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AN ISOPERIMETRIC INEQUALITY OF
MINIMAL HYPERSURFACES IN SPHERES

FAGUI LI AND NIANG CHEN

Let Mn be a closed immersed minimal hypersurface in the unit sphere Sn+1.
We establish a special isoperimetric inequality of Mn. As an application, if
the scalar curvature of Mn is constant, then we get a uniform lower bound
independent of Mn for the isoperimetric inequality. In addition, we obtain
an inequality between Cheeger’s isoperimetric constant and the volume of
the nodal set of the height function.

1. Introduction

The isoperimetric inequalities have always been an important subject in differential
geometry and they are bridges of analysis and geometry. There are some elegant
works on isoperimetric inequalities; see [2; 7; 14; 24].

Let x : Mn ↬ Sn+1
⊂ Rn+2 be a closed immersed minimal hypersurface in the

unit sphere and denote by ν(x) a (local) unit normal vector field of Mn , ∇ and ∇

be the Levi–Civita connections on Mn and Sn+1, respectively. Let A be the shape
operator with respect to ν, i.e., A(X)= −∇Xν. The squared length of the second
fundamental form is S = ∥A∥

2. For any unit vector a ∈ Sn+1, the height functions
are defined as

ϕa(x)= ⟨x, a⟩, ψa(x)= ⟨ν, a⟩.

These two functions are very basic and important. For instance, the well known
Takahashi theorem [18] states that Mn is minimal if and only if there exists a
constant λ such that 1ϕa = −λϕa for all a ∈ Sn+1. Analogously, Ge and Li [10]
gave a Takahashi-type theorem, i.e., an immersed hypersurface Mn in Sn+1 is
minimal and has constant scalar curvature (CSC) if and only if 1ψa = λψa for
some constant λ independent of a ∈ Sn+1. This condition is linked to the famous
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Chern conjecture (see [4; 15; 22; 20; 23]), which states that a closed immersed
minimal CSC hypersurface of Sn+1 is isoparametric.

Let {|ϕa| ≥ t} = {x ∈ Mn
: |ϕa| ≥ t} and {|ϕa| = t} = {x ∈ Mn

: |ϕa| = t}. In
particular, due to 1ϕa = −nϕa and a ∈ Sn+1,

{ϕa = 0} = {x ∈ Mn
: ϕa = 0}

is the nodal set of the eigenfunction ϕa . Here, the zero set of the eigenfunction of
an elliptic operator, and its complement are called the nodal set, and nodal domain,
respectively. Suppose Smax = supp∈Mn S(p),

θ1 =

∫
M S

2nSmax Vol(Mn)
, θ2 =

n
4n2 − 3n + 1

(∫
M S

)2

Vol(Mn)
∫

M S2 ,

and

C1 = max{θ1, θ2}, C2 = inf
s≤r≤1

2 + nr ln((1 − s2)/(1 − r2))

2 + n ln((1 − s2)/(1 − r2))
.

We use Vol to represent the volume measure in this paper and the following special
isoperimetric inequality is the main result.

Theorem 1.1. Let Mn be a closed immersed, nontotally geodesic, minimal hyper-
surface in Sn+1:

(i) For all 0 ≤ s < 1 and a ∈ Sn+1, the following inequality holds:

Vol{|ϕa| = s} ≥ C(n, s, S)Vol{|ϕa| ≥ s},

where

C(n, s, S)=


nC1
2C2
, s = 0;

nC1

C2
√

1−s2 , 0< s ≤ min
{√

C1,
C1
C2

}
;

ns
√

1−s2 , min
{√

C1,
C1
C2

}
< s < 1.

(ii)
(n + 1)Vol(Sn+1)

n Vol(Sn)
sup

a∈Sn+1
Vol{ϕa = 0} ≥ Vol(Mn).

Obviously, if Mn is a closed immersed minimal CSC hypersurface (nontotally
geodesic) in Sn+1, then C1 = θ1 = 1/2n in Theorem 1.1 and one has

Corollary 1.2. Let Mn be a closed immersed, nontotally geodesic, minimal CSC
hypersurface in Sn+1. Then for all 0 ≤ s < 1 and a ∈ Sn+1, the following inequality
holds:

Vol{|ϕa| = s} ≥ C(n, s)Vol{|ϕa| ≥ s},
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where

C(n, s)=


1

4C2
, s = 0;

1
2C2

√
1−s2 , 0< s ≤ min

{√ 1
2n ,

1
2nC2

}
;

ns
√

1−s2 , min
{√ 1

2n ,
1

2nC2

}
< s < 1.

More precisely, Corollary 1.2 implies that the condition of constant scalar cur-
vature has strong rigidity for minimal hypersurfaces, since the constant C(n, s)
depends only on n and s. Hence, the volume of Mn is strongly restricted by
the volume of nodal set of the eigenfunctions ϕa (a ∈ Sn+1) for minimal CSC
hypersurfaces (nontotally geodesic), i.e.,

C0(n)Vol {ϕa = 0} ≥ Vol(Mn),

where C0(n)= C(n, 0)= 4 inf0≤r≤1(2−nr ln(1−r2))/(2−n ln(1−r2)). Besides,
this rigid property provides some evidence for the Chern conjecture.

Remark 1.3. Under the conditions of Corollary 1.2, if Mn is an integral-Einstein
(see Definition 3.1) minimal CSC hypersurface in Sn+1 (or CSC hypersurface with
S> n and constant third mean curvature), then the constant C(n, s) can be improved
(see Corollary 3.2).

In 1984, Cheng, Li and Yau [6] proved that if Mn is a closed immersed minimal
hypersurface in Sn+1 and Mn is nontotally geodesic, then

Vol(Mn) >

(
1 +

3
B̃n

)
Vol(Sn),

where B̃n = 2n + 3 + 2 exp(2nC̃n) and C̃n =
1
2 nn/2e0(n/2, 1). Thus, we have:

Corollary 1.4. Let Mn be a closed immersed, nontotally geodesic, minimal CSC
hypersurface in Sn+1. Then there is a positive constant ϵ(n) > 0, depending only
on n, such that

Vol{ϕa = 0} ≥ ϵ(n)Vol(Sn) for all a ∈ Sn+1,

where ϵ(n) > 1
4(1 + 3/B̃n) sup0≤r≤1

(
(2 − n ln(1 − r2))/(2 − nr ln(1 − r2))

)
.

Let h(M) denote the Cheeger isoperimetric constant (see Definition 4.1), we
have:

Theorem 1.5. Let Mn be a closed immersed, nontotally geodesic, minimal hyper-
surface in Sn+1. Then for all a ∈ Sn+1 we have

Vol {ϕa = 0} ≥
2
√

n + 1C1

C0(n)
h(M)Vol(Mn).

In particular, we have the following assertions:
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(i) If Mn is embedded, then h(M) > 1
10(−δ(n − 1)+

√
δ2(n − 1)2 + 5n), where

δ =
√
(Smax − n)/n.

(ii) If the image of Mn is invariant under the antipodal map (i.e., Mn is radially
symmetrical), then Vol{ϕa = 0} ≥

1
2 h(M)Vol(Mn).

2. Preliminary lemmas

In this section, we will prove Lemma 2.3 by Proposition 2.1 and Lemma 2.2. A
direct calculation shows:

Proposition 2.1 [10; 13]. For all a ∈ Sn+1, we have

∇ϕa = aT, ∇ψa = −A(aT),

1ϕa = −nϕa + nHψa, 1ψa = −n⟨∇ H, a⟩ + nHϕa − Sψa.

where aT
∈ 0(T M) denotes the tangent component of a along Mn; A is the shape

operator with respect to ν, i.e., A(X)=−∇Xν; S =∥A∥
2
= tr(AAt) and H =

1
n tr A

is the mean curvature.

Lemma 2.2 [10]. Let Mn be a closed immersed minimal hypersurface in Sn+1 with
the squared length of the second fundamental form S:

(i) If S ̸≡ 0, then ∫
M S

2nSmax
≤ inf

a∈Sn+1

∫
M
ϕ2

a .

The equality holds if and only if S ≡ n and Mn is the minimal Clifford torus
S1(

√
1/n)× Sn−1(

√
(n − 1)/n).

(ii) If S has no restrictions, then

n
4n2 − 3n + 1

(∫
M

S
)2

≤

∫
M

S2 inf
a∈Sn+1

∫
M
ϕ2

a .

The equality holds if and only if Mn is an equator.

Lemma 2.3. Let Mn be a closed immersed, nontotally geodesic, minimal hyper-
surface in Sn+1. Then for all 0 ≤ s ≤ r ≤ 1 and a ∈ Sn+1, the following inequality
holds: ∫

{|ϕa |≥s}
ϕ2

a ≤
2 + nr ln((1 − s2)/(1 − r2))

2 + n ln((1 − s2)/(1 − r2))

∫
{|ϕa |≥s}

|ϕa|.

Proof. By Proposition 2.1, we have

∇ϕa = aT, 1ϕa = −nϕa,

for all a ∈ Sn+1. Hence, by the divergence theorem and

(2-1) |aT
|
2
+ϕ2

a +ψ2
a = 1,
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for all 0< t ≤ 1 one has

(2-2)
∫

{|ϕa |≥t}
|ϕa| =

∫
{|ϕa |=t}

|aT
|

n
=

∫
{|ϕa |=t}

√
1 −ϕ2

a −ψ2
a

n
≤

∫
{|ϕa |=t}

√
1 − t2

n
,

where {|ϕa| ≥ t} = {x ∈ Mn
: |ϕa| ≥ t} and {|ϕa| = t} = {x ∈ Mn

: |ϕa| = t}. Due
to the coarea formula, (2-1) and (2-2), for all 0 ≤ s < r ≤ 1 we obtain

(2-3)
∫

{s≤|ϕa |≤r}

|ϕa| =

∫ r

s

∫
{|ϕa |=t}

|ϕa|

|aT|
=

∫ r

s

∫
{|ϕa |=t}

|ϕa|√
1 −ϕ2

a −ψ2
a

≥

∫ r

s

∫
{|ϕa |=t}

t
√

1 − t2
≥

∫ r

s

∫
{|ϕa |≥t}

t
√

1 − t2

n
√

1 − t2
|ϕa|

=

∫ r

s

∫
{|ϕa |≥t}

nt
1 − t2 |ϕa| ≥

∫
{|ϕa |≥r}

|ϕa|

∫ r

s

nt
1 − t2

=
n
2

ln
(

1 − s2

1 − r2

) ∫
{|ϕa |≥r}

|ϕa|.

For all 0 ≤ s < r ≤ 1, by 0 ≤ ϕ2
a ≤ |ϕa| ≤ 1 we have

(2-4)
∫

{|ϕa |≥s}
ϕ2

a =

∫
{|ϕa |≥r}

ϕ2
a +

∫
{s≤|ϕa |<r}

ϕ2
a

≤

∫
{|ϕa |≥r}

ϕ2
a +

∫
{s≤|ϕa |<r}

r |ϕa|

=

∫
{|ϕa |≥r}

ϕ2
a + r

∫
{|ϕa |≥s}

|ϕa| − r
∫

{|ϕa |≥r}

|ϕa|

≤ (1 − r)
∫

{|ϕa |≥r}

ϕ2
a + r

∫
{|ϕa |≥s}

|ϕa|

≤ (1 − r)
∫

{|ϕa |≥r}

|ϕa| + r
∫

{|ϕa |≥s}
|ϕa|.

Thus, for all 0 ≤ s, r, u ≤ 1 and s < r , by (2-3) and (2-4) we have∫
{|ϕa |≥s}

ϕ2
a ≤ r

∫
{|ϕa |≥s}

|ϕa|+(1−r)
∫

{|ϕa |≥r}

|ϕa|

= r
∫

{|ϕa |≥s}
|ϕa|+(1−r)

[
u
∫

{|ϕa |≥r}

|ϕa|+(1−u)
∫

{|ϕa |≥r}

|ϕa|

]
≤ r

∫
{|ϕa |≥s}

|ϕa|+(1−r)
[ 2u

∫
{s≤|ϕa |≤r}

|ϕa|

n ln((1−s2)/(1−r2))
+(1−u)

∫
{|ϕa |≥r}

|ϕa|

]
.

Choosing
2u0

n ln((1 − s2)/(1 − r2))
= 1 − u0,
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we have

(2-5) u0 =
n ln((1 − s2)/(1 − r2))

2 + n ln((1 − s2)/(1 − r2))
.

Hence, by Section 2 and (2-5) we have

∫
{|ϕa |≥s}

ϕ2
a ≤ r

∫
{|ϕa |≥s}

|ϕa| + (1 − r)(1 − u0)

(∫
{s≤|ϕa |≤r}

|ϕa| +

∫
{|ϕa |≥r}

|ϕa|

)
= [r + (1 − r)(1 − u0)]

∫
{|ϕa |≥s}

|ϕa|

=
2 + nr ln((1 − s2)/(1 − r2))

2 + n ln((1 − s2)/(1 − r2))

∫
{|ϕa |≥s}

|ϕa|. □

In particular, setting s = 0 in Lemma 2.3, we obtain

Corollary 2.4. Let Mn be a closed immersed, nontotally geodesic, minimal hyper-
surface in Sn+1. Then for all a ∈ Sn+1, the following inequality holds:

∫
M
ϕ2

a ≤
C0(n)

4

∫
M

|ϕa|,

where C0(n)= 4 inf0≤r≤1(2 − nr ln(1 − r2))/(2 − n ln(1 − r2)).

3. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 by Lemmas 2.2 and 2.3.

Proof of Theorem 1.1. Case (i). Since Mn is a closed minimal hypersurface
(nontotally geodesic) in Sn+1, by Lemma 2.2 we have

(3-1) inf
a∈Sn+1

∫
M
ϕ2

a ≥ C1 Vol(Mn),

where C1 = max{θ1, θ2} and

θ1 =

∫
M S

2nSmax Vol(Mn)
, θ2 =

n
4n2 − 3n + 1

(∫
M S

)2

Vol(Mn)
∫

M S2 .



AN ISOPERIMETRIC INEQUALITY OF MINIMAL HYPERSURFACES IN SPHERES 149

On one hand, if C1 ≥ s2, then (3-1) shows

(3-2)
∫

{|ϕa |≥s}
ϕ2

a =

∫
M
ϕ2

a −

∫
{|ϕa |<s}

ϕ2
a

≥

∫
M

C1 −

∫
{|ϕa |<s}

s2

=

∫
{|ϕa |≥s}

C1 +

∫
{|ϕa |<s}

(C1 − s2)

≥

∫
{|ϕa |≥s}

C1.

By Lemma 2.3, (2-2) and (3-2) , we obtain∫
{|ϕa |≥s}

C1 ≤

∫
{|ϕa |≥s}

ϕ2
a ≤ C2

∫
{|ϕa |≥s}

|ϕa| ≤ C2

∫
{|ϕa |=s}

√
1 − s2

n
,

where C2 = infs≤r≤1(2 + nr ln((1 − s2)/(1 − r2)))/(2 + n ln((1 − s2)/(1 − r2))).
Thus

(3-3) Vol {|ϕa| = s} ≥
nC1

C2
√

1 − s2
Vol {|ϕa| ≥ s} (

√
C1 ≥ s > 0).

In particular, if s = 0, then

lim
s→0+

Vol{|ϕa| = s} = lim
s→0+

Vol{ϕa = s} + lim
s→0+

Vol{ϕa = −s} = 2 Vol {ϕa = 0},

and
lim

s→0+

Vol {|ϕa| ≥ s} = Vol {|ϕa| ≥ 0} = Vol(Mn).

By (3-3), one has

(3-4) Vol {ϕa = 0} ≥
nC1

2C2
Vol {|ϕa| ≥ 0} =

nC1

2C2
Vol(Mn).

On the other hand, by (2-2), we have∫
{|ϕa |≥s}

s ≤

∫
{|ϕa |≥s}

|ϕa| ≤

∫
{|ϕa |=s}

√
1 − s2

n
(1> s > 0).

Hence

(3-5) Vol {|ϕa| = s} ≥
ns

√
1 − s2

Vol {|ϕa| ≥ s} (1> s > 0).

Choose
ns

√
1 − s2

=
nC1

C2
√

1 − s2
,

which implies that s = C1/C2. Then we have the following discussions:
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(1) If s = 0, (3-4) implies

Vol {ϕa = 0} ≥
nC1

2C2
Vol {|ϕa| ≥ 0} =

nC1

2C2
Vol(Mn).

(2) If 0< s ≤ min{
√

C1,C1/C2}, (3-3) implies

Vol {|ϕa| = s} ≥
nC1

C2
√

1 − s2
Vol {|ϕa| ≥ s}.

(3) If min{
√

C1,C1/C2}< s < 1, (3-5) implies

Vol {|ϕa| = s} ≥
ns

√
1 − s2

Vol {|ϕa| ≥ s}.

Case (ii). By Proposition 2.1, we have

∇ϕa = aT, 1ϕa = −nϕa,

for all a ∈ Sn+1. Hence, by the divergence theorem and S ̸≡ 0, one has∫
M

|ϕa| =

∫
{ϕa>0}

ϕa −

∫
{ϕa≤0}

ϕa =

∫
{|ϕa |=0}

2|aT
|

n
.

Since ∫
a∈Sn+1

|ϕa| = 2 Vol(Bn+1)=
2

n + 1
Vol(Sn),

we have

2
n + 1

Vol(Sn)Vol(Mn)=

∫
a∈Sn+1

∫
x∈M

|ϕa| =

∫
a∈Sn+1

∫
{|ϕa |=0}

2|aT
|

n
.

By (2-1), one has

Vol(Mn)≤
(n + 1)Vol(Sn+1)

n Vol(Sn)
sup

a∈Sn+1
Vol{ϕa = 0}. □

Combining the intrinsic and extrinsic geometry, Ge and Li generalized Einstein
manifolds to integral-Einstein (IE) submanifolds in [10].

Definition 3.1 [10]. Let Mn (n ≥ 3) be a compact submanifold in the Euclidean
space RN . Then Mn is an IE submanifold if and only if for any unit vector a ∈ SN−1∫

M

(
Ric −

R
n

g
)
(aT, aT)= 0,

where aT
∈ 0(T M) denotes the tangent component of the constant vector a along

Mn; Ric is the Ricci curvature tensor and R is the scalar curvature.
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Corollary 3.2. Let Mn be a closed immersed, nontotally geodesic, minimal hyper-
surface in Sn+1. If it is IE and CSC (or CSC with S > n and constant third mean
curvature), then for all 0 ≤ s < 1 and a ∈ Sn+1, the following inequality holds:

Vol {|ϕa| = s} ≥ C(n, s)Vol {|ϕa| ≥ s},

where

C(n, s)=


n

2(n+2)C2
, s = 0;

n
(n+2)C2

√
1−s2 , 0< s ≤ min

{√ 1
n+2 ,

1
(n+2)C2

}
;

ns
√

1−s2 , min
{√ 1

n+2 ,
1

(n+2)C2

}
< s < 1.

Proof. If Mn is minimal, IE and CSC, then [10] showed that∫
M
ϕ2

a =
1

n + 2
Vol(Mn), a ∈ Sn+1.

Thus, C1 = 1/(n + 2) in Theorem 1.1. For a closed minimal CSC hypersurface in
Sn+1 with S > n and constant third mean curvature, Ge and Li proved that it is an
IE hypersurface in [10]. Thus, Corollary 3.2 is also true in this case. □

4. Proof of Theorem 1.5

In this section, we will discuss the Cheeger isoperimetric constant of minimal
hypersurfaces in Sn+1.

Definition 4.1 [5]. The Cheeger isoperimetric constant of a closed Riemannian
manifold Mn is defined as

h(M)= inf
H

Vol (H)
min{Vol(M1),Vol(M2)}

,

where the infimum is taken over all the submanifolds H of codimension 1 of
Mn; M1 and M2 are submanifolds of Mn with their boundaries in H and satisfy
M = M1 ⊔ M2 ⊔ H (a disjoint union).

Remark 4.2. Let Mn be a closed, immersed, minimal hypersurface in Sn+1, which
is nontotally geodesic. Since there is a vector a ∈ Sn+1 such that Vol{ϕa > 0} =

Vol{ϕa < 0}, we have

h(M)≤ sup
a∈Sn+1

2 Vol{ϕa = 0}

Vol(Mn)
.

Moreover, if the image of Mn is invariant under the antipodal map, then Vol{ϕa > 0}

= Vol {ϕa < 0} for all a ∈ Sn+1 and

h(M)≤ inf
a∈Sn+1

2 Vol{ϕa = 0}

Vol(Mn)
.
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In 1970, Cheeger [5] gave the famous inequality between the first positive
eigenvalue λ1(M) of the Laplacian and the Cheeger isoperimetric constant h(M)
(see Definition 4.1):

h2(M)≤ 4λ1(M).

Obviously, λ1(M)≤n for minimal hypersurfaces in Sn+1 because of Proposition 2.1
and we have

h(M)≤ 2
√
λ1(M)≤ 2

√
n.

The Yau conjecture [16] asserts that if Mn is a closed embedded minimal hyper-
surface of Sn+1, then λ1(M) = n. In particular, Choi and Wang [9] showed that
λ1(M)≥ n/2 and a careful argument (see [1, Theorem 5.1]) implied that the strict
inequality holds, i.e., λ1(M) > n/2. In addition, Tang and Yan [21; 19] proved the
Yau conjecture in the isoparametric case. Choe and Soret [8] were able to verify the
Yau conjecture for the Lawson surfaces and the Karcher-Pinkall-Sterling examples.
For more details and references, please see the elegant survey by Brendle [1].
Besides, Buser [3] proved that:

Lemma 4.3 [3]. If the Ricci curvature of a closed Riemannian manifold Mn is
bounded below by −(n − 1)δ2 (δ ≥ 0), then

(4-1) λ1(M)≤ 2δ(n − 1)h(M)+ 10h2(M).

Next, we will prove Theorem 1.5 by Lemmas 2.2, 4.3 and Corollary 2.4.

Proof of Theorem 1.5. Without loss of generality, assuming that Vol {ϕa > 0} ≥

Vol {ϕa < 0}, one has

(4-2) h(M)≤
Vol {ϕa = 0}

Vol {ϕa < 0}
.

For Vol {ϕa > 0} ≤ Vol {ϕa < 0}, the proof is similar and the following estimates of
inequalities can be found in Ge and Li [11]. By Proposition 2.1, for any a ∈ Sn+1,∫

M ϕa = 0. Thus

(4-3)
∫

{ϕa>0}

ϕa =

∫
{ϕa<0}

−ϕa =
1
2

∫
M

|ϕa|.

The divergence theorem shows that∫
{ϕa<0}

1ϕ2
a = 0,
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and by 1ϕ2
a = −2nϕ2

a + 2|aT
|
2, one has

(4-4) n
∫

{ϕa<0}

ϕ2
a =

∫
{ϕa<0}

|aT
|
2.

Then, due to (2-1) and (4-4), we have

(4-5) (n + 1)
∫

{ϕa<0}

ϕ2
a ≤

∫
{ϕa<0}

1.

By the Cauchy-Schwarz inequality and (4-5), one has

(4-6)

√
1

n + 1

∫
{ϕa<0}

1 ≥

√∫
{ϕa<0}

1
∫

{ϕa<0}

ϕ2
a ≥

∫
{ϕa<0}

−ϕa.

By Corollary 2.4, (4-2), (4-3) and (4-6), we have

Vol {ϕa = 0}

h(M)
≥ Vol {ϕa < 0} ≥

√
n + 1
2

∫
M

|ϕa| ≥
2
√

n + 1
C0(n)

∫
M
ϕ2

a .

Hence, by Lemma 2.2 we have

Vol {ϕa = 0} ≥
2
√

n + 1
C0(n)

h(M)
∫

M
ϕ2

a ≥
2
√

n + 1C1

C0(n)
h(M)Vol (Mn).

Case (i). Since Mn is a minimal hypersurface in Sn+1, the Ricci curvature is given
by

Ric(X, Y )= (n − 1)g(X, Y )− g(AX, AY ), X, Y ∈ X(M).

Let λ1(A), λ2(A), . . . , λn(A) denote the eigenvalues of the shape operator A. We
obtain

n∑
i=1

λi = 0,
n∑

i=1

λ2
i = ∥A∥

2
= S,

and

0 =

n∑
i, j=1

λiλ j

= λ2
1 + 2

n∑
j=2

λ1λ j +

n∑
i, j=2

λiλ j

≤ −λ2
1 +

n∑
i, j=2

λ2
i + λ2

j

2

= (n − 1)S − nλ2
1.
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Thus

Ric(X, X)≥ (n − 1 − λ2
1)g(X, X)≥ −(n − 1)

S − n
n

g(X, X).

By Lemma 4.3 and λ1(M) > n/2 (see Choi–Wang [9] and Brendle [1]), one has

n
2
< λ1(M)≤ 2δ(n − 1)h(M)+ 10h2(M).

Note that Smax ≥ n for all nontotally geodesic minimal hypersurfaces in Sn+1 by
Simons’ inequality [17] ∫

M
S(S − n)≥ 0.

Setting δ =
√
(Smax − n)/n, we have

h(M) >
−δ(n − 1)+

√
δ2(n − 1)2 + 5n

10
.

Case (ii). If the image of Mn is invariant under the antipodal map, the proof is
complete by Remark 4.2. □

Remark 4.4. If Mn is a minimal isoparametric hypersurface with g ≥ 2 distinct
principal curvatures in Sn+1, then λ1(M)= n (see Tang–Yan [19]), S ≡ (g − 1)n
and δ =

√
g − 2 (2 ≤ g ≤ 6). Thus, (4-1) implies that

h(M)≥
−

√
g − 2(n − 1)+

√
(g − 2)(n − 1)2 + 10n

10
.

In fact, Muto [12] carefully estimated the Cheeger isoperimetric constant of minimal
isoparametric hypersurfaces and got better results.

Remark 4.5. Let Mn be a closed embedded minimal hypersurface in Sn+1. If
S < c(n) and c(n) depends only on n, then there is a positive constant η(n) > 0,
depending only on n, such that h(M) > η(n).
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