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We introduce a lifting of West’s stack-sorting map s to partition diagrams,
which are combinatorial objects indexing bases of partition algebras. Our
lifting S of s is such that S behaves in the same way as s when restricted to
diagram basis elements in the order-n symmetric group algebra as a diagram
subalgebra of the partition algebra Pξ

n . We then introduce a lifting of the
notion of 1-stack-sortability, using our lifting of s. By direct analogy with
Knuth’s famous result that a permutation is 1-stack-sortable if and only if it
avoids the pattern 231, we prove a related pattern-avoidance property for
partition diagrams, as opposed to permutations, according to what we refer
to as stretch-stack-sortability.

1. Introduction

For a permutation p in the symmetric group Sn , we write

(1) p = Ln R,

letting p be denoted as a string or tuple given by the entries of the bottom row of
the two-line notation for p. We then let West’s stack-sorting map s [6; 7; 8; 9; 10;
11; 12; 13; 14] (compare [27]) be defined recursively so that

(2) s(p) = s(L) s(R) n

and so that s maps permutations to permutations and sends the empty permutation
to itself. Our notation and terminology concerning this mapping are mainly based
on references such as [6; 7; 8; 9; 10; 11; 12; 13; 14]. In this article, we introduce
a lifting of s so as to allow combinatorial objects known as partition diagrams as
input.

The problem of generalizing West’s stack-sorting map has been considered
in a number of different contexts. Notably, the stack-sorting map s has been
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generalized to Coxeter groups [12] and to words [13], and Cerbai, Claesson, and
Ferrari generalized

(3) s : Sn → Sn

to a function sσ : Sn → Sn for a permutation pattern σ [5], so that s = s21, with a
related generalization of s having been given by Defant and Zheng in [14]. Since s is
defined on permutations, it is natural to consider generalizing this mapping using
“permutation-like” combinatorial objects. The bases of the partition algebra Pξ

n
generalize the bases of the order-n symmetric group algebra in ways that are of
interest from both a combinatorial and an algebraic perspective, and this leads us
to consider how partition diagrams, which index the bases of Pξ

n , may be used to
generalize West’s stack-sorting map. We generalize, in this article, s : Sn → Sn to a
mapping S : Pn →Pn from the partition monoid Pn to itself such that S restricted
to permuting diagrams behaves in the same way as s. We then apply our lifting S

to determine an analogue of a famous result due to Knuth [20, Section 2.2.1] on
1-stack-sortable permutations.

The representation theory of Pξ
n is intimately linked with that for the n!-dimen-

sional symmetric group algebra. Indeed, there is so much about the representation
theory of Pξ

n and associated combinatorial properties of Pξ
n that are directly derived

from or otherwise based on the representation theory of the algebra span(Sn) and
associated combinatorics [2; 3; 17; 18; 22; 23; 25]. The Schur–Weyl duality given
by how the bases of Pξ

n generalize the bases of span(Sn) is of importance in both
combinatorial representation theory and in the areas of statistical mechanics in
which partition algebras had originally been defined by Martin [21; 22; 23; 24] and
Jones [19]. The foregoing considerations are representative of the extent to which
partition diagrams generalize permutations in a way that is of much significance in
both mathematics and physics. This motivates our lifting West’s stack-sorting map
so as to allow partition diagrams, in addition to permutations, as input.

Preliminaries. To be consistent with the notation in references as in [6; 7; 8;
9; 10; 11; 12; 13; 14] for indexing symmetric groups and maximal elements in
permutations, as in (2) and (3), we let the order of a given partition algebra/monoid
be denoted as in the order of the symmetric group shown in (3). In particular,
following [16], we let the partition monoid of a given order be denoted as Pn , and
we let the corresponding partition algebra with a complex parameter ξ be denoted
as Pξ

n . These structures are defined as follows.
We let Pn consist of set-partitions µ of {1, 2, . . . , n, 1′, 2′, . . . , n′

} that we denote
with a two-line notation by analogy with permutations, by aligning nodes labeled
with 1, 2, . . . , n into an upper row and nodes labeled with 1′, 2′, . . . , n′ into a
bottom row, and by forming any graph G such that the set of components of G
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equals µ. Graphs of this form, denoted in the manner we have specified, are referred
to as partition diagrams, and two such partition diagrams are considered to be the
same if the connected components are the same in both cases. The components of
the graph G given as before are referred to as blocks.

Example 1. The set-partition {{1, 4}, {2, 3, 4′, 5′
}, {5}, {1′, 3′

}, {2′
}} may be de-

noted as

or, equivalently, as

Following [18], we let the underlying field for partition algebras and symmetric
group algebras be C, as C being algebraically closed is of direct relevance in terms
of the study of the semisimple structure for partition algebras [18]. We may let the
symmetric group algebra of order n be denoted by taking the linear span span(Sn),
or, more explicitly, spanC{σ : σ ∈ Sn}, of the symmetric group Sn .

For two partition diagrams d1 and d2, we place d1 on top of d2 so that the bottom
nodes of d1 overlap with the top nodes of d2, then we remove the central row in
this concatenation d1 ∗ d2 in such a way so as to preserve the relation given by
topmost nodes being in the same component as bottommost nodes in d1 ∗ d2. We
then let d1 ◦ d2 denote the graph thus obtained from this concatenation. This is the
underlying multiplicative operation for partition monoids.

Example 2. Borrowing an example from [16], we let d1 be as in Example 1, and
we let d2 be as below:

We may verify that the monoid product d1 ◦ d2, in this case, is as below [16]:

For a complex parameter ξ , we endow the C-span of Pn with a multiplicative
binary operation as d1d2 = ξ ℓd1 ◦ d2, where ℓ denotes the number of components
contained entirely in the middle row of d1 ∗ d2. By extending this binary operation
linearly, this gives us the underlying multiplicative operation for the structure known
as the partition algebra, which is denoted as Pξ

n . The set of all elements in Pn , as
elements in Pξ

n , is referred to as the diagram basis of Pξ
n .
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Although the algebraic structure of Pξ
n will not be used directly in this article, it

is useful to define Pξ
n explicitly, since we are to heavily make use of an algebra

homomorphism defined on partition algebras and introduced in [4], and it is often
convenient to use notation and terminology associated with Pξ

n or its algebraic
structure, e.g., by referring to the diagram basis of Pξ

n .
For a partition diagram π , the propagation number of π refers to the number of

blocks in π containing at least one vertex in the top row and at least on vertex in the
bottom row. So, there is a clear bijection between the set of all permutations in Sn

and the set of all diagrams in Pn that are of propagation number n. In our lifting
West’s stack-sorting map to the partition monoid, to be consistent with two-line
notation for permutations and with (1), we let a permutation

(4) p : {1, 2, . . . , n} → {1, 2, . . . , n}

be in correspondence with the partition diagram π given by the set-partition

(5)
{
{1, p(1)′}, {2, p(2)′}, . . . , {n, p(n)′}

}
,

although it is common to instead let a permutation p be mapped to the partition
diagram obtained by reflecting π vertically.

2. A lift of West’s stack-sorting map

As Defant and Kravitz explain in [13], there is a matter of ambiguity in the problem
of lifting the mapping s so as to allow words involving repeated characters. We
encounter similar kinds of problems in terms of the problem of lifting s so as
to allow partition diagrams, as opposed to permutations written as permutation
diagrams, as the argument. This is illustrated below.

Example 3. According to the embedding indicated in (5), we let the permutation(
1 2 3
2 3 1

)
be written as

(6)

If we visualize the block {2, 3′
} being removed and placed on the right of a resultant

configuration, by analogy with how the permutation (1) gets mapped to the right-
hand side of (2) under the application of West’s stack-sorting map, there is a clear
way how this removal “splits” the permutation diagram in (6) into a left and a right
configuration by direct analogy with (1), and part of the purpose of our procedure
in the next subsection is to formalize this idea in a way that may be extended to all
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partition diagrams. In contrast, if we remove, for example, the rightmost block of

(7)

where the above coloring is to distinguish the blocks in the partition diagram
depicted, then the block highlighted in green is not strictly to the left of the rightmost
block, since there are green nodes to the left and right of a red node in the upper row.

To lift the recursive definition for s indicated in (2) so as to allow members of Pn

as the input for an extension or lifting of s, and to deal with the matter of ambiguity
explained in Example 3, we would want to mimic (2) by allowing the possibility
of “middle” configurations, as opposed to the left-right dichotomy indicated in (1)
and (2). We formalize this idea below.

A procedure for stack-sorting partition diagrams. Define Sn : Pn → Pn accord-
ing to the following procedure, for an arbitrary partition diagram π in Pn . We
order the bottom nodes of a given partition diagram in Pn in the natural way, with
1′ < 2′ < · · · < n′. For the sake of convenience, we may write S = Sn .

(1) If there are no propagating blocks in π , skip the below steps involving propa-
gating blocks.

(2) Take the largest bottom node of π that is part of a propagating block B. This
propagating block separates π into three (possibly empty) classes of configurations
according to how the top nodes of π are separated by removing B. Explicitly, we
define L , M1, M2, . . . , Mµ, and R as follows, by direct analogy with (1). We may
denote L , Mi , and R as diagrams in Pn . The blocks of L (resp. R) consist of
one of the following:

• Any blocks of π with upper nodes that are all strictly to the left (resp. right)
of all of the upper nodes of B.

• Any nonpropagating blocks of π on the bottom row of π with nodes that are
all strictly to the left (resp. right) of all of the lower nodes of B.

• Singleton blocks.
The blocks of expressions of the form Mi consist either of

• any blocks of π that do not satisfy either of the first two bullet points listed
above, or

• singleton blocks.

We order M1 < M2 < · · · < Mµ according to the ordering of the minimal
elements, subject the ordering whereby 1′ < 2′ < · · · < n′ < 1 < 2 < · · · < n. We
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then let B ′ denote the partition diagram obtained from B by adding any singleton
nodes so as to form a partition diagram in Pn . With this setup, we write

(8) S (π) = S (L ) ⊙ S (M1) ⊙ · · · ⊙ S (Mµ) ⊙ S (R) ⊙ B ′,

where the associative binary relation ⊙ is to later be defined.

(3) Repeatedly apply the above step wherever possible, i.e., to the expressions in
or derived from (8) given by S evaluated at a partition diagram.

(4) The above steps yield a ⊙-product of expressions of the forms

(9) S (N1), . . . , S (Nm1) and B ′

1, . . . , B ′

m2
,

not necessarily in this order, for nonpropagating diagrams Ni , and where each
expression of the form B ′

j is a partition diagram with exactly one propagating
block and with singleton blocks anywhere else. The factors of the aforementioned
⊙-product indicated in (9) are ordered in the following way: B ′

j is the j-th factor
of the form B ′

κ appearing in this ⊙-product, and S (Ni ) is the i-th factor of the
form S (Nκ) appearing in this ⊙-product. The operation ⊙ indicates that the
following is to be applied. We label the top nodes in the propagating block in B ′

1
from left to right with consecutive integers starting with 1, and we then label the
top nodes in the propagating block in B ′

2 with consecutive integers (starting with 1
plus the number of top nodes in the propagating block in B ′

1), and we continue in
this manner. We then continue with this labeling, by labeling any nonpropagating
blocks of size greater than 1 in the top row of the Ni -expressions, in order of the
nodes as they appear among consecutive Ni -diagrams. If there are any unused labels
for the top row, label singleton blocks in the upper row with these leftover labels.
However, for the bottom nodes of any nonsingleton blocks from π , we let these
bottom nodes keep their original labelings (and if necessary we add in singleton
blocks in a bottom row to form a partition diagram based on the preceding steps).

(5) As indicated above, the above steps produce an element in Pn . We set S (π)

to be this element.

Example 4. Let π denote the partition diagram

(10)

in P8 corresponding to the set-partition{
{1, 2}, {3, 5, 7, 2′, 4′, 6′

}, {4, 3′
}, {6, 7′

}, {8}, {1′
}, {5′, 8′

}
}
.

The largest bottom node of π that is part of a propagating block B, in this case, is 7′,
and B is {6, 7′

}. For the sake of clarity, we highlight this block in the following
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manner:

The blocks of L are highlighted in cyan as below (with the propagating block B
again highlighted in a different color for the sake of clarity).

We find that there is only one expressions of the form Mi , and we may denote this
expression as M . The blocks of M are highlighted in green as below.

We see that R consists of only one block, which is highlighted in orange, as below.

So, according to our lifting of West’s stack-sorting map, we obtain the following,
where singleton nodes colored black indicate that these singleton nodes have been
“added in” according to the above given procedure.

S (π) =

S

 ⊙

S

 ⊙

S

 ⊙

 
Now, let us repeat the given procedure to the first S -factor on the right-hand side
of the above equality, and then to the resultant S -factor involving an argument



234 JOHN M. CAMPBELL

with a block of size 6. This results in the following equality:

S (π) =

S

 ⊙

S

 ⊙

S

 ⊙

 ⊙

S

 ⊙

S

 ⊙

S

 ⊙

 ⊙

S

 ⊙

 
So, we have determined a ⊙-product of expressions of the forms indicated in (9).
Now, apply the labeling indicated as follows, according to our procedure.
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S (π) =

S


6 7

⊙

S

( )
⊙

S

( )
⊙


3′

1
⊙

S

( )
⊙

S


8′5′

⊙

S

( )
⊙


6′4′2′

2 3 4
⊙

S

( )
⊙


7′

5
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So, this shows us how the partition diagram in (10) gets mapped to

according to our sorting map.

Sorting permuting diagrams. Since we claim that our sorting map S : Pn → Pn

lifts (3), it would be appropriate to formalize and prove this claim, as in Theorem 5
below and our proof of this theorem. We proceed to briefly review some prelimi-
naries concerning Theorem 5.

Our convention for mapping permutations to permutation diagrams, as indicated
in (5), is to be used consistently throughout our article. Again, this convention is
consistent with the notation for West’s stack-sorting map indicated in (1), since
it mimics two-line notation for permutations. We are to extend, as below, this
embedding so as to be applicable to expressions as in L and R in the permutation
decomposition shown in (1).

The rook algebra is a subalgebra of Pξ
n that is spanned by partial permutations.

Partial permutations are diagrams that consist of blocks of size 1 and blocks of
size 2 that consist of a vertex in the top row and a vertex in the bottom row [17].
Following [28], the expression Rdk denotes the set of all rook k-diagrams. Similarly,
for each r ∈ Z satisfying 0 ≤ r ≤ k, the expression Rdk[r ] denotes the set of rook
k-diagrams with precisely r singleton vertices in each row. Given a permutation
decomposition of the form indicated in (1), we can identify L (resp. R) with a
partial permutation such that the primed elements in any 2-blocks in this partial
permutation are the primed versions of any numbers in L (resp. R) and in such a
way so as to agree with the two-line notation indicated in (1). Explicitly, if L is
empty, we let it be mapped to the partition diagram in Pn consisting of singleton
blocks, and if we write

L = l1l2 · · · lℓ(L),

we may identify L with the partition diagram with 2-blocks of the forms

{p−1(l1), l ′1}, {p−1(l2), l ′2}, . . . , {p−1(lℓ(L)), l ′ℓ(L)}

and with singleton blocks everywhere else, and similarly for R. This agrees with
our convention indicated in (5) for embedding Sn into Pn .

Again with reference to the permutation decomposition in (1) we may identify
the expression n with a partial permutation and in a similar fashion as above, with
the understanding that this expression is part of the concatenation in (1). Explicitly,
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we would identify n with the partition diagram given by the set-partition

{{p−1(n), n′
}} ∪(11)

{{x} : x ∈ N, 1 ≤ x ≤ n, x ̸= p−1(n)} ∪(12)

{{x} : x ∈ N, 1 ≤ x ≤ n, x ̸= n}.(13)

As illustrated in Example 4, for permutation diagrams π1 and π2, if π2 consists
entirely of singleton nodes then S (π1)⊙S (π2) = S (π2)⊙S (π1) = S (π1). This
algebraic property is to be used in our proof of Theorem 5.

Theorem 5. Let p be a permutation in Sn , and let π denote the corresponding
partition diagram according to (5). Then S (π) equals the partition diagram
corresponding to s(p).

Proof. As above, we let p ∈ Sn , writing p : {1, 2, . . . , n} → {1, 2, . . . , n}. As above,
we let π denote the partition diagram corresponding to (5), i.e., so that the set
of blocks of π is (5). With respect to the notation in (8), the expression S (L )

(resp. S (R)) is equal to S evaluated at a diagram obtained from π by taking any
blocks consisting of a bottom node that is labeled the primed version of a number to
the left (resp. right) of n in the sense indicated in (1), i.e., a number in L (resp. R)
according to the notation in (1) for a permutation p ∈ Sn . Since π is a permutation
diagram, any M -expression consists entirely of singleton nodes. So, the product
in (8) reduces to

(14) S (π) = S (L ) ⊙ S (R) ⊙ B ′.

As indicated above, L (resp. R) is precisely the partition diagram given by embed-
ding L (resp. R) into Pn . Similarly, B ′ is precisely the partition diagram given by
embedding the factor n in (1), in the manner indicated in (11)–(13). So, letting it be
understood that the factors in (1) and the left-hand side of (1) may be identified with
their respective embeddings, we find that the ⊙-product in (14) may be written as

S (p) = S (L) ⊙ S (R) ⊙ n.

By comparing both sides of the above decomposition with both sides of the decom-
position in (2), an inductive argument provides us with the desired result. □

Since we have lifted West’s stack-sorting map so as to allow partition diagrams in
addition to permuting diagrams as input, this leads us to consider how fundamental
properties concerning the s-map (3) may be “translated” according to our lifting. In
particular, we are led to desire to generalize Knuth’s classic result that a permutation
is 1-stack-sortable if and only if it avoids the pattern 231.

The intricate combinatorial structures and behaviors associated with our lifting S

of West’s stack-sorting map are investigated in Section 3 below. Such investigations
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are inspired by the extent of mathematical interest concerning the beautiful combi-
natorics, at both a structural and enumerative level, associated with an important
variant of the s-map referred to as pop-stack sorting for permutations, with reference
to the work of Asinowski et. al. [1].

3. Pattern avoidance

We again let p ∈ Sn be written as a mapping in the manner indicated in (4). In
the context of the study of pattern avoidance in permutations, it is often desirable
to denote p using an n × n grid in the Cartesian plane. For example, if we begin
by letting a permutation p ∈ S3 be denoted in the manner indicated in (1), writing
p = 312, we may let this be denoted using the n × n grid below.

•

•

•

More generally, we may denote a permutation

p = p(1)p(2) · · · p(n)

with an n×n array such that an (i, j)-entry is nonempty if and only if (i, j) is of the
form (k, n− p−1(k)+1) for some index k, and where an (k, n− p−1(k)+1)-entry is
highlighted in some way, as above. We say that a permutation p = p(1)p(2) · · · p(n)

contains the pattern 231 if there exist indices k1, k2, and k3 such that k1 < k2 < k3

and such that the entries

(k1, n − p−1(k1) + 1),(15)

(k2, n − p−1(k2) + 1),(16)

(k3, n − p−1(k3) + 1),(17)

satisfy the following in the n × n array we use to denote p: Point (15) is strictly
below (16) and is strictly above point (17). In other words, the n × n array cor-
responding to p contains a pattern that is equivalent, in the sense that we have
specified, to the following configuration:

•

•

•

A permutation is said to avoid the pattern 231 if it does not contain this pattern.
In a similar fashion, we may characterize or define a permutation that avoids the
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pattern 12 as a decreasing permutation, i.e., a permutation of the following form:

•

•

. . .

•

Correspondingly, an increasing permutation is of the form shown below, i.e., it is
an identity permutation:

•

·
·
·

•

•

A permutation p is said to be t-stack-sortable if

s ◦ s ◦ · · · ◦ s︸ ︷︷ ︸
t

(p)

is increasing; see [9; 13] for related research that has inspired much about this
article.

The concept of a 231-avoiding permutation is of considerable interest for the
purposes of this article, so it is worthwhile to illustrate a permutation of this form.
In this regard, we see that the permutation corresponding to

(18)

•

•

•

•

•

•

avoids the pattern 231. So, according to Knuth’s characterization of 1-stack-sortable
permutations, we would expect the permutation illustrated in (18) to be 1-stack-
sortable. It is worthwhile for our purposes to illustrate this.

Example 6. Being consistent with the notation in (1), the permutation p ∈ S6

depicted in (18) may be written as 543216. According to the recursion shown in (2)
for West’s stack-sorting map, we obtain

s(p) = s(543216) = s(54321)6 = s(4321)56

= s(321)456

= s(21)3456 = s(1)23456 = 123456.
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So, since s(p) is the identity permutation in S6, we have that p is 1-stack-sortable.

The main goal of our current section is to generalize the following groundbreaking
result due to Knuth, which, as indicated in [9], was the starting point for the study
of both stack-sorting and pattern avoidance in permutations.

Theorem 7 [20]. A permutation is 1-stack sortable if and only if it avoids 231
(compare [9]).

So, in view of our lifting S of the mapping s, what would be an appropriate way
of generalizing Theorem 7 according to the mapping S ? In particular, how can
the concept of “1-stack-sortability” be translated in a meaningful way so as to be
applicable with respect to S ? To answer these questions, we are to make use of a
morphism on partition algebras that we had previously applied in a representation-
theoretic context [4].

Stretch morphisms. To illustrate the problem of determining a suitable analogue of
Theorem 7 according to our lifting S of West’s stack-sorting map, let us consider S

evaluated at a permuting diagram that is 1-stack-sortable.

Example 8. We see that the permutation 312 avoids the pattern 231. So, let us
consider S evaluated at the permutation diagram corresponding to 312, as below.

S

 =(19)

S

  =

S

   
Following through with the procedure introduced in Section 2, we obtain that
identity permutation diagram in P3 shown below.

From Theorem 5 together with Example 8, given a partition diagram π ∈ Pn , to
generalize the notion of 1-stack-sortability in an applicable and meaningful way, it
would be appropriate to use a condition whereby S (π) belongs to a fixed class of
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generalizations of the multiplicative identity element

(20) · · ·︸ ︷︷ ︸
n

in Pn . This leads us to apply, as below, a morphism on partition algebras introduced
in a representation-theoretic context in [4].

Since our lifting of West’s stack-sorting map applies to partition diagrams in
general, as opposed to, say, rook diagrams, it would be appropriate to allow nonrook
diagrams in our lifting of the concept of 1-stack sortability. However, our lifting
of s : Sn → Sn is such that it preserves the sizes of blocks in a partition diagram
(but not necessarily the arrangement or ordering of the blocks). So, it would be
appropriate to let a partition diagram be mapped, under S , to a generalization
of (20) allowing for the possibility of blocks other than 2-blocks. In this regard, we
are to employ what is referred to as the Stretch morphism for partition algebras, as
introduced in [4].

Let S be a finite set of natural numbers. Let π be a set-partition of S ∪ S′. Let k
be a natural number such that k ≥ max(S). Following [4], we write δk(π) to denote
the diagram basis element in Pξ

k corresponding to the set-partition given by adding
blocks of the form {i, i ′

} to π , where i is a natural number such that i ̸∈ S and i ≤ k.
Again, following [4], we let α = (α1, α2, . . . , αℓ(α)) be a set-composition of a finite
set of natural numbers (referring to [4] for details on combinatorial terms related to
Stretch morphisms), and we write m = ℓ(α), and set k ≥ max

(⋃
α
)
. As in [4], we

define

(21) Stretchα,k : Pξ
m → P

ξ
k

in the following manner.
Let dπ be a member of the diagram basis of P

ξ
m . Let π = {π1, π2, . . . , πℓ(π)}.

Then

(22) Stretchα,k(dπ ) = δk

({ ⋃
i∈π j

i is unprimed

αi ∪
⋃

i ′∈π j

α′

i : 1 ≤ j ≤ ℓ(π)

})
.

We may extend this definition linearly as in [4] so as to obtain an algebra homo-
morphism, but this is not important for our purposes.

An interesting feature concerning the problem of generalizing 1-stack-sortability
by generalizing (3) so as to allow partition diagrams as the arguments of a lift-
ing/extension of the s-map may be explained as follows. By enforcing different con-
ditions on how (20) should be generalized in order to generalize 1-stack-sortability,
say, in the context of a given application, this gives rise to different families of
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combinatorial objects in the study of the classification of partition diagrams that
reduce to a specified generalization of (20), under the application of S .

Definition 9. We say that a partition diagram π is stretch-stack-sortable if S (π)

is the evaluation of a Stretch map on an identity permutation diagram.

To begin with, we illustrate the effect of applying (22) to the multiplicative
identity elements in a partition algebra.

Example 10. With regard to the notation in (22), we let dπ be the partition diagram
corresponding to

(23) π =
{
{1, 1′

}, {2, 2′
}, {3, 3′

}, {4, 4′
}
}
.

Define α as the set-composition ({1, 2}, {3}, {5, 6, 7}, {4}). Observe that the length
of α equals the order of dπ , in accordance with the definition in (22). Let us consider
the j = 3 case within the family of the argument of δk indicated in (22), letting the
elements in π be ordered in the manner we have written these elements in (23). So,
the element corresponding to this j = 3 case is⋃

i∈π3
i is unprimed

αi ∪
⋃

i ′∈π3

α′

i = α3 ∪ α′

3 = {5, 6, 7, 5′, 6′, 7′
}.

Continuing similarly with respect to the other possible values for the j-index, we
obtain that Stretchα,7 evaluated at dπ is equal to

Now, let us consider an illustration of a partition diagram satisfying the conditions
of Definition 9.

Example 11. According to the procedure in Section 2, we may verify the evaluation

S

 =

So, the argument of S , in this case, is stretch-stack-sortable.

Example 12. We also find that

it stretch-stack-sortable.
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Examples 11 and 12 illustrate the problem of classifying stretch-stack-sortable
partition diagrams. The importance of diagram algebras in both the study of alge-
braic groups and in the field of knot theory provides a source of further motivation
concerning our interest in lifting and generalizing the notions of stack-sortability
and pattern avoidance in permutations to basis elements in diagram algebras. The
following theorem appears to be the first direct step in this direction. The situation
indicated via the bullet points given in Theorem 13 formalizes how the notion of
avoiding the pattern 231 may be lifted from permutations to partition diagrams, in
a way that is directly applicable to lifting West’s stack-sorting map.

Theorem 13. A partition diagram π is stretch-stack-sortable if and only if :

(1) The only blocks of π are propagating.

(2) For each block of π , it has the same number of upper and lower vertices.

(3) For each block of π , all of its lower nodes are consecutive as primed integers.

(4) Letting the blocks of π be denoted in the form Ci ∪ D′

i for indices i , and where
Ci and D′

i respectively denote the set of upper and lower nodes of a given block,
and writing

(24) D′

1 < D′

2 < · · · ,

according to the consecutive primed integers labeling D′

i , the situation indicated
via the following bullet points cannot occur.

• D′

i1
< D′

i2
< D′

i3
.

• By applying the procedure used to define S , at the stage in this application
when D′

i3
contains the greatest nonsingleton primed nodes, one of the following

situations occurs:

• either D′

i2
is part of an L -configuration and D′

i1
is part of an R-configuration,

or

• D′

i2
is part of an L -configuration and D′

i1
is part of an M -configuration, or

• D′

i2
is part of an M -configuration and D′

i1
is part of an R-configuration, or

• D′

i2
is part of an M j -configuration and D′

i1
is part of an Mk-configuration,

with j < k.

Proof. (⇒) Let π be a stretch-stack-sortable partition diagram. The mapping S is
such that the number of blocks in a partition diagram µ with u upper nodes and l
lower nodes is equal to the number of blocks in S (µ) with u upper nodes and l
lower nodes. So, π cannot have any nonpropagating blocks, because, otherwise,
π would have a nonpropagating block, contradicting that π is stretch-stack-sortable.
By using the same property of S that we have previously indicated, we have that
each block of π is such that it has the same number of upper and lower vertices.
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Let B be a block of π , and, by way of contradiction, suppose that it is not the
case that all of its lower nodes are consecutive as primed integers. According to
the procedure used to define S , in S (π), there would have to be a new block N
such that the labels for the lower nodes of N are the same as the labels of the
lower nodes of B and such that the upper nodes of N are consecutive integers. So,
there would be a block N in S (π) with consecutive integers labeling the upper
nodes of N and such that the lower nodes of N do not form a set of consecutive
primed integers. However, this is impossible for the stretch of an identity diagram.
Now, by way of contradiction, suppose that the situation indicated via the above
six bullet points occurs. In any out of the four possibilities corresponding to the
last four bullet points, the removal of the block containing D′

i3
has the effect of

separating the partition diagram containing D′

i1
and D′

i2
in such a way so that

in the ⊙-product shown in (8), the block containing D′

i1
will be in an argument

of S strictly to the left of the factor in the ⊙-product given by S evaluated at an
expression involving D′

i2
. Consequently, the ordering of the positions of the bottom

nodes of D′

i1
and D′

i2
will be reversed, but then the top nodes corresponding to D′

i2

will be labeled with integers strictly smaller than the top nodes corresponding to D′

i1

in the evaluation of S (π), giving us a crossing in the partition diagram S (π) that
would be impossible in the stretch of an identity partition diagram.

(⇐) Conversely, suppose that a partition diagram π ∈ Pn satisfies all four of the
conditions listed above. We apply S to π , so as to obtain a decomposition of the
form indicated in (8). Adopting notation from (8), we may deduce that the following
properties hold, again working under the assumption that the four conditions in the
theorem under consideration hold:

(i) The expression B ′ consists, apart from singleton blocks, of a single propagating
block with the same number of upper and lower nodes, and such that the lower
nodes are labeled with consecutive primed integers ending with n′.

(ii) If we were to keep the labelings for the lower nodes as in π ′, then the labeling
for the lower nonsingleton blocks in the ⊙-decomposition in (8) would be in
the same order.

This latter property may be verified by a case analysis of the form suggested by
the last four out of the six bullet points given above. Repeating this argument
inductively, and mimicking notation from (9), we find that S (π) may be written as
an ⊙-product of the form

(25) B′

1 ⊙ B′

2 ⊙ · · · ⊙ B′

m2
,

where each expression of the form B ′

i consists of, apart from singleton blocks, only
one propagating block, and this propagating block has the same number of top
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nodes as bottom nodes and has consecutive primed integers as its bottom nodes;
moreover, the bottom nodes according to the ordering in (25) form the sequence

1′ < 2′ < · · · < n′.

So, a direct application of the labeling according to the definition for the ⊙-product
gives us a stretch of an identity partition diagram. □

Example 14. If we return to the partition diagram in P9 that is illustrated in (7)
within Example 3, we find that there is a propagating block containing the largest
bottom node 9′. Being consistent with our notation in (24), we write D′

1 ={1′, 2′, 3′
},

D′

2 = {4′, 5′, 6′
}, and D′

3 = {7′, 8′, 9′
}, and we let the corresponding blocks in (7)

be denoted as C1 ∪ D′

1, C2 ∪ D′

2, and C3 ∪ D′

3. We have that D′

1 < D′

2 < D′

3, but
when we apply the procedure used to define S to the partition diagram in (7), as
we remove the block C3 ∪ D′

3, we find that D′

2 is part of an L -configuration and D′

1
is part of an M -configuration, which is one of the forbidden patterns indicated in
Theorem 13. So, according to Theorem 13, the partition diagram in (7) should not
be stretch-stack-sortable, and we may verify that S evaluated at this same diagram
in (7) is equal to

(26)

being consistent with the coloring in (7). We see that the partition diagram in (26)
is not a stretch of any identity partition diagram.

4. Future work and applications

In regard to Knuth’s famous result that the number of 1-stack-sortable permutations
in Sn is equal to the n-th Catalan number 1

n+1

(2n
n

)
, it would be desirable to obtain a

meaningfully similar result for counting the elements in Pn satisfying the conditions
in Theorem 13, i.e., the number of stretch-stack-sortable elements in Pn . We leave
this as an open problem.

An advantage of our lifting of West’s stack-sorting map may be described as
follows. Since our mapping S may be evaluated at an arbitrary partition diagram,
this allows us to apply and experiment with different ways of generalizing stack-
sortability, based on different kinds of partition diagram generalizations of identity
permutations. We may obtain many further combinatorial results, relative to our
main results, through the use of variants and generalizations of Definition 9. For
example, what kinds of bijective and enumerative results can we obtain, relative to
the theorems introduced in this article, if we instead consider partition diagrams
that get mapped, under the application of S , to stretches of rook diagrams with
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2-blocks of the form {i, i ′
}? What if nonrectangular and nonsingleton blocks are

allowed?
Many remarkable results and applications have concerned preimages under

West’s stack-sorting map, as in the work of Defant, Engen, and Miller in [15],
for example. What kinds of applications and combinatorial results can we obtain
concerning preimages under our lifting of s?

Since our definition for stretch-stack-sortability is a lifting of 1-stack-sortability,
this raises the question as to how the notion of t-stack-sortability may be generalized,
according to our procedure from Section 2. The study of t-stack-sortability is widely
known to be much more difficult even for the t = 2 case, relative to the t = 1 case;
see [26, Section 1.2.3], for example. In consideration as to Zeilberger’s renowned
proof [29] of West’s conjecture that the number of 2-stack-sortable permutations
in Sn is 2(3n)!

(n + 1)!(2n + 1)!
,

this inspires the determination of an analogue of the above indicated enumerative
result, using a lifting of 2-stack-sortability via our mapping S .
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