Pacific

Journal of Mathematics

GROUPS WITH 2-GENERATED SYLOW SUBGROUPS AND THEIR CHARACTER TABLES

Alexander Moretó and Benjamin Sambale

GROUPS WITH 2-GENERATED SYLOW SUBGROUPS AND THEIR CHARACTER TABLES

Alexander Moretó and Benjamin Sambale

Abstract

Let G be a finite group with a Sylow p-subgroup P. We show that the character table of \boldsymbol{G} determines whether \boldsymbol{P} has maximal nilpotency class and whether P is a minimal nonabelian group. The latter result is obtained from a precise classification of the corresponding groups G in terms of their composition factors. For \boldsymbol{p}-constrained groups \boldsymbol{G} we prove further that the character table determines whether P can be generated by two elements.

1. Introduction

Recently, Navarro and Sambale [2023] have investigated finite groups G with a Sylow p-subgroup P such that $\left|P: P^{\prime}\right|=p^{2}$ or $|P: Z(P)|=p^{2}$ where $P^{\prime}=[P, P]$ denotes the commutator subgroup and $\mathrm{Z}(P)$ is the center of P. It was proved that both properties can be read off from the character table $X(G)$ of G. This was another contribution to Richard Brauer's Problem 12 [1963], which asks what properties of a Sylow p-subgroup P are determined by $X(G)$. We refer the reader to the introduction of [Navarro and Sambale 2023] and [Sambale 2020] for a collection of the known results on this problem. We just mention that one important property is that $X(G)$ knows whether P is abelian. While there is an elementary proof of the case $p=2$ by Camina and Herzog [1980], the full solution has required the classification of finite simple groups (see [Kimmerle and Sandling 1995; Navarro et al. 2015; Malle and Navarro 2021]).

After dealing with P^{\prime} and $\mathrm{Z}(P)$, it is natural to turn our attention to the Frattini subgroup $\Phi(P)$ of P. Recall that $|P: \Phi(P)| \leq p$ holds if and only if P is cyclic. It is easy to show that this property can be read off from $X(G)$ (see [Navarro 2018, Corollary 3.12]). In the first part of the present paper we consider groups G with $|P: \Phi(P)|=p^{2}$, i.e., P is generated by two elements, but not by one. For $p=2$ this property is detectable by $X(G)$ as was shown in [Navarro et al. 2021]. We obtain the corresponding result for odd primes p provided that G is p-constrained in Corollary 5. In the general case we offer a partial solution depending on the socle of G (see Proposition 6 and the subsequent remark).

[^0]Our next objective are groups with Sylow p-subgroups P of maximal nilpotency class. For $p=2$, this property is equivalent to $\left|P: P^{\prime}\right|=4$. This case was previously handled in an elementary fashion by Navarro, Sambale, and Tiep [Navarro et al. 2018]. The general result is our first main theorem.
Theorem A. The character table of a finite group G determines whether G has Sylow p-subgroups of maximal nilpotency class.

It is known that $X(G)$ determines the isomorphism types of abelian Sylow subgroups. Of course we cannot expect this for maximal class Sylow subgroups as $X\left(D_{8}\right)=X\left(Q_{8}\right)$. Perhaps surprisingly, $X(G)$ does not even determine $X(P)$. Counterexamples for $p=3$ arise as semidirect products of nonequivalent faithful actions of $\operatorname{SL}(2,3)$ on $C_{9} \times C_{9}$ (the groups are $\operatorname{SmallGroup}\left(2^{3} 3^{5}, a\right)$ with $a \in$ $\{2289,2290\}$ in GAP [2020]). Here P indeed has maximal class. This is related to [Navarro et al. 2022, Question E].

We obtain Theorem A as a consequence of the following structure description, which might be of independent interest:
Theorem B. Let G be a finite group with a Sylow p-subgroup P of maximal class. Suppose that $\mathrm{O}_{p^{\prime}}(G)=1$ and $\mathrm{O}^{p^{\prime}}(G)=G$. Then one of the following holds:
(i) There exists $x \in P$ such that $\left|\mathrm{C}_{G}(x)\right|_{p}=p^{2}$.
(ii) G is quasisimple and $|\mathrm{Z}(G)| \leq p$.

The proof uses recent work by Grazian and Parker [2022] on fusion systems and is given in Section 3.

In the final part of the paper we study groups with minimal nonabelian Sylow p-subgroups P, i.e., P is nonabelian, but every proper subgroup of P is abelian. It is easy to see that this happens if and only if $|P: \mathrm{Z}(P)|=|P: \Phi(P)|=p^{2}$ (see Lemma 9 below). Refining [Navarro and Sambale 2023, Theorem 7.5], we obtain in Section 4 the following description:

Theorem C. Let G be a finite group with a minimal nonabelian Sylow p-subgroup P and $\mathrm{O}_{p^{\prime}}(G)=1$. Then one of the following holds:
(i) $p=2, P \in\left\{D_{8}, Q_{8}\right\}$ and $\mathrm{O}^{2^{\prime}}(G) \in\left\{\operatorname{SL}(2, q), \operatorname{PSL}\left(2, q^{\prime}\right), A_{7}\right\}$ where $q \equiv$ $\pm 3(\bmod 8)$ and $q^{\prime} \equiv \pm 7(\bmod 16)$.
(ii) $|P|=p^{3}$ and $\exp (P)=p>2$.
(iii) $G=P \rtimes Q$ where $Q \leq \operatorname{GL}(2, p)$.
(iv) $p>2, \mathrm{O}^{p^{\prime}}(G)=S \rtimes C_{p^{a}}$ where S is a simple group of Lie type with cyclic Sylow p-subgroups. The image of $C_{p^{a}}$ in $\operatorname{Out}(S)$ has order p.
(v) $p=2$ and $G=\operatorname{PSL}\left(2, q^{f}\right) \rtimes C_{2^{a} d}$ where q is a prime, $q^{f} \equiv \pm 3(\bmod 8)$ and $d \mid f$. Moreover, $C_{2^{a}}$ acts as a diagonal automorphism of order 2 on $\operatorname{PSL}\left(2, q^{f}\right)$ and C_{d} induces a field automorphism of order d.
(vi) $p=3$ and $\mathrm{O}^{3^{\prime}}(G)=\operatorname{PSL}^{\epsilon}\left(3, q^{f}\right) \rtimes C_{3^{a}}$ where $\epsilon= \pm 1, q$ is prime, $\left(q^{f}-\epsilon\right)_{3}=3$ and $G / \mathrm{O}^{3^{\prime}}(G) \leq C_{f} \times C_{2}$.
Here, PSL^{ϵ} stands for PSL if $\epsilon=1$ and PSU otherwise. Again the proof is based on the classification of the corresponding fusion systems. To show that Case (iv) in Theorem C occurs for all odd primes p, we will exhibit appropriate examples after the proof.
Corollary D. The character table of a finite group G determines whether G has minimal nonabelian Sylow p-subgroups.

2. 2-generated Sylow subgroups

In the following G will always denote a finite group. The exponent of G is denoted by $\exp (G)$. The core of a subgroup $H \leq G$ is defined by $\operatorname{core}_{G}(H):=$ $\bigcap_{g \in G} g H^{-1} \unlhd G$. For $x, y \in G$ let $[x, y]:=x y x^{-1} y^{-1}$. The Fitting subgroup and the generalized Fitting subgroup of G are denoted by $\mathrm{F}(G)$ and $\mathrm{F}^{*}(G)=\mathrm{F}(G) \mathrm{E}(G)$ respectively. We write $\operatorname{Irr}(G)$ to denote the set of ordinary complex irreducible characters of G. For $g \in G$ and $\chi \in \operatorname{Irr}(G)$ let

$$
\begin{aligned}
& \mathbb{Q}(g):=\mathbb{Q}(\chi(g): \chi \in \operatorname{Irr}(G)), \\
& \mathbb{Q}(\chi):=\mathbb{Q}(\chi(g): g \in G) .
\end{aligned}
$$

It is well-known that $\mathbb{Q}(\chi)$ lies in the cyclotomic field \mathbb{Q}_{n} where $n=|G|$. Let f_{χ} be the smallest positive integer such that $\mathbb{Q}(\chi) \subseteq \mathbb{Q}_{f_{\chi}}\left(f_{\chi}\right.$ is called the Feit number in [Navarro 2018]). Let $\operatorname{Irr}_{p^{\prime}}(G):=\{\chi \in \operatorname{Irr}(G): p \nmid \chi(1)\}$ as usual. The p-part and the p^{\prime}-part of an integer n are denoted by n_{p} and $n_{p^{\prime}}$ respectively.

Our first lemma is applied multiple times throughout the paper.
Lemma 1. Let A be an abelian normal subgroup of G such that $G=\langle x\rangle A$ for some $x \in G$. Then the map $A \rightarrow G^{\prime}, a \mapsto[x, a]$ is an epimorphism with kernel $\mathrm{C}_{A}(x)$. In particular, $\left|G^{\prime}\right|=\left|A / \mathrm{C}_{A}(x)\right|$.
Proof. See [Isaacs 2008, Lemma 4.6].
To get from P^{\prime} to $\Phi(P)$ we need the following variant:
Lemma 2. Let P be a p-group with a proper normal subgroup Q and $x \in P$ such that $P=\langle x\rangle Q$ and $\langle x\rangle \cap Q \leq P^{\prime}$. Then $|P: \Phi(P)|=p^{2}$ if and only if $\left|\mathrm{C}_{Q / \Phi(Q)}(x)\right|=p$.
Proof. Since $\langle x\rangle \cap Q \leq P^{\prime} \leq \Phi(P)$ and $Q<P$, we have

$$
P / \Phi(P)=Q \Phi(P) / \Phi(P) \times\langle x\rangle \Phi(P) / \Phi(P) \cong Q /(Q \cap \Phi(P)) \times C_{p}
$$

Moreover,

$$
\Phi(P) \cap Q=P^{\prime} \Phi(Q)\left\langle x^{p}\right\rangle \cap Q=P^{\prime} \Phi(Q)\left(\left\langle x^{p}\right\rangle \cap Q\right)=P^{\prime} \Phi(Q) .
$$

Now $|P: \Phi(P)|=p^{2}$ if and only if

$$
\left|Q / \Phi(Q):(P / \Phi(Q))^{\prime}\right|=\left|Q: P^{\prime} \Phi(Q)\right|=p .
$$

By Lemma 1 applied to $Q / \Phi(Q) \unlhd P / \Phi(Q)$, this is equivalent to

$$
\left|\mathrm{C}_{Q / \Phi(Q)}(x)\right|=p .
$$

The next result is a variation of [Navarro and Sambale 2023, Theorem 6.1].
Lemma 3. Let G be a finite group with a Sylow p-subgroup P and $\mathrm{O}_{p^{\prime}}(G)=1$. Then

$$
K:=\bigcap_{\substack{x \in \operatorname{lrf}_{p^{\prime}}(G) \\ p^{2} \nmid f_{\chi}}} \operatorname{Ker}(\chi)=\operatorname{core}_{G}(\Phi(P)) .
$$

Proof. Let $n:=|G|$. If $n_{p}=1$, then the claim holds since $\bigcap_{\chi \in \operatorname{Irr}(G)} \operatorname{Ker}(\chi)=1=P$. Thus, let $n_{p} \neq 1$. Then $\mathcal{G}:=\operatorname{Gal}\left(\mathbb{Q}_{n} \mid \mathbb{Q}_{p n_{p^{\prime}}}\right)$ is a p-group. Let $N:=\operatorname{core}_{G}(\Phi(P))$ and $\chi \in \operatorname{Irr}_{p^{\prime}}(G)$ with $p^{2} \nmid f_{\chi}$. Since $\mathbb{Q}\left(\chi_{P}\right) \subseteq \mathbb{Q}(\chi) \subseteq \mathbb{Q}_{p n_{p^{\prime}}}, \mathcal{G}$ permutes the irreducible constituents of χ_{P}. Since the sizes of the \mathcal{G}-orbits are p-powers and $p \nmid \chi(1)$, there must be a linear constituent $\lambda \in \operatorname{Irr}(P \mid \chi)$ fixed by \mathcal{G}, i.e., $\mathbb{Q}(\lambda) \subseteq \mathbb{Q}_{p}$. It follows that $N \subseteq \Phi(P) \subseteq \operatorname{Ker}(\lambda)$. By Clifford theory, χ_{N} is a sum of conjugates of λ_{N}. Hence, $N \subseteq \operatorname{Ker}(\chi)$. This shows that $N \leq K$.

Now let $\lambda \in \operatorname{Irr}(P / \Phi(P))$. This time, \mathcal{G} acts on the irreducible constituents of λ^{G}. Since $p \nmid|G: P|=\lambda^{G}(1)$, there must be a constituent $\chi \in \operatorname{Irr}_{p^{\prime}}(G \mid \lambda)$ fixed by \mathcal{G}, i.e., $p^{2} \nmid f_{\chi}$. This implies $\chi_{P \cap K}=\chi(1) 1_{P \cap K}$. On the other hand, $\lambda_{P \cap K}$ is a constituent of $\chi_{P \cap K}$. Therefore, $P \cap K \subseteq \operatorname{Ker}(\lambda)$. Since $\lambda \in \operatorname{Irr}(P / \Phi(P))$ was arbitrary, we obtain $P \cap K \leq \Phi(P)$. Now Tate's theorem (see [Huppert 1967, Satz IV.4.7]) yields that K is p-nilpotent. By hypothesis, $\mathrm{O}_{p^{\prime}}(K) \leq \mathrm{O}_{p^{\prime}}(G)=1$ and K is a p-group. Finally, $K \leq \mathrm{O}_{p}(G) \cap K \leq P \cap K \leq \Phi(P)$ and $K \leq N$.

We mention that the characters χ with $p^{2} \nmid f_{\chi}$ are precisely the almost p-rational characters introduced in [Hung et al. 2022]. Lemma 3 allows to read off $K:=$ $\operatorname{core}_{G}(\Phi(P))$ from the character table. Since $|P / K: \Phi(P / K)|=|P: \Phi(P)|$, it is therefore no loss to assume that $K=1$. The next theorem comes close to [Navarro and Sambale 2023, Theorem 3.1].

Theorem 4. Let G be a finite group with a nonabelian Sylow p-subgroup P such that $|P: \Phi(P)|=p^{2}$ and $\mathrm{O}_{p^{\prime}}(G)=1=\operatorname{core}_{G}(\Phi(P))$. Then $\mathrm{F}^{*}(G)$ is the unique minimal normal subgroup of G and $P \mathrm{~F}^{*}(G) / \mathrm{F}^{*}(G)$ is cyclic. If $\mathrm{F}^{*}(G)$ is nonabelian, then P permutes the simple components of $\mathrm{F}^{*}(G)$ transitively. In particular, their number is a p-power in this case.

Proof. Let N be a minimal normal subgroup of G. Then

$$
\begin{aligned}
|P N / N: \Phi(P N / N)| & =|P / P \cap N: \Phi(P / P \cap N)| \\
& =|P / P \cap N: \Phi(P)(P \cap N) / P \cap N| \\
& =|P: \Phi(P)(P \cap N)| \\
& \leq|P: \Phi(P)| \\
& =p^{2},
\end{aligned}
$$

where the second equality follows from [Isaacs 2008, Lemma 4.5], for instance. Suppose first that $P \cap N \leq \Phi(P)$. Then by Tate's theorem (see [Huppert 1967, Satz IV.4.7]), N is a p-group and $N \leq \Phi(P)$. This contradicts core ${ }_{G}(\Phi(P))=1$. Consequently, $|P N / N: \Phi(P N / N)| \leq p$ and $P N / N$ is cyclic. Let $M \neq N$ be another minimal normal subgroup of G. Then G / N and similarly G / M have cyclic Sylow p-subgroups. Since G is isomorphic to a subgroup of $G / M \times G / N, G$ has abelian Sylow p-subgroups, which we have excluded explicitly. This shows that N is the unique minimal normal subgroup.

Assume now that N is nonabelian. Then $\mathrm{F}(G) \cap N=1$ implies $\mathrm{F}(G)=1=\mathrm{Z}(G)$ and $\mathrm{F}^{*}(G)=\mathrm{E}(G)=N$. Write $N=T_{1} \times \cdots \times T_{n}$ with nonabelian simple groups $T_{1} \cong \ldots \cong T_{n}$. If $P \leq N$, using that P is 2 -generated and nonabelian, we conclude that $n=1$ and P certainly acts transitively on $\left\{T_{1}, \ldots, T_{n}\right\}$. Hence, we may assume that $P \nsubseteq N$ and $n \geq 2$. Let $Q_{i}:=P \cap T_{i}$ for $i=1, \ldots, n$. Let $x \in P$ such that $P N / N=\langle x N\rangle$. Since $P \cap N \nsubseteq \Phi(P)$, there exists some $1 \leq i \leq n$ with $Q_{i} \nsubseteq \Phi(P)$. Without loss of generality, let $i=1$. Choose $y \in Q_{1} \backslash \Phi(P)$. For all $j \in \mathbb{Z}$ we note that $x y^{j} \notin N \supseteq \Phi(P)$. Since $|P: \Phi(P)|=p^{2}$, it follows that $P=\langle x, y\rangle$. Without loss of generality, let T_{1}, \ldots, T_{k} be the orbit of T_{1} under P. Suppose by way of contradiction that $k<n$. Then $Q_{1} \cdots Q_{k} \unlhd P$ and $Q_{k+1} \times \cdots \times Q_{n} \leq P / Q_{1} \cdots Q_{k}=\left\langle x Q_{1} \cdots Q_{k}\right\rangle$ is cyclic. This is only possible if $n=k+1$ and Q_{n} is cyclic. Moreover, $Q_{n}=\left\langle x{ }^{p^{a}} z\right\rangle$ for some $a \geq 1$ and $z \in Q_{1} \cdots Q_{k}$. Since a nonabelian simple group cannot have a cyclic Sylow 2-subgroup, $p>2$. It follows from [Gross 1982, theorem A] that x induces an inner automorphism on T_{n}. This is impossible since $x^{p^{a}}$ induces an inner automorphism of order $\left|T_{n}\right|_{p}$. This contradiction shows that P permutes the T_{i} transitively.

Finally, assume that N is elementary abelian. Since $\mathrm{O}_{p^{\prime}}(G)=1$, we have $F:=\mathrm{F}(G)=\mathrm{O}_{p}(G)$. Suppose that $N<F$. Then $\Phi(F) \leq \Phi(P)$ yields $\Phi(F) \leq$ $\operatorname{core}_{G}(\Phi(P))=1$, i.e., F is elementary abelian. Now the existence of an element of order p in $P \backslash N$ implies the existence of a (cyclic) complement of N in P. By a theorem of Gaschütz (see [Huppert 1967, Hauptsatz I.17.4]), N has a complement K in G. Since F centralizes N, we obtain $1 \neq K \cap F \unlhd N K=G$. This contradicts the fact that N is the unique minimal normal subgroup of G. Hence, $F=N$. Suppose that $\mathrm{E}(G) \neq 1$ and choose a central product $M \unlhd G$ of quasisimple components. Then
$N \leq \mathrm{Z}(M)$, because $1 \neq N \cap M \unlhd G$. Since M / N has cyclic Sylow p-subgroups, the order of the Schur multiplier of M / N is not divisible by p. This contradicts $N \leq \mathrm{Z}(M)$. We have therefore shown that $N=\mathrm{F}^{*}(G)$.

In order to decide whether $|P: \Phi(P)|=p^{2}$, we may assume that the hypotheses of Theorem 4 are fulfilled. The situation now splits into two cases. When $\mathrm{F}^{*}(G)$ is abelian, the group G is p-constrained (recall that in general a group G is called p-constrained if $\mathrm{C}_{\bar{G}}\left(\mathrm{O}_{p}(\bar{G})\right) \leq \mathrm{O}_{p}(\bar{G})$ where $\left.\bar{G}:=G / \mathrm{O}_{p^{\prime}}(G)\right)$. In this case we solve the problem completely. To do so, we will use a result of Higman (see [Navarro 2018, Corollary 7.18]) that allows to locate the p-elements in $X(G)$.

Corollary 5. The character table of a p-constrained group G determines whether a Sylow p-subgroup P is generated by two elements.
Proof. Let P be a Sylow p-subgroup of G. Since the character table $X(G)$ determines $X\left(G / \mathrm{O}_{p^{\prime}}(G)\right)$, we may assume that $\mathrm{O}_{p^{\prime}}(G)=1$. Since G is p-constrained, $\mathrm{O}_{p}(G)>1$. By Lemma 3, we may assume that $\operatorname{core}_{G}(\Phi(P))=1$. Moreover, the orders and embeddings of the normal subgroups of G can be read off from $X(G)$. Hence by Theorem 4, we may assume that $N=\mathrm{O}_{p}(G)=\mathrm{F}(G)$ is the only minimal normal subgroup of G. If $P=N$, then $|P: \Phi(P)|=|P|$ and we are done. Hence, let $N<P$. By [Navarro 2018, Corollary 3.12], $X(G / N)$ detects whether P / N is cyclic. By Theorem 4, we can assume that this is the case. Choose $x \in P$ with $P / N=\langle x N\rangle$ (note that x can be spotted in $X(G)$ using [Navarro 2018, Corollary 3.12]). Since $P=N\langle x\rangle=\mathrm{O}_{p}(G)\langle x\rangle$ is the only Sylow p-subgroup of G containing $x, \mathrm{C}_{P}(x)=\mathrm{C}_{N}(x)\langle x\rangle$ is a Sylow p-subgroup of $\mathrm{C}_{G}(x)$. In particular, $\left|\mathrm{C}_{N}(x)\right|=\left|\mathrm{C}_{G}(x)\right|_{p} /|P / N|$ is determined by $X(G)$. By Lemma 1 , we have

$$
\begin{equation*}
P^{\prime}=[x, N]=\{[x, y]: y \in N\} \tag{2-1}
\end{equation*}
$$

and $\left|P^{\prime}\right|=\left|N / \mathrm{C}_{N}(x)\right|$ can be computed from $X(G)$. Let $|P / N|=p^{a}$ and $\left|N / P^{\prime}\right|=p^{n}$. If $x^{p^{a}} \in P^{\prime}$, then $P / P^{\prime} \cong C_{p^{a}} \times C_{p}^{n}$ and otherwise $P / P^{\prime} \cong C_{p^{a+1}} \times C_{p}^{n-1}$. Since $\mathbb{Q}(x)$ can be read off from $X(G)$, it suffices to show that

$$
p|\mathbb{Q}(x): \mathbb{Q}|_{p}=\exp \left(P / P^{\prime}\right) .
$$

Taking only $X(G / N)$ into account, we obtain $\mathbb{Q}(x N)=\mathbb{Q}_{p^{a}}$ or equivalently $|\mathbb{Q}(x N): \mathbb{Q}|_{p}=p^{a-1}$ by [Navarro 2018, Theorem 3.11]. Thus $|\mathbb{Q}(x): \mathbb{Q}|_{p} \geq p^{a-1}$. If $x p^{p^{a}}=1$, then $p|\mathbb{Q}(x): \mathbb{Q}|_{p}=p^{a}=\exp \left(P / P^{\prime}\right)$ as desired. Now let $|\langle x\rangle|=p^{a+1}$. If $x^{p^{a}} \in P^{\prime}$, then there exists $y \in N$ with $x^{p^{a}}=[x, y]=x y x^{-1} y^{-1}$ by (2-1). It follows that $y x y^{-1}=x^{1-p^{a}}$ and $\left|\mathrm{N}_{G}(\langle x\rangle): \mathrm{C}_{G}(x)\right|_{p}=p$. Again by [Navarro 2018, Theorem 3.11], we have $p|\mathbb{Q}(x): \mathbb{Q}|_{p}=p^{a}=\exp \left(P / P^{\prime}\right)$. Assume conversely that $|\mathbb{Q}(x): \mathbb{Q}|_{p}=p^{a-1}$. Then there exists $y \in G$ with $y x y^{-1}=x^{1+k p^{a}}$ for some $0<k<p$. We observe that $y \in \mathrm{~N}_{G}(\langle x\rangle N)=\mathrm{N}_{G}(P)$. Replacing y by its p-part, we get $y \in P$. Now $x^{-k p^{a}}=[x, y] \in P^{\prime}$ and $\exp \left(P / P^{\prime}\right)=p^{a}$ as desired.

If G is p-solvable in the situation of Corollary 5 (recall that every p-solvable group is p-constrained), then $\mathrm{O}_{p}(G)$ has a complement K in $\mathrm{O}_{p p^{\prime}}(G)$ by the SchurZassenhaus theorem. Using the Frattini argument, it is easy to show that $\mathrm{N}_{G}(K)$ is a complement of N in G. In this situation, G is a primitive permutation group on N of affine type.

On the other hand, every nonabelian simple group S gives rise to a nonsplit extension $G=N . S$ where $N=\Phi(G)$ is elementary abelian without complement (see [Doerk and Hawkes 1992, Theorem B.11.8]). Garrison [1976] has exhibited examples to show that $X(G)$ does not determine whether G splits over N. For instance,
$\operatorname{PerfectGroup}(7500,1) \cong C_{5}^{3} \rtimes A_{5}$ and $\operatorname{PerfectGroup}(7500,2) \cong C_{5}^{3} \cdot A_{5}$
in GAP [2020] have the same character table and the Sylow 5 -subgroup is 2generated in both cases.

Now assume that $N=\mathrm{F}^{*}(G)$ in the situation of Theorem 4 is nonabelian. If $N \cap P$ is abelian, then N has a complement in $P N$ by [Huppert 1967, Satz IV.3.8]. In this case $P N$ is a twisted wreath product. The nonsplit extension $M_{10}=A_{6} \cdot C_{2}$ with $P=S D_{16}$, a semidihedral group, shows that this is not always the case. Even when N is not simple, $P \cap N$ is not always abelian (as in [Navarro and Sambale 2023, Theorem 3.1]). One example is

$$
G=\operatorname{PSL}(2,7)^{2} \rtimes\langle x\rangle \cong \operatorname{PSL}(2,7)^{2} \rtimes C_{4} \leq \operatorname{PGL}(2,7) \imath C_{2},
$$

where x^{2} acts as a diagonal automorphism on both factors $\operatorname{PSL}(2,7)$ simultaneously. Here $P=D_{8}^{2} \rtimes C_{4}$ is 2-generated. Nevertheless, we provide the following reduction theorem:

Proposition 6. Let G be a finite group with Sylow p-subgroup P such that $\mathrm{O}_{p^{\prime}}(G)=1$ and $N=\mathrm{F}^{*}(G)$ is the unique minimal normal subgroup of G. Suppose that N is nonabelian and $P N / N$ is cyclic. Let S be a simple component of N. Assume that $\left|G: \mathrm{N}_{G}(S)\right|$ is a p-power. Then the following hold:
(i) $G=\mathrm{N}_{G}(S) P$.
(ii) $\widetilde{P}:=\mathrm{N}_{P}(S) \mathrm{C}_{G}(S) / \mathrm{C}_{G}(S)$ is a Sylow p-subgroup of the almost simple group $\mathrm{N}_{G}(S) / \mathrm{C}_{G}(S)$ with socle $\widetilde{S}:=S \mathrm{C}_{G}(S) / \mathrm{C}_{G}(S) \cong S$. Moreover, $\widetilde{P} \widetilde{S} / \widetilde{S}$ is cyclic.
(iii) $|P: \Phi(P)| \leq p^{2}$ if and only if $|\widetilde{P}: \Phi(\widetilde{P})| \leq p^{2}$.
(iv) S and $|\widetilde{P}|$ are determined by $X(G)$.

Proof. (i) Since $\left|G: \mathrm{N}_{G}(S)\right|$ is a p-power, $\left|\mathrm{N}_{G}(S) P\right|=\left|\mathrm{N}_{G}(S): \mathrm{N}_{P}(S)\right||P|=|G|$ and $G=\mathrm{N}_{G}(S) P$.
(ii) By (i), $\mathrm{N}_{P}(S)$ is a Sylow p-subgroup of $\mathrm{N}_{G}(S)$. Hence, \widetilde{P} is a Sylow p subgroup of $\mathrm{N}_{G}(S) / \mathrm{C}_{G}(S)$. Let $Q:=N \cap P \unlhd P$. Then $P / Q \cong P N / N$ is cyclic by
hypothesis. Let $x \in P$ such that $P=\langle x\rangle Q$. Then $\widetilde{P} \widetilde{S} / \widetilde{S} \cong \mathrm{~N}_{P}(S) S \mathrm{C}_{G}(S) / S \mathrm{C}_{G}(S) \leq$ $\langle x\rangle S \mathrm{C}_{G}(S) / S \mathrm{C}_{G}(S)$ is cyclic.
(iii) If $P \leq N \leq \mathrm{N}_{G}(S)$, then $S \unlhd G$ and $N=S$. Here, $P \cong \widetilde{P}$, so we are done. Now assume $P N / N \neq 1$. As in (ii), let $Q:=N \cap P \unlhd P$. Since $\mathrm{O}^{p}(P N)=N$, there exists $x \in P$ such that $P=\langle x\rangle Q$ and $\langle x\rangle \cap Q \leq P^{\prime}$ (see [Brandis 1978, Satz 3.3]). Lemma 2 yields $|P: \Phi(P)|=p^{2}$ if and only if $\left|\mathrm{C}_{Q / \Phi(Q)}(x)\right|=p$.

By (i), we may write $N=T_{1} \times \cdots \times T_{p^{a}}$ such that $T_{i}=x^{i-1} S x^{1-i}$ for $i=1, \ldots, p^{a}$. Let $Q_{i}:=T_{i} \cap P \leq Q$. Then $\widetilde{Q}:=Q_{1} \mathrm{C}_{G}(S) / \mathrm{C}_{G}(S) \cong Q_{1}$ is a normal subgroup of \widetilde{P}. Since $\mathrm{N}_{P}(S)=\left\langle x^{p^{a}}\right\rangle Q$, we have $\widetilde{P}=\langle\tilde{x}\rangle \widetilde{Q}$ where $\tilde{x}:=x^{p^{a}} \mathrm{C}_{G}(S)$. It is easy to see that the map

$$
\mathrm{C}_{Q_{1} / \Phi\left(Q_{1}\right)}\left(x^{p^{a}}\right) \rightarrow \mathrm{C}_{Q / \Phi(Q)}(x), \quad y \Phi\left(Q_{1}\right) \mapsto \prod_{i=0}^{p^{a}-1} x^{i} y x^{-i} \Phi(Q)
$$

is an isomorphism. In particular, $\left|\mathrm{C}_{Q / \Phi(Q)}(x)\right|=\left|\mathrm{C}_{Q_{1} / \Phi\left(Q_{1}\right)}\left(x^{p^{a}}\right)\right|$. Assume for the moment that $x^{p^{a}} \in Q$. Then

$$
\widetilde{P}=\widetilde{Q} \leq \widetilde{S} \quad \text { and } \quad\left|\mathrm{C}_{Q_{1} / \Phi\left(Q_{1}\right)}\left(x^{p^{a}}\right)\right|=\left|Q_{1} / \Phi\left(Q_{1}\right)\right|=|\widetilde{P} / \Phi(\widetilde{P})| .
$$

In this case, $|P: \Phi(P)|=p^{2}$ if and only if \widetilde{P} is cyclic, i.e., $|\widetilde{P}: \Phi(\widetilde{P})|=p$. Now let $x^{p^{a}} \notin Q$. By way of contradiction, suppose that $x^{p^{a}} \in Q_{1} \mathrm{C}_{G}(S)$. Then there exists $y \in Q_{1}$ such that $x^{p^{a}} y \in \mathrm{C}_{G}(S)$. Now also

$$
z:=x^{p^{p^{p}}} \prod_{i=0}^{p^{a}-1} x^{i} y x^{-i} \in \mathrm{C}_{G}(S) .
$$

Since z is centralized by x, it follows that $z \in x^{i} \mathrm{C}_{G}(S) x^{-i}=\mathrm{C}_{G}\left(T_{i}\right)$ for $i=1, \ldots, p^{a}$. Hence, $z \in \mathrm{C}_{G}(N)=1$ and $x^{p^{a}} \in Q$, a contradiction. Thus, $\widetilde{Q}<\widetilde{P}$ and

$$
\widetilde{Q} \cap\langle\tilde{x}\rangle=\left(Q \cap\left\langle x^{p^{a}}\right\rangle\right) \mathrm{C}_{G}(S) / \mathrm{C}_{G}(S) \leq P^{\prime} \mathrm{C}_{G}(S) / \mathrm{C}_{G}(S)=\widetilde{P}^{\prime} .
$$

Lemma 2 shows that $|\widetilde{P}: \Phi(\widetilde{P})|=p^{2}$ if and only if

$$
\left|\mathrm{C}_{Q_{1} / \Phi\left(Q_{1}\right)}\left(x^{p^{a}}\right)\right|=\left|\mathrm{C}_{\widetilde{Q} / \Phi(\widetilde{Q})}(\tilde{x})\right|=p .
$$

Now the claim follows.
(iv) The isomorphism types of N and S are determined by $X(G)$ according to [Navarro and Sambale 2023, Theorem 4.1]. We obtain $\left|\mathrm{N}_{P}(S)\right|$ from $|N|=$ $|S|^{\left|P: N_{P}(S)\right|}$. Arguing as in (iii), shows that $\mathrm{C}_{P}(S)=\mathrm{C}_{Q}(S)=Q_{2} \cdots Q_{p^{a}}$. Hence, $\left|\mathrm{C}_{P}(S)\right|=|S|_{p}^{p^{a}-1}$ is computable from $X(G)$. The claim follows from $\widetilde{P} \cong$ $\mathrm{N}_{P}(S) / \mathrm{C}_{P}(S)$.

To decide whether $|P: \Phi(P)|=p^{2}$ holds, it suffices to obtain the structure of \widetilde{P} with the notation from Proposition 6. If $p \geq 5$ and S is neither a linear nor
a unitary group, then $\operatorname{Out}(S)$ has a cyclic Sylow p-subgroup by [Conway et al. 1985, Table 5]. In this case the isomorphism type of \widetilde{P} is uniquely determined by $X(G)$ and the problem is solved. On the other hand, the proof of [Navarro and Sambale 2023, Lemma 5.1] shows that for linear and unitary groups S the condition $|P: \Phi(P)|=p^{2}$ is not determined by $|\widetilde{P}|$ alone. It remains a challenge to settle these cases (and $p=3$ with $S=D_{4}(q), E_{6}(q)$ and $\left.{ }^{2} E_{6}(q)\right)$.

3. \boldsymbol{p}-groups of maximal class

We start by introducing some terminology of (saturated, nonexotic) fusion systems. Let P be a Sylow p-subgroup of G as before. The fusion system $\mathcal{F}=\mathcal{F}_{P}(G)$ of G on P is a category whose objects are the subgroups of P and the morphisms of \mathcal{F} have the form $f: S \rightarrow T, x \mapsto g x g^{-1}$ where $S, T \leq P$ and $g \in G$. Then $\operatorname{Aut}_{\mathcal{F}}(S) \cong \mathrm{N}_{G}(S) / \mathrm{C}_{G}(S)$ and $\operatorname{Out}_{\mathcal{F}}(S) \cong \mathrm{N}_{G}(S) / S \mathrm{C}_{G}(S)$. Elements $x, y \in P$ (or subsets $S, T \subseteq P$) are called \mathcal{F}-conjugate if there exists a morphism f such that $f(x)=y($ or $f(S)=T)$. A subgroup $S \leq P$ is called

- fully normalized, if $\left|\mathrm{N}_{P}(T)\right| \leq\left|\mathrm{N}_{P}(S)\right|$ for all \mathcal{F}-conjugates T of S,
- centric, if $\mathrm{C}_{P}(T)=\mathrm{Z}(T)$ for all \mathcal{F}-conjugates T of S,
- radical, if $\mathrm{O}_{p}\left(\operatorname{Aut}_{\mathcal{F}}(S)\right)=\operatorname{Inn}(S)$ (equivalently, $\left.\mathrm{O}_{p}\left(\operatorname{Out}_{\mathcal{F}}(S)\right)=1\right)$,
- essential, if S is fully normalized, centric and $\operatorname{Out}_{\mathcal{F}}(S)$ contains a strongly p-embedded subgroup (see [Aschbacher et al. 2011, Definition A.6]). For our purpose, it is enough to know that S is radical in this case.

By Alperin's fusion theorem, every morphism in \mathcal{F} is a composition of restrictions of morphisms $f \in \operatorname{Aut}_{\mathcal{F}}(S)$ where $S=P$ or S is essential (see [Aschbacher et al. 2011, Theorem I.3.5]). Note that $\operatorname{Aut}_{\mathcal{F}}(P)$ permutes the essential subgroups by conjugation. Hence, if $Q \leq P$ does not lie in any essential subgroup, then Q is fully normalized. In this case, $\mathrm{N}_{P}(Q)$ is a Sylow p-subgroup of $\mathrm{N}_{G}(Q)$ (see [Aschbacher et al. 2011, Lemma I.1.2]). Consequently, $\mathrm{C}_{P}(Q)=\mathrm{N}_{P}(Q) \cap \mathrm{C}_{G}(P)$ is a Sylow p-subgroup of $\mathrm{C}_{G}(P)$.

We call \mathcal{F} controlled if $\mathrm{N}_{G}(P)$ controls the fusion in P with respect to G, i.e., every morphism $S \rightarrow T$ has the form $x \mapsto g x g^{-1}$ for some $g \in \mathrm{~N}_{G}(P)$. Abstractly, this means that there are no essential subgroups and $\mathcal{F}=\mathcal{F}_{P}(P \rtimes A)$ for some Schur-Zassenhaus complement A of $\operatorname{Inn}(P)$ in $\operatorname{Aut}_{\mathcal{F}}(P)$. More generally, \mathcal{F} is called constrained if there exists $Q \unlhd P$ such that $\mathrm{C}_{P}(Q)=\mathrm{Z}(Q)$ and $\mathrm{N}_{G}(Q)$ controls the fusion in P. By the model theorem (see [Aschbacher et al. 2011, Theorem I.4.9]), a constrained fusion system is realized by a unique group G such that $\mathrm{C}_{G}\left(\mathrm{O}_{p}(G)\right) \leq \mathrm{O}_{p}(G)$ (note that G is p-constrained). The largest subgroup $Q \unlhd P$ such that $\mathrm{N}_{G}(Q)$ controls the fusion in P is denoted by $\mathrm{O}_{p}(\mathcal{F})$. Note that $\mathrm{O}_{p}(G) \leq \mathrm{O}_{p}(\mathcal{F})$.

It is well-known that a p^{\prime}-automorphism of $Q \leq P$ acts nontrivially on $Q / \Phi(Q)$. If Q is radical, it follows that $\operatorname{Out}_{\mathcal{F}}(Q)$ acts faithfully on $Q / \Phi(Q)$. Now assume that there exists a series of characteristic subgroups $\Phi(Q)=Q_{0}<\cdots<Q_{n}=Q$ of Q. Then $\operatorname{Out}_{\mathcal{F}}(Q)$ acts faithfully on $Q_{n} / Q_{n-1} \times \cdots \times Q_{1} / Q_{0}$ by [Gorenstein 1980, 5.3.2]. This argument will often be applied in the following to exclude same candidates of essential subgroups.

We say that a p-group P of order p^{n} has maximal class if the nilpotency class is $n-1$. This may include the case $|P|=p^{2}$. The 2 -groups of maximal class are the dihedral groups (including C_{2}^{2}), the semidihedral groups, the (generalized) quaternion groups and C_{4} (see [Huppert 1967, Satz III.11.9]). Now assume that $n \geq 4$ and $p>2$ to avoid some degenerate cases. Let $\mathrm{K}_{2}(P)=P^{\prime}$ and $\mathrm{K}_{i+1}(P)=$ $\left[P, \mathrm{~K}_{i}(P)\right]$ for $i \geq 2$. Let $\mathbb{Z}_{0}(P):=1$ and $\mathbb{Z}_{i+1}\left(P / \mathbb{Z}_{i}(P)\right):=\mathrm{Z}\left(P / \mathbb{Z}_{i}(P)\right)$ for $i \geq 0$. Then $\mathrm{K}_{i}(P)=\mathbb{Z}_{n-i}(P)$ is the only normal subgroup of P of index p^{i} by [Huppert 1967, Hilfssatz III.14.2]. It is easy to see that the characteristic subgroups $P_{1}:=\mathrm{C}_{P}\left(\mathrm{~K}_{2}(P) / \mathrm{K}_{4}(P)\right)$ and $P_{2}:=\mathrm{C}_{P}\left(\mathbb{Z}_{2}(P)\right)$ are maximal in P.

Lemma 7. Let P be a p-group with a nonabelian subgroup $Q \leq P$ of order p^{3} and exponent p. If $\mathrm{C}_{P}(Q)=\mathrm{Z}(Q)$, then $\mathbb{Z}_{2}(P) \leq Q$.

Proof. Since $\mathrm{Z}(P) \leq \mathrm{C}_{P}(Q)$, we have $Z:=\mathrm{Z}(P)=\mathrm{Z}(Q) \cong C_{p}$. Let $x Z \in$ $\mathrm{C}_{P / Z}(Q / Z)$. Then $x \in \mathrm{~N}_{P}(Q)$. By [Winter 1972], $\mathrm{N}_{P}(Q) / Q \leq \operatorname{Out}(Q) \cong$ $\operatorname{GL}(2, p)$. As mentioned above, the kernel of the action of $\operatorname{Aut}(Q)$ on Q / Z is a p-group. Since $\mathrm{O}_{p}(\mathrm{GL}(2, p))=1$, we obtain $x \in Q$. Hence, $\mathbb{Z}_{2}(P) / Z=$ $\mathrm{Z}(P / Z) \leq \mathrm{C}_{P / Z}(Q / Z)=Q / Z$ and $\mathbb{Z}_{2}(P) \leq Q$.

Lemma 8. Let G be a finite group with Sylow p-subgroup P of maximal class. Let $N \unlhd G$ such that $p^{2} \leq|N|_{p}<|P|$. Then there exists $x \in P$ such that $\left|\mathrm{C}_{G}(x)\right|_{p}=p^{2}$.

Proof. By hypothesis, $|P| \geq p|N|_{p} \geq p^{3}$. In particular, $\mathrm{Z}(P)$ is the unique normal subgroup of order p of P. Since $M:=P \cap N \unlhd P$, we have $\mathrm{Z}(P) \leq N$. If $|P|=p^{3}$, every element $x \in P \backslash N$ cannot be conjugate to an element of $\mathrm{Z}(P) \leq N$. Hence, $\left|\mathrm{C}_{G}(x)\right|_{p}=p^{2}$. Now assume that $|P| \geq p^{4}$. If $p=2, P$ is a dihedral, semidihedral or quaternion group and we choose $x \in P$ outside the cyclic maximal subgroup of P. For $p>2$, let $x \in P \backslash\left(P_{1} \cup P_{2}\right)$. By [Huppert 1967, Hilfssatz III.14.13], we have $\left|\mathrm{C}_{P}(x)\right|=p^{2}$. Since $|P| \geq p^{4}, \mathbb{Z}_{2}(P)$ is the unique normal subgroup of order p^{2} in P. In particular, $\mathbb{Z}_{2}(P) \leq M$ since $|M| \geq p^{2}$. If $p=2$, we may assume that $x \notin M$. For $p>2$, we have $P_{1} \cup P_{2} \cup M \subsetneq P$. Again we may choose $x \notin M$.

Let \mathcal{F} be the fusion system of G on P. If x is not contained in any essential subgroup, then $\langle x\rangle$ is fully normalized as explained above. It follows that $\left|\mathrm{C}_{G}(x)\right|_{p}=$ $\left|\mathrm{C}_{P}(x)\right|=p^{2}$ and we are done. Now let $Q<P$ be essential containing x. By [Grazian and Parker 2022, Theorem D], Q is a so-called pearl, i.e., Q is elementary abelian of order p^{2} or nonabelian of order p^{3} and exponent p (or $Q=Q_{8}$ if $p=2$,
see [Grazian and Parker 2022, Lemma 6.1]). As an essential subgroup, Q is centric and $\mathrm{C}_{P}(Q)=\mathrm{Z}(Q)$. Assume first that $|Q|=p^{2}$. Then

$$
Z:=\mathrm{Z}(P)=M \cap Q=N \cap Q \unlhd \mathrm{~N}_{G}(Q) .
$$

Since Q is radical, $\operatorname{Out}_{\mathcal{F}}(Q) \cong \mathrm{N}_{G}(Q) / Q$ acts faithfully on $Z \times Q / Z \cong C_{p}^{2}$. But then $\operatorname{Out}_{\mathcal{F}}(Q)$ would be a p^{\prime}-group in contradiction to $Q<\mathrm{N}_{P}(Q)$. Next let $|Q|=p^{3}$. Here, Lemma 7 shows that $\mathbb{Z}_{2}(P)=M \cap Q=N \cap Q \unlhd \mathrm{~N}_{G}(Q)$. Then $\operatorname{Out}_{\mathcal{F}}(Q)$ acts faithfully on $\mathbb{Z}_{2}(P) / Z \times Q / \mathbb{Z}_{2}(P) \cong C_{p}^{2}$ and we derive another contradiction.

Theorem B. Let G be a finite group with a Sylow p-subgroup P of maximal class. Suppose that $\mathrm{O}_{p^{\prime}}(G)=1$ and $\mathrm{O}^{p^{\prime}}(G)=G$. Then one of the following holds:
(i) There exists $x \in P$ such that $\left|\mathrm{C}_{G}(x)\right|_{p}=p^{2}$.
(ii) G is quasisimple and $|\mathrm{Z}(G)| \leq p$.

Proof. We may assume that G is not simple and $|P| \geq p^{3}$. Let $N<G$ be a maximal normal subgroup. Then $1<|N|_{p}<|P|$ as $\mathrm{O}_{p^{\prime}}(G)=1$ and $\mathrm{O}^{p^{\prime}}(G)=G$. If $|N|_{p} \geq p^{2}$, then the claim follows from Lemma 8. Hence, let $|N|_{p}=p$. Then $P \cap N \unlhd P$ has index $p^{s} \geq p^{2}$ and therefore $P \cap N=\mathrm{K}_{s}(P) \leq P^{\prime}$. By Tate's theorem (see [Huppert 1967, Satz IV.4.7]), N has a normal p-complement. Since $\mathrm{O}_{p^{\prime}}(G)=1$, this forces $|N|=p$. Since $\left|G: \mathrm{C}_{G}(N)\right|$ divides $p-1$, we further have $N \leq \mathrm{Z}(G)$. Since G / N is simple, G is quasisimple with $|\mathrm{Z}(G)| \leq p$.

If Case (ii) in Theorem B applies with $|\mathrm{Z}(G)|=p$ and (i) fails, then Robinson's ordinary weight conjecture predicts the existence of an irreducible character χ in the principal p-block such that $p^{2} \chi(1)_{p}=|G|_{p}$ (see [Robinson 2008, Lemma 4.7]). Conversely, such a character can only appear when P has maximal class. Examples are $\operatorname{SL}(2,9)$ for $p=2, \operatorname{SL}(3,19)$ for $p=3$ and $\operatorname{SL}(p, q)$ for $p \geq 5$ where $q-1$ is divisible by p just once. Our proof of Theorem A does however not rely on any conjecture.

Theorem A. The character table of a finite group G determines whether G has Sylow p-subgroups of maximal class.

Proof. Let P be a Sylow p-subgroup of G. We may assume that $\mathrm{O}_{p^{\prime}}(G)=1$ and $|P| \geq p^{3}$. Let $K:=\mathrm{O}^{p^{\prime}}(G)$. The character table detects elements $x \in P$ such that $\left|\mathrm{C}_{G}(x)\right|_{p}=\left|\mathrm{C}_{K}(x)\right|_{p}=p^{2}$. In this case $\left|\mathrm{C}_{P}(x)\right|=p^{2}$ and P has maximal class by [Huppert 1967, Satz III.14.23]. Hence, by Theorem B we may assume that K is quasisimple with $|\mathrm{Z}(K)| \leq p$. Note that the character table of G determines the isomorphism type of the simple chief factor $K / \mathrm{Z}(K)$ (see [Navarro and Sambale 2023, Theorem 4.1]). In this way we confirm that the Sylow p-subgroup $P / \mathrm{Z}(K)$ of $K / \mathrm{Z}(K)$ has maximal class. If $\mathrm{Z}(K)=1$, then we are done. Otherwise, P
has maximal class if and only if $\mathrm{Z}(K)=\mathrm{Z}(P)$. This happens if and only if $\left|\mathrm{C}_{G}(x)\right|_{p}<|P|$ for all $x \in P \backslash Z(K)$.

4. Minimal nonabelian Sylow subgroups

The following elementary lemma underlines the importance of minimal nonabelian groups. For elements x, y, z of a group we use the commutator convention $[x, y, z]:=[x,[y, z]]$.

Lemma 9. For a p-group P the following assertions are equivalent:
(1) P is minimal nonabelian.
(2) $|P: \Phi(P)|=|P: \mathrm{Z}(P)|=p^{2}$.
(3) $|P: \Phi(P)|=p^{2}$ and $\left|P^{\prime}\right|=p$.

Proof. (1) \Rightarrow (2): Since P is nonabelian, there exist noncommuting elements $x, y \in P$. Since $\langle x, y\rangle$ is nonabelian, we have $P=\langle x, y\rangle$. By Burnside's basis theorem, $|P: \Phi(P)|=p^{2}$. Choose distinct maximal subgroups $S, T<P$. Since S and T are abelian and $P=S T$, it follows that $\Phi(P)=S \cap T \subseteq \mathrm{Z}(P)$. It is well-known that $P / \mathrm{Z}(P)$ cannot be a nontrivial cyclic group. In particular, $|P: \mathrm{Z}(P)| \geq p^{2}$ and $\Phi(P)=\mathrm{Z}(P)$.
(2) \Rightarrow (3): Let $\mathrm{Z}(P)<S<P$. Since $S / \mathrm{Z}(P)$ is cyclic and $\mathrm{Z}(P) \leq \mathrm{Z}(S)$, we obtain that S is abelian. Pick $x \in P \backslash S$. Then Lemma 1 yields that $\left|P^{\prime}\right|=|S: \mathrm{Z}(P)|=p$.
$(3) \Rightarrow(1)$: Obviously, P is nonabelian since $P^{\prime} \neq 1$. For $g, x \in P$ we have $g x g^{-1}=[g, x] x \in P^{\prime} x$. Thus, every conjugacy class lies in a coset of P^{\prime}. The hypothesis $\left|P^{\prime}\right|=p$ implies $\left|P: \mathrm{C}_{P}(x)\right| \leq p$ for every $x \in P$. Since $\Phi(P)$ is the intersection of the maximal subgroups of P, we deduce $\Phi(P) \leq \bigcap_{x \in P} \mathrm{C}_{P}(x)=$ $\mathrm{Z}(P)$. Now for every maximal subgroup $S<P$, we see that $S / \mathrm{Z}(S)$ is cyclic and S must be abelian. We conclude that P is minimal nonabelian.

The nonnilpotent, minimal nonabelian groups were classified by Miller and Moreno [1903]. The nilpotent ones are p-groups and have been determined by Rédei [1947]. For the convenience of the reader we give a proof.

Lemma 10 (Rédei). Every minimal nonabelian p-group belongs to one of the following classes:
(i) $\Gamma(a, b):=\left\langle x, y \mid x^{p^{a}}=y^{p^{b}}=1, y x y^{-1}=x^{1+p^{a-1}}\right\rangle$ a metacyclic group where $a \geq 2$ and $b \geq 1$,
(ii) $\Delta(a, b):=\left\langle x, y \mid x^{p^{a}}=y^{p^{b}}=[x, y]^{p}=[x, x, y]=[y, x, y]=1\right\rangle$ where $a \geq b \geq 1$,
(iii) Q_{8}.

Proof. Let P be minimal nonabelian. By Lemma 9, there exist $x, y \in P$ such that $P / P^{\prime}=\left\langle x P^{\prime}\right\rangle \times\left\langle y P^{\prime}\right\rangle \cong C_{p^{a}} \times C_{p^{b}}$. Since $\left|P^{\prime}\right|=p$, we have $P^{\prime}=\langle z\rangle$ where $z:=[x, y]$. Note that $P^{\prime} \leq \Phi(P)=\mathrm{Z}(P)$ and $[x, z]=[y, z]=1$. We distinguish three cases:
Case 1: $x^{p^{a}}=y^{p^{b}}=1$. Here P fulfills the same relations as $\Delta(a, b)$, so it must be a quotient of the latter group. Moreover, every element of P can be written uniquely in the form $x^{i} y^{j} z^{k}$ with $1 \leq i \leq p^{a}, 1 \leq j \leq p^{b}$ and $1 \leq k \leq p$. Consequently, $|P|=p^{a+b+1}$. For the same reason we have $|\Delta(a, b)| \leq p^{a+b+1}$. Therefore, $P \cong \Delta(a, b)$.
Case 2: Either $x^{p^{a}}=1$ or $y^{p^{b}}=1$. Without loss of generality, let $x^{p^{a}} \neq 1$ and $y^{p^{b}}=1$. Then $P^{\prime} \leq\langle x\rangle \unlhd P$ and $y x y^{-1}=x^{k}$ for some $k \in \mathbb{Z}$. Since $\left\langle x^{p}, y\right\rangle<P$ is abelian, $x^{p}=y x^{p} y^{-1}=x^{k p}$ and $p \equiv k p\left(\bmod p^{a+1}\right)$ as $|\langle x\rangle|=p^{a+1}$. Hence, we may assume that $k=1+p^{a} l$ for some $0<l<p$. Let $0<l^{\prime}<p$ such that $l l^{\prime} \equiv 1(\bmod p)$. Then $y^{l^{\prime}} x y^{-l^{\prime}}=x^{\left(1+p^{a} l\right)^{\prime}}=x^{1+p^{a}}$. Thus, after replacing y by $y^{l^{\prime}}$, we obtain $y x y^{-1}=x^{1+p^{a}}$. Now P satisfies the relations of $\Gamma(a+1, b)$. It is clear that these groups have the same order, so $P \cong \Gamma(a+1, b)$.
Case 3: $x^{p^{a}} \neq 1 \neq y^{p^{b}}$. Without loss of generality, let $a \geq b$. Let $x^{p^{a}}=z^{i}$ and $y^{p^{b}}=z^{j}$ where $0<i, j<p$. Then $\left(x^{j}\right)^{p^{a}}=z^{i j},\left(y^{i}\right)^{p^{b}}=z^{i j}$ and $\left[x^{j}, y^{i}\right]=z^{i j}$ by [Huppert 1967, Hilfssatz III.1.3] (using $z \in \mathrm{Z}(P)$). Hence, replacing x by x^{j} and y by y^{i}, we may assume that $x^{p^{a}}=z=y^{p^{b}}$. Again by [Huppert 1967, Hilfssatz III.1.3],

$$
\left(x^{p^{a-b}} y^{-1}\right)^{p^{b}}=x^{p^{a}} y^{-p^{b}}\left[y^{-1}, x^{p^{a-b}}\right]^{\left(p_{2}^{b}\right)}=z^{p^{a-b}\left(p_{2}^{p}\right)}=1
$$

unless $p^{b}=p^{a}=2$. In this exceptional case, $P \cong Q_{8}$. Otherwise, we replace y by $x^{p^{a-b}} y^{-1}$. Afterwards we still have $P / P^{\prime}=\left\langle x P^{\prime}\right\rangle \times\left\langle y P^{\prime}\right\rangle$, but now $y^{p^{b}}=1$. Thus, we are in Case (2).

The metacyclic groups $\Gamma(a, b)$ can of course be constructed as semidirect products, while the groups $\Delta(a, b)$ can be constructed as subgroups of $\Gamma(a, b) \times C_{p^{a}}$. For $p=2$, note that $\Gamma(2,1) \cong D_{8} \cong \Delta(1,1)$. Apart from that, the groups in Lemma 10 are pairwise nonisomorphic (for different parameters a, b).

We digress slightly to present a counterexample to a related question. Since for p groups P in general we have $\Phi(P)=P^{\prime} \mho(P)$ where $\mho(P)=\left\langle x^{p}: x \in P\right\rangle$, one might wonder if $X(G)$ determines the property $|P: \mho(P)|=p^{2}$. For $p=2$, it is well-known that $\mho(P)=\Phi(P)$, so the answer is yes in this case. For $p>2,|P: \mho(P)|=p^{2}$ holds if and only if P is metacyclic (see [Huppert 1967, Satz III.11.4]). The following example shows that this is not even determined by $X(P)$.

Proposition 11. For $a \geq 2$ and all primes p the groups $\Gamma(2, a)$ and $\Delta(a, 1)$ have the same character table.

Proof. We denote the generators of $P:=\Gamma(2, a)$ by x, y and those of $\widetilde{P}:=\Delta(a, 1)$ by \tilde{x}, \tilde{y} as in Lemma 10. Additionally, let $\tilde{z}:=[\tilde{x}, \tilde{y}]$. We consider the maximal subgroups $Q:=\left\langle x^{p}, y\right\rangle \leq P$ and $\widetilde{Q}:=\langle\tilde{x}, \tilde{z}\rangle \leq \widetilde{P}$. Since $x y x^{-1}=x^{-p} y$ and $\tilde{y} \tilde{x} \tilde{y}^{-1}=\tilde{z}^{-1} \tilde{y}$, the map

$$
Q \rightarrow \widetilde{Q}, \quad x^{p} \mapsto z, \quad y \mapsto \tilde{x}
$$

is an isomorphism compatible with the action of P and \widetilde{P}. The irreducible characters of P of degree p are induced from linear characters of Q, which are not P-invariant. Since these characters vanish outside Q, they correspond naturally to irreducible characters of \widetilde{P}. On the other hand, the linear characters of P are extensions of characters of Q with x^{p} in their kernel. For $\lambda \in \operatorname{Irr}\left(Q / P^{\prime}\right)$ the extensions $\hat{\lambda}$ are determined by $\hat{\lambda}(x)=\zeta$ where ζ is a p-th root of unity. Similarly, for $\lambda \in \operatorname{Irr}\left(\widetilde{Q} / \widetilde{P}^{\prime}\right)$ the extensions are determined by $\hat{\lambda}(\tilde{y})=\zeta$. Therefore, the bijection $P \rightarrow \widetilde{P}, x^{i+j p} y^{k} \mapsto \tilde{x}^{k} \tilde{y}^{i} \tilde{z}^{j}$ where $0 \leq i, j<p$ and $0 \leq k<p^{a}$ induces the equality of the matrices $X(P)$ and $X(\widetilde{P})$.

The second author has investigated fusion systems on minimal nonabelian 2groups in order to classify blocks with such defect groups (see e.g., [Sambale 2016]). We now determine the fusion systems for odd primes too (partial results were obtained in [Yang and Gao 2011]). It turns out that they all come from finite groups unless $|P|=7^{3}$. We make use of the Frobenius group $M_{9} \cong \operatorname{PSU}(3,2) \cong C_{3}^{2} \rtimes Q_{8}$ with $\operatorname{Out}\left(M_{9}\right) \cong S_{3}$.

Theorem 12. Let \mathcal{F} be a saturated fusion system on a minimal nonabelian p-group P. Then one of the following holds:
(i) $P \in\left\{D_{8}, Q_{8}\right\}$ and $\mathcal{F}=\mathcal{F}_{P}(G)$ where $G \in\left\{P, S_{4}, \operatorname{GL}(3,2), \operatorname{SL}(2,3)\right\}$.
(ii) $|P|=p^{3}, \exp (P)=p>2$ and the possibilities for \mathcal{F} are given in [Ruiz and Viruel 2004].
(iii) $P \cong \Gamma(a, b), a \geq 2, b \geq 1$ and $\mathcal{F}=\mathcal{F}_{P}\left(C_{p^{a}} \rtimes C_{p^{b} d}\right)$ for some $d \mid p-1$.
(iv) $P \cong \Delta(a, b), a>b$ and $\mathcal{F}=\mathcal{F}_{P}(P \rtimes Q)$ where $Q \leq C_{p-1}^{2}$.
(v) $P \cong \Delta(a, a), a \geq 2$ and $\mathcal{F}=\mathcal{F}_{P}(P \rtimes Q)$ for some p^{\prime}-group $Q \leq \operatorname{GL}(2, p)$.
(vi) $p=2, P \cong \Delta(a, 1), a \geq 2$ and $\mathcal{F}=\mathcal{F}_{P}\left(A_{4} \rtimes C_{2^{a}}\right)$ where $C_{2^{a}}$ acts as a transposition in $\operatorname{Aut}\left(A_{4}\right)=S_{4}$.
(vii) $p=3, P \cong \Delta(a, 1), a \geq 2$ and $\mathcal{F}=\mathcal{F}_{P}(G)$ where $G \in\left\{M_{9} \rtimes C_{3^{a}}, M_{9} \rtimes D_{2 \cdot 3^{a}}\right\}$. Here the image of $C_{3^{a}}$ and $D_{2.3^{a}}$ in $\operatorname{Out}\left(M_{9}\right)$ is C_{3} and S_{3} respectively.

Proof. The case $P \in\left\{D_{8}, Q_{8}\right\}$ is well-known and can be found in [Craven and Glesser 2012, Theorem 5.3], for instance. If $p=2$ and $P=\Gamma(a, b)$ with $|P| \geq 16$, then \mathcal{F} is trivial, i.e., $\mathcal{F}=\mathcal{F}_{P}(P)$ by [Craven and Glesser 2012, Theorem 3.7]. Then (iii) holds. Now suppose that $p>2$ and $P=\Gamma(a, b)$. Then \mathcal{F} is controlled,
i.e., $\mathcal{F}=\mathcal{F}_{P}(P \rtimes Q)$ for some p^{\prime}-group $Q \leq \operatorname{Aut}(P)$ by [Stancu 2006] (see also [Craven and Glesser 2012, Theorem 3.10]). By [Sasaki 1997, Lemma 2.4], $\operatorname{Aut}(P)=A \rtimes\langle\sigma\rangle$ where A is a p-group, $|\langle\sigma\rangle|=p-1, \sigma(x) \in\langle x\rangle$ and $\sigma(y)=y$. Hence, Q is conjugate to a subgroup of $\langle\sigma\rangle$. After renaming the generators of P, we may assume that $Q \leq\langle\sigma\rangle$. Now (iii) holds.

Next assume that $P \cong \Delta(a, b)$ for some $a \geq b \geq 1$. If $a=1$ and $p>2$, then $|P|=p^{3}$ and $\exp (P)=p$, so (ii) holds. Hence, let $a \geq 2$. Set $z:=[x, y] \in P$. Since the p^{\prime}-group $\operatorname{Out}_{\mathcal{F}}(P)$ acts faithfully on $P / \Phi(P) \cong C_{p}^{2}$, we have $\operatorname{Out}_{\mathcal{F}}(P) \leq$ GL(2, p). If $a>b$, then $\operatorname{Out}_{\mathcal{F}}(P)$ acts on $P / \Omega_{a-1}(P) \times \Omega_{a-1}(P) / \Phi(P)$ where $\Omega_{a-1}(P)=\left\langle g \in P: g^{p^{a-1}}=1\right\rangle=\left\langle x^{p}, y, z\right\rangle$. In this case $\operatorname{Out}_{\mathcal{F}}(P) \leq C_{p-1}^{2}$. If \mathcal{F} is controlled, then we are in Case (iv) or (v). Hence, we may assume that \mathcal{F} is not controlled. Then there exists an essential subgroup $Q \leq P$. Since Q is centric and $\Phi(P)=\mathrm{Z}(P) \leq \mathrm{C}_{P}(Q) \leq Q, Q$ is a maximal subgroup. Those are given by

$$
\begin{aligned}
\left\langle x y^{i}, y^{p}, z\right\rangle & \cong C_{p^{a}} \times C_{p^{b-1}} \times C_{p}, \quad i=0, \ldots, p-1, \\
\left\langle x^{p}, y, z\right\rangle & \cong C_{p^{a-1}} \times C_{p^{b}} \times C_{p} .
\end{aligned}
$$

By [Gorenstein 1980, Theorem 5.2.4], $A:=\operatorname{Aut}_{\mathcal{F}}(Q)$ acts faithfully on $\Omega(Q)=$ $\left\{g \in Q: g^{p}=1\right\}$. Since $P / Q \leq A$, this implies $\Omega(Q) \nsubseteq \mathrm{Z}(P)$ and $Q=\left\langle x^{p}, y, z\right\rangle$ with $b=1$. Now Q is the only maximal subgroup of P isomorphic to $C_{p^{a-1}} \times C_{p}^{2}$. In particular, Q is characteristic in P. By Alperin's fusion theorem, \mathcal{F} is constrained with $\mathrm{O}_{p}(\mathcal{F})=Q$. By the model theorem, there exists a unique p-constrained group H with $P \in \operatorname{Syl}_{p}(H), \mathrm{O}_{p^{\prime}}(H)=1$ and $\mathcal{F}=\mathcal{F}_{P}(H)$. We will construct H in the following.

By [Oliver 2014, Lemma 1.11], there exists an A-invariant decomposition $Q=$ $Q_{1} \times Q_{2}$ with $Q_{1} \cong C_{p}^{2}$ and $Q_{2} \cong C_{p^{a-1 .}}$. Moreover, $\mathrm{O}^{p^{\prime}}(A) \cong \operatorname{SL}(2, p)$ acts faithfully on Q_{1} and trivially on Q_{2}. Since $P / Q \leq \mathrm{O}^{p^{\prime}}(A)$, it follows that $Q_{2} \leq \mathrm{Z}(P)=\left\langle x^{p}, z\right\rangle$. Moreover, $x y x^{-1}=y z$ implies $z \in Q_{1}$. Let $\alpha \in A$ be a p^{\prime}-automorphism acting trivially on Q_{1}. Then α commutes with the action of P / Q. Since Q is receptive (see [Aschbacher et al. 2011, Definition I.2.2]), α extends to an automorphism of P. Suppose that $\alpha \neq 1$. Since $Q_{2} \leq \mathrm{Z}(P)=\Phi(P), \alpha$ must act nontrivially on P / Q_{2}. Note that P / Q_{2} is nonabelian of order p^{3} as $z \in Q_{1}$. An analysis of $\operatorname{Aut}\left(P / Q_{2}\right)$ reveals that α cannot act trivially on $Q / Q_{2} \cong Q_{1}$. Hence, $\alpha=1$ and A acts faithfully on Q_{1}. In particular, $A \leq \operatorname{GL}(2, p)$. If $p=2$, then

$$
A \cong \mathrm{SL}(2,2)=\mathrm{GL}(2,2) \cong S_{3} .
$$

It is easy to see that (vi) holds here. If $p=3$, then $\operatorname{SL}(2,3) \cong Q_{8} \rtimes C_{3}, \operatorname{GL}(2,3) \cong$ $Q_{8} \rtimes S_{3}$ and (vii) is satisfied. Thus, let $p \geq 5$. Then the Sylow normalizer in $\operatorname{SL}(2, p)$ acts nontrivially on a Sylow p-subgroup of $\operatorname{SL}(2, p)$. Hence, there exists $\alpha \in \mathrm{O}^{p^{\prime}}(A)$
acting nontrivially P / Q. But then α acts nontrivially on $\left\langle x^{P}\right\rangle Q_{1} / Q_{1}=Q / Q_{1} \cong Q_{2}$. This contradicts [Oliver 2014, Lemma 1.11].

The groups $A_{4} \rtimes C_{4}, M_{9} \rtimes C_{9}$ and $M_{9} \rtimes D_{18}$ can be constructed in GAP [2020] as $\operatorname{SmallGroup}(n, k)$ where $(n, k) \in\left\{(48,39),(648,534),\left(6^{4}, 2892\right)\right\}$ respectively.

Corollary 13. Let \mathcal{F} be a fusion system on a minimal nonabelian p-group P with $|P| \geq p^{4}$. Then \mathcal{F} is constrained. If $p \geq 5$, then \mathcal{F} is controlled.

We now gather some information on simple groups in order to prove Theorem C. As customary, if q is a prime power, let

$$
\operatorname{PSL}^{\epsilon}(n, q):= \begin{cases}\operatorname{PSL}(n, q) & \text { if } \epsilon=1 \\ \operatorname{PSU}(n, q) & \text { if } \epsilon=-1\end{cases}
$$

The following is certainly known, but included for convenience.
Lemma 14. Let q be a prime power. Let $S=\operatorname{PSL}^{\epsilon}(n, q)$ with a cyclic Sylow p-subgroup and $n \geq 3$. Then there exists a unique integer $2 \leq d \leq n$ such that p divides $q^{d}-\epsilon^{d}$.

Proof. Since a nonabelian simple group cannot have cyclic Sylow 2-subgroups, we have $p>2$. If $p \mid q$, then a Sylow p-subgroup of S is given by the set of unitriangular matrices. This subgroup is nonabelian since $n \geq 3$. Now let $p \nmid q$. If $q \equiv \epsilon(\bmod p)$, then S contains a subgroup of diagonal matrices isomorphic to C_{p}^{2}. Hence, let $q \not \equiv \epsilon(\bmod p)$. In the following we write $q^{*}:=q$ if $\epsilon=1$ and $q^{*}:=q^{2}$ if $\epsilon=-1$. Let $x \in S$ be a generator of a Sylow p-subgroup of S. We identify x with a preimage in $\operatorname{GL}\left(n, q^{*}\right)$. We may assume that x has order p^{k}. Let e be the order of q^{*} modulo p^{k}. Then x has an eigenvalue $\zeta \in \mathbb{F}_{\left(q^{*}\right)^{e}}^{\times}$of order p^{k}. Since $\operatorname{tr}(x) \in \mathbb{F}_{q^{*}}$, the elements $\zeta^{\left(q^{*}\right)^{i}}$ for $i=0, \ldots, e-1$ are distinct eigenvalues of x. In particular, $e \leq n$. If $\epsilon=1$, then $e \geq 2$ we can choose $d:=e$ in the statement. If $2 e \leq n$, we obtain $q^{d} \equiv 1 \equiv \epsilon^{d}(\bmod p)$ for $d:=2 e$.

Now suppose that $\epsilon=-1$ and $2 e>n$. Since x is a unitary matrix, we have $\bar{x} x^{\mathrm{t}}=1$ where $\bar{x}=\left(x_{i j}^{q}\right)_{i, j}$ and x^{t} is the transpose of x. It follows that ζ^{-q} is an eigenvalue of x. Since $n<2 e$, there must be some i with $\zeta^{q^{2 i}}=\zeta^{-q}$. This shows that $q^{2 i-1} \equiv-1 \equiv \epsilon^{2 i-1}\left(\bmod p^{k}\right)$. Since $q^{2(2 i-1)} \equiv 1\left(\bmod p^{k}\right)$, we have

$$
e \mid 2 i-1 \leq 2(e-1)-1<2 e \quad \text { and } \quad e=2 i-1 .
$$

Hence, we can set $d:=e$.
For the uniqueness of d, we note that

$$
|S|=\frac{q^{n(n-1) / 2}}{\operatorname{gcd}(n, q-\epsilon)} \prod_{i=2}^{n}\left(q^{i}-\epsilon^{i}\right),
$$

is not divisible by p^{k+1}, since $p^{k}=|\langle x\rangle|=|S|_{p}$.

Lemma 15. Let S be a finite simple group with Sylow 3 -subgroup C_{3}^{2} and outer automorphism of order 3 . Then $S \cong \operatorname{PSL}^{\epsilon}\left(3, p^{f}\right)$ where $\epsilon= \pm 1, p$ is a prime and $\left(p^{f}-\epsilon\right)_{3}=3$. Moreover, $\operatorname{Out}(S) \cong C_{3} \rtimes\left(C_{f} \times C_{2}\right)$.

Proof. The simple groups with Sylow 3-subgroup C_{3}^{2} were classified in [Koshitani and Miyachi 2001, Proposition 1.2]. The alternating groups and sporadic groups do not have outer automorphisms of order 3. Now let S be a classical group of dimension d over $\mathbb{F}_{p f}$. Then $p^{f} \not \equiv \pm 1(\bmod 9)$. This implies $3 \nmid f$ and S does not have field automorphisms of order 3. According to [Conway et al. 1985, Table 5], there must be a diagonal automorphism of order 3. This forces $d=3$ and $S=\operatorname{PSL}^{\epsilon}\left(3, p^{f}\right)$ such that $\left(p^{f}-\epsilon\right)_{3}=3$. If $\epsilon=1$, then $\operatorname{Out}(S)=C_{3} \rtimes\left(C_{f} \times C_{2}\right)$ as desired. If $\epsilon=-1$, then there is no graph automorphism and instead we have a field automorphism of order $2 f$. However, since $p^{f} \equiv 2,5(\bmod 9), f$ must be odd and $C_{2 f} \cong C_{f} \times C_{2}$.

Theorem C. Let G be a finite group with a minimal nonabelian Sylow p-subgroup P and $\mathrm{O}_{p^{\prime}}(G)=1$. Then one of the following holds:
(i) $p=2, P \in\left\{D_{8}, Q_{8}\right\}$ and $\mathrm{O}^{2^{\prime}}(G) \in\left\{\operatorname{SL}(2, q), \operatorname{PSL}\left(2, q^{\prime}\right), A_{7}\right\}$ where $q \equiv$ $\pm 3(\bmod 8)$ and $q^{\prime} \equiv \pm 7(\bmod 16)$.
(ii) $|P|=p^{3}$ and $\exp (P)=p>2$.
(iii) $G=P \rtimes Q$ where $Q \leq \operatorname{GL}(2, p)$.
(iv) $p>2, \mathrm{O}^{p^{\prime}}(G)=S \rtimes C_{p^{a}}$ where S is a simple group of Lie type with cyclic Sylow p-subgroups. The image of $C_{p^{a}}$ in $\operatorname{Out}(S)$ has order p.
(v) $p=2$ and $G=\operatorname{PSL}\left(2, q^{f}\right) \rtimes C_{2^{a} d}$ where q is a prime, $q^{f} \equiv \pm 3(\bmod 8)$ and $d \mid f$. Moreover, $C_{2^{a}}$ acts as a diagonal automorphism of order 2 on $\operatorname{PSL}\left(2, q^{f}\right)$ and C_{d} induces a field automorphism of order d.
(vi) $p=3$ and $\mathrm{O}^{3^{\prime}}(G)=\operatorname{PSL}^{\epsilon}\left(3, q^{f}\right) \rtimes C_{3^{a}}$ where $\epsilon= \pm 1, q$ is prime, $\left(q^{f}-\epsilon\right)_{3}=3$ and $G / \mathrm{O}^{3^{\prime}}(G) \leq C_{f} \times C_{2}$.

Proof. By Lemma 9, $|P: \mathrm{Z}(P)|=p^{2}$ and G is described in [Navarro and Sambale 2023, Theorem 7.5]. We go through the various cases in the notation used there:

In Case (A), using that P is 2-generated and $\mathrm{O}_{p}(G)$ is not cyclic, we deduce that $S=1$. Here $P=\mathrm{F}^{*}(G) \unlhd G$ and $\mathrm{C}_{G}(P) \leq P$. Since G / P acts faithfully on $P / \Phi(P) \cong C_{p}^{2}$, we have $G / P \leq \mathrm{GL}(2, p)$ and (iii) holds. Assume now that $P<G$. In Case (B), the quasisimple group C has a nonabelian Sylow p-subgroup of order p^{3} which must coincide with P. If $P=D_{8}$, then (i) or (v) holds by the GorensteinWalter theorem (there are no field automorphisms of order 2) [Gorenstein 1980, p. 462]. If $P=Q_{8}$, the claim follows from the Brauer-Suzuki theorem [Gorenstein 1980, Theorem 12.1.1] and Walter's theorem [Gorenstein 1980, p. 485]. If $p>2$, then we must have $\exp (P)=p$, since otherwise the focal subgroup theorem [Isaacs

2008, Theorem 5.21] and Theorem 12 lead to the contradiction $|P|=\left|P: P \cap G^{\prime}\right| \geq p$. Thus, (ii) holds. Case (D) is impossible, since then P has a nonabelian maximal subgroup.

Now consider Case (C), i.e., $\mathrm{F}^{*}(G)=\mathrm{O}_{p}(G) \times S$ has abelian Sylow p-subgroups, S is a direct product of simple groups and $\left|G: \mathrm{F}^{*}(G)\right|_{p}=p$. Let $x \in P \backslash \mathrm{~F}^{*}(G)$.
Case 1: $S=1$. Since $S=1, \mathrm{~F}^{*}(G)=\mathrm{O}_{p}(G)$ and so

$$
\mathrm{C}_{G}\left(\mathrm{~F}^{*}(G)\right)=\mathrm{C}_{G}\left(\mathrm{O}_{p}(G)\right) \leq \mathrm{O}_{p}(G)
$$

Therefore, $\mathrm{C}_{P}\left(\mathrm{O}_{p}(G)\right)=\mathrm{O}_{p}(G)$ and we have $\mathrm{C}_{G}\left(\mathrm{O}_{p}(G)\right)=\mathrm{O}_{p}(G) \times K$ where $K \leq \mathrm{O}_{p^{\prime}}(G)=1$. Hence, G is p-constrained and $\mathcal{F}_{P}(G)$ is given by (vi) or (vii) of Theorem 12. By the model theorem, the isomorphism type of G is uniquely determined by $\mathcal{F}_{P}(G)$. Since $\operatorname{PSL}(2,3) \cong A_{4}$ and $\operatorname{PSU}(3,2) \cong M_{9}$, we obtain (v) or (vi).

Case 2: $S \neq 1$ is not simple. By Lemma 10, the maximal subgroups of P are generated by at most three elements. Hence, S is a direct product of two or three simple groups, say $S=T_{1} \times T_{2}$ or $T_{1} \times T_{2} \times T_{3}$. Since a Sylow 2-subgroup of a simple group cannot be generated by less than 2 elements, we deduce that $p>2$ and the T_{i} have cyclic Sylow p-subgroups. If x does not normalize some T_{i}, then $p=3$ and x permutes $T_{1} \cong T_{2} \cong T_{3}$. However, $C_{3^{n}}$. C_{3} is not minimal nonabelian. Hence, x acts on each T_{i}. If x acts nontrivially on $\mathrm{O}_{p}(G)$, then $\mathrm{O}_{p}(G)\langle x\rangle$ is nonabelian and $P=\mathrm{O}_{p}(G)\langle x\rangle$. But then S would be simple. Similarly, if x acts nontrivially on $Q_{1}:=P \cap T_{1}$, then $P=Q_{1}\langle x\rangle$. Write $Q_{2}:=P \cap T_{2}=\langle y\rangle$ such that $x^{p} \in y Q_{1}$. Then x centralizes y. By [Gross 1982, Theorem B], this implies that x induces an inner automorphism on T_{2}. However, x^{p} induces the inner automorphism by y. Hence, x cannot have order greater than $\left|T_{2}\right|_{p}$. Another contradiction.
Case 3: S is simple. Let $Q:=P \cap S \unlhd P$ be a Sylow p-subgroup of S. Arguing as in Case 2, we see that x acts nontrivially on Q and therefore $P=Q\langle x\rangle$. First let Q be cyclic. Then $p>2$ and P is metacyclic. Since $\operatorname{Out}(S)$ needs to have an element of order p, S must be of Lie type. To obtain (iv), it remains to show that $P S$ is normal in G. Assume the contrary. By the structure of $\operatorname{Out}(S)$ (see [Conway et al. 1985, Table 5]), P induces a field or graph automorphism of order p on S which acts nontrivially on the subgroup of outer diagonal automorphisms of S. In particular, the diagonal automorphism group must have order at least $p+1$, in fact $2 p+1 \geq 7$ since $p>2$. This excludes all families of simple groups except $S=\operatorname{PSL}^{\epsilon}\left(d, q^{f}\right)$ where $p \mid f$ and $d \geq 2 p+1$. Since Q is cyclic and $f>1$, we have $q \neq p$. By Fermat's little theorem,

$$
q^{(p-1) f} \equiv q^{2(p-1) f} \equiv 1(\bmod p)
$$

This contradicts Lemma 14 (note that $p-1$ is even). Hence, $P S \unlhd G$ and (iv) holds.

Let Q be noncyclic. Recall that in general Q is homocyclic and $\mathrm{N}_{S}(Q)$ acts irreducibly on $\Omega(Q)$ (see [Flores and Foote 2009, Proposition 2.5]). This implies that P cannot be metacyclic, as otherwise the fusion in P is controlled by $\mathrm{N}_{G}(P)$ and $\mathrm{N}_{G}(Q)=\mathrm{N}_{G}(P) \mathrm{C}_{G}(Q)$ acts reducibly on Q according to Theorem 12. Hence, let $P \cong \Delta(a, b)$. Then P^{\prime} is a direct factor of Q and we obtain $Q=\Omega(Q)$. If Q has rank 3 , then $P \cong \Delta(2,1)$. However, by Theorem $12, \mathrm{~N}_{G}(Q) / \mathrm{C}_{G}(Q) \leq \mathrm{GL}(2, p)$ does not act irreducibly on Q. Hence, we may assume that Q has rank 2. Now $P \cong \Delta(a, 1)$ with $a \geq 2$. If $\mathrm{N}_{G}(P)$ controls the fusion in P, then $\mathrm{N}_{G}(Q)$ would fix P^{\prime}. Hence, we are in Case (vi) or (vii) of Theorem 12. Consider $p=2$ first. By Walter's theorem (see [Gorenstein 1980, p. 485]), $S \cong \operatorname{PSL}\left(2, q^{f}\right)$ with $q^{f} \equiv \pm 3(\bmod 8)$. It follows that f is odd and $G / P S \leq \operatorname{Out}(S) \leq C_{2 f}$ by [Conway et al. 1985, Table 5]. Here C_{2} induces a diagonal automorphism and C_{f} is caused by a field automorphism. So (v) holds. Finally, let $p=3$. Here the claim follows easily from Lemma 15.

Examples for Theorem C (iv) can be constructed as follows: Let $p>2$ and $a \geq 2$. By Dirichlet's theorem, there exists a prime $q \equiv 1+p^{a-1}\left(\bmod p^{a+1}\right)$. Then $q^{p} \equiv 1+p^{a}\left(\bmod p^{a+1}\right)$ and $S:=\operatorname{PSL}\left(2, q^{p}\right)$ has a cyclic Sylow p-subgroup Q of order p^{a}. Let $R \cong C_{p^{b}}$ and construct $G:=S \rtimes R$ where R acts as the field automorphism $\mathbb{F}_{q^{p}} \rightarrow \mathbb{F}_{q^{p}}, \lambda \mapsto \lambda^{q}$ on S. By [Gross 1982], R acts nontrivially on Q and $P:=Q \rtimes R \cong \Gamma(a, b)$. A different example is $G=\operatorname{Sz}\left(2^{5}\right) \rtimes C_{5}$ for $p=5$.

Corollary 16. Let G be a finite group with a minimal nonabelian Sylow p-subgroup and $\mathrm{O}_{p^{\prime}}(G)=1$. Then G has at most one nonabelian composition factor.

Proof. We may assume that G is nonsolvable. If $|G|_{p}=p^{3}$, then $\mathrm{F}^{*}(G)$ is quasisimple and $G / \mathrm{F}^{*}(G) \leq \operatorname{Aut}\left(\mathrm{F}^{*}(G)\right) \leq \operatorname{Aut}\left(\mathrm{F}^{*}(G) / \mathrm{Z}\left(F^{*}(G)\right)\right.$ is solvable by Schreier's conjecture. Otherwise we have $\mathrm{F}^{*}(G)=S \times C_{p^{b}}$ for a simple group S and $b \geq 0$ by the proof of Theorem C. Since $\operatorname{Aut}\left(C_{p^{b}}\right)$ is abelian, the claim follows again from Schreier's conjecture.

Corollary D. The character table of a finite group G determines whether G has minimal nonabelian Sylow p-subgroups.

Proof. Let P be a Sylow p-subgroup of G. We may assume that $\mathrm{O}_{p^{\prime}}(G)=1$. By [Navarro and Sambale 2023, Theorem B], the character table determines whether $|P: \mathrm{Z}(P)|=p^{2}$. Suppose that this is the case. By Lemma 9, it remains to detect whether $|P: \Phi(P)|=p^{2}$. This is true for $|P|=p^{3}$, so let $|P| \geq p^{4}$. By Theorem 4 and Corollary 5, we may assume that $\mathrm{O}_{p}(G)=1$. Now by Theorem C we expect that $\mathrm{O}^{p^{\prime}}(G)=S \rtimes C_{p}$ for a simple group S with a cyclic Sylow p-subgroup Q. As usual, $X(G)$ determines the isomorphism type of S. If Q is indeed cyclic, then clearly P is 2-generated and we are done.

Acknowledgments

We thank Gunter Malle and the referee for helpful comments and a careful reading of this paper and Chris Parker for answering some questions on fusion systems. Parts of this work were written while both authors were attending the conference "Counting conjectures and beyond" at the Isaac Newton Institute for Mathematical Sciences in Cambridge. We thank the institute for their financial support via the EPSRC grant no EP/R014604/1. Moretó is supported by the Ministerio de Ciencia e Innovación (Grant PID2019-103854GB-I00 funded by MCIN/AEI/10.13039/501100011033) and Generalitat Valenciana CIAICO/2021/163. Sambale is supported by the German Research Foundation (SA 2864/1-2 and SA 2864/3-1).

References

[Aschbacher et al. 2011] M. Aschbacher, R. Kessar, and B. Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series 391, Cambridge University Press, 2011. MR Zbl
[Brandis 1978] A. Brandis, "Verschränkte Homomorphismen endlicher Gruppen", Math. Z. 162:3 (1978), 205-217. MR
[Brauer 1963] R. Brauer, "Representations of finite groups", pp. 133-175 in Lectures on Modern Mathematics, Vol, I, edited by T. L. Saaty, Wiley, New York, 1963. MR Zbl
[Camina and Herzog 1980] A. R. Camina and M. Herzog, "Character tables determine abelian Sylow 2-subgroups", Proc. Amer. Math. Soc. 80:3 (1980), 533-535. MR Zbl
[Conway et al. 1985] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, ATTLAS of finite groups, Oxford University Press, 1985. MR
[Craven and Glesser 2012] D. A. Craven and A. Glesser, "Fusion systems on small p-groups", Trans. Amer. Math. Soc. 364:11 (2012), 5945-5967. MR Zbl
[Doerk and Hawkes 1992] K. Doerk and T. Hawkes, Finite soluble groups, De Gruyter Expositions in Mathematics 4, Walter de Gruyter \& Co., Berlin, 1992. MR Zbl
[Flores and Foote 2009] R. J. Flores and R. M. Foote, "Strongly closed subgroups of finite groups", Adv. Math. 222:2 (2009), 453-484. MR Zbl
[GAP 2020] The GAP Group, "GAP - Groups, algorithms, and programming", 2020, available at https://www.gap-system.org. Version 4.11.0.
[Garrison 1976] S. Garrison, "Determining the Frattini subgroup from the character table", Canadian J. Math. 28:3 (1976), 560-567. MR Zbl
[Gorenstein 1980] D. Gorenstein, Finite groups, 2nd ed., Chelsea Publishing Co., New York, 1980. MR Zbl
[Grazian and Parker 2022] V. Grazian and C. Parker, "Saturated fusion systems on p-groups of maximal class", 2022. To appear in Mem. Amer. Math. Soc. arXiv 2011.05011v2
[Gross 1982] F. Gross, "Automorphisms which centralize a Sylow p-subgroup", J. Algebra 77:1 (1982), 202-233. MR Zbl
[Hung et al. 2022] N. N. Hung, G. Malle, and A. Maróti, "On almost p-rational characters of p^{\prime}-degree", Forum Math. 34:6 (2022), 1475-1496. MR Zbl
[Huppert 1967] B. Huppert, Endliche Gruppen, I, Grundl. Math. Wissen. 134, Springer, Berlin-New York, 1967. MR Zbl
[Isaacs 2008] I. M. Isaacs, Finite group theory, Graduate Studies in Mathematics 92, American Mathematical Society, Providence, RI, 2008. MR Zbl
[Kimmerle and Sandling 1995] W. Kimmerle and R. Sandling, "Group-theoretic and group ringtheoretic determination of certain Sylow and Hall subgroups and the resolution of a question of R. Brauer", J. Algebra 171:2 (1995), 329-346. MR
[Koshitani and Miyachi 2001] S. Koshitani and H. Miyachi, "Donovan conjecture and Loewy length for principal 3-blocks of finite groups with elementary abelian Sylow 3-subgroup of order 9", Comm. Algebra 29:10 (2001), 4509-4522. MR Zbl
[Malle and Navarro 2021] G. Malle and G. Navarro, "Brauer's height zero conjecture for principal blocks", J. Reine Angew. Math. 778 (2021), 119-125. MR Zbl
[Miller and Moreno 1903] G. A. Miller and H. C. Moreno, "Non-abelian groups in which every subgroup is abelian", Trans. Amer. Math. Soc. 4:4 (1903), 398-404. MR Zbl
[Navarro 2018] G. Navarro, Character theory and the McKay conjecture, Cambridge Studies in Advanced Mathematics 175, Cambridge University Press, 2018. MR Zbl
[Navarro and Sambale 2023] G. Navarro and B. Sambale, "Characters, commutators and centers of Sylow subgroups", 2023. To appear in Represent. Theory. arXiv 2204.04407v2
[Navarro et al. 2015] G. Navarro, R. Solomon, and P. H. Tiep, "Abelian Sylow subgroups in a finite group, II", J. Algebra 421 (2015), 3-11. MR Zbl
[Navarro et al. 2018] G. Navarro, B. Sambale, and P. H. Tiep, "Characters and Sylow 2-subgroups of maximal class revisited", J. Pure Appl. Algebra 222:11 (2018), 3721-3732. MR Zbl
[Navarro et al. 2021] G. Navarro, N. Rizo, A. A. Schaeffer Fry, and C. Vallejo, "Characters and generation of Sylow 2-subgroups", Represent. Theory 25 (2021), 142-165. MR Zbl
[Navarro et al. 2022] G. Navarro, N. Rizo, and L. Sanus, "Character degrees in separable groups", Proc. Amer. Math. Soc. 150:6 (2022), 2323-2329. MR Zbl
[Oliver 2014] B. Oliver, "Simple fusion systems over p-groups with abelian subgroup of index p : I", J. Algebra 398 (2014), 527-541. MR Zbl
[Rédei 1947] L. Rédei, "Das "schiefe Produkt" in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören", Comment. Math. Helv. 20 (1947), 225-264. MR Zbl
[Robinson 2008] G. R. Robinson, "Large character heights, $Q d(p)$, and the ordinary weight conjecture", J. Algebra 319:2 (2008), 657-679. MR Zbl
[Ruiz and Viruel 2004] A. Ruiz and A. Viruel, "The classification of p-local finite groups over the extraspecial group of order p^{3} and exponent $p "$, Math. Z. 248:1 (2004), 45-65. MR Zbl
[Sambale 2016] B. Sambale, "2-blocks with minimal nonabelian defect groups III", Pacific J. Math. 280:2 (2016), 475-487. MR Zbl
[Sambale 2020] B. Sambale, "Character tables and defect groups", J. Algebra 562 (2020), 323-340. MR Zbl
[Sasaki 1997] H. Sasaki, "The mod p cohomology algebras of finite groups with metacyclic Sylow p-subgroups", J. Algebra 192:2 (1997), 713-733. MR Zbl
[Stancu 2006] R. Stancu, "Control of fusion in fusion systems", J. Algebra Appl. 5:6 (2006), 817-837. MR Zbl
[Winter 1972] D. L. Winter, "The automorphism group of an extraspecial p-group", Rocky Mountain J. Math. 2:2 (1972), 159-168. MR Zbl
[Yang and Gao 2011] S. Yang and S. Gao, "On the control of fusion in the local category for the p-block with a minimal nonabelian defect group", Sci. China Math. 54:2 (2011), 325-340. MR Zbl

Received September 7, 2022. Revised April 15, 2023.
Alexander Moretó
Departament de Matemátiques
Universitat de Valéncia
Spain
alexander.moreto@uv.es

Benjamin Sambale
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Leibniz Universität Hannover
Germany
sambale@math.uni-hannover.de

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

msp.org/pjm

	EDITORS	
	Don Blasius (Managing Editor) Department of Mathematics University of California Los Angeles, CA 90095-1555 blasius@math.ucla.edu	
Matthias Aschenbrenner	Paul Balmer	Vyjayanthi Chari
Fakultät für Mathematik	Department of Mathematics	Department of Mathematics
Universität Wien	University of California	University of California
Vienna, Austria	Los Angeles, CA 90095-1555	Riverside, CA 92521-0135
matthias.aschenbrenner@univie.ac.at	balmer@math.ucla.edu	chari@math.ucr.edu
Robert Lipshitz	Kefeng Liu	Sorin Popa
Department of Mathematics	Department of Mathematics	Department of Mathematics
University of Oregon	University of California	University of California
Eugene, OR 97403	Los Angeles, CA 90095-1555	Los Angeles, CA 90095-1555
lipshitz@uoregon.edu	liu@math.ucla.edu	popa@math.ucla.edu
	Paul Yang	
	Department of Mathematics	
	Princeton University	
	Princeton NJ 08544-1000	
	yang@math.princeton.edu	

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2023 is US $\$ 605 / y e a r$ for the electronic version, and $\$ 820 /$ year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 323 No. 2 April 2023
Multivariate correlation inequalities for P-partitions 223Swee Hong Chan and Igor Pak
Compatibility in Ozsváth-Szabó's bordered HFK via higher 253
representations
William Chang and Andrew Manion
The Fox-Hatcher cycle and a Vassiliev invariant of order three 281
Saki Kanou and Keiichi Sakai
On the theory of generalized Ulrich modules 307Cleto B. Miranda-Neto, Douglas S. Queiroz andThyago S. Souza
Groups with 2-generated Sylow subgroups and their character tables 337
Alexander Moretó and Benjamin Sambale
Universal Weil module 359
Justin Trias
Loewner chains applied to g-starlike mappings of complex order of 401
complex Banach spacesXiaofei Zhang, Shuxia Feng, Taishun Liu and JianfeiWANG

[^0]: MSC2020: 20C15, 20D20.
 Keywords: maximal class, minimal nonabelian, Sylow subgroup, fusion system, character table.

