given by the set of
unitriangular matrices. This subgroup is nonabelian since n ≥ 3. Now let p ∤ q . If
q ≡ ϵ (mod p), then S contains a subgroup of diagonal matrices isomorphic to C2

p.
Hence, let q ̸≡ ϵ (mod p). In the following we write q∗

:= q if ϵ = 1 and q∗
:= q2

if ϵ = −1. Let x ∈ S be a generator of a Sylow p-subgroup of S. We identify x
with a preimage in GL(n, q∗). We may assume that x has order pk. Let e be the
order of q∗ modulo pk. Then x has an eigenvalue ζ ∈ F×

(q∗)e of order pk. Since
tr(x) ∈ Fq∗ , the elements ζ (q∗)i

for i = 0, . . . , e − 1 are distinct eigenvalues of x .
In particular, e ≤ n. If ϵ = 1, then e ≥ 2 we can choose d := e in the statement. If
2e ≤ n, we obtain qd

≡ 1 ≡ ϵd (mod p) for d := 2e.
Now suppose that ϵ = −1 and 2e > n. Since x is a unitary matrix, we have

x̄ x t
= 1 where x̄ = (xq

i j )i, j and x t is the transpose of x . It follows that ζ−q is an

eigenvalue of x . Since n < 2e, there must be some i with ζ q2i
= ζ−q. This shows

that q2i−1
≡ −1 ≡ ϵ2i−1 (mod pk). Since q2(2i−1)

≡ 1 (mod pk), we have

e | 2i − 1 ≤ 2(e − 1) − 1 < 2e and e = 2i − 1.

Hence, we can set d := e.
For the uniqueness of d , we note that

|S| =
qn(n−1)/2

gcd(n, q − ϵ)

n∏
i=2

(q i
− ϵi ),

is not divisible by pk+1, since pk
= |⟨x⟩| = |S|p. □
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Lemma 15. Let S be a finite simple group with Sylow 3-subgroup C2
3 and outer

automorphism of order 3. Then S ∼= PSLϵ(3, p f ) where ϵ = ±1, p is a prime and
(p f

− ϵ)3 = 3. Moreover, Out(S) ∼= C3 ⋊ (C f × C2).

Proof. The simple groups with Sylow 3-subgroup C2
3 were classified in [Koshitani

and Miyachi 2001, Proposition 1.2]. The alternating groups and sporadic groups
do not have outer automorphisms of order 3. Now let S be a classical group
of dimension d over Fp f . Then p f

̸≡ ±1 (mod 9). This implies 3 ∤ f and S
does not have field automorphisms of order 3. According to [Conway et al. 1985,
Table 5], there must be a diagonal automorphism of order 3. This forces d = 3 and
S = PSLϵ(3, p f ) such that (p f

− ϵ)3 = 3. If ϵ = 1, then Out(S) = C3 ⋊ (C f ×C2)

as desired. If ϵ = −1, then there is no graph automorphism and instead we have a
field automorphism of order 2 f . However, since p f

≡ 2, 5 (mod 9), f must be
odd and C2 f ∼= C f × C2. □

Theorem C. Let G be a finite group with a minimal nonabelian Sylow p-subgroup
P and Op′(G) = 1. Then one of the following holds:

(i) p = 2, P ∈ {D8, Q8} and O2′

(G) ∈ {SL(2, q), PSL(2, q ′), A7} where q ≡

±3 (mod 8) and q ′
≡ ±7 (mod 16).

(ii) |P| = p3 and exp(P) = p > 2.

(iii) G = P ⋊ Q where Q ≤ GL(2, p).

(iv) p > 2, Op′

(G) = S ⋊C pa where S is a simple group of Lie type with cyclic
Sylow p-subgroups. The image of C pa in Out(S) has order p.

(v) p = 2 and G = PSL(2, q f ) ⋊ C2ad where q is a prime, q f
≡ ±3 (mod 8)

and d | f . Moreover, C2a acts as a diagonal automorphism of order 2 on
PSL(2, q f ) and Cd induces a field automorphism of order d.

(vi) p =3 and O3′

(G)=PSLϵ(3, q f )⋊C3a where ϵ =±1, q is prime, (q f
−ϵ)3 =3

and G/O3′

(G) ≤ C f × C2.

Proof. By Lemma 9, |P : Z(P)| = p2 and G is described in [Navarro and Sambale
2023, Theorem 7.5]. We go through the various cases in the notation used there:

In Case (A), using that P is 2-generated and Op(G) is not cyclic, we deduce
that S = 1. Here P = F∗(G)⊴ G and CG(P) ≤ P. Since G/P acts faithfully on
P/8(P) ∼= C2

p, we have G/P ≤ GL(2, p) and (iii) holds. Assume now that P < G.
In Case (B), the quasisimple group C has a nonabelian Sylow p-subgroup of order
p3 which must coincide with P. If P = D8, then (i) or (v) holds by the Gorenstein–
Walter theorem (there are no field automorphisms of order 2) [Gorenstein 1980,
p. 462]. If P = Q8, the claim follows from the Brauer–Suzuki theorem [Gorenstein
1980, Theorem 12.1.1] and Walter’s theorem [Gorenstein 1980, p. 485]. If p > 2,
then we must have exp(P) = p, since otherwise the focal subgroup theorem [Isaacs
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2008, Theorem 5.21] and Theorem 12 lead to the contradiction |P|=|P : P∩G ′
|≥ p.

Thus, (ii) holds. Case (D) is impossible, since then P has a nonabelian maximal
subgroup.

Now consider Case (C), i.e., F∗(G)= Op(G)×S has abelian Sylow p-subgroups,
S is a direct product of simple groups and |G : F∗(G)|p = p. Let x ∈ P \ F∗(G).

Case 1: S = 1. Since S = 1, F∗(G) = Op(G) and so

CG(F∗(G)) = CG(Op(G)) ≤ Op(G).

Therefore, CP(Op(G)) = Op(G) and we have CG(Op(G)) = Op(G) × K where
K ≤ Op′(G) = 1. Hence, G is p-constrained and FP(G) is given by (vi) or (vii)
of Theorem 12. By the model theorem, the isomorphism type of G is uniquely
determined by FP(G). Since PSL(2, 3) ∼= A4 and PSU(3, 2) ∼= M9, we obtain (v)
or (vi).

Case 2: S ̸= 1 is not simple. By Lemma 10, the maximal subgroups of P are
generated by at most three elements. Hence, S is a direct product of two or three
simple groups, say S = T1 × T2 or T1 × T2 × T3. Since a Sylow 2-subgroup of a
simple group cannot be generated by less than 2 elements, we deduce that p > 2 and
the Ti have cyclic Sylow p-subgroups. If x does not normalize some Ti , then p = 3
and x permutes T1 ∼= T2 ∼= T3. However, C3n ≀C3 is not minimal nonabelian. Hence,
x acts on each Ti . If x acts nontrivially on Op(G), then Op(G)⟨x⟩ is nonabelian
and P = Op(G)⟨x⟩. But then S would be simple. Similarly, if x acts nontrivially
on Q1 := P ∩ T1, then P = Q1⟨x⟩. Write Q2 := P ∩ T2 = ⟨y⟩ such that x p

∈ yQ1.
Then x centralizes y. By [Gross 1982, Theorem B], this implies that x induces
an inner automorphism on T2. However, x p induces the inner automorphism by y.
Hence, x cannot have order greater than |T2|p. Another contradiction.

Case 3: S is simple. Let Q := P ∩ S ⊴ P be a Sylow p-subgroup of S. Arguing
as in Case 2, we see that x acts nontrivially on Q and therefore P = Q⟨x⟩. First
let Q be cyclic. Then p > 2 and P is metacyclic. Since Out(S) needs to have an
element of order p, S must be of Lie type. To obtain (iv), it remains to show that
P S is normal in G. Assume the contrary. By the structure of Out(S) (see [Conway
et al. 1985, Table 5]), P induces a field or graph automorphism of order p on S
which acts nontrivially on the subgroup of outer diagonal automorphisms of S. In
particular, the diagonal automorphism group must have order at least p + 1, in
fact 2p + 1 ≥ 7 since p > 2. This excludes all families of simple groups except
S = PSLϵ(d, q f ) where p | f and d ≥ 2p + 1. Since Q is cyclic and f > 1, we
have q ̸= p. By Fermat’s little theorem,

q(p−1) f
≡ q2(p−1) f

≡ 1 (mod p).

This contradicts Lemma 14 (note that p −1 is even). Hence, P S⊴G and (iv) holds.
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Let Q be noncyclic. Recall that in general Q is homocyclic and NS(Q) acts
irreducibly on �(Q) (see [Flores and Foote 2009, Proposition 2.5]). This implies
that P cannot be metacyclic, as otherwise the fusion in P is controlled by NG(P)

and NG(Q) = NG(P)CG(Q) acts reducibly on Q according to Theorem 12. Hence,
let P ∼= 1(a, b). Then P ′ is a direct factor of Q and we obtain Q = �(Q). If Q has
rank 3, then P ∼= 1(2, 1). However, by Theorem 12, NG(Q)/CG(Q) ≤ GL(2, p)

does not act irreducibly on Q. Hence, we may assume that Q has rank 2. Now
P ∼=1(a, 1) with a ≥2. If NG(P) controls the fusion in P, then NG(Q) would fix P ′.
Hence, we are in Case (vi) or (vii) of Theorem 12. Consider p = 2 first. By Walter’s
theorem (see [Gorenstein 1980, p. 485]), S ∼= PSL(2, q f ) with q f

≡ ±3 (mod 8).
It follows that f is odd and G/P S ≤ Out(S) ≤ C2 f by [Conway et al. 1985,
Table 5]. Here C2 induces a diagonal automorphism and C f is caused by a field
automorphism. So (v) holds. Finally, let p = 3. Here the claim follows easily from
Lemma 15. □

Examples for Theorem C (iv) can be constructed as follows: Let p > 2 and
a ≥ 2. By Dirichlet’s theorem, there exists a prime q ≡ 1+ pa−1 (mod pa+1). Then
q p

≡ 1 + pa (mod pa+1) and S := PSL(2, q p) has a cyclic Sylow p-subgroup Q
of order pa. Let R ∼= C pb and construct G := S ⋊ R where R acts as the field
automorphism Fq p → Fq p , λ 7→ λq on S. By [Gross 1982], R acts nontrivially on
Q and P := Q ⋊ R ∼= 0(a, b). A different example is G = Sz(25)⋊C5 for p = 5.

Corollary 16. Let G be a finite group with a minimal nonabelian Sylow p-subgroup
and Op′(G) = 1. Then G has at most one nonabelian composition factor.

Proof. We may assume that G is nonsolvable. If |G|p = p3, then F∗(G) is quasisim-
ple and G/F∗(G) ≤ Aut(F∗(G)) ≤ Aut(F∗(G)/Z(F∗(G)) is solvable by Schreier’s
conjecture. Otherwise we have F∗(G) = S ×C pb for a simple group S and b ≥ 0 by
the proof of Theorem C. Since Aut(C pb) is abelian, the claim follows again from
Schreier’s conjecture. □

Corollary D. The character table of a finite group G determines whether G has
minimal nonabelian Sylow p-subgroups.

Proof. Let P be a Sylow p-subgroup of G. We may assume that Op′(G) = 1. By
[Navarro and Sambale 2023, Theorem B], the character table determines whether
|P : Z(P)| = p2. Suppose that this is the case. By Lemma 9, it remains to detect
whether |P : 8(P)| = p2. This is true for |P| = p3, so let |P| ≥ p4. By Theorem 4
and Corollary 5, we may assume that Op(G) = 1. Now by Theorem C we expect
that Op′

(G) = S ⋊C p for a simple group S with a cyclic Sylow p-subgroup Q. As
usual, X (G) determines the isomorphism type of S. If Q is indeed cyclic, then
clearly P is 2-generated and we are done. □
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