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To the everlasting memory of Robert Gilmer

We show that every Dedekind domain R lying between the polynomial rings
Z[X] and Q[X] with the property that its residue fields of prime characteris-
tic are finite fields is equal to a generalized ring of integer-valued polynomials;
that is, for each prime p ∈ Z there exists a finite subset E p of transcendental
elements over Q in the absolute integral closure Z p of the ring of p-adic
integers such that R = { f ∈ Q[X] | f (E p) ⊆ Z p, for each prime p ∈ Z}.
Moreover, we prove that the class group of R is isomorphic to a direct sum
of a countable family of finitely generated abelian groups. Conversely, any
group of this kind is the class group of a Dedekind domain R between Z[X]

and Q[X].

1. Introduction

Given a Dedekind domain D, the class group of D measures how far D is from
being a UFD and it is therefore an important object in the study of factorization
problems in the ring D. It is well-known that the class group of the ring of integers
of a number field is a finite abelian group. In contrast with this result, Claborn
[1966] proved the groundbreaking result that every abelian group occurs as the
class group of a suitable Dedekind domain.

Eakin and Heinzer [1973] showed that every finitely generated abelian group is
the class group of a Dedekind domain between Z[X ] and Q[X ]. More generally,
they proved that if V1, . . . , Vn are distinct DVRs with same quotient field K and,
for each i = 1, . . . , n, {Vi, j }

gi
j=1 is a finite collection of DVRs extending Vi to K (X),

each of which is residually algebraic over Vi (i.e., the extension of the residue fields
is algebraic), then

R =
⋂
i, j

Vi, j ∩ K [X ]

is a Dedekind domain. They also give an explicit description of the class group of
such a domain R, thanks to which they showed the quoted result by considering
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suitable residually algebraic extensions of a finite set of DVRs of Q to Q(X).
Actually, if we suppose that each residue field extension of Vi, j over Vi is

finite, a ring R constructed as above can be represented as a ring of integer-valued
polynomials in the following way. For each i, j , by [Peruginelli 2017, Theorem 2.5
and Proposition 2.2], there exists an element αi, j in the algebraic closure K̂i of the
Vi -adic completion K̂i of K , αi, j transcendental over K , such that

Vi, j = Vi,αi, j = {ϕ ∈ K (X) | ϕ(αi, j ) ∈ V̂i },

where V̂i is the absolute integral closure of V̂i , the completion of Vi . Hence, the
above ring R can be represented as R = { f ∈ K [X ] | f (αi, j ) ∈ V̂i , ∀i, j} (for more
details, see [Peruginelli 2017, Remark 2.8]).

More recently, Glivický and S̆aroch [2013] investigated a family of quasieuclidean
subrings of Q[X ] depending on a parameter α ∈ Ẑ, the profinite completion of Z.
A ring of this family is always a Bézout domain (i.e., finitely generated ideals are
principal) and might be a PID or not, according to the finiteness of some set of
primes depending on α and the set of polynomials in Z[X ]. Glivická et al. [2023]
observed that these rings can be realized as overrings of the classical ring of integer-
valued polynomials Int(Z) = { f ∈ Q[X ] | f (Z) ⊆ Z}, which is a two-dimensional
nonnoetherian Prüfer domain; such overrings have been completely characterized
in [Chabert and Peruginelli 2016]. We will review this representation in Section 2.

In the same area, Chang [2022] generalized Eakin and Heinzer’s result, proving
that there exists an almost Dedekind domain R (i.e., RM is a DVR for each maximal
ideal M of R) which is not noetherian, lies between Z[X ] and Q[X ] and has
class group isomorphic to a direct sum of a prescribed countable family of finitely
generated abelian groups. As before, assuming the finiteness of the residue field
extensions of the involved DVRs, Chang’s construction falls in the class of integer-
valued polynomial rings that we consider in this paper.

Here, we provide a complete description of the class of Dedekind domains R
lying between Z[X ] and Q[X ] such that their residue fields of prime characteristic
are finite fields. Throughout the paper, for short we denote the last property by
saying that R has finite residue fields of prime characteristic. We remark that
the residue fields of such a domain R cannot be all finite fields. In fact, since
R ⊆ Q[X ](q) for every irreducible q ∈ Q[X ], the residue field of the center of the
DVR Q[X ](q) on R is a finite extension of Q, hence an infinite field. However, since
R is supposed to be Dedekind (in particular, a Prüfer domain) the residue fields of
prime characteristic are algebraic extensions of the corresponding prime field (see,
for example, [Peruginelli 2018, Theorem 3.14]). Infinite algebraic extensions of
the prime fields of prime characteristic are also allowed, and that is the content of
another work on this subject [Peruginelli 2023].
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The paper is organized as follows. We first set the notation we will use throughout
the paper and introduce the class of generalized rings of integer-valued polynomials,
which are subrings of Q[X ] formed by polynomials which are simultaneously
integer-valued over different subsets of integral elements over Zp, the ring of p-adic
integers, for p running over the set of integer primes. In Section 2, we review Loper
and Werner’s construction [2012] of Prüfer domains and recall that it falls into
the class of generalized rings of integer-valued polynomials, as already observed
in [Peruginelli 2017, Remark 2.8]. We then characterize when a ring of their
construction is a Dedekind domain in Theorem 2.15. In order to accomplish this
objective, we introduce the definition of polynomially factorizable subsets E of
Ẑ =

∏
p Zp (we refer to Section 1 for unexplained notation), which turns out to be

the key assumption for such a ring to be of finite character (hence, a noetherian
Prüfer domain, thus Dedekind). Furthermore, we show in Theorem 2.17 that every
Dedekind domain R with finite residue fields of prime characteristic lying between
Z[X ] and Q[X ] is equal to a generalized ring of integer-valued polynomials with
class group equal to a direct sum of a countable family of finitely generated abelian
groups (Recall that the Picard group of Int(Z) is a free abelian group of countably
infinite rank [Gilmer et al. 1990]). Among other things, we will also characterize
the PIDs among these class of domains, generalizing the aforementioned work of
Glivický and Šaroch [2013] (see also [Glivická et al. 2023]). We will also give a
criteria for when two such generalized rings of integer-valued polynomials are equal.
Finally, in Section 3, by means of a suitable modification of Chang’s construction,
given a group G which is the direct sum of a countable family of finitely generated
abelian groups, we prove that there exists a Dedekind domain R with finite residue
fields of prime characteristic, Z[X ] ⊂ R ⊆ Q[X ], with class group G, thus giving a
positive answer to a question raised by Chang [2022]. By the previous results, such
a domain is a generalized ring of integer-valued polynomials.

It has come to our attention that Theorem 7 of [Chang and Geroldinger 2024]
shows the existence of a Dedekind domain with class group equal to a direct sum
of a countable family of prescribed finitely generated abelian groups. However, that
construction is based on a polynomial ring with an infinite set of indeterminates
with the additional property that each ideal class contains infinitely many height-one
prime ideals.

Notation. The generalized rings of integer-valued polynomials considered in this
paper fall into the class of integer-valued polynomials on algebras (see for example
[Frisch 2013; 2014; Peruginelli and Werner 2017]), which encompasses also the
classical definition of ring of integer-valued polynomials. We now recall the latter
definition. Let D be an integral domain with quotient field K and A a torsion-free
D-algebra such that A ∩ K = D. We may evaluate polynomials f ∈ K [X ] at
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any element a ∈ A inside the extended algebra A ⊗D K . The D-algebra A clearly
embeds into A⊗D K and if f (a)∈ A we say that f is integer-valued at a. In general,
given a subset S of A, we define the ring of integer-valued polynomials over S as

IntK (S, A) = { f ∈ K [X ] | f (s) ∈ A, ∀s ∈ S}.

Note that when A = D we get the usual definition of ring of integer-valued polyno-
mials on a subset S of D, and in that case we omit the subscript K . If S = D = A,
then we set Int(D, D) = Int(D).

For an integral domain D, we define the Picard group of D, denoted by Pic(D),
as the quotient of the abelian group of the invertible fractional ideals of D by the
subgroup generated by the nonzero principal fractional ideals, where the operation
is the ideal multiplication (see [Cahen and Chabert 1997, §VIII.1]). If D is a
Dedekind domain, then Pic(D) is the usual ideal class group of D.

Let P be the set of all prime numbers. For a fixed p ∈ P, we adopt the following
notation:

- Z(p) denotes the localization of Z at pZ.

- Zp and Qp denote the ring of p-adic integers and the field of p-adic numbers,
respectively.

- Qp and Zp denote a fixed algebraic closure of Qp and the absolute integral
closure of Zp, respectively.

- For a finite extension K of Qp, we denote by OK the ring of integers of K .

- vp denotes the unique extension of the p-adic valuation on Qp to Qp.

- If α ∈ Qp, we denote the ramification index e(Qp(α) | Qp) by eα.

- Ẑ =
∏

p∈P Zp, the profinite completion of Z.

- Ẑ =
∏

p∈P Zp.

- For α ∈ Qp, we set

Vp,α = {ϕ ∈ Q(X) | ϕ(α) ∈ Zp}.

Clearly, Vp,α is a valuation domain of Q(X) extending Z(p) with maximal ideal
equal to Mp,α = {ϕ ∈ Vp,α | vp(ϕ(α)) > 0}. Moreover, Vp,α is a DVR if α

is transcendental over Q and it has rank 2 otherwise. In the former case, the
ramification index e(Vp,α | Z(p)) is equal to eα . In either case, let Oα and Mα be the
valuation domain and maximal ideal of Qp(α), respectively. Then, the residue field
of Vp,α is equal to Oα/Mα and pOα = Me

α, for some integer e, which is equal to
eα (for all these results, see [Peruginelli 2017, Proposition 2.2 and Theorem 2.5]).

The following result, mentioned in the introduction, characterizes residually
algebraic extensions of Z(p) to Q(X) of a certain kind; the valuation overrings of
the Dedekind domains we are dealing with belong to this class.
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Theorem 1.1 [Peruginelli 2017, Theorems 2.5 and 3.2]. Let W ⊂ Q(X) be a
valuation domain with maximal ideal M extending Z(p) for some p ∈P. If pW = Me

for some e ≥ 1 and W/M ⊇ Z/pZ is a finite extension, then there exists α ∈ Qp

such that W = Vp,α. Moreover, for α, β ∈ Qp, we have Vp,α = Vp,β if and only if
α, β are conjugate over Qp.

Clearly, if W is as in the assumptions of Theorem 1.1 and Z[X ]⊂ W , then α ∈ Zp.
Given f ∈ Q[X ], the evaluation of f (X) at an element α = (αp) ∈ Ẑ is done

componentwise:

f (α) = ( f (αp)) ∈

∏
p∈P

Qp.

We say that f is integer-valued at α if f (α) ∈ Ẑ, which is equivalent to f ∈ Vp,αp

for all p ∈ P.

Definition 1.2. Given a subset E of Ẑ, we define the generalized ring of integer-
valued polynomials on E as:

IntQ(E, Ẑ) = { f ∈ Q[X ] | f (α) ∈ Ẑ, ∀α ∈ E}.

If E = Ẑ, then IntQ(Ẑ, Ẑ)= IntQ(Ẑ, Ẑ)= Int(Z); in fact, the first equality follows
easily from the fact that the polynomials have rational coefficients; for the last
equality, see [Chabert and Peruginelli 2016, Remark 6.4] (essentially, Z is dense
in Ẑ). We recall that the family of overrings of Int(Z) which are contained in Q[X ]

is formed exactly by the rings IntQ(E, Ẑ), as E ranges through the subsets of Ẑ

of the form
∏

p∈P E p, where for each prime p, E p is a closed (possibly empty)
subset of Zp [Theorem 6.2]. In the study of a generalized ring of integer-valued
polynomials IntQ(E, Ẑ), without loss of generality we may suppose that the subset
E of Ẑ is of the form E =

∏
p∈P E p (see the arguments given in [Remark 6.3]).

Note that we allow each component E p of E to be equal to the empty set.

2. Polynomial Dedekind domains

Loper and Werner [2012] exhibited a construction of Prüfer domains between Z[X ]

and Q[X ] in order to show the existence of a Prüfer domain strictly contained in
Int(Z). As earlier in [Eakin and Heinzer 1973], their construction is obtained by
intersecting a suitable family of valuation domains of Q(X) indexed by P with
Q[X ]. A valuation domain of this family is equal to Vp,α, for some α ∈ Zp, by
Theorem 1.1 and the fact that X is in every valuation domain of this family. By
[Peruginelli 2017, Remark 2.8], a ring in Loper and Werner’s construction can be
represented as a generalized ring of integer-valued polynomials IntQ(E, Ẑ), for a
suitable subset E of Ẑ which satisfies the following definition.
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Definition 2.1. Let E =
∏

p∈P E p ⊂ Ẑ. We say that E is locally bounded, if, for each
prime p, E p is a subset of Zp of bounded degree, that is, {[Qp(α) : Qp] | α ∈ E p}

is bounded.

As we have already said above, some of the components E p of E may be equal
to the empty set. Since Qp has at most finitely many extensions of degree bounded
by some fixed positive integer, if E p ⊂ Zp has bounded degree then E p is contained
in a finite extension of Qp.

By Theorem 1.1, a Prüfer domain constructed in [Loper and Werner 2012]
can be represented as an intersection of valuation domains (see also [Chabert and
Peruginelli 2016]):

(2.2) IntQ(E, Ẑ) =

⋂
p∈P

⋂
αp∈E p

Vp,αp ∩

⋂
q∈P irr

Q[X ](q).

Here E =
∏

p∈P E p ⊂ Ẑ is locally bounded and P irr denotes the set of irreducible
polynomials in Q[X ]; note that the intersection on the right in this display equals
Q[X ]. Similarly, for the ring IntQ(E p, Zp) = { f ∈ Q[X ] | f (E p) ⊆ Zp} we have

(2.3) IntQ(E p, Zp) =

⋂
αp∈E p

Vp,αp ∩

⋂
q∈P irr

Q[X ](q).

In particular, IntQ(E, Ẑ) =
⋂

p∈P(Z \ pZ)−1 IntQ(E, Ẑ) =
⋂

p∈P IntQ(E p, Zp) by
Lemma 2.5.

By means of the representation (2.2), the main result of [Loper and Werner 2012,
Corollary 2.12] can now be restated as follows:

Theorem 2.4. Let E ⊂ Ẑ be locally bounded. Then the ring IntQ(E, Ẑ) is a Prüfer
domain.

We want to characterize when a ring of the form IntQ(E, Ẑ), E ⊆ Ẑ, is a
Dedekind domain. In order to accomplish this objective, we need to describe the
prime spectrum of this ring when E is locally bounded. It is customary for rings of
integer-valued polynomials to distinguish the prime ideals into two different kinds,
and we do the same here in our setting: given a prime ideal P of R = IntQ(E, Ẑ),
we say that P is nonunitary if P ∩ Z = (0) and that P is unitary if P ∩ Z = pZ for
some p ∈ P.

It is a classical result that each nonunitary prime ideal of R is equal to

Pq = q(X)Q[X ] ∩ R

for some q ∈ P irr (see for example [Cahen and Chabert 1997, Corollary V.1.2]).
If P ∩ Z = pZ, p ∈ P, and α ∈ E p, the following is a unitary prime ideal of R:

Mp,α = { f ∈ R | vp( f (α)) > 0}.
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If E p is a closed subset of Zp for each prime p, and E =
∏

p E p is locally bounded,
we are going to show that each unitary prime ideal of R is equal to Mp,α , for some
p ∈ P and α ∈ E p.

Lemma 2.5. Let E ⊆ Ẑ be any subset, P be a finite subset of P and S the multiplica-
tive subset of Z generated by P \ P. Then S−1 IntQ(E, Ẑ) =

⋂
p∈P IntQ(E p, Zp).

In particular, for each p ∈ P, (Z \ pZ)−1 IntQ(E, Ẑ) = IntQ(E p, Zp).

Proof. The proof follows by an argument similar to the one of [Chabert and
Peruginelli 2018, Proposition 4.2]. Let R = IntQ(E, Ẑ) and Rp = IntQ(E p, Zp),
for each p ∈ P . The containment S−1 R ⊆

⋂
p∈P Rp is clear, since R ⊆ Rp and for

every d ∈ S, d is a unit in Rp, for each p ∈ P . Conversely, let f ∈
⋂

p∈P Rp. Let
d ∈ Z, d ̸= 0, be such that d f ∈ Z[X ] and let d = t

∏
p∈P pap , ap ≥ 0 and t ∈ Z not

divisible by any p ∈ P . Then, letting g = t f , we have that g is in Z(q)[X ] ⊂ Rq for
each q /∈ P and g is in Rp for each p ∈ P because t is a unit in Z(p), for all p ∈ P .
Hence, f =

g
t ∈ S−1 R, as desired. □

Proposition 2.6. Let E =
∏

p E p ⊂ Ẑ be locally bounded and closed. If M is a
unitary prime ideal of IntQ(E, Ẑ) such that M ∩ Z = pZ for some p ∈ P, then M
is maximal and there exists α ∈ E p such that M = Mp,α.

Proof. Let R = IntQ(E, Ẑ). We use the fact that R is a Prüfer domain by
Theorem 2.4.

Let M be a unitary prime ideal of R and let V = RM . Then, by Lemma 2.5, we
have Rp = IntQ(E p, Zp) ⊂ V , since (Z \ pZ)−1V = V . Let M ′ be the center of V
on Rp. Since M ′

∩ R = M , it is sufficient to show that

M ′
= Mp,α = { f ∈ Rp | vp( f (α)) > 0},

for some α ∈ E p (with a slight abuse of notation, we denote the unitary prime ideals
of R and Rp in the same way). Let f ∈ Rp. Let K be a finite extension of Qp

such that OK contains E p and let i0, . . . , iq−1 ∈ OK be a set of representatives for
OK /π OK ∼= Fq , where π is a uniformizer of OK (i.e., a generator of the maximal
ideal of OK ). For each α ∈ E p, there exists some j ∈ {0, . . . , q − 1} such that
f (α)−i j ∈π OK . In particular,

∏q−1
j=0( f (α)−i j )∈π OK for each α ∈ E p. Observe

that the polynomials Xq
− X and

∏q−1
j=0(X − i j ) coincide modulo π , so in particular

f (α)q
− f (α) ∈ π OK . If e = e(OK | Qp), we have ( f (α)q

− f (α))e
∈ pOK .

Equivalently, ( f q
− f )e

∈ pRp, which is contained in M ′. Since M ′ is a prime
ideal, it follows that f q

− f ∈ M ′, so modulo M ′, f satisfies the equation Xq
−X =0.

This shows that Rp/M ′ is contained in the finite field Fq , so it is a finite domain,
hence a field. This proves that M ′ is maximal. Note that, since R/M ⊆ Rp/M ′ and
the latter is a finite field, it follows also that M is a maximal ideal of R.
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Since Rp is countable, M ′ is countably generated, say M ′
=

⋃
n∈N In , where

In = (p, f1, . . . , fn) for each n ∈ N. By [Gilmer and Heinzer 1968, Proposition 1.4],
for each n ∈ N, there exists αn ∈ E p such that In ⊂ Mp,αn (we may exclude the
nonunitary prime ideals of Rp because they do not contain p, hence neither In for
every n). Suppose first that E p is finite. Then there exists α ∈ E p such that the set
J = {n ∈ N | In ⊂ Mp,α} is a cofinal subset of N. Hence, for each f ∈ M ′, there
exists n ∈ J such that f ∈ In ⊂ Mp,α, so that M ′

⊆ Mp,α and therefore equality
holds since M ′ is maximal. If E p is infinite, since it is a closed subset (because E
is closed) contained in a finite extension of Qp, by compactness we may extract
a sequence {αn}n∈N from E p converging to some element α ∈ E p. Without loss
of generality we suppose that αn → α. Now, for each f ∈ M ′, f ∈ In ⊂ Mp,αn

for some n. Since In ⊆ In+1 for each n ∈ N, f ∈ Mp,αm for each m ≥ n, that
is, vp( f (αm)) > 0. By continuity we get that vp( f (α)) > 0, that is, f ∈ Mp,α.
Therefore as before we conclude that M ′

= Mp,α. □

Thus, if IntQ(E, Ẑ) is a Prüfer domain, given a maximal unitary ideal Mp,α,
p ∈ P and α ∈ E p, we have

(2.7) IntQ(E, Ẑ)Mp,α
= Vp,α.

Similarly, for q ∈ P irr, we have

(2.8) IntQ(E, Ẑ)Pq = Q[X ](q).

We call the valuation domains Vp,α unitary, and the others Q[X ](q) nonunitary.
Similar equalities hold for the Prüfer domain IntQ(E p, Zp). Note that the residue
field of IntQ(E, Ẑ) at a unitary prime ideal is a finite field (by the property of the
unitary valuation overrings we discussed about in Section 1), while the residue
field of a nonunitary prime ideal of IntQ(E, Ẑ) is a finite extension of the rationals,
hence an infinite field.

We finish this section with the following remark.

Remark 2.9. By Theorem 1.1, given a ring IntQ(E p, Zp), without loss of generality
we may assume that the elements of E p are pairwise nonconjugate over Qp. Under
this further assumption and if E p is bounded (i.e., contained in a finite extension
of Qp), Theorem 2.4, (2.7) and Proposition 2.6 imply that there is a one-to-one
correspondence between the elements of E p and the unitary valuation overrings
Vp,αp , αp ∈ E p, of IntQ(E p, Zp).

2A. The local case. For a fixed p ∈P, we characterize in this section the subsets E p

of Zp for which the corresponding ring of integer-valued polynomials IntQ(E p, Zp)

is a Dedekind domain. The following proposition is a generalization of [Chang
2022, Theorem 4.3 (2)].
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Proposition 2.10. Let E p be a subset of Zp. Then IntQ(E p, Zp) is a Dedekind
domain with finite residue fields of prime characteristic if and only if E p is a finite
subset of transcendental elements over Q.

Suppose that E p = {α1, . . . , αn} and the αi ’s are pairwise nonconjugate over Qp.
Then, then the class group of IntQ(E p, Zp) is isomorphic to Z/eZ ⊕ Zn−1, where
e = gcd{eαi | i = 1, . . . , n}. Thus IntQ(E p, Zp) is a PID if and only if E p contains
at most one element αp ∈ Zp, such that αp is transcendental over Q and unramified
over Qp.

Proof. Let Rp = IntQ(E p, Zp). Note that, if E p is the empty set, then Rp = Q[X ].
We assume henceforth that E p ̸= ∅.

Suppose Rp is a Dedekind domain with finite residue fields of prime characteristic.
We show first that each maximal unitary ideal M of Rp is equal to Mp,αp , for some
αp ∈ E p. Let V be a unitary valuation overring of Rp which is centered on M .
By Theorem 1.1, there exists α0 ∈ Zp such that V = Vp,α0 . Then, M = Mp,α0 .
Since M is finitely generated and Rp is Prüfer, by [Gilmer and Heinzer 1968,
Proposition 1.4] M ⊆ Mp,αp for some αp ∈ E p (we may exclude the nonunitary
prime ideals of Rp because they do not contain p, hence neither M). Since M is
maximal, it follows that M =Mp,αp , which means that α0 and αp are conjugate over
Qp by [Peruginelli 2017, Theorem 3.2]. Hence, without loss of generality, we may
suppose that α0 ∈ E p. Note that each αp ∈ E p is transcendental over Q, otherwise
the valuation overring Vp,αp of Rp would have rank 2. Since Rp is Dedekind, p is
contained in only finitely many maximal ideals of this ring; necessarily, such ideals
are unitary. By the previous argument, such ideals are equal to Mp,αp , for αp ∈ E p.
Since by Theorem 1.1 and (2.7), Mp,αp = Mp,βp if and only if αp, βp ∈ E p are
conjugate over Qp, it follows that E p is a finite subset of Zp.

Conversely, suppose now that E p ⊂ Zp is a finite subset of transcendental
elements over Q. The fact that IntQ(E p, Zp) is a Dedekind domain follows from
[Eakin and Heinzer 1973, Theorem], but we give a different self-contained argument
based on the previous results. We know that E p has bounded degree, so Rp is
Prüfer, by Theorem 2.4. By (2.3), Rp is equal to an intersection of DVRs which
are essential over it. Moreover, each nonzero f ∈ Rp belongs to finitely many
maximal ideals, since E p is finite and f has finitely many irreducible factors in
Q[X ]. Hence, Rp is a Krull domain, so, by [Gilmer 1992, Theorem 43.16], Rp is
a Dedekind domain. Finally, Rp has finite residue fields of prime characteristic,
because each of the unitary valuation overrings of Rp (namely, Vp,αp , αp ∈ E p)
have finite residue field.

Assuming that the elements of E p are pairwise nonconjugate over Qp, the
claim regarding the class group follows easily from [Eakin and Heinzer 1973,
Theorem], taking into account the representation (2.3). If E p = {α1, . . . , αn}, let
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e = (eα1, . . . , eαn ) ∈ Zn and e = gcd(eα1, . . . , eαn ). Then, the class group of Rp is
isomorphic to

Zn/⟨e⟩ ∼= Z/eZ ⊕ Zn−1.

The last claim follows at once from the description of the class group. □

2B. The global case. If, for each p ∈ P, E p ⊂ Zp is a finite subset of transcendental
elements over Q and E =

∏
p E p, then, by [Chang 2022, Corollary 2.6], IntQ(E, Ẑ)

is an almost Dedekind domain. However, this ring might not be noetherian, that is, a
Dedekind domain. See for example the construction of [Chang 2022, Theorem 3.1],
in which the polynomial X is divisible by infinitely many primes p ∈ P. In general,
an almost Dedekind domain R is Dedekind if and only if it has finite character, that
is, each nonzero f ∈ R belongs to finitely many maximal ideals of R [Gilmer 1992,
Theorem 37.2], or, equivalently, v( f ) ̸= 0 only for finitely many valuation overrings
V of R (which are only DVRs). We aim to characterize the subsets E =

∏
p E p of

Ẑ such that IntQ(E, Ẑ) is Dedekind.

Definition 2.11. We say that E is polynomially factorizable if, for each g ∈ Z[X ]

and α = (αp) ∈ E , there exist n, d ∈ Z, n, d ≥ 1 such that g(α)n/d is a unit of Ẑ,
that is, vp(g(αp)

n/d) = 0, for all p ∈ P.

Note that g(α)n
= (g(αp)

n) ∈ Ẑ. Loosely speaking, a subset E of Ẑ is polyno-
mially factorizable if, for every g ∈ Z[X ] and α ∈ E , g(α) ∈ Ẑ is divisible only by
finitely many primes p ∈ P (up to some exponent n ≥ 1), or, equivalently, all but
finitely many components of g(α) are units. Note that, if the above condition of
the definition holds, then g(α)n and d generate the same principal ideal of Ẑ.

The next lemma gives a simple characterization of polynomially factorizable
subsets E of Ẑ in terms of the finiteness of some sets of primes associated to every
polynomial in Z[X ]. For every g ∈ Z[X ] and subset E =

∏
p E p ⊆ Ẑ, we set

Pg,E = {p ∈ P | ∃αp ∈ E p such that vp(g(αp)) > 0}.

The next result shows that E is polynomially factorizable if and only if Pg,E is
finite for every g ∈ Z[X ].

Lemma 2.12. Let g ∈ Z[X ] and E =
∏

p E p ⊂ Ẑ, where each E p ⊂ Zp is a closed
set of transcendental elements over Q. Then the following conditions are equivalent:

i) The set Pg,E is finite.

ii) For each α ∈ E , there exist n, d ∈ Z, n, d ≥ 1 such that g(α)n/d is a unit of Ẑ.

Proof. We use the following easy remark: for α = (αp) ∈ Ẑ =
∏

p Zp, the set
{p ∈ P | vp(αp) > 0} is finite if and only if there exists d ∈ Z, d ≥ 1, such that
αẐ = dẐ.



DEDEKIND DOMAINS WITH RESIDUE FIELDS OF PRIME CHARACTERISTIC 343

Suppose i) holds and let α = (αp) ∈ E . By assumption, there are only finitely
many p ∈ P such that vp(g(αp)) > 0, for some αp ∈ E p, say, p1, . . . , pk . Let α ∈ E
be fixed; in particular, there exists n ∈ N such that nvp(g(αp)) = ap ∈ Z for each
prime p (where ap = 0 for all p /∈ {p1, . . . , pk}). Hence, if we let d =

∏k
i=1 p

api
i

we get vp(g(αp)
n) = vp(d) for all p ∈ P, thus ii) holds.

Assume now that ii) holds and suppose that Pg,E is infinite. For each p ∈Pg,E , let
αp ∈ E p be such that vp(g(αp))>0 and consider the element α=(αp)∈ E , where αp

is any element of E p for p /∈Pg,E . If there is no n ≥1 such that nvp(g(αp))=ap ∈Z

for all p ∈ P we immediately get a contradiction. Suppose instead that such an n
exists. Since ap is nonzero for infinitely many p ∈ P, there is no d ∈ Z such that
vp(g(αp)

n/d) = 0 for each p ∈ P, which again is a contradiction. □

Remark 2.13. By Lemma 2.12, it follows easily that a subset E ⊆ Ẑ is polynomially
factorizable if and only if Pg,E is finite for each irreducible g ∈ Z[X ]. In fact, if
g =

∏
i gi , where gi ∈ Z[X ] are irreducible, then Pg,E =

⋃
i Pgi ,E .

It is well-known that, given a nonconstant q ∈ Z[X ], there exist infinitely many
p ∈ P for which there exists n ∈ Z such that q(n) is divisible by p (see for example
the proof of [Cahen and Chabert 1997, Proposition V.2.8]). In particular, Ẑ is not
polynomially factorizable by Lemma 2.12.

The next lemma describes the Picard group of IntQ(E, Ẑ) in terms of the Picard
groups of the localizations IntQ(E p, Zp), p ∈ P (see Lemma 2.5).

Lemma 2.14. Let E =
∏

p E p ⊂ Ẑ be a subset. Then

Pic(IntQ(E, Ẑ)) ∼=
⊕
p∈P

Pic(IntQ(E p, Zp)).

Proof. Let R = IntQ(E, Ẑ) and Rp = (Z \ pZ)−1 R, for p ∈ P; by Lemma 2.5,
Rp = IntQ(E p, Zp). Since the proof follows by the same arguments of [Gilmer et al.
1990, Theorem 1], we just sketch it and refer to the cited paper for the details. By a
classical argument (see for example [McQuillan 1985, Lemma 1]), every finitely
generated ideal J of R (in particular, every invertible ideal of R) is isomorphic to
a finitely generated unitary ideal I , that is, I ∩ Z = dZ ̸= (0). For such an ideal,
(I ∩ Z)(p) = Z(p) for all p ∈ P not dividing d , so IRp = Rp. This argument shows
that we have a well-defined map from Pic(R) to

⊕
p∈P Pic(Rp).

If I is a unitary ideal of R, say I ∩ Z = dZ, such that IRp is principal, it is
generated by d . Hence, I and d R have the same localizations at each prime p ∈ P,
so they are equal. This shows that the previous map is injective.

For the surjectivity, it is sufficient to show that, if Jp is an invertible unitary
ideal of Rp, for some p ∈ P, then there exists an invertible ideal J of R such that
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JRp = Jp and JRq = Rq for each q ∈ P\{p}. The ideal J = Jp ∩ R has the required
properties. □

Now we may characterize when a generalized ring of integer-valued polynomials
IntQ(E, Ẑ) is Dedekind and describe its class group.

Theorem 2.15. Let E =
∏

p E p ⊂ Ẑ be a subset. Then IntQ(E, Ẑ) is a Dedekind
domain with finite residue fields of prime characteristic if and only if E p is a
finite set of transcendental elements over Q for each p ∈ P and E is polynomially
factorizable.

In this case, the class group of IntQ(E, Ẑ) is equal to a direct sum of a countable
family of finitely generated abelian groups.

Proof. Let R = IntQ(E, Ẑ) and suppose the conditions for E in the statement are
satisfied. Then E is locally bounded and closed so, by Theorem 2.4, R is Prüfer.
For R to be Dedekind, it is sufficient to show that it is a Krull domain [Gilmer
1992, Theorem 43.16]. By assumption, each of the unitary valuation overrings
of R in the representation (2.2) is a DVR with finite residue field, so R has finite
residue fields of prime characteristic by Proposition 2.6. We have to show that R
has finite character, that is, for each nonzero f =

g
n ∈ R, g ∈ Z[X ] and n ∈ Z \ {0},

f is contained in only finitely many maximal ideals of R. As in the proof of
Proposition 2.10, f is contained in only finitely many nonunitary prime ideals of R.
We now check the maximal unitary ideals of R, described in the Proposition 2.6,
which contain f . Since the denominator n of f is divisible by only finitely many
p ∈ P, f is contained in only finitely many maximal unitary ideals if and only if the
same condition holds for g. Since E p is finite for each p ∈ P, this is equivalent to
the finiteness of the set Pg,E . Since E is polynomially factorizable, by Lemma 2.12,
Pg,E is finite.

Conversely, if IntQ(E, Ẑ) is a Dedekind domain with finite residue fields of prime
characteristic, then, for each prime p, the overring IntQ(E p, Zp) is a Dedekind do-
main with finite residue fields of prime characteristic [Gilmer 1992, Theorem 40.1].
By Proposition 2.10, E p is a finite subset of Zp formed by transcendental elements
over Q (so, in particular, E is locally bounded). If there exists some g ∈ Z[X ] such
that the set Pg,E is infinite, then g(X) would be contained in infinitely many unitary
prime ideals of IntQ(E, Ẑ), a contradiction with [Gilmer 1992, Theorem 37.2].
Therefore, E is polynomially factorizable by Lemma 2.12.

The final claim follows from Lemma 2.14 and Proposition 2.10. □

The next corollary is a generalization of [Glivický and Šaroch 2013, Lemma 3.3]:
it characterizes the elements α in Ẑ for which the ring IntQ({α}, Ẑ) is a PID.

Corollary 2.16. Let E =
∏

p E p ⊂ Ẑ be a subset such that, for each p ∈ P, the
elements of E p are pairwise nonconjugate over Qp. Then IntQ(E, Ẑ) is a PID with
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finite residue fields of prime characteristic if and only if , for each prime p, E p

contains at most one element of Zp, unramified over Qp and transcendental over Q,
and E is polynomially factorizable.

Note that if the conditions of Corollary 2.16 occur, namely, E p = {αp} for each
p ∈ P, then E is the singleton {α}, where α = (αp) ∈ Ẑ. The condition that E is
polynomially factorizable appears in other equivalent forms in [Glivický and Šaroch
2013, Lemma 3.3] and [Glivická et al. 2023, Proposition 1.1], in the case α ∈ Ẑ.

Proof. The proof follows from Theorem 2.15, Lemma 2.14 and Proposition 2.10. □

An argument similar to the one in the proof of [Eakin and Heinzer 1973, Theorem]
shows that a PID IntQ({α}, Ẑ) as in the statement of Corollary 2.16 is never a
Euclidean domain.

We now show that each Dedekind domain with finite residue fields of prime
characteristic between Z[X ] and Q[X ] is indeed a generalized ring of integer-valued
polynomials.

Theorem 2.17. Let R be a Dedekind domain with finite residue fields of prime
characteristic such that Z[X ] ⊂ R ⊆ Q[X ]. Then R is equal to IntQ(E, Ẑ), for
some subset E =

∏
p E p ⊂ Ẑ such that E p is a finite set of transcendental elements

over Q for each prime p and E is polynomially factorizable.
In particular, the class group of R is isomorphic to a direct sum of a countable

family of finitely generated abelian groups.

Proof. Let PR = {p ∈ P | ∃P ∈ Spec(R) such that P ∩ Z = pZ}. Clearly, PR is
empty if and only if R = Q[X ]; in this case for E equal to the empty set we have
the claim. Suppose PR is not empty. For each p ∈ PR , we denote by PR,p the set of
unitary prime ideals of R lying above p. By assumption, for each P ∈ PR,p, p ∈ P,
RP is a DVR of Q(X) with finite residue field extending Z(p). By Theorem 1.1,
there exists αp ∈ Zp, transcendental over Q, such that RP = Vp,αp . Let E p be the
subset of Zp formed by such αp’s, for each P ∈ PR,p. Since R is Dedekind and by
(2.2) and (2.3), we have the equalities

R =
⋂

p∈PR

⋂
P∈PR,p

RP ∩ Q[X ] =
⋂

p∈PR

⋂
αp∈E p

Vp,αp ∩ Q[X ]

=
⋂

p∈PR

IntQ(E p, Zp) = IntQ(E, Ẑ),

where E =
∏

p∈PR
E p ⊂ Ẑ. By Theorem 2.15, for each p ∈ P, E p is a finite subset

of Zp of transcendental elements over Q, E is polynomially factorizable and the
class group of R is isomorphic to a direct sum of a countable family of finitely
generated abelian groups. □

It was shown in [Glivický and Šaroch 2013, Proposition 3.4] that the cardinality
of the set of α ∈ Ẑ such that IntQ({α}, Ẑ) is a PID is 2ℵ0 . The next corollary
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describes all the PIDs with finite residue fields of prime characteristic between
Z[X ] and Q[X ].

Corollary 2.18. Let R be a PID with finite residue fields of prime characteristic
such that Z[X ]⊂ R ⊂ Q[X ]. Then R is equal to IntQ({α}, Ẑ), for some α = (αp)∈ Ẑ

such that, for each p ∈ P, αp is transcendental over Q, αp is unramified over Qp

and {α} is polynomially factorizable.

Proof. The proof follows from Theorem 2.17 and Corollary 2.16. □

2C. Equality of generalized rings of integer-valued polynomials. Given two lo-
cally bounded closed subsets E, F of Ẑ, we characterize when the associated
generalized ring of integer-valued polynomials IntQ(E, Ẑ), IntQ(F, Ẑ) are the
same.

The following is a general result about integral extensions of rings of integer-
valued polynomials. For an integral domain D with quotient field K , let K and D
be the algebraic closure of K and the absolute integral closure of D, respectively.
We let G K = Gal(K/K ) be the absolute Galois group of K . For a subset � of
K we set G K (�) = {σ(a) | σ ∈ G K , a ∈ �} =

⋃
σ∈G K

σ(�). We say that � is
G K -invariant if G K (�) = �. Note that in general we have

(2.19) IntK (�, D) = IntK (G K (�), D)

because if f (α) ∈ D for some f ∈ K [X ] and α ∈ �, then, for every σ ∈ G K , we
have f (σ (α)) = σ( f (α)) ∈ D because σ(D) ⊆ D.

Lemma 2.20. Let D be an integrally closed domain with quotient field K . Let
� ⊂ D be G K -invariant. Let F be an algebraic extension of K containing �. Then
IntF (�, D) is the integral closure of IntK (�, D) in F(X).

Proof. By [Cahen and Chabert 1997, Proposition IV.4.1], IntK (�, D) is integrally
closed. In particular, IntF (�, D) = IntK (�, D) ∩ F(X) is integrally closed, too.
Hence, we just need to show that IntK (�, D) ⊆ IntF (�, D) is an integral ring
extension.

Without loss of generality, we may enlarge F and suppose that F is normal over
K (e.g., we may take F = K ). Let f ∈ IntF (�, D) ⊂ F[X ]. In particular, f is
integral over K [X ], that is, it satisfies a monic equation of the form

f n
+ gn−1 f n−1

+ · · · + g1 f + g0 = 0,

where gi ∈ K [X ], for i = 0, . . . , n − 1. We claim that gi ∈ IntK (�, D), for
i = 0, . . . , n − 1, which will prove the claim. In fact, let

8(T ) = T n
+ gn−1T n−1

+ · · · + g0 ∈ K [X ][T ],
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and suppose that 8(T ) is irreducible over K (X). The roots of 8(T ) are the con-
jugates of f under the action of the Galois group Gal(F(X)/K (X)) ∼= Gal(F/K ),
which acts on the coefficients of the polynomial f . If σ ∈ Gal(F/K ), then
σ( f ) ∈ IntF (�, D). In fact, for each α ∈ �, since � is Gal(F/K )-invariant,
we have α = σ(α′) for some α′

∈ �, therefore σ( f )(α) = σ( f (α′)) which still is
an element of D (which likewise is left invariant under the action of Gal(F/K )).
Now, since each coefficient gi of 8(T ) is an elementary symmetric function of
the elements σ( f ), σ ∈ Gal(F/K ), we have gi (α) ∈ D, for each α ∈ �; thus
gi ∈ IntK (�, D), as claimed. □

To ease notation, we denote the absolute Galois group of Qp (p prime) by G p.

Theorem 2.21. Suppose E =
∏

p E p and F =
∏

p Fp are locally bounded closed
subsets of Ẑ. Then the rings IntQ(E, Ẑ) and IntQ(F, Ẑ) are equal if and only if
G p(E p) = G p(Fp), for each p ∈ P.

Proof. Clearly, IntQ(E, Ẑ) = IntQ(F, Ẑ) if and only if the two rings have the same
localization at each p ∈ P, that is, by Lemma 2.5, IntQ(E p, Zp) = IntQ(Fp, Zp).
Such a condition is equivalent to IntQp(E p, Zp)= IntQp(Fp, Zp). In fact, one impli-
cation is obvious because IntQ(E p, Zp) is the contraction to Q[X ] of IntQp(E p, Zp).
Conversely, suppose that IntQ(E p, Zp) = IntQ(Fp, Zp) and let f ∈ IntQp(E p, Zp),
say f (X) =

∑
i αi X i . We can choose g ∈ Q[X ] sufficiently vp-adically close to

f (X), that is, g(X) =
∑

i ai X i , where vp(αi −ai ) ≥ n for each i ≥ 0, where n ∈ N

is arbitrary large. Then h = f − g ∈ pnZp[X ], so, if αp ∈ E p, it follows that
g(αp) = f (αp) + h(αp) ∈ Zp. Hence, g ∈ IntQ(E p, Zp) = IntQ(Fp, Zp). If now
βp ∈ Fp, we have f (βp)=g(βp)+h(βp)∈Zp, which proves that f ∈ IntQp(Fp, Zp).
The other containment IntQp(Fp, Zp) ⊆ IntQp(E p, Zp) follows in the same way.

Let p ∈ P be a fixed prime and set R̂p,E p = IntQp(E p, Zp) and R̂p,Fp =

IntQp(Fp, Zp). Since E p, Fp are subsets of Zp of bounded degree, there exists
a finite Galois extension K of Qp containing both of them. By (2.19), R̂p,E p =

IntQp(G p(E p), Zp) and R̂p,Fp = IntQp(G p(Fp), Zp). Clearly, R̂p,E p and R̂p,Fp are
equal if and only if they have the same integral closure in K (X). By Lemma 2.20,
this amounts to say that

(2.22) IntK (G p(E p), Zp) = IntK (G p(Fp), Zp).

Note that the rings of (2.22) are equal to IntK (G p(E p), OK ), IntK (G p(Fp), OK ),
respectively, where OK is the ring of integers of K . Moreover, G p(E p) is a closed
subset of OK , being a finite union of closed sets σ(E p), σ ∈ Gal(K/Qp). Similarly,
G p(Fp) is closed.

Finally, by [McQuillan 1991, Lemma 2], (2.22) holds if and only if G p(E p) =

G p(Fp). □
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Theorem 2.21 implies that the rings IntQ({α}, Ẑ), α ∈ Ẑ, are in one-to-one
correspondence with the elements of Ẑ.

3. Construction of a Dedekind domain with prescribed class group

We review Chang’s construction [2022] mentioned in the introduction and modify it
in order to show that, given a group G which is the direct sum of a countable family
of finitely generated abelian groups, there exists a Dedekind domain R with finite
residue fields of prime characteristic, Z[X ]⊂ R ⊆ Q[X ], such that the class group of
R is G. As in [Eakin and Heinzer 1973], we show first that the ring constructed by
Chang can also be represented as a generalized ring of integer-valued polynomials.
In [Chang 2022, Lemma 3.4] it is proved that for each n ∈ N and p ∈ P, there exists
a DVR of Q(X) which is a residually algebraic extension of Z(p) with ramification
index equal to n; by means of Theorem 1.1, we can give an explicit representation
of such an extension in terms of a valuation domain Vp,α associated to some α ∈ Zp

which generates a totally ramified extension of Qp of degree n.
Let I be a countable set and G =

⊕
i∈I Gi be a direct sum of finitely generated

abelian groups Gi . Suppose that for each i ∈ I we have

Gi ∼= Zmi ⊕ Z/ni,1Z ⊕ · · · ⊕ Z/ni,ki Z

for some uniquely determined nonnegative integers mi , ni,1, . . . , ni,ki satisfying
ni, j | ni, j+1. We partition P into a family of finite subsets {Pi }i∈I each of which
contains arbitrary chosen 1 + ki primes, namely Pi = {pi , qi,1, . . . , qi,ki } and corre-
spondingly for each i ∈ I we fix the following 1 + ki sets:

i) E pi is a subset of Zpi of mi + 1 elements {αpi ,1, . . . , αpi ,mi +1} which are
transcendental over Q.

ii) For j = 1, . . . , ki , Eqi, j = {αqi, j } a singleton of Zqi, j such that αqi, j is transcen-
dental over Q and ni, j = eαqi, j

, the ramification index of Qp(αqi, j ) over Qp.

We set E i = E pi ×
∏ki

j=1 Eqi, j and also

Ri = IntQ(E pi , Zpi ) ∩

ki⋂
j=1

IntQ(Eqi, j , Zqi, j ) = IntQ(E i , Ẑ).

Since each of the unitary valuation overrings of Ri , namely Vp,αp , p ∈ Pi and
αp ∈ E p, is a DVR which is residually algebraic over Fp [Peruginelli 2017, Propo-
sition 2.2], by [Eakin and Heinzer 1973, Theorem and Corollary] Ri is a Dedekind
domain with class group isomorphic to Gi .

We also set
R =

⋂
i∈I

Ri = IntQ(E, Ẑ),
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where E =
∏

i E i . By [Chang 2022, Corollary 2.6], R is an almost Dedekind
domain with class group isomorphic to G.

As we already mentioned at the beginning of Section 2B, the ring R = IntQ(E, Ẑ)

is not Dedekind in general. By Theorem 2.15, this happens precisely when E is
polynomially factorizable. By a suitable modification of the above construction,
we are going to show that there exists a polynomially factorizable subset E of Ẑ

such that R is Dedekind with class group isomorphic to G, thus giving a positive
answer to [Chang 2022, Question 3.7].

Theorem 3.1. Let G be a direct sum of a countable family {Gi }i∈I of finitely
generated abelian groups (which are not necessarily distinct). Then there exists
a Dedekind domain R between Z[X ] and Q[X ] with class group isomorphic to G.
Moreover, for each i ∈ I , there exists a multiplicative subset Si of Z such that S−1

i R
is a Dedekind domain with class group Gi .

Proof. We keep the notation used in the above construction. Let Pr =
⋃

i∈I (Pi \{pi }).
For each q = qi, j ∈ Pr , for some i ∈ I and j ∈ {1, . . . , ki }, we set nq = ni, j . We
choose a uniformizer q̃ of Zq which is transcendental over Q. Let α̃q ∈ Zq be a root
of the Eisenstein polynomial Xnq − q̃ . Clearly, α̃q is still transcendental over Q and
it is well-known that Qq(α̃q) is a totally ramified extension of Qq of degree nq . We
now let αq = α̃q +⌊log q⌋: this is another generator of Qq(α̃q) over Qq which still
is transcendental over Q and has vq -adic valuation zero. We then set Eq = {αq} in
the above construction.

Similarly, for each p = pi ∈ P\Pr , for some i ∈ I , let m p = m pi . We choose dis-
tinct elements αp,i ∈⌊log p⌋+ pZp, for i = 1, . . . , m p +1, which are transcendental
over Q and set E p = {αp,1, . . . , αp,m p+1}.

We show now that with these choices the subset E =
∏

p E p ⊂ Ẑ is polynomially
factorizable, and therefore the corresponding domain R = IntQ(E, Ẑ) is a Dedekind
domain by Theorem 2.15. By Lemma 2.12, we need to show that for each g ∈ Z[X ],
Pg,E is finite. Let g ∈ Z[X ] be a fixed polynomial. For α = (αp) ∈ E , we have:

- αp = pa + ⌊log p⌋, for some a ∈ Zp, if p ∈ P \ Pr .

- αp = α̃p + ⌊log p⌋, if p ∈ Pr , where α̃p is a root of an Eisenstein polynomial,
so, in particular, vp(α̃p) > 0.

For each p ∈ P, let πp be a uniformizer of Qp(αp) (which is just p if p /∈ Pr ). We
then have

g(αp) ≡ g(⌊log p⌋) (mod πp).

Now, for all p sufficiently large, g(⌊log p⌋) is not divisible by p, since

lim
x→∞

g(log x)

x
= 0.
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Hence, Pg,E is finite.
The fact that IntQ(E, Ẑ) has class group equal to G follows either by [Chang

2022, Corollary 2.6] or by applying Lemma 2.14 and Proposition 2.10, by noting
that Pic(IntQ(E p, Zp)) = Zm p for each p ∈ P\Pr and Pic(IntQ(Eq , Zq)) = Z/nqZ

for each q ∈ Pr .
For the last claim, if i ∈ I , we let Si be the multiplicative subset of Z generated

by P \ Pi . Then, by Lemma 2.5, S−1
i IntQ(E, Ẑ) = IntQ(E i , Ẑ) which has class

group isomorphic to Gi by Lemma 2.14 and Proposition 2.10. □
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