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This paper is devoted to studying geometric and analytic properties of g-
starlike mappings of complex order λ. By using Loewner chains, we obtain
the growth theorems for g-starlike mappings of complex order λ on the
unit ball in reflexive complex Banach spaces, which generalize some results
of Graham, Hamada and Kohr. As applications, several different kinds of
distortion theorems for g-starlike mappings of complex order λ are obtained.
Finally, we prove that the Roper–Suffridge extension operators preserve
the property of g-starlike mappings of complex order λ in complex Banach
spaces, which generalizes many classical results.
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1. Introduction

Let f = z +
∑

∞

n=2 anzn be a normalized univalent function on the unit disk D in C.
The growth theorem shows that the modulus of a normalized univalent function | f |

has a finite upper and positive lower bound depending only on the modulus of the
variable |z|, and the image of f contains a disk centered at origin with radius 1

4 .
The distortion theorem gives explicit upper and lower bounds on | f ′(z)| in terms
of |z|. The term distortion arises from the geometric interpretation of | f ′(z)| as the
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infinitesimal magnification factor of arc length and the interpretation of the square
of | f ′(z)| as the infinitesimal magnification factor of area.

However, in the case of several complex variables, H. Cartan pointed out that the
growth theorem and distortion theorem do not hold for normalized biholomorphic
mappings. In addition, he suggested that one should investigate the important
geometrically defined subfamilies of convex and starlike mappings. As a matter of
fact, there was little work in the geometric directions suggested by Cartan, until the
1970s, when a number of results dealing with the convex and starlike biholomorphic
mappings appeared. As a direct generalization of the growth theorem for univalent
function on the unit disk D, the growth theorem for normalized biholomorphic
starlike mappings on the unit ball Bn was obtained by Barnard, Fitzgerald and Gong
[Barnard et al. 1991] using the analytical characterization of starlikeness, and by
Kubicka and Poreda [1988] using the method of Loewner chains.

Theorem A [Barnard et al. 1991; Kubicka and Poreda 1988]. Let f be a starlike
mapping on the unit ball Bn . Then, for any point z ∈ Bn , we have

∥z∥
(1 + ∥z∥)2

≤ ∥ f (z)∥ ≤
∥z∥

(1 − ∥z∥)2
.

Furthermore, the above estimates are sharp.

If the convexity restriction is attached to the family of normalized locally biholo-
morphic mapping f , the following growth theorem for convex mappings is due to
Suffridge [1977], Thomas [1991], Liu [1989] or Liu and Ren [1998].

Theorem B. Let f be a convex mapping on the unit ball Bn . Then, for any point
z ∈ Bn , we have

∥z∥
1 + ∥z∥

≤ ∥ f (z)∥ ≤
∥z∥

1 − ∥z∥
.

Moreover, the above estimates are sharp.

In several complex variables, Barnard, Fitzgerald and Gong [Barnard et al. 1994]
were the first to show that the version of the distortion theorem for the determinant
of the Jacobian of normalized biholomorphic convex mappings holds on the unit
ball B2 in C2, but there does not exist a direct generalization of the distortion
theorem in the case of the family of starlike mappings. The monograph of Graham
and Kohr [2003, Chapter 7] and Gong [1998, Chapter 3, Chapter 4] contain a nice
development of the growth theorem and distortion theorem for starlike mappings
and convex mappings. And for a more classical results concerning starlike mappings
and convex mappings in n-dimensional Euclidean space or complex Banach space;
see [Gurganus 1975; Kikuchi 1973; Pfaltzgraff 1974; Poreda 1989; Roper and
Suffridge 1995; Suffridge 1970; 1973; 1977].
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Hamada and Honda [2008] introduced a subfamily of starlike mappings on the
unit ball in complex Banach spaces, which is called g-starlike mappings. They
also obtained a sharp growth theorem for this mappings by using the method of
parametric representation. Recently, the distortion theorem for g-starlike mappings
on the unit ball Bn was obtained by Graham, Hamada and Kohr [Graham et al.
2020a] using the Schwarz lemma at the boundary. As a generalization of spirallike
mappings, Bălăeţi and Nechita [2010] defined almost starlike mappings of complex
order λ on the unit ball Bn and gave an equivalent characterization in terms of
Loewner chains. It is interesting to note that the family of g-starlike mappings gives
a unified representation of some well-known subfamilies of starlike mappings, and
the family of almost starlike mappings of complex order λ gives a unified expression
of some well-known subfamilies of spirallike mappings of type β. There is a lot of
results concerning g-starlike mappings and almost starlike mappings of complex
order λ; see [Chirilă 2014; 2015; Graham et al. 2002a; 2020b; Hamada and Kohr
2004; Hamada et al. 2006; 2021; Li and Zhang 2019; Zhang et al. 2018].

In view of the above results, the motivation for this paper can be summarized in
terms of the following question:

Question. Can we unify g-starlike mappings and complex order λ on the unit ball
of complex Banach spaces and characterize their geometric and analytic properties?

We manage to answer the above questions affirmatively in the case of the unit
ball of some complex Banach space. In Section 2, the definition of g-starlike
mappings of complex order λ is given by combining the definition of g-starlike
mappings with the definition of almost starlike mappings of complex order λ on
the unit ball in complex Banach spaces. As mentioned in Remark 2.4, it gives
a unified expression of a variety of biholomorphic mappings, which includes g-
starlike mappings, almost starlike mappings of complex order λ as the special case.
In Section 3, by using Loewner chains idea, we establish a growth theorem of
g-starlike mappings of complex order λ in reflexive complex Banach spaces, which
is a generalization of [Hamada and Honda 2008, Theorem 3.1]. Because the family
of g-starlike mappings of complex order λ contains most of the biholomorphic
mappings that have geometry meaning in higher dimensions, this result essentially
corresponds to giving a unified form of the growth theorems for some subfamilies
of starlike mappings and spirallike mappings. As applications, in Section 4, we
obtain distortion theorems for g-starlike mappings of complex order λ on the unit
polydisk Dn and the unit ball Bn respectively, which is a generalization of [Graham
et al. 2020a, Theorem 5.6, Theorem 5.11; Liu et al. 2015, Theorem 4.2; 2011,
Theorem 3.1, Theorem 3.2]. In Section 5, we will prove that the Roper–Suffridge
type extension operator and the Muir type extension operator preserve g-starlike
mappings of complex order λ on domain �r respectively, where g is a univalent
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convex function on D. In particular, if λ= 0, then the results obtained in this paper
are generalizations of results in [Graham et al. 2020b; Muir 2005].

2. Preliminaries

2A. Notations and definitions. Let Dr = {ζ ∈ C : |ζ | < r} be the disk of radius
r in the complex plane C, and let D1 = D. Let Cn denote the space of n complex
variables u = (u1, . . . , un)

′ equipped with inner product ⟨u, v⟩ =
∑n

k=1 ukvk , and
the Euclidean norm ∥u∥ =

√∑n
k=1|uk |

2, the symbol ′ means the transpose of
vectors and matrices. The open ball centered at zero and radius r in Cn is denoted
by Bn(0, r)={u ∈ Cn

: ∥u∥< r}, the closed ball is denoted by Bn(0, r), the unit ball
is denoted by Bn . Let Dn(0, r)= {u = (u1, . . . , un)

′
∈ Cn

: |uk |< r, k = 1, . . . , n}

be the polydisk of radius r . The unit polydisk is denoted by Dn . The boundary of
Bn is denoted by ∂Bn =

{
u ∈ Cn

:
∑n

k=1|uk |
2
= 1

}
, the distinguished boundary of

the polydisk Dn is denoted by (∂D)n = {u ∈ Cn
: |uk | = 1, k = 1, . . . , n}. Let X be a

complex Banach space with respect to the norm ∥·∥X . Let Br = {x ∈ X : ∥x∥X < r}

be the open ball centered at zero and of radius r , and let B be the open unit ball
in X . Let Br be the closed ball centered at zero and of radius r . Let � ⊆ X be
a domain which contains the origin, we denote by H(�) the set of holomorphic
mappings from � to X . If f ∈ H(�), and f (0)= 0, D f (0)= I , then we say that
f is normalized, where D f (0) is the Fréchet derivative of f at 0, I is the identity
operator on X . A holomorphic mapping f ∈ H(�) is said to be biholomorphic
if the inverse f −1 exists and it is holomorphic on the open set f (�). A mapping
f ∈ H(�) is said to be locally biholomorphic if each x ∈� has a neighborhood V
such that f |V is biholomorphic. If X = Cn , then D f (z)= J f (z) is the Jacobian
matrix of f .

Let T : X → C be a continuous linear functional. Then

∥T ∥ = sup{|T x | : x ∈ ∂B}.

For each x ∈ X\{0}, we define T (x) = {Tx ∈ X∗
: ∥Tx∥ = 1, ∥Tx(x)∥ = ∥x∥}.

According to the Hahn–Banach theorem, T (x) is nonempty. For any fixed x ∈ X ,
ζ ∈ C\{0}, we have Tζ x = (|ζ |/ζ )Tx . In particular, Tr x = Tx when r > 0.

The following elementary definitions are used:

• If for any x ∈�, t ∈ [0, 1], (1− t)x ∈� holds, then � is said to be starlike (with
respect to the origin).

• A domain �⊆ X is said to be convex if given x1, x2 ∈�, t x1 + (1 − t)x2 ∈�,
for all t ∈ [0, 1].

• A domain�⊆ X is said to be ε-starlike if there exists a positive number ε ∈ [0, 1],
such that for any z, w ∈�, one has (1 − t)z + εtw ∈� for all t ∈ [0, 1].
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In particular, if ε = 0 or ε = 1, then the ε-starlike domain reduces to starlike
domain with respect to the origin or convex domain, respectively.

• Let f ∈ H(�) be biholomorphic mapping with 0 ∈ f (�). If f (�) is starlike
(with respect to the origin), then f is said to be starlike. If f (�) is convex, then
f is said to be convex. If f (�) is ε-starlike, then f is said to be ε-starlike, where
ε ∈ [0, 1].

• Let g : D → C be a holomorphic univalent function, g(0) = 1 and ℜg(ζ ) > 0.
Furthermore, let g be symmetric along the real axis, i.e., g(ζ )= g(ζ ), and satisfy
the condition {

min|ζ |=r ℜg(ζ )= min{g(r), g(−r)};
max|ζ |=r ℜg(ζ )= max{g(r), g(−r)}.

Let G(D) denote the family of holomorphic functions g defined as above.

2B. Loewner chains. We next recall the notions of subordination and Loewner
chains on the unit ball B in X . Some results may be found in [Graham et al. 2013;
2020b].

A mapping v ∈ H(B) is called a Schwarz mapping if v(0)= 0 and ∥v(x)∥X < 1,
x ∈ B.

If f, g ∈ H(B), and there exists a Schwarz mapping v such that f = g ◦ v, then
we say that f is subordinate to g, denoted by f ≺ g.

If g is biholomorphic on B, then f ≺ g is equivalent to requiring that f (0)= g(0)
and f (B)⊆ g(B).

Definition 2.1. Let B be the unit ball of a complex Banach space X . A mapping
f : B×[0,∞)→ X is called a univalent subordination chain if f ( · , t) is univalent
on B, f (0, t)= 0 for t ≥ 0, and f ( · , s)≺ f ( · , t) when 0 ≤ s ≤ t <∞. A univalent
subordination chain f : B × [0,∞)→ X is called a Loewner chain if f ( · , t) is
biholomorphic on B and D f (0, t)= et I , for all t ≥ 0.

The subordination condition of Loewner chain is equivalent to the existence
of a unique biholomorphic Schwarz mapping v = v( · , s, t), called the transition
mapping associated with f (x, t), such that f (x, s)= f (v(x, s, t), t) for x ∈ B and
0 ≤ s ≤ t .

Let g ∈ G(D) be defined as above. The family Mg(B) of holomorphic mappings
h :B → X that is analogous to the analytic functions on the unit disk in the complex
plane, with positive real part, is defined as follows.

Mg(B)

=

{
h ∈ H(B) : h(0)=0,Dh(0)= I,

1
∥x∥X

Tx{h(x)}∈ g(D),Tx ∈ T (x), x ∈B\{0}

}
.

If g(ζ )= (1 + ζ )/(1 − ζ ), ζ ∈ D, then Mg(B) reduces to the Carathéodory family
M(B) on the unit ball B in a complex Banach space.
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We know that both M(B) and Mg(B) consist of so-called holomorphically
accretive mappings, which were intensively studied in Euclidean space Cn or
complex Banach spaces during the last decades. Some related results may be found
in [Duren et al. 2010; Elin et al. 2019; Graham et al. 2002a; 2013; Hamada and
Kohr 2004; Pfaltzgraff 1974; Reich and Shoikhet 1996; 2005; Suffridge 1973].

Definition 2.2 [Bracci et al. 2009; Duren et al. 2010; Graham et al. 2002a].
A Herglotz vector field associated with the family M(B) on B is a mapping
h = h(x, t) : B× [0,∞)→ X satisfying the following conditions:

(i) h( · , t) ∈ M(B), for a.e. t ≥ 0.

(ii) h(x, · ) is strongly measurable on [0,∞), for all x ∈ B.

Hamada and Kohr [2004] proved that if X is a reflexive complex Banach space,
and h(x, t) : B × [0,∞)→ X is a Herglotz vector field, then for each s ≥ 0 and
x ∈ B, the initial value problem{

∂v
∂t = −h(v, t), a.e. s ≤ t,
v(x, s, s)= x, t = s

has a unique solution v = v(x, s, t) such that v( · , s, t) is a univalent Schwarz
mapping, v(x, s, · ) is Lipschitz continuous on [s,∞) uniformly with respect to
x ∈ Br , r ∈ (0, 1), Dv(0, s, t) = es−t I for 0 ≤ s ≤ t . Furthermore, the following
limit

lim
t→∞

etv(x, s, t)= f (x, s)

exists uniformly on each closed ball Br for r ∈ (0, 1), s ∈ [0,∞). And f (x, t) is a
univalent subordination chain.

2C. g-starlike mappings of complex order λ.

Definition 2.3. Let g ∈ G(D), λ ∈ C with ℜλ ≤ 0. And let f : B → X be a
normalized locally biholomorphic mapping. If

{(1 − λ)(D f (x))−1 f (x)+ λx} ∈ Mg(B),

then f is called a g-starlike mapping of complex order λ.

We denote by S∗

g,λ(B) the family of g-starlike mapping of complex order λ on B.
Obviously, for the case of X = C,B = D, the above definition shows that

f ∈ S∗

g,λ(D) if and only if (1 − λ) f (z)/(z f ′(z))+ λ≺ g.

Remark 2.4. (i) Let λ= 0. Then f ∈ S∗

g,λ(B) is a g-starlike mapping on the unit
ball B, some results of g-starlike mappings may be found in [Chirilă 2014; 2015;
Graham et al. 2002a; Hamada et al. 2021].



LOEWNER CHAINS APPLIED TO g-STARLIKE MAPPINGS OF COMPLEX ORDER 407

(ii) Let α∈[0, 1), β ∈
(
−
π
2 ,

π
2

)
, λ= (α−i tanβ)/(α−1). Then S∗

g,λ(B)= Ŝ α,β
g (B),

the definition on the unit ball Bn in Euclidean space can be found in [Tu and Xiong
2019].

(iii) Let g(ζ )= (1 + ζ )/(1 − ζ ), ζ ∈ D. Then f ∈ S∗

g,λ(B) means that

1
∥x∥

Tx{(1 − λ)(D f (x))−1 f (x)+ λx}

maps the unit ball B\{0} into the right half plane, i.e.,

ℜTx{(1 − λ)(D f (x))−1 f (x)} ≥ −∥x∥ℜλ, x ∈ B\{0}.

This is the definition of almost starlike mappings of complex order λ; see [Bălăeţi
and Nechita 2010; Zhang et al. 2018].

(iv) Let g(ζ ) = (1 + Aζ )/(1 + Bζ ), −1 ≤ B < A ≤ 1, ζ ∈ D. Then S∗

g,λ(B) =

S∗
B[A, B, λ] is the Janowski-starlike mappings of complex order λ on the unit ball

B; see [Li and Zhang 2019].
Let α ∈ (0, 1), β ∈

(
−
π
2 ,

π
2

)
. If A = 1, B = 2α−1, λ= i tanβ, then f ∈ S∗

g,λ(B)
means that 1

∥x∥
Tx{(1 − λ)(D f (x))−1 f (x)+ λx} maps the unit ball B\{0} into the

domain 61 =
{
ζ ∈ C :

∣∣ζ −
1

2α

∣∣< 1
2α

}
, i.e.,∣∣∣∣e−iβ 1

∥x∥
Tx{(D f (x))−1 f (x)} −

(
cosβ

2α
− i sinβ

)∣∣∣∣< cosβ
2α

, x ∈ B\{0}.

This is the definition of spirallike mappings of type β and order α; see [Feng et al.
2007].

(v) Let ρ ∈ [0, 1), β ∈
(
−
π
2 ,

π
2

)
and λ= i tanβ. If

g(ζ )= 1 + 4(1 − ρ)/π2(log(1 +
√
ζ )/(1 −

√
ζ ))2, ζ ∈ D,

then f ∈ S∗

g,λ(B) means that 1
∥x∥

Tx{(1 − λ)(D f (x))−1 f (x)+ λx} maps the unit
ball B\{0} into the domain 62 = {ζ ∈ C : |ζ − 1|< (1 − 2ρ)+ ℜ{ζ }}, i.e.,∣∣∣∣ 1
∥x∥

Tx{(D f (x))−1 f (x)− 1}

∣∣∣∣
< (1 − 2ρ) cosβ + ℜ

{
e−iβ 1

∥x∥
Tx{(D f (x))−1 f (x)}

}
, x ∈ B\{0},

where the branch of the logarithm function is chosen such that log 1 = 0, which
reduces to the definition of parabolic spirallike mappings of type β and order ρ;
see [Zhang and Yan 2016].

Next, we give two examples in higher dimensions.
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Example 2.5. Assume λ ∈ C, ℜλ≤ 0 and g ∈ G(D) is a convex function. Suppose
that f : Bn → Cn is holomorphic with f (z)= ( f1(z1), f2(z2), . . . , fn(zn))

′, where
f j (z j ), j = 1, 2, . . . , n, are normalized biholomorphic functions on D. If

(1 − λ)
f j (z j )

z j f ′

j (z j )
+ λ≺ g(z j ), z j ∈ D, j = 1, 2, . . . , n,

then f ∈ S∗

g,λ(Bn).

Proof. Since

1∑n
j=1|z j |

2 ⟨(1 − λ)(D f (z))−1 f (z)+ λz, z⟩

=
1∑n

j=1|z j |
n

n∑
j=1

|z j |
2
(
(1 − λ)

f j (z j )

z j f ′

j (z j )
+ λ

)
∈ g(D),

we have f ∈ S∗

g,λ(Bn). □

Example 2.6. Let a, λ ∈ C, ℜλ ≤ 0, g ∈ G(D). Assume that f : Bn → Cn is a
holomorphic mapping with f (z)= (z1 + az2

2, z2, . . . , zn)
′. If

|a| ≤
3
√

3
2

1
|1 − λ|

dist(1, ∂g(D)),

then f ∈ S∗

g,λ(Bn).

Proof. By some elementary calculations, we get

(D f (z))−1
=


1 −2az2 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .

Then

1
∥z∥2 ⟨(1 − λ)(D f (z))−1 f (z)+ λz, z⟩ = 1 −

a(1 − λ)z̄1z2
2

|z1|2 + |z2|2 + · · · + |zn|
2 .

Since |a| ≤
3
√

3
2

1
|1−λ|

dist(1, ∂g(D)), it yields that∣∣∣∣ a(1 − λ)z̄1z2
2

|z1|2 + |z2|2 + · · · + |zn|
2

∣∣∣∣ ≤

∣∣∣∣a(1 − λ)z̄1z2
2

|z1|2 + |z2|2

∣∣∣∣< 2

3
√

3
|a||1 − λ| ≤ dist(1, ∂g(D)).

This implies

1 −
a(1 − λ)z̄1z2

2

|z1|2 + |z2|2 + · · · + |zn|
2 ∈ g(D).

Thus f ∈ S∗

g,λ(Bn). □
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3. Growth theorems for g-starlike mappings of complex order λ

In the next subsection, we utilize the method of Loewner chains to deal with the
growth theorem of g-starlike mappings of complex order λ on the unit ball in a
reflexive complex Banach space X . The family of g-starlike mappings of complex
order λ unifies the family of almost starlike mappings of complex order λ and the
family of g-starlike mappings, and the result in the forthcoming subsection will
lead to a number of well known statements.

3A. Several lemmas. We begin this subsection with the following equivalent char-
acterization for almost starlike mappings of complex order λ in terms of Loewner
chains on the unit ball B.

Lemma 3.1 [Zhang et al. 2018]. Let f be a normalized locally biholomorphic
mapping on B, and let λ ∈ C with ℜλ≤ 0. Then f is an almost starlike mapping of
complex order λ on B if and only if

F(x, t)= e(1−λ)t f (eλt x), ∀x ∈ B, t ∈ [0,+∞)

is a Loewner chain.

The following lemma is due to Kato.

Lemma 3.2 [Kato 1967]. Let x : [0,+∞) → X be differentiable at the point
s ∈ (0,+∞), and let ∥x(t)∥ be also differentiable at the point s with respect to t.
Then

ℜ

{
Tx(s)

[
dx
dt
(s)

]}
=

d∥x(s)∥
dt

, s ∈ [0,+∞).

In fact, the following lemma shows that Loewner chain is generated by its
transition mapping. It is due to Graham et al. [2013].

Lemma 3.3. Suppose that X is a reflexive complex Banach space. Let f (x, t) :

B×[0,∞)→ X be a Loewner chain. And let v(x, s, t) be the transition mapping
associated with f (x, t). If for each r ∈ (0, 1), there exists M = M(r) > 0 such that

∥e−t f (x, t)∥X ≤ M(r), x ∈ Br , t ∈ [0,∞),

then

f (x, s)= lim
t→∞

etv(x, s, t)

uniformly on Br for r ∈ (0, 1).

In fact, the following lemma plays an important role in the proof of growth
theorem.
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Lemma 3.4. Let λ ∈ C with ℜλ≤ 0, g ∈ G(D), and let f : B → X be a g-starlike
mapping of complex order λ on B. Then

(3.1) −∥x∥ℜλ+ ∥x∥ min{g(∥x∥), g(−∥x∥)}

≤ ℜ{(1 − λ)Tx [(D f (x))−1 f (x)]}

≤ −∥x∥ℜλ+ ∥x∥ max{g(∥x∥), g(−∥x∥)}.

Moreover, if g ∈ G(D) also satisfies max|ζ |=r |g(ζ )| = max{g(r), g(−r)}, r ∈ (0, 1),
then

−∥x∥ℜλ+ ∥x∥ min{g(∥x∥), g(−∥x∥)} ≤ |(1 − λ)Tx [(D f (x))−1 f (x)]|

≤ ∥x∥|λ| + ∥x∥ max{g(∥x∥), g(−∥x∥)}.

Proof. Fixing x ∈ B\{0}, let x0 =
x

∥x∥
. Then the holomorphic function

q(ζ )=

{
(1 − λ) 1

ζ
Tx0[(D f (ζ x0))

−1 f (ζ x0)] + λ, ζ ∈ D\{0},

1, ζ = 0,

is well defined on the unit disk D. Since

q(ζ )= (1 − λ)
1
|ζ |

Tζ x0[(D f (ζ x0))
−1 f (ζ x0)] + λ, ζ ̸= 0,

from Definition 2.3, it yields that q(0)= g(0)= 1, q(D)⊆ g(D), i.e., q ≺ g.
By the subordination principle, it follows that q(rD)⊆ g(rD), r ∈ (0, 1). Hence

min{g(r), g(−r)} ≤ ℜq(ζ )≤ max{g(r), g(−r)}.

Let ζ = ∥x∥. Then

−∥x∥ℜλ+∥x∥min{g(∥x∥),g(−∥x∥)} ≤ℜ{(1−λ)Tx [(D f (x))−1 f (x)]}

≤ −∥x∥ℜλ+∥x∥max{g(∥x∥),g(−∥x∥)}.

If we impose the condition max|ζ |=r |g(ζ )| = max{g(r), g(−r)}, r ∈ (0, 1), then

−∥x∥ℜλ+∥x∥min{g(∥x∥),g(−∥x∥)} ≤ |(1−λ)Tx [(D f (x))−1 f (x)]|

≤ ∥x∥|λ|+∥x∥max{g(∥x∥),g(−∥x∥)}. □

Remark 3.5. If B= Bn ⊆ Cn , then the inequality (3.1) is equivalent to the following
form:

−∥z∥2
ℜλ+∥z∥2 min{g(∥z∥),g(−∥z∥)} ≤ℜ{(1−λ)z̄′

[(D f (z))−1 f (z)]}

≤ −∥z∥2
ℜλ+∥z∥2max{g(∥z∥),g(−∥z∥)}.
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3B. Growth theorems of the classes S∗
g,λ(B). The method to approach the fol-

lowing theorem is analogous to that of [Zhang et al. 2018], although we are now
considering normalized biholomorphic mappings on the unit ball B in an infinite
dimensional complex Banach space.

Theorem 3.6. Let λ ∈ C with ℜλ≤ 0, g ∈ G(D), and let f : B → X be a g-starlike
mapping of complex order λ on B in reflexive complex Banach space. Then

∥x∥ exp
(∫

∥x∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
≤ ∥ f (x)∥

≤ ∥x∥ exp
(∫

∥x∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
.

Proof. Since ℜg(ζ ) > 0, ζ ∈ D, we have f ∈ S∗

g,λ(B) is also an almost starlike
mapping of complex order λ. By Lemma 3.1 we know that

F(x, t)= e(1−λ)t f (eλt x)

is a Loewner chain, hence we have

F(x, s)≺ F(x, t), ∀0 ≤ s ≤ t,

i.e., there is a Schwarz mapping v(x, s, t) such that F(x, s)= F(v(x, s, t), t). By
some calculation, we obtain

∂F
∂t
(x, t)= (1 − λ)et e−λt f (eλt x)+ λet D f (eλt x)x,

DF(x, t)= et D f (eλt x).

Let ∂F
∂t (x, t)= DF(x, t)h(x, t). Then

h(x, t)= (1 − λ)e−λt(D f (eλt x))−1 f (eλt x)+ λx .

For fixed x ∈ B\{0}, s ≥ 0, let v(t)= v(x, s, t). Then

∂v

∂t
(t)= −(DF(v(t), t))−1 ∂F

∂t
(v(t), t)= −h(v(t), t).

Since for all x ∈ B, we have

∥e−t F(x, t)∥X ≤

{ ∥x∥X
(1−∥x∥X )2/(1+ℜλ) , ℜλ ̸= −1,

∥x∥X exp(∥x∥X ), ℜλ= −1,

here we use the fact that f is also an almost starlike mapping of complex order
λ and the upper bound of ∥ f (x)∥X ; see [Zhang et al. 2018, Theorem 3.1]. By
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Lemma 3.3, we obtain

lim
t→∞

etv(x, s, t)= F(x, s).

Furthermore, by Lemmas 3.2 and 3.4 we see that

(3.2)
d∥v(t)∥

dt

= ℜTv(t)

[
dv(t)

dt

]
= −ℜTv(t)[(1 − λ)e−λt(D f (eλtv(t)))−1 f (eλtv(t))+ λv(t)]

= −ℜ
eλt

|eλt |
Teλtv(t)[(1 − λ)e−λt(D f (eλtv(t)))−1 f (eλtv(t))] − ∥v(t)∥ℜλ

= −
1

|eλt |
ℜ{(1 − λ)Teλtv(t)[(D f (eλtv(t)))−1 f (eλtv(t))]} − ∥v(t)∥ℜλ

≤ −∥v(t)∥ min{g(∥eλtv(t)∥), g(−∥eλtv(t)∥)}.

By Lemma 3.4 and equality (3.2), we have

−∥eλtv(t)∥ max{g(∥eλtv(t)∥), g(−∥eλtv(t)∥)}

≤ −ℜ{(1 − λ)Teλtv(t)[(D f (eλtv(t)))−1 f (eλtv(t))]} − ∥eλtv(t)∥ℜλ

= |eλt
|
d∥v(t)∥

dt
≤ −∥eλtv(t)∥ min{g(∥eλtv(t)∥), g(−∥eλtv(t)∥)}.

Since

d∥eλtv(t)∥
dt

= |eλt
|
d∥v(t)∥

dt
+ ∥eλtv(t)∥ℜλ,

we have

∥eλtv(t)∥ℜλ− ∥eλtv(t)∥ max{g(∥eλtv(t)∥), g(−∥eλtv(t)∥)}(3.3)

≤
d∥eλtv(t)∥

dt
≤ ∥eλtv(t)∥ℜλ− ∥eλtv(t)∥ min{g(∥eλtv(t)∥), g(−∥eλtv(t)∥)}(3.4)

< 0,

which implies that ∥eλtv(t)∥ is decreasing on [s,∞).
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Integrating on both sides of the inequality (3.4) with respect to τ ∈ [s, t], we
infer that

(1 − ℜλ)(t − s)

≤

∫ t

s

1 − ℜλ

∥eλτv(τ)∥ℜλ− ∥eλτv(τ)∥ min{g(∥eλτv(τ)∥), g(−∥eλτv(τ)∥)}

×
d∥eλτv(τ)∥

dτ
dτ

=

∫
∥eλtv(t)∥

∥eλs x∥

1 − ℜλ

yℜλ− y min{g(y), g(−y)}
dy

=

∫
∥eλtv(t)∥

∥eλs x∥

[
1 − ℜλ

ℜλ− min{g(y), g(−y)}
+ 1

]
dy
y

−

∫
∥eλtv(t)∥

∥eλs x∥

1
y

dy,

hence

(1 − ℜλ)(t − s)≤

∫
∥eλtv(t)∥

∥eλs x∥

[
1 − ℜλ

ℜλ− min{g(y), g(−y)}
+ 1

]
dy
y

+ log
∥eλs x∥

∥eλtv(t)∥
,

i.e.,

(3.5) e(t−s)
≤

∥x∥

∥v(t)∥
exp

(∫
∥eλtv(t)∥

∥eλs x∥

[
1 − ℜλ

ℜλ− min{g(y), g(−y)}
+ 1

]
dy
y

)
.

By using Lemma 3.3 we have ∥etv(t)∥ → ∥e(1−λ)s f (eλs x)∥ as t → +∞. Because
limt→+∞∥eλtv(t)∥ = 0, then taking t → +∞ on the both sides of the inequality
(3.5), and taking s = 0, we see that

∥ f (x)∥ ≤ ∥x∥ exp
(∫

∥x∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
.

By using the same method for obtaining inequality (3.3), we get

∥ f (x)∥ ≥ ∥x∥ exp
(∫

∥x∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
. □

Remark 3.7. In particular, if g ∈ G(D) and λ ∈ C with ℜλ≤ 0 are some special
functions and special complex number, such as in Remark 2.4, we can get the
growth theorems of starlike mappings, spirallike mappings of type β, etc. This is
one of the reasons for the interest in this normalized biholomorphic mappings.

4. Distortion theorems for g-starlike mappings of complex order λ

4A. Distortion theorems along a unit direction. In this subsection, we obtain
the distortion theorems for g-starlike mappings of complex order λ along a unit
direction on the unit polydisk Dn and the unit ball B, respectively.
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Theorem 4.1. Let λ ∈ C with ℜλ≤ 0, g ∈ G(D) with

max
|ζ |=r

|g(ζ )| = max{g(r), g(−r)},

r ∈ (0, 1), and let f : Dn
→ Cn be a g-starlike mapping of complex order λ. Then,

for all z ∈ Dn
\{0}, there exists a unit vector ζ(z) such that

|1−λ|

|λ|+max{g(∥z∥),g(−∥z∥)}
exp

(∫
∥z∥

0

[
1−ℜλ

max{g(y),g(−y)}−ℜλ
−1

]
dy
y

)
≤ ∥D f (z)ζ(z)∥

≤
|1−λ|

min{g(∥z∥),g(−∥z∥)}−ℜλ
exp

(∫
∥z∥

0

[
1−ℜλ

min{g(y),g(−y)}−ℜλ
−1

]
dy
y

)
.

Proof. The proof is divided into the following two steps:

Step 1. Let ξ = (ξ1, ξ2, . . . , ξn) ∈ Dn with |ξ1| = |ξ2| = · · · = |ξn| = ∥ξ∥. Then
Tξ =

(
0, . . . , 0, ∥ξ∥

ξ j
, 0, . . . , 0

)
∈ T (ξ).

Takingw(z)= (w1(z), . . . , wn(z))′ = (D f (z))−1 f (z), then there exists 1≤ j ≤n
such that

∥w(z)∥ = |w j (z)|

≤ max
ξ∈(∂D(0,∥z∥))n

|w j (ξ)|

= max
ξ∈(∂D(0,∥z∥))n

∣∣∣∣∥ξ∥ξ j
w j (ξ)

∣∣∣∣
= max
ξ∈(∂D(0,∥z∥))n

|Tξ [w(ξ)]|

= max
ξ∈(∂D(0,∥z∥))n

|Tξ [(D f (ξ))−1 f (ξ)]|.

By using Lemma 3.4, we have

|1 − λ||Tξ [(D f (ξ))−1 f (ξ)]| ≤ ∥ξ∥|λ| + ∥ξ∥ max{g(∥ξ∥), g(−∥ξ∥)}

≤ ∥z∥|λ| + ∥z∥ max{g(∥z∥), g(−∥z∥)}.

Hence

(4.1) ∥(D f (z))−1 f (z)∥ ≤
∥z∥

|1 − λ|
(|λ| + max{g(∥z∥), g(−∥z∥)}).

Since ∥Tz∥ ≤ 1, by Lemma 3.4 we get

(4.2) ∥(D f (z))−1 f (z)∥ ≥ |Tz[(D f (z))−1 f (z)]|

≥
∥z∥

|1 − λ|
(−ℜλ+ min{g(∥z∥), g(−∥z∥)}).
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Step 2. Let ζ(z)= (D f (z))−1 f (z)/∥(D f (z))−1 f (z)∥, z ∈ Dn
\{0}. Then

f (z)= D f (z)(D f (z))−1 f (z)= ∥(D f (z))−1 f (z)∥D f (z)ζ(z).

Hence, by Theorem 3.6, (4.1) and (4.2), we have

|1 − λ|

|λ| + max{g(∥z∥), g(−∥z∥)}
exp

(∫
∥z∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
≤ ∥D f (z)ζ(z)∥ =

∥ f (z)∥
∥(D f (z))−1 f (z)∥

≤
|1 − λ|

min{g(∥z∥), g(−∥z∥)} −ℜλ
exp

(∫
∥z∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
,

which completes the proof. □

Theorem 4.2. Let λ ∈ C with ℜλ≤ 0, g ∈ G(D) with

max
|ζ |=r

|g(ζ )| = max{g(r), g(−r)},

r ∈ (0, 1), and let f :B → X be a g-starlike mapping of complex order λ in reflexive
complex Banach spaces. Then, for all x ∈ B\{0}, there exists a unit vector ζ(x)
such that

∥D f (x)ζ(x)∥

≤
|1 − λ|

min{g(∥x∥), g(−∥x∥)} −ℜλ
exp

(∫
∥x∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
.

Proof. Let ζ(x)=
(D f (x))−1 f (x)

∥(D f (x))−1 f (x)∥ ∈ ∂B. Then

f (x)= D f (x)(D f (x))−1 f (x)= ∥(D f (x))−1 f (x)∥D f (x)ζ(x).

By using Lemma 3.4, we get

−∥x∥ℜλ+ ∥x∥ min{g(∥x∥), g(−∥x∥)} ≤
∣∣(1 − λ)Tx [(D f (x))−1 f (x)]

∣∣
≤ |1 − λ|∥(D f (x))−1 f (x)∥.

Hence, by Theorem 3.6, we have

∥D f (x)ζ(x)∥ =
∥ f (x)∥

∥(D f (x))−1 f (x)∥

≤
|1 − λ|

min{g(∥x∥), g(−∥x∥)} −ℜλ

× exp
(∫

∥x∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
. □
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Remark 4.3. If λ= 0 and g is some biholomorphic function in Definition 2.3, we
can get the results in [Liu et al. 2011; 2012] from Theorems 4.1 and 4.2.

4B. Distortion theorems on the unit ball Bn. In this subsection, the distortion
theorems for g-starlike mappings of complex order λ at extreme points are estab-
lished on the unit ball Bn in Cn . Denote by T (1,0)

z0 (∂Bn)= {w ∈ Cn
: z0

′w = 0} the
complex tangent space at z0 ∈ ∂Bn . The following boundary Schwarz lemma is due
to Liu et al. [2015] and Graham et al. [2020a], which plays an important role in
the proof of the following theorem.

Lemma 4.4 [Graham et al. 2020a; Liu et al. 2015]. Let f : Bn → Bn be a holomor-
phic mapping. If f is holomorphic at z0 ∈ ∂Bn , f (z0) = w0 ∈ ∂Bn , then D f (z0)

has the following properties:

(i) There is a µ ∈ R such that D f (z0)
′w0 = µz0 and

µ= w0
′D f (z0)z0 ≥

|1 − c̄′w0|
2

1 − ∥c∥2 > 0,

where c = f (0).

(ii) ∥D f (z0)β∥ ≤
√
µ, for all β ∈ T (1,0)

z0 (∂Bn) with ∥β∥ = 1.

(iii) |det D f (z0)| ≤ µ(n+1)/2.

Theorem 4.5. Let λ∈ C with ℜλ≤ 0, g ∈ G(D), and let f : Bn → Cn be a g-starlike
mapping of complex order λ:

(1) If z ∈ Bn satisfies max∥ζ∥=∥z∥∥ f (ζ )∥ = ∥ f (z)∥, then

|det D f (z)|

≤

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)(n+1)/2

× exp
(

n
∫

∥z∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
.

(2) If z ∈ Bn satisfies min∥ζ∥=∥z∥∥ f (ζ )∥ = ∥ f (z)∥, then

|det D f (z)| ≥(
ℜ(1 − λ)

−ℜλ+ max{g(∥z∥), g(−∥z∥)}

)(n+1)/2

× exp
(

n
∫

∥z∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
.

Proof. Without loss of generality, let ∥z∥ = r ∈ ( 0, 1),M = max∥ζ∥=r∥ f (ζ )∥ and
m = min∥ζ∥=r∥ f (ζ )∥:
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(1) Let η(w) = f (rw)/M , w ∈ Bn , then η : Bn → Bn, η(0) = 0 and η is biholo-
morphic in a neighborhood of Bn . Take z0 = z/r and w0 = η(z0)= f (z)/M , then
z0 ∈ ∂Bn, w0 ∈ ∂Bn . By Lemma 4.4, there is a µ ∈ R such that Dη(z0)

′w0 = µz0

and 1 ≤ µ = w0
′Dη(z0)z0 = f (z)′D f (z)z/M2. Because w0

′
= µz0

′(Dη(z0))
−1,

we know that f (z)′ and z̄′(D f (z))−1 have the same direction.
Furthermore, since

µ=
f (z)′D f (z)z

M2

=
∥ f (z)∥z̄′(D f (z))−1 D f (z)z

∥ f (z)∥2∥z̄′(D f (z))−1∥

=
∥z∥2

∥ f (z)∥∥z̄′(D f (z))−1∥

=
∥z∥2

z̄′(D f (z))−1 f (z)

=
ℜ{(1 − λ)∥z∥2

}

ℜ{(1 − λ)z̄′(D f (z))−1 f (z)}

≤
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}
,

by Lemma 4.4 we have

|det Dη(z0)| ≤ µ(n+1)/2
≤

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)(n+1)/2

.

Because Dη(z0)=
r
M D f (r z0)=

r
M D f (z), by Theorem 3.6, we obtain

|det D f (z)| =

(
M
r

)n

|det Dη(z0)|

≤

(
∥ f (z)∥

∥z∥

)n(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)(n+1)/2

≤

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)(n+1)/2

× exp
(

n
∫

∥z∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
.

(2) Let h(w) = f (rw)/m, w ∈ Bn , then h(0) = 0 and h is biholomorphic in a
neighborhood of Bn with h(Bn)⊃ Bn . Take z0 = z/r and w0 = h(z0)= f (z)/m,
then z0 ∈ ∂Bn and w0 ∈ ∂Bn . Furthermore, h−1

: Bn → Bn , h−1(0)= 0 and h−1 is
holomorphic in a neighborhood of Bn with h−1(w0)= z0. For the same reason as
in the proof of (1) we conclude that f (z)′ and z̄′(D f (z))−1 have the same direction.
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By Lemmas 4.4 and 3.4, there exists a µ ∈ R such that

1 ≤ µ= z0
′Dh−1(w0)w0

= z0
′(Dh(z0))

−1w0

=
z̄′

( r
m D f (z)

)−1

r
f (z)
m

=
z̄′(D f (z))−1 f (z)

∥z∥2

=
ℜ{(1 − λ)z̄′(D f (z))−1 f (z)}

ℜ{(1 − λ)∥z∥2}

≤
1

ℜ(1 − λ)
(−ℜλ+ max{g(∥z∥), g(−∥z∥)}).

By Lemma 4.4 we have

|det Dh−1(w0)| =
1

|det Dh(z0)|

≤ µ(n+1)/2

≤

(
−ℜλ+ max{g(∥z∥), g(−∥z∥)}

ℜ(1 − λ)

)(n+1)/2

.

Since Dh(z0)=
r
m D f (z), we obtain

1
|det D f (z)|

=

(
r
m

)n 1
|det Dh(z0)|

≤

(
∥z∥

∥ f (z)∥

)n(
−ℜλ+ max{g(∥z∥), g(−∥z∥)}

ℜ(1 − λ)

)(n+1)/2

≤

(
−ℜλ+ max{g(∥z∥), g(−∥z∥)}

ℜ(1 − λ)

)(n+1)/2

× exp
(

−n
∫

∥z∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
,

where we have used Theorem 3.6, i.e.,

|det D f (z)| ≥

(
ℜ(1 − λ)

−ℜλ+ max{g(∥z∥), g(−∥z∥)}

)(n+1)/2

× exp
(

n
∫

∥z∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
. □

Remark 4.6. Note that if λ = 0, Theorem 4.5 reduces to [Graham et al. 2020a,
Theorem 5.6].



LOEWNER CHAINS APPLIED TO g-STARLIKE MAPPINGS OF COMPLEX ORDER 419

Theorem 4.7. Let λ∈ C with ℜλ≤ 0, g ∈ G(D), and let f : Bn → Cn be a g-starlike
mapping of complex order λ:

(1) If z ∈ Bn satisfies
max

∥ζ∥=∥z∥
∥ f (ζ )∥ = ∥ f (z)∥,

then for all β ∈ T (1,0)
z (∂Bn(0, ∥z∥)) there holds

∥D f (z)β∥ ≤

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)1/2

× exp
(∫

∥z∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
∥β∥.

(2) If z ∈ Bn satisfies
min

∥ζ∥=∥z∥
∥ f (ζ )∥ = ∥ f (z)∥,

then for all β ∈ T (1,0)
z (∂Bn(0, ∥z∥)) there holds

∥D f (z)β∥ ≥

(
ℜ(1 − λ)

−ℜλ+ max{g(∥z∥), g(−∥z∥)}

)1/2

× exp
(∫

∥z∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
∥β∥.

Proof. (1) From the proof of Theorem 4.5, we know that if z ∈ Bn is the maximum
module point of f in the ball Bn(0, ∥z∥), there exists a real number µ> 0 such that

µ≤
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}
.

Using Lemma 4.4, we obtain

∥Dη(z0)β∥ ≤
√
µ≤

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)1/2

for all β ∈ T (1,0)
z0 (∂Bn) with ∥β∥ = 1, i.e.,

∥Dη(z0)β∥ ≤

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)1/2

∥β∥, ∀β ∈ T (1,0)
z0

(∂Bn).

Since
T (1,0)

z0
(∂Bn)= T (1,0)

z (∂Bn(0, ∥z∥))

and

Dη(z0)=
r
M

D f (r z0)=
∥z∥

∥ f (z)∥
D f (z),
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we get

∥D f (z)β∥ =
∥ f (z)∥

∥z∥
∥Dη(z0)β∥

≤
∥ f (z)∥

∥z∥

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)1/2

∥β∥,

for all β ∈ T (1,0)
z (∂Bn(0, ∥z∥)). By Theorem 3.6 we can obtain

∥D f (z)β∥ ≤

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)1/2

× exp
(∫

∥z∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
∥β∥

for all β ∈ T (1,0)
z (∂Bn(0, ∥z∥)).

(2) From the proof of Theorem 4.5, we know that if z ∈ Bn is the minimum module
point of f in the ball Bn(0, ∥z∥), there is a real number µ > 0 such that

µ≤
1

ℜ(1 − λ)
(−ℜλ+ max{g(∥z∥), g(−∥z∥)}).

By Lemma 4.4 we have

∥Dh−1(w0)γ ∥ ≤
√
µ≤

(
−ℜλ+ max{g(∥z∥), g(−∥z∥)}

ℜ(1 − λ)

)1/2

,

for all γ ∈ T (1,0)
w0 (∂Bn) with ∥γ ∥ = 1, i.e.,

(4.3) ∥Dh−1(w0)γ ∥ ≤

(
−ℜλ+ max{g(∥z∥), g(−∥z∥)}

ℜ(1 − λ)

)1/2

∥γ ∥,

for all γ ∈ T (1,0)
w0 (∂Bn).

Noting that

Dh−1(w0)= (Dh(z0))
−1

=

(
r
m

D f (z)
)−1

=
∥ f (z)∥

∥z∥
(D f (z))−1

and

Dh−1(w0)T (1,0)
w0

(∂Bn)= T (1,0)
z0

(∂Bn)= T (1,0)
z (∂Bn(0, ∥z∥)),

we know that

D f (z)T (1,0)
z (∂Bn(0, ∥z∥))= T (1,0)

w0
(∂Bn).
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Replacing D f (z)β with γ in the inequality (4.3), where β ∈ T (1,0)
z (∂Bn(0, ∥z∥)),

we obtain

∥ f (z)∥
∥z∥

∥β∥ ≤

(
−ℜλ+ max{g(∥z∥), g(−∥z∥)}

ℜ(1 − λ)

)1/2

∥D f (z)β∥,

i.e.,

∥D f (z)β∥ ≥
∥ f (z)∥

∥z∥

(
ℜ(1 − λ)

−ℜλ+ max{g(∥z∥), g(−∥z∥)}

)1/2

∥β∥,

for all β ∈ T (1,0)
z (∂Bn(0, ∥z∥)). By Theorem 3.6 we see that

∥D f (z)β∥ ≥

(
ℜ(1 − λ)

−ℜλ+ max{g(∥z∥), g(−∥z∥)}

)1/2

× exp
(∫

∥z∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
∥β∥

for all β ∈ T (1,0)
z (∂Bn(0, ∥z∥)). □

Remark 4.8. Note that if λ = 0, Theorem 4.7 reduces to [Graham et al. 2020a,
Theorem 5.11].

5. Roper–Suffridge extension operators and the families S∗
g,λ(B)

5A. Roper–Suffridge extension operators. The challenge of constructing exam-
ples of starlike mappings and of convex mappings in higher dimensions was well-
known, until the introduction of the Roper–Suffridge operator [Roper and Suffridge
1995]. This operator is used to construct starlike mappings and convex mappings
in higher dimensions via starlike functions and convex functions in the unit disk,
respectively. In the same paper, Roper and Suffridge proved that if f is a normalized
locally biholomorphic convex function on the unit disk D, then

8n( f )(u)= ( f (u1),
√

f ′(u1)ũ), u = (u1, ũ) ∈ Bn,

is a normalized locally biholomorphic convex mapping on the Euclidean unit ball Bn ,
where ũ ∈ Cn−1,

√
f ′(0)= 1. Graham and Kohr [2000] used the analytic definition

of starlike mappings to prove that if f is a starlike function on D, then 8n( f ) is
a starlike mapping on the unit ball Bn . Furthermore, Graham and Hamada et al.
[2002b] proved that if f is a normalized locally biholomorphic starlike function
on D, then 8n,α,β( f ) is a normalized locally biholomorphic starlike mapping on
Bn for α ∈ [0, 1], β ∈

[
0, 1

2

]
, α+β ≤ 1; if f is a normalized locally biholomorphic

convex function on D, then8n,α,β( f ) is a normalized locally biholomorphic convex
mapping on Bn if and only if (α, β)=

(
0, 1

2

)
, where

8n,α,β( f )(u)=

(
f (u1),

(
f (u1)

u1

)α
( f ′(u1))

β ũ
)
, u = (u1, ũ) ∈ Bn,
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α ∈ [0, 1], β ∈
[
0, 1

2

]
, α+β ≤ 1, and the branches of the power functions are chosen

such that ( f (u1)/u1)
α

|u1=0= 1, ( f ′(u1))
β

|u1=0= 1.
In the above, the Roper–Suffridge operator is only defined on the unit ball Bn .

Graham and Kohr [2000], raised the following question:

Question. Consider the egg domain �2,p = {(u1, u2) ∈ C2
: |u1|

2
+ |u2|

p < 1},
where p > 1. Does the operator

8n,1/p( f )(u)= ( f (u1), ( f ′(u1))
1/pu2), u = (u1, u2) ∈�2,p,

extend convex functions on D to convex mappings on the egg domain �2,p?

Gong and Liu [2002] gave an affirmative answer to the above question. They
used the contractive property of Carathéodory metric under holomorphic mappings
to show that if f is a normalized locally biholomorphic ε starlike function on D,
then

8n,1/p( f )(u)= ( f (u1), ( f ′(u1))
1/pũ), u = (u1, ũ) ∈�p,

is a normalized locally biholomorphic ε starlike mapping on �p, where �p ={
(u1, . . . , un) ∈ Cn

: |u1|
2
+

∑n
j=2|u j |

p < 1
}
.

Muir [2005] introduced an extension operator from a new perspective as follows:

8n,P( f )(u)= ( f (u1)+ P(ũ) f ′(u1),
√

f ′(u1)ũ), u = (u1, ũ) ∈ Bn,

where f is a normalized locally biholomorphic function on D and P : Cn−1
→ C is

a homogeneous polynomial mapping of degree 2, and
√

f ′(0)= 1. Furthermore,
he showed that if f is a normalized locally biholomorphic starlike function on D,
then 8n,P( f ) is a normalized locally biholomorphic starlike mapping on Bn if and
only if ∥P∥ ≤

1
4 ; if f is a normalized locally biholomorphic convex function on D,

then 8n,P( f ) is a normalized locally biholomorphic convex mapping on Bn if and
only if ∥P∥ ≤

1
2 .

Recently, Graham and Hamada et al. [Graham et al. 2020b] consider the extension
operator 8α,β and 8Pr on some unit ball in the complex Banach space Z = C × Y ,
where

8α,β( f )(z)=

(
f (z1),

(
f (z1)

z1

)α
( f ′(z1))

βw

)
, z= (z1, w) ∈�r ,

8Pr ( f )(z)= ( f (z1)+ Pr (w) f ′(z1), ( f ′(u1))
1/rw), z= (z1, w) ∈�r ,

α ∈ [0, 1], β ∈ [, , 1/r ], α+β ≤ 1, f is a normalized locally biholomorphic function
on D, the branches of the power functions are chosen such that ( f (z1)/z1)

α
|z1=0=1,

( f ′(z1))
β

|z1=0= 1, Pr : Y → C is a homogeneous polynomial mapping of degree r ,
2 ≤ r and

�r = {z = (z1, w) ∈ Z = C × Y : |z1|
2
+ ∥w∥

r
Y < 1},
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where Y is a complex Banach space. The Minkowski function of �r is a complete
norm ∥·∥Z on Z , �r is the unit ball of Z with respect to this norm. They proved that
these two extension operators had the following properties: Let g ∈G(D) be a convex
function, and the normalized locally biholomorphic function f can be embedded
as the first element of a g-Loewner chain on D. Then 8α,β( f ) can be embedded
as the first element of a g-Loewner chain on �r . If ∥Pr∥ ≤

1
4 dist(1, ∂g(D)), then

8Pr ( f ) can be embedded as the first element of a g-Loewner chain on �r . The
extension operators for normalized locally biholomorphic functions on the unit disk
D to higher dimensional spaces have been extensively studied in the literature, see,
e.g., [Elin 2011; Elin and Levenshtein 2014; Feng and Liu 2008; Gong and Liu
2003; Graham et al. 2012; Liu et al. 2019; Liu and Xu 2006; Wang 2013; Wang
and Liu 2010; 2018].

In the next subsection, we study the extension operators8α,β and8Pr associated
with the g-starlike mappings of complex order λ on �r by using two different
methods.

5B. Some lemmas. In order to prove the main theorems in this subsection, we
need the following lemmas.

Lemma 5.1 [Graham et al. 2020b]. Let Y be a complex Banach space and let
�r = {z = (z1, w)∈ C×Y : |z1|

2
+∥w∥

r
Y < 1} be the unit ball of Z = C×Y , where

r ≥ 1. Let z = (z1, w) ̸= 0. Then

Tz((z1, 0))=
2|z1|

2
∥z∥Z

2|z1|2 + r(∥z∥2
Z − |z1|2)

and

Tz((0, w))=
r(∥z∥2

Z − |z1|
2)∥z∥Z

2|z1|2 + r(∥z∥2
Z − |z1|2)

for any Tz ∈ T (z).

Lemma 5.2 [Muir 2008]. Let f : D → C be a normalized biholomorphic function,
k ≥ 2. Then ∣∣∣∣(1 − |ζ |2)

f ′′(ζ )

f ′(ζ )
− kζ

∣∣∣∣ ≤ k + 2, ∀ζ ∈ D.

Lemma 5.3 [Pommerenke 1975]. Let g : D → C be a convex function. Then for
any a ∈ D, g(D) contains the disk of radius 1

2 |g′(a)|(1 − |a|
2) centered at g(a).

Lemma 5.4 [Graham et al. 2020b]. Let g ∈ G(D). We say that a mapping f =

f (x, t) : B× [0,∞)→ X is a g-Loewner chain if the following conditions hold:

(i) f (x, t) is a Loewner chain such that {e−t f ( · , t)}t≥0 is uniformly bounded on
each ball Br (0< r < 1);
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(ii) ∂ f
∂t (x, t) exists for a.e. t ≥ 0 and for all x ∈ B, and there exists a Herglotz
vector field h = h(x, t) : B×[0,∞)→ X with h( · , t) ∈ Mg(B) for a.e. t ≥ 0
such that

∂ f
∂t
(x, t)= D f (x, t)h(x, t), a.e. t ≥ 0, x ∈ B.

Remark 5.5. Let g ∈ G(D). It is not difficult to deduce that f : B → X is a
g-starlike mapping of complex order λ if and only if F(x, t) = e(1−λ)t f (eλt x),
∀x ∈ B, t ∈ [0,∞), is a g-Loewner chain.

5C. Examples of S∗
g,λ(�r). By using Roper–Suffridge extension operators, we

can construct many examples of S∗

g,λ(�r ) via holomorphic functions of S∗

g,λ(D).

Theorem 5.6. Let g ∈ G(D) be a convex function , and let Y be a complex Banach
space. Denote �r = {z = (z1, w) ∈ Z : |z1|

2
+ ∥w∥

r
Y < 1} by the unit ball of

Z = C×Y , where r ≥ 1. Suppose that α ∈ [0, 1], β ∈ [0, 1/r ], α+β ≤ 1. If f is a
g-starlike function of complex order λ on D, then

F(z)=8α,β( f )(z)=

(
f (z1),

(
f (z1)

z1

)α
( f ′(z1))

βw

)
∈ S∗

g,λ(�r ),

where z = (z1, w) ∈�r and the branches of the power functions are chosen such
that ( f (z1)/z1)

α
|z1=0= 1 and ( f ′(z1))

β
|z1=0= 1.

Proof. Note that

f (z1, t)= e(1−λ)t f (eλt z1),∀z1 ∈ D, t ∈ [0,∞)

is a g-Loewner chain, since f is a g-starlike function of complex order λ on the
unit disk D. According to a result of Graham et al. [2020b, Theorem 3.1], we know
that

F(z, t)= et8α,β(e−t f ( · , t))(z, t)

=

(
f (z1, t), e(1−α−β)t

(
f (z1, t)

z1

)α
( f ′(z1, t))βw

)
is a g-Loewner chain. Furthermore,

F(z, t)=

(
e(1−λ)t f (eλt z1), e(1−λ)t

(
f (eλt z1)

eλt z1

)α
( f ′(eλt z1))

β(eλtw)

)
= e(1−λ)t8α,β( f )(eλt z).

It yields that F =8α,β( f ) ∈ S∗

g,λ(�r ). □
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Theorem 5.7. Let Y be a complex Banach space and let k ≥ 2 be an integer. Denote

�r = {z = (z1, w) ∈ C × Y : |z1|
2
+ ∥w∥

r
Y < 1},

r ≥ 1, and let Pk : Y → C be a homogeneous polynomial mapping of degree k, r ≤ k.
Assume that f is a g-starlike function of complex order λ on D, where g ∈ G(D) is
a convex function. If

∥Pk∥ ≤ r/(2(k + r)|1 − λ|) dist(1, ∂g(D)),

then

F(z)=8Pk ( f )(z1, w)= ( f (z1)+ Pk(w) f ′(z1), ( f ′(z1))
1/kw) ∈ S∗

g,λ(�r ),

where (z1, w) ∈ �r and the branch of the power function is chosen such that
( f ′(z1))

1/k
|z1=0= 1.

Proof. For any holomorphic mapping η(z)= (η1(z), η0(z)) :�r → C×Y , we have

DF(z)η(z)=
(
η1(z)( f ′(z1)+ Pk(w) f ′′(z1))+ ∇ Pk(w) f ′(z1)η0(z),

1
k ( f ′(z1))

(1/k)−1 f ′′(z1)η1(z)w+ ( f ′(z1))
1/kη0(z)

)
.

Let DF(z)η(z)= F(z). Then

η(z)= (DF(z))−1 F(z)

=

(
f (z1)

f ′(z1)
−(k−1)Pk(w),

(
1−

1
k

f (z1) f ′′(z1)

( f ′(z1))2
+

(
1−

1
k

)
Pk(w)

f ′′(z1)

f ′(z1)

)
w

)
.

Hence,

(5.1) (1−λ)(DF(z))−1 F(z)+λz

=

(
(1−λ)

(
f (z1)

f ′(z1)
−(k−1)Pk(w)

)
+λz1,

(1−λ)

(
1−

1
k

f (z1) f ′′(z1)

( f ′(z1))2
+

(
1−

1
k

)
Pk(w)

f ′′(z1)

f ′(z1)

)
w+λw

)
.

Next, we will show that

1
∥z∥Z

Tz{(1 − λ)(DF(z))−1 F(z)+ λz} ∈ g(D), z ∈�r\{0}.

It is equivalent to prove

1
ρ

Tz{(1 − λ)(DF(ρz))−1 F(ρz)+ λρz} ∈ g(D), z ∈ ∂�r , ρ ∈ (0, 1).

Indeed, if z = (z1, 0) ∈ ∂�r , then

1
ρ

Tz{(1 − λ)(DF(ρz))−1 F(ρz)+ λρz} = (1 − λ)
f (ρz1)

ρz1 f ′(ρz1)
+ λ ∈ g(D).
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If z = (z1, w) ∈ ∂�r with w ̸= 0, then by using Lemma 5.1 and (5.1), we have

(2|z1|
2
+r(1−|z1|

2))

ρ
Tz{(1−λ)(DF(ρz))−1 F(ρz)+λρz}

= 2|z1|
2
(
(1−λ)

f (ρz1)

ρz1 f ′(ρz1)
+λ

)
−2(1−λ)(k−1)ρk−1 Pk(w)z1

+r(1−|z1|
2)(1−λ)

(
1−

1
k

f (ρz1) f ′′(ρz1)

( f ′(ρz1))2
+

(
1−

1
k

)
ρk Pk(w)

f ′′(ρz1)

f ′(ρz1)

)
+rλ(1−|z1|

2)

= 2|z1|
2
(
(1−λ)

f (ρz1)

ρz1 f ′(ρz1)
+λ

)
+

r
k
(1−|z1|

2)

(
1−(1−λ)

f (ρz1) f ′′(ρz1)

( f ′(ρz1))2

)
+

r(k−1)
k

(1−|z1|
2)

×

[
1+(1−λ)ρk−2 Pk(w)

1−|z1|2

(
ρ2(1−|z1|

2)
f ′′(ρz1)

f ′(ρz1)
−

2k
r
ρz1

)]
.

Let
ψ(ζ )= (1 − λ)

f (ζ )
ζ f ′(ζ )

+ λ, ∀ζ ∈ D.

Since f is a g-starlike function of complex order λ on D, we have

(5.2) ψ(ζ ) ∈ g(D),
andψ(0)= g(0)=1, i.e., ψ ≺ g. Hence, there is a Schwarz mapping v :D→D such
that v(0)= 0 and ψ(ζ )= g(v(ζ )). Furthermore, it is easy to see that, for all ζ ∈ D,

|v′(ζ )| ≤
1 − |v(ζ )|2

1 − |ζ |2
and ψ(ζ )+ ζψ ′(ζ )= 1 − (1 − λ)

f (ζ ) f ′′(ζ )

( f ′(ζ ))2
,

Therefore, we have

(2|z1|
2
+r(1−|z1|

2))

ρ
Tz{(1−λ)(DF(ρz))−1 F(ρz)+λρz}

= 2|z1|
2ψ(ρz1)+

r
k
(1−|z1|

2)(ψ(ρz1)+ρz1ψ
′(ρz1))+

r(k−1)
k

(1−|z1|
2)

×

[
1+(1−λ)ρk−2 Pk(w)

1−|z1|2

(
ρ2(1−|z1|

2)
f ′′(ρz1)

f ′(ρz1)
−

2k
r
ρz1

)]
=

2(k−r)
k

|z1|
2ψ(ρz1)+

r
k
(1+|z1|

2)

×

(
ψ(ρz1)+

ρz1ψ
′(ρz1)(1−|z1|

2)

1+|z1|2

)
+

r(k−1)
k

(1−|z1|
2)

×

[
1+(1−λ)ρk−2 Pk(w)

1−|z1|2

(
ρ2(1−|z1|

2)
f ′′(ρz1)

f ′(ρz1)
−

2k
r
ρz1

)]
.
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Since g(D) contains a disk with g(a) as center and 1
2 |g′(a)|(1 − |a|

2) as radius,
where a = v(ρz1), and∣∣∣∣ρz1ψ

′(ρz1)(1 − |z1|
2)

1 + |z1|2

∣∣∣∣= ρ|z1|

1 + |z1|2
|g′(a)||v′(ρz1)|(1−|z1|

2)< 1
2 |g′(a)|(1−|a|

2),

we have

(5.3) ψ(ρz1)+
ρz1ψ

′(ρz1)(1 − |z1|
2)

1 + |z1|2
∈ g(D).

On the other hand, since

|Pk(w)| ≤ ∥Pk∥∥w∥
k
Y and ∥Pk∥ ≤

r
2(k + r)|1 − λ|

dist(1, ∂g(D)),

by using Lemma 5.2, we have

ρk−2
∣∣∣∣(1 − λ)

Pk(w)

1 − |z1|2

(
ρ2(1 − |z1|

2)
f ′′(ρz1)

f ′(ρz1)
−

2k
r
ρz1

)∣∣∣∣
≤ ρk−1

|1 − λ|∥Pk∥

(
2k
r

+ 2
)

≤ dist(1, ∂g(D)).

It yields that

(5.4) 1 + (1 − λ)ρk−2 Pk(w)

1 − |z1|2

(
ρ2(1 − |z1|

2)
f ′′(ρz1)

f ′(ρz1)
−

2k
r
ρz1

)
∈ g(D).

Putting the equation (5.2), (5.3) and (5.4) together, we get

1
ρ

Tz{(1 − λ)(DF(ρz))−1 F(ρz)+ λρz} ∈ g(D), z ∈ ∂�r , ∀ρ ∈ (0, 1). □

Remark 5.8. If r = k and λ= 0, then Theorem 5.7 reduces to [Graham et al. 2020b,
Theorem 4.1].

In particular, when Y = Cn−1, we do have the following corollary, which is a
generalization of [Muir 2005, Theorem 4.1].

Corollary 5.9. Let k ≥ 2 be an integer. And let Pk : Cn−1
→ C be a homogeneous

polynomial mapping of degree k. Assume that f is a g-starlike function of complex
order λ on D, where g ∈ G(D) is a convex function. If ∥Pk∥ ≤ 1/((k + 2)|1 − λ|)

dist(1, ∂g(D)), then

F(z1, w)=8Pk ( f )(z1, w)= ( f (z1)+ Pk(w) f ′(z1), ( f ′(z1))
1/kw) ∈ S∗

g,λ(Bn),

where z = (z1, w) ∈ Bn and the branch of the power function is chosen such that
( f ′(z1))

1/k
|z1=0= 1.
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Remark 5.10. Since the functions g in Remark 2.4 are all convex functions, the
extension operators 8α,β and 8Pk preserve the geometric properties of the normal-
ized locally biholomorphic mappings, which we have displayed in Remark 2.4,
respectively.
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