
Pacific
Journal of
Mathematics

SPIKE SOLUTIONS
FOR A FRACTIONAL ELLIPTIC EQUATION
IN A COMPACT RIEMANNIAN MANIFOLD

IMENE BENDAHOU, ZIED KHEMIRI AND FETHI MAHMOUDI

Volume 324 No. 1 May 2023





PACIFIC JOURNAL OF MATHEMATICS
Vol. 324, No. 1, 2023

https://doi.org/10.2140/pjm.2023.324.1

SPIKE SOLUTIONS
FOR A FRACTIONAL ELLIPTIC EQUATION
IN A COMPACT RIEMANNIAN MANIFOLD

IMENE BENDAHOU, ZIED KHEMIRI AND FETHI MAHMOUDI

Given an n-dimensional compact Riemannian manifold (M, g) without
boundary, we consider the nonlocal equation

ε2s P s
g u + u = u p in (M, g),

where P s
g stands for the fractional Paneitz operator with principal symbol

(−1g)
s, s ∈ (0, 1), p ∈ (1, 2∗

s − 1) with 2∗
s :=

2n
n−2s , n > 2s, represents the

critical Sobolev exponent and ε > 0 is a small real parameter. We construct
a family of positive solutions uε that concentrate, as ε → 0 goes to zero,
near critical points of the mean curvature H for 0 < s < 1

2 and near critical
points of a reduced function involving the scalar curvature of the manifold M
for 1

2 ≤ s < 1.
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1. Introduction and preliminary results

Let s ∈ (0, 1) and let (M, g) be an n-dimensional smooth compact Riemannian
manifold without boundary with n > 2s. We consider the nonlocal problem

(1-1) ε2s Ps
g u + u = u p, u > 0 in (M, g),

where Ps
g is the fractional Paneitz operator whose principal symbol is exactly (–1g)

s ,
p ∈ (1, 2∗

s −1) with 2∗
s :=

2n
n−2s is the critical Sobolev exponent and ε > 0 is a small

real parameter. In this paper we study concentration phenomena of solutions to
problem (1-1) as the parameter ε goes to zero. We prove that such solutions exist
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and concentration occur near critical points of the mean curvature H for 0< s < 1
2

and near critical points of a reduced function involving the scalar curvature of the
manifold M for 1

2 ≤ s < 1.
In the local setting (i.e., s = 1), an analogue-type result has been obtained by

Micheletti and Pistoia [32]. They considered the following problem:

(1-2) −ε21g u + u = u p, u > 0 in (M, g),

where (M, g) is a smooth compact Riemannian manifold of dimension n ≥ 2, 1g is
the Laplace–Beltrami operator on M , p > 1 for n = 2 and

1< p < 2∗
− 1 =

n + 2
n − 2

for n ≥ 3.

They constructed a family of positive solutions which concentrate, for sufficiently
small values of ε, near stable critical points of the scalar curvature Sg of the metric g.
Precisely, if Jε is the energy functional defined by

Jε(u)=
1
εn

∫
M

[
|∇g u|

2
+

1
2 u2

−
1

p + 1
u p+1

]
dµg,

they proved that the following asymptotic expansion holds:

(1-3) Jε(uε)= c0 − c1ε
2Sg(ξ)+ o(ε2),

where c0 and c1 are explicit constants. Since any critical point of Jε is a solution to
problem (1-2), it turns out that is the scalar curvature function which is relevant
for point concentration in M for problem (1-2). On the other hand, consider the
following local singular perturbed Neumann problem:

(1-4) −ε21u + u = u p, u > 0 in �,
∂u
∂ν

= 0 on ∂�,

on a smooth bounded domain � in Rn , where ε is a small parameter, ν denotes the
outward normal to ∂�, and the exponent p > 1. Lin, Ni and Takagi [30; 33; 34]
proved that equation (1-4) possesses a least-energy solution uε which concentrate
near maximum points of the mean curvature H of ∂� for ε sufficiently small. As
above, the proof is based on an asymptotic expansion of the associated energy
functional. They showed that

(1-5) Jε(uε)=
1
2 I (ω)− cεH(ξ)+ o(ε),

where c > 0 is an explicit constant, w is the unique ground state solution of
1w−w+w p

= 0, w > 0 in Rn,

w(0)= maxy∈Rn w(y),
lim|y|→+∞w(y)= 0,
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and I [w] is the ground-state energy

I [w] =
1
2

∫
Rn

|∇w|
2 dy +

1
2

∫
Rn
w2 dy −

1
p + 1

∫
Rn
w p+1dy.

This time it turns out that the mean curvature of the boundary of � is relevant for
point concentration of problem (1-4).

The main objective of this paper is to extend the previous results to the nonlocal
setting. Before stating our main results we introduce some preliminary notations
and definitions, we refer to [5; 6; 8; 20; 26] for more precise details.

Given an n-dimensional smooth compact Riemannian manifold M = Mn without
boundary, with n ≥ 2 and let X = Xn+1 be a smooth (n + 1)-dimensional manifold
whose boundary is Mn . A function ρ is said to be a defining function of the
boundary Mn in Xn+1 if

(1-6) ρ > 0 in Xn+1, ρ = 0 on Mn and dρ ̸= 0 on Mn.

We say that g+ is conformally compact if, there exists a defining function ρ,
such that the setting ḡ = ρ2g+, the closure (Xn+1, ḡ) is compact. This induces
a conformal class of metrics g = ḡ|T Mn on Mn as defining functions vary. The
conformal manifold (Mn, [g]) is called the conformal infinity of (Xn+1, g+).

A metric g+ is said to be asymptotically hyperbolic if it is conformally compact
and the sectional curvature approaches −1 at infinity.

Given a conformally compact, asymptotically hyperbolic manifold (Xn+1, g+)

and a representative g in [g] on the conformal infinity M , there is a uniquely
defining function ρ such that, on M × (0, δ) in (X, g+), has the normal form

g+
= ρ−2(dρ2

+ gρ),

where gρ is a one-parameter family of metrics on M satisfying gρ|M = g. Moreover,
gρ has an asymptotic expansion which contains only even powers of ρ, at least
up to degree n. It is well known (see Mazzeo and Melrose [31], Graham and
Zworski [27]) that, given f ∈ C∞(M) and z ∈ C, the eigenvalue problem

(1-7) −1g+v− z(n − z)v = 0 in X

has a solution of the form

(1-8) v = Fρn−z
+ Gρz, F,G ∈ C∞(X) and F|ρ=0 = f

for all z ∈ C unless z(n − z) belongs to the pure point spectrum of −1g+ . Now, the
scattering operator on M is defined by

(1-9) S(z) f := G |M ,

which is a meromorphic family of pseudodifferential operator in
{
z ∈ C; Re(z)> n

2

}
.
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We define the conformally covariant fractional powers of the Laplacian by

(1-10) Ps
g = Ps

[g+, g] :=

{
−22ss0(s)
0(1−s) S

( n
2 + s

)
if s /∈ N,

(−1)s22ss!(s − 1)Resz= n
2 +s S(z) for s ∈ N,

whose principal symbol is exactly (−1g)
s . Here Resz=s0 S(z) is the residue at s0

of S.
Notice that if (X, g+) is Poincaré–Einstein, we have for s = 1

P1
g u = −1g u +

n−2
4(n−1)

Rg(u),

which is nothing but the usual conformal Laplacian, and for s = 2 we have

P2
g u = (−1g)

2u − divg
(
(c1 Rg − c2 Ricg) du

)
+

n−4
2

Qg u,

which is nothing but the Paneitz operator.
The operator Ps

g = Ps
[g+, g] satisfy an important conformal covariance property

(see [8] and [27]). Indeed, for a conformal change of metric

gv := v4/(n−2s)g, v > 0,

we have that

Ps
[g+, gv]φ = v−(n+2s)/(n−2s)Ps

[g+, g](vφ)

for all smooth functions φ defined on M .
Finally, we define the fractional scalar curvature Qs

g associated to the conformal
fractional Laplacian Ps

g by

(1-11) Qs
g := Ps

g (1).

According to [8], it is natural to consider the following degenerate equation with
the weighted Neumann boundary condition:

(1-12)
{
−div(ρ1−2s

∇U )+ E(ρ)U = 0 in (X, ḡ),
∂s
νU = 0 on (M, g),

where ḡ := ρ2g+ is a compact metric on the closure X of X , g its restriction onto
M (g = ḡ|M ) and

E(ρ) := ρ−1−z(−1g+ − z(n − z))ρn−z,

with 2z := n + 2s and

(1-13) ∂s
νU := −κs lim

ρ→0
ρ1−2s ∂U

∂ρ
,
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where ν is the outward normal vector to M = ∂X and

(1-14) κs :=
0(s)

21−2s0(1−s)
.

Let Exts(u) be the s-harmonic extension of u and denote it by U . Chang and
González [8] proved that the generalized eigenvalue problem (1-7) on a noncompact
manifold (Xn+1, g+) is equivalent to a linear degenerate elliptic problem on the
compact manifold (Xn+1, ḡ) for ḡ = ρ2g+. Moreover, they identify the fractional
Laplacian defined above with the normalized scattering operators and the one given
in the spirit of the Dirichlet-to-Neumann operator by Caffarelli and Silvestre in [6].
Precisely, they proved the following result, which will play a crucial role in this
paper and provides an alternative way to study problem (1-1).

Proposition 1.1 [8, Theorems 4.3 and 5.1]. Let (Xn+1, g+) be a asymptotically
hyperbolic manifold with the conformal infinity (Mn, [g]) and ρ the geodesic defin-
ing function of g. Assume also that the trace H of the second fundamental form
πi j = −⟨∇∂ρ∂i , ∂ j ⟩g on M = ∂X vanishes if s ∈

(1
2 , 1

)
. For a smooth function u

on M , if v is a solution of (1-7) and satisfies (1-8), then the function U := ρz−nv

solves

(1-15) −div(ρ1−2s
∇U )+ E(ρ)U = 0 in (X, ḡ) and U = u on (M, g),

where ḡ := ρ2g+, E(ρ) := ρ−1−z(−1g+ − z(n − z))ρn−z , and 2z := n + 2s.
Moreover,

(1-16) Ps
g (u)=

{
∂s
νU for s ∈ (0, 1)\

{1
2

}
,

∂s
νU +

n−1
2n Hu for s =

1
2 .

Here the operator ∂s
νU denotes the weighted normal derivative defined in (1-13).

For r0 > 0 sufficiently small, it also holds that

(1-17) E(ρ)=
n−2s

4n
[Rḡρ

1−2s
− (Rg+ + n(n + 1))ρ−1−2s

] on M × (0, r0).

Notice that the transformation law of the scalar curvature (see (1.1) in [20] and (2.3)
in [28]) implies that

(1-18) Rg+ = −n(n + 1)+ nρ∂ρ log(det g(ρ))+ ρ2 Rḡ on M × (0, r0),

then, using the fact that

(1-19) ∂ρ log(det g(ρ))|ρ=0 = Tr
(
g(ρ)−1∂ρg(ρ)

)
ρ=0 = −2H,
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the term E(ρ) in (1-17) becomes

(1-20) E(ρ)(z)= −

(
n−2s

4

)
∂ρ log(det g(ρ))(σ )ρ−2s

= −

(
n−2s

4

)
∂ρ log(det g(ρ))|ρ=0(σ )ρ

−2s
+O(ρ1−2s)

=

(
n−2s

2

)
H(σ )ρ−2s

+O(ρ1−2s)

for all z = (σ, ρ) ∈ M × (0, r0).
Observe that (1-18) yields

Rg+ + n(n + 1)= o(1)

near M for all asymptotically hyperbolic manifolds, where o(1) is a quantity which
goes to 0 uniformly as ρ→0. We assume that for 1

2 ≤ s<1, the scalar curvature Rg+

in X satisfies the following decay assumption

(1-21) Rg+ + n(n + 1)= o(ρ2) as ρ → 0 uniformly on M.

Assumption (1-21) naturally appears to control extrinsic quantities such as the mean
curvature H or the second fundamental form π on M , on the other hand, it is an
intrinsic curvature condition of an asymptotically hyperbolic manifold, which is
independent of the choice of a representative of the class [g]. Consequently, we
have immediately from (1-21) (see, for instance, [11, Lemma 3.2]) that

(1-22) H = 0 and Rρρ[ḡ] =
1−2n

2(n−1)
∥π∥

2
g +

1
2(n−1)

R[g].

Before stating our main result, we define on M

(1-23) 4(ξ) :=
1
6(d̃ + d̃1C̃2

n,s)Rg(ξ)+
1
6 d̃1C̃3

n,s∥π∥
2(ξ),

where the constants d̃ , d̃1, C̃2
n,s and C̃3

n,s will be defined later in (4-7), (4-8) and (4-19)
respectively. Our main theorem reads as:

Theorem 1.2. Let (Xn+1, g+) be an asymptotically hyperbolic manifold with the
conformal infinity (Mn, [g]) such that M = ∂X. Assume that n > 2s + 2 and let
H be the trace of the second fundamental form of (M, g). Then there exists ε0 > 0
such that for any ε ∈ (0, ε0), problem (1-1) has a solution uε which concentrates at
a point ξ ∈ M as ε goes to zero, where ξ is a critical point of H for 0< s < 1

2 , and
is a critical point of the function 4 defined in (1-23), for 1

2 ≤ s < 1 provided that
(1-21) holds.
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Observe that, solving our main equation (1-1) is equivalent to finding a positive
solution U to the problem

(1-24)


−div(ρ1−2s

∇U )+ E(ρ)U = 0 in (X, ḡ),
ε2s∂s

νU = u p
− u on (M, g),

U |M = u.

Up to a scaling in the second equation in the above problem (1-24), we are led to
study the following nonlocal equation

(1-25) (−1gε)
sv+ v = v p, v > 0 in (Mε, gε),

where Mε =
1
ε

M endowed with the scaled metric gε =
1
ε2 g. For ε > 0 sufficiently

small, we will construct an approximate solution to our problem whose leading
term is a solution of the limit equation

(1-26) (−1)su + u = u p, u > 0 in H s(Rn).

Precisely, we will look for a solution uε to problem (1-1) that concentrate at interior
points ξ of the manifold M which, at main order, looks like

(1-27) uε(x)≈ ω
(

x−ξ

ε

)
,

where ω is the solution of the limit problem (1-26).
We recall that, for s ∈ (0, 1), the fractional Laplacian operator (−1)s is defined

at any point x ∈ Rn by

(1-28) (−1)su(x)= cn,s

∫
Rn

2u(x)− u(x + y)− u(x − y)
|y|n+2s dy,

where cn,s is an explicit positive normalizing constant and H s(Rn) is the fractional
Sobolev space of order s on Rn , defined by

(1-29) H s(Rn) :=

{
u ∈ L2(Rn) :

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x − y|n+2s dx dy <∞

}
,

endowed with the norm

(1-30) ∥u∥H s(Rn) :=

(∫
Rn

|u(x)|2 dx +

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x − y|n+2s dx dy
)1/2

.

We refer to [18; 29; 40] for an introduction to the fractional Laplacian operator.
Concentration phenomenon for related nonlocal PDEs in the euclidean space have

attracted lot of attention. For example, if we consider the fractional Schrödinger
equation

(1-31) (−1)su + V (x)u = f (x, u) in Rn



8 IMENE BENDAHOU, ZIED KHEMIRI AND FETHI MAHMOUDI

under suitable conditions on the potential V and the nonlinearity f , existence and
multiplicity results of spike layer solutions have been obtained (see, for instance,
Alves and Miyagaki [1], Alves, de Lima and Nóbrega [2], Autuori and Pucci [3],
Felmer, Quaas and Tan [22], Cheng [12], Secchi [35], Dávila, del Pino and Wei [16],
Dipierro, Palatucci and Valdinoci [19], Fall, Mahmoudi and Valdinoci [21], Bisci
and Rădulescu [4], Servadei and Valdinoci [36; 37], Shang and Zhang [38; 39],
Caponi and Pucci [7], Fiscella, Pucci and Saldi [23]). See also [9; 10; 36].

Some results have also been obtained for the fractional nonlinear Schrödinger
(NLS) equation in bounded domains under Dirichlet and Neumann boundary condi-
tions. We mention the result of Dávila et al. [17] who built a family of solutions that
concentrate at an interior point of the domain for a fractional NLS with zero Dirichlet
datum. The Neumann fractional NLS have been considered in [41]. See also [13]
where concentration phenomena for a perturbed fractional Yamabe problem has
been considered.

The rest of the paper is organized as follows. In Section 2, we first give some
properties of the limit profile and the linearized operator around it. Then, we give
the asymptotic expansion of the metric and we prove some preliminary results.
Finally, we construct the first ansatz of the approximate solution and its decay
properties. Section 3 is devoted to the finite dimensional reduction procedure. In
Section 4, we prove our main result using the asymptotic expansions of the finite
dimensional problem obtained in Sections 4A and 4B. Finally, in Appendix, we
prove Lemma 2.7.

2. Setting-up of the problem

2A. Uniqueness and nondegeneracy for the limit equation. In this subsection,
we recall some known results for the limit equation (1-26). Frank, Lenzmann
and Silvestre [25] proved uniqueness and nondegeneracy of ground state solutions
for (1-26) in arbitrary dimension n ≥ 1 and any admissible exponent 1< p < n+2s

n−2s .
We summarize the results of [24] and [25] in the following lemmas.

Lemma 2.1. Let n ≥ 1, s ∈ (0, 1) and p ∈
(
1, n+2s

n−2s

)
. Then there exists a unique

solution (up to translation) ω ∈ H s(Rn) of (1-26). Moreover, ω is radial, positive,
strictly decreasing in |x | and satisfies

(2-1)
C1

1 + |x |n+2s ≤ ω(x)≤
C2

1 + |x |n+2s for x ∈ Rn,

with some constants C2 ≥ C1 > 0.

Lemma 2.2. Let n ≥ 1, s ∈ (0, 1) and p ∈
(
1, n+2s

n−2s

)
. Suppose that ω is the solution

of the limit problem (1-26). Then the linearized operator

L0(φ) := (−1)sφ+φ− pωp−1φ
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is nondegenerate. That is, its kernel is given by

(2-2) ker L0 = Span{∂x1ω, . . . , ∂xnω}.

The nondegeneracy implies that 0 is an isolated spectral point of L0. More
precisely, for all φ ∈ (ker L0)

⊥, one has

(2-3) ∥L0(φ)∥L2(Rn) ≥ c∥φ∥H2s(Rn)

for some positive constant c. By Lemma C.2 of [25], it holds that, for j = 1, . . . , n,
∂x jω has the decay estimate

(2-4) |∂x jω| ≤
C

1 + |x |n+2s .

It is well known that when s = 1, the ground state solution of (1-26) decays
exponentially at infinity. However, when s ∈ (0, 1), the corresponding ground
bound state solution decays polynomially like 1

|x |n+2s when |x | → ∞.

Let W denote the s-harmonic extension of ω to Rn+1
+ , that is, W satisfies

(2-5)


div(t1−2s

∇W )= 0 in Rn+1
+ ,

∂s
νW = ωp

−ω on Rn,

W = ω on Rn.

Next, we define for all i = 1, . . . , n

(2-6) zi (x) := ∂xiω(x), x ∈ Rn

and we set Zi (x, t) = Exts(zi (x)), the s-harmonic extension of zi . It has been
proven in [15] that any bounded solution on Rn

× {0} of the linearized equation

(2-7)
{

div(t1−2s
∇8)= 0 in Rn+1

+ ,

∂s
ν8= pωp−18−8 on Rn

is a linear combination of Zi .

2B. Preliminary results. We first give the asymptotic expansion of the metric of
an asymptotically hyperbolic manifold X near its boundary M . Next, we introduce
the functional setting and we give the first ansatz of the approximate solution and
its decay properties.

Asymptotic expansion of the metric ḡ near the boundary. Let (X, g+) be an asymp-
totically hyperbolic manifold with boundary (M, g) and let ρ be the geodesic
defining function, so that (X , ḡ) is a compact manifold where ḡ = ρ2g+. Assume
0 ∈ M and let x = (x1, . . . , xn) ∈ Rn be normal coordinates on M at 0 and

(x, xn+1) ∈ Rn
× (0,+∞)
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be the Fermi coordinates on X at 0. We set N = n + 1 and

(2-8) ḡ = dx2
N + gi j (x, xN ) dxi dx j ,

so that ḡ|M = g. Here the indices i, j run from 1 to n and summations over repeated
indices is understood. We have the following asymptotic expansion of the metric ḡ
near 0, see Lemmas 3.1 and 3.2 in [20] and Lemma 2.2 in [28]. Precisely, we have:

Lemma 2.3. For (x1, . . . , xn) ∈ Rn and xN = xn+1 > 0 small, it holds that

(2-9) gi j
= ḡi j

= δi j + 2πi j xN +
1
3 Rik jl xk xl + 2πi j,k xk xN

+ (3πihπhj Ri N j N )x2
N +O(|(x, xN )|

3)

and

det ḡ = det g = 1 − 2H xN + (H 2
− ∥π∥

2
− RNN )x2

N − 2H,k xk xN(2-10)

−
1
3 Rkl xk xl +O(|(x, xN )|

3),√
det ḡ =

√
det g = 1 − H xN +

1
2(H

2
− ∥π∥

2
− RNN )x2

N − H,k xk xN(2-11)

−
1
6 Rkl xk xl +O(|(x, xN )|

3).

Here π stands for the second fundamental form of M = ∂X , H is its trace, Ri j are
the components of the Ricci tensor, Ri jkl are the components of the Riemannian
tensor and RNN = ḡi j Ri N j N . The indices i, j, k, and l run from 1 to n, summations
over repeated indices is understood and every tensors are computed at 0.

The functional setting. We define the space H(X, ρ1−2s) to be the weighted Sobolev
space endowed with the inner product

(2-12) ⟨U, V ⟩ε :=
1

εn−2s

∫
X
ρ1−2s

[(∇U,∇V )ḡ + U V ] dvolḡ

and the corresponding norm

(2-13) ∥U∥ε =

(
1

εn−2s

∫
X
ρ1−2s

[|∇U |
2
ḡ + U 2

] dvolḡ

)1/2

.

Let Lq
ε be the Banach space Lq

g(M) equipped the norm

(2-14) |U |q,ε :=

(
1
εn

∫
M
|U |

q dvolg

)1/q

.

It is clear that for any 1 ≤ q < 2n
n−2s , the embedding of H 1(X, ρ1−2s) in Lq(M) is

continuous and compact. Particularly, there exists a constant c = c(s, n, X) such that

(2-15) |U |q,ε ≤ c∥U∥ε.

The next lemmas provide equivalent norms to the ∥ · ∥ε-norm.
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Lemma 2.4. The norm

(2-16) ∥U∥ε,∗ :=

(
1

εn−2s

∫
X
ρ1−2s

|∇U |
2
ḡ dvolḡ +

1
εn

∫
M

U 2 dvolg

)1/2

is equivalent to the norm ∥ · ∥ε defined in (2-13).

Lemma 2.5. Assume that the mean curvature H on M = ∂X vanishes for s ∈
[ 1

2 , 1
)

(which is the case when (1-21) holds) and there exists a constant C > 0 such that
the coercivity assumption

(2-17)
1

εn−2s

(∫
X
ρ1−2s

|∇U |
2
ḡ + E(ρ)U 2

)
dvolḡ +

1
εn

∫
M

U 2 dvolg

≥
C

εn−2s

∫
X
ρ1−2sU 2 dvolḡ

holds for arbitrary function U ∈ H 1(X, ρ1−2s). Then the norm

∥U∥ε,∗∗ :=

(
1

εn−2s κs

∫
X

(
ρ1−2s

|∇U |
2
ḡ + E(ρ)U 2) dvolḡ +

1
εn

∫
M

U 2 dvolg

)1/2

is an equivalent norm to ∥ · ∥ε.

Proof. For the proof of the previous lemmas, we refer the reader to Lemmas 3.1
and 3.2 in [13]. □

We next define the trace operator

(2-18) i : H 1(X, ρ1−2s)→ L p(M)

by i(U )= U|M := u. The operator i is well defined, continuous and, compact for
1 ≤ p < 2n

n−2s . The adjoint operator i∗
: L p′

→ H 1(X, ρ1−2s), where 1
p′ =

1
p +

2s
n ,

is a continuous map defined by the equation

(2-19)


−div(t1−2s

∇U )+ E(ρ)U = 0 in (X, ḡ),
ε2s∂s

νU = v− u on (M, g),
U = u on (M, g),

where U = i∗(v) is bounded thanks to Lemma 2.5. The above properties are proved
in [13]. We summarize them in the next lemma.

Lemma 2.6 [13, Lemma 3.3 and Corollary 3.4]. Assume n > 2s and p ∈
(
1, n+2s

n−2s

)
.

Then the embedding i : H 1(X, ρ1−2s) ↪→ L p(M) is compact continuous map. The
adjoint operator i∗

: L p′

→ H 1(X, ρ1−2s), where p′ satisfying 1
p =

1
p′ −

2s
n , is a

continuous map. In other words, if v ∈ L p′

(M) such that U = i∗(v) and u = i(U ),
then there exists C = C(p) > 0 such that

(2-20) ∥u∥L p(M) ≤ C∥v∥L p′
(M).
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Furthermore, for n > 2s and for any fixed q ∈
(
1, n+2s

n−2s

)
, the adjoint map i∗

:

Lq(M)→ H 1(X, ρ1−2s) is compact.

By Lemma 2.6, we can rewrite problem (1-24) in the equivalent way

(2-21) U = i∗( f (u)) and U = u > 0 on M

for U ∈ H 1(X, ρ1−2s) and f (u) := u p.

Decay properties of approximate solutions. Recall that we want to find a solution U
to the problem {

−div(ρ1−2s
∇U )+ E(ρ)U = 0 in (X, ḡ),

ε2s∂s
νU = u p

− u on (M, g).
(2-22)

Let r0 be a small positive real number be as in (1-17), we choose r < r0 a positive
number less than quarter of the injectivity radius of (M, g). We define χr to be a
smooth cut-off function such that χr = 1 in (0, r) and 0 in (2r,∞). Observe that,
any point z ∈ X near the boundary M can be described as z = (ξ̂ , ρ) for some
ξ̂ ∈ M and ρ ∈ (0,∞).

Let W ( · , · ) be the s-harmonic extension ofω, solution of the limit problem (1-26)
and define the scaled function Wε (ε > 0) by

(2-23) Wε(x, xN ) := W
(

x
ε
,

xN

ε

)
, x ∈ Rn, xN > 0.

Fix a point ξ ∈ M , we define the functions Wε,ξ on X by

(2-24) Wε,ξ (z)= Wε,ξ (ξ̂ , ρ)=

{
χr (d(z, ξ))Wε(exp−1

ξ (ξ̂ ), ρ) if d(z, ξ) < 2r,
0, otherwise,

where exp is the exponential map on (M, g) and d( · , ξ) is the function defined
near the boundary of (X, ḡ) by

d(z, ξ)2 = d((ξ̂ , ρ), ξ)2 = dM(ξ̂ , ξ)
2
+ ρ2,

where dM( · , ξ) is the geodesic distance from ξ on (M, g).
We look for a solution of problem (1-24) of the form

(2-25) U = Wε,ξ +8,

where 8 is a function defined on X whose H 1(X, ρ1−2s)-norm is sufficiently small
and Wε,ξ is the global approximation given in (2-24). Now, for ξ ∈ M , ε > 0 and
i = 1, . . . , n, we introduce the functions

(2-26) Z i
ε,ξ (z)= Z i

ε,ξ (ξ̂ , ρ)=

{
χr (d(z, ξ))Z i

ε(exp−1
ξ (ξ̂ ), ρ) if d(z, ξ) < 2r,

0, otherwise,
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where Z i
ε, i = 1, . . . , n, are defined by

(2-27) Z i
ε(x, xN ) := Zi

(
x
ε
,

xN

ε

)
,

with Zi = Exts(zi ), the s-harmonic extension of the functions zi defined in (2-6).
Next, we introduce the subspace

(2-28) Kε,ξ := Span{Z1
ε,ξ , . . . ,Z

n
ε,ξ }

and we let K ⊥

ε,ξ be its orthogonal complement with respect to the inner product
⟨ · , · ⟩ε,∗∗, that is,

(2-29) K ⊥

ε,ξ :=
{
U ∈ H 1(X, ρ1−2s) : ⟨Z i

ε,ξ ,U ⟩ε,∗∗ = 0 for all i = 1, . . . , n
}
.

Furthermore, denote by

(2-30) 5ε,ξ : H 1(X, ρ1−2s)→ Kε,ξ and 5⊥

ε,ξ : H 1(X, ρ1−2s)→ K ⊥

ε,ξ

the orthogonal projections onto Kε,ξ and K ⊥

ε,ξ respectively.
The function U = Wε,ξ +8 is a solution of (1-24) if and only if 8 solves

5⊥

ε,ξ

{
Wε,ξ +8− i∗

(
i
(

f (Wε,ξ +8)
))}

= 0,(2-31)

5ε,ξ

{
Wε,ξ +8− i∗

(
i
(

f (Wε,ξ +8)
))}

= 0.(2-32)

We end this section by the following result which concerns the decay property
of Wε and the functions Z i

ε defined in (2-26). We postpone its proof to Appendix.

Lemma 2.7. Assume that n ≥ 2, fix any 0< R1 < R2 and set A+

(R1,R2)
:= B+

R2
\B+

R1
.

Then as ε→ 0 the following estimates hold true:∫
Rn+1

+ \B+

R1

x1−2s
N |∇Wε|

2 dx dxN = O(ε2n−4s),(2-33)

∫
B+

R1

x2−2s
N |∇Wε|

2 dx dxN =


O(εn+1−2s) for n > 2s + 1,
O(ε2

|lnε|) for n = 2s + 1,
O(ε2n−4s) for n < 2s + 1,

(2-34)

∫
A+

(R1,R2)

x1−2s
N W 2

ε dx dxN =

{
O(ε2n−4s) for n ̸= 2s + 2,
O(ε4

|lnε|) for n = 2s + 2.
(2-35)

Moreover, we have∫
Rn+1

+ \B+

R1

x1−2s
N |∇Z i

ε|
2 dx dxN = O(ε2n−4s) for i = 1, . . . , n.(2-36) ∫

A+

(R1,R2)

x1−2s
N (Z i

ε)
2 dx dxN = O(ε2n−4s) for i = 1, . . . , n,(2-37)
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and

(2-38)
∫

B+

R1

x1−2s
N O(|(x, xN )|

2)|∇Wε|
2 dx dxN =


O(εn+2−2s) for n > 2s + 2,
O(ε4

|lnε|) for n = 2s + 2,
O(ε2n−4s) for n < 2s + 2.

3. The finite-dimensional reduction

In this section we will solve (2-31). Let us introduce the linear operator

Lε,ξ : (Kε,ξ )
⊥

→ (Kε,ξ )
⊥

defined by

(3-1) Lε,ξ (8) :=5⊥

ε,ξ

(
8− i∗

(
i( f ′(Wε,ξ )8)

))
, 8 ∈ (Kε,ξ )

⊥.

Clearly, equation (2-31) is equivalent to

(3-2) Lε,ξ (8)= Nε,ξ (8)+ Rε,ξ ,

where

Rε,ξ :=5⊥

ε,ξ

[
i∗

(
i( f (Wε,ξ ))

)
−Wε,ξ

]
,(3-3)

Nε,ξ (8) :=5⊥

ε,ξ

[
i∗

(
i
(

f (Wε,ξ +8)− f (Wε,ξ )− f ′(Wε,ξ )8
))]
.(3-4)

Our first task is to study the invertibility of Lε,ξ . This is given by the next lemma.

Lemma 3.1. Suppose that n > 2s. Then, there exists ε0 > 0 and c > 0 such that for
any ξ ∈ M and for any ε ∈ (0, ε0)

(3-5) ∥Lε,ξ (8)∥ε,∗∗ ≥ c∥8∥ε,∗∗

for all 8 ∈ (Kε,ξ )
⊥.

Proof. The proof is based on classical blow up argument. We argue by contradiction,
assuming that there exist sequences εm →0, ξm ∈ M such that ξm → ξ , 8m ∈ K ⊥

εm ,ξm
,

with ∥8m∥εm ,∗∗ = 1 such that

(3-6) Lεm ,ξm (8m)= ψm and ∥ψm∥εm ,∗∗ → 0.

We can write, by the above decomposition, that

(3-7) 8m − i∗
(
i( f ′(Wε,ξ )8m)

)
= ψm + ζm,

with ζm =
∑n

k=1(ck)m Zk
εm ,ξm

∈ Kε,ξ . We claim that

(3-8) ∥ζm∥εm ,∗∗ → 0.
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Indeed, multiplying (3-7) by Zl
εm ,ξm

for l = 1, . . . , n and integrating, taking into
account that 8m, ψm ∈ K ⊥

εm ,ξm
, we get

(3-9)
n∑

k=1

(ck)m⟨Zk
εm ,ξm

,Zl
εm ,ξm

⟩εm ,∗∗ = −
1
εn

m

∫
M

f ′(Wεm ,ξm )8mZl
εm ,ξm

dvolg.

A straightforward computations yield

(3-10) ⟨Zk
εm ,ξm

,Zl
εm ,ξm

⟩εm ,∗∗

=
1

εn−2s
m

κs

[∫
X
ρ1−2s

∇ḡZk
εm ,ξm

∇ḡZl
εm ,ξm

+ E(ρ)Zk
εm ,ξm

Zl
εm ,ξm

]
dvolḡ

+
1
εn

m

∫
M
Zk
εm ,ξm

Zl
εm ,ξm

dvolg

= κs

∫
B+

r/εm

x1−2s
N |ḡ(εm x, εm xN )|

1
2[

gi j (εm x, εm xN )∂i
(
Zk(x, xN )χ(εm x, εm xN )

)
· ∂ j

(
Zl(x, xN )χ(εm x, εm xN )

)
+∂N

(
Zk(x,xN )χ(εm x,εm xN )

)
∂N

(
Zl(x,xN )χ(εm x,εm xN )

)]
dx dxN

+ ε1+2s
m κs

∫
B+

r/εm

E(t)|ḡ(εm x, εm xN )|
1
2(

Zk(x, xN )χ(εm x, εm xN )
)(

Zl(x, xN )χ(εm x, εm xN )
)

dx dxN

+

∫
B+

r/εm

|ḡ(εx, εxN )|
1
2(

Zk(x, xN )χ(εm x, εm xN )
)(

Zl(x, xN )χ(εm x, εm xN )
)

= cδkl + o(1),

where c is a positive constant. Then, setting

8̃m(y)=

{
χr (εm y)8m(expξm

(εm y)) if y ∈ B(0, r/εm),

0, otherwise,

it is easy to check that
∥8̃m∥H1(Rn+1

+ ,x1−2s
N ) ≤ C

for some positive constant C . Hence,

8̃m ⇀ 8̃ in H 1(Rn+1
+
, x1−2s

N ),

and by the compactness of the trace operator we deduce that

8̃m → 8̃ in Lq
loc(R

n) for any 1 ≤ q < 2n
n−2s

.
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Using this, together with the fact that 8m ∈ K ⊥

εm ,ξm
, we get

(3-11) −
1
εn

m

∫
M

f ′(Wεm ,ξm )8m Zl
εm ,ξm

dvolg

=
1

εn−2s
m

κs

∫
X

(
ρ1−2s

∇ḡZl
εm ,ξm

∇ḡ8m + E(ρ)Zl
εm ,ξm

8m
)

dvolḡ

+
1
εn

m

∫
M
(1 − f ′(Wεm ,ξm ))8m Zl

εm ,ξm
dvolg

= κs

∫
Rn+1

+

x1−2s
N ∇Zi∇8̃ dx dxN +

∫
M
(1− f ′(W ))8̃Zi dx +o(1)= o(1).

Combining (3-9)–(3-11), we deduce that (ck)m → 0 for any k = 1, . . . , n, and the
claim (3-8) is proved.

Now, we consider the functions ϕm defined by

ϕm(y)=

{
χr (εm y) ϕ(expξm

(εm y)) if y ∈ B(0, r/εm),

0, otherwise

for any function ϕ ∈ C∞

0 (R
n+1). We multiply (3-7) by ϕm , we get

⟨8m, ϕm⟩εm ,∗∗ =
〈
i∗

(
i( f ′(Wεm ,ξm )8m), ϕm

)〉
εm ,∗∗

+

〈
9m +

n∑
k=1

ckZk
εm ,ξm

, ϕm

〉
εm ,∗∗

.

Since 〈
9m +

n∑
k=1

ckZk
εm ,ξm

, ϕm

〉
εm ,∗∗

= o(1),

then, taking εm → 0, we obtain∫
Rn+1

+

x1−2s
N ∇8̃∇ϕ dx dxN = p

∫
Rn
ωp−18̃ϕ dx −

∫
Rn
8̃ϕ dx

for any function ϕ ∈ C∞

0 (R
n+1). This clearly implies that 8̃ is a weak solution

of (2-7).
Moreover,

∥8̃∥H1(Rn+1
+ ,x1−2s

N ) <∞,

so the Moser iteration argument works and it reveals that 8̃ is L∞(Rn)-bounded
(see the proof of Lemma 5.1 in [14]). This with (3-6), implies 8̃= 0 in Rn .

On the other hand, using the fact that

−
1
εn

m

∫
M

f ′(Wεm ,ξm )8
2
m dvolg = −p

∫
B+

r/εm

W p−1
εm ,ξm

82
m |ḡ(εx, εxN )|

1
2 dx = o(1),
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together with (3-7), one deduces that

∥8m∥
2
εm ,∗∗

=
1
εn

m

∫
M

f ′(Wεm ,ξm )8
2
m dvolg +

〈
9m +

n∑
k=1

ckZk
εm ,ξm

,8m

〉
εm ,∗∗

= o(1),

which gives a contradiction with the fact that ∥8m∥εm ,∗∗ = 1. This concludes the
proof of the desired result. □

We next prove the following estimate on Rε,ξ .

Lemma 3.2. Assume that n > 2s + 2, there exists ε0 > 0 and c > 0 such that for
any ξ ∈ M and for any ε ∈ (0, ε0), we have

(3-12) ∥Rε,ξ∥ε,∗∗ ≤ cεγ ,

where γ is given by

(3-13) γ =

{1
2 + ζ if 0< s < 1

2 ,

1 + ζ if 1
2 ≤ s < 1,

where ζ can be taken sufficiently small.

Proof. We first introduce some notations. Given R > 0, we denote by B+

ḡ (ξ, R)
and Bg(ξ, R) the balls defined respectively by

(3-14) B+

ḡ (ξ, R) :={z ∈ X :d(z,ξ)< R} and Bg(ξ, R) :={ξ̂ ∈ M :dM(ξ̂ , ξ)< R}.

Next, we define by duality, the norm

∥U∥ = sup{⟨U,8⟩ : ∥8∥ε,∗∗ ≤ 1}

for U ∈ H 1(X; ρ1−2s). Given8∈ H 1(X; ρ1−2s)with ∥8∥ε,∗∗ ≤1 and set φ= i(8),
we clearly have

(3-15) ⟨Wε,ξ ,8⟩ε,∗∗ − ⟨i(W p
ε,ξ ), φ⟩

=
1

εn−2s κs

∫
B+

ḡ (ξ,2r0)

ρ1−2s(∇Wε,ξ ,∇8)ḡ dvolḡ

+
1
εn

∫
Bg(ξ,2r0)

(Wε,ξ −W p
ε,ξ ) φ dvolg

+
1

εn−2s κs

∫
B+

ḡ (ξ,2r0)

E(ρ)Wε,ξ8 dvolḡ

= −
1

εn−2s κs

∫
B+

ḡ (ξ,2r0)

divḡ(ρ
1−2s

∇Wε,ξ )8 dvolḡ

+
1

εn−2s κs

∫
B+

ḡ (ξ,2r0)

E(ρ)Wε,ξ8 dvolḡ.
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We set

I1 := −
1

εn−2s κs

∫
B+

ḡ (ξ,2r0)

divḡ(ρ
1−2s

∇Wε,ξ )8 dvolḡ,(3-16)

I2 :=
1

εn−2s κs

∫
B+

ḡ (ξ,2r0)

E(ρ)Wε,ξ8 dvolḡ.(3-17)

We first estimate I1. Recalling the definition of Wε,ξ given in (2-24) we can write

I1 = −
1

εn−2s κs

∫
B+

ḡ (ξ,2r0)

χr divḡ(ρ
1−2s

∇Wε)8 dvolḡ

−
1

εn−2s κs

∫
B+

ḡ (ξ,2r0)

divḡ(ρ
1−2s

∇χr )Wε8 dvolḡ

−
2

εn−2s κs

∫
B+

ḡ (ξ,2r0)

ρ1−2s
∇χr · ∇Wε8 dvolḡ.

Using the Taylor expansions of the metric given in Lemma 2.3, we get

I1 = −
1

εn−2s κs

∫
Rn+1

+

div(t1−2s
∇Wε)8 dx dt

+
1

εn−2s

∫
t1−2sO(t + |(x, t)|2)|∇Wε||∇8| dx dt

+
1

εn−2s O
(
ε2

∫
B+

ḡ (ξ,2r0)

ρ1−2s
|Wε| |8| dvolḡ

)
+

1
εn−2s O

(
ε

∫
B+

ḡ (ξ,2r0)

ρ−2s
|Wε| |8| dvolḡ

)
+

1
εn−2s O

(
ε2

∫
B+

ḡ (ξ,2r0)

ρ1−2s
|∇Wε| |8| dvolḡ

)
.

Using the fact that Wε solves (2-5), the estimates of Lemma 2.7 and Cauchy–
Schwarz inequality, we can easily deduce that

|I1| = O(ε1+ζ )

for some ζ > 0 which can be chosen small enough.
Now, to estimate the second term I2 we argue as in the proof of Lemma 4.1

in [13].

• For 0< s < 1
2 , we can choose ζ1 > 0 small enough so that s + ζ1 <

1
2 . We obtain

|I2| =

∣∣∣κs
1

εn−2s

∫
B+

ḡ

E(ρ)Wε,ξ8 dvḡ

∣∣∣
≤

C
εn−2s

∫
B+

ḡ

ρ−2s
|Wε,ξ ||8| dvolḡ
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≤ C
(

1
εn−2s

∫
B+

ḡ

ρ1−2s−2(s+ζ1)W2
ε,ξ dvolḡ

)1/2( 1
εn−2s

∫
B+

ḡ

ρ−1+2ζ182 dvolḡ

)1/2

≤ C
(

1
εn−2s

∫
B+

2r0

t1−2s−2(s+ζ1)W 2
ε (z) dz

)1/2

= O(ε1−(s+ζ1))= O(ε
1
2 +ζ3),

with ξ3 =
1
2 − (s + ξ1) > 0.

• For 1
2 < s < 1 and H = 0, we can choose ζ2 > 0 small enough so that s + ζ2 < 1.

Arguing as above, we get by (1-20) that

(3-18)
∣∣∣κs

1
εn−2s

∫
B+

ḡ

E(ρ)Wε,ξ8 dvḡ

∣∣∣
≤

C
εn−2s

∫
B+

ḡ

ρ1−2s
|Wε,ξ ||8| dvḡ

≤ C
(

1
εn−2s

∫
B+

ḡ

ρ1−2s+2ζ2W2
ε,ξ dvḡ

)1/2( 1
εn−2s

∫
B+

ḡ

ρ1−2s−2ζ282 dvḡ

)1/2

≤ C
(

1
εn−2s

∫
B+

2r0

t1−2s+2ζ2 W 2
ε (z) dz

)1/2

= O(ε1+ζ2).

Combining the above estimates, the desired result follows at once. □

Finally and in order to solve (2-31), it is important to study the linear operator Lε,ξ
defined in (3-1). To this aim, we let 9 = Lε,ξ (8), we have that

(3-19)
{
8− i∗

(
i( f ′(Wε,ξ )8)

)
=9 +

∑n
k=1 ck

εZk
ε,ξ in X

⟨8,Zk
ε,ξ ⟩ = 0 for all k = 1, . . . , n

for some constants c1
ε , . . . , cn

ε ∈ R. In the next proposition, we prove that for
a fixed 9 ∈ (Kε,ξ )

⊥ there are a unique function 8 ∈ (Kε,ξ )
⊥ and an (n)-tuple

(c1
ε , . . . , cn

ε ) ∈ Rn satisfying the linear problem (3-19). Precisely, we prove the
following result.

Proposition 3.3. Given n > 2s, ξ ∈ M and ε > 0 a small parameter. Then, for any
9 ∈ (Kε,ξ )

⊥, there exists a unique solution (8, (c1
ε , . . . , cn

ε )) to the equation (3-19)
such that the estimate (3-5) holds.

Proof. The existence of a unique solution follows directly from Lemma 2.6 and the
Fredholm alternative for compact operator. □

A consequence of the above proposition is the following result.

Proposition 3.4. Under the assumption of Proposition 3.3, equation (2-31) pos-
sesses a unique solution 8=8ε,ξ ∈ (Kε,ξ )

⊥ such that

(3-20) ∥8ε,ξ∥ε,∗∗ ≤ cεγ ,
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with a positive constant c and where γ is defined in (3-13).

Proof. The proof is based on a contraction mapping theorem. Indeed, let us define
the operator Tε,ξ : (Kε,ξ )

⊥
→ (Kε,ξ )

⊥ by

(3-21) Tε,ξ (8) := (Lε,ξ )−1(Nε,ξ (8)+ Rε,ξ ).

Using Lemma 3.2, a straightforward computations show that Tε,ξ is a contraction
map from the ball

(3-22) B := {8 ∈ (Kε,ξ )
⊥

: ∥8∥ε,∗∗ ≤ Cεγ }

into itself, for some large constant C > 0. Hence, Tε,ξ possesses a unique fixed
point 8ε,ξ ∈ B, which is a solution to (3-2), or equivalently to (2-31). □

4. Asymptotic expansion of the finite-dimensional functional

The goal is to solve (2-32). Let Jε : H 1(X, ρ1−2s)→ R be defined by

Jε(U ) :=
1

2εn−2s κs

∫
X

(
ρ1−2s

|∇U |
2
ḡ + E(ρ)U 2) dvolḡ +

1
εn

∫
M

1
2U 2

− F(U ) dvolg,

where u+ = max(u, 0) and F(u) :=
1

p+1 u p+1
+ so that F ′(u) = f (u). It is well

known that any critical point of Jε is solution to problem (1-1).
Next, we introduce the reduced functional J̃ε : M → R defined by

(4-1) J̃ε(ξ) := Jε(Wε,ξ +8ε,ξ ), ξ ∈ M,

where Wε,ξ is the global approximate solution given in (2-24) and 8ε,ξ is a small
perturbation defined in (2-25). Applying a finite dimensional reduction procedure,
we prove the following result

Lemma 4.1. The reduced energy functional J̃ε is continuously differentiable. More-
over, if ξ0 is a critical point of J̃ε, then Wε,ξ0 + 8ε,ξ0 is a positive solution to
problem (1-1) or equivalently to problem (2-32).

Proof. Given ξ ∈ M , we define the linear operator, H(ξ, · ) : H 1(X, ρ1−2s)→ R by

(4-2) H(ξ,U ) := U +5⊥

ε,ξ

[
Wε,ξ − i∗

ε

(
i
(

f (Wε,ξ + U )
))]

for U ∈ H 1(X, ρ1−2s). We clearly have

H(ξ,8ε,ξ )= 0 and
∂H
∂U

(ξ,8ε,ξ )U = U −5⊥

ε,ξ

[
i∗

ε

(
i
(

f ′(Wε,ξ +8ε,ξ )U
))]
.

On the other hand, using Lemma 2.6, we deduce that

i
(

f ′(Wε,ξ +8ε,ξ )U
)
∈ Lq(M)
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for some q ∈
(
1, n+2s

n−2s

)
with

U ∈ H 1(X, ρ1−2s) and
∂H
∂U

(ξ,8ε,ξ ) : H 1(X, ρ1−2s)→ H 1(X, ρ1−2s)

is a Fredholm operator of index 0. Moreover, using (3-12) one can easily check that
it is also injective. Therefore ∂H

∂U (ξ,8ε,ξ ) is invertible and by the implicit function
theorem, we deduce that the mapping

ξ ∈ M 7→8ε,ξ ∈ H 1(X, ρ1−2s)

is C1. This proves that J̃ε is of class C1. It then remains to prove that J̃ ′
ε(ξ) = 0

implies that
J ′

ε(Wε,ξ +8ε,ξ )= 0.

Let ξ0 ∈ M and define

ξ = ξ(y)= expξ0
(y), y ∈ B(0, r)⊂ Tξ0 M

with r > 0. A straightforward computations yield

∂

∂yk
J̃ε(expξ0

(y))

= J ′

ε

(
Wε,ξ(y)+8ε,ξ(y)

)[ ∂

∂yk
Wε,ξ(y)+

∂

∂yk
8ε,ξ(y)

]
=

〈
Wε,ξ(y)+8ε,ξ(y)−i∗

(
i( f (Wε,ξ(y)+8ε,ξ(y)))

)
,

(
∂

∂yk
Wε,ξ(y)+

∂

∂yk
8ε,ξ(y)

)〉
ε,∗∗

.

On the other hand, by (3-19), there exist some constants cl
ε, 1 ≤ l ≤ n, such that

Wε,ξ(y) +8ε,ξ(y) − i∗
(
i
(

f (Wε,ξ(y) +8ε,ξ(y))
))

=

n∑
l=1

cl
εZ

l
ε,ξ(y).

Therefore

(4-3)
∂

∂yk
J̃ε(expξ0

(y))=

n∑
l=1

cl
ε

〈
Zl
ε,ξ(y),

∂

∂yk
Wε,ξ(y) +

∂

∂yk
8ε,ξ(y)

〉
ε,∗∗

.

Assuming now that ξ0 is a critical point of J̃ε. That is,

(4-4)
(
∂

∂yk
J̃ε(expξ0

(y))
)∣∣∣

y=0
= 0 for all k = 1, . . . , n.

Evaluating (4-3) at y = 0 and assuming ε sufficiently small, we immediately get
from Lemma 4.8 that cl

ε = 0 for all l = 1, . . . , n.
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To prove that Wε,ξ(y) +8ε,ξ(y) is positive, we argue as in [13, Proof of Proposi-
tion 5.1]. In fact, given any 9 ∈ H 1(X, ρ1−2s) we have

1
εn−2s

∫
X

(
ρ1−2s(

∇(Wε,ξ(y) +8ε,ξ(y)),∇9
)

ḡ + E(ρ)(Wε,ξ(y) +8ε,ξ(y))9
)

dvolḡ

+
1
εn

∫
M
(Wε,ξ(y) +8ε,ξ(y))9 dvolg

=
p
εn

∫
M
(Wε,ξ(y) +8ε,ξ(y))

p−1
+ 9 dvolg.

Then, choosing 9 = (Wε,ξ(y)+8ε,ξ(y))− into the above identity and using (2-17)
we immediately get that Wε,ξ(y) +8ε,ξ(y) is nonnegative in X . The fact that it is
positive follows from the inequality

∥Wε,ξ(y) +8ε,ξ(y)∥ε,∗∗ ≥ ∥Wε,ξ(y)∥ε,∗∗ − ∥8ε,ξ(y)∥ε,∗∗ ≥ C + O(εγ ) > 0

and that (2-22) is a uniformly elliptic equation in divergence form away from the
boundary M . □

4A. C0-estimates of the energy. This section is devoted to the expansion of the
energy functional J̃ε in powers of ε. The first important result is the following one.

Lemma 4.2. Assume that n > 2s + 2, for ε > 0 sufficiently small, we suppose that
H = 0 if s ∈

[1
2 , 1

)
(which is the case when (1-21) holds). We have the validity of

the following expansion for the function Jε

(4-5) Jε(Wε,ξ )− C̃

=

{
−εd̃2 H(ξ)+ o(ε) if 0< s < 1

2 ,

−
1
6ε

2
[(

d̃ + d̃1C̃2
n,s

)
Rg(ξ)+ d̃1C̃3

n,s∥π∥
2(ξ)

]
+ o(ε2) if 1

2 ≤ s < 1,

uniformly with respect to ξ as ε goes to zero. Here Rg is the scalar curvature
of (M, g), π is the second fundamental form on M , the constants C̃ , d̃, d̃1 and d̃2

are defined respectively by

C̃ :=

(
1
2κs

∫
Rn+1

+

x1−2s
N |∇W |

2 dx dxN +
1
2

∫
Rn
ω2 dx−

1
p+1

∫
Rn
ωp+1 dx

)
,(4-6)

d̃ :=

(
1
2κs

∫
Rn+1

+

x1−2s
N x2

1 |∇W |
2 dx dxN +

1
2

∫
Rn

x2
1ω

2 dx−
1

p+1

∫
Rn

x2
1ω

p+1 dx
)
,(4-7)

d̃1 :=κs

∫
Rn+1

+

x1−2s
N W 2 dx dxN ,(4-8)

d̃2 :=C2
n,sκs

∫
Rn+1

+

x2−2s
N |∇W |

2 dx dxN .(4-9)
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Here W = Exts(w) is the s-harmonic extension of ω to Rn+1
+ s harmonic ofw defined

in Section 2.

Proof. We recall that

Jε(Wε,ξ ) :=
1

2εn−2s κs

∫
X

(
ρ1−2s

|∇Wε,ξ |
2
ḡ + E(ρ)W2

ε,ξ

)
dvolḡ

+
1
εn

∫
M

1
2W

2
ε,ξ − F(Wε,ξ ) dvolg.

According to Lemma 2.3 and 4.4 and for 0< s < 1
2 , we obtain that

(4-10)
1

2εn−2s κs

∫
X
ρ1−2s

|∇Wε,ξ |
2
ḡ dvolḡ

=
1
2κs

∫
B+

2r0/ε

x1−2s
N [ḡi j (εx, εxN )∂i W∂ j W +(∂N W )2]|ḡ(εx, εxN )|

1
2 dx dxN

=
1
2κs

∫
Rn+1

+

x1−2s
N |∇W |

2 dx dxN

− εκs

[
1
2 H

∫
Rn+1

+

x2−2s
N |∇W |

2 dx dxN −πi j

∫
Rn+1

+

x2−2s
N ∂i W∂ j W dx dxN

]
=

1
2κs

∫
Rn+1

+

x1−2s
N |∇W |

2 dx dxN − C0
n,sεHκs

∫
Rn+1

+

x2−2s
N |∇W |

2 dx dxN

+ o(ε).

Also, in view of (1-20) and for 0< s < 1
2 , we get

(4-11) E(xN )=

(n−2s
2

)
Hρ−2s

for xN ≥ 0 small. So

(4-12)
1

2εn−2s κs

∫
X
(E(ρ)W2

ε,ξ ) dvolḡ

=
ε1+2s

2
κs

∫
B+

2r0/ε

(E(εxN )W 2)|ḡ(εx, εxN )|
1
2 dx dxN

= εHκs

(
n − 2s

4

)∫
Rn+1

+

x−2s
N W 2 dx dxN + o(ε2)

= C1
n,sεHκs

∫
Rn+1

+

x2−2s
N |∇W |

2 dx dxN + o(ε).

Using the fact that xN = 0 on M , we get

(4-13) 1
2εn

∫
M
W2
ε,ξ dvolg =

1
2

∫
B2r0/ε

ω2
|ḡ(εx, εxN )|

1
2 dx =

1
2

∫
Rn
ω2 dx + o(ε),
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and

(4-14) −
1

(p + 1)εn

∫
M
W p+1
ε,ξ dvolg = −

1
p + 1

∫
B2r0/ε

W p+1
|ḡ(εx, εxN )|

1
2 dx

= −
1

p + 1

∫
Rn

W p+1 dx + o(ε).

According to (4-10), (4-12), (4-13) and (4-14), then for 0< s < 1
2 , we get

Jε(Wε,ξ )−

(
1
2κs

∫
Rn+1

+

x1−2s
N |∇W |

2 dx dxN +
1
2

∫
Rn
ω2 dx −

1
p + 1

∫
Rn
ωp+1 dx

)
= −C2

n,sεHκs

∫
Rn+1

+

x2−2s
N |∇W |

2 dx dxN + o(ε).

In the above estimates, the constants C i
n,s , i = 0, 1, 2, are defined by

C0
n,s :=

2(n−s)−1
4n

, C1
n,s :=

n−2s
2−4s

and C2
n,s := C0

n,s − C1
n,s .

Now, we deal with the case where 1
2 ≤ s < 1. By Lemmas 2.3 and 2.5, using the

result of Lemma 7.2 in [26], we get

(4-15)
1

2εn−2s κs

∫
X
ρ1−2s

|∇Wε,ξ |
2
ḡ dvolḡ

=
1
2κs

∫
B+

2r0/ε

x1−2s
N [ḡi j (εx, εxN )∂i W∂ j W +(∂N W )2]|ḡ(εx, εxN )|

1
2 dx dxN

=
1
2κs

∫
Rn+1

+

x1−2s
N |∇W |

2 dx dxN + εκsπi j

∫
Rn+1

+

x2−2s
N ∂i W∂ j W dx dxN

+ ε2κsπi j,k

∫
Rn+1

+

x2−2s
N xk∂i W∂ j W dx dxN

−
1
6ε

2κs

[
1
2 Rkl

∫
Rn+1

+

x1−2s
N xk xl |∇W |

2 dx dxN

− Rik jl

∫
Rn+1

+

x1−2s
N xk xl∂i W∂ j W dx dxN

]
+

1
2ε

2κs(3πihπhj + Ri N j N )

∫
Rn+1

+

x3−2s
N ∂i W∂ j W dx dxN

−
1
4ε

2κs(∥π∥
2
+ RNN )

∫
Rn+1

+

x3−2s
N |∇W |

2 dx dxN

+ o(ε2)

=
1
2κs

∫
Rn+1

+

x1−2s
N |∇W |

2 dx dxN −
1

12ε
2κs Rkk

∫
Rn+1

+

x1−2s
N x2

1 |∇W |
2 dx dxN

−
1
6ε

2κs[C̃0
n,s(∥π∥

2
+RNN )+C̃1

n,s∥π∥
2
]

∫
Rn+1

+

x1−2s
N W 2 dx dxN

+ o(ε2).



SPIKE SOLUTIONS IN A COMPACT RIEMANNIAN MANIFOLD 25

Using the fact that xN = 0 on M , we get

(4-16) 1
2εn

∫
M
W2
ε,ξ dvolg =

1
2

∫
B2r0/ε

ω2
|ḡ(εx, εxN )|

1
2 dx

=
1
2

∫
Rn
ω2 dx −

1
12ε

2 Rkk

∫
Rn

x2
1ω

2 dx + o(ε2),

and

(4-17) −
1

(p + 1)εn

∫
M
W p+1
ε,ξ dvolg

= −
1

p + 1

∫
B2r0/ε

ωp+1
|ḡ(εx, εxN )|

1
2 dx

= −
1

p + 1

∫
Rn
ωp+1 dx +

1
p + 1

ε2 Rkk

∫
Rn

x2
1ω

p+1 dx + o(ε2).

Here C̃0
n,s and C̃1

n,s are the constants defined by

(4-18) C̃0
n,s :=

(
3n−2(1+s)

n

)
(1 − s), C̃1

n,s :=
4
n
(1 − s2).

Then according to (4-15), (4-16) and (4-17), we get

Jε(Wε,ξ )−

(
1
2κs

∫
Rn+1

+

x1−2s
N |∇W |

2 dx dxN +
1
2

∫
Rn
ω2 dx −

1
p + 1

∫
Rn
ωp+1 dx

)
= −

1
6ε

2 Rkk(ξ)

[
1
2κs

∫
Rn+1

+

x1−2s
N x2

1 |∇W |
2 dx dxN

+
1
2

∫
Rn

x2
1ω

2 dx −
1

p + 1

∫
Rn

x2
1ω

p+1 dx
]

−
1
6ε

2κs[C̃0
n,s(∥π∥

2
+ RNN )+ C̃1

n,s∥π∥
2
](ξ)

∫
Rn+1

+

x1−2s
N W 2 dx dxN

+ o(ε2).

Substituting the second identity in (1-22) into the above, we obtain

Jε(Wε,ξ )−

(
1
2κs

∫
Rn+1

+

x1−2s
N |∇W |

2 dx dxN +
1
2

∫
Rn
ω2 dx −

1
p + 1

∫
Rn
ωp+1 dx

)
= −

1
6ε

2 Rkk(ξ)

[
1
2κs

∫
Rn+1

+

x1−2s
N x2

1 |∇W |
2 dx dxN

+
1
2

∫
Rn

x2
1ω

2 dx −
1

p + 1

∫
Rn

x2
1ω

p+1 dx
]

−
1
6ε

2κs[C̃3
n,s∥π∥

2
+ C̃2

n,s Rkk](ξ)

∫
Rn+1

+

x1−2s
N W 2 dx dxN

+ o(ε2),
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where

(4-19) C̃2
n,s :=

C̃0
n,s

2(n − 1)
and C̃3

n,s := C̃1
n,s − C̃2

n,s .

Recalling the definitions of the constants C̃ , d̃ , d̃1 and d̃2 given respectively in (4-6),
(4-7), (4-8) and (4-9), the proof follows at once. □

Lemma 4.3. Given ε > 0 sufficiently small, we have

(4-20) J̃ε(ξ) := Jε(Wε,ξ +8ε,ξ )= Jε(Wε,ξ )+O(ε2γ ),

uniformly with respect to ξ ∈ M as ε goes to zero, where Jε(Wε,ξ ) is defined in (4-5)
and γ is defined in (3-13).

Proof. The proof is based on a Taylor expansion in the neighborhood of Wε,ξ and the
fact that 8ε,ξ is orthogonal to the space Kε,ξ . Then a straightforward computations
yield

J̃ε(ξ)− Jε(Wε,ξ )= ⟨Wε,ξ +8ε,ξ ,8ε,ξ ⟩ε,∗∗ −
1
εn

∫
M

(
F(Wε,ξ +8ε,ξ )− F(Wε,ξ )

)
=

1
εn

∫
M

(
f (Wε,ξ +8ε,ξ )− f (Wε,ξ )

)
8ε,ξ

−
1
εn

∫
M

(
F(Wε,ξ +8ε,ξ )− F(Wε,ξ )− f (Wε,ξ )8ε,ξ

)
= O(∥8ε,ξ∥2

ε,∗∗
),

where
F(u) :=

1
p + 1

(u+)p+1.

Then, using Proposition 3.4 we immediately get the desired result. □

Lemma 4.4. Suppose that s ∈
(
0, 1

2

)
, n > 2s + 1 and W the s-harmonic extension

defined in (2-5). Then,∫
Rn+1

+

x2−2s
N |∇W |

2 dx dxN =
4

1 + 2s

∫
Rn+1

+

x2−2s
N |∇x W |

2 dx dxN ,(4-21)

=
1 − 2s

2

∫
Rn+1

+

x−2s
N W 2 dx dxN <∞.(4-22)

Proof. We refer to Lemma 6.3 in [11] and Lemma 7.2 in [27] for the proof. □

As a consequence of the above lemmas, we have the validity of the following
C0-estimate.
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Proposition 4.5. We suppose that H = 0 if s ∈
[ 1

2 , 1
)

for ε > 0 sufficiently small
(which is the case when (1-21) holds). We have the validity of the following expan-
sion for J̃ε:

(4-23) J̃ε(ξ)

=

{
C̃−εd̃2 H(ξ)+o(ε) if 0< s < 1

2 ,

C̃−
1
6ε

2
[(d̃+d̃1C̃2

n,s)Rg(ξ)+d̃1C̃3
n,s∥π∥

2(ξ)]+o(ε2) if 1
2 ≤ s < 1,

uniformly for ξ ∈ M as ε goes to zero.

Proof. It follows directly from Lemmas 4.2, 4.3 and 4.4. □

4B. C1-estimates of the energy. The aim is to improve Proposition 4.5 by showing
that the o(1)-terms go to 0 in C1-sense.

Proposition 4.6. Estimate (4-23) is valid C1-uniformly for ξ0 ∈ M. Precisely, the
following holds for each fixed point ξ0 ∈ M. Suppose that y ∈ Rn is a point near the
origin. Under the assumption in Proposition 4.5, we have

(4-24)
∂

∂yk
J̃ε(ξ)(expξ0

(y))|y=0 =
∂

∂yk
(Jε(Wε,ξ +8ε,ξ ))|y=0

=
∂

∂yk
(Jε(Wε,ξ ))|y=0 + o(εγ )

for each 1 ≤ k ≤ n.

For the proof of Proposition 4.6, we first need to establish several preliminary
lemmas. We fix ξ0 ∈ M and set

ξ(y)= expξ0
(y) for y ∈ Bn(0, 4r0)

(recall that 4r0 > 0 is chosen to be smaller than the injectivity radius of M). Recall
the definition of the cutoff function χr in (2-24) and observe that any point z ∈ X
located sufficiently close to ξ0 ∈ M can be written as z = (ξ(x), xN ) for some
x ∈ Bn(0, 2r0) and xN ∈ (0, r0), The first key result in the proof of Proposition 4.6
is:

Lemma 4.7. For any 1 ≤ k ≤ n, we have

(4-25)
∂

∂yk
Wε,ξ(y)

∣∣∣
y=0
(expξ0

(x), xN )

=
1
ε
χr (εx, εxN )

N∑
j=1

[
∂ j W (x, xN )

∂K j

∂yk
(0, εx)

]
+O

(
εn−2s |∇χr |(|(x − y, xN )|)

|(x − y, xN )|N−2s

)
.



28 IMENE BENDAHOU, ZIED KHEMIRI AND FETHI MAHMOUDI

Moreover, for any z near the point ξ0 and 1 ≤ i ≤ n, it holds

(4-26)
∂

∂yk
Zε,ξ(y)

∣∣∣
y=0
(expξ0

(x), xN )

=
1
ε
χr (εx, εxN )

N∑
j=1

[
∂ j Zi (x, xN )

∂K j

∂yk
(0, εx)

]

+O
(
εn−2s |∇χr |(|(x − y, xN )|)

|(x − y, xN )|N−2s

)
,

uniformly with respect to ξ as ε goes to zero.

Proof. Let ξ0 ∈ M be fixed, define

ξ = ξ(y)= expξ0
(y), y ∈ Bn(0, 4r0),

and set

K(y, x)= exp−1
ξ(y)(ξ(x))= (K1(y, x), . . . ,Kn(y, x)) ∈ Rn.

Using the chain rule and Lemma A.2, a straightforward computations yield

(4-27)
∂

∂yk
Wε,ξ(y)(z)= χr

(
d((expξ(y)(x), xN ), ξ(y))

)
N∑

j=1

[
∂ j Wε(K(y, x), xN )

∂K j

∂yk
(y, ξ−1(expξ(y))(x))

]
+O

(
εn−2s |∇χr |(|(x, xN )|)

|(x, xN )|N−2s

)
=

1
ε
χr

(
d((expξ(y)(εx), εxN ), ξ(y))

)
N∑

j=1

[
∂ j W (K(y, x), xN )

∂K j

∂yk
(y, ξ−1(expξ(y))(εx))

]
+O

(
εn−2s |∇χr |(|(x, xN )|)

|(x, xN )|N−2s

)
.

Taking y = 0 on the both sides of (4-27), we get

∂

∂yk
Wε,ξ(y)

∣∣∣
y=0
(expξ0

(x), xN )

=
1
ε
χr (εx, εxN )

N∑
j=1

[
∂ j W (x, xN )

∂K j

∂yk
(0, εx)

]
+O

(
εn−2s |∇χr |(|(x, xN )|)

|(x, xN )|N−2s

)
.

This proves the first identity (4-25). Reasoning similarly, we prove the second
identity (4-26). □
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Let 8ε,ξ be the solution of (2-31) given by Proposition 3.4. Then for some
constants cl

ε ∈ R, 1 ≤ l ≤ n, we have

(4-28) 8ε,ξ = −Wε,ξ + i∗
(
i( f (Wε,ξ +8ε,ξ ))

)
+

n∑
l=1

cl
εZ

l
ε,ξ .

We next have the following result which will be crucial in the proofs of Lemma 4.1
and Proposition 4.6.

Lemma 4.8. The constants cl
ε, 1 ≤ l ≤ n, defined in (4-28) satisfy

(4-29) cl
ε = O(εγ ) for all 1 ≤ l ≤ n.

Proof. Let 8ε,ξ(y) ∈ K ⊥

ε,ξ(y) be given by (4-28) and let l ∈ {1, . . . , n}, we clearly
have that

(4-30) J ′

ε(Wε,ξ(y)+8ε,ξ(y))Zl
ε,ξ(y) = ⟨Wε,ξ ,Zl

ε,ξ ⟩ε,∗∗−
1
εn

∫
M

f (Wε,ξ+8ε,ξ )Zl
ε,ξ

=

(
⟨Zl

ε,ξ ,Wε,ξ ⟩ε,∗∗−
1
εn

∫
M

f (Wε,ξ )Zl
ε,ξ

)
+

(
1
εn

∫
M

(
f (Wε,ξ )− f (Wε,ξ+8ε,ξ )

)
Zl
ε,ξ

)
= I1+I2.

We first estimate I1 in (4-30). Replacing 8 by Zl
ε,ξ in the proof of Lemma 3.2 and

using the fact that ∥Zl
ε,ξ∥ε,∗∗ = O(1), we get

⟨Zl
ε,ξ ,Wε,ξ ⟩ε,∗∗ −

1
εn

∫
M

(
f (Wε,ξ )

)
Zl
ε,ξ = O(εγ ).

Now, to estimate I2 we use the mean value theorem. We get, for some τ ∈ [0, 1],
that∣∣∣ 1
εn

∫
M

(
f (Wε,ξ )− f (Wε,ξ +8ε,ξ )

)
Zl
ε,ξ

∣∣∣
=

∣∣∣ 1
εn

∫
M

f ′(Wε,ξ + τ8ε,ξ )8ε,ξZl
ε,ξ

∣∣∣
≤ c

1
εn

∫
M
|Wε,ξ |

p−1
|8ε,ξ | |Zl

ε,ξ | + c
1
εn

∫
M
|8ε,ξ |

p
|Zl
ε,ξ |

≤ c∥8ε,ξ∥ε,∗∗∥Zl
ε,ξ∥ε,∗∗ + ∥8ε,ξ∥

p
ε,∗∗

∥Zl
ε,ξ∥ε,∗∗ = O(εγ ).

Combining the two above estimates, it follows that

(4-31) J ′

ε(Wε,ξ(y) +8ε,ξ(y))Zk
ε,ξ(y) = O(εγ ).
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On the other hand, using (3-10) and (2-31), we conclude that

(4-32) J ′

ε(Wε,ξ(y) +8ε,ξ(y))Zk
ε,ξ(y) =

n∑
l=1

cl
ε⟨Z

l
εm ,ξm

,Zk
εm ,ξm

⟩ε

=

n∑
l=1

cl
ε(δkl + o(1))

= cl
ε⟨Z

l
ε,ξ ,Z

l
ε,ξ ⟩ε,∗∗ +

∑
l ̸=k

ck
ε⟨Z

k
ε,ξ ,Z

l
ε,ξ ⟩ε,∗∗

= O(εγ ).

Using (4-31) and (4-32), the result follows at once. □

Lemma 4.9. There exist ε0 > 0 and c > 0 such that for any ξ ∈ M and for any
ε ∈ (0, ε0), we have

∥Zl
ε,ξ−i∗

(
i( f ′(Wε,ξ(y))Zl

ε,ξ(y))
)
∥ε,∗∗ ≤cεγ ,

∥∥1
ε
Zl
ε,ξ+

(
∂

∂yl
Wε,ξ(y)

)∣∣
y=0

∥∥
ε,∗∗

≤cε.

Proof. The proof of the first estimate follows the same arguments as the proof of
Lemma 3.2. To prove the second estimate, it is convenient to write∥∥∥1
ε
Zl
ε,ξ +

(
∂

∂yl
Wε,ξ(y)

)∣∣∣
y=0

∥∥∥2

ε,∗∗

=
1

εn−2s κs

∫
X

(
ρ1−2s

∣∣∣∇(
1
ε
Zl
ε,ξ +

(
∂

∂yl
Wε,ξ(y)

)∣∣∣
y=0

)∣∣∣2

ḡ

+ E(ρ)
(

1
ε
Zl
ε,ξ +

(
∂

∂yl
Wε,ξ(y)

)∣∣∣
y=0

)2 )
dvolḡ

+
1
εn

∫
M

(
1
ε
Zl
ε,ξ +

(
∂

∂yl
Wε,ξ(y)

)∣∣∣
y=0

)2

dvolg

=21 +22 +23 for any l = 1, . . . , n,

where we have denoted by 21, 22 and 23 respectively the first, second and third
term in the right hand side of the above equality. To estimate 21, we write

(4-33) 21 = κs

∫
B(0,r/ε)

x1−2s
N |ḡξ(y)(εx, εxN )|

1
2[

ḡi j
ξ(y)(εx, εxN )∂i

(
1
ε
Zl
ε,ξ +

(
∂

∂yl
Wε,ξ(y)

)∣∣∣
y=0

)
· ∂ j

(
1
ε
Zl
ε,ξ +

(
∂

∂yl
Wε,ξ(y)

)∣∣∣
y=0

)
+

(
∂N

(
1
ε
Zl
ε,ξ +

(
∂

∂yl
Wε,ξ(y)

)∣∣∣
y=0

))2 ]
dx dxN ,
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where summation over repeated indices is understood. Using Lemma 4.7 we obtain

1
ε
Zl
ε,ξ +

1
ε

(
∂

∂yl
Wε,ξ(y)

)∣∣∣
y=0

=
1
ε
χr (εx, εxN )

n∑
k=1

[
∂k W (x, xN )

∂Kk

∂yl
(0, εx)

]
+

1
ε
χr (εx, εxN )Zl(x, xN )+O

(
εn−2s |∇χr |(|(x − y, xN )|)

|(x − y, xN )|N−2s

)
=

1
ε
χr (εx, εxN )Zl(x, xN )

[
∂Kl

∂yl
(0, εx)+ 1

]
+

1
ε

n∑
k=1,k ̸=l

χr (εx,εxN )Zk(x, xN )
∂Kk

∂yl
(0,εx)+O

(
εn−2s |∇χr |(|(x−y, xN )|)

|(x−y, xN )|N−2s

)
.

This implies that

∂i

(
1
ε
Zl
ε,ξ +

(
∂

∂yl
Wε,ξ(y)

)∣∣∣
y=0

)
=

1
ε
χr (εx, εxN )∂i Zl(x, xN )

[
∂Kl

∂yl
(0, εx)+ 1

]
+ ∂iχr (εx, εxN )Zl(x, xN )

[
∂Kl

∂yl
(0, εx)+ 1

]
+

1
ε
χr (εx, εxN )Zl(x, xN )∂i

(
∂Kl

∂yl
(0, εx)

)
+

1
ε

n∑
k=1,k ̸=l

χr (εx, εxN )∂i Zk(x, xN )
∂Kk

∂yl
(0, εx)

+

n∑
k=1,k ̸=l

∂iχr (εx, εxN )Zk(x, xN )
∂Kk

∂yl
(0, εx)

+
1
ε

n∑
k=1,k ̸=l

χr (εx, εxN )Zk(x, xN )∂i

(
∂Kk

∂yl
(0, εx)

)

+O
(
εn−2s∂i

|∇χr |(|(x − y, xN )|)

|(x − y, xN )|N−2s

)
.

Recalling the definition of the cutoff function χr defined above, we obtain

(4-34) 21 ≤ c
7∑

h=1

21h,
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where the quantities 21h’s are given by

211 =
1
ε2 κs

∫
B+

2r0/ε

x1−2s
N

{
|∂i Zl(x, xN )|

2
+ |∂N Zl(x, xN )|

2}∣∣∣∂Kl

∂yl
(0, εx)+ 1

∣∣∣2
,

212 = κs

∫
B+

2r0/ε

x1−2s
N

{
|∂iχr (εx, εxN )Zl(x, xN )|

2
+ |∂Nχr (εx, εxN )Zl(x, xN )|

2}
·

∣∣∣∂Kl

∂yl
(0, εx)+ 1

∣∣∣2
,

213 =
1
ε2 κs

∫
B+

2r0/ε

x1−2s
N

{∣∣∣∂i

(
∂Kl

∂yl
(0, εx)

)∣∣∣2
+

∣∣∣∂N

(
∂Kl

∂yl
(0, εx)

)∣∣∣2
}

· |χr (εx, εxN )Zl(x, xN )|
2,

214 =
1
ε2

n∑
k=1,k ̸=l

κs

∫
B+

2r0/ε

x1−2s
N

{
|∂i Zk(x, xN )|

2
+ |∂N Zk(x, xN )|

2}∣∣∣∂Kk

∂yl
(0, εx)

∣∣∣2
,

215 =

n∑
k=1,k ̸=l

κs

∫
B+

2r0/ε

x1−2s
N

{
|∂iχr (εx, εxN )Zk(x, xN )|

2

+ |∂Nχr (εx, εxN )Zk(x, xN )|
2}∣∣∣∂Kk

∂yl
(0, εx)

∣∣∣2
,

216 =
1
ε2

n∑
k=1,k ̸=l

κs

∫
B+

2r0/ε

x1−2s
N

{∣∣∣∂i

(
∂Kk

∂yl
(0, εx)

)∣∣∣2
+

∣∣∣∂N

(
∂Kk

∂yl
(0, εx)

)∣∣∣2
}

· |χr (εx, εxN )Zk(x, xN )|
2,

217 = κs

∫
B+

2r0/ε

x1−2s
N

{(
εn−2s∂i

|∇χr |(|(x − y, xN )|)

|(x − y, xN )|N−2s

)2

+

(
εn−2s∂N

|∇χr |(|(x − y, xN )|)

|(x − y, xN )|N−2s

)2}
.

On the other hand, using (6.12) of [32] (see also [13]), we have that

(4-35)
∂Kk

∂yl

(
y, ξ−1(expξ(y))(εx)

)∣∣∣
y=0

=
∂Kk

∂yl
(0, εx)

= −δkl +O(ε2
|x |

2).

Then by (4-34) we get

21 ≤ cε2.

Arguing similarly, we easily obtain
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(4-36) 22 = ε1+2sκs

∫
B+

2r0/ε

E(εxN )

{
1
ε
χr (εx, εxN )Zl(x, xN )

[
∂Kl

∂yl
(0, εx)+ 1

]
+

n∑
k=1,k ̸=l

χr (εx, εxN )Zk(x, xN )
∂Kk

∂yl
(0, εx)

+O
(
εn−2s |∇χr |(|(x − y, xN )|)

|(x − y, xN )|N−2s

)}2

· |ḡξ(y)(εx, εxN )|
1
2 dx dxN

≤ cε2

and

(4-37) 23 =

∫
B2r0/ε

(
1
ε
Zl
ε,ξ +

(
∂

∂yl
Wε,ξ(y)

)∣∣∣
y=0

)2∣∣∣gξ(y)(εx, εxN )

∣∣∣ 1
2

dx

=

∫
B2r0/ε

[
1
ε
χr (εx, εxN )Zl(x, xN )

[
∂Kl

∂yl
(0, εx)+ 1

]
+

n∑
k=1,k ̸=l

χr (εx, εxN )Zk(x, xN )
∂Kk

∂yl
(0, εx)

+O
(
εn−2s |∇χr |(|(x − y, xN )|)

|(x − y, xN )|N−2s

)]2

|gξ(y)(εx, εxN )|
1
2 dx

≤ cε2.

This prove the desired estimate. □

We go back now to the proof of Proposition 4.6. For simplicity, we will use the
notation

(χr∂k Wε)(z)= χr (|(x, xN )|)Wε(x, xN )

for z = (ξ(x), xN ) ∈ X near ξ0 ∈ M . We may assume that the domain of these
functions is the Euclidean space Rn+1

+ .
By the previous lemma, we have

∂

∂yk

Jε(Wε,ξ(y) +8ε,ξ(y))−
∂

∂ yk
Jε(Wε,ξ(y))

= J ′

ε(Wε,ξ(y) +8ε,ξ(y))(∂ykWε,ξ(y) + ∂yk8ε,ξ(y))− J ′

ε(Wε,ξ(y))(∂kWε,ξ(y))

= J ′

ε(Wε,ξ(y)+8εξ(y))[∂yk8ε,ξ(y)]+[J ′

ε(Wε,ξ(y)+8ε,ξ(y))−J ′

ε(Wε,ξ(y))][∂kWε,ξ(y)]

= J1 + J2,

where we have set

J1 := J ′

ε(Wε,ξ(y) +8εξ(y))[∂yk8ε,ξ(y)],

J2 := [J ′

ε(Wε,ξ(y) +8ε,ξ(y))− J ′

ε(Wε,ξ(y))][∂kWε,ξ(y)].
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We first estimate the term J1. Using Lemma 4.8, Proposition 3.4 and the fact that
∥∂ykZl

ε,ξ∥ε,∗∗ = O(1), we get

(4-38) J1 = J ′

ε(Wε,ξ(y) +8εξ(y))[∂yk8ε,ξ(y)]

=

n∑
l=1

cl
ε⟨Z

l
ε,ξ , ∂yk8ε,ξ(y)⟩ε,∗

= −

n∑
l=1

cl
ε⟨∂ykZ

l
ε,ξ ,8ε,ξ(y)⟩ε,∗

≤

n∑
l=1

|cl
ε||⟨∂ykZ

l
ε,ξ ,8ε,ξ(y)⟩ε,∗|

≤ c
n∑

l=1

|cl
ε|∥∂ykZ

l
ε,ξ∥ε,∗∥8ε,ξ(y)∥ε,∗ = O(ε2γ ).

Concerning the term J2, we write

J2 = [J ′

ε(Wε,ξ(y) +8ε,ξ(y))− J ′

ε(Wε,ξ(y))][∂kWε,ξ(y)]

= ⟨8ε,ξ(y), ∂kWε,ξ(y)⟩ε,∗ −
1
εn

∫
M

[ f (Wε,ξ(y) +8ε,ξ(y))− f (Wε,ξ(y))]∂kWε,ξ(y)

=

〈
8ε,ξ(y) − i∗

(
i( f ′(Wε,ξ(y))8ε,ξ(y))

)
, ∂kWε,ξ(y) +

1
ε
Zl
ε,ξ(y)

〉
ε,∗

−
1
εn

∫
M

[ f (Wε,ξ(y) +8ε,ξ(y))− f (Wε,ξ(y))− f ′(Wε,ξ(y))8ε,ξ(y)]∂kWε,ξ(y)

−
1
εn

〈
8ε,ξ(y),Zl

ε,ξ(y) − i∗
(
i( f ′(Wε,ξ(y))Zl

ε,ξ(y))
)〉
ε,∗

= J21 + J22 + J23.

To estimate J21, we use (3-20), (2-15) and Lemma 4.9. We get

(4-39) |J21| ≤ ∥8ε,ξ(y)− i∗
(
i( f ′(Wε,ξ(y))8ε,ξ(y))

)
∥ε,∗ ∥∂kWε,ξ(y)+

1
ε
Zl
ε,ξ(y)∥ε,∗

≤ cε∥8ε,ξ(y)∥ε,∗ = O(εγ+1).

Next, we compute the second term J22, by (3-20), we obtain

(4-40) |J22| ≤ c(∥8ε,ξ(y)∥2
ε,∗∗

+ ∥8ε,ξ(y)∥
p+1
ε,∗ )∥∂kWε,ξ(y)∥ε,∗ = O(ε2γ )

We now estimate the second term J22. For p ≥ 2, we have that

(4-41) |J22| ≤ c∥8ε,ξ(y)∥2
ε,∗∗

∥∂kWε,ξ(y)∥ε,∗ + ∥8ε,ξ(y)∥
p
ε,∗∥∂kWε,ξ(y)∥ε,∗.
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While, for 1< p < 2, we have that

(4-42) |J22| ≤ c
1
εn

∫
M
W p−2
ε,ξ(y)8

2
ε,ξ(y)|∂kWε,ξ(y)|

≤ c∥8ε,ξ(y)∥2
ε,∗∗

∥∂kWε,ξ(y)∥ε,∗∥Wε,ξ(y)∥
p−2
ε,∗ .

Then, using (4-28), we conclude, for every p ∈ (1, 2∗
s − 1)

|J22| = O(ε2γ ).

Finally, using (3-20) and Lemma 4.9, the last term J23 can be estimated as

|J23| ≤ ∥8ε,ξ(y)∥ε,∗∥Zl
ε,ξ(y) − i∗

(
i( f ′(Wε,ξ(y))Zl

ε,ξ(y))
)
∥ε,∗ = O(ε2γ ).

Collecting the previous estimates. we deduce that

(4-43) J2 = O(ε2γ )+O(εγ+1).

Combining (4-38) and (4-43), the result follows at once.

Proposition 4.10. Define ξ(y)= expξ (y), y ∈ Bn(0, 4r0). It holds the following.

• For 0< s < 1
2

(4-44)
(
∂

∂yh
Jε(Wε,ξ )

)
|y=0

= −εd1

(
∂

∂yk
H(ξ(y))

)
|y=0

+ εd2

(
∂

∂yk
πi j (ξ(y))

)
|y=0

+ o(ε).

• For 1
2 ≤ s < 1

(4-45)
(
∂

∂yh
Jε(Wε,ξ )

)
|y=0

=
ε2

12
b1

(
∂

∂ym
Rkl(ξ(y))

)
|y=0

−
ε2

6
b2

(
∂

∂ym
Rik jl(ξ(y))

)
|y=0

−
ε2

2
b3

(
−

(
∂

∂yk
RNN (ξ(y))

)
+

(
∂

∂yk
πis(ξ(y))

)
πsi

)
|y=0

+ε2b4

((
∂

∂yk
Ri N j N (ξ(y))

)
+7

(
∂

∂yk
π jh(ξ(y))

)
πhi (ξ(y))

)
|y=0

+o(ε2)

uniformly in ξ as ε goes to zero. Here the constants b1, b2, b3 b4, d1 and d2 are
explicit constants given below.
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Proof. We have

∂

∂yh
Jε(Wε,ξ )

= J ′

ε(Wε,ξ )

[
∂

∂yh
Wε,ξ

]
=

1
εn−2s κs

∫
X

(
ρ1−2s

(
∇Wε,ξ(y),∇

∂

∂yh
Wε,ξ(y)

)
ḡ
+ E(ρ)Wε,ξ(y)

∂

∂yh
Wε,ξ(y)

)
dvolḡ

+
1
εn

∫
M
Wε,ξ(y)

∂

∂yh
Wε,ξ(y) − f (Wε,ξ(y))

∂

∂yh
Wε,ξ(y) dvolg

= κs

∫
B+

2r0/ε

x1−2s
N

{
ḡi j
ξ(y)(εx, εxN )∂iWε,ξ(y)∂ j

(
∂

∂yh
Wε,ξ(y)

)
+ ∂NWε,ξ(y)∂N

(
∂

∂yh
Wε,ξ(y)

)}
|ḡξ(y)(εx, εxN )|

1
2 dx dxN

+ε1+2sκs

∫
B+

2r0/ε

E(ερ)Wε,ξ(y)
∂

∂yh
Wε,ξ(y)|ḡξ(y)(εx,εxN )|

1
2 dx dxN

+

∫
B2r0/ε

Wε,ξ(y)
∂

∂yh
Wε,ξ(y)|gξ(y)(εx)|

1
2 dx dxN

−

∫
B2r0/ε

f (Wε,ξ(y))
∂

∂yh
Wε,ξ(y)|gξ(y)(εx)|

1
2 dx dxN

= J1 +J2 +J3 −J4.

Using Taylor’s expansions, we get√
det ḡ =

√
detg

=1– H xN +
1
2(H

2 –∥π∥
2 – RN N )x2

N – H,k xk xN – 1
6 Rkl xk xl – 1

12 Rkl,m xk xl xm

+
1
2

(
−H,kl +

1
3 Rikslπsi

)
xk xl xN +

1
2(−RN N ,k +πis,kπsi )xk x2

N

+
1
6

(
−RN N ,N + 2(πis Rs Ni N )− 4H 3

+ 12H(πis)
2
− 8πisπsrπri

)
x3

N

+O(|(x, xN )|
4),

and

gi j
ξ = ḡi j

ξ

= δi j + 2πi j xN +
1
3 Rik jl xk xl + 2πi j,k xk xN + (3πihπhj + Ri N j N )x2

N

+
1
6 Rik jl,m xk xl xm + (πi j,kl + R jkhlπhi )xk xl xN + (Ri N j N ,k + 7π jh,kπhi )xk x2

N

+
1
3

(
Ri N j N ,N + 10(πih RhN j N )+ 12πihπhrπr j

)
x3

N +O(|(x, xN )|
4).
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• For 0< s < 1
2 , we first compute the term J1. Using Lemma 4.7, we have

(4-46) J1 = κs

∫
B+

2r0/ε

x1−2s
N |ḡξ(y)(εx, εxN )|

1
2

{
ḡi j
ξ(y)(εx, εxN )∂iWε,ξ(y)∂ j

(
∂

∂yh
Wε,ξ(y)

)
+ ∂NWε,ξ(y)∂N

(
∂

∂yh
Wε,ξ(y)

)}
dx dxN

= −εH,kκs

n∑
e=1

∂Ke

∂yh
(y, ξ(y))∫

Rn+1
+

x2−2s
N xk(∂i W∂2

ieW + ∂N W∂2
NeW ) dx dxN

+ 2επi j,kκs

n∑
e=1

∂Ke

∂yh
(y, ξ(y))

∫
Rn+1

+

x2−2s
N xk∂i W∂2

jeW dx dxN

+ o(ε).

Similarly, we can estimate the second term J2 as

(4-47) J2 = ε1+2sκs

∫
B+

2r0/ε

E(εxN )Wε,ξ(y)
∂

∂yh
Wε,ξ(y)|ḡξ(y)(εx, εxN )|

1
2 dx dxN

= ε1+2sκs

∫
B+

2r0/ε

E(εxN )Wχ(εx, εxN )

·

(
1
ε
χr (εx, εxN )

n∑
e=1

[
∂eW (x, xN )

∂Ke

∂yh

(
y, ξ−1(expξ(y))(εx)

)]

+O
(
εn−2s |∇χr |(|(x − y, xN )|)

|(x − y, xN )|N−2s

))
· |ḡξ(y)(εx, εxN )|

1
2 dx dxN

= o(ε).

On the other hand, similar arguments yield

(4-48) J3 =

∫
B2r0/ε

Wε,ξ(y)
∂

∂yh
Wε,ξ(y)|gξ(y)(εx, εxN )|

1
2 dx

=

∫
B2r0/ε

ωχr/ε

(
1
ε
χr/ε

n∑
e=1

[
∂eω

∂Ke

∂yh

(
y, ξ−1(expξ(y))(εx)

)]
+O

(
εn−2s |∇χr |(|(x − y)|)

|(x − y)|N−2s

))
|gξ(y)(εx)|

1
2 dx

= o(ε).
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Finally

(4-49) J4 =

∫
B2r0/ε

f (Wε,ξ(y))
∂

∂yh
Wε,ξ(y)|gξ(y)(εx)|

1
2 dx

=

∫
B2r0/ε

f (ωχr/ε)

(
1
ε
χr/ε

n∑
e=1

[
∂eω

∂Ke

∂yh

(
y, ξ−1(expξ(y))(εx)

)]
+O

(
εn−2s |∇χr |(|(x − y)|)

|(x − y)|N−2s

))
|gξ(y)(εx)|

1
2 dx

= o(ε).

Using (4-46)–(4-49), we deduce that

∂

∂yh
Jε(Wε,ξ )

= −εH,kκs

n∑
e=1

∂Ke

∂yh
(y, ξ(y))

∫
Rn+1

+

x2−2s
N xk(∂i W∂2

ieW + ∂N W∂2
NeW ) dx dxN

+ 2επi j,kκs

n∑
e=1

∂Ke

∂yh
(y, ξ(y))

∫
Rn+1

+

x2−2s
N xk∂i W∂2

jeW dx dxN

+ o(ε).

Then

(4-50)
(
∂

∂yh
Jε(Wε,ξ )

)
|y=0

= −εd1

(
∂

∂yk
H(ξ(y))

)
|y=0

+ εd2

(
∂

∂yk
πi j (ξ(y))

)
|y=0

+ o(ε),

where

d1 := κs

∫
Rn+1

+

x2−2s
N xk∇W∇∂h W dx dxN

and

d2 := 2κs

∫
Rn+1

+

x2−2s
N xk∂i W∂2

jeW dx dxN .

• For 1
2 ≤ s < 1, using again Lemma 4.7, we get

(4-51) J1 = κs

∫
B+

2r0/ε

x1−2s
N |ḡξ(y)(εx, εxN )|

1
2{

ḡi j
ξ(y)(εx, εxN )∂iWε,ξ(y)∂ j

∂Wε,ξ(y)

∂yh

+ ∂NWε,ξ(y)∂N
∂Wε,ξ(y)

∂yh

}
dx dxN
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= −
ε2

12
Rkl,mκs

n∑
e=1

∂Ke

∂yh
(y, ξ(y))

∫
Rn+1

+

x1−2s
N xk xl xm∇W∇∂eW dx dxN

+
ε2

6
Rik jl,mκs

n∑
e=1

∂Ke

∂yh
(y, ξ(y))

·

∫
Rn+1

+

x1−2s
N xk xl xm∂i W∂2

jeW (x, xN ) dx dxN

−
ε2

2
(−RN N ,k +πis,kπsi )κs

n∑
e=1

∂Ke

∂yh
(y, ξ(y))

·

∫
Rn+1

+

x3−2s
N xk∇W∇∂eW dx dxN

+ (Ri N j N ,k + 7π jh,kπhi )κs

n∑
e=1

∂Ke

∂yh
(y, ξ(y))

·

∫
Rn+1

+

x3−2s
N xk∂i W∂2

jeW dx dxN

+ o(ε2).

The second term J2 can be estimated as

(4-52) J2 = ε1+2sκs

∫
B+

2r0/ε

E(εxN )Wε,ξ(y)
∂

∂yh
Wε,ξ(y)|ḡξ(y)(εx, εxN )|

1
2 dx dxN

= ε1+2sκs

∫
B+

2r0/ε

E(εxN )Wχ(εx, εxN )

·

(
1
ε
χr (εx, εxN )

n∑
e=1

[
∂eW (x, xN )

∂Ke

∂yh

(
y, ξ−1(expξ(y))(εx)

)]
+O

(
εn−2s |∇χr |(|(x − y, xN )|)

|(x − y, xN )|N−2s

))
|ḡξ(y)(εx, εxN )|

1
2 dx dxN

= o(ε2).

Similarly,

(4-53) J3 =

∫
B2r0/ε

Wε,ξ(y)
∂

∂yh
Wε,ξ(y)|gξ(y)(εx, εxN )|

1
2 dx

=

∫
B2r0/ε

ωχr/ε

(
1
ε
χr/ε

n∑
e=1

[
∂eω

∂Ke

∂yh

(
y, ξ−1(expξ(y))(εx)

)]
+O

(
εn−2s |∇χr |(|(x − y)|)

|(x − y)|N−2s

))
|gξ(y)(εx)|

1
2 dx

= −
ε2

12
Rkl,m

n∑
e=1

∂Ke

∂yh
(y, ξ(y))

∫
Rn

xk xl xm ω∂eω dx + o(ε2)
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and

(4-54) J4 =

∫
B2r0/ε

f (Wε,ξ(y))
∂

∂yh
Wε,ξ(y)|gξ(y)(εx)|

1
2 dx

=

∫
B2r0/ε

f (ωχr/ε)

(
1
ε
χr/ε

n∑
e=1

[
∂eω

∂Ke

∂yh

(
y, ξ−1(expξ(y))(εx)

)]
+O

(
εn−2s |∇χr |(|(x − y)|)

|(x − y)|N−2s

))
|gξ(y)(εx)|

1
2 dx

= −
ε2

12
Rkl,m

n∑
e=1

∂Ke

∂yh
(y, ξ(y))

∫
Rn

xk xl xm f (ω)∂eω dx + o(ε2).

Arguing as in the first case and using (4-51)–(4-54), we deduce that

∂

∂yh
Jε(Wε,ξ )

= −
ε2

12
Rkl,m

n∑
e=1

∂Ke

∂yh
(y, ξ(y))

·

[
κs

∫
Rn+1

+

x1−2s
N xk xl xm∇W∇∂eW dx dxN +

∫
Rn

xk xl xm(ω− f (ω))∂eω dx
]

+
ε2

6
Rik jl,mκs

n∑
e=1

∂Ke

∂yh
(y, ξ(y))

∫
Rn+1

+

x1−2s
N xk xl xm∂i W∂2

jeW (x, xN ) dx dxN

−
ε2

2
(−RN N ,k +πis,kπsi )κs

n∑
e=1

∂Ke

∂yh
(y, ξ(y))

∫
Rn+1

+

x3−2s
N xk∇W∇∂eW dx dxN

+ (Ri N j N ,k + 7π jh,kπhi )κs

n∑
e=1

∂Ke

∂yh
(y, ξ(y))

∫
Rn+1

+

x3−2s
N xk∂i W∂2

jeW dx dxN

+ o(ε2).

Therefore(
∂

∂yh
Jε(Wε,ξ )

)
|y=0

=
ε2

12
b1

(
∂

∂ym
Rkl(ξ(y))

)
|y=0

−
ε2

6
b2

(
∂

∂ym
Rik jl(ξ(y))

)
|y=0

−
ε2

2
b3

(
−

(
∂

∂yk
RNN (ξ(y))

)
+

(
∂

∂yk
πis(ξ(y))

)
πsi (ξ(y))

)
|y=0

+ ε2b4

((
∂

∂yk
Ri N j N (ξ(y))

)
+ 7

(
∂

∂yk
π jh(ξ(y))

)
πhi (ξ(y))

)
|y=0

+ o(ε2),



SPIKE SOLUTIONS IN A COMPACT RIEMANNIAN MANIFOLD 41

where we have set

b1 := κs

∫
Rn+1

+

x1−2s
N xk xl xm∇W∇∂h W dx dxN +

∫
Rn

xk xl xm(ω− f (ω))∂h ω dx,

b2 := κs

∫
Rn+1

+

x1−2s
N xk xl xm∂i W∂2

jh W dx dxN ,

b3 := κs

∫
Rn+1

+

x3−2s
N xk∇W∇∂eW dx dxN ,

b4 := κs

∫
Rn+1

+

x3−2s
N xk∂i W∂2

jeW dx dxN .

This prove the desired result. □

Appendix: Proof of Lemma 2.7

The proof of Lemma 2.7 is based on the following preliminary results.

Lemma A.1. Let 0< s < 1, a ∈ R and 0< R1 < R2. We denote

A+

ε−1 = B+

R2ε−1\B+

R1ε−1 .

Then, as ε→ 0, we have the∫
A+

ε−1

x1−2s
N

|(x, xN )|n−2s+2+a dx dxN =

{
O(εa) for a ̸= 0,
O(| log ε|) for a = 0,

(A-1)

∫
A+

ε−1

x2s−1
N

|(x, xN )|n+2s+a dx dxN =

{
O(εa) for a ̸= 0,
O(| log ε|) for a = 0.

(A-2)

Proof. To prove the first inequality, we decompose the domain of integration

A+

ε−1 = (A+

ε−1 ∪ {|xN | ≥ |x |})∪ (A+

ε−1 ∪ {|xN | ≤ |x |})

and estimate each part separately. If |xN | ≥ |x |, then it holds that

|xN | ≤ |(x, xN )| ≤
√

2|xN |.

Hence we get

(A-3)
∫

A+

ε−1∪{|xN |≥|x |}

x1−2s
N

|(x, xN )|n−2s+2+a dx dxN

≤ max{1,
√

2
2s−1

}

∫
A+

ε−1∪{|xN |≥|x |}

1
|(x, xN )|n+a+1 dx dxN

≤ C
∫

A+

ε−1

1
|(x, xN )|n+a+1 dx dxN =

{
O(εa) for a ̸= 0,
O(| log ε|) for a = 0.
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Now, if |xN | ≤ |x |, we have that

1
√

2ε
≤

1
√

2
|(x, xN )| ≤ |x | ≤ |(x, xN )| ≤

2
ε

for (x, xN ) ∈ A+

ε−1 . Therefore,

(A-4)
∫

A+

ε−1∪{|xN |≤|x |}

x1−2s
N

|(x, xN )|n−2s+2+a dx dxN

≤

∫
{

1
√

2ε
≤|x |≤

2
ε
}

∫
{|xN |≤|x |}

x1−2s
N

|x |n−2s+2+a dx dxN

=
1

1 − s

∫
{

1
√

2ε
≤|x |≤

2
ε
}

|x |
2−2s

|x |n−2s+2+a dx

=
1

1 − s

∫
{

1
√

2ε
≤|x |≤

2
ε
}

1
|x |n+a dx =

{
O(εa) for a ̸= 0,
O(| log ε|) for a = 0.

Combining the above two estimates, we achieve the proof of the lemma. □

The second preliminary result is:

Lemma A.2. Assume that |(x, xN )| ≥ R0 for some fixed R0 > 0 sufficiently large.
Then:

(i) |W (x, xN )| ≤
C

|(x,xN )|n−2s .

(ii) |∇x W (x, xN )|≤
C

|(x,xN )|n−2s+1 and |∂xN W (x, xN )|≤
(

C
|(x,xN )|n−2s+1 +

Cx2s−1
N

|(x,xN )|n+2s

)
.

(iii) For i = 1, . . . , n

|∇∂i W (x, xN )| ≤

(
C

|(x, xN )|n−2s+2 +
Cx2s−1

N

|(x, xN )|n+2s+1

)
for some positive constant C = C(s, n, R0).

Proof. Using Green’s representation formula for (2-5) we have that

(A-5) W (x, xN )= an,s

∫
Rn

ωp
−ω

|(x − y, xN )|n−2s dy,

where 1< p < n+2s
n−2s and an,s is a positive constant depending only on n and s (see

[13; 14]).
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To estimate W (x, xN ) we discuss two cases. In the range |x | ≤ |xN |, we have
|(x, xN )| ≤

√
2|xN |. Then, by using the fact that the function ω = W (x, 0) satis-

fies (2-1), we obtain

(A-6) |W (x, xN )| = an,s

∣∣∣∫
Rn

ωp

|(x − y, xN )|n−2s −
ω

|(x − y, xN )|n−2s dy
∣∣∣

≤ C
∫

Rn

(
1

1 + |y|n+2s

)
1

|(x − y, xN )|n−2s dy

≤ C
∫

Rn

1
1 + |y|n+2s

1
|xN |n−2s dy ≤

C
|xN |n−2s ≤

C
|(x, xN )|n−2s

for |(x, xN )| ≥ R0 large and |xN | ≥ |x | where here and below C is a positive
constant, depending only on n and s, which is allowed to vary from one formula
to another. Now, in the range |x | ≥ |xN | we have that |(x, xN )| ≤

√
2|x |. Then

arguing as before we get

(A-7) |W (x, xN )| ≤ C
∫

Rn

(
1

1 + |y|n+2s

)
1

|(x − y, xN )|n−2s dy

≤ C
∫

Rn

1
1 + |y|n+2s

1
|x − y|n−2s dy

= C
{∫

|y−x |> 1
2 |x |

1
1 + |y|n+2s

1
|x − y|n−2s dy

+

∫
|y−x |< 1

2 |x |

1
1 + |y|n+2s

1
|x − y|n−2s dy

}
≤

C
|x |n−2s +

C
|x |n

≤
C

|(x, xN )|n−2s

for |(x, xN )| ≥ R0 large and |x | ≥ |xN |. Combining the above two estimates, we
get the first estimate (i).

To estimate |∇W | we can argue similarly. First, for |x | ≤ |xN |, we have
|(x, xN )| ≤

√
2|xN | and from (2-1), one deduces that

(A-8) |∇(x,xN )W (x, xN )| ≤

∣∣∣an,s

∫
Rn
∇(x,xN )

ωp
−ω

|(x − y, xN )|n−2s dy
∣∣∣

≤ C
∫

Rn

1
1 + |y|n+2s

∣∣∣∇(x,xN )

1
|(x − y, xN )|n−2s

∣∣∣ dy

≤ C
∫

Rn

1
1 + |y|n+2s

1
|(x − y, xN )|n−2s+1 dy

≤ C
∫

Rn

1
1 + |y|n+2s

1
|xN |n−2s+1 dy

=
C

|xN |n−2s+1 ≤
C

|(x, xN )|n−2s+1 .
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Now, for |x | ≥ |xN |, we have that |(x, xN )| ≤
√

2|x |. Then, integrating by parts
one gets

∇x W (x, xN )= −an,s

∫
Rn
(ωp

−ω)∇y

(
1

|(x − y, xN )|n−2s

)
dy

= −

∫
|y−x |≥

1
2 |x |

(ωp
−ω)∇y

(
1

|(x − y, xN )|n−2s

)
dy

+

∫
|y−x |≤

1
2 |x |

∇y(ω
p
−ω)

(
dy

|(x − y, xN )|n−2s

)
−

∫
|y−x |=

1
2 |x |

(ωp
−ω)

(
σy d Sy

|(x − y, xN )|n−2s

)
,

where σy and d Sy are respectively the outward unit normal vector and the surface
measure on the sphere |y − x | =

1
2 |x | respectively. Notice that if |y − x | ≤

1
2 |x |

then |y| ≥
1
2 |x | and we derive from the above that

(A-9) |∇x W (x, xN )|

≤
C

|x |n−2s+1

∫
|y−x |≥

1
2 |x |

dy
1 + |y|n+2s

+
C

|x |n+2s+1

∫
|y−x |≤

1
2 |x |

dy
|(x − y, xN )|n−2s +O

(
|x |

n−1

|x |(n+2s)+(n−2s)

)
= O

(
1

|x |n−2s+1

)
+O

(
1

|x |n+2s+1 .|x |
2s

)
+O

(
1

|x |n+1

)
≤

C
|x |n−2s+1

≤
C

|(x, xN )|n−2s+1 .

This together with (A-8) implies the first inequality of (ii).
Now, in the range |x | ≥ |xN | and |y − x | ≥

1
2 |x |, we have that

(A-10)
∫

|y−x |≥
1
2 |x |

1
1 + |x − y|n+2s

xN

|(y, xN )|n−2s+2 dy

≤
1

|x |n+2s

∫
Rn

xN

|(y, xN )|n−2s+2 dy =
1

|x |n+2s

∫
Rn

xN.xn
N

xn−2s+2
N |(y, 1)|n−2s+2

dy

=
Cx2s−1

N

|x |n+2s

≤
Cx2s−1

N

|(x, xN )|n+2s .
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On the other hand, for |x | ≥ |xN | and |y −x | ≤
1
2 |x |, we have that |y| ≥

1
2 |x |. Hence

(A-11)
∫

|y−x |≥
1
2 |x |

1
1 + |x − y|n+2s

xN

|(y, xN )|n−2s+2 dy

≤
xN

|x |n−2s+2

∫
Rn

1
1 + |x − y|n+2s dy

=
CxN

|x |n−2s+2 ≤
CxN

|(x, xN )|n−2s+2 ≤
C

|(x, xN )|n−2s+1 .

Combining the above two estimates (A-10) and (A-11), we get that

(A-12) |∂xN W (x, xN )| ≤ C
∫

Rn

1
1 + |x − y|n+2s

xN

|(y, xN )|n−2s+2 dy

≤ C
(

x2s−1
N

|(x, xN )|n+2s +
1

|(x, xN )|n−2s+1

)
.

Now thanks to (A-8), (A-9) and (A-12), we get the second estimate of (i).
The last estimate (iii) for |∇∂i W | can be obtained adapting the same procedure

with obvious modifications. This concludes the proof of Lemma A.2. □
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