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Let D be a bounded strictly pseudoconvex domain in Cn. Assuming bD ∈

Ck+3+α where k is a nonnegative integer and 0 < α ≤ 1, we show that
(1) the Bergman kernel B( · , w0) ∈ Ck+min{α,1/2}( D̄), for any w0 ∈ D and
(2) the Bergman projection on D is a bounded operator from Ck+β(D) to
Ck+min{α,β/2}(D) for any 0 < β ≤ 1. Our results both improve and generalize
the work of E. Ligocka.
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1. Introduction

The main goal of the paper is to prove the following result.

Theorem 1.1. Let D be a bounded strictly pseudoconvex domain in Cn with Ck+3+α

boundary, where k is a nonnegative integer and 0 < α ≤ 1. Let B(z, w) be the
Bergman kernel for D. Then for every w0 ∈ D, B( · , w0) ∈ Ck+min{α,1/2}(D).

Earlier, E. Ligocka [1984] showed that if � has Ck+4 boundary for nonnegative
integers k, then B( · , w0)∈ Ck+1/2(D). Hence Theorem 1.1 is an improvement and
generalization of Ligocka’s result to Hölder spaces.

The study of boundary regularity properties of the Bergman projection and
Bergman kernel is of fundamental importance in several complex variables, and
the subject has found major applications in the theory of biholomorphic mappings
and complex geometry, among many other fields. We mention here some brief
history for the results on strictly pseudoconvex domains. When the boundary is
C∞, Kerzman [1972] used the theory of ∂-Neumann problem to show that the
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Bergman kernel function B(z, w) is C∞
× C∞(D × D \1bD), where 1bD :=

{(z, w) ∈ bD × bD, z = w}. Soon after, C. Fefferman in his seminal paper [1974]
gave a description of the behavior of the Bergman kernel (z, w) ∈ bD × bD near
its singular set 1bD , and as an application he proved the now classical Fefferman’s
mapping theorem, which states that a biholomorphic mapping F : D1 → D2

between two bounded C∞ strictly pseudoconvex domains D1, D2 extends to a C∞

diffeomorphism F̃ : D1 → D2. Fefferman’s proof was based on the deep properties
of the Bergman kernel and Bergman metric on strictly pseudoconvex domains. The
analysis however was very difficult and nearly impossible to generalize to other
cases. Later on Webster [1979] and Bell and Ligocka [1980] independently found
conditions on the boundary behavior of the Bergman kernel that can imply the
C∞ extension of biholomorphic mappings, and consequently they were able to
significantly simplify Fefferman’s proof.

Phong and Stein [1977] and Ahern and Schneider [1979] independently proved
the Hölder estimates for the Bergman projection. In both work the boundary is
assumed to be C∞ and the proof is based on the work of C. Fefferman [1974] and
L. Boutet de Monvel and J. Sjöstrand [1976]. Later on, Ligocka [1984] constructed
a nonorthogonal projection operator with explicit kernels that “approximates” the
Bergman projection operator, and she used it to prove the Hölder estimates assuming
boundary is Ck+4. Ligocka based off her construction on a similar work done by
Kerzman and Stein [1978] for the Szegö projection on C∞ strictly pseudoconvex
domains. The idea is to use the symmetry of the Levi polynomial for the defining
function to get a third order cancellation, which then allows one to estimate the
singular integrals (see Proposition 3.1). It is also worthwhile to mention that the
method of Kerzman, Stein and Ligocka has been used in a number of subsequent
works, for example in [Lanzani and Stein 2012; 2013]. For a detailed exposition of
the work by Ligocka and Bell and Kerzman, Stein and Ligocka, we refer the reader
to the book by M. Range [Range 1986, Chapter VII].

We shall give a variant of Ligocka’s method which allows us to prove the estimates
in Hölder spaces. Our method also has the advantage that the term on the right-hand
side of our integral equation behaves much nicer than the one used by Ligocka,
which we now explain. Denote the Bergman projection on D by P . It is a standard
fact that for w0 ∈ D, one can write B( · , w0) = Pϕ, where ϕ = ϕw0 ∈ C∞

c (D)
(see Lemma 2.4). Ligocka showed that Pϕ satisfies an integral equation of the form

(1-1) (I +K)Pϕ = L∗ϕ.

Here L is a nonorthogonal projection operator mapping L2(�) into H 2(�), the
L2 Bergman space, L∗ is the adjoint operator of L, and K := L∗

− L. It was
proved in [Ligocka 1984] that if the boundary is Ck+4, then K is a compact operator
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mapping Ck(D) into Ck+1/2(D), and L,L∗ map Ck+1(D) (in fact only need deriva-
tives of order k being Lipschitz continuous) into Ck+1/2(D). Hence in particular
L∗ϕ ∈ Ck+1/2(D). Applying Fredholm theory to the integral (1-1) then shows that
Pϕ ∈ Ck+1/2(D).

For our proof we shall use the same operators L,L∗,K, but instead of considering
the integral equation of Pϕ, we show that the following integral equation holds for
the function Pϕ−ϕ

(1-2) (I +K)(Pϕ−ϕ)= R(Pϕ−ϕ),

where R is some operator that maps Pϕ − ϕ to a C∞(D) function, assuming
boundary is only C3. This is in contrast to the right-hand side of (1-1), where the
regularity of L∗ϕ depends on the regularity of the boundary and the estimate is
much more complicated.

Using (1-2), Theorem 1.1 is then an easy consequence of the following compact-
ness result and Fredholm theory.

Proposition 1.2. Let D be a bounded strictly pseudoconvex domain in Cn with
Ck+3+α boundary, where k is a nonnegative integer and 0 < α ≤ 1. Then K is a
bounded operator from Ck(D) to Ck+min{α,1/2}(D).

We remark that Proposition 1.2 is the main estimate of the paper and takes up
the majority of the proof.

Using Proposition 1.2 we can also prove the following theorem for the Bergman
projection. Similar result has been obtained by Ligocka under the assumption that
the boundary is Ck+4.

Theorem 1.3. Let D be a bounded strictly pseudoconvex domain in Cn with Ck+3+α

boundary, where k is a nonnegative integer and 0 < α ≤ 1. For 0 < β ≤ 1, the
Bergman projection P for the domain D defines a bounded operator from Ck+β(D)
to Ck+min{α,β/2}(D).

In the special case α = 1, we recover Ligocka’s result. Note that Theorem 1.1
can also be obtained as a consequence of Theorem 1.3, by the fact that B = Pϕ
and setting β = 1 in Theorem 1.3. However we shall give independent proofs of
the two theorems based on Proposition 1.2.

The paper is organized as follows: In Section 2, we prove a simple estimate
for Hörmander’s ∂ solution operator on pseudoconvex domains. We also prove
a refined version of the regularized defining function introduced in [Gong 2019],
which plays an important role in the proof of Proposition 1.2. In Section 3 we
follow Ligocka’s idea to construct the operators L,L∗,K, using the regularized
defining function from Section 2. We then prove various estimates for the kernels
of L,L∗,K. We note that in our proof (Proposition 3.5 and the remark after) that L
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defines a bounded projection operator from L2(D) to H 2(D), only C3 boundary
regularity is needed.

In Section 4 we will prove Proposition 1.2 and Theorem 1.1. The proof of
Proposition 1.2 is split into two parts. In the first part, we prove the case for k = 0,
i.e., assuming bD ∈ C3+α, 0 < α ≤ 1, we show that K maps L∞(D) boundedly
into Cmin{α,1/2}(D). In the second part, we apply the integration by parts techniques
from [Ahern and Schneider 1979] to prove the case for k ≥ 1. We next turn to
the proof of Theorem 1.1. First we construct the integral (1-2) using Koppleman’s
homotopy formula and show that the right-hand side defines a C∞(D) function.
Theorem 1.1 then follows easily from Proposition 1.2 and standard Fredholm theory.
In Section 5 we prove Theorem 1.3. To this end we show that L is a bounded
operator from Ck+β(D) to Ck+β/2(D), 0< β ≤ 1, assuming boundary is C3.

We now fix some notations used in the paper. The L2 Bergman space on a
domain D is denoted by H 2(D). The Bergman projection and Bergman kernel
is denoted by P and B, respectively. We denote by Cr (D) the Hölder space of
exponent r on D, and C∞

c (D) the space of C∞ functions with compact support
in D. For simplicity we write | f |r := ∥ f ∥Cr (D) when the domain D is clear from
context. We write x ≲ y to mean that x ≤ Cy for some constant C independent of
x and y. By Dl we mean a differential operator of order l: Dl

zg(z)= ∂
αi
zi ∂

β j
z̄ j

g(z),∑
i αi +

∑
j β j = l.

2. Preliminaries

Proposition 2.1. Let D, D′ be bounded pseudoconvex domains in Cn such that
D′

⊂ D, and let l ≥ 0. Suppose ϕ is a ∂-closed (0, 1) form in D, with coefficients in
W l(D). Let u = Sϕ, where S is Hörmander’s L2 solution operator which solves ∂
on D. Then u ∈ W l+1(D′), and

∥u∥W l+1(D′) ≤ C(δ/2)−l−1
∥ϕ∥W l (D), δ := dist(D′, ∂D),

where C is an absolute constant depending only on the domain D,

Proof. By Hörmander’s L2 estimate [1965], we have ∂u = ϕ and

(2-1) ∥u∥L2(D) ≤ C0∥ϕ∥L2(D),

where C0 is a constant which depends only on the diameter of D. Let χ ∈ C∞
c (D)

be such that χ ≡ 1 on D′. Further, χ satisfies the estimate |Dγχ | ≤ δ−|γ |, where
δ := dist(D′, D). We use the following fact: If v ∈ L2(Cn) has compact support
and ∂v ∈ L2(Cn), then

(2-2) ∥∂ziv∥L2(Cn) = ∥∂z̄iv∥L2(Cn).
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This can be proved through a simple integration by parts and approximation argu-
ment; see [Hörmander 1990, Lemma 4.2.4]. In what follows we let Dl to denote a
differential operator of the form

∏n
i, j=1 ∂

αi
zi ∂

β j
z̄ j

, where
∑n

i, j=1|αi | + |β j | = l, and
we use ∂ l to denote

∏n
j=1 ∂

β j
z̄ j

, where
∑
β j = l. Applying (2-2) repeatedly then

gives

(2-3) ∥Dl+1v∥L2(Cn) = ∥∂ l+1v∥L2(Cn)

for any v ∈ L2(Cn) with compact support and such that ∂ l+1v ∈ L2(Cn). Applying
(2-3) with v = χu, we get

(2-4) ∥Dl+1(χu)∥L2(D) = ∥∂ l+1(χu)∥L2(D)

≤ ∥(∂ l+1χ)u∥L2(D) +
∑

1≤s≤l+1

∥(∂ l+1−sχ)(∂su)∥L2(D).

By (2-1) and estimates for the derivatives of χ , the first integral is bounded by
C0δ

−(l+1)
∥ϕ∥L2(D). For each integral in the sum, we have for 1 ≤ s ≤ l + 1

∥(∂ l+1−sχ)(∂su)∥L2(D) = ∥(∂ l+1−sχ)(∂s−1∂u)∥L2(D)

≤ δ−(l+1−s)
∥ϕ∥W s−1(D) ≤ δ−l

∥ϕ∥W l (D).

Now, there are in total
∑l+1

k=0
(l+1

k

)
= 2l+1 terms on the right-hand side of (2-4).

Thus by combining the estimates we obtain

∥Dl+1(χu)∥L2(D) ≤ C02l+1δ−(l+1)
∥ϕ∥W l (D) = C0(δ/2)−(l+1)

∥ϕ∥W l (D).

Since χ ≡ 1 on D′, we have

∥Dl+1u∥L2(D′) ≤ ∥Dl+1(χu)∥L2(D) ≤ C0(δ/2)−(l+1)
∥ϕ∥W l (D). □

We now show the existence of a defining function that is smooth off the boundary
and whose derivatives blow up in a controlled way.

Proposition 2.2. Let D be a bounded domain in RN with Cr boundary, r ≥ 3, and
let ρ be a defining function of D of the class Cr , i.e., there exists a U such that
D ⊂ U , ∇ρ ̸= 0 on bD and D = {x ∈ U : ρ(D) < 0}. We denote |ρ|r := |ρ|Cr (U),
where |·|Cr (U) denotes the Hölder r-norm on U . Then there exists a defining function
ρ̃ of D such that:

(a) ρ̃ ∈ Cr (RN )∩ C∞(Rn
\ bD).

(b) There exists some δ0>0 such that for any x /∈bD and 0<δ(x):=dist(x,bD)<δ0,

|D j ρ̃(x)| ≲ C j |ρ|r (1 + δ(x)r− j ), j = 0, 1, 2, . . . , δ(x) := dist(x, bD).
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(c) There exists a constant C depending only on the domain D and |ρ|3, and a
δ1 > 0 such that for all x ∈ Rn with δ(x) < δ1 the following estimate hold

|D̂2ρ̃(x)− D̂2ρ(x∗)| ≲ C |x − x∗|, |x∗ − x | := dist(x, bD).

Here we use D̂2ρ to denote derivatives of ρ of order 2 and less.

We call ρ̃ a regularized defining function of the domain D.

Proof. We will use the argument from [Gong 2019]. Let Er be the Whitney
extension operator for the domain D. By [Gong 2019, Lemma 3.7], Erρ is a
defining function of D (so that −Erρ is a defining function of the domain (D)c,
Erρ ∈ Cr (RN )∩ C∞((D)c) and

|D j Erρ(x)| ≲ C j |ρ|r (1 + δ(x)r− j ), j = 0, 1, 2, . . . , x ∈ Rn
\ D.

Furthermore, for each x ∈ Rn
\ D with 0< δ(x) < 1, there exists some constant C

depending only on D and |ρ|3 such that |D̂2(Eρ)(x)− D̂2ρ(x∗)|≤ C |x −x∗|, where
x∗ := dist(x, bD). Let E ′

r be the Whitney extension operator for the domain (D)c.
Then by the same reasoning ρ̃ := E ′

r Erρ is a defining function of D satisfying
ρ̃ ∈ Cr (RN )∩ C∞(Rn

\ bD), and for all x ∈ D with 0< δ(x) < δ1, the following
hold (for j = 0, 1, 2, . . . , x ∈ D)

|D j ρ̃(x)| ≲ C ′

j |Erρ|r (1 + δ(x)r− j )≲ C ′′

j |ρ|r (1 + δ(x)r− j ),

|D̂2ρ̃(x)− D̂2ρ(x∗)| = |D̂2ρ̃(x)− D̂2(Erρ)(x∗)| ≤ C ′
|x − x∗|,

where |x∗ − x | := dist(x, bD). □

We now state a very useful result to prove Hölder estimates, popularly known as
the Hardy–Littlewood lemma. For a proof the reader may refer to [Chen and Shaw
2001, p. 345].

Lemma 2.3 (Hardy–Littlewood lemma). Let D be a bounded domain in RN with
C1 boundary. Suppose g ∈ Ck(D) and that for some 0< β < 1 there is a constant
C such that

|Dk+1g(x)| ≤ Cδ(x)−1+β, x ∈ D,

where δ(x)= dist(x, bD). Then g ∈ Ck+β(D).

The following lemma can be found in [Bell 1993]. We provide the proof for the
reader’s convenience.

Lemma 2.4. Let D be a bounded domain � ⊂ Cn and let B(z, w) and P denote
the Bergman kernel and the Bergman projection for D, respectively. Given w0 ∈ D,
there exists a function φw0 in C∞

c (D) such that

(2-5)
∂ |β|

∂w̄β
B(z, w0)= Pφβw0

(z), φβw0
(z) := (−1)|β|

∂ |β|

∂ z̄β
φw0(z),

where β is a multiindex.
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Proof. Let δ0 denote the distance from w0 to bD and let B1(0) the unit ball in Cn .
Set

φw0(z)= δ−2n
0 φ

(
z −w0

δ0

)
, z ∈ D,

where φ is a real-valued function in C∞
c (B1(0)) that is radially symmetric about

the origin and
∫
φ dV = 1. Clearly, φw0 ∈ C∞

c (D). By the property of the Bergman
projection and the Bergman kernel, we have

Pφw0(z)=

∫
D

B(z, ζ )φw0(ζ ) dV (ζ )

=

∫
D

B(z, ζ )δ−2n
0 φ

(
ζ −w0

δ0

)
dV (ζ )

=

∫
B1(0)

B(z, δ0ζ +w0)φ(ζ ) dV (ζ )

=

∫
B1(0)

B(δ0ζ +w0, z)φ(ζ ) dV (ζ )

= B(w0, z)

= B(z, w0),

where we used the fact that B is holomorphic in the first argument and thus both
its real and imaginary parts are harmonic functions which satisfy the mean value
property. This proves (2-5) for β = 0. The general case follows similarly by
repeating the above calculation and integration by parts. We leave the details to the
reader. □

3. Estimates of the kernel

In this section we follow Ligocka’s idea to construct the kernel of the projection
operator L for a strictly pseudoconvex domain. For now we assume the defining
function ρ is in the class C3.

Suppose a bounded domain D ⊂ Cn is given by D = {z ∈ Cn
: ρ(z) < 0}. We

write

Dδ := {z ∈ Cn
: ρ(z) < δ}, δ > 0.

We shall sometimes write Dδ(z) (or Dδ(ζ )) to indicate that the domain is for the z
(or ζ ) variable. We now construct the kernel to be used in the integral formula. By
setting ρ ′

= eAρ
−1, for some large A, we see that ρ ′ is strictly plurisubharmonic in

a neighborhood of D, and from now on we simply assume ρ satisfies this property.
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Define

(3-1) F(z, ζ )=

n∑
j=1

∂ρ

∂ζ j
(ζ )(ζ j − z j )−

1
2

n∑
i, j=1

∂2ρ

∂ζi∂ζ j
(ζ )(zi − ζi )(z j − ζ j ).

By Taylor’s formula we have

(3-2) ρ(z)= ρ(ζ )− 2 Re F(z, ζ )+Lρ(ζ ; z − ζ )+ o(|z − ζ |2),

where Lρ(ζ ; t) is the Levi form of ρ at ζ , i.e., Lρ(ζ ; t) :=
∑n

i, j=1 ∂
2ρ/(∂ζi∂ζ j )ti t j .

Fix some ε0 > 0 small such that for all z, ζ ∈ Dδ , we have Lρ(ζ ; z −ζ )≥ c|z −ζ |2.
It follows from (3-2) that (for (z, ζ ) ∈ Dδ × Dδ, |z − ζ |< ε0)

Re F(z, ζ )≥
ρ(ζ )− ρ(z)

2
+

c
2
|z − ζ |2,(3-3)

Re F(z, ζ )− ρ(ζ )≥ −
ρ(ζ )+ ρ(z)

2
+

c
2
|z − ζ |2.(3-4)

Let χ(t) be a smooth cut-off function such that χ(t)≡ 1 if t < ε0/4 and χ(t)≡ 0
if t > ε0/2. We define the following global support function:

(3-5) G(z, ζ )= χ(t)F(z, ζ )+ (1 −χ(t))|z − ζ |2, t = |z − ζ |.

We also define the vector-valued functions g0 = (g1
0, . . . , gn

0 ) and g1 = (g1
1, . . . , gn

1 ),
where

gi
0(z, ζ )= ζi − zi , 1 ≤ i ≤ n,

and (for 1 ≤ i ≤ n),

(3-6) gi
1(z, ζ )

= χ(t)
( n∑

j=1

∂ρ

∂ζ j
(ζ )+ 1

2

n∑
j=1

∂2ρ

∂ζi∂ζ j
(ζ )(z j − ζ j )

)
+ (1 −χ(t))(ζi − zi ),

where t = |z − ζ |. It follows that ⟨g0, ζ − z⟩ = |ζ − z|2 and ⟨g1, ζ − z⟩ = G(z, ζ ).
In view of (3-4) and (3-5), there exists some c > 0 such that

(3-7) Re G(z, ζ )− ρ(ζ )≥ c(−ρ(ζ )− ρ(z)+ |z − ζ |2), z, ζ ∈ D,

and

(3-8) Re G(z, ζ )− ρ(ζ )≥
1
4 [−ρ(ζ )− ρ(z)] + c|z − ζ |2, z, ζ ∈ Dδ × Dδ.

In particular, (3-7) implies

(3-9) |G(z, ζ )− ρ(ζ )| ≳ |ζ − z|2, z, ζ ∈ D.
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We note that if the boundary is Ck+3+α, then g1,G ∈ C∞
× Ck+1+α(Dδ(z)×

Dδ(ζ )) and holomorphic in z whenever |z − ζ |< ε0/4. Let

ωλ(z, ζ )=
1

2π
√

−1

⟨gλ(z, ζ ), dζ ⟩
⟨gλ, ζ − z⟩

, λ= 0, 1.

The associated Cauchy–Fantappie forms are given by

�λ = ωλ ∧ (∂ z,ζωλ)
n−1, λ= 0, 1.

�01
= ω0 ∧ω1 ∧

∑
k1+k2=n−2

(∂ z,ζω0)
k1 ∧ (∂ z,ζω1)

k2 .

We decompose �λ =
∑

0≤q≤n �
λ
0,q and �01

=
∑

0≤q≤n �
01
0,q , where �λ0,q (resp.

�01
0,q) has type (0, q) in z and type (n, n − 1 − q) type in ζ . The following

Koppleman’s formula holds:

(3-10) ∂ζ�
01
0,q + ∂ z�

01
0,q−1 =�0

0,q −�1
0,q ,

where we take �01
0,−1 ≡ 0. Write (for λ= 0, 1)

�λ0,0(z,ζ )(3-11)

=
1

(2π
√

−1)n
1

⟨gλ,ζ−z⟩n

( n∑
i=1

gi
λdζi

)
∧

( n∑
i, j=1

∂ζ gi
λ∧dζi

)n−1

;

�01
0,0(z,ζ )(3-12)

=
1

(2π
√

−1)n
⟨ζ−z,dζ ⟩
|ζ−z|2

∧
⟨g1,dζ ⟩
⟨g1,ζ−z⟩

∧

∑
k1+k2=n−2

(
⟨dζ ,dζ ⟩
|ζ−z|2

)k1

∧

(
⟨∂ζ g1,dζ ⟩
⟨g1,ζ−z⟩

)k2

.

Define

(3-13) N (z,ζ ) :=
1

(2π
√

−1)n
1

[G(z,ζ )−ρ(ζ )]n

( n∑
i=1

gi
1(z,ζ )dζi

)
∧

( n∑
i=1

∂ζ gi
1(z,ζ )∧dζi

)n−1

= Cn

n∑
i=1

(−1)i−1 gi
1(z,ζ )

[G(z,ζ )−ρ(ζ )]n dζ∧(∂ζ g1
1)∧·· ·

∧(̂∂ζ gi
1)∧·· ·∧(∂ζ gn),

where η̂ means η is being excluded. Note that for ζ ∈ bD, we have N (z, ζ ) =

�1
0,0(z, ζ ). Therefore by (3-10) with q = 0,

(3-14) �0
0,0(z, ζ )= ∂ζ�

01
0,0(z, ζ )+ N (z, ζ ), z ∈ Dε0, ζ ∈ bD.
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Let

(3-15) L(z, ζ )dV (ζ ) := ∂ζ N (z, ζ )− Sz(∂ z∂ζ N )(z, ζ ),

where Sz is Hörmander’s operator that solves ∂ on Dδ. In what follows we write
L = L0 + L1, where

L0 dV (ζ )= −Sz(∂ z∂ζ N )(z, ζ ), L1dV (ζ )= ∂ζ N (z, ζ ).

For each ζ ∈ D, L( · , ζ ) is holomorphic on D. We also note that if bD ∈ Ck+3+α ,
then ∂ζ N ∈ C∞

× Ck+α(D(z)× D(ζ )). In view of (3-8), (3-13) and the fact that
∂ zG(z, ζ ), ∂ zg(z, ζ ) ≡ 0 for |z − ζ | < ε0/4, we see that ∂ z∂ζ N (z, ζ ) is a well-
defined ∂-closed (0, 1) form with coefficients in C∞

× Ck+α(Dδ(z)× Dδ(ζ )), if
δ > 0 is sufficiently small. Write

(3-16) ∂ζ N (z,ζ )= L1(z,ζ )dV (ζ )

= Cn
∂ζ [G(z,ζ )−ρ(ζ )]
[G(z,ζ )−ρ(ζ )]n+1

×

n∑
i=1

(−1)i−1gi
1(z,ζ )dζ∧(∂ζ g1

1)∧·· ·∧(̂∂ζ gi
1)∧·· ·∧(∂ζ gn

1 )

+
1

[G(z,ζ )−ρ(ζ )]n dζ∧(∂ζ g1
1)∧·· ·∧(∂ζ gn

1 ).

In the proof we shall use the following convenient expression from [Ligocka 1984]:

(3-17) L1(z, ζ )=
η(ζ )+ O ′(|z − ζ |)

[G(z, ζ )− ρ(ζ )]n+1 , η(ζ ) := cn det

∣∣∣∣∣ ρ(ζ )
∂ρ
∂ζi
(ζ )

∂ρ

∂ζ i
(ζ )

∂2ρ

∂ζi∂ζ j
(ζ )

∣∣∣∣∣ .
Here we note that η(ζ ) = η(ζ ), and O ′(|z − ζ |) is some linear combination of
products of [D̂3ρ(ζ )](ζi − zi ), where [D̂3ρ(ζ )] denotes products of ρ(ζ ) and
Dk
ζρ(ζ ), k ≤ 3. In particular, for l ≥ 1, O ′(|z − ζ |) satisfies the estimates

(3-18)

|O ′(|z − ζ |)| ≲ |ρ|3|ζ − z|,

|Dl
z O ′(|z − ζ |)| ≲ |ρ|3,

|Dl
ζ O ′(|z − ζ |)| ≲ |ρ|l+2 + |ρ|l+3|ζ − z|.

We now define the integral operator

(3-19) L f (z) :=

∫
D

L(z, ζ ) f (ζ ) dV (ζ )=

∫
D
[L0(z, ζ )+ L1(z, ζ )] f (ζ ) dV (ζ ),

and the associated adjoint operator

L∗ f (z) :=

∫
D

L(ζ, z) f (ζ ) dV (ζ )=

∫
D
[L0(ζ, z)+ L1(ζ, z)] f (ζ ) dV (ζ ).
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In the same way as (3-17), we can also write

(3-20) L1(ζ, z)=
η(z)+ O ′′(|z − ζ |)

[G(ζ, z)− ρ(z)]n+1
, η(z) := cn det

∣∣∣∣∣ ρ(z)
∂ρ
∂zi
(z)

∂ρ
∂ z̄i
(z) ∂2ρ

∂zi∂ z̄ j
(z)

∣∣∣∣∣ .
Here O ′′(|z−ζ |) is some linear combination of products of [D̂3ρ(z)](ζi −zi ), where
[D̂3ρ(z)] denotes products of ρ(z) and Dk

zρ(z), k ≤3. For l ≥1, O ′′(|z−ζ |) satisfies
the estimate

(3-21)

|O ′′(|z − ζ |)| ≲ |ρ|3|ζ − z|,

|Dl
ζ O ′′(|z − ζ |)| ≲ |ρ|3,

|Dl
z O ′′(|z − ζ |)| ≲ |ρ|l+2 + |ρ|l+3|ζ − z|.

Hence if bD ∈ Ck+3+α, then L1(ζ, z) is Ck+α
× C∞(D(z)× D(ζ )).

Let

(3-22) K (z, ζ ) := L(ζ, z)−L(z, ζ )=[L0(ζ, z)−L0(z, ζ )]+[L1(ζ, z)−L1(z, ζ )],

and

(3-23) K f (z) :=

∫
D

K (z, ζ ) f (ζ ) dV (ζ )

=

∫
[L(ζ, z)− L(z, ζ )] f (ζ ) dV (ζ )

= L∗ f (z)−L f (z).

For later purpose we note that
√

−1K is a self-adjoint operator.
The following cancellation estimate is due to [Kerzman and Stein 1978]. We

include a proof here for the reader’s convenience.

Proposition 3.1. Let D be a strictly pseudoconvex domain with a C3 defining
function ρ, with 0 < α < 1. Let F(z, ζ ) be the function defined by formula (3-1).
Then

(3-24) [F(z, ζ )− ρ(ζ )] − [F(ζ, z)− ρ(z)] = O(|ζ − z|3),

where |O(|ζ − z|3)| ≲ |ρ|3|ζ − z|3.
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Proof. By (3-1) we have

F(z,ζ )=
n∑

j=1

∂ρ

∂ζ j
(ζ )(ζ j−z j )−

1
2

n∑
i, j=1

∂2ρ

∂ζi∂ζ j
(ζ )(zi−ζi )(z j−ζ j )

=

n∑
j=1

[
∂ρ

∂z j
(z)+

n∑
k=1

∂2ρ

∂z j∂zk
(z)(ζk−zk)+

n∑
k=1

∂2ρ

∂z j∂ z̄k
(z)(ζk−zk)

]
(ζ j−z j )

−

n∑
i, j=1

1
2
∂2ρ

∂zi∂z j
(z)(zi−ζi )(z j−ζ j )+R(z,ζ )

=

n∑
j=1

∂ρ

∂z j
(z)(ζ j−z j )+

1
2

n∑
i, j=1

∂2ρ

∂zi∂z j
(z)(ζi−zi )(ζ j−z j )

+

n∑
i, j=1

∂2ρ

∂zi∂ z̄ j
(z)(ζi−zi )(ζ j−z j )+R0(z,ζ ),

where we did Taylor expansion for the function ∂ρ
∂ζ j

at z. Since ρ ∈C3, the remainder
term R0 satisfies |R0(z, ζ )| ≲ |ρ|3|ζ − z|3. On the other hand,

F(ζ, z)=

n∑
j=1

∂ρ

∂ z̄ j
(z)(z j − ζ j )−

1
2

n∑
i, j=1

∂2ρ

∂ z̄i∂ z̄ j
(z)(ζi − zi )(ζ j − z j ).

Hence

F(z, ζ )− F(ζ, z)=

n∑
j=1

∂ρ

∂z j
(z)(ζ j − z j )+

n∑
j=1

∂ρ

∂ z̄ j
(z)(ζ j − z j )

+ Re
( n∑

i, j=1

∂2ρ

∂zi∂z j
(z)(ζi − zi )(ζ j − z j )

)

+

n∑
i, j=1

∂2ρ

∂zi∂ z̄ j
(z)(ζi − zi )(ζ j − z j )+ R0(z, ζ ),

where |R0(z, ζ )| ≲ |ρ|3|ζ − z|3. The first four terms on the right-hand side are
exactly the first and second order terms in the Taylor polynomial of ρ at z, which
is equal to ρ(ζ )− ρ(z)+ R1(z, ζ ), where |R1(z, ζ )| ≲ |ρ|3|ζ − z|3. Hence

F(z, ζ )− F(ζ, z)= ρ(ζ )− ρ(z)+ R(z, ζ ),

where |R(z, ζ )| ≲ |ρ|3|ζ − z|3. □

In what follows we shall denote

8(z, ζ )= G(z, ζ )− ρ(ζ ), 8(ζ, z)= G(ζ, z)− ρ(z).
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Lemma 3.2. Let D be a bounded strictly pseudoconvex domain with C3 boundary
in Cn , n ≥ 2, Let ρ be the defining function of D. Let 0<β ≤ 1. Let 2(z, ζ ) denote
either 8(z, ζ ) or 8(ζ, z):

(i) Let 0< β ≤ 1. Then

(3-25)
∫

D

dV (ζ )
|ζ − z|2−β |2(z, ζ )|n+1 ≲ 1 + δ(z)β/2−1,

where the constant depends only on D.

(ii) Let β > 0. Then

(3-26)
∫

B(z,τ )

|z − ζ |β

|2(z, ζ )|n+1 dV (ζ )≲ τβ/2,

where the constant depends only on D.

Proof. First, we show that for each fixed z ∈ D, there exists a small neighborhood
Uz and a coordinate chart φz : Uz → R2n with φz(ζ ) = ((s1, s2), t) ∈ R2

× R2n−2

and

(3-27) |8(z, ζ )|, |8(ζ, z)| ≳ δ(z)+ |s1| + |s2| + |t |2, |ζ − z| ≳ |(s2, t)|.

Here δ(z) := dist(z, bD) and in the following computation we shall just write δ. We
define s1(ζ )= ρ(ζ ) and s2(ζ )= Im8(z, ζ ). Recall that 8(z, ζ )= F(z, ζ )−ρ(ζ )
when z, ζ are close and

F(z, ζ )=

n∑
j=1

∂ρ

∂ζ j
(ζ )(ζ j − z j )+ O(|ζ − z|2).

Hence at ζ = z, we have

dζ Im8(z, ζ )∧ dζρ(ζ )= dζ Im F(z, ζ )∧ dζρ(ζ )

=
1

2
√

−1
(∂ζρ− ∂ζρ)∧ (∂ζρ+ ∂ζρ)

=
1

√
−1
∂ρ ∧ ∂ρ ̸= 0.

We can then find smooth real-valued functions t j , 1 ≤ j ≤ 2n −2, with t j (ζ )= 0 at
ζ = z and

dζρ(ζ )∧ dζ Im8(z, ζ )∧ dt1(ζ )∧ · · · ∧ dt2n−2(ζ ) ̸= 0 at ζ = z.

By the inverse function theorem, φz = (s1, s2, t) defines a C1 coordinate map in
small neighborhood of z.
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To prove the first statement in (3-27), we use estimate (3-7) which says that
Re8(z, ζ )≳ −ρ(ζ )− ρ(z)+ |ζ − z|2, for all z, ζ ∈ D. It follows that

|8(z, ζ )| ≳ |Re8(z, ζ )| + |Im8(z, ζ )| ≳ δ(z)+ |s1(ζ )| + |s2(ζ )| + |t (ζ )|2.

For 8(ζ, z) the argument goes the same: We note that 8(ζ, z) = F(ζ, z)− ρ(z)
when z, ζ are close, and

F(ζ, z)=

n∑
j=1

∂ρ

∂z j
(z)(z j − ζ j )+ O(|ζ − z|2).

Thus at ζ = z,

dζ Im8(ζ, z)∧ dζρ(ζ )
∣∣
ζ=z = dζ Im F(ζ, z)∧ dzρ(z)

=
1

2
√

−1
(∂ zρ(z)− ∂zρ(z))∧ (∂zρ(z)+ ∂ zρ(z))

=
1

√
−1
∂ρ ∧ ∂ρ

̸= 0.

The second statement in (3-27) follows from the fact that s2(z)= t (z)= 0. Now,
both 8(z, ζ ) and |ζ − z| are bounded below by some positive constant for ζ /∈ Uz .
Hence using partition of unity in ζ space, we can bound the integral on the left-hand
side of (3-25) by a constant times∫ 1

0

∫ 1

0

∫ 1

0

t2n−3ds1 ds2 dt
(s2 + t)2−β(δ+ s1 + s2 + t2)n+1 ≲

∫ 1

0

∫ 1

0

r t2n−5+β dr dt
(δ+ r + t2)n+1 := I,

where we used the polar coordinates for (s1, s2) with r = |s|. We can estimate the
integral I by separating into different cases.

Case 1: δ > r, t2. I ≤ δ−(n+1)
(∫ δ

0
r dr

)(∫ √
δ

0
t2n−5+β dt

)
≲ 1 + δ−n−1+2+(2n−4+β)/2

= 1 + δ−1+β/2.

Case 2: r > δ, t2. I ≤

∫ 1

δ

r−n
(∫ √

r

0
t2n−5+β dt

)
dr

≲
∫ 1

δ

r−n+(2n−4+β)/2 dr

≲ 1 + δ−1+β/2.
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Case 3: t2 > δ, r . I ≤

∫ 1

√
δ

(∫ t2

0
r dr

)
t2n−5+β−2n−2 dt

≲
∫ 1

√
δ

tβ−3 dt

≲ 1 + δ−1+β/2.

Combining the estimates we obtain (3-25).

(ii) Since |2(z, ζ )| ≳ |z − ζ |2, the integral is bounded by∫
Bτ (z)

|z − ζ |β

|2(z, ζ )|n+1 dV (ζ )≤

∫
Bτ (z)

dV (ζ )
|z − ζ |2−β |2(z, ζ )|n

≲
∫ 1

0

∫ 1

0

∫ 1

0

t2n−3 ds1 ds2 dt
(s2 + t)2−β(δ+ s1 + s2 + t2)n

≲
∫ 1

s1=0

∫ τ

s2=0

∫ τ

t=0

t2n−5+β ds1 ds2 dt
(s1 + s2 + t2)n

:= I.

Here we used the fact that |ζ − z| ≳ (s2, t) and thus ζ ∈ Bτ (z) implies |s2|, |t |< τ .
We consider several cases.

Case 1: s1 > τ . The integral is bounded by

I ≤

∫ 1

τ

ds1

sn
1

∫ τ

0
ds2

∫ τ

0
t2n−5+β dt ≲ τ−n+1+1+2n−4+β

= τ n−2+β ≲ τβ .

Case 2: s1 < τ . Then we have |s|< r , for s = (s1, s2). Divide further into subcases.
If t2 > s, then

I ≲
∫ τ

0

∫ τ

0

st2n−5+β ds dt
(s + t2)n

≤

∫ τ

0

(∫ t2

0
s ds

)
t2n−5+β−2n dt ≲

∫ τ

0
tβ−1 dt ≲ τβ .

On the other hand, if t2 < s, then

I ≲
∫ τ

0

(∫ √
s

0
t2n−3−2+β dt

)
s
sn ds

≲
∫ τ

0
s

2n−4+β
2 −n+1 ds

≲
∫ τ

0
sβ/2−1 ds

≲ τβ/2. □

From the proof of Lemma 3.2, we see that for fixed ζ , we can find a neighborhood
Uζ of ζ and a coordinate chart φζ :Uζ →R2n with φζ (z)=(s ′

1, s ′

2, t ′)∈R×R×R2n−2.
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Indeed, we can set s ′

1(z)= ρ(z) and s ′

2(z)= Im8(z, ζ ). At z = ζ ,

dz Im8(z, ζ )∧ dzρ(z)= dz Im F(z, ζ )∧ dzρ(z)

=
1

2
√

−1
(∂ζρ(ζ )− ∂ζρ(ζ ))∧ (∂ζρ(ζ )+ ∂ζρ(ζ ))

=
1

√
−1
∂ρ(ζ )∧ ∂ρ(ζ )

̸= 0.

Hence there exists smooth real-valued functions t ′

j , 1 ≤ j ≤ 2n − 2 with t ′

j (z)= 0
and

dzρ(z)∧ dz Im8(z, ζ )∧ dt ′

1(ζ )∧ · · · ∧ dt ′

2n−2(ζ ) ̸= 0 at z = ζ .

Consequently (s ′

1, s ′

2, t ′) is the desired coordinate chart in the z variable. Now by
the same estimate as in the proof of Lemma 3.2, we can prove the following:

Lemma 3.3. Keeping the assumptions of Lemma 3.2:

(i) Let 0< β ≤ 1. Then

(3-28)
∫

D

dV (z)
|ζ − z|2−β |2(z, ζ )|n+1 ≲ 1 + δ(ζ )β/2−1, δ(ζ ) := dist(ζ, bD),

where the constant depends only on D.

(ii) Let β > 0, and denote by Bτ (z) the ball of radius τ centered at z. Then

(3-29)
∫

Bτ (z)

|z − ζ |β

|2(z, ζ )|n+1 dV (z)≲ τβ/2,

where the constant depends only on D.

Lemma 3.4. Let D be a bounded strictly pseudoconvex domain with C3 boundary
in Cn , n ≥ 2, and let ρ be its defining function. Let 2(z, ζ ) denote either 8(z, ζ )
or 8(ζ, z). Denote δ(z) := dist(z, bD):

(i) For z ∈ D,

(3-30)
∫

D

dV (ζ )
|2(z, ζ )|n+1 ≲ 1 + log δ(z),

where the constant depends only on D.

(ii) For z ∈ D,

(3-31)
∫

bD

dσ(ζ )
|2(z, ζ )|n

≲ 1 + log δ(z),

where the constant depends only on D.
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Proof. (i) In the proof we shall write δ(z) simply as δ. For fixed z ∈ D, let
ζ 7→ (s1, s2, t) be the coordinate chart in a neighborhood Uz of z as constructed in
the proof of Lemma 3.2. Let χ0 be a smooth cut-off function such that suppχ0 ⊂

E0(z) := {ζ ∈ D : −ρ(ζ )− ρ(z)+ |z − ζ | ≤ σ } and χ0 ≡ 1 on the set E1(z) :=

{ζ ∈ D : −ρ(ζ )− ρ(z)+ |z − ζ | ≤
σ
2 }. We choose σ sufficiently small such that

E0(z)⊂ Uz . Then∫
D

dV (ζ )
|2(z, ζ )|n+1 =

∫
D∩E0

χ0(ζ )dV (ζ )
|2(z, ζ )|n+1 +

∫
D\E1

(1 −χ0(ζ ))dV (ζ )
|2(z, ζ )|n+1 .

In view of (3-7), the second integral is bounded by a constant independent of z ∈ D.
The first integral is bounded by

∫
D∩E0(z)

dV (ζ )
|2(z, ζ )|n+1 ≲

∫ 1

0

∫ 1

0

∫ 1

0

t2n−3 ds1 ds2 dt
(δ+ s1 + s2 + t2)n+1

≲
∫ 1

0

∫ 1

0

t2n−3r dr dt
(δ+ r + t2)n+1

:= I,

where we used the polar coordinates for r = (s1, s2). We split the integral into the
following cases:

Case 1: δ+ r ≥ t2. I ≲
∫ 1

0

r
(δ+ r)n+1

(∫ √
δ+r

0
t2n−3 dt

)
dr

≲
∫ 1

0
(δ+ r)1−n−1+(2n−2)/2 dr

=

∫ 1

0
(δ+ r)−1 dr ≲ 1 + log δ.

Case 2: δ+ r ≤ t2. I ≲
∫ 1

0
r
(∫ 1

√
δ+r

t2n−3 dt
t2n+2

)
dr ≲

∫ 1

0
(δ+r)−1 dr ≲ 1+log δ.

(ii) Since s1(ζ )= ρ(ζ )≡ 0 for ζ ∈ bD, for fixed z, there exists some neighborhood
Uz of z such that ζ 7→ (s2, t) is a coordinate chart for ζ ∈ bD ∩ Uz . Let χ0, E0 be
the same as in the proof of (i). We only have to estimate

∫
bD∩E0

χ0 dσ(ζ )
|2(z, ζ )|n

≲
∫ 1

0

∫ 1

0

∫ 1

0

t2n−3ds2 dt
(δ+ s2 + t2)n

:= I.

Split the integral into two cases.
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Case 1: δ+ s2 ≥ t2. I ≲
∫ 1

0

1
(δ+ s2)n

(∫ √
δ+s2

0
t2n−3 dt

)
ds2

≲
∫ 1

0
(δ+ s2)

−1 ds2

≲ 1 + log δ.

Case 2: δ+ s2 ≤ t2. I ≲
∫ 1

0

(∫ 1

√
δ+s2

t2n−3 dt
t2n

)
ds2 ≲

∫ 1

0
(δ+s2)

−1 ds2 ≲ 1+logδ.

□

We now prove the L2 boundedness of the operator K, assuming boundary is
only C3. This result is stated in [Ligocka 1984] assuming the boundary is C4, and
the proof over there uses a much more general estimate from [Krantz 1976]. We
shall instead give a direct proof here.

Proposition 3.5. Let D be a strictly pseudoconvex domain in Cn with C3 boundary,
and let K be the operator given by formula (3-23). Then K defines a bounded
operator from L2(D) to L2(D).

Proof. We shall apply Schur’s test (see for example [Wolff 2003]), which in our
case can be formulated as follows. If

(3-32)
∫

D
|K (z, ζ )| dV (ζ )≤ A, for each z,

and

(3-33)
∫

D
|K (z, ζ )| dV (z)≤ B, for each ζ ,

then for f ∈ L2(D), K f defined by the integral
∫

D K (z, ζ ) f (ζ ) dV (z) converges
a.e. and there is an estimate

∥K f ∥L2(D) ≤
√

AB∥ f ∥L2(D).

Hence it suffices to prove (3-32) and (3-33). We can write∫
D
|K (z, ζ )| dV (ζ )=

∫
D

∣∣∣∣η(z)+ O ′′(|z − ζ |)

8n+1(ζ, z)
−
η(ζ )+ O ′(|z − ζ |)

8n+1(z, ζ )

∣∣∣∣ dV (ζ )

≤ J1 + J2 + J3 + J4,

where we denote

J1 =

∫
D

|η(z)− η(ζ )|
|8(ζ, z)|n+1 dV (ζ ), J2 =

∫
D
η(ζ )

∣∣∣∣ 1
8n+1(ζ, z)

−
1

8n+1(z, ζ )

∣∣∣∣ dV (ζ ),

J3 =

∫
D

|O ′′(|z − ζ |)|

|8(ζ, z)|n+1 dV (ζ ), J4 =

∫
D

|O ′(|z − ζ |)|

|8(z, ζ )|n+1 dV (ζ ).
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By the expression for η (3-17), we have |η(z)− η(ζ )| ≲ |ρ|3|ζ − z|. We have

J1 ≲ |ρ|3

∫
D

|ζ − z|
|8(ζ, z)|n+1 dV (ζ )≲ |ρ|3,

where we applied estimate (3-26) in the last inequality. By estimates (3-9), (3-24)
and (3-26), we have

J2 ≲ |ρ|2

∫
D

|8n+1(z, ζ )−8n+1(ζ, z)|
|8(ζ, z)|n+1|8n+1(z, ζ )|

dV (ζ )

≲ |ρ|2

∫
D
|8(z, ζ )−8(ζ, z)|

(
|8(z, ζ )|n + |8(ζ, z)|n

|8(ζ, z)|n+1|8n+1(z, ζ )|

)
dV (ζ )

≲ |ρ|3

(∫
D

|ζ − z|3

|8(ζ, z)|n+1|8(z, ζ )|
dV (ζ )+

∫
D

|ζ − z|3

|8(z, ζ )|n+1|8(ζ, z)|
dV (ζ )

)
≲ |ρ|3

(∫
D

|ζ − z|
|8(ζ, z)|n+1 dV (ζ )+

∫
D

|ζ − z|
|8(z, ζ )|n+1 dV (ζ )

)
≲ |ρ|3.

For J3, we use estimates (3-18), (3-21) and (3-26):

J3 ≲ |ρ|3

∫
D

|ζ − z|
|8(ζ, z)|n+1 dV (ζ )≲ |ρ|3,

J4 ≲ |ρ|3

∫
D

|ζ − z|
|8(z, ζ )|n+1 dV (ζ )≲ |ρ|3.

Here we note that all the bounds are uniform in z ∈ D. Hence we have proved
(3-33). In a similar way by using estimate (3-29), we can prove (3-32). The proof
is now complete. □

By using Proposition 3.5 and the same argument in [Ligocka 1984], we obtain

Proposition 3.6. Let D be a strictly pseudoconvex domain in Cn with C3 boundary,
and let L,K be the operators given by formula (3-19) (3-23), respectively. Then the
following statements are true:

(1) L is a bounded projection from L2(D) to H 2(D). In particular, L is the
identity map on H 2(D).

(2) P = L(I −K)−1
= (I +K)−1L∗.

It is important to note that unlike the Bergman projection, L is not an orthogonal
projection, namely, Lg − g is not orthogonal to the Bergman space H 2(D).
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Lemma 3.7. Let D be a strictly pseudoconvex domain with C3 boundary, and let
Dδ := {z ∈ Cn

: ρ(z) < 0}:

(i) For all (z, ζ ) ∈ Dδ × Dδ with |z − ζ | sufficiently small,

(3-34)
∣∣∣∣ n∑

i=1

∂8(z, ζ )

∂ζ i
·
∂ρ

∂ζi

∣∣∣∣> c > 0.

(ii) For each ζ0 ∈ bD, there exists a neighborhood U (ζ0) and an index 1 ≤ j ≤ n
such that

∣∣ ∂ρ
∂ζ j
(ζ )

∣∣> c > 0 for all ζ ∈ U (ζ0). In addition,

(3-35)
∂8(z, ζ )
∂ζ j

∂ρ

∂ζ j
−
∂8(z, ζ )

∂ζ j

∂ρ

∂ζ j
> c′ > 0, ∀ (z, ζ ) ∈ U (ζ0)× U (ζ0).

(iii) For all (z, ζ ) ∈ Dδ × Dδ with |z − ζ | sufficiently small,

(3-36)
∣∣∣∣ n∑

i=1

∂8(ζ, z)

∂ζ i
·
∂ρ

∂ζi

∣∣∣∣> c > 0.

(iv) For each ζ0 ∈ bD, there exists a neighborhood U (ζ0) and an index 1 ≤ j ≤ n
such that

∣∣ ∂ρ
∂ζ j
(ζ )

∣∣> c > 0 for all ζ ∈ U (ζ0). In addition,

(3-37)
∂8(ζ, z)
∂ζ j

∂ρ

∂ζ j
−
∂8(ζ, z)

∂ζ j

∂ρ

∂ζ j
> c′ > 0, ∀ (z, ζ ) ∈ U (ζ0)× U (ζ0).

Proof. (i) Compute

(3-38)
∂

∂ζ i
[F(z,ζ )−ρ(ζ )] =

∂

∂ζ i

( n∑
j=1

∂ρ

∂ζ j
(ζ )(ζ j−z j )

−
1
2

n∑
j,k=1

∂2ρ

∂ζ j∂ζ k
(ζ )(z j−ζ j )(zk−ζk)−ρ(ζ )

)

= −
∂ρ

∂ζ i
(ζ )+O(|ζ−z|).

Estimate (3-34) then follows for |z − ζ | small since |∇ρ(ζ )|> 0.
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(ii) Since dρ(ζ0) ̸= 0, there exists some neighborhood U (ζ0) and an index i0 such
that

∣∣ ∂ρ
∂ζi0
(ζ )

∣∣ ≥ c > 0 for all ζ ∈ U (ζ0). We compute

(3-39)
∂

∂ζi0

[F(z,ζ )−ρ(ζ )] =
∂

∂ζi0

( n∑
j=1

∂ρ

∂ζ j
(ζ )(ζ j−z j )

−
1
2

n∑
j,k=1

∂2ρ

∂ζ j∂ζk
(ζ )(z j−ζ j )(zk−ζk)−ρ(ζ )

)

=
∂ρ

∂ζi0

(ζ )−
∂ρ

∂ζi0

(ζ )+O(|ζ−z|)

= O(|ζ−z|).

It follows from (3-38) and (3-39) that

∂[F(z, ζ )− ρ(ζ )]
∂ζi0

∂ρ

∂ζ i0

−
∂[F(z, ζ )− ρ(ζ )]

∂ζ i0

∂ρ

∂ζi0

=

∣∣∣∣ ∂ρ∂ζi0

(ζ )

∣∣∣∣2

+ O(|ζ − z|).

Estimate (3-35) then follows if U (ζ0) is chosen sufficiently small.

(iii) The proof follows similarly by the fact

(3-40)
∂

∂ζ i
[F(ζ, z)−ρ(z)] =

∂

∂ζ i

( n∑
j=1

∂ρ

∂ z̄ j
(z)(z j−ζ j )

−

n∑
j,k=1

∂2ρ

∂ z̄ j∂ z̄k
(z)(ζ j−z j )(ζk−zk)−ρ(z)

)

= −
∂ρ

∂ z̄i
(z)+O(|ζ−z|)

= −
∂ρ

∂ζ i
(ζ )+O(|ζ−z|),

where in the last equality we used that |Dρ(z)− Dρ(ζ )| ≲ |ρ|2|ζ − z|.

(iv) Since dρ(ζ0) ̸= 0, there exists some neighborhood U (ζ0) and an index i0 such
that

∣∣ ∂ρ
∂ζi0
(ζ )

∣∣ ≥ c > 0 for all ζ ∈ U (ζ0). Compute

(3-41)
∂

∂ζi0

[F(ζ, z)−ρ(z)] =
∂

∂ζi0

( n∑
j=1

∂ρ

∂ z̄ j
(z)(z j−ζ j )

−
1
2

n∑
j,k=1

∂2ρ

∂z j∂ z̄k
(z)(ζ j−z j )(ζk−zk)−ρ(z)

)
= 0.
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It follows from (3-40) and (3-41) that

∂[F(ζ, z)− ρ(z)]
∂ζi0

∂ρ

∂ζ i0

−
∂[F(ζ, z)− ρ(z)]

∂ζ i0

∂ρ

∂ζi0

=

∣∣∣∣ ∂ρ∂ζi0

(ζ )

∣∣∣∣2

+ O(|ζ − z|).

Hence estimate (3-37) holds by choosing U (ζ0) sufficiently small. □

Lemma 3.8. Let D be a bounded strictly pseudoconvex domain with a C3 defining
function ρ, and let F(z, ζ ) be given by (3-1):

(i) For each 1 ≤ i ≤ n, the following holds for (z, ζ ) ∈ D × D,

∂[F(z, ζ )− ρ(ζ )]
∂zi

= −
∂ρ

∂ζi
(ζ )+ O(|ζ − z|),

∂[F(z, ζ )− ρ(ζ )]
∂ z̄i

= O(|ζ − z|),

where |O(|ζ − z|)| ≲ |ρ|2|ζ − z|.

(ii) For each 1 ≤ i ≤ n, the following holds for (z, ζ ) ∈ Dδ × Dδ,

∂[F(ζ, z)− ρ(z)]
∂zi

= −
∂ρ

∂zi
(z)+ O(|ζ − z|),

∂[F(ζ, z)− ρ(z)]
∂ z̄i

= O(|ζ − z|),

where |O(|ζ − z|)| ≲ |ρ|3|ζ − z|.

Proof. (i) Using definition of F , we have

∂[F(z,ζ )−ρ(ζ )]
∂zi

=
∂

∂zi

( n∑
j=1

∂ρ

∂ζ j
(ζ )(ζ j−z j )

−
1
2

n∑
j,k=1

∂2ρ

∂ζ j∂ζk
(ζ )(z j−ζ j )(zk−ζk)−ρ(ζ )

)

= −
∂ρ

∂ζi
(ζ )+O(|ζ−z|),

|O(|ζ − z|)| ≲ |ρ|2|ζ − z|, and ∂[F(z, ζ )− ρ(ζ )]/∂ z̄i = O(|ζ − z|).

(ii)
∂[F(ζ, z)−ρ(z)]

∂zi
=

∂

∂zi

( n∑
j=1

∂ρ

∂ z̄ j
(z)(z j−ζ j )

−
1
2

n∑
j,k=1

∂2ρ

∂z j∂zk
(z)(ζ j−z j )(ζk−zk)−ρ(z)

)

= −
∂ρ

∂zi
(z)+O(|ζ−z|), |O(|ζ−z|)|≲ |ρ|3|ζ−z|,

and
∂[F(ζ, z)− ρ(z)]

∂ z̄i
=
∂ρ

∂ z̄i
−
∂ρ

∂ z̄i
+ O(|ζ − z|)= O(|ζ − z|). □
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We use the notation:

(3-42) Q′(z, ζ ) :=

n∑
i=1

∂8(z, ζ )

∂ζ i

∂ρ

∂ζi
, Q′′(ζ, z) :=

n∑
i=1

∂8(ζ, z)

∂ζ i
·
∂ρ

∂ζi
,

and we write

[dζ ]i = dζ1 ∧ · · · ∧ (̂dζ i )∧ · · · ∧ dζn; [dζ ]i = dζ1 ∧ · · · ∧ (̂dζi )∧ · · · ∧ dζn.

Lemma 3.9. For all (z, ζ ) ∈ Dδ × Dδ with |z − ζ | sufficiently small, the following
estimates hold:

(i) |Dz8(z, ζ )− Dz8(ζ, z)| ≲ |ρ|3|ζ − z|.

(ii) |Dζ8(z, ζ )− Dζ8(ζ, z)| ≲ |ρ|3|ζ − z|.

(iii) |Q′(z, ζ )− Q′′(ζ, z)| ≲ |ρ|3|ζ − z|.

Proof. This follows immediately from the proof of Lemma 3.7 and Lemma 3.8. □

We now prove the key integration by parts lemma. This technique was originated
by Elgueta [1980] and has been developed and used by Ahern and Schneider [1979],
Ligocka [1984], Lieb and Range [1980], and Gong [2019], among others. For
our proof we shall mainly follow [Ahern and Schneider 1979]. We mention that
integration by parts is not needed for our results with C3+α boundary, and that in
the subsequent proof the following lemma will only be applied to domains with
Ck+3+α boundary, k ≥ 1.

Lemma 3.10. Let D be a bounded strictly pseudoconvex domain in Cn with C4

boundary. Suppose u ∈ C1(D) and the support of u is contained in some small
neighborhood of z. Then the following integration by parts formulae hold:

(i) Here P ′ is a first order differential operator in ζ variable (see (3-51)):

(3-43)
∫

D

u(ζ ) dV (ζ )
8m+1(z, ζ )

= c′

1

∫
bD

P ′(u)(ζ )dσ(ζ )
8m−1(z, ζ )

+ c′

2

∫
D

n∑
i=1

∂

∂ζ i

(u(ζ ) ∂ρ
∂ζi
(ζ )

Q′(z, ζ )

)
dV (ζ )
8m(z, ζ )

.

(ii) Here P ′′ is a first order differential operator in ζ (see (3-55)):

(3-44)
∫

D

u(ζ )dV (ζ )

8m+1(ζ, z)

= c′′

1

∫
bD

P ′′(u)(ζ ) dσ(ζ )

8m−1(ζ, z)
+ c′′

2

∫
D

n∑
i=1

∂

∂ζ i

(u(ζ ) ∂ρ
∂ζi
(ζ )

Q′′(ζ, z)

)
dV (ζ )

8m(ζ, z)
.
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(iii) Here P ′, P ′′ are first order differential operators in ζ . The coefficients of P ′

(resp.P ′′) involve derivatives of ρ up to order 3 (resp. order 2):

(3-45)

∫
bD

u(ζ )dσ(ζ )
8m(z, ζ )

=

∫
bD

P ′(u)(ζ ) dσ(ζ )
8m−1(z, ζ )

,∫
bD

u(ζ ) dσ(ζ )
8m(ζ, z)

=

∫
bD

P ′′(u)(ζ ) dσ(ζ )
8m−1(ζ, z)

.

Proof. In view of (3-5) and (3-8), for each fixed z ∈ D we have 8(z, · ) ∈ C1(D).
By (3-42), and the assumption that ρ ∈ C3, we see that Q′, Q′′

∈ C1(D). Hence by
Stokes’ theorem,

(3-46)
∫

D

u(ζ )
8m+1(z, ζ )

dV (ζ )

= −
1
m

∫
bD

u(ζ )
Q′(z, ζ )8m(z, ζ )

n∑
k=1

(−1)k−1 ∂ρ

∂ζk
[dζ ]k ∧ dζ

+
1
m

∫
D

n∑
k=1

∂

∂ζ k

(u(ζ ) ∂ρ
∂ζk
(ζ )

Q′(z, ζ )

)
1

8m(z, ζ )
dV (ζ ).

To finish the proof we need to apply Stokes’ theorem again to the boundary integral.
We have on bD,

(3-47) dρ(ζ )=

n∑
l=1

(
∂ρ

∂ζl
dζl +

∂ρ

∂ζ l
dζ l

)
≡ 0.

Let {χν}
M
ν=1 be a partition of unity of bD subordinate to the cover {Uν}

M
ν=1. We can

assume that on Uν , there exists an index i = i(ν) such that ∂ρ
∂ζi(ν)

(ζ ) ̸= 0. By (3-47),
we have for ζ ∈ Uν ∩ bD:

(3-48) dζ (8−(m−1)
[dζ ]i∧[dζ ]i )

= −(m−1)8−m
( n∑

l=1

∂8(z,ζ )
∂ζl

dζl+
∂8(z,ζ )

∂ζ l
dζ l

)
∧[dζ ]i∧[dζ ]i

= −(m−1)8−m
[
∂8(z,ζ )
∂ζi

−
∂ρ

∂ζi

(
∂ρ

∂ζ i

)−1
∂8(z,ζ )

∂ζ i

]
dζi∧[dζ ]i∧[dζ ]i

= −(m−1)8−m(−1)i−1ai (z,ζ )dζ∧[dζ ]i ,

where i = i(ν) and we set

(3-49) ai (z, ζ ) :=
∂8(z, ζ )
∂ζi

−
∂ρ

∂ζi

(
∂ρ

∂ζ i

)−1
∂8(z, ζ )

∂ζ i
, ζ ∈ Uν ∩ bD.
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By assumption, u is supported in a small neighborhood of z. Hence if for some ν,
supp u ∩ Uν is nonempty, then z must be sufficiently close to Uν . Hence in view of
estimate (3-35) and by shrinking Uν if necessary, we can assume that ai (z, ζ )≥c>0
for ζ ∈ supp u ∩ Uν . Accordingly,

8−mdζ ∧[dζ ]i = cm
(−1)i−1

ai (z, ζ )
dζ (8−(m−1)

[dζ ]i ∧[dζ ]i ), i = i(ν), ζ ∈ Uν ∩bD.

Now by (3-47) we can write

(3-50)
n∑

k=1

(−1)k−1 ∂ρ

∂ζk
dζ ∧ [dζ ]k = ϕν(ζ )dζ ∧ [dζ ]i(ν), ζ ∈ Uν ∩ bD,

where ϕν is a linear combination of products of ∂ρ
∂ζs

and ∂ρ

∂ζ t
. Hence for the boundary

integral in (3-46) we have∫
bD

u(ζ )χν(ζ )
Q′(z, ζ )8m(z, ζ )

n∑
k=1

(−1)k−1 ∂ρ

∂ζk
dζ ∧ [dζ ]k

=

∫
bD

u(ζ )χν(ζ )ϕν(ζ )
Q′(z, ζ )8m(z, ζ )

dζ ∧ [dζ ]i(ν)

=

∫
bD

u(ζ )χν(ζ )ϕν(ζ )
(Q′ai(ν))(z, ζ )

dζ (8−(m−1)
[dζ ]i(ν) ∧ [dζ ]i(ν)),

where the constant is absorbed into ϕν . By Stokes’ theorem, the integral is equal to∫
bD

dζ

(
u(ζ )(χνϕν)(ζ )
(Q′ai(ν))(z, ζ )

)
8−(m−1)

[dζ ]i(ν) ∧ [dζ ]i(ν).

Let ψν be the function such that [dζ ]i(ν) ∧ [dζ ]i(ν) = ψν(ζ )dσ(ζ ). Summing the
above expression over ν, the boundary integral in (3-46) can be written as

(3-51)
∫

bD
P ′(u)(ζ )8−(m−1) dσ(ζ ), P ′(u)(ζ ):=

M∑
ν=1

dζ

(
u(ζ )(χνϕν)(ζ )
(Q′ai(ν))(z,ζ )

)
ψν(ζ ).

Hence we obtain formula (3-43). This completes the proof of (i).
The proof of (ii) goes similar. By Stokes’ theorem we have

(3-52)
∫

D

u(ζ )

8m+1(ζ, z)
dV (ζ )

= −
1
m

∫
bD

u(ζ )

Q′′(ζ, z)8m(ζ, z)

n∑
k=1

(−1)k−1 ∂ρ

∂ζk
[dζ ]k ∧ dζ

+
1
m

∫
D

n∑
k=1

∂

∂ζ k

(u(ζ ) ∂ρ
∂ζk
(ζ )

Q′′(ζ, z)

)
1

8m(ζ, z)
dV (ζ ).
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Let χν , Uν and i(ν) be the same as in the proof of (i). By (3-47), we have for
ζ ∈ Uν ∩ bD:

(3-53) dζ8−(m−1)(ζ, z)[dζ ]i∧[dζ ]i

= −m8−m(ζ, z)
(
∂8(ζ, z)
∂ζi

dζi+
∂8(ζ, z)

∂ζ i
dζ i

)
∧[dζ ]i∧[dζ ]i

= −m8−m(ζ, z)
[
∂8(ζ, z)
∂ζi

−
∂ρ

∂ζi

(
∂ρ

∂ζ i

)−1
∂8(ζ, z)

∂ζ i

]
dζi∧[dζ ]i∧[dζ ]i

= −m8−m(ζ, z)(−1)i−1bi (ζ, z)dζ∧[dζ ]i ,

where i = i(ν) and we set

(3-54) bi (ζ, z) :=
∂8(ζ, z)
∂ζi

−
∂ρ

∂ζi

(
∂ρ

∂ζ i

)−1
∂8(ζ, z)

∂ζ i
, ζ ∈ Uν ∩ bD.

Using estimate (3-37), we may assume that bi ≥ c > 0 for ζ ∈ supp u ∩ Uν . It
follows that

8−m(ζ, z)dζ ∧ [dζ ]i = cm
(−1)i−1

bi (ζ, z)
dζ (8−(m−1)(ζ, z)[dζ ]i ∧ [dζ ]i ),

where i = i(ν), ζ ∈ Uν ∩ bD. By (3-50), the boundary integral in (3-52) can be
written as∫

bD

u(ζ )χν(ζ )

Q′′(z, ζ )8m(ζ, z)

n∑
k=1

(−1)k−1 ∂ρ

∂ζk
[dζ ]k ∧ dζ

=

∫
bD

u(ζ )χν(ζ )ϕν(ζ )

Q′′(z, ζ )8m(ζ, z)
dζ ∧ [dζ ]i(ν)

=

∫
bD

u(ζ )χν(ζ )ϕν(ζ )
(Q′′bi(ν))(z, ζ )

dζ (8−(m−1)(ζ, z)[dζ ]i(ν) ∧ [dζ ]i(ν)),

where the constant is absorbed into ϕν . By Stokes’ theorem, the integral is equal to∫
bD

dζ

(
u(ζ )(χνϕν)(ζ )
(Q′′bi(ν))(z, ζ )

)
8−(m−1)(ζ, z)[dζ ]i(ν) ∧ [dζ ]i(ν).

Let ψν be the function such that [dζ ]i(ν) ∧ [dζ ]i(ν) = ψν(ζ )dσ(ζ ). Summing the
above expression over ν, the boundary integral in (3-52) can be written as
(3-55)∫

bD
P ′′(u)(ζ )8−(m−1)(ζ, z)dσ(ζ ), P ′′(u)(ζ ):=

M∑
ν=1

dζ

(
u(ζ )(χνϕν)(ζ )
(Q′′bi(ν))(z,ζ )

)
ψν(ζ ).

Hence we obtain formula (3-44).
Finally, the proof of (iii) is clear from the proofs of (i) and (ii). □
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In this section we prove Proposition 1.2 and then use it to prove Theorem 1.1 and
Theorem 1.3. First we fix some notations. We will write | f |r = | f |Cr (D), where
|·|Cr (D) denotes the Hölder r -norm on D. We also write δ(z) := dist(z, bD).

4. Proof of Proposition 1.2 and Theorem 1.1

In this section we prove Theorem 1.1. We begin with Proposition 1.2.

Proof of Proposition 1.2. We shall assume that ρ is a regularized defining function
satisfying the properties in Proposition 2.2. In particular, we have ρ ∈ C∞(Cn)∩

Ck+3+α(D) and

(4-1) |D jρ(z)| ≲ C j |ρ|k+2+α(1 + δ(z)k+3+α− j ), j = 0, 1, 2, . . . .

We recall the notation

8(z, ζ ) := G(z, ζ )− ρ(ζ ), 8(ζ, z) := G(ζ, z)− ρ(z).

In view of (3-22), we can write

K f (z)=K0 f (z)+K1 f (z) :=
∫

D
K0(z, ζ ) f (ζ ) dV (ζ )+

∫
D

K1(z, ζ ) f (ζ ) dV (ζ ),

where K0(z, ζ ) := L0(ζ, z)− L0(z, ζ ) and K1(z, ζ )= L1(ζ, z)− L1(z, ζ ). We first
estimate K0 f . In view of (3-22), we have

K0 f (z)=

∫
D

f (ζ )(L0(ζ, z)− L0(z, ζ )) dV (ζ ).

where L0(z, ζ ) dV (ζ )= Sz(∂ z∂ζ N )(z, ζ ). As observed earlier, since bD ∈ Ck+3+α ,
the coefficients of ∂ z∂ζ N (z, ζ ) belong to the class C∞

×Ck+α(Dδ(z)× Dδ(ζ )). By
Proposition 2.1 and the fact that Sz is a linear operator, we see that L0(z, ζ )∈ C∞

×

Ck+α(Dδ(z)× Dδ(ζ )), which also implies L0(ζ, z) ∈ C∞
×Ck+α(Dδ(ζ )× Dδ(z)).

Accordingly, we have

(4-2)
∫

D
f (ζ )L0(z, ζ ) dV (ζ ) ∈ C∞(D),

∫
D

f (ζ )L0(ζ, z) dV (ζ ) ∈ Ck+α(D).

Here the first statement is clear. We now prove the second statement. By estimate
(4-1) and the expression for L0(ζ, z), it follows that∣∣∣∣∫

D
f (ζ )Dk+1

z L0(ζ, z) dV (ζ )
∣∣∣∣ ≲ | f |0(1 + δ(z)−1+α).

Hence by Lemma 2.3, the second integral in (4-2) belongs to Ck+α(D). Thus we
have shown K0 f ∈ Ck+α(D).
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Next we estimate K1 f . First we prove for the case k = 0, i.e., ρ ∈ C3+α . In view
of (3-17), we have

K1 f (z)=

∫
D

f (ζ )(L1(ζ, z)− L1(z, ζ )) dV (ζ )

=

∫
D

f (ζ )
[
η(z)+ O ′′(|z − ζ |)

8n+1(ζ, z)
−
η(ζ )+ O ′(|z − ζ |)

8n+1(z, ζ )

]
dV (ζ ).

Let χ0 be a C∞ cut-off function supported in the set E0 := {(z, ζ ) ∈ D × D :

|z − ζ | < δ0}, and χ0 ≡ 1 in {(z, ζ ) ∈ D × D : |z − ζ | < δ0/2}, for some δ0 > 0.
From the definition of G(z, ζ ) (see (3-5)), we can choose δ0 to be sufficiently small
such that on the set E0, we have 8(z, ζ )= F(z, ζ )− ρ(ζ ). Write

K1 f (z)= K′

1 f (z)+K′′

1 f (z),

where

K′

1 f (z) :=

∫
D

f (ζ )(χ0K1)(z, ζ ) dV (ζ ),

K′′

1 f (z)=

∫
D

f (ζ )[(1 −χ0)K1](z, ζ ) dV (ζ ),

with K1(z, ζ ) = L1(ζ, z) − L1(z, ζ ). The function (1 − χ0)K1 is supported in
E1 := {(z, ζ ) ∈ D × D : |z − ζ | ≥ ε0/2}. By estimate (3-7) and the assumption
ρ ∈ Ck+3+α, we see that (1 −χ0)L1(z, ζ ) ∈ C∞

× Ck+α(D(z)× D(ζ )) and (1 −

χ0)L1(ζ, z) ∈ Ck+α
× C∞(D(z)× D(ζ )). By the same argument used to prove

(4-2), we can show that K′′

1 f ∈ Ck+α(D).
It remains to estimate K′

1 f . We will divide the proof into two steps. In the
first part, we show that if bD ∈ C3+α, then K′

1 f ∈ Cmin{α,1/2}. In the second
part, we use integration by parts to show that if bD ∈ Ck+3+α, for k ≥ 1, then
K′

1 f ∈ Ck+min{α,1/2}.

Case 1: bD ∈ C3+α Assume now that bD ∈ C3+α. In what follows we will write
D0 = D0(z)= {ζ ∈ D : |ζ − z| ≤ δ0}, and without loss of generality we can assume
f is supported in D0. Taking z j derivative we get

∂K′

1 f
∂z j

(z)=
∫

D
f (ζ )

( ∂
∂z j

[η(z)+ O ′′(|z − ζ |)]

8n+1(ζ, z)
−

∂
∂z j

[η(ζ )+ O ′(|z − ζ |)]

8n+1(z, ζ )

)
dV (ζ )

− (n + 1)
∫

D
f (ζ )

(
[
∂
∂z j
8(ζ, z)](η(z)+ O ′′(|z − ζ |))

8n+2(ζ, z)

−

[
∂
∂z j
8(z, ζ )

]
(η(ζ )+ O ′(|z − ζ |))

8n+2(z, ζ )

)
dV (ζ )

:= I1(z)+ I2(z),
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where we denote the first and second integral by I1 and I2, respectively. We first
estimate I1. By (3-18), we have∣∣∣∣ ∂∂z j

[η(ζ )+ O ′(|z − ζ |)]

∣∣∣∣ ≲ |ρ|3.

Hence by (3-30),

(4-3)
∫

D

|paz j [η(ζ )+ O ′(|z − ζ |)]|

|8n+1(z, ζ )|
| f (ζ )| dV (ζ )≲ | f |0|ρ|3

∫
D

dV (ζ )
|8(z, ζ )|n+1

≲ | f |0|ρ|3(1 + log δ(z)).

On the other hand, using estimate (3-21) we have∣∣∣∣ ∂∂z j
[η(z)+ O ′′(|z − ζ |)]

∣∣∣∣ ≲ |D3
zρ(z)| + |D4

zρ(z)||ζ − z|

≲ |ρ|3+α(1 + δ(z)−1+α
|ζ − z|),

where in the last inequality we applied (4-1) with k = 0 and j = 4.
Thus applying (3-26) and (3-30) we obtain

(4-4)
∫

D

|∂z j [η(z)+ O ′′(|z − ζ |)]|

|8n+1(ζ, z)|
| f (ζ )| dV (ζ )

≲ |ρ|3+α| f |0

(∫
D

dV (ζ )
|8(ζ, z)|n+1 + δ(z)−1+α

∫
D

|ζ − z|
|8(ζ, z)|n+1 dV (ζ )

)
≲ |ρ|3+α| f |0(log δ(z)+ δ(z)−1+α)≲ |ρ|3+α| f |0δ(z)−1+α.

Putting together estimates (4-3) and (4-4), we get

(4-5) |I1(z)| ≲ |ρ|3+α| f |0δ(z)−1+α, 0< α < 1.

For the integral I2, we can write it as I2(z)= −(n + 1)
∑3

i=1 Ji (z), where

J1(z)=
∫

D
f (ζ )

(
∂8(ζ, z)
∂z j

−
∂8(z,ζ )
∂z j

)
[η(z)+O ′′(|z−ζ |)]

8n+2(ζ, z)
dV (ζ );

J2(z)=
∫

D
f (ζ )[η(z)−η(ζ )+O ′′(|z−ζ |)−O ′(|z−ζ |)]

∂z j8(z,ζ )

8n+2(ζ, z)
dV (ζ );

J3(z)=
∫

D
f (ζ )

[
∂8(z,ζ )
∂z j

]
[η(ζ )+O ′(|z−ζ |)]

×

(
1

8n+2(ζ, z)
−

1
8n+2(z,ζ )

)
dV (ζ ).
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To estimate J1, we note that by Lemma 3.9, for any ζ ∈ supp f ⊂ D0(z) =

{|ζ − z|< δ0}, ∣∣∣∣∂8(ζ, z)
∂z j

−
∂8(z, ζ )
∂z j

∣∣∣∣ ≲ |ρ|3|ζ − z|.

Together with estimates (3-21) and (3-9) we get

(4-6) |J1(z)| ≲ | f |0|ρ|3

∫
D

|ζ − z|

|8(ζ, z)|n+2
dV (ζ )

≲ | f |0|ρ|3

∫
D

dV (ζ )
|ζ − z||8(ζ, z)|n+1

≲ | f |0|ρ|3δ(z)−1/2,

where in the last inequality we applied estimate (3-25) with α = 1. For J2, we note
that |η(z)− η(ζ )| ≲ |ρ|3|z − ζ |. By Lemma 3.8 (i), we have

(4-7)
∣∣∣∣∂8(z, ζ )∂z j

∣∣∣∣ ≲ |ρ|1 + |ρ|2|ζ − z| ≲ |ρ|2.

Applying estimates (3-9), (3-18), (3-21), and Lemma 3.2, we get

(4-8) |J2(z)| ≲ | f |0|ρ|3

∫
D

|ζ − z|
|8(ζ, z)|n+2 dV (ζ )

≲ | f |0|ρ|3

∫
D

dV (ζ )
|ζ − z||8(ζ, z)|n+1

≲ | f |0|ρ|3δ(z)−1/2.

For J3 we use estimate (3-24),

(4-9) |J3(z)| ≲ | f |0|ρ|3

∫
D
|ζ − z|3

(
|8(z, ζ )|n+1

|8(ζ, z)|n+2|8(z, ζ )|n+2

+
|8(ζ, z)|n+1

|8(ζ, z)|n+2|8(z, ζ )|n+2

)
dV (ζ )

= | f |0|ρ|3

∫
D
|ζ − z|3

(
1

|8(ζ, z)|n+2|8(z, ζ )|

+
1

|8(ζ, z)||8(z, ζ )|n+2

)
dV (ζ )

≲ | f |0|ρ|3

(∫
D

|ζ − z|
|8(ζ, z)|n+2 dV (ζ )+

∫
D

|ζ − z|
|8(z, ζ )|n+2 dV (ζ )

)
≲ | f |0|ρ|3

(∫
D

dV (ζ )
|ζ − z||8(ζ, z)|n+1 +

∫
D

dV (ζ )
|ζ − z||8(z, ζ )|n+1

)
≲ | f |0|ρ|3δ(z)−1/2,
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where in the last inequality we applied Lemma 3.2 with β = 1. Hence we have
shown that

(4-10) |I2(z)| ≲ | f |0|ρ|3δ(z)−1/2.

Combining (4-5) and (4-10), we have∣∣∣∣∂K′

1 f
∂z j

∣∣∣∣ ≲ {
| f |0|ρ|3+αδ(z)−1+α if 0< α ≤

1
2 ;

| f |0|ρ|3δ(z)−1/2 if 1
2 ≤ α ≤ 1.

In a similar way we can show that |∂z̄ jK′

1 f | satisfies the same estimate. It follows
by Lemma 2.3 that

K′

1 f ∈

{
Cα(D) if 0< α ≤

1
2 ;

C1/2(D) if 1
2 ≤ α ≤ 1.

This completes the proof for the k = 0 case.

Case 2: bD ∈ Ck+3+α, k ≥ 1 We now assume that ρ ∈ Ck+3+α, for k ≥ 1. Taking
k + 1 derivatives we get

(4-11) Dk+1
z K′

1 f (z)

=

∑
γ1+γ2≤k+1

∫
D

f (ζ )[Dγ1
z {η(z)+O ′′(|z−ζ |)}Dγ2

z (8
−(n+1)(ζ, z))]dV (ζ )

−

∑
γ1+γ2≤k+1

∫
D

f (ζ )[Dγ1
z {η(ζ )+O ′(|z−ζ |)}Dγ2

z (8
−(n+1)(z,ζ ))]dV (ζ )

:= F1+F2,

where we denote the first and second sum in (4-11) by F1 and F2, respectively. We
break up into cases.

Case 1: γ1 = k + 1. (γ2 = 0). By (3-18) and (3-21), we get

|Dk+1
z {η(ζ )+ O ′

|ζ − z|}| ≲ |ρ|k+3.

|Dk+1
z {η(z)+ O ′′

|ζ − z|}| ≲ |ρ|k+3 + |ρ|k+4|ζ − z|

≲ |ρ|k+3+α(1 + δ(z)−1+α
|ζ − z|),

where for the last inequality we used (4-1) with j = k+4. By doing similar estimate
as that for the integral I1 in the k = 0 case, we get

|DγK′

1 f (z)| ≲ |ρ|k+3+α| f |0δ(z)−1+α, 0< α < 1.
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Case 2: 1 ≤ γ2 ≤ k (γ1 ≤ k). The term in the sum in (4-11) takes the form

(4-12)
∫

D
f (ζ )

[
Dγ1

z {η(z)+ O ′′(|z − ζ |)}

8n+1+τ (ζ, z)
S′′

τ (z, ζ )
]

dV (ζ )

−

∫
D

f (ζ )
[

Dγ1
z {η(ζ )+ O ′(|z − ζ |)}

8n+1+τ (z, ζ )
S′

τ (z, ζ )
]

dV (ζ ),

where τ ≤ γ2 ≤ k and S′′
τ (z, ζ ) is some linear combination of products of Dl

z8(ζ, z),
l ≤ k, and S′

τ is some linear combination of products of Dl
z8(z, ζ ), l ≤ k.

It is convenient to recall the notation:

(4-13) Q′(z, ζ )=

n∑
i=1

∂8(z, ζ )

∂ζ i

∂ρ

∂ζi
, Q′′(z, ζ )=

n∑
i=1

∂8(ζ, z)

∂ζ i
·
∂ρ

∂ζi
,

and for |ζ − z| small, we have

8(z,ζ )= F(z,ζ )−ρ(ζ )(4-14)

=

n∑
j=1

∂ρ

∂ζ j
(ζ )(ζ j−z j )−

1
2

n∑
i, j=1

∂2ρ

∂ζi∂ζ j
(ζ )(zi−ζi )(z j−ζ j )−ρ(ζ );

8(ζ, z)= F(ζ, z)−ρ(z)(4-15)

=

n∑
j=1

∂ρ

∂z j
(z)(z j−ζ j )−

1
2

n∑
i, j=1

∂2ρ

∂zi∂z j
(z)(ζi−zi )(ζ j−z j )−ρ(z).

For the first integral in (4-12), we apply integration by parts formulae (3-43) and
(3-45) iteratively until the integral becomes, for µ0, η0 ≤ k, a linear combination of

(4-16)
∫

bD

[Dµ0 f (ζ )]W ′′

1 (z, ζ )

8n(ζ, z)
dV (ζ ),

∫
D

[Dη0 f (ζ )]W ′′

2 (z, ζ )

8n+1(ζ, z)
dV (ζ ),

where W ′′

1 , W ′′

2 are some linear combinations of products of

Dµ1
ζ Dγ1

z {η(z)+O ′′(|z−ζ |)}, Dµ2
ζ [(Q′′)−1

], Dµ3+1
ζ Dl

z8(ζ, z), Dµ4+1
ζ ρ(ζ ),

for l ≤ k, and µi ≥ 0 satisfies
∑4

i=1 µi ≤ k. Now we have |Dµ1
ζ Dγ1

z {η(z) +

O ′′(|z − ζ |)}| ≤ Ck |ρ|k+2 (since γ1 ≤ k, µ1 ≤ k), |Dµ2
ζ [(Q′′)−1(z, ζ )]| ≤ Ck ,

|Dµ3+1
ζ Dl

z8(ζ, z)| ≤ Ck |ρ|k+1 (since l ≤ k). Hence the integrals in (4-16) and
thus the first integral in (4-12) can be bounded by

(4-17) | f |k |ρ|k+3

(∫
bD

dσ(ζ )
|8(ζ, z)|n

+

∫
D

dV (ζ )
|8(ζ, z)|n+1

)
≲ | f |k |ρ|k+3(1 + log δ(z)),
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where we applied Lemma 3.4. For the second integral in (4-12), we apply formulae
(3-44) and (3-45) iteratively until the integral becomes a linear combination of

(4-18)
∫

bD

Dµ0 f (ζ )W ′

1(z, ζ )
8n(z, ζ )

dV (ζ ),
∫

D

Dη0 f (ζ )W ′

2(z, ζ )
8n+1(z, ζ )

dV (ζ ),

for µ0, η0 ≤ k. Here W ′

1 and W ′

2 are linear combinations of products of

Dµ1
ζ Dγ1

z {η(ζ )+ O ′(|z − ζ |), Dµ2
ζ [(Q′)−1

], Dµ3+1
ζ Dl

z8(z, ζ ), Dµ4+1
ζ ρ(ζ ),

where l ≤ k andµi ≥0 satisfies
∑4

i=1 µi ≤ k. We have |Dµ1
ζ Dγ1

z {η(ζ )+O ′(|z−ζ |)}|
≤ Ck |ρ|µ1+3 ≤ |ρ|k+3 (since γ1, µ1 ≤ k), |Dµ2

ζ [(Q′)−1
]| ≲ |ρ|µ2+3 ≲ |ρ|k+3, and

|Dµ3+1
ζ Dl

z8(z, ζ )|≲Ck |ρ|µ3+3 ≲ |ρ|k+3. It follows that the integrals in (4-18) and
hence the second integral in (4-12) is bounded by

(4-19) | f |k |ρ|k+3

(∫
bD

dσ(ζ )
|8(z, ζ )|n

+

∫
D

dV (ζ )
|8(z, ζ )|n+1

)
≲ | f |k |ρ|k+3(1 + log δ(z)).

Combining (4-17) and (4-19), we get for this case

|DγK′

1 f (z)| ≲ |ρ|k+3| f |k(1 + log δ(z)).

Case 3: γ2 = k + 1 (γ1 = 0). Applying integration by parts formulae (3-43), (3-44)
and (3-45) iteratively to F1(z) in (4-11) yields a linear combination of

(4-20)
∫

bD

Dη0 f (ζ )R′′

0 (z, ζ )

8n+1(ζ, z)
dV (ζ ),

∫
D

Dµ0 f (ζ )R′′

1 (z, ζ )

8n+2(ζ, z)
dV (ζ ),

for η0, µ0 ≤ k. Similarly we apply integration by parts to F2(z) until it becomes a
linear combination of

(4-21)
∫

bD

Dη0 f (ζ )R′

0(z, ζ )
8n+1(z, ζ )

dV (ζ ),
∫

D

Dµ0 f (ζ )R′

1(z, ζ )
8n+2(z, ζ )

dV (ζ ).

Here R′′

0 (z, ζ ) and R′′

1 (z, ζ ) are some linear combination of products of

Dµ1
ζ (η(z)+ O ′′(|z − ζ |)), Dµ2

ζ [(Q′′)−1
], Dµ3+1

ζ 8(ζ, z),

Dµ4
ζ Dz8(ζ, z), Dµ5+1

ζ ρ(ζ ),

and R′

0(z, ζ ) and R′

1(z, ζ ) are some linear combination of the products of

(4-22) Dµ1
ζ (η(ζ )+ O ′(|z − ζ |)), Dµ2

ζ [(Q′)−1
], Dµ3+1

ζ 8(z, ζ ),

Dµ4
ζ Dz8(z, ζ ), Dµ5+1

ζ ρ(ζ ),

where 0 ≤ µi ≤ k for 0 ≤ i ≤ 5, and
∑5

i=0 µi ≤ k. There are five subcases to
consider:
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Subcase 1: γ2 = k + 1, µ0, µ1, µ2, µ3 ≤ k − 1. Then we do integration by parts
one more time to the integrals in (4-21) and the resulting integrals become

(4-23)
∫

bD

Dη̃0 f (ζ )R′

0(z, ζ )
8n(z, ζ )

dV (ζ ),
∫

D

Dµ̃0 f (ζ )R′

1(z, ζ )
8n+1(z, ζ )

dV (ζ ),

where η̃0, µ̃0 ≤ k, and R̃′

0 and R̃′

1 are linear combinations of products of

Dµ̃1
ζ (η(ζ )+ O ′(|z − ζ |)), Dµ̃2

ζ [(Q′)−1
], Dµ̃3+1

ζ 8(z, ζ ),

Dµ̃4
ζ Dz8(z, ζ ), Dµ̃5+1

ζ ρ(ζ ),

with µ̃0, µ̃1, µ̃2, µ̃3 ≤ k and
∑

i µ̃i ≤ k + 1. Then

|Dµ̃1
ζ (η(ζ )+ O ′(|z − ζ |))| ≲ |ρ|k+3.

In view of (3-38) and (3-39), we have

(4-24) |Dl
ζ Q′(z, ζ )| = Dl

ζ

( n∑
i=1

∂8(z, ζ )

∂ζ i

∂ρ

∂ζi

)
≲ |ρ|l+2 +|ρ|l+3|ζ − z|≲ |ρ|l+3,

and similarly |Dl+1
ζ 8(z, ζ )|≲ |ρ|l+3. Hence for µ̃2, µ̃3 ≤k, we have |Dµ̃2[(Q′)−1

]|,
|Dµ̃3+18(z, ζ )|≲ |ρ|k+3. Putting together the estimates, it follows that the integrals
in (4-23) and thus in (4-21) satisfy∣∣∣∣∫

bD

Dµ̃0 f (ζ )R′

0(z, ζ )
8n(z, ζ )

dV (ζ )
∣∣∣∣ ≲ | f |k |ρ|k+3

∫
bD

dσ(ζ )
|8(z, ζ )|n

≲ | f |k |ρ|k+3(1 + log δ(z));∣∣∣∣∫
D

Dµ̃0 f (ζ )R′

1(z, ζ )
8n+1(z, ζ )

dV (ζ )
∣∣∣∣ ≲ | f |k |ρ|k+3

∫
D

dV (ζ )
|8(z, ζ )|n+1

≲ | f |k |ρ|k+3(1 + log δ(z)).

We can obtain similar estimates for the integrals in (4-20), where the proof is easier
since the functions R′′

0 and R′′

1 are C∞ in ζ . In conclusion we have shown that in
this case

|Dγ
z K

′

1 f (z)| ≲ |ρ|k+3| f |k(1 + log δ(z)).

Subcase 2: γ2 = k + 1, µ1 = k. Again we shall only estimate (4-21) as a similar
procedure can be applied to (4-20). The integrals in (4-21) can be written as

(4-25)

∫
bD

f (ζ )Dk
ζ [η(ζ )+ O ′

|z − ζ |]R′

0(z, ζ )

8n+1(z, ζ )
dσ(ζ ),∫

D

f (ζ )Dk
ζ [η(ζ )+ O ′

|z − ζ |]R′

1(z, ζ )

8n+2(z, ζ )
dV (ζ ),
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where R′

0 and R′

1 are some linear combination of the products of

(Q′)−1, Dz8(z, ζ ), Dζ8(z, ζ ), Dρ(ζ ).

We now estimate the domain integral in (4-25) which can be written as B1 + B2,
where

(4-26)
B1(z)=

∫
D

f (ζ )Dk
ζη(ζ )R

′

1(z, ζ )

8n+2(z, ζ )
dV (ζ ),

B2(z)=

∫
D

f (ζ )Dk
ζ [O

′(|z − ζ |)]R′

1(z, ζ )

8n+2(z, ζ )
dV (ζ ).

We apply integration by parts formulae (3-43) and (3-45) to B1 so that

B1(z)=

∫
bD

Dν̃0
ζ f (ζ )Dk+ν̃1

ζ η(ζ )R̃′

10(z, ζ )

8n(z, ζ )
dσ(ζ )

+

∫
D

Dµ̃0
ζ f (ζ )Dk+µ̃1

ζ η(ζ )R̃′

11(z, ζ )

8n+1(z, ζ )
dV (ζ ).

Here ν̃0, µ̃0, µ̃0, µ̃1 ≤ 1. R̃′

10(z, ζ ) and R̃′

11(z, ζ ) are linear combinations of the
products of

D̂ζ (Q′)−1, D̂ζ Dz8(z, ζ ), D̂2
ζ8(z, ζ ), D̂2

ζρ(ζ ).

In particular |R̃′

10(z, ζ )|, R̃′

10(z, ζ )≲ |ρ|4 ≲ |ρ|k+3 (k ≥ 1). It follows from (4-26)
that

|B1(z)| ≲ | f |1|ρ|4

(∫
bD

dσ(ζ )
|8(z, ζ )|n

+

∫
D

dV (ζ )
|8(z, ζ )|n+1

)
≲ | f |1|ρ|k+3(1 + log δ(z)), k ≥ 1.

For B2, we use estimate (3-18),

Dk
ζ [O

′(|z − ζ |)] = g1(z, ζ )+ g2(z, ζ ),

where |g1(z, ζ )| ≲ |ρ|k+2 and |g2| ≲ |ρ|k+3|ζ − z|. Write

(4-27) B2(z)=

∫
D

f (ζ )(g1 R′

1)(z, ζ )
8n+2(z, ζ )

dV (ζ )+
∫

D

f (ζ )(g2 R′

1)(z, ζ )
8n+2(z, ζ )

dV (ζ ).

The second integral is bounded in absolute value by (up to a constant)

| f |0|ρ|k+3

∫
D

|ζ−z|
|8(z,ζ )|n+2 dV (ζ )≲ | f |0|ρ|k+3

∫
D

dV (ζ )
|ζ−z||8(z,ζ )|n+1 ≲ δ(z)−1/2.
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For the first integral in (4-27) we apply integration by parts and the resulting integral
is bounded up to a constant by

(4-28) | f |1|ρ|k+3

(∫
bD

dσ(ζ )
8n(z, ζ )

+

∫
D

dV (ζ )
8n+1(z, ζ )

)
≲ | f |1|ρ|k+3(1 + log δ(z)).

This shows that |B2(z)| ≲ | f |1|ρ|k+3δ(z)−1/2. Combining the estimates we have
shown that the domain integral in (4-25) is bounded by C | f |1|ρ|k+3δ(z)−1/2. The
estimate for the boundary integral in (4-25) is similar and we leave the details to
the reader. In summary we have in this case

|Dγ
z K

′

1 f (z)| ≲ |ρ|k+3| f |1δ(z)−1/2.

Subcase 3: γ2 = k + 1, µ2 = k in (4-22). From (4-13) we can write out Q′ as

Q′(z, ζ )=

n∑
i=1

∂8(z, ζ )

∂ζ i

∂ρ

∂ζi
=

n∑
i=1

(
−
∂ρ

∂ζ i
+ O(|ζ − z|)

)
∂ρ

∂ζi
,

with

O(|ζ − z|)∼ D̂3
ζρ(ζ )(ζi − zi ).

In view of (3-38) and (3-39), we can write Dk
ζ [(Q

′)−1
] = Y1(z, ζ )+Y2(z, ζ ), where

|Y1(z, ζ )| ≲ |ρ|k+2 and |Y2(z, ζ )| ≲ |ρ|k+3|z − ζ |. The integrals in (4-21) have the
form

(4-29)

∫
bD

f (ζ )Dk
ζ [(Q

′)−1
]W0(z, ζ )

8n+1(z, ζ )
dσ(ζ ),∫

D

f (ζ )Dk
ζ [(Q

′)−1
]W1(z, ζ )

8n+2(z, ζ )
dV (ζ ).

Here W0 and W1 are some linear combinations of the products of Dζρ, Dz8(z, ζ ),
Dζ8(z, ζ ) and η(ζ )+ O ′(|z − ζ |). For the domain integral in (4-29) we have

(4-30)
∫

D

f (ζ )Dk
ζ [(Q

′)−1
]W1(z, ζ )

8n+2(z, ζ )
dV (ζ )

=

∫
D

f (ζ )[Y1W1](z, ζ )
8n+2(z, ζ )

dV (ζ )+
∫

D

f (ζ )[Y2W1](z, ζ )
8n+2(z, ζ )

dV (ζ ).

For the first term we use integration by parts. Since |DζY1(z, ζ )| ≲ |ρ|k+3, the
resulting integral is bounded by the expression (4-28). For the second term in (4-30)
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we estimate directly∣∣∣∣∫
D

f (ζ )[Y2W1](z, ζ )
8n+2(z, ζ )

dV (ζ )
∣∣∣∣ ≲ | f |0|ρ|k+3

∫
D

|ζ − z|
|8(z, ζ )|n+2 dV (ζ )

≲ | f |0|ρ|k+3

∫
D

dV (ζ )
|ζ − z||8(z, ζ )|n+1

≲ | f |0|ρ|k+3δ(z)−1/2,

where in the last inequality we applied estimate (3-25) with β = 1. Thus the
absolute value of the domain integral in (4-29) is bounded up to constant by
|ρ|k+3| f |1δ(z)−1/2. We can similarly show the same bound for the boundary
integral in (4-29). Hence in this case

|Dγ
z K

′

1 f (z)| ≲ |ρ|k+3| f |1δ(z)−1/2.

Subcase 4: γ2 = k +1, µ3 = k in (4-22). Then the integrals in (4-21) take the form

∫
bD

f (ζ )Dk+1
ζ 8(z, ζ )W0(z, ζ )

8n+1(z, ζ )
dV (ζ ),

∫
D

f (ζ )Dk+1
ζ 8(z, ζ )W1(z, ζ )

8n+2(z, ζ )
dV (ζ ),

where W0,W1 are some linear combinations of the products of Dζρ(ζ ), Dz8(z, ζ ),
Dζ8(z, ζ ) and η(ζ )+O ′(|z−ζ |). As in the subcase 3 we can write Dk+1

ζ 8(z, ζ )=
Y1 + Y2, where |Dk+1

ζ Y1(z, ζ )| ≲ |ρ|k+2 and |Dk+1
ζ Y2(z, ζ )| ≲ |ρ|k+3|ζ − z|. The

rest of the estimates are the same as in Subcase 3.

Subcase 5: γ2 = k + 1, µ0 = k. Then the integrals in (4-20) can be written as

∫
bD

Dk f (ζ )A′′

0(z, ζ )

8n+1(ζ, z)
dσ(ζ ),

∫
D

Dk f (ζ )A′′

1(z, ζ )

8n+2(ζ, z)
dV (ζ ),

where A′′

0 and A′′

1 are some linear combination of products of

η(z)+ O ′′(|z − ζ |), (Q′′)−1, Dζ8(ζ, z), Dz8(ζ, z), Dζρ(ζ ).

Likewise, the integrals in (4-21) can be written as∫
bD

Dk f (ζ )A′

0(z, ζ )
8n+1(z, ζ )

dσ(ζ ),
∫

D

Dk f (ζ )A′

1(z, ζ )
8n+2(z, ζ )

dV (ζ ),

where A′

0 and A′

1 are linear combination of products of

η(ζ )+ O ′(|z − ζ |), (Q′)−1, Dζ8(z, ζ ), Dz8(z, ζ ), Dζρ(ζ ),



194 ZIMING SHI

with coefficients identical to the linear combination A′′

0 and A′′

1, respectively. In
view of (4-11), it suffices to estimate the difference∫

bD
Dk f (ζ )

(
A′′

0(z, ζ )

8n+1(ζ, z)
−

A′

0(z, ζ )
8n+1(z, ζ )

)
dσ(ζ ),∫

D
Dk f (ζ )

(
A′′

1(z, ζ )

8n+2(ζ, z)
−

A′

1(z, ζ )
8n+2(z, ζ )

)
dV (ζ ).

We shall again estimate only the domain integral as the proof for the boundary
integral is similar. By the expression for η and Lemma 3.9, we have

|η(z)− η(ζ )| ≲ |ρ|3|ζ − z|, |Dζ8(ζ, z)− Dζ8(z, ζ )| ≲ |ρ|3|ζ − z|

|Dz8(ζ, z)− Dz8(z, ζ )| ≲ |ρ|3|ζ − z|, |Q′′(z, ζ )− Q′(z, ζ )| ≲ |ρ|3|ζ − z|.

By procedure similar to the estimates of the I2 integral in the k = 0 case, we can
prove the following estimate:∣∣∣∣∫

D
Dk f (ζ )

(
A′′

1(z, ζ )

8n+2(ζ, z)
−

A′

1(z, ζ )
8n+2(z, ζ )

)
dV (ζ )

∣∣∣∣ ≲ |ρ|3| f |kδ(z)−1/2.

Consequently we conclude that in this case

|Dγ
z K

′

1 f (z)| ≲ |ρ|3| f |kδ(z)−1/2.

Finally combining the results from all cases we have shown that

|Dk+1
z K′

1 f (z)| ≲
{
| f |k |ρ|k+3+αδ(z)−1+α if 0< α ≤

1
2 ;

| f |k |ρ|k+3δ(z)−1/2 if 1
2 ≤ α ≤ 1.

By Lemma 2.3, K′

1 f ∈ Ck+min{α,1/2}(D). Combined with earlier estimates for K′′

1 f
and K0 f , the proof of Proposition 1.2 is now complete. □

Proposition 4.1. Let D be a strictly pseudoconvex domain with C3 boundary. Let
f be a function in C1(�) such that ∂ f ∈ C1(�). Then the following formula holds:

f (z)= L f (z)+
∫

D
Sz(∂ z∂ζ N )(z, · )∧ f −

∫
D

N (z, · )∧ ∂ f

+

∫
bD
�01

0,0(z, · )∧ ∂ f +

∫
D
�0

0,0(z, · )∧ ∂ f, z ∈ D.

Here N and L are given by formulae (3-13) (3-19).

Proof. Starting with the Bochner–Martinelli formula, see for example [Chen and
Shaw 2001, Theorem 2.2.1],

f (z)=

∫
bD
�0

0,0(z, ζ )∧ f (ζ )+
∫

D
�0

0,0(z, ζ )∧ ∂ f, z ∈ D.
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By (3-14), (3-15) and Stokes’ theorem, we have

f (z)=

∫
bD

N (z, · )∧ f +

∫
bD
∂ζ�

01
0,0(z, · )∧ f +

∫
D
�0

0,0(z, ζ )∧ ∂ f

=

∫
D
∂ζ N (z, · )∧ f −

∫
D

N (z, · )∧ ∂ f +

∫
bD
�01

0,0(z, · )∧ ∂ f

+

∫
D
�0

0,0(z, ζ )∧ ∂ f

= L f (z)+
∫

D
Sz(∂ z∂ζ N )(z, · )∧ f −

∫
D

N (z, · )∧ ∂ f

+

∫
bD
�01

0,0(z, · )∧ ∂ f +

∫
D
�0

0,0(z, ζ )∧ ∂ f. □

Proposition 4.2. Let D be a bounded strictly pseudoconvex domain with Ck+3+α

boundary, with 0< α ≤ 1. Suppose f is orthogonal to the Bergman space H 2(D),
is C∞ in D and is holomorphic in D \ D−δ, for some δ > 0. Then

f ∈ Ck+min{α,1/2}(D).

Here we recall the notation.

D−δ := {z ∈ D : ρ(z) <−δ}.

Proof. Let P be the Bergman projection for D. By assumption P f ≡ 0. By
Proposition 3.6, L∗ f = (I +K)P f ≡ 0, which implies that

K f = L∗ f −L f = −L f.

Consequently by Proposition 4.1 and the assumption that ∂ f ≡ 0 on bD,

(4-31) f (z)= −K f (z)+
∫

D
Sz(∂ z∂ζ N )(z, · )∧ f −

∫
D

N (z, · )∧ ∂ f

+

∫
bD
�01

0,0(z, · )∧ ∂ f +

∫
D
�0

0,0(z, · )∧ ∂ f

= −K f (z)+
∫

D
Sz(∂ z∂ζ N )(z, · )∧ f −

∫
D

N (z, · )∧ ∂ f

+

∫
D
�0

0,0(z, · )∧ ∂ f,
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for z ∈ D. Here the kernels �0
0,0 and N are given by formulae (3-11) and (3-13)

on D:

(4-32) N (z, ζ )=
1

(2π
√

−1)n
1

[G(z, ζ )− ρ(ζ )]n

×

(∑
gi

1(z, ζ )dζi

)
∧

(∑
i

∂ζ gi
1(z, ζ )∧ dζi

)n−1

,

�0
0,0(z, ζ )=

1

(2π
√

−1)n
1

|ζ − z|2n

×

n∑
i=1

(ζi − zi )dζi ∧

( n∑
j=1

(dζ j − dz̄ j )∧ dζ j

)n−1

,

where G and g1 are given by expressions (3-5) and (3-6). We can rewrite (4-31) as

(4-33) f +K f = h := h1 + h2 + h3,

where we denote

h1(z) :=

∫
D

Sz(∂ z∂ζ N )(z, · )∧ f,

h2(z) := −

∫
D

N (z, · )∧ ∂ f,

h3(z) :=

∫
D
�0

0,0(z, · )∧ ∂ f.

We show that each hi defines a function in C∞(D). By the first statement in (4-2),
we have h1 ∈ C∞(D). For h2, note that the functions G(z, ζ ), g1(z, ζ ) are C∞ in
z, and the following estimate (see (3-8)) holds

G(z, ζ )− ρ(ζ )≥ c(−ρ(z)− ρ(ζ )+ |z − ζ |2), z, ζ ∈ D.

In particular, for ζ ∈ supp(∂ f ), i.e., ζ ∈ D−δ, the function G(z, ζ ) − ρ(ζ ) is
bounded below by some positive constant for all z ∈ D. Hence in view of (4-32),
h2 ∈ C∞(D). To see that h3 ∈ C∞(D), we note that by assumption ∂ f ∈ C∞

c (D),
and the argument is done using integration by parts.

Now, by Proposition 1.2, K is a compact operator on the Banach space Ck(D).
Thus by the Fredholm alternative, either I + K is invertible or ker(I + K) is
nonempty. Suppose f ∈ ker(I +K); then f = −K f and

√
−1K f = −

√
−1 f . If

f ̸= 0, this would imply that −
√

−1 is an eigenvalue of the operator
√

−1K, which
is impossible since

√
−1K is self-adjoint and have only real eigenvalues. Therefore

we conclude that f ≡ 0, and ker(I +K)= ∅. This implies I +K is an invertible
operator on the space Ck(D).
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Applying this to (4-33) and h ∈C∞(�), we obtain f ∈Ck(D). By Proposition 1.2,
we have K f ∈ Ck+min{α,1/2}(D). Hence f = −K f + h ∈ Ck+min{α,1/2}(D). □

We can now finally prove Theorem 1.1.

Proof of Theorem 1.1. Fix w0 ∈ D, we can write the B( · , w0) = Pϕ, where ϕ ∈

C∞
c (D). Applying Proposition 4.2 to f =Pϕ−ϕ we get Pϕ−ϕ ∈Ck+min{α,1/2}(D).

Hence Pϕ ∈ Ck+min{α,1/2}(D). □

5. Proof of Theorem 1.3

In this section we prove Theorem 1.3, which will also follow from Proposition 1.2.
First we need an approximation lemma.

Lemma 5.1. Let D be a bounded Lipschitz domain in RN . Suppose f ∈ Ck+β(D),
where k is a nonnegative integer and 0 < β < 1. Then there exists a family
{ fε}ε>0 ∈ C∞(D) ∩ Ck+β(D) such that fε converges to f uniformly as ε → 0.
Furthermore, | fε|k+β is uniformly bounded by | f |k+β .

Remark 5.2. Let fε be constructed as above. It follows from [Shi 2023, Proposi-
tion 2.3] that fε converges to f in |·|τ , for any 0 ≤ τ < k +β.

Proof. It suffices to take D as a special Lipschitz domain of the form ω = {x ∈

RN
: xN >ψ(x1, . . . , xn−1), |ψ |L∞ ≤ C}, as the general case follows by standard

partition of unity argument. There exists some cone K such that for any x ∈ ω,
x + K ⊆ ω. Let φ be a C∞ with compact supported in −K and such that φ ≥ 0
and

∫
RN φ = 1. Let φε =

1
εn φ

( x
ε

)
. Then we can define for x ∈ ω the function

fε(x)= f ∗φε(x)=

∫
−K

f (x − εy)φ(y) dV (y).

It is clear that fε ∈ C∞(D) and

| fε(x)− f (x)| =

∣∣∣∣∫
−K

[ f (x − εy)− f (x)]φ(y) dV (y)
∣∣∣∣

≤

∫
−K

| f (x − εy)− f (x)|φ(y) dV (y)

≤ | f |βε
β

∫
−K

yαφ(y) dV (y)

≲ | f |βε
β .

Hence fε converges to f uniformly in ω. Let x1, x2 ∈ ω. Then for all ε > 0,

| fε(x1)− fε(x2)| =

∣∣∣∣∫
−K

[ f (x1 − εy)− f (x2 − εy)]φ(y) dV (y)
∣∣∣∣

≤ | f |β |x1 − x2|
β .
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Accordingly | fε|β is uniformly bounded by | f |β . This proves the case k = 0. For
k ≥ 1 the proof is similar and we leave the details to the reader. □

Lemma 5.3. Let D be a strictly pseudoconvex domain in Cn with Ck+3 boundary,
where k is a nonnegative integer. Then for any β > 0,

|L f |k ≲ | f |k+β .

Proof. Write Dk
zL f (z) as a linear combination of

(5-1)
∫

D
f (ζ )

W (z, ζ )
8n+1+µ(z, ζ )

dV (ζ ), µ≤ k,

where W (z, ζ ) is some linear combination of products of

Dτ1
z [l(ζ )+ O ′(|z − ζ |)], Dτ2

z 8(z, ζ ), µ1, µ2 ≤ k.

Applying integration by parts formulae (3-43) and (3-45) iteratively to the integral
(5-1) until it can be written as a linear combination of

(5-2)
∫

bD
Dη0 f (ζ )

W0(z, ζ )
8n+1(z, ζ )

dσ(ζ ),
∫

D
Dµ0 f (ζ )

W1(z, ζ )
8n+1(z, ζ )

dV (ζ ),

where η0, µ0 ≤ k. Here W0 and W1 are some linear combination of

Dµ1
ζ Dτ1

z [l(ζ )+ O ′(|z − ζ |)], Dµ2
ζ [(Q′)−1

], Dµ3+1
ζ 8(z, ζ ),(5-3)

Dµ4
ζ Dτ2

z 8(z, ζ ), Dµ5+1
ζ ρ(ζ ),

with µi ≤ k, 0 ≤ i ≤ 5 and
∑5

i=0 µi ≤ k. We shall only estimate the domain
integral in (5-2), as the proof of the boundary integral is similar. In view of
(5-3), we can write W1(z, ζ )= Y1(z, ζ )+ Y2(z, ζ ), where |Y1(z, ζ )| ≲ |ρ|k+2, and
|Y2(z, ζ )| ≲ |ρ|k+3|ζ − z|. Write∫

D
Dµ0 f (ζ )

W1(z, ζ )
8n+1(z, ζ )

dV (ζ )

=

∫
D

Dµ0 f (ζ )
Y1(z, ζ )
8n+1(z, ζ )

dV (ζ )+
∫

D
Dµ0 f (ζ )

Y2(z, ζ )
8n+1(z, ζ )

dV (ζ ).

The Y2 integral is bounded by∣∣∣∣∫
D

Dµ0 f (ζ )
Y2(z, ζ )
8n+1(z, ζ )

dV (ζ )
∣∣∣∣ ≲ |ρ|k+3| f |k

∫
D

|ζ − z|
|8(z, ζ )|n+1 ≲ |ρ|k+3| f |k,
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where we used (3-26). For the Y1 integral we use the assumption that f ∈ Ck+β ,
β > 0,∫

D
Dµ0 f (ζ )

Y1(z, ζ )
8n+1(z, ζ )

dV (ζ )

=

∫
D
[Dµ0 f (ζ )− Dµ0 f (z)]

Y1(z, ζ )
8n+1(z, ζ )

dV (ζ )+ Dµ0 f (z)
∫

D

Y1(z, ζ ) dV (ζ )
8n+1(z, ζ )

.

The first integral on the right-hand side is bounded by

|ρ|k+2| f |k+β

∫
D

|ζ − z|β dV (ζ )
|8n+1(z, ζ )|

≲ |ρ|k+2| f |k+β .

For the other integral, since Y1 involves derivatives of ρ up to order k + 2, we can
apply integration by parts and take one more derivative of ρ against ζ . The resulting
integrals are bounded by |ρ|k+3 up to a constant. Summing up the estimates we
have ∣∣∣∣∫

D
Dµ0 f (ζ )

Y1(z, ζ )
8n+1(z, ζ )

dV (ζ )
∣∣∣∣ ≲ |ρ|k+3| f |k+β .

Consequently this shows that |Dk
zL f (z)| ≲ |ρ|k+3| f |k+β , finishing the proof. □

We are now ready to prove Theorem 1.3.

Proposition 5.4. Let D be a strictly pseudoconvex domain in Cn . Let k be a
nonnegative integer, and 0< α, β ≤ 1:

(i) Suppose bD ∈ Ck+3. Then L defines a bounded operator from Ck+β(D) to
Ck+β/2(D).

(ii) Suppose bD ∈ Ck+3+α. Then P,L∗ define bounded operators from Ck+β(D)
to Ck+min{α,β/2}(D).

Proof. (i) We first prove the statement for L and we begin by considering the case
k = 0. Assume first that 0< β < 1. Let f ∈ Cβ(D) and { fε}ε>0 be the functions
constructed in Lemma 5.1. In particular, we have:

(1) fε ∈ C∞(D)∩ Cβ(D);

(2) | fε − f |η → 0, for any 0 ≤ η < β (Remark 5.2).

We claim that for each L fε ∈ Cβ/2(D) with |L fε|β/2 uniformly bounded by some
constant C0. Assuming the claim holds, then for any z1, z2 ∈ D, we have

(5-4) |L f (z1)−L f (z2)|

≤ |L f (z1)−L fε(z1)| + |L fε(z1)−L fε(z2)| + |L f (z2)−L fε(z2)|

≤ 2|L( f − fε)|0 + |L fε|β/2|z1 − z2|
β/2

≤ 2|L( f − fε)|0 + C0|z1 − z2|
β/2.
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Now, given a function g ∈ Cη(D) with η > 0, using the reproducing property of L
we have

(5-5) |Lg(z)| =

∣∣∣∣∫
D
[g(ζ )− g(z)]L(z, ζ ) dV (ζ )+ g(z)

∣∣∣∣
≲ |ρ|2|g|η

∫
D

|ζ − z|η

|8(z, ζ )|n+1 dV (ζ )+ |g|0

≲ (|ρ|2 + 1)|g|η,

where in the last inequality we applied Lemma 3.2.
Applying (5-5) with g = f − fε and using property (2) from above, we get

|L( f − fε)|0 → 0 as ε → 0. It follows from (5-4) that |L f (z1) − L f (z2)| ≤

C0|z1 − z2|
β/2. This shows that L f ∈ Cβ/2(D).

It remains to prove the claim, namely, |L fε|β/2 is bounded by some constant
C0 independent of ε. To this end, we will show that |L fε|β/2 ≤ C ′

0| fε|β , where C ′

0
depends only on |ρ|3. Since | fε|β ≤ | f |β , this proves the claim.

For fε ∈ C∞(D)∩ Cβ(D), we have

fε(z)−L fε(z)=

∫
D
[ fε(z)− fε(ζ )]L(z, ζ ) dV (ζ ),

where we used the reproducing property of kernel L:
∫

D L(z, ζ )dV (ζ )≡ 1. Then

∂ fε
∂zi

(z)−
∂L fε
∂zi

(z)=
∫

D

∂ fε
∂zi

(z)L(z, ζ ) dV (ζ )+
∫

D
[ fε(z)− fε(ζ )]

∂L
∂zi

(z, ζ ) dV (ζ ).

The first term on each side cancels out, which leaves us with

∂L
∂zi

(z,ζ )dV (ζ )

=

∫
D
[ fε(ζ )− fε(z)]

∂L
∂zi

(z,ζ )dV (ζ )

=

∫
D
[ fε(ζ )− fε(z)]

×

[
∂zi [l(ζ )+O ′(|z−ζ |)]

8n+1(z,ζ )
−(n+1)

[l(ζ )+O ′(|z−ζ |)]∂zi8(z,ζ )
8n+2(z,ζ )

]
dV (ζ ).

For z̄i derivatives we have a similar expression. By estimate (3-18) and (3-9), we
obtain

|∇L fε(z)| ≲ |ρ|3| fε|β

(∫
D

|z − ζ |β

|8(z, ζ )|n+1 dV (ζ )+
∫

D

|z − ζ |β

|8(z, ζ )|n+2 dV (ζ )
)

≲ |ρ|3| fε|β

(∫
D

|z − ζ |β

|8(z, ζ )|n+1 dV (ζ )+
∫

D

dV (ζ )
|ζ − z|2−β8(z, ζ )n+1

)
≲ |ρ|3| fε|β(1 + δ(z)−1+β/2),
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where in the last step we applied Lemma 3.2. It follows by Hardy–Littlewood
lemma that L fε ∈ Cβ/2(D) and |L fε|β/2 is bounded by C ′

0| fε|β , where C ′

0 depends
only on |ρ|3. Combined with the earlier argument, this proves (i) for k = 0 and
0< β < 1. If k = 0 and β = 1, we can repeat the above proof without doing the
approximation, obtaining in the end

|∇L f (z)| ≲ |ρ|3| f |1(1 + δ(z)−1/2), z ∈ D.

Hence by Hardy–Littlewood lemma, L f ∈ C1/2(D).
Next we consider the case k ≥ 1. Suppose f ∈ Ck+β(D), for 0 < β < 1. As

before we first construct { fε}ε>0 such that

(1) fε ∈ C∞(D)∩ Ck+β(D);

(2) | fε − f |η → 0, for any 0 ≤ η < k +β.

We claim that |L fε|k+β/2 is bounded uniformly by some constant C0. Assuming
the validity of the claim, for z1, z2 ∈ D and ℓ≤ k, we have

(5-6) |DℓL f (z1)−DℓL f (z2)| ≤ |DℓL f (z1)−DℓL fε(z1)|

+|DℓL fε(z1)−DℓL fε(z2)|

+|DℓL f (z2)−DℓL fε(z2)|

≤ 2|L( f − fε)|ℓ+|L fε|k+β/2|z1−z2|
β/2

≤ 2|L( f − fε)|k+C0|z1−z2|
β/2.

As before we want to show that

|L( f − fε)|k → 0 as ε→ 0.

Here the estimate is more subtle since DLg = LDg does not hold and thus one
cannot estimate as easily as in (5-5). Instead we apply Lemma 5.3 to get

(5-7) |L( f − fε)|k ≲ | f − fε|k+τ , for any τ > 0.

By property (2) above, we have | f − fε|η → 0 for any η < k + β. Hence (5-7)
implies |L( f − fε)|k → 0. Letting ε→ 0 in (5-6), we get L f ∈ Ck+β/2(D), which
proves the reduction.

To finish the proof it remains to show that there exists a constant C ′

0 > 0 (which
we will show depends only on |ρ|k+β) such that |L fε|k+β/2 ≤ C ′

0| fε|k+β . Then by
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Lemma 5.1 we get |L fε|k+β/2 ≤ C ′

0| fε|k+β ≤ C ′

0| f |k+β . We have

Dk+1
z [ fε(z)−L fε(z)]

= Dk+1
z

∫
D
[ fε(z)− fε(ζ )]L(z, ζ ) dV (ζ )

=

∫
D

Dk+1
z fε(z)L(z, ζ ) dV (ζ )+

∫
D

∑
γ1+γ2=k+1

1≤γ2≤k

Dγ1
z fε(z)Dγ2

z L(z, ζ ) dV (ζ )

+

∫
D
( fε(z)− fε(ζ ))Dk+1

z L(z, ζ ) dV (ζ ).

The first integral is equal to Dk+1
z f (z). Hence

Dk+1
z L fε(z)= −

∫
D

∑
γ1+γ2=k+1

1≤γ2≤k

Dγ1
z fε(z)Dγ2

z L(z, ζ ) dV (ζ )

+

∫
D
[ fε(ζ )− fε(z)]Dk+1

z L(z, ζ ) dV (ζ )

:= I1 + I2,

where we denote the first and second integral by I1 and I2, respectively. For I1, we
can write it as a linear combination of integrals of the form

(5-8) Dµ0
z fε(z)

∫
D

W (z, ζ )
8n+1+µ1(z, ζ )

dV (ζ ), µ0, µ1 ≤ k,

where W is some linear combination of Dµ2
z [l(ζ )+ O ′(|z − ζ |)] and Dµ3

z 8(z, ζ )
withµ2, µ3 ≤ k. We apply integration by parts formulae (3-43) and (3-44) iteratively
to the integral in (5-8) until it can be written as a linear combination of

(5-9)
∫

bD

W0(z, ζ )
8n(z, ζ )

dσ(ζ ),
∫

D

W1(z, ζ )
8n+1(z, ζ )

dV (ζ ).

Here W0,W1 are linear combinations of products of

Dτ1
ζ Dµ2

zi
[l(ζ )+ O ′(|z − ζ |)], Dτ2

ζ [(Q′)−1
], Dτ3+1

ζ 8(z, ζ ),

Dτ4
ζ Dµ3

z 8(z, ζ ), Dτ5+1
ζ ρ(ζ ),

with τi ≤ k, 1 ≤ i ≤ 5. Note that all these quantities are bounded by some constant
multiple of |ρ|k+3. It follows that the integrals in (5-9) and hence I1 is bounded by

(5-10) |I1| ≲ | fε|k |ρ|k+3

(∫
bD

dσ(ζ )
|8(z, ζ )|n

+

∫
D

dV (ζ )
|8(z, ζ )|n+1

)
≲ | fε|k |ρ|k+3(1 + log δ(z)),
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where we applied Lemma 3.4. The integral I2 can be written as a linear combination
of integrals of the form

(5-11)
∫

D

[ fε(ζ )− fε(z)]W (z, ζ )
8n+2+µ(z, ζ )

dV (ζ ), µ≤ k.

Here W (z, ζ ) is some linear combination of

Dτ0
z [l(ζ )+ O ′(|z − ζ |)], Dτ1

z 8(z, ζ ), τ0, τ1 ≤ k + 1.

If µ ≤ k − 1 we can integrate by parts and estimate just like I1 to show that
|I2| ≲ | fε|k |ρ|k+3(1 + log|δ(z)|). If µ= k, we apply integration by parts formulae
(3-43) and(3-45) until the integral (5-11) can be expressed as a linear combination
of integrals of the form

(5-12)
∫

bD

Dη0
ζ fε(ζ )A0(z, ζ )

8n+1(z, ζ )
dσ(ζ ),

∫
D

Dµ0 fε(ζ )A1(z, ζ )
8n+2(z, ζ )

dV (ζ ),

for η0, µ0 ≤ k. Here A0, A1 are linear combination of products of

Dµ1
ζ [l(ζ )+ O ′(|z − ζ |)], Dµ2

ζ [(Q′)−1
], Dµ3+1

ζ 8(z, ζ ),(5-13)

Dµ4
ζ Dz8(z, ζ ), Dµ5+1

ζ ρ(ζ ),

where µi ≤ k, and
∑5

i=0 µi = k. We now use the fact that ρ ∈ C∞(D)∩ Ck+3(D)
satisfies the estimate

|D j
z ρ(z)| ≲ C j |ρ|k+3(1 + δ(z)k+3− j ), j = 0, 1, 2, . . . .

We shall only estimate the domain integral in (5-12), as the estimate for the boundary
integral is similar. In view of (5-13) we can write A1(z, ζ )= X1(z, ζ )+ X2(z, ζ ),
where |X1(z, ζ )| ≲ |ρ|k+2 and |X2(z, ζ )| ≲ |ρ|k+3|ζ − z|. Write∫

D

Dµ0 fε(ζ )A1(z, ζ )
8n+2(z, ζ )

dV (ζ )

=

∫
D

Dµ0 fε(ζ )X1(z, ζ )
8n+2(z, ζ )

dV (ζ )+
∫

D

Dµ0 fε(ζ )X2(z, ζ )
8n+2(z, ζ )

dV (ζ ).

By estimates (3-9) and (3-25), we see that∣∣∣∣∫
D

Dµ0 fε(ζ )X2(z, ζ )
8n+2(z, ζ )

dV (ζ )
∣∣∣∣ ≲ |ρ|k+3| fε|k

∫
D

|ζ − z|
|8(z, ζ )|n+2 dV (ζ )

≲ |ρ|k+3| fε|k

∫
D

dV (ζ )
|ζ − z||8(z, ζ )|n+1

≲ |ρ|k+3| fε|k(1 + δ(z)−1/2), µ0 ≤ k.
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On the other hand, we can write

(5-14)
∫

D

Dµ0 fε(ζ )X1(z, ζ )
8n+2(z, ζ )

dV (ζ )

=

∫
D

[Dµ0
ζ fε(ζ )− Dµ0

z fε(z)]X1(z, ζ )

8n+2(z, ζ )
dV (ζ )

+ Dµ0
z fε(z)

∫
D

X1(z, ζ )
8n+2(z, ζ )

dV (ζ ).

Since fε ∈ Ck+β(D), the first integral on the right-hand side above is bounded up
to a constant by

|ρ|k+2| fε|k+β

∫
D

|ζ − z|β

|8(z, ζ )|n+2 dV (ζ )≲ |ρ|k+2| fε|k+β

∫
D

dV (ζ )
|ζ − z|2−β |8(z, ζ )|n+1

≲ |ρ|k+2| fε|k+β(1 + δ(z)−1+β/2).

For the second integral on the right-hand side of (5-14), we can integrate by parts
and bound the resulting expression by

|ρ|k+3| fε|k

(∫
bD

dσ(ζ )
|8(z, ζ )|n

+

∫
D

dV (ζ )
|8(z, ζ )|n+1

)
≲ |ρ|k+3| fε|k(1 + log δ(z)).

Hence we have shown that

|I2| ≲ | fε|k+β |ρ|k+3(1 + δ(z)−1+β/2).

Combined with the estimate (5-10) for I1, this shows that

|Dk+1
z L fε(z)| ≲ | fε|k+β |ρ|k+3(1 + δ(z)−1+β/2).

By Lemma 2.3, L fε ∈ Ck+β/2(D) and |L fε|k+β/2 ≤ C ′

0| fε|k+β where C ′

0 depends
only on |ρ|k+3. This proves the claim and hence the case when 0< β < 1. Finally
if β = 1, the same proof works without the use of the approximation.

(ii) From Proposition 1.2 we know that K f ∈ Ck+min{α,1/2}(D) if f ∈ Ck(D) (and
in particular if f ∈ Ck+β(D) for 0 < β ≤ 1). By (i), L f ∈ Ck+β/2(D). Since
L∗ f = K f +L f , and min

{
α, 1

2 , β/2
}

= min
{
α, β/2

}
, we have

L∗ f ∈ Ck+min{α,β/2}(D).

Finally by the integral equation (I +K)P f =L∗ f , and the fact that I +K is invertible
in the space Ck(D), we get P f ∈ Ck(D) and thus KP f ∈ Ck+min{α,1/2}(D) by
Proposition 1.2. Therefore P f = −KP f +L∗ f ∈ Ck+min{α,β/2}(D). □
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