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POCHETTE SURGERY OF 4-SPHERE

TATSUMASA SUZUKI AND MOTOO TANGE

Iwase and Matsumoto (2004) defined “pochette surgery” as a cut-and-paste
operation on 4-manifolds along a 4-manifold homotopy equivalent to S2 ∨ S1.
Suzuki (2022) studied infinitely many homotopy 4-spheres obtained by
pochette surgery. We compute the homology of pochette surgery of any
homology 4-sphere by using “linking number” of a pochette embedding.
We prove that pochette surgery with the trivial cord does not change the
diffeomorphism type or gives a Gluck surgery. We also show that there
exist pochette surgeries on the 4-sphere with a nontrivial core sphere and a
nontrivial cord such that the surgeries give the 4-sphere.

1. Introduction

1A. Pochette surgery. Let Dn be an n-dimensional disk and Sn an n-dimensional
sphere. Let P denote the boundary-sum S1

× D3♮D2
× S2. It is called a pochette.

Throughout this paper, all manifolds are assumed smooth, and connected, and
all maps are smooth. For a manifold M , the open tubular neighborhood for a
submanifold A ⊂ M is denoted by N (A). Let E(X) denote the exterior M − N (X)

of a submanifold X in M .
Here we define pochette surgery, which was initially defined by Iwase and

Matsumoto in [7]. Let e be an embedding P ↪→ M in a 4-manifold M . Let Qe

denote the image e(Q) of a submanifold Q in P .

Definition 1.1. Let g be a diffeomorphism g : ∂ P → ∂ E(Pe). Gluing E(Pe) and P
via g, we construct a manifold M(e, g) := E(Pe) ∪g P . We call this operation a
pochette surgery. We say that the diffeomorphism g is a gluing map for the pochette
surgery.

We call the curves l := S1
× {pt} and m := ∂ D2

× {pt} on ∂ P a longitude and
a meridian of P , respectively. According to [7, Theorem 2], the diffeomorphism
type of M(e, g) is uniquely determined by the following data:
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(i) An embedding e : P ↪→ M .

(ii) A homology class g∗([m]) ∈ H1(∂ E(Pe)) = Z[me] ⊕ Z[le].

(iii) A mod 2 framing ϵ around g(m).

The mod 2 framing will be defined in Section 2C. The induced map g∗ maps the
primitive element [m] in H1(∂ P) to p[me]+ q[le] in H1(∂ E(Pe)), where p, q are
relatively prime integers. Then, we call the element p/q ∈ Q ∪ {∞} a slope of the
pochette surgery. Any slope p/q gives an unoriented image g(m) of m. Hence,
for some embedding e, the pochette surgery with the slope p/q and the mod 2
framing ϵ is called (p/q, ϵ)-pochette surgery of M and this denotes M(e, p/q, ϵ).
We call the 2-sphere S := {pt} × S2

⊂ P a core sphere of P and the meridian
2-sphere B := {pt} × ∂ D3

⊂ P a belt sphere of P .
Consider P as D2

× S2
∪ h1, where h1 is a 1-handle. In order to embed P into

a 4-manifold M , we have only to determine an embedding of D2
× S2 and the

1-handle h1. First we take an embedding e : D2
× S2 ↪→ M .

Definition 1.2 (cord). The 1-handle gives a properly embedded, simple arc in E(S2
e )

by taking the core of h1. We call this arc a cord here. If a cord is boundary parallel,
then the cord is called trivial.

1B. Gluck surgery and circle surgery. Let S′ be an embedded sphere with a
product neighborhood in a 4-manifold M . Gluck surgery along S′ is an operation
Gl(S′) := E(S′)∪ϕ (D2

× S2), where ϕ is a diffeomorphism ∂ D2
× S2

→ ∂ N (S′) ∼=

S1
× S2 which is not homotopy equivalent to the identity. From the construction

of pochette surgery, for an embedding e : P ↪→ M , any (∞, 0)-pochette surgery is
the trivial surgery and any (∞, 1)-pochette surgery yields Gl(Se). In the case of
(0, ϵ)-pochette surgery, it is an operation E(le)∪ (D2

× S2) along the curve le ⊂ M .
This surgery means that the result is one side of the manifold obtained by attaching
5-dimensional 2-handle on M × I along le. We call the result an S1-surgery (circle
surgery). Thus, any pochette surgery with the slope p/q can be regarded as an
intermediate between a Gluck surgery and an S1-surgery.

Pochette surgery is a generalization of Gluck surgery as mentioned above. Gluck
surgery gave exotic nonorientable 4-manifolds in [1]. It is natural to think pochette
surgery may give interesting orientable 4-manifolds, possibly exotic 4-spheres and
so on. In this article, we focus on pochette surgeries yielding homotopy 4-spheres.

1C. Other results. Since the definition of pochette surgery was done, some people
have studied pochette surgery. Murase [9] studied pochette surgeries of the double
of P . Let D(P) be the double of P which means P ∪id (−P). In fact, D(P) is
diffeomorphic to S1

× S3#S2
× S2. Let iP be the inclusion map iP : P → D(P).

He shows the resulting manifold D(P)(iP , p/q, ϵ) is diffeomorphic to a rational
homology 4-sphere with type L , which is defined in [13].
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In the next section, we will share Okawa’s result with readers. He investigates
pochette surgeries yielding homotopy 4-spheres with the core sphere ribbon and
with the cord trivial. We generalize this in Theorem 1.4.

Suzuki [14] computed the homology of some types of pochette surgeries. These
results are generalized in this paper (Proposition 2.5).

Pochette surgery can easily extend to a surgery along ♮a S1
× D3♮b D2

× S2 for
some positive integers a, b. This is called outer surgery defined in [10]. In the
future, we expect to find many exotic 4-manifolds by pochette surgery or outer
surgery. See Section 5 for questions for pochette surgery or outer surgery.

1D. Pochette surgery with trivial cord or trivial core sphere. After the definition
of pochette surgery by Iwase and Matsumoto, pochette surgeries for embedding
of P with trivial cord or trivial core sphere in S4 have been considered to construct
a new type of homotopy 4-spheres.

The case of trivial cord. In this paper, we clarify diffeomorphism types of pochette
surgeries of closed 4-manifolds with the trivial cord. Okawa proved the following.

Theorem 1.3 (Okawa [12]). Let e be an embedding of P into S4 with the cord trivial.
If the core sphere Se is a ribbon 2-knot, then any pochette surgery S4(e, 1/q, ϵ) is
diffeomorphic to S4 for any integer q.

Here we state the first main theorem.

Theorem 1.4. Let e be an embedding of P into a closed 4-manifold M with the
trivial cord. Then for any integer q, the following holds:

M(e, 1/q, ϵ) ∼=

{
M, ϵ = 0,

Gl(Se), ϵ = 1.

The Gluck surgery along any ribbon 2-knot is diffeomorphic to the standard
4-sphere; see, for example, [5]. Hence, Theorem 1.4 implies Theorem 1.3. It is also
known that Gluck surgeries of some nonribbon 2-knots give the standard S4; see,
for example, [6; 8; 11]. Pochette surgeries for such examples give the standard S4.

Theorem 1.4 determines diffeomorphism types of (1/q, ϵ)-pochette surgeries
with the trivial cord. As a corollary, we clarify the diffeomorphism type of any
pochette surgery on a homology 4-sphere with the complement of the core sphere
homotopically trivial.

Gluck surgery can produce nonorientable exotic 4-manifolds due to Akbulut [1].
Hence, Theorem 1.4 implies that pochette surgery also produces nonorientable exotic
4-manifolds. As in the case of Gluck surgery, it remains uncertain whether pochette
surgery has the potential to produce orientable exotic 4-manifolds (Question 5.6).
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The case of trivial core sphere. Suzuki [14] proved that several examples of infin-
itely many homotopy 4-spheres with the trivial core sphere are all diffeomorphic to
the standard 4-sphere.

Theorem 1.4 immediately leads to the following theorem. This is a generalization
of first author’s result.

Theorem 1.5. Let M be a homology 4-sphere. Let e be an embedding P ↪→ M with
π1(E(Se)) = Z. If a pochette surgery produces a homology 4-sphere, then the result
is diffeomorphic to M or Gl(Se). In particular suppose M is S4 and e : P ↪→ S4 is
an embedding that the core sphere Se is the unknot. Then if a pochette surgery by e
yields a homology 4-sphere M ′, then M ′ is diffeomorphic to S4.

1E. Pochette surgeries with nontrivial core sphere and cord. Next, we consider
several examples of pochette surgeries with nontrivial core sphere and cord.

First, we prove the existence of such an example.

Theorem 1.6. There exists a pochette embedding e : P ↪→ S4 with a nontrivial core
sphere and a nontrivial cord such that the pochette surgery S4(e, g) is diffeomorphic
to S4.

Further, the following theorem gives a sufficient condition for the existence of
nontrivial cords whose surgery yielding homotopy 4-sphere is trivialized.

Theorem 1.7. Let S ⊂ S4 be any ribbon 2-knot of 1-fusion with π1(E(S)) ̸∼= Z.
Then there exists a nontrivial cord c in E(S) and an embedding

e : P → Pe = N (S) ∪ N (c) ⊂ S4

such that the pochette surgery S4(e, p/(p + 1), ϵ) is diffeomorphic to S4.

Actually, as proven in Theorem 1.7, the core sphere of e is any nontrivial ribbon
2-knot of 1-fusion. Furthermore, there exist infinitely many cords for such a ribbon
2-knot such that the results all obtain the standard S4.

Theorem 1.8. Let S ⊂ S4 be any ribbon 2-knot with π1(E(S)) ̸∼= Z. Then there
exists a nontrivial cord C in E(S) satisfying the following conditions:

(1) The embedding e : P ↪→ S4 has the core sphere S and the cord C.

(2) If for a gluing map g, S4(e, g) is a homology 4-sphere then it is diffeomorphic
to the double of a homology 4-ball H without 3-handles.

For a general ribbon 2-knot, it is uncertain whether the homology 4-ball H is
contractible or not. In Theorem 1.8 we show that for any nontrivial ribbon 2-knot
there exists a nontrivial cord such that any pochette surgery yielding a homology
4-sphere gives the double of a homology 4-ball without 3-handles.
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Furthermore, when S4(e, g) is a homotopy 4-sphere, for S4(e, g) to be the
standard S4, we have only to assume the AC-triviality of the presentation of π1. As
a result, we obtain the following theorem.

Theorem 1.9. If the homology 4-ball H obtained in Theorem 1.8 is contractible
and the presentation of π1(H) for a handle decomposition of H without 3-handles
is AC-trivial, then S4(e, g) is standard S4.

In Lemma 4.5, we actually give infinitely many presentations for π1(H) satisfying
this condition. This means that such a type of ribbon 2-knots has a nontrivial cord
satisfying S4(e, g) = S4.

It is unknown whether a pochette surgery with nontrivial Se gives an exotic
manifold or not. In general, even if Se is trivial in a 4-manifold M , then it is unclear
whether the pochette surgery is trivial or not. We expect that some pochette surgery
creates a new exotic 4-manifold.

1F. Aims of this paper. The first aim of this paper is to investigate pochette surg-
eries M(e, g) yielding homotopy 4-spheres and to determine the diffeomorphism
types. What occurs in the case of nontrivial core sphere? The second aim is what
even in this case, we clarify the existence of nontrivial cords that pochette surgeries
give the standard S4.

1G. Organization of this paper. In Section 2, we give a review for pochette surgery.
We define several definitions and lemmas. To carry out the second aim above, we
compute the homology of M(e, g) for any homology 4-sphere M . In order to
compute the homology, we need to introduce the notion of a linking number for
an embedding of a pochette as well as the slope which was defined by Iwase and
Matsumoto [7]. The linking number of an embedded pochette is the usual linking
number of the embedded core sphere Se and the longitude le in M . It depends on
the choice of a meridian m, a longitude l and an embedding e : P ↪→ M . Actually,
we show that the homology of a pochette surgery is uniquely determined by the
slope and the linking number (Proposition 2.5).

In Section 3, first, we prove Theorem 1.4 and clarify that pochette surgeries
M(e, g) of the case where the cord is trivial is diffeomorphic to M or some Gluck
surgery. Second, we prove Theorem 1.5, by using this result, and we give a
sufficient condition that any pochette surgery of M for some core sphere gives the
same manifold M or the Gluck surgery. As a particular condition, any (1/q, ϵ)-
pochette surgery of 4-sphere whose core sphere is the unknot is diffeomorphic
to S4.

In Section 4, we investigate cases where the core sphere Se is a nontrivial 2-knot
and the cord is a nontrivial (Theorem 1.6). These surgeries give the standard 4-sphere.
Actually, we use a ribbon 2-knot of 1-fusion as Se. The proof is essentially proven
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in Theorem 1.7. We generalize this situation to some cases where the core spheres
are any general nontrivial ribbon 2-knots S with π1(E(S)) ̸∼= Z (Theorem 1.8).
However, we did not see whether the resulting manifold is a homotopy 4-sphere
or not. In Theorem 1.9, we give a sufficient condition of ribbon 2-knots for the
existence of a nontrivial cord such that any surgery yielding homotopy 4-sphere
gives the standard S4.

2. Preliminaries

2A. Embedding of P. To consider an embedding of P in a 4-manifold M , as
mentioned in the previous section, we embed a 2-sphere S in M with product
neighborhood and embed a cord in the exterior E(S). In 4-dimension, the isotopy
class of any 1-manifold coincides with the homotopy class. Thus, the isotopy class
of any embedding of P is determined by a 2-knot with product neighborhood and
the homotopy class of a cord as a proper embedding in E(S).

Let S be a 2-knot in a homology 4-sphere M . Here we clarify the isotopy classes
of embedding e of P with Se = S. We put G(S) = π1(E(S)). G(S) includes a
subgroup ⟨m⟩ that is isomorphic to Z. In this section, m is regarded as the class
represented by the meridian circle. Here we call ⟨m⟩ a boundary-subgroup.

In fact, the abelianization map induces the surjection G(S) → H1(E(S)) ∼= Z

and the meridian is mapped to a generator in Z ⊂ H1(E(S)). Thus m is nontorsion
in G(S). We define the set of isotopy classes of cords in E(S) to be

51(E(S), ∂ E(S)) := [(I, ∂ I ), (E(S), ∂ E(S))],

and the double coset space G(S)//⟨m⟩ := ⟨m⟩\G(S)/⟨m⟩. Let

ϕ : π1(E(S), ∂ E(S)) → 51(E(S), ∂ E(S))

be the natural map.

Lemma 2.1. Let S be a 2-knot in a homology 4-sphere M. The set of properly
embedded cords up to isotopy with the end points included in ∂ E(S) has a bijection
to the double coset space G(S)//⟨m⟩.

Proof. By the short exact sequence

1 → π1(∂ E(S)) → π1(E(S)) = G(S) → π1(E(S), ∂ E(S)) → 1

induced from the homotopy long exact sequence of the pair (E(S), ∂ E(S)), we
have the bijection

π1(E(S), ∂ E(S)) ∼= ⟨m⟩\G(S).

Here π1(E(S), ∂ E(S)) is the relative homotopy set.
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Any element in 51(E(S), ∂ E(S)) can be realized as one in π1(E(S), ∂ E(S))

by homotoping a starting point of the path to the base point x0 of π1(E(S), ∂ E(S)).
If ϕ(γ0) = ϕ(γ1) for some γ0, γ1 ∈ π1(E(S), ∂ E(S)), then

γ0(0) = γ1(0) = x0, γ0(1), γ1(1) ∈ ∂ E(S).

There is a homotopy H : I × I → E(S) such that H(i, · ) = γi and H(t, i) ∈ ∂ E(S)

(i = 0, 1). Then c(t) := H(t, 0) is a loop in ∂ E(S) with a base point x0, we have
γ0 = γ1 · c ∈ π1(E(S), ∂ E(S)). Therefore, ϕ is surjective. If

γ0 = γ1 · c ∈ π1(E(S), ∂ E(S))

for some c ∈ π1(∂ E(S)), then γ0 = γ1 in 51(E(S), ∂ E(S)). Thus

π1(E(S), ∂ E(S))/⟨m⟩ → 51(E(S), ∂ E(S))

is bijective.
Then we obtain the bijection

51(E(S), ∂ E(S)) → π1(E(S), ∂ E(S))/⟨m⟩ → G(S)//⟨m⟩. □

Let [[id]] be the element in G(S)//⟨m⟩ represented by the trivial cord. Here the
class in the double coset is represented by [[·]] and id stands for the identity element
in G(S). Hence, if the boundary-subgroup ⟨m⟩ is a proper subgroup in G(S), then
G(S)//⟨m⟩ ̸= {[[id]]}. If S is the trivial 2-knot in the 4-sphere, then G(S) = ⟨m⟩

and it has a unique isotopy class of a cord. If G(S) is not isomorphic to Z, then
there exists a nontrivial cord.

2B. Fundamental group of pochette surgery. In general, to find a homotopy 4-
sphere obtained by applying pochette surgery, we need to compute the fundamental
group. Let M be a 4-manifold and e an embedding e : P ↪→ M . According to [7],
we see that a free isotopy class of an unoriented curve with slope p/q is uniquely
determined as an image of m. We call the class a natural lift. Let cp,q be the natural
lift of p[me]+ q[le] to π1(∂ E(Pe)), which is defined in [7]. Let l ′, and m′ be the
images on π1(∂ E(Pe)) of the based, oriented, longitude and meridian in ∂ P via e
respectively. Let c′

p,q be an element in π1(∂ E(Pe)) presenting cp,q . Concretely, the
element is given by

c′

p,q = l ′⌊q/p⌋m′l ′⌊2q/p⌋−⌊q/p⌋m′l ′⌊3q/p⌋−⌊2q/p⌋
· · · m′l ′⌊pq/p⌋−⌊((p−1)q)/p⌋m′.

See Theorem 6 in [7].
We assume that the group presentation of π1(E(S)) is π1(E(S)) = ⟨S | R⟩,

where S is a set of generators and R is a set of relators. For the inclusion maps
i : ∂ Pe → E(Pe) and j : ∂ P → P , the following maps are induced:

i# : π1(∂ Pe) → π1(E(Pe)), j# : π1(∂ P) → π1(P).
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From the Seifert–Van Kampen theorem, we have

(1) π1(M(e, p/q, ϵ)) = ⟨S | R, c′

p,q⟩.

2C. Mod 2 framing. For a gluing map g : ∂ P → ∂ E(Pe) we define mod 2 framing
of g(m) as explained in [7, first paragraph in p. 162]. Let us consider a pochette
surgery on M . After attaching D2

× S2 in P along g(m), we can uniquely attach
the remaining S1

× D3. Hence, we have only to consider an identification between
neighborhoods of m and g(m) via g to attach P .

We fix an identification

∂ P = S1
× ∂ D3#∂ D2

× S2
= S1

× S2#S1
× S2.

The meridian m = ∂ D2
× {pt} ⊂ ∂ P has the natural product framing. We obtain

an identification ι : ∂ E(Pe) → S1
× S2#S1

× S2 through the embedding e. Then,
S1

× S2#S1
× S2 can be presented by the 2-component unlink with 0-framings. We

map the natural framing on m ⊂ ∂ P to a framing on g(m). The framing is presented
by an integer by the identification ι. As far as we consider the diffeomorphism type
of the result of the pochette surgery, we have only to consider an integer modulo 2
as the framing on g(m). In fact, consider P as S1

× D3 attaching a 2-handle with
the cocore m. For two gluing maps g1, g2 : ∂ P → ∂ E(Pe) with g1(m) = g2(m)

but with framings whose difference is divisible by 2, the map g−1
1 ◦ g2|N (m) can

be extended to the inside of the 2-handle. Namely, two 4-manifolds attached by
such gluing maps are diffeomorphic each other. Such a framing on g(m) is called a
mod 2 framing and written by ϵ.

2D. Linking number. Let l and S be the longitude and the core sphere of a
pochette P respectively. Let M be an oriented homology 4-sphere and e : P ↪→ M
an embedding. The images le, and Se in M give submanifolds of M . Then they can
give the linking number

ℓ = L(Se, le)

according to [3]. In fact, we extend an embedding e|S : S → M to a map B3
→ M ,

where B3 is a homology 3-ball. The orientation of B3 is induced by the one of Se.
We count the intersection points between the image of B3 and le with sign. Here we
deform le in E(Se) so that le can meet with B3 transversely. For each intersection
point if the concatenation of orientations on B3 and le at the point coincides with
the orientation of M , then the sign is +1, otherwise −1. We call the sign a local
intersection number at the intersection point. In the end, we sum up the local
intersection numbers through all the intersection points. In the same way, we can
compute L(le, Se) by changing the order of le and Se.

In the general theory of linking number, the absolute values of L(Se, le) and
L(le, Se) are the same. Actually, by the careful consideration of orientation we can
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easily obtain L(Se, le) = −L(le, Se) =: ℓ. We call this number ℓ linking number of
the embedding e. We must notice that the linking number is not an invariant of the
embedding of P . If we fix the coordinate m and l, then the linking number can be
determined. This is due to what the 3-disk separating S1

× D3 and D2
× S2 is not

unique.
Here let us reinterpret the linking number L(Se, le) in terms of the homology.

We use the intersection pairing:

⟨ · , · ⟩4
3 : H3

(
E(Se), ∂(E(Se))

)
× H1(E(Se)) → Z.

Let M3 be a Seifert hypersurface of Se in E(Se), namely M3 is a properly embedded
3-manifold in E(Se) satisfying ∂M3

= Se. H3
(
E(Se), ∂(E(Se))

)
is isomorphic

to Z[M3
]. Here M3

∩ E(Se) and M3 are identified. H3(E(Pe), ∂ E(Pe)) is iso-
morphic to Z[M3

].
The intersection point between M3 and me is one point. Here we give an

orientation on M3 satisfying ⟨[M3
], [me]⟩

4
3 = +1.

By the definition of linking number, it follows that ⟨[M3
], [le]⟩

4
3 = ℓ. Since

H1(E(Se)) is also isomorphic to Z generated by [me], we have [le] = ℓ[me].
In the similar way we consider the next intersection pairing:

⟨ · , · ⟩4
2 : H2

(
E(le), ∂(E(le))

)
× H2(E(le)) → Z.

Here we take a proper embedded surface 6 satisfying ∂6 = le in E(le). We take
the usual orientation of the meridian Be of le and the orientation on 6 by using
⟨[6], [Be]⟩

4
2 = +1. From the computation L(le, Se) = −ℓ of the linking number,

we obtain ⟨[6], [Se]⟩
4
2 = −ℓ. Since H2(E(le)) is isomorphic to Z generated by the

belt sphere [Be], [Se] = −ℓ[Be] holds.

2E. The homology of a pochette surgery. Let M be a homology 4-sphere. Here
we compute the homology of the result by pochette surgery. Let g : ∂ P → ∂ E(Pe)

be a gluing map with the slope p/q and the mod 2 framing ϵ. Let i be the inclusion
map ∂ E(Pe) → E(Pe).

To compute the homology group of any pochette surgery of a homology 4-sphere,
we prove lemmas needed later. First, we compute the homology of E(Pe) here.
Since E(Pe) is connected, we have H0(E(Pe)) ∼= Z.

Lemma 2.2. E(Pe) has the following homology groups:

Hn(E(Pe)) =


Z · [me], n = 1,

Z · [Be], n = 2,

0, n ≥ 3.

Proof. Let h3 be a 4-dimensional 3-handle. Attaching h3 on the belt sphere of Pe,
we obtain E(Pe) ∪ h3

= E(Se) and E(Pe) ∩ h3
= ∂ D3

× D1
= S2

× D1. The
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homology of E(Se) is the same as the homology of S1 and the first homology group
is generated by the meridian me. Since H1 is independent of attaching any 3-handle,
we have H1(E(Pe)) = H1(E(Pe)∪h3) = H1(E(Se)) = Z[me] ∼= Z. Then we obtain
the Mayer–Vietoris sequence:

· · · → Hn(S2
× D1) → Hn(E(Pe)) ⊕ Hn(h3) → Hn(E(Se)) → · · · .

Thus, we can easily check

Hn(E(Pe)) =

{
Z, n = 2,

0, n = 3, 4.

The generator of H1 clearly corresponds to the meridian me of E(Se) and the
one of H2 corresponds to the generator, the belt sphere Be which is the image
of H2(S2

× D1). □

From this lemma, we obtain natural isomorphisms H1(E(Pe)) ∼= H1(E(Se)) and
H2(E(Pe)) ∼= H2(E(le)). The isomorphisms are induced by the inclusions and
connect the corresponding elements [me] and [Be].

Let g be a gluing map from ∂ P to ∂ E(Pe). Suppose that g∗([m])= p[me]+q[le]

is satisfied on the first homology group.

Lemma 2.3. If g∗([m]) = p[me] + q[le], then we have g∗([B]) = p[Be] − q[Se].

Proof. We put g∗([l]) = r [me] + s[le], g∗([B]) = x[Be] + y[Se]. Then, we can
define the nondegenerate bilinear form ⟨ · , · ⟩3 : H1(∂ P) × H2(∂ P) → Z from the
cup product H 2(∂ P) × H 1(∂ P) → H 3(∂ P).

By defining

⟨[m], [B]⟩3 = 0, ⟨[l], [B]⟩3 = 1, ⟨[m], [S]⟩3 = 1 and ⟨[l], [S]⟩3 = 0,

we determine the orientations on m and B. These orientations coincide with
the ones determined Section 2D via the map Hn(∂ Pe) → Hn(E(Pe)). Since g :

∂ P → ∂ E(Pe) is a diffeomorphism, we can define the nondegenerate bilinear
form ⟨ · , · ⟩e

3 : H1(∂ E(Pe)) × H2(∂ E(Pe)) → Z from the nondegenerate bilinear
form ⟨ · , · ⟩3 : H1(∂ P) × H2(∂ P) → Z. Since g : ∂ P → ∂ E(Pe) is an orientation
preserving diffeomorphism, the determinant of the matrix given by(

g∗([m]) g∗([l])
)
=

(
[me] [le]

) (
p r
q s

)
is 1. Hence we obtain ps − qr = 1. Thus the inverse is as(

g−1
∗

([me]) g−1
∗

([le])
)
=

(
[m] [l]

) (
s −r

−q p

)
.

Since
⟨g∗(α), g∗(β)⟩e

3 = ⟨α, β⟩3 for all α ∈ H1(∂ P), β ∈ H2(∂ P),
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we have

x = ⟨[le], x[Be] + y[Se]⟩
e
3 = ⟨[le], g∗([B])⟩e

3 = ⟨g−1
∗

([le]), [B]⟩3

= ⟨−r [m] + p[l], [B]⟩3 = p

and

y = ⟨[me], x[Be] + y[Se]⟩
e
3 = ⟨[me], g∗([B])⟩e

3 = ⟨g−1
∗

([me]), [B]⟩3

= ⟨s[m] − q[l], [B]⟩3 = −q.

Therefore, we obtain the desired result above. □

Lemma 2.4. Let e be an embedding P ↪→ M with linking number ℓ. Let i be an
inclusion i : ∂ E(Pe) → E(Pe). Then i∗([le]) = ℓ[me] and i∗([Se]) = −ℓ[Be] are
satisfied.

Proof. The image of [le] ∈ H1(∂ E(Pe)) by i∗ is also [le] in H1(E(Pe)). Since
H1(E(Pe)) and H1(E(Se)) are identified with each other by the natural isomorphism
by the inclusion, the elements [me] having in these homology groups are mapped.
Hence, from Section 2D, [le] = ℓ[me] also holds in H1(E(Pe)). In the same way,
we have i∗([Se]) = −ℓ[Be]. □

Here, we compute the homology groups of the pochette surgery M(e, p/q, ϵ).
Since M is connected and oriented, H0(M(e, p/q, ϵ)) ∼= H4(M(e, p/q, ϵ)) ∼= Z is
satisfied. We compute Hn of M for n = 1, 2, 3.

Proposition 2.5. Let M be a homology 4-sphere. Let e be an embedding with
linking number ℓ. Then, M(e, p/q, ϵ) has the following homology groups:

(i) If p + qℓ ̸= 0, then

Hn(M(e, p/q, ϵ)) ∼=

{
Z/(p + qℓ)Z, n = 1, 2,

0, n = 3.

(ii) If p + qℓ = 0, then

Hn(M(e, p/q, ϵ)) ∼=

{
Z, n = 1, 3,

Z2, n = 2.

Note that the case of p + qℓ = 0 means (p, q) = (ℓ, −1), (−ℓ, 1) because p, q
are relatively prime.

Proof. The embedding map e : P ↪→ M induces the map

Hn(∂ P)
g∗

→ Hn(∂ E(Pe))
i∗
→ Hn(E(Pe)).

Then we have H1(∂ E(Pe)) = Z·[me]⊕Z·[le], H2(∂ E(Pe)) = Z·[Be]⊕Z·[Se] and
obtain g∗([m])= p[me]+q[le], i∗([me])=[me] and i∗([Be])=[Be]. By Lemma 2.3,
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we obtain g∗([B]) = p[Be] − q[Se]. By Lemma 2.4, we have i∗([le]) = ℓ[me] and
i∗([Se]) = −ℓ[Be]. By Lemma 2.2 and the Mayer–Vietoris sequence

· · · → H∗(E(Pe)) ⊕ H∗(P) → H∗(M(e, p/q, ϵ)) → H∗−1(∂ P) → · · · ,

we obtain

≻ 0 ≻ H3(M(e, p/q, ϵ))
∂3

≻ Z · [B] ⊕ Z · [S]

j21 ⊕ j22
≻ Z · [Be] ⊕ Z · [S]

i2
≻ H2(M(e, p/q, ϵ))

∂2
≻ Z · [m] ⊕ Z · [l]

j11 ⊕ j12
≻ Z · [me] ⊕ Z · [l]

i1
≻ H1(M(e, p/q, ϵ))

∂1 = 0
≻ H0(∂ P)

We put jn = jn1 ⊕ jn2 for any n ∈ Z. Since we have ∂1 = 0, i1 is a surjection. Since
we have j1([m]) = (p + qℓ)[me] and j1([l]) = (r + sℓ)[me] + [l], we obtain

H1(M(e, p/q, ϵ)) = Im i1 ∼= Z · [me] ⊕ Z · [l]/⟨(p + qℓ)[me], (r + sℓ)[me] + [l]⟩
∼= Z · [me]/⟨(p + qℓ)[me]⟩ ∼= Z/(p + qℓ)Z.

Here r, s are the same coefficients as the ones used in the proof of Lemma 2.3.
Next, we compute H2 and H3 of the result of the pochette surgery.
If p + qℓ ̸= 0, then j1 is an injection. Since i2 is a surjection, we obtain the

following isomorphism:

H2(M(e, p/q, ϵ)) = Im i2

∼= Z · [Be] ⊕ Z · [S]/⟨(p + qℓ)[Be], (r ′
+ s ′ℓ)[Be] + [S]⟩

∼= Z · [Be]/⟨(p + qℓ)[Be]⟩ ∼= Z/(p + qℓ)Z.

Here, r ′, s ′ are some integers satisfying ps ′
+qr ′

=1. In this case, Im ∂3 =Ker j2 =0.
Thus we have

H3(M(e, p/q, ϵ)) = Ker ∂3 = 0.

If p + qℓ = 0, then Im ∂2 = Ker j1 = Z · [m]. Thus we have

H2(M(e, p/q, ϵ)) ∼= Im i2 ⊕ Z · [m] ∼= Z · [Be] ⊕ Z · [m].

In this case, Im ∂3 = Ker j2 = Z · [B]. Thus we have

H3(M(e, p/q, ϵ)) ∼= Z · [B].

Therefore, we obtain the desired result above. □

The theorems by Whitehead [15], Freedman [4] and Proposition 2.5 imply the
next corollary.

Corollary 2.6. Let M be a homology 4-sphere. M(e, p/q, ϵ) is homeomorphic
to S4 if and only if M(e, p/q, ϵ) is a simply connected 4-manifold and |p + qℓ| is
equal to 1.
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Proof. By Freedman’s theorem, M(e, p/q, ϵ) is homeomorphic to S4 if and only if
M(e, p/q, ϵ) is homotopy equivalent to S4. We will only show that M(e, p/q, ϵ)

is homotopy equivalent to S4 if and only if M(e, p/q, ϵ) is a simply connected 4-
manifold and |p +qℓ| = 1. By the Whitehead theorem, the necessary and sufficient
condition for a manifold to be homotopy equivalent to S4 is π1 = {id} and Hn = 0
for n = 1, 2, 3. From Proposition 2.5, we can easily check this corollary follows. □

2F. Images of the meridian by diffeomorphism. In this section we describe images
of m via some gluing maps g : ∂ P → ∂ E(Pe) with slope 1/p and p/(p+1). In the
first diagram in Figure 1 we describe m, l ⊂ #2S2

× S1. By sliding along the dashed
arrow in the first picture, m is moved to a curve represented by [m] + [l] in the
second picture. Furthermore, sliding the diagram along the dashed arrow, we obtain
the third picture. Then [m]+[l] is moved to a curve by represented by [m]+2[l]. By
the same diffeomorphism, [m]+ 2[l] is moved to a curve represented by [m]+ 3[l]
in the fourth picture.

Thus, by the diffeomorphism h : #2S2
× S1

→ #2S2
× S1 with slope 1/p, merid-

ian m is moved to a curve represented in [m] + p[l] as in the bottom picture
in Figure 1. This position will be used when we describe the handle diagram
of M(e, 1/p, ϵ).

0 0
m l

0 0

[m] + [l]

l

0 0
[m] + 2[l]

l
0 0

[m] + 3[l]

l

0 0
[m] + p[l]

lp

Figure 1. Images of m and l via a gluing map #2S2
× S1

→ #2S2
× S1.
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0

p

0 0
l

p[m] + [l]

0

00

l

isotopy
p[m] + (p + 1)[l]

Figure 2. Case (I).

0

p

p[m] + [l]

0 0

l

0

0 0

l

isotopyp[m] + (p + 1)[l]

Figure 3. Case (II).

Furthermore, exchanging m and l in the last picture in Figure 1 and doing an
isotopy, we obtain a curve represented by p[m] + [l] as in the first pictures in
Figures 2 and 3. We call these cases Case (I) and Case (II) respectively. Sliding
a 0-framed 2-handle, we obtain the second picture. The thin curves in the figures
are represented by p[m] + (p + 1)[l]. By an isotopy we obtain the last pictures in
Figures 2 and 3.
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0

me le

E(Pe) M(e, 1/q, ϵ)

q

ϵ

0

∪ 3-handle, 4-handle

Figure 4. Attaching P on E(Pe) with the trivial cord.

3. Proofs of Main theorems

In this section we prove Theorem 1.4.

Proof of Theorem 1.4. Let e be an embedding P ↪→ M with a trivial cord. The
exterior E(Pe) is obtained by attaching a 0-framed 2-handle on E(Se) in a separated
position from the diagram of E(Se) as in the left picture of Figure 4. The circle me

in the figure is the image of meridian of P . For example, when we describe E(Se)

along the motion picture as in [5, Section 6.2], it is a meridian of a 1-handle
corresponding to a 0-handle of the embedded sphere. Hence, the pochette surgery
on M can be obtained by attaching an ϵ-framed 2-handle on E(Pe) plus a 3-handle
and a 4-handle. The position of the ϵ-framed 2-handle is understood from the
argument in Section 2F. The right picture in Figure 4 is the local picture of the
handle diagram of M(e, 1/q, ϵ).

Here, we prove that the rightmost 0-framed knot in Figure 4 is isotopic to the
unknot in ∂(E(Se)∪h2(ϵ))= S3, where h2(ϵ) is the ϵ-framed 2-handle. We remove
the previous 3- and 4-handle in M(e, 1/q, ϵ). Since the boundary of obtained
manifold is diffeomorphic to the ϵ-Dehn surgery of ∂ E(Se). By several handle
moves, we obtain the Hopf link surgery that the framing coefficients of the two
components are ⟨0⟩ and ⟨ϵ⟩. Then we get the second picture in Figure 5. From this
point, doing slides by q-times, we obtain the fifth picture. Canceling the Hopf link
component, we obtain 0-framed knot as in the last picture in Figure 5. Hence, this
0-framed unknot is isotopic to the unknot.

Since we can move the 0-framed unknot in the last picture in Figure 4 to the
unlink position in the same picture, we cancel this component with a 3-handle. The
remaining diagram is obtained by attaching an ϵ-framed 2-handle and a 4-handle on
E(Se). Therefore, the resulting manifold is the trivial surgery or the Gluck surgery
along Se depending on ϵ = 0 or 1 respectively. □

Using this theorem, we can prove Theorem 1.5.
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⟨0⟩

⟨ϵ⟩

q

0
⟨0⟩

⟨ϵ⟩

q

0

sliding

⟨0⟩
⟨ϵ⟩

0

q − 1

sliding

⟨0⟩ ⟨ϵ⟩
0

sliding

⟨0⟩ ⟨ϵ⟩ 0

canceling

0

Figure 5. The isotopy type of the rightmost component.

Proof of Theorem 1.5. Let e be an embedding P ↪→ M . If G(Se) ∼= Z holds, then
π1(E(Se), ∂ E(S)) consists of one element. This means that any cord in E(Se)

is isotopic to the trivial cord. Moving the embedded 1-handle in P around the
meridian ∂ D2

× {pt} as an isotopy of e, we can make the linking number zero.
Hence, if the pochette surgery produces a homology 4-sphere, then the slope is 1/q
for some meridian and longitude in P . From Theorem 1.4, the result is M (when
ϵ = 0) or Gl(Se) (when ϵ = 1).

If M is diffeomorphic to S4 and Se is the unknot, then any cord is isotopic to the
trivial one. In the same way as above, any pochette surgery yielding a homology
4-sphere gives S4. □

4. Examples

4A. Pochette surgeries along ribbon 2-knots of 1-fusion. In this section, we
consider diffeomorphism types of pochette surgeries on the 4-sphere with nontrivial
core spheres and nontrivial cords.

Now we define ribbon 2-knot and fusion.

Definition 4.1 (ribbon 2-knot). Let {D3
1, . . . , D3

m} be m pairwise disjoint 3-disks
in S4. We take m−1 pairwise disjoint embeddings f1, . . . , fm−1 : D2

×[0, 1] → S4.
We assume that the embeddings satisfy the following conditions:

• fk(D2
× [0, 1]) ∩

⋃m
u=1 ∂ D3

u = fk(D2
× {0, 1}) for any 1 ≤ k ≤ m − 1.

•
⋃m−1

k=1 fk(D2
× [0, 1]) ∪

⋃m
u=1 ∂ D3

u is connected.

Then the boundary of union of these m 3-disks and m − 1 D2
× [0, 1]

m⋃
u=1

∂ D3
u ∪

m−1⋃
k=1

fk(∂ D2
× [0, 1])

is a 2-knot and called a ribbon 2-knot of (m − 1)-fusion.
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0

0 m ′

c

l ′
p

∪ 3-handle

Figure 6. A ribbon 2-knot of 1-fusion (left) and the diagram of
the complement of the 2-knot (right).

We take any ribbon 2-knot of 1-fusion as core spheres. Let S denote a ribbon
2-knot of 1-fusion in the 4-sphere. The sphere S is the double of a disk obtained by
attaching one band over two 2-disks as presented by the left picture in Figure 6. The
right diagram is the handle diagram of the complement of S. Let m′

⊂ ∂ E(Se) be
the oriented meridian of a dotted 1-handle indicated in Figure 6 with a base point p.
Let l ′ be an oriented meridian of the other dotted 1-handle passing p. Pushing the
complement (the dashed line in the right picture in Figure 6) of the neighborhood
of l ′ in the interior of E(Se), we obtain a cord c. Then the following holds.

Lemma 4.2. If G(Se) is not isomorphic to Z, then this cord c is nontrivial.

Recall the triviality of a cord was defined in Definition 1.2.

Proof. The fundamental group G(Se) is presented by

⟨x, y | wxw−1 y±1
⟩,

where x and y are the elements presented by the meridian m′ and the longitude l ′

respectively, and w is a word obtained by reading x, y along the 2-handle corre-
sponding to the band. Here the boundary-subgroup in G(Se) is ⟨x⟩.

Let p : G(Se) → G(Se)//⟨x⟩ be the projection for the double coset. Let [[id]] be
the trivial coset in G(Se)//⟨x⟩, which is the coset including the identity element
id ∈ G(Se). The inverse image p−1([[id]]) is equal to ⟨x⟩. In fact ⟨x⟩ ⊂ p−1([[id]])

is clear. For any z ∈ p−1([[id]]), there exist some integers r, s such that xr zx s
= id

is satisfied. Then z = x−r−s
∈ ⟨x⟩.

The homotopy class of the cord c corresponds to [[y]] ∈ G(Se)//Z. If the cord c
is trivial, then y ∈ p−1([[id]]) = ⟨x⟩ holds. Hence we have y = xn for some integer
n. This means G(Se) is an abelian group. Since the abelianization of G(Se) is Z,
we have G(Se) ∼= Z. □
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0
0

me

l1

l2

∪ 2 3-handles

0

Figure 7. The pochette complement whose core sphere is a ribbon
2-knot of 1-fusion.

Case (I)
∪ 2 3-handles, 4-handle

0 p strings

ϵ

0

0
0 p strings

ϵ

0

0

Case (II)
∪ 2 3-handles, 4-handle

Figure 8. (I): me is isotopic to l1. (II): me is isotopic to l2.

In general, it is well-known that G(Se) ̸∼= Z is satisfied for many nontrivial
2-knot Se. Then the cord c is nontrivial.

By using this cord c, we obtain an embedding e : P ↪→ S4 whose core sphere
is S. Then the handle diagram of the complement E(Pe) of P is Figure 7. The
meridian me is isotopic to l1 or l2 in E(Se). Here we assume that me is isotopic
to li . Then, we put the orientation of the longitude as [le] = −[li ] in E(Pe). Then
[me] = −[le] in H1(E(Se)) is satisfied. In this situation, the linking number of Pe

is −1. Consider the (p/(p + 1), ϵ)-pochette surgery by using the embedding e and
these oriented meridian and longitude in P . The element y ∈ π1(E(Pe)) is a lift
of −[l1] and y−1 is a lift of −[l2], and hence y±1 is a lift of the longitude le.

According to the last pictures in Figures 2 and 3, the cases (I) and (II) in Figure 8
are obtained as results of attaching P along p[me] + (p + 1)[le] with the mod 2
framing ϵ. The case (I) is the one which me is isotopic to l1 (as an oriented loop),
while (II) is the case where me is isotopic to l2 in the same way.

To prove Theorem 1.7, we first prove the following:
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0

0

ϵ

0

handle slide

0
0

ϵ

0
handle slide

0

0

0

ϵ

0

isotopy and

handle slide

0

0

ϵ

Figure 9. Handle moves.

Proposition 4.3. S4(e, p/(p+1), ϵ) is diffeomorphic to the double of a contractible
4-manifold without no 3-handles.

Proof. Here we will consider the case where me is isotopic to l2. The case where
me is isotopic to l1 can be proved in the same way.

We deform the handle diagram of (II) as in Figure 9. Continuously, we deform the
handle diagram according to Figure 10. We show that the last picture presents that
S4(e, p/(p + 1), ϵ) is diffeomorphic to the double of a contractible 4-manifold C .
The fundamental group π1(C) of C has the following presentation

(2) ⟨x, y | wxw−1 y±1, y±1(xy±1)p
⟩,

according to the last picture in Figure 10. The proof of the triviality of this group
is postponed in Lemma 4.4. The homology group of C is easily found out to be
trivial from the handle decomposition. □

As mentioned in [2, second paragraph in p. 36], the following result holds. Let C
be a contractible 4-manifold with n 1-handles, n 2-handles and no 3-handles. If the
presentation π1(C) with respect to the handle decomposition is AC-trivial, which is
defined in the next section, then the double satisfies D(C) := C∪id (−C) = ∂(C× I ).
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handle slide 0

0
0

ϵ

handle slide

0

0
0

ϵ

isotopy

0
0

0

ϵ

handle slide

0
0

0

ϵ

Figure 10. Handle moves.

Since the handle decomposition of C × I depends only on the homotopy classes of
the 2-handles, C × I is diffeomorphic to the standard D5. In the next section, we
give a brief review of Andrews–Curtis moves and Andrews–Curtis trivial.

4B. AC-triviality. Let F = F(X) be a free group of rank n ≥ 2 with a basis
X = {x1, . . . , xn} and W = (w1, . . . , wn) an n-tuple of words of X . Consider the
following three types of transformations of W :

(AC1): Replace wi by wiw j if j ̸= i .

(AC2): Replace wi by w−1
i .

(AC3): Replace wi by vwiv
−1 for some v ∈ F , and leave wk fixed for all k ̸= i .

Let R = ⟨x1, . . . , xn | w1, . . . , wn⟩ be a presentation of the trivial group. We
call base transformations (inversion and permutation of generators and relators)
of X , the transformations (AC1)–(AC3) for relators w1, . . . , wn , and adding or
deleting a generator g and a relator g as the same element Andrews–Curtis moves
(or AC-moves). If R can be reduced to the empty presentation ⟨∅ | ∅⟩ by a finite
sequence of AC-moves for the basis and relators, then R is called an AC-trivial
presentation.
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0

0

∪ 3-handle

Figure 11. A handle diagram of a ribbon 2-knot exterior.

Lemma 4.4. The presentation (2) is an AC-trivial presentation of the trivial group.

Proof. We give the following sequence of AC-moves:

⟨x, y | wxw−1 y±1, y±1(xy±1)p
⟩ = ⟨x, xy±1

| wxw−1 x−1(xy±1), x−1(xy±1)p+1
⟩

= ⟨x, z | wxw−1 x−1z, x−1z p+1
⟩

= ⟨x−1z p+1, z | wxw−1 x−1z, x−1z p+1
⟩

= ⟨u, z | w(z p+1u−1)w−1uz−p,u⟩ = ⟨z | zm
⟩.

Here since this group is trivial, m = ±1. Thus the presentation is AC-trivial. □

We left the proof of the triviality of π1(C) in Proposition 4.3. Lemma 4.4 implies
the proof of Proposition 4.3 completes.

Proof of Theorem 1.7. Let e : S2 ↪→ S4 be a ribbon 2-knot of 1-fusion. We take
the same cord c as the one chosen in Section 4A, which is used in Figure 6. By
using Proposition 4.3, the pochette surgery S4(e, p/(p + 1), ϵ) is diffeomorphic to
the double of a contractible 4-manifold C . The C has an AC-trivial presentation
of π1 coming from a handle decomposition of C with no 3-handles. By applying
the method in [2], S4(e, p/(p + 1), ϵ) = D(C) is diffeomorphic to the standard
4-sphere. □

Proof of Theorem 1.6. Let S and c be the ribbon 2-knot and the cord that we dealt
with in Theorem 1.7. Then S is nontrivial and c is nontrivial. The pochette surgery
gives the standard S4. □

4C. A case of spun trefoil knot. As an example, we give a concrete diagram for
the spun trefoil knot as a ribbon 2-knot of 1-fusion. Figure 11 is the handle diagram
of the complement.

We choose me and le as in Figure 12 (left), then the embedding i : ∂ Pe ↪→ E(Pe)

gives i∗([le]) = −[me]. Namely the linking number is ℓ = −1. Let x, y be lifts
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0

0 0

me

le

∪ 2 3-handles

0

0

ϵ

0
∪ 2 3-handles

4-handle

Figure 12. A pochette surgery S4
(
e, 1

2 , ϵ
)

with a nontrivial 2-knot
Se and a nontrivial cord.

in π1
(
S4

(
e, 1

2 , ϵ
))

of generators me and le respectively. Then the presentation of
π1

(
S4

(
e, 1

2 , ϵ
))

is the following:

⟨x, y | yx−1 yxy−1 x, y2x⟩ ∼= {id}.

The diagram of this homotopy 4-sphere becomes the right picture in Figure 12. In
this case, we can deform this diagram into the double of a contractible 4-manifold
with no 3-handles as in Figure 13.

4D. Pochette surgeries along ribbon 2-knots of n-fusion. The method to prove
Theorem 1.7 can be easily extended to the case of the surgery that the core sphere
is any ribbon 2-knot of n-fusion.

Proof of Theorem 1.8. Let S be any ribbon 2-knot of n-fusion. We fix the handle
decomposition of E(S) corresponding to the fusion. That is, the decomposition has
one 0-handle, n + 1 dotted 1-handles, n 2-handles and n dual 2-handles and n + 1
3-handles and one 4-handle. See [5, Section 6.2] for the description of ribbon 2-knot
complement. We take two based meridians m′ and l ′ of the dotted 1-handles with a
base point p0 ∈∂ E(S). We suppose that m′ lies in ∂ E(S) and is a meridian of ∂ E(S).
Let x, y be elements in π1(E(S)) corresponding to m′ and l ′ respectively. Here we
can assume that y±1 is conjugate to x but y±1

̸∈ ⟨x⟩. Actually, if any based meridian
of each dotted 1-handle of E(S) is in an element in ⟨x⟩, then π1(E(S)) is a quotient
of Z, because the set of the meridians of the dotted 1-handles is a generator of
π1(E(S)). Actually using the abelianization map π1(E(S))

ab
−→ H1(E(S)) = Z, we

conclude that π1(E(S)) is isomorphic to Z. Now this case is ruled out. Thus, there
exists a based meridian l ′ ⊂ E(S) such that y := [l ′] is conjugate to x but y ̸∈ ⟨x⟩.

In the same way as the proof of Theorem 1.7, from l ′ we produce a cord in E(S).
Thus, by taking such a cord, we obtain a pochette embedding e : P ↪→ S4. By
moving the 0-framed 2-handle by the process in Figures 9 and 10, we can take the
0-framed 2-handle in the position of the meridian of the ϵ-framed 2-handle.
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Figure 13. A diffeomorphism to the double of a contractible 4-manifold.

If the graph for the n-fusion is as in Figure 14. This is just a schematic picture for
the fusion, and the edges stand for connecting 0-framed 2-handles coming from the
bands of the ribbon disk. Actually, in the true picture, the edges should be drawn
as some bands and might be linking to several dotted 1-handles. For our proof, we
may omit these data because sliding the 0-framed 2-handle to dual 2-handles, we
can ignore the linking.

We take the two based oriented meridians m′ and l ′ in the positions in the figure.
We suppose that the below 0-framed 2-handle in the first picture in Figure 9 is
attached in the dashed circle in Figure 14 in our situation. From the 1-handle k
linking to l ′ to the 1-handle k ′ linking to m′, the 0-framed 2-handle can be moved
by doing several handle slides and some isotopy. See Figure 15 for the handle
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l ′

m ′

k

k ′

Figure 14. A graph for the fusion of a ribbon 2-knot.

moves. This also generalizes the moves from the first picture in Figure 9 to the
second picture in Figure 10. Hence, we can freely move the 0-framed 2-handle
from a dotted 1-handle to another dotted 1-handle.

By these handle slides, all 0-framed 2-handles corresponding to the dual bands
can be moved in the meridians of all 2-handles. This means that S4(e, p/(p+1), ϵ)

is the double of a homology 4-ball H without 3-handles. □

As mentioned in Section 1 as well, it is unclear whether any homology 4-sphere
obtained by this pochette surgery is simply connected or not.

If the 2-knot is n-fusion ribbon knot, the fundamental group of S4(e, p/(p+1), ϵ)

has the form

(3) ⟨x1, . . . , xn+1 | w1xi1w
−1
1 x−1

j1 , . . . , wn xinw
−1
n x−1

jn , x−1
s (xr x−1

s )p
⟩,

where for k = 1, 2, . . . , n, wk is a word in x1, . . . , xn+1, the set

{{ik, jk} | k = 1, . . . , n}

is the set of edges of the graph, and r, s are some integers in {1, . . . , n}. Even if H
in the proof of Theorem 1.8 is contractible, that is, the fundamental group is trivial
then it is unclear whether S4(e, p/(p + 1), ϵ) is diffeomorphic to S4 or not.

Proof of Theorem 1.9. If the homology 4-ball H in the proof above is contractible,
then S4(e, g) = H ∪(−H) is a homotopy 4-sphere. Furthermore, if the presentation
of π1 coming from the handle decomposition is AC-trivial, then from the method
mentioned right after the proof of Theorem 1.7, therefore, S4(e, g) is diffeomorphic
to the standard S4. □
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0

handle slide

handle slide isotopy

isotopy

Figure 15. Deformations to move the 0-framed meridian in the position.

We give a sufficient condition that the presentation (3) is AC-trivial. Let
{x1, . . . , xn+1} be a generator of the free group Fn+1. For any word w of x1, . . . , xn+1,
we put r2i−1 = wx2iw

−1 x−1
2i+1 for 2i − 1 < n, r2i = wx2i+2w

−1 x−1
2i+1 for 2i < n

and
rn =

{
wxn+1 w−1 x−1

1 , n is odd,

wx1 w−1 x−1
n+1, n is even.

Then we consider the presentation

⟨x1, . . . , xn+1 | r1, . . . , rn⟩.

This presentation gives the fundamental group of the complement of a ribbon 2-knot
of n-fusion.
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Lemma 4.5. Let n be a positive integer. For any word w of x1, . . . , xn+1, the
relators r1, . . . , rn are the same as above. For rn+1 = x−1

1 (x2x−1
1 )p, the presentation

(4) ⟨x1, . . . , xn+1 | r1, . . . , rn, rn+1⟩

is the trivial group presentation with AC-trivial.

Proof. We obtain

r2i−1 r−1
2i = wx2i x−1

2i+2 w−1
∼ x2i x−1

2i+2 and r−1
2i+1 r2i = x−1

2i+3 x2i+2,

r−1
n−1 rn = xnx−1

1 if n is odd, rn−1 r−1
n = wxn x−1

1 w−1
∼ xn x−1

1 if n is even, where
∼ presents the relation between conjugate elements. Then we have

⟨x1, . . . , xn+1 | r1, r2, r3, . . . , rn, rn+1⟩

∼= ⟨x1, . . . , xn+1 | r1r−1
2 , r2, r3, . . . , rn, rn+1⟩

∼= ⟨x1, . . . , xn+1 | r1r−1
2 , r−1

2 r3, r3, . . . , rn, rn+1⟩

∼= ⟨x1, . . . , xn+1 | r1r−1
2 , r−1

2 r3, r3r−1
4 , . . . , rn, rn+1⟩

∼=

{
⟨x1, . . . , xn+1 | r1r−1

2 , r−1
2 r3, r3r−1

4 , . . . , r−1
n−1 rn, rn, rn+1⟩, n is odd,

⟨x1, . . . , xn+1 | r1r−1
2 , r−1

2 r3, r3r−1
4 , . . . , rn−1 r−1

n , rn, rn+1⟩, n is even
∼= ⟨x1, . . . , xn+1 | x2x−1

4 , x3x−1
5 , x4x−1

6 , . . . , xn−1 x−1
n+1, xnx−1

1 , rn, rn+1⟩.

Replacing xi x−1
i+2 with x ′

i for i = 2, . . . , n − 1 and xn x−1
1 with x ′

n , we give

x2 =

{
x ′

2x ′

4x ′

6 · · · x ′

n−1xn+1, n is odd,

x ′

2x ′

4x ′

6 · · · x ′
nx1, n is even,

rn =

{
w′xn+1(w

′)−1 x−1
1 , n is odd,

w′x1(w
′)−1 x−1

n+1, n is even,

where w′ is a word of x1, x ′

i and xn+1 and we have

⟨x1, . . . , xn+1 | r1, r2, r3, r4, . . . , rn, rn+1⟩

∼= ⟨x1, x ′

2, . . . , x ′

n, xn+1 | x ′

2, x ′

3, x ′

4, . . . , x ′

n−1, x ′

n, rn, rn+1⟩

∼=

{
⟨x1, xn+1 | w′xn+1(w

′)−1 x−1
1 , x−1

1 (xn+1x−1
1 )p

⟩, n is odd,

⟨x1, xn+1 | w′x1(w
′)−1 x−1

n+1, x−1
1 ⟩, n is even.

By applying Lemma 4.4, we see that this presentation is AC-trivial. Therefore, we
obtain the desired result above. □

5. Questions

In this section we raise several questions. We leave the following problem about
Theorem 1.8.
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Question 5.1. Let S be any ribbon 2-knot with G(S) ̸∼= Z. Does there exist a
nontrivial cord c in E(S) such that any nontrivial surgery with respect to the
embedding e : P ↪→ S4 with the cord c and the core sphere S yielding a homology
4-sphere gives the standard 4-sphere?

Since pochette surgery is a generalization of Gluck surgery, the triviality of Gluck
surgery on any ribbon 2-knot might also hold in the pochette surgery situation.

Question 5.2. Let S be any ribbon 2-knot with G(S) ̸∼= Z. Suppose that e : P ↪→ S4

is any embedding with Se = S. Does any pochette surgery S4(e, g) yielding a
homology 4-sphere for some gluing map g give the 4-sphere?

It might be possible that we answer the following question affirmatively.

Question 5.3. Let S be any ribbon 2-knot in S4 with G(S) ̸∼= Z. If a pochette
surgery with the core sphere S yields a homology 4-sphere, is the pochette surgery
the standard 4-sphere?

Can the diffeomorphisms in the previous section be generalized to cases of any
nontrivial core sphere?

Question 5.4. Let S be any 2-knot with G(S) ̸∼=Z. Then, does there exist a nontrivial
cord in E(S) such that any pochette surgery for a pochette embedding e : P ↪→ S4

with the core sphere S is S4 or Gl(S)?

Can we construct a homotopy 4-sphere other than Gl(S) by pochette surgery?
Furthermore, we raise two questions in more generalized settings.

Question 5.5. Can a pochette surgery of S4 construct an exotic S4?

More generally, we ask the following question.

Question 5.6. Can a pochette surgery of an oriented 4-manifold M construct an
exotic structure on M?

Pochette surgery can be generalized to a surgery on a generalized pochette
Pa,b = ♮a S1

× D3♮b D2
× S2. Such a surgery is called an outer surgery and it is

studied by Nakamura in [10]. Would studying outer surgery lead to the construction
of interesting 4-manifolds? Investigating outer surgery is a potential avenue for
future research about exotic 4-manifolds.
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